f3fd9f1711f7559217617ce6bb25a89165a1b8f0
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80         "Use 'simple mode' rather than 'performant mode'");
81
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
100                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101         {0,}
102 };
103
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111         {0x3241103C, "Smart Array P212", &SA5_access},
112         {0x3243103C, "Smart Array P410", &SA5_access},
113         {0x3245103C, "Smart Array P410i", &SA5_access},
114         {0x3247103C, "Smart Array P411", &SA5_access},
115         {0x3249103C, "Smart Array P812", &SA5_access},
116         {0x324a103C, "Smart Array P712m", &SA5_access},
117         {0x324b103C, "Smart Array P711m", &SA5_access},
118         {0x3350103C, "Smart Array", &SA5_access},
119         {0x3351103C, "Smart Array", &SA5_access},
120         {0x3352103C, "Smart Array", &SA5_access},
121         {0x3353103C, "Smart Array", &SA5_access},
122         {0x3354103C, "Smart Array", &SA5_access},
123         {0x3355103C, "Smart Array", &SA5_access},
124         {0x3356103C, "Smart Array", &SA5_access},
125         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127
128 static int number_of_controllers;
129
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145         int cmd_type);
146
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150         unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152         int qdepth, int reason);
153
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160         struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162         struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165         int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170         u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172         unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175         void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181         unsigned long *priv = shost_priv(sdev->host);
182         return (struct ctlr_info *) *priv;
183 }
184
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187         unsigned long *priv = shost_priv(sh);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static int check_for_unit_attention(struct ctlr_info *h,
192         struct CommandList *c)
193 {
194         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195                 return 0;
196
197         switch (c->err_info->SenseInfo[12]) {
198         case STATE_CHANGED:
199                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200                         "detected, command retried\n", h->ctlr);
201                 break;
202         case LUN_FAILED:
203                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204                         "detected, action required\n", h->ctlr);
205                 break;
206         case REPORT_LUNS_CHANGED:
207                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208                         "changed, action required\n", h->ctlr);
209         /*
210          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211          */
212                 break;
213         case POWER_OR_RESET:
214                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215                         "or device reset detected\n", h->ctlr);
216                 break;
217         case UNIT_ATTENTION_CLEARED:
218                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219                     "cleared by another initiator\n", h->ctlr);
220                 break;
221         default:
222                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223                         "unit attention detected\n", h->ctlr);
224                 break;
225         }
226         return 1;
227 }
228
229 static ssize_t host_store_rescan(struct device *dev,
230                                  struct device_attribute *attr,
231                                  const char *buf, size_t count)
232 {
233         struct ctlr_info *h;
234         struct Scsi_Host *shost = class_to_shost(dev);
235         h = shost_to_hba(shost);
236         hpsa_scan_start(h->scsi_host);
237         return count;
238 }
239
240 static ssize_t host_show_firmware_revision(struct device *dev,
241              struct device_attribute *attr, char *buf)
242 {
243         struct ctlr_info *h;
244         struct Scsi_Host *shost = class_to_shost(dev);
245         unsigned char *fwrev;
246
247         h = shost_to_hba(shost);
248         if (!h->hba_inquiry_data)
249                 return 0;
250         fwrev = &h->hba_inquiry_data[32];
251         return snprintf(buf, 20, "%c%c%c%c\n",
252                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256              struct device_attribute *attr, char *buf)
257 {
258         struct Scsi_Host *shost = class_to_shost(dev);
259         struct ctlr_info *h = shost_to_hba(shost);
260
261         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263
264 static ssize_t host_show_transport_mode(struct device *dev,
265         struct device_attribute *attr, char *buf)
266 {
267         struct ctlr_info *h;
268         struct Scsi_Host *shost = class_to_shost(dev);
269
270         h = shost_to_hba(shost);
271         return snprintf(buf, 20, "%s\n",
272                 h->transMethod & CFGTBL_Trans_Performant ?
273                         "performant" : "simple");
274 }
275
276 /* List of controllers which cannot be hard reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278         0x324a103C, /* Smart Array P712m */
279         0x324b103C, /* SmartArray P711m */
280         0x3223103C, /* Smart Array P800 */
281         0x3234103C, /* Smart Array P400 */
282         0x3235103C, /* Smart Array P400i */
283         0x3211103C, /* Smart Array E200i */
284         0x3212103C, /* Smart Array E200 */
285         0x3213103C, /* Smart Array E200i */
286         0x3214103C, /* Smart Array E200i */
287         0x3215103C, /* Smart Array E200i */
288         0x3237103C, /* Smart Array E500 */
289         0x323D103C, /* Smart Array P700m */
290         0x409C0E11, /* Smart Array 6400 */
291         0x409D0E11, /* Smart Array 6400 EM */
292 };
293
294 /* List of controllers which cannot even be soft reset */
295 static u32 soft_unresettable_controller[] = {
296         /* Exclude 640x boards.  These are two pci devices in one slot
297          * which share a battery backed cache module.  One controls the
298          * cache, the other accesses the cache through the one that controls
299          * it.  If we reset the one controlling the cache, the other will
300          * likely not be happy.  Just forbid resetting this conjoined mess.
301          * The 640x isn't really supported by hpsa anyway.
302          */
303         0x409C0E11, /* Smart Array 6400 */
304         0x409D0E11, /* Smart Array 6400 EM */
305 };
306
307 static int ctlr_is_hard_resettable(u32 board_id)
308 {
309         int i;
310
311         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
312                 if (unresettable_controller[i] == board_id)
313                         return 0;
314         return 1;
315 }
316
317 static int ctlr_is_soft_resettable(u32 board_id)
318 {
319         int i;
320
321         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
322                 if (soft_unresettable_controller[i] == board_id)
323                         return 0;
324         return 1;
325 }
326
327 static int ctlr_is_resettable(u32 board_id)
328 {
329         return ctlr_is_hard_resettable(board_id) ||
330                 ctlr_is_soft_resettable(board_id);
331 }
332
333 static ssize_t host_show_resettable(struct device *dev,
334         struct device_attribute *attr, char *buf)
335 {
336         struct ctlr_info *h;
337         struct Scsi_Host *shost = class_to_shost(dev);
338
339         h = shost_to_hba(shost);
340         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
341 }
342
343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
344 {
345         return (scsi3addr[3] & 0xC0) == 0x40;
346 }
347
348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
349         "UNKNOWN"
350 };
351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
352
353 static ssize_t raid_level_show(struct device *dev,
354              struct device_attribute *attr, char *buf)
355 {
356         ssize_t l = 0;
357         unsigned char rlevel;
358         struct ctlr_info *h;
359         struct scsi_device *sdev;
360         struct hpsa_scsi_dev_t *hdev;
361         unsigned long flags;
362
363         sdev = to_scsi_device(dev);
364         h = sdev_to_hba(sdev);
365         spin_lock_irqsave(&h->lock, flags);
366         hdev = sdev->hostdata;
367         if (!hdev) {
368                 spin_unlock_irqrestore(&h->lock, flags);
369                 return -ENODEV;
370         }
371
372         /* Is this even a logical drive? */
373         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
374                 spin_unlock_irqrestore(&h->lock, flags);
375                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
376                 return l;
377         }
378
379         rlevel = hdev->raid_level;
380         spin_unlock_irqrestore(&h->lock, flags);
381         if (rlevel > RAID_UNKNOWN)
382                 rlevel = RAID_UNKNOWN;
383         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
384         return l;
385 }
386
387 static ssize_t lunid_show(struct device *dev,
388              struct device_attribute *attr, char *buf)
389 {
390         struct ctlr_info *h;
391         struct scsi_device *sdev;
392         struct hpsa_scsi_dev_t *hdev;
393         unsigned long flags;
394         unsigned char lunid[8];
395
396         sdev = to_scsi_device(dev);
397         h = sdev_to_hba(sdev);
398         spin_lock_irqsave(&h->lock, flags);
399         hdev = sdev->hostdata;
400         if (!hdev) {
401                 spin_unlock_irqrestore(&h->lock, flags);
402                 return -ENODEV;
403         }
404         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
405         spin_unlock_irqrestore(&h->lock, flags);
406         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
407                 lunid[0], lunid[1], lunid[2], lunid[3],
408                 lunid[4], lunid[5], lunid[6], lunid[7]);
409 }
410
411 static ssize_t unique_id_show(struct device *dev,
412              struct device_attribute *attr, char *buf)
413 {
414         struct ctlr_info *h;
415         struct scsi_device *sdev;
416         struct hpsa_scsi_dev_t *hdev;
417         unsigned long flags;
418         unsigned char sn[16];
419
420         sdev = to_scsi_device(dev);
421         h = sdev_to_hba(sdev);
422         spin_lock_irqsave(&h->lock, flags);
423         hdev = sdev->hostdata;
424         if (!hdev) {
425                 spin_unlock_irqrestore(&h->lock, flags);
426                 return -ENODEV;
427         }
428         memcpy(sn, hdev->device_id, sizeof(sn));
429         spin_unlock_irqrestore(&h->lock, flags);
430         return snprintf(buf, 16 * 2 + 2,
431                         "%02X%02X%02X%02X%02X%02X%02X%02X"
432                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
433                         sn[0], sn[1], sn[2], sn[3],
434                         sn[4], sn[5], sn[6], sn[7],
435                         sn[8], sn[9], sn[10], sn[11],
436                         sn[12], sn[13], sn[14], sn[15]);
437 }
438
439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
443 static DEVICE_ATTR(firmware_revision, S_IRUGO,
444         host_show_firmware_revision, NULL);
445 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
446         host_show_commands_outstanding, NULL);
447 static DEVICE_ATTR(transport_mode, S_IRUGO,
448         host_show_transport_mode, NULL);
449 static DEVICE_ATTR(resettable, S_IRUGO,
450         host_show_resettable, NULL);
451
452 static struct device_attribute *hpsa_sdev_attrs[] = {
453         &dev_attr_raid_level,
454         &dev_attr_lunid,
455         &dev_attr_unique_id,
456         NULL,
457 };
458
459 static struct device_attribute *hpsa_shost_attrs[] = {
460         &dev_attr_rescan,
461         &dev_attr_firmware_revision,
462         &dev_attr_commands_outstanding,
463         &dev_attr_transport_mode,
464         &dev_attr_resettable,
465         NULL,
466 };
467
468 static struct scsi_host_template hpsa_driver_template = {
469         .module                 = THIS_MODULE,
470         .name                   = "hpsa",
471         .proc_name              = "hpsa",
472         .queuecommand           = hpsa_scsi_queue_command,
473         .scan_start             = hpsa_scan_start,
474         .scan_finished          = hpsa_scan_finished,
475         .change_queue_depth     = hpsa_change_queue_depth,
476         .this_id                = -1,
477         .use_clustering         = ENABLE_CLUSTERING,
478         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
479         .ioctl                  = hpsa_ioctl,
480         .slave_alloc            = hpsa_slave_alloc,
481         .slave_destroy          = hpsa_slave_destroy,
482 #ifdef CONFIG_COMPAT
483         .compat_ioctl           = hpsa_compat_ioctl,
484 #endif
485         .sdev_attrs = hpsa_sdev_attrs,
486         .shost_attrs = hpsa_shost_attrs,
487         .max_sectors = 8192,
488 };
489
490
491 /* Enqueuing and dequeuing functions for cmdlists. */
492 static inline void addQ(struct list_head *list, struct CommandList *c)
493 {
494         list_add_tail(&c->list, list);
495 }
496
497 static inline u32 next_command(struct ctlr_info *h)
498 {
499         u32 a;
500
501         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
502                 return h->access.command_completed(h);
503
504         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
505                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
506                 (h->reply_pool_head)++;
507                 h->commands_outstanding--;
508         } else {
509                 a = FIFO_EMPTY;
510         }
511         /* Check for wraparound */
512         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
513                 h->reply_pool_head = h->reply_pool;
514                 h->reply_pool_wraparound ^= 1;
515         }
516         return a;
517 }
518
519 /* set_performant_mode: Modify the tag for cciss performant
520  * set bit 0 for pull model, bits 3-1 for block fetch
521  * register number
522  */
523 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
524 {
525         if (likely(h->transMethod & CFGTBL_Trans_Performant))
526                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
527 }
528
529 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
530         struct CommandList *c)
531 {
532         unsigned long flags;
533
534         set_performant_mode(h, c);
535         spin_lock_irqsave(&h->lock, flags);
536         addQ(&h->reqQ, c);
537         h->Qdepth++;
538         start_io(h);
539         spin_unlock_irqrestore(&h->lock, flags);
540 }
541
542 static inline void removeQ(struct CommandList *c)
543 {
544         if (WARN_ON(list_empty(&c->list)))
545                 return;
546         list_del_init(&c->list);
547 }
548
549 static inline int is_hba_lunid(unsigned char scsi3addr[])
550 {
551         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
552 }
553
554 static inline int is_scsi_rev_5(struct ctlr_info *h)
555 {
556         if (!h->hba_inquiry_data)
557                 return 0;
558         if ((h->hba_inquiry_data[2] & 0x07) == 5)
559                 return 1;
560         return 0;
561 }
562
563 static int hpsa_find_target_lun(struct ctlr_info *h,
564         unsigned char scsi3addr[], int bus, int *target, int *lun)
565 {
566         /* finds an unused bus, target, lun for a new physical device
567          * assumes h->devlock is held
568          */
569         int i, found = 0;
570         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
571
572         memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
573
574         for (i = 0; i < h->ndevices; i++) {
575                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
576                         set_bit(h->dev[i]->target, lun_taken);
577         }
578
579         for (i = 0; i < HPSA_MAX_DEVICES; i++) {
580                 if (!test_bit(i, lun_taken)) {
581                         /* *bus = 1; */
582                         *target = i;
583                         *lun = 0;
584                         found = 1;
585                         break;
586                 }
587         }
588         return !found;
589 }
590
591 /* Add an entry into h->dev[] array. */
592 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
593                 struct hpsa_scsi_dev_t *device,
594                 struct hpsa_scsi_dev_t *added[], int *nadded)
595 {
596         /* assumes h->devlock is held */
597         int n = h->ndevices;
598         int i;
599         unsigned char addr1[8], addr2[8];
600         struct hpsa_scsi_dev_t *sd;
601
602         if (n >= HPSA_MAX_DEVICES) {
603                 dev_err(&h->pdev->dev, "too many devices, some will be "
604                         "inaccessible.\n");
605                 return -1;
606         }
607
608         /* physical devices do not have lun or target assigned until now. */
609         if (device->lun != -1)
610                 /* Logical device, lun is already assigned. */
611                 goto lun_assigned;
612
613         /* If this device a non-zero lun of a multi-lun device
614          * byte 4 of the 8-byte LUN addr will contain the logical
615          * unit no, zero otherise.
616          */
617         if (device->scsi3addr[4] == 0) {
618                 /* This is not a non-zero lun of a multi-lun device */
619                 if (hpsa_find_target_lun(h, device->scsi3addr,
620                         device->bus, &device->target, &device->lun) != 0)
621                         return -1;
622                 goto lun_assigned;
623         }
624
625         /* This is a non-zero lun of a multi-lun device.
626          * Search through our list and find the device which
627          * has the same 8 byte LUN address, excepting byte 4.
628          * Assign the same bus and target for this new LUN.
629          * Use the logical unit number from the firmware.
630          */
631         memcpy(addr1, device->scsi3addr, 8);
632         addr1[4] = 0;
633         for (i = 0; i < n; i++) {
634                 sd = h->dev[i];
635                 memcpy(addr2, sd->scsi3addr, 8);
636                 addr2[4] = 0;
637                 /* differ only in byte 4? */
638                 if (memcmp(addr1, addr2, 8) == 0) {
639                         device->bus = sd->bus;
640                         device->target = sd->target;
641                         device->lun = device->scsi3addr[4];
642                         break;
643                 }
644         }
645         if (device->lun == -1) {
646                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
647                         " suspect firmware bug or unsupported hardware "
648                         "configuration.\n");
649                         return -1;
650         }
651
652 lun_assigned:
653
654         h->dev[n] = device;
655         h->ndevices++;
656         added[*nadded] = device;
657         (*nadded)++;
658
659         /* initially, (before registering with scsi layer) we don't
660          * know our hostno and we don't want to print anything first
661          * time anyway (the scsi layer's inquiries will show that info)
662          */
663         /* if (hostno != -1) */
664                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
665                         scsi_device_type(device->devtype), hostno,
666                         device->bus, device->target, device->lun);
667         return 0;
668 }
669
670 /* Replace an entry from h->dev[] array. */
671 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
672         int entry, struct hpsa_scsi_dev_t *new_entry,
673         struct hpsa_scsi_dev_t *added[], int *nadded,
674         struct hpsa_scsi_dev_t *removed[], int *nremoved)
675 {
676         /* assumes h->devlock is held */
677         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
678         removed[*nremoved] = h->dev[entry];
679         (*nremoved)++;
680
681         /*
682          * New physical devices won't have target/lun assigned yet
683          * so we need to preserve the values in the slot we are replacing.
684          */
685         if (new_entry->target == -1) {
686                 new_entry->target = h->dev[entry]->target;
687                 new_entry->lun = h->dev[entry]->lun;
688         }
689
690         h->dev[entry] = new_entry;
691         added[*nadded] = new_entry;
692         (*nadded)++;
693         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
694                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
695                         new_entry->target, new_entry->lun);
696 }
697
698 /* Remove an entry from h->dev[] array. */
699 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
700         struct hpsa_scsi_dev_t *removed[], int *nremoved)
701 {
702         /* assumes h->devlock is held */
703         int i;
704         struct hpsa_scsi_dev_t *sd;
705
706         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
707
708         sd = h->dev[entry];
709         removed[*nremoved] = h->dev[entry];
710         (*nremoved)++;
711
712         for (i = entry; i < h->ndevices-1; i++)
713                 h->dev[i] = h->dev[i+1];
714         h->ndevices--;
715         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
716                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
717                 sd->lun);
718 }
719
720 #define SCSI3ADDR_EQ(a, b) ( \
721         (a)[7] == (b)[7] && \
722         (a)[6] == (b)[6] && \
723         (a)[5] == (b)[5] && \
724         (a)[4] == (b)[4] && \
725         (a)[3] == (b)[3] && \
726         (a)[2] == (b)[2] && \
727         (a)[1] == (b)[1] && \
728         (a)[0] == (b)[0])
729
730 static void fixup_botched_add(struct ctlr_info *h,
731         struct hpsa_scsi_dev_t *added)
732 {
733         /* called when scsi_add_device fails in order to re-adjust
734          * h->dev[] to match the mid layer's view.
735          */
736         unsigned long flags;
737         int i, j;
738
739         spin_lock_irqsave(&h->lock, flags);
740         for (i = 0; i < h->ndevices; i++) {
741                 if (h->dev[i] == added) {
742                         for (j = i; j < h->ndevices-1; j++)
743                                 h->dev[j] = h->dev[j+1];
744                         h->ndevices--;
745                         break;
746                 }
747         }
748         spin_unlock_irqrestore(&h->lock, flags);
749         kfree(added);
750 }
751
752 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
753         struct hpsa_scsi_dev_t *dev2)
754 {
755         /* we compare everything except lun and target as these
756          * are not yet assigned.  Compare parts likely
757          * to differ first
758          */
759         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
760                 sizeof(dev1->scsi3addr)) != 0)
761                 return 0;
762         if (memcmp(dev1->device_id, dev2->device_id,
763                 sizeof(dev1->device_id)) != 0)
764                 return 0;
765         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
766                 return 0;
767         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
768                 return 0;
769         if (dev1->devtype != dev2->devtype)
770                 return 0;
771         if (dev1->bus != dev2->bus)
772                 return 0;
773         return 1;
774 }
775
776 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
777  * and return needle location in *index.  If scsi3addr matches, but not
778  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
779  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
780  */
781 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
782         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
783         int *index)
784 {
785         int i;
786 #define DEVICE_NOT_FOUND 0
787 #define DEVICE_CHANGED 1
788 #define DEVICE_SAME 2
789         for (i = 0; i < haystack_size; i++) {
790                 if (haystack[i] == NULL) /* previously removed. */
791                         continue;
792                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
793                         *index = i;
794                         if (device_is_the_same(needle, haystack[i]))
795                                 return DEVICE_SAME;
796                         else
797                                 return DEVICE_CHANGED;
798                 }
799         }
800         *index = -1;
801         return DEVICE_NOT_FOUND;
802 }
803
804 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
805         struct hpsa_scsi_dev_t *sd[], int nsds)
806 {
807         /* sd contains scsi3 addresses and devtypes, and inquiry
808          * data.  This function takes what's in sd to be the current
809          * reality and updates h->dev[] to reflect that reality.
810          */
811         int i, entry, device_change, changes = 0;
812         struct hpsa_scsi_dev_t *csd;
813         unsigned long flags;
814         struct hpsa_scsi_dev_t **added, **removed;
815         int nadded, nremoved;
816         struct Scsi_Host *sh = NULL;
817
818         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
819         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
820
821         if (!added || !removed) {
822                 dev_warn(&h->pdev->dev, "out of memory in "
823                         "adjust_hpsa_scsi_table\n");
824                 goto free_and_out;
825         }
826
827         spin_lock_irqsave(&h->devlock, flags);
828
829         /* find any devices in h->dev[] that are not in
830          * sd[] and remove them from h->dev[], and for any
831          * devices which have changed, remove the old device
832          * info and add the new device info.
833          */
834         i = 0;
835         nremoved = 0;
836         nadded = 0;
837         while (i < h->ndevices) {
838                 csd = h->dev[i];
839                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
840                 if (device_change == DEVICE_NOT_FOUND) {
841                         changes++;
842                         hpsa_scsi_remove_entry(h, hostno, i,
843                                 removed, &nremoved);
844                         continue; /* remove ^^^, hence i not incremented */
845                 } else if (device_change == DEVICE_CHANGED) {
846                         changes++;
847                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
848                                 added, &nadded, removed, &nremoved);
849                         /* Set it to NULL to prevent it from being freed
850                          * at the bottom of hpsa_update_scsi_devices()
851                          */
852                         sd[entry] = NULL;
853                 }
854                 i++;
855         }
856
857         /* Now, make sure every device listed in sd[] is also
858          * listed in h->dev[], adding them if they aren't found
859          */
860
861         for (i = 0; i < nsds; i++) {
862                 if (!sd[i]) /* if already added above. */
863                         continue;
864                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
865                                         h->ndevices, &entry);
866                 if (device_change == DEVICE_NOT_FOUND) {
867                         changes++;
868                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
869                                 added, &nadded) != 0)
870                                 break;
871                         sd[i] = NULL; /* prevent from being freed later. */
872                 } else if (device_change == DEVICE_CHANGED) {
873                         /* should never happen... */
874                         changes++;
875                         dev_warn(&h->pdev->dev,
876                                 "device unexpectedly changed.\n");
877                         /* but if it does happen, we just ignore that device */
878                 }
879         }
880         spin_unlock_irqrestore(&h->devlock, flags);
881
882         /* Don't notify scsi mid layer of any changes the first time through
883          * (or if there are no changes) scsi_scan_host will do it later the
884          * first time through.
885          */
886         if (hostno == -1 || !changes)
887                 goto free_and_out;
888
889         sh = h->scsi_host;
890         /* Notify scsi mid layer of any removed devices */
891         for (i = 0; i < nremoved; i++) {
892                 struct scsi_device *sdev =
893                         scsi_device_lookup(sh, removed[i]->bus,
894                                 removed[i]->target, removed[i]->lun);
895                 if (sdev != NULL) {
896                         scsi_remove_device(sdev);
897                         scsi_device_put(sdev);
898                 } else {
899                         /* We don't expect to get here.
900                          * future cmds to this device will get selection
901                          * timeout as if the device was gone.
902                          */
903                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
904                                 " for removal.", hostno, removed[i]->bus,
905                                 removed[i]->target, removed[i]->lun);
906                 }
907                 kfree(removed[i]);
908                 removed[i] = NULL;
909         }
910
911         /* Notify scsi mid layer of any added devices */
912         for (i = 0; i < nadded; i++) {
913                 if (scsi_add_device(sh, added[i]->bus,
914                         added[i]->target, added[i]->lun) == 0)
915                         continue;
916                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
917                         "device not added.\n", hostno, added[i]->bus,
918                         added[i]->target, added[i]->lun);
919                 /* now we have to remove it from h->dev,
920                  * since it didn't get added to scsi mid layer
921                  */
922                 fixup_botched_add(h, added[i]);
923         }
924
925 free_and_out:
926         kfree(added);
927         kfree(removed);
928 }
929
930 /*
931  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
932  * Assume's h->devlock is held.
933  */
934 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
935         int bus, int target, int lun)
936 {
937         int i;
938         struct hpsa_scsi_dev_t *sd;
939
940         for (i = 0; i < h->ndevices; i++) {
941                 sd = h->dev[i];
942                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
943                         return sd;
944         }
945         return NULL;
946 }
947
948 /* link sdev->hostdata to our per-device structure. */
949 static int hpsa_slave_alloc(struct scsi_device *sdev)
950 {
951         struct hpsa_scsi_dev_t *sd;
952         unsigned long flags;
953         struct ctlr_info *h;
954
955         h = sdev_to_hba(sdev);
956         spin_lock_irqsave(&h->devlock, flags);
957         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
958                 sdev_id(sdev), sdev->lun);
959         if (sd != NULL)
960                 sdev->hostdata = sd;
961         spin_unlock_irqrestore(&h->devlock, flags);
962         return 0;
963 }
964
965 static void hpsa_slave_destroy(struct scsi_device *sdev)
966 {
967         /* nothing to do. */
968 }
969
970 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
971 {
972         int i;
973
974         if (!h->cmd_sg_list)
975                 return;
976         for (i = 0; i < h->nr_cmds; i++) {
977                 kfree(h->cmd_sg_list[i]);
978                 h->cmd_sg_list[i] = NULL;
979         }
980         kfree(h->cmd_sg_list);
981         h->cmd_sg_list = NULL;
982 }
983
984 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
985 {
986         int i;
987
988         if (h->chainsize <= 0)
989                 return 0;
990
991         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
992                                 GFP_KERNEL);
993         if (!h->cmd_sg_list)
994                 return -ENOMEM;
995         for (i = 0; i < h->nr_cmds; i++) {
996                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
997                                                 h->chainsize, GFP_KERNEL);
998                 if (!h->cmd_sg_list[i])
999                         goto clean;
1000         }
1001         return 0;
1002
1003 clean:
1004         hpsa_free_sg_chain_blocks(h);
1005         return -ENOMEM;
1006 }
1007
1008 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1009         struct CommandList *c)
1010 {
1011         struct SGDescriptor *chain_sg, *chain_block;
1012         u64 temp64;
1013
1014         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1015         chain_block = h->cmd_sg_list[c->cmdindex];
1016         chain_sg->Ext = HPSA_SG_CHAIN;
1017         chain_sg->Len = sizeof(*chain_sg) *
1018                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1019         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1020                                 PCI_DMA_TODEVICE);
1021         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1022         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1023 }
1024
1025 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1026         struct CommandList *c)
1027 {
1028         struct SGDescriptor *chain_sg;
1029         union u64bit temp64;
1030
1031         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1032                 return;
1033
1034         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1035         temp64.val32.lower = chain_sg->Addr.lower;
1036         temp64.val32.upper = chain_sg->Addr.upper;
1037         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1038 }
1039
1040 static void complete_scsi_command(struct CommandList *cp)
1041 {
1042         struct scsi_cmnd *cmd;
1043         struct ctlr_info *h;
1044         struct ErrorInfo *ei;
1045
1046         unsigned char sense_key;
1047         unsigned char asc;      /* additional sense code */
1048         unsigned char ascq;     /* additional sense code qualifier */
1049         unsigned long sense_data_size;
1050
1051         ei = cp->err_info;
1052         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1053         h = cp->h;
1054
1055         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1056         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1057                 hpsa_unmap_sg_chain_block(h, cp);
1058
1059         cmd->result = (DID_OK << 16);           /* host byte */
1060         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1061         cmd->result |= ei->ScsiStatus;
1062
1063         /* copy the sense data whether we need to or not. */
1064         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1065                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1066         else
1067                 sense_data_size = sizeof(ei->SenseInfo);
1068         if (ei->SenseLen < sense_data_size)
1069                 sense_data_size = ei->SenseLen;
1070
1071         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1072         scsi_set_resid(cmd, ei->ResidualCnt);
1073
1074         if (ei->CommandStatus == 0) {
1075                 cmd->scsi_done(cmd);
1076                 cmd_free(h, cp);
1077                 return;
1078         }
1079
1080         /* an error has occurred */
1081         switch (ei->CommandStatus) {
1082
1083         case CMD_TARGET_STATUS:
1084                 if (ei->ScsiStatus) {
1085                         /* Get sense key */
1086                         sense_key = 0xf & ei->SenseInfo[2];
1087                         /* Get additional sense code */
1088                         asc = ei->SenseInfo[12];
1089                         /* Get addition sense code qualifier */
1090                         ascq = ei->SenseInfo[13];
1091                 }
1092
1093                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1094                         if (check_for_unit_attention(h, cp)) {
1095                                 cmd->result = DID_SOFT_ERROR << 16;
1096                                 break;
1097                         }
1098                         if (sense_key == ILLEGAL_REQUEST) {
1099                                 /*
1100                                  * SCSI REPORT_LUNS is commonly unsupported on
1101                                  * Smart Array.  Suppress noisy complaint.
1102                                  */
1103                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1104                                         break;
1105
1106                                 /* If ASC/ASCQ indicate Logical Unit
1107                                  * Not Supported condition,
1108                                  */
1109                                 if ((asc == 0x25) && (ascq == 0x0)) {
1110                                         dev_warn(&h->pdev->dev, "cp %p "
1111                                                 "has check condition\n", cp);
1112                                         break;
1113                                 }
1114                         }
1115
1116                         if (sense_key == NOT_READY) {
1117                                 /* If Sense is Not Ready, Logical Unit
1118                                  * Not ready, Manual Intervention
1119                                  * required
1120                                  */
1121                                 if ((asc == 0x04) && (ascq == 0x03)) {
1122                                         dev_warn(&h->pdev->dev, "cp %p "
1123                                                 "has check condition: unit "
1124                                                 "not ready, manual "
1125                                                 "intervention required\n", cp);
1126                                         break;
1127                                 }
1128                         }
1129                         if (sense_key == ABORTED_COMMAND) {
1130                                 /* Aborted command is retryable */
1131                                 dev_warn(&h->pdev->dev, "cp %p "
1132                                         "has check condition: aborted command: "
1133                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1134                                         cp, asc, ascq);
1135                                 cmd->result = DID_SOFT_ERROR << 16;
1136                                 break;
1137                         }
1138                         /* Must be some other type of check condition */
1139                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1140                                         "unknown type: "
1141                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1142                                         "Returning result: 0x%x, "
1143                                         "cmd=[%02x %02x %02x %02x %02x "
1144                                         "%02x %02x %02x %02x %02x %02x "
1145                                         "%02x %02x %02x %02x %02x]\n",
1146                                         cp, sense_key, asc, ascq,
1147                                         cmd->result,
1148                                         cmd->cmnd[0], cmd->cmnd[1],
1149                                         cmd->cmnd[2], cmd->cmnd[3],
1150                                         cmd->cmnd[4], cmd->cmnd[5],
1151                                         cmd->cmnd[6], cmd->cmnd[7],
1152                                         cmd->cmnd[8], cmd->cmnd[9],
1153                                         cmd->cmnd[10], cmd->cmnd[11],
1154                                         cmd->cmnd[12], cmd->cmnd[13],
1155                                         cmd->cmnd[14], cmd->cmnd[15]);
1156                         break;
1157                 }
1158
1159
1160                 /* Problem was not a check condition
1161                  * Pass it up to the upper layers...
1162                  */
1163                 if (ei->ScsiStatus) {
1164                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1165                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1166                                 "Returning result: 0x%x\n",
1167                                 cp, ei->ScsiStatus,
1168                                 sense_key, asc, ascq,
1169                                 cmd->result);
1170                 } else {  /* scsi status is zero??? How??? */
1171                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1172                                 "Returning no connection.\n", cp),
1173
1174                         /* Ordinarily, this case should never happen,
1175                          * but there is a bug in some released firmware
1176                          * revisions that allows it to happen if, for
1177                          * example, a 4100 backplane loses power and
1178                          * the tape drive is in it.  We assume that
1179                          * it's a fatal error of some kind because we
1180                          * can't show that it wasn't. We will make it
1181                          * look like selection timeout since that is
1182                          * the most common reason for this to occur,
1183                          * and it's severe enough.
1184                          */
1185
1186                         cmd->result = DID_NO_CONNECT << 16;
1187                 }
1188                 break;
1189
1190         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1191                 break;
1192         case CMD_DATA_OVERRUN:
1193                 dev_warn(&h->pdev->dev, "cp %p has"
1194                         " completed with data overrun "
1195                         "reported\n", cp);
1196                 break;
1197         case CMD_INVALID: {
1198                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1199                 print_cmd(cp); */
1200                 /* We get CMD_INVALID if you address a non-existent device
1201                  * instead of a selection timeout (no response).  You will
1202                  * see this if you yank out a drive, then try to access it.
1203                  * This is kind of a shame because it means that any other
1204                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1205                  * missing target. */
1206                 cmd->result = DID_NO_CONNECT << 16;
1207         }
1208                 break;
1209         case CMD_PROTOCOL_ERR:
1210                 dev_warn(&h->pdev->dev, "cp %p has "
1211                         "protocol error \n", cp);
1212                 break;
1213         case CMD_HARDWARE_ERR:
1214                 cmd->result = DID_ERROR << 16;
1215                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1216                 break;
1217         case CMD_CONNECTION_LOST:
1218                 cmd->result = DID_ERROR << 16;
1219                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1220                 break;
1221         case CMD_ABORTED:
1222                 cmd->result = DID_ABORT << 16;
1223                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1224                                 cp, ei->ScsiStatus);
1225                 break;
1226         case CMD_ABORT_FAILED:
1227                 cmd->result = DID_ERROR << 16;
1228                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1229                 break;
1230         case CMD_UNSOLICITED_ABORT:
1231                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1232                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1233                         "abort\n", cp);
1234                 break;
1235         case CMD_TIMEOUT:
1236                 cmd->result = DID_TIME_OUT << 16;
1237                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1238                 break;
1239         case CMD_UNABORTABLE:
1240                 cmd->result = DID_ERROR << 16;
1241                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1242                 break;
1243         default:
1244                 cmd->result = DID_ERROR << 16;
1245                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1246                                 cp, ei->CommandStatus);
1247         }
1248         cmd->scsi_done(cmd);
1249         cmd_free(h, cp);
1250 }
1251
1252 static int hpsa_scsi_detect(struct ctlr_info *h)
1253 {
1254         struct Scsi_Host *sh;
1255         int error;
1256
1257         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1258         if (sh == NULL)
1259                 goto fail;
1260
1261         sh->io_port = 0;
1262         sh->n_io_port = 0;
1263         sh->this_id = -1;
1264         sh->max_channel = 3;
1265         sh->max_cmd_len = MAX_COMMAND_SIZE;
1266         sh->max_lun = HPSA_MAX_LUN;
1267         sh->max_id = HPSA_MAX_LUN;
1268         sh->can_queue = h->nr_cmds;
1269         sh->cmd_per_lun = h->nr_cmds;
1270         sh->sg_tablesize = h->maxsgentries;
1271         h->scsi_host = sh;
1272         sh->hostdata[0] = (unsigned long) h;
1273         sh->irq = h->intr[h->intr_mode];
1274         sh->unique_id = sh->irq;
1275         error = scsi_add_host(sh, &h->pdev->dev);
1276         if (error)
1277                 goto fail_host_put;
1278         scsi_scan_host(sh);
1279         return 0;
1280
1281  fail_host_put:
1282         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1283                 " failed for controller %d\n", h->ctlr);
1284         scsi_host_put(sh);
1285         return error;
1286  fail:
1287         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1288                 " failed for controller %d\n", h->ctlr);
1289         return -ENOMEM;
1290 }
1291
1292 static void hpsa_pci_unmap(struct pci_dev *pdev,
1293         struct CommandList *c, int sg_used, int data_direction)
1294 {
1295         int i;
1296         union u64bit addr64;
1297
1298         for (i = 0; i < sg_used; i++) {
1299                 addr64.val32.lower = c->SG[i].Addr.lower;
1300                 addr64.val32.upper = c->SG[i].Addr.upper;
1301                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1302                         data_direction);
1303         }
1304 }
1305
1306 static void hpsa_map_one(struct pci_dev *pdev,
1307                 struct CommandList *cp,
1308                 unsigned char *buf,
1309                 size_t buflen,
1310                 int data_direction)
1311 {
1312         u64 addr64;
1313
1314         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1315                 cp->Header.SGList = 0;
1316                 cp->Header.SGTotal = 0;
1317                 return;
1318         }
1319
1320         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1321         cp->SG[0].Addr.lower =
1322           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1323         cp->SG[0].Addr.upper =
1324           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1325         cp->SG[0].Len = buflen;
1326         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1327         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1328 }
1329
1330 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1331         struct CommandList *c)
1332 {
1333         DECLARE_COMPLETION_ONSTACK(wait);
1334
1335         c->waiting = &wait;
1336         enqueue_cmd_and_start_io(h, c);
1337         wait_for_completion(&wait);
1338 }
1339
1340 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1341         struct CommandList *c, int data_direction)
1342 {
1343         int retry_count = 0;
1344
1345         do {
1346                 memset(c->err_info, 0, sizeof(*c->err_info));
1347                 hpsa_scsi_do_simple_cmd_core(h, c);
1348                 retry_count++;
1349         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1350         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1351 }
1352
1353 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1354 {
1355         struct ErrorInfo *ei;
1356         struct device *d = &cp->h->pdev->dev;
1357
1358         ei = cp->err_info;
1359         switch (ei->CommandStatus) {
1360         case CMD_TARGET_STATUS:
1361                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1362                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1363                                 ei->ScsiStatus);
1364                 if (ei->ScsiStatus == 0)
1365                         dev_warn(d, "SCSI status is abnormally zero.  "
1366                         "(probably indicates selection timeout "
1367                         "reported incorrectly due to a known "
1368                         "firmware bug, circa July, 2001.)\n");
1369                 break;
1370         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1371                         dev_info(d, "UNDERRUN\n");
1372                 break;
1373         case CMD_DATA_OVERRUN:
1374                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1375                 break;
1376         case CMD_INVALID: {
1377                 /* controller unfortunately reports SCSI passthru's
1378                  * to non-existent targets as invalid commands.
1379                  */
1380                 dev_warn(d, "cp %p is reported invalid (probably means "
1381                         "target device no longer present)\n", cp);
1382                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1383                 print_cmd(cp);  */
1384                 }
1385                 break;
1386         case CMD_PROTOCOL_ERR:
1387                 dev_warn(d, "cp %p has protocol error \n", cp);
1388                 break;
1389         case CMD_HARDWARE_ERR:
1390                 /* cmd->result = DID_ERROR << 16; */
1391                 dev_warn(d, "cp %p had hardware error\n", cp);
1392                 break;
1393         case CMD_CONNECTION_LOST:
1394                 dev_warn(d, "cp %p had connection lost\n", cp);
1395                 break;
1396         case CMD_ABORTED:
1397                 dev_warn(d, "cp %p was aborted\n", cp);
1398                 break;
1399         case CMD_ABORT_FAILED:
1400                 dev_warn(d, "cp %p reports abort failed\n", cp);
1401                 break;
1402         case CMD_UNSOLICITED_ABORT:
1403                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1404                 break;
1405         case CMD_TIMEOUT:
1406                 dev_warn(d, "cp %p timed out\n", cp);
1407                 break;
1408         case CMD_UNABORTABLE:
1409                 dev_warn(d, "Command unabortable\n");
1410                 break;
1411         default:
1412                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1413                                 ei->CommandStatus);
1414         }
1415 }
1416
1417 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1418                         unsigned char page, unsigned char *buf,
1419                         unsigned char bufsize)
1420 {
1421         int rc = IO_OK;
1422         struct CommandList *c;
1423         struct ErrorInfo *ei;
1424
1425         c = cmd_special_alloc(h);
1426
1427         if (c == NULL) {                        /* trouble... */
1428                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1429                 return -ENOMEM;
1430         }
1431
1432         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1433         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1434         ei = c->err_info;
1435         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1436                 hpsa_scsi_interpret_error(c);
1437                 rc = -1;
1438         }
1439         cmd_special_free(h, c);
1440         return rc;
1441 }
1442
1443 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1444 {
1445         int rc = IO_OK;
1446         struct CommandList *c;
1447         struct ErrorInfo *ei;
1448
1449         c = cmd_special_alloc(h);
1450
1451         if (c == NULL) {                        /* trouble... */
1452                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1453                 return -ENOMEM;
1454         }
1455
1456         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1457         hpsa_scsi_do_simple_cmd_core(h, c);
1458         /* no unmap needed here because no data xfer. */
1459
1460         ei = c->err_info;
1461         if (ei->CommandStatus != 0) {
1462                 hpsa_scsi_interpret_error(c);
1463                 rc = -1;
1464         }
1465         cmd_special_free(h, c);
1466         return rc;
1467 }
1468
1469 static void hpsa_get_raid_level(struct ctlr_info *h,
1470         unsigned char *scsi3addr, unsigned char *raid_level)
1471 {
1472         int rc;
1473         unsigned char *buf;
1474
1475         *raid_level = RAID_UNKNOWN;
1476         buf = kzalloc(64, GFP_KERNEL);
1477         if (!buf)
1478                 return;
1479         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1480         if (rc == 0)
1481                 *raid_level = buf[8];
1482         if (*raid_level > RAID_UNKNOWN)
1483                 *raid_level = RAID_UNKNOWN;
1484         kfree(buf);
1485         return;
1486 }
1487
1488 /* Get the device id from inquiry page 0x83 */
1489 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1490         unsigned char *device_id, int buflen)
1491 {
1492         int rc;
1493         unsigned char *buf;
1494
1495         if (buflen > 16)
1496                 buflen = 16;
1497         buf = kzalloc(64, GFP_KERNEL);
1498         if (!buf)
1499                 return -1;
1500         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1501         if (rc == 0)
1502                 memcpy(device_id, &buf[8], buflen);
1503         kfree(buf);
1504         return rc != 0;
1505 }
1506
1507 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1508                 struct ReportLUNdata *buf, int bufsize,
1509                 int extended_response)
1510 {
1511         int rc = IO_OK;
1512         struct CommandList *c;
1513         unsigned char scsi3addr[8];
1514         struct ErrorInfo *ei;
1515
1516         c = cmd_special_alloc(h);
1517         if (c == NULL) {                        /* trouble... */
1518                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1519                 return -1;
1520         }
1521         /* address the controller */
1522         memset(scsi3addr, 0, sizeof(scsi3addr));
1523         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1524                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1525         if (extended_response)
1526                 c->Request.CDB[1] = extended_response;
1527         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1528         ei = c->err_info;
1529         if (ei->CommandStatus != 0 &&
1530             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1531                 hpsa_scsi_interpret_error(c);
1532                 rc = -1;
1533         }
1534         cmd_special_free(h, c);
1535         return rc;
1536 }
1537
1538 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1539                 struct ReportLUNdata *buf,
1540                 int bufsize, int extended_response)
1541 {
1542         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1543 }
1544
1545 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1546                 struct ReportLUNdata *buf, int bufsize)
1547 {
1548         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1549 }
1550
1551 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1552         int bus, int target, int lun)
1553 {
1554         device->bus = bus;
1555         device->target = target;
1556         device->lun = lun;
1557 }
1558
1559 static int hpsa_update_device_info(struct ctlr_info *h,
1560         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1561         unsigned char *is_OBDR_device)
1562 {
1563
1564 #define OBDR_SIG_OFFSET 43
1565 #define OBDR_TAPE_SIG "$DR-10"
1566 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1567 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1568
1569         unsigned char *inq_buff;
1570         unsigned char *obdr_sig;
1571
1572         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1573         if (!inq_buff)
1574                 goto bail_out;
1575
1576         /* Do an inquiry to the device to see what it is. */
1577         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1578                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1579                 /* Inquiry failed (msg printed already) */
1580                 dev_err(&h->pdev->dev,
1581                         "hpsa_update_device_info: inquiry failed\n");
1582                 goto bail_out;
1583         }
1584
1585         this_device->devtype = (inq_buff[0] & 0x1f);
1586         memcpy(this_device->scsi3addr, scsi3addr, 8);
1587         memcpy(this_device->vendor, &inq_buff[8],
1588                 sizeof(this_device->vendor));
1589         memcpy(this_device->model, &inq_buff[16],
1590                 sizeof(this_device->model));
1591         memset(this_device->device_id, 0,
1592                 sizeof(this_device->device_id));
1593         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1594                 sizeof(this_device->device_id));
1595
1596         if (this_device->devtype == TYPE_DISK &&
1597                 is_logical_dev_addr_mode(scsi3addr))
1598                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1599         else
1600                 this_device->raid_level = RAID_UNKNOWN;
1601
1602         if (is_OBDR_device) {
1603                 /* See if this is a One-Button-Disaster-Recovery device
1604                  * by looking for "$DR-10" at offset 43 in inquiry data.
1605                  */
1606                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1607                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1608                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1609                                                 OBDR_SIG_LEN) == 0);
1610         }
1611
1612         kfree(inq_buff);
1613         return 0;
1614
1615 bail_out:
1616         kfree(inq_buff);
1617         return 1;
1618 }
1619
1620 static unsigned char *msa2xxx_model[] = {
1621         "MSA2012",
1622         "MSA2024",
1623         "MSA2312",
1624         "MSA2324",
1625         "P2000 G3 SAS",
1626         NULL,
1627 };
1628
1629 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1630 {
1631         int i;
1632
1633         for (i = 0; msa2xxx_model[i]; i++)
1634                 if (strncmp(device->model, msa2xxx_model[i],
1635                         strlen(msa2xxx_model[i])) == 0)
1636                         return 1;
1637         return 0;
1638 }
1639
1640 /* Helper function to assign bus, target, lun mapping of devices.
1641  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1642  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1643  * Logical drive target and lun are assigned at this time, but
1644  * physical device lun and target assignment are deferred (assigned
1645  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1646  */
1647 static void figure_bus_target_lun(struct ctlr_info *h,
1648         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1649         struct hpsa_scsi_dev_t *device)
1650 {
1651         u32 lunid;
1652
1653         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1654                 /* logical device */
1655                 if (unlikely(is_scsi_rev_5(h))) {
1656                         /* p1210m, logical drives lun assignments
1657                          * match SCSI REPORT LUNS data.
1658                          */
1659                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1660                         *bus = 0;
1661                         *target = 0;
1662                         *lun = (lunid & 0x3fff) + 1;
1663                 } else {
1664                         /* not p1210m... */
1665                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1666                         if (is_msa2xxx(h, device)) {
1667                                 /* msa2xxx way, put logicals on bus 1
1668                                  * and match target/lun numbers box
1669                                  * reports.
1670                                  */
1671                                 *bus = 1;
1672                                 *target = (lunid >> 16) & 0x3fff;
1673                                 *lun = lunid & 0x00ff;
1674                         } else {
1675                                 /* Traditional smart array way. */
1676                                 *bus = 0;
1677                                 *lun = 0;
1678                                 *target = lunid & 0x3fff;
1679                         }
1680                 }
1681         } else {
1682                 /* physical device */
1683                 if (is_hba_lunid(lunaddrbytes))
1684                         if (unlikely(is_scsi_rev_5(h))) {
1685                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1686                                 *target = 0;
1687                                 *lun = 0;
1688                                 return;
1689                         } else
1690                                 *bus = 3; /* traditional smartarray */
1691                 else
1692                         *bus = 2; /* physical disk */
1693                 *target = -1;
1694                 *lun = -1; /* we will fill these in later. */
1695         }
1696 }
1697
1698 /*
1699  * If there is no lun 0 on a target, linux won't find any devices.
1700  * For the MSA2xxx boxes, we have to manually detect the enclosure
1701  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1702  * it for some reason.  *tmpdevice is the target we're adding,
1703  * this_device is a pointer into the current element of currentsd[]
1704  * that we're building up in update_scsi_devices(), below.
1705  * lunzerobits is a bitmap that tracks which targets already have a
1706  * lun 0 assigned.
1707  * Returns 1 if an enclosure was added, 0 if not.
1708  */
1709 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1710         struct hpsa_scsi_dev_t *tmpdevice,
1711         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1712         int bus, int target, int lun, unsigned long lunzerobits[],
1713         int *nmsa2xxx_enclosures)
1714 {
1715         unsigned char scsi3addr[8];
1716
1717         if (test_bit(target, lunzerobits))
1718                 return 0; /* There is already a lun 0 on this target. */
1719
1720         if (!is_logical_dev_addr_mode(lunaddrbytes))
1721                 return 0; /* It's the logical targets that may lack lun 0. */
1722
1723         if (!is_msa2xxx(h, tmpdevice))
1724                 return 0; /* It's only the MSA2xxx that have this problem. */
1725
1726         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1727                 return 0;
1728
1729         memset(scsi3addr, 0, 8);
1730         scsi3addr[3] = target;
1731         if (is_hba_lunid(scsi3addr))
1732                 return 0; /* Don't add the RAID controller here. */
1733
1734         if (is_scsi_rev_5(h))
1735                 return 0; /* p1210m doesn't need to do this. */
1736
1737         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1738                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1739                         "enclosures exceeded.  Check your hardware "
1740                         "configuration.");
1741                 return 0;
1742         }
1743
1744         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1745                 return 0;
1746         (*nmsa2xxx_enclosures)++;
1747         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1748         set_bit(target, lunzerobits);
1749         return 1;
1750 }
1751
1752 /*
1753  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1754  * logdev.  The number of luns in physdev and logdev are returned in
1755  * *nphysicals and *nlogicals, respectively.
1756  * Returns 0 on success, -1 otherwise.
1757  */
1758 static int hpsa_gather_lun_info(struct ctlr_info *h,
1759         int reportlunsize,
1760         struct ReportLUNdata *physdev, u32 *nphysicals,
1761         struct ReportLUNdata *logdev, u32 *nlogicals)
1762 {
1763         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1764                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1765                 return -1;
1766         }
1767         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1768         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1769                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1770                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1771                         *nphysicals - HPSA_MAX_PHYS_LUN);
1772                 *nphysicals = HPSA_MAX_PHYS_LUN;
1773         }
1774         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1775                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1776                 return -1;
1777         }
1778         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1779         /* Reject Logicals in excess of our max capability. */
1780         if (*nlogicals > HPSA_MAX_LUN) {
1781                 dev_warn(&h->pdev->dev,
1782                         "maximum logical LUNs (%d) exceeded.  "
1783                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1784                         *nlogicals - HPSA_MAX_LUN);
1785                         *nlogicals = HPSA_MAX_LUN;
1786         }
1787         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1788                 dev_warn(&h->pdev->dev,
1789                         "maximum logical + physical LUNs (%d) exceeded. "
1790                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1791                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1792                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1793         }
1794         return 0;
1795 }
1796
1797 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1798         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1799         struct ReportLUNdata *logdev_list)
1800 {
1801         /* Helper function, figure out where the LUN ID info is coming from
1802          * given index i, lists of physical and logical devices, where in
1803          * the list the raid controller is supposed to appear (first or last)
1804          */
1805
1806         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1807         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1808
1809         if (i == raid_ctlr_position)
1810                 return RAID_CTLR_LUNID;
1811
1812         if (i < logicals_start)
1813                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1814
1815         if (i < last_device)
1816                 return &logdev_list->LUN[i - nphysicals -
1817                         (raid_ctlr_position == 0)][0];
1818         BUG();
1819         return NULL;
1820 }
1821
1822 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1823 {
1824         /* the idea here is we could get notified
1825          * that some devices have changed, so we do a report
1826          * physical luns and report logical luns cmd, and adjust
1827          * our list of devices accordingly.
1828          *
1829          * The scsi3addr's of devices won't change so long as the
1830          * adapter is not reset.  That means we can rescan and
1831          * tell which devices we already know about, vs. new
1832          * devices, vs.  disappearing devices.
1833          */
1834         struct ReportLUNdata *physdev_list = NULL;
1835         struct ReportLUNdata *logdev_list = NULL;
1836         u32 nphysicals = 0;
1837         u32 nlogicals = 0;
1838         u32 ndev_allocated = 0;
1839         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1840         int ncurrent = 0;
1841         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1842         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1843         int bus, target, lun;
1844         int raid_ctlr_position;
1845         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1846
1847         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1848         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1849         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1850         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1851
1852         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1853                 dev_err(&h->pdev->dev, "out of memory\n");
1854                 goto out;
1855         }
1856         memset(lunzerobits, 0, sizeof(lunzerobits));
1857
1858         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1859                         logdev_list, &nlogicals))
1860                 goto out;
1861
1862         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1863          * but each of them 4 times through different paths.  The plus 1
1864          * is for the RAID controller.
1865          */
1866         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1867
1868         /* Allocate the per device structures */
1869         for (i = 0; i < ndevs_to_allocate; i++) {
1870                 if (i >= HPSA_MAX_DEVICES) {
1871                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1872                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1873                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1874                         break;
1875                 }
1876
1877                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1878                 if (!currentsd[i]) {
1879                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1880                                 __FILE__, __LINE__);
1881                         goto out;
1882                 }
1883                 ndev_allocated++;
1884         }
1885
1886         if (unlikely(is_scsi_rev_5(h)))
1887                 raid_ctlr_position = 0;
1888         else
1889                 raid_ctlr_position = nphysicals + nlogicals;
1890
1891         /* adjust our table of devices */
1892         nmsa2xxx_enclosures = 0;
1893         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1894                 u8 *lunaddrbytes, is_OBDR = 0;
1895
1896                 /* Figure out where the LUN ID info is coming from */
1897                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1898                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1899                 /* skip masked physical devices. */
1900                 if (lunaddrbytes[3] & 0xC0 &&
1901                         i < nphysicals + (raid_ctlr_position == 0))
1902                         continue;
1903
1904                 /* Get device type, vendor, model, device id */
1905                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1906                                                         &is_OBDR))
1907                         continue; /* skip it if we can't talk to it. */
1908                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1909                         tmpdevice);
1910                 this_device = currentsd[ncurrent];
1911
1912                 /*
1913                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1914                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1915                  * is nonetheless an enclosure device there.  We have to
1916                  * present that otherwise linux won't find anything if
1917                  * there is no lun 0.
1918                  */
1919                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1920                                 lunaddrbytes, bus, target, lun, lunzerobits,
1921                                 &nmsa2xxx_enclosures)) {
1922                         ncurrent++;
1923                         this_device = currentsd[ncurrent];
1924                 }
1925
1926                 *this_device = *tmpdevice;
1927                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1928
1929                 switch (this_device->devtype) {
1930                 case TYPE_ROM:
1931                         /* We don't *really* support actual CD-ROM devices,
1932                          * just "One Button Disaster Recovery" tape drive
1933                          * which temporarily pretends to be a CD-ROM drive.
1934                          * So we check that the device is really an OBDR tape
1935                          * device by checking for "$DR-10" in bytes 43-48 of
1936                          * the inquiry data.
1937                          */
1938                         if (is_OBDR)
1939                                 ncurrent++;
1940                         break;
1941                 case TYPE_DISK:
1942                         if (i < nphysicals)
1943                                 break;
1944                         ncurrent++;
1945                         break;
1946                 case TYPE_TAPE:
1947                 case TYPE_MEDIUM_CHANGER:
1948                         ncurrent++;
1949                         break;
1950                 case TYPE_RAID:
1951                         /* Only present the Smartarray HBA as a RAID controller.
1952                          * If it's a RAID controller other than the HBA itself
1953                          * (an external RAID controller, MSA500 or similar)
1954                          * don't present it.
1955                          */
1956                         if (!is_hba_lunid(lunaddrbytes))
1957                                 break;
1958                         ncurrent++;
1959                         break;
1960                 default:
1961                         break;
1962                 }
1963                 if (ncurrent >= HPSA_MAX_DEVICES)
1964                         break;
1965         }
1966         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1967 out:
1968         kfree(tmpdevice);
1969         for (i = 0; i < ndev_allocated; i++)
1970                 kfree(currentsd[i]);
1971         kfree(currentsd);
1972         kfree(physdev_list);
1973         kfree(logdev_list);
1974 }
1975
1976 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1977  * dma mapping  and fills in the scatter gather entries of the
1978  * hpsa command, cp.
1979  */
1980 static int hpsa_scatter_gather(struct ctlr_info *h,
1981                 struct CommandList *cp,
1982                 struct scsi_cmnd *cmd)
1983 {
1984         unsigned int len;
1985         struct scatterlist *sg;
1986         u64 addr64;
1987         int use_sg, i, sg_index, chained;
1988         struct SGDescriptor *curr_sg;
1989
1990         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1991
1992         use_sg = scsi_dma_map(cmd);
1993         if (use_sg < 0)
1994                 return use_sg;
1995
1996         if (!use_sg)
1997                 goto sglist_finished;
1998
1999         curr_sg = cp->SG;
2000         chained = 0;
2001         sg_index = 0;
2002         scsi_for_each_sg(cmd, sg, use_sg, i) {
2003                 if (i == h->max_cmd_sg_entries - 1 &&
2004                         use_sg > h->max_cmd_sg_entries) {
2005                         chained = 1;
2006                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2007                         sg_index = 0;
2008                 }
2009                 addr64 = (u64) sg_dma_address(sg);
2010                 len  = sg_dma_len(sg);
2011                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2012                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2013                 curr_sg->Len = len;
2014                 curr_sg->Ext = 0;  /* we are not chaining */
2015                 curr_sg++;
2016         }
2017
2018         if (use_sg + chained > h->maxSG)
2019                 h->maxSG = use_sg + chained;
2020
2021         if (chained) {
2022                 cp->Header.SGList = h->max_cmd_sg_entries;
2023                 cp->Header.SGTotal = (u16) (use_sg + 1);
2024                 hpsa_map_sg_chain_block(h, cp);
2025                 return 0;
2026         }
2027
2028 sglist_finished:
2029
2030         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2031         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2032         return 0;
2033 }
2034
2035
2036 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2037         void (*done)(struct scsi_cmnd *))
2038 {
2039         struct ctlr_info *h;
2040         struct hpsa_scsi_dev_t *dev;
2041         unsigned char scsi3addr[8];
2042         struct CommandList *c;
2043         unsigned long flags;
2044
2045         /* Get the ptr to our adapter structure out of cmd->host. */
2046         h = sdev_to_hba(cmd->device);
2047         dev = cmd->device->hostdata;
2048         if (!dev) {
2049                 cmd->result = DID_NO_CONNECT << 16;
2050                 done(cmd);
2051                 return 0;
2052         }
2053         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2054
2055         /* Need a lock as this is being allocated from the pool */
2056         spin_lock_irqsave(&h->lock, flags);
2057         c = cmd_alloc(h);
2058         spin_unlock_irqrestore(&h->lock, flags);
2059         if (c == NULL) {                        /* trouble... */
2060                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2061                 return SCSI_MLQUEUE_HOST_BUSY;
2062         }
2063
2064         /* Fill in the command list header */
2065
2066         cmd->scsi_done = done;    /* save this for use by completion code */
2067
2068         /* save c in case we have to abort it  */
2069         cmd->host_scribble = (unsigned char *) c;
2070
2071         c->cmd_type = CMD_SCSI;
2072         c->scsi_cmd = cmd;
2073         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2074         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2075         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2076         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2077
2078         /* Fill in the request block... */
2079
2080         c->Request.Timeout = 0;
2081         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2082         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2083         c->Request.CDBLen = cmd->cmd_len;
2084         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2085         c->Request.Type.Type = TYPE_CMD;
2086         c->Request.Type.Attribute = ATTR_SIMPLE;
2087         switch (cmd->sc_data_direction) {
2088         case DMA_TO_DEVICE:
2089                 c->Request.Type.Direction = XFER_WRITE;
2090                 break;
2091         case DMA_FROM_DEVICE:
2092                 c->Request.Type.Direction = XFER_READ;
2093                 break;
2094         case DMA_NONE:
2095                 c->Request.Type.Direction = XFER_NONE;
2096                 break;
2097         case DMA_BIDIRECTIONAL:
2098                 /* This can happen if a buggy application does a scsi passthru
2099                  * and sets both inlen and outlen to non-zero. ( see
2100                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2101                  */
2102
2103                 c->Request.Type.Direction = XFER_RSVD;
2104                 /* This is technically wrong, and hpsa controllers should
2105                  * reject it with CMD_INVALID, which is the most correct
2106                  * response, but non-fibre backends appear to let it
2107                  * slide by, and give the same results as if this field
2108                  * were set correctly.  Either way is acceptable for
2109                  * our purposes here.
2110                  */
2111
2112                 break;
2113
2114         default:
2115                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2116                         cmd->sc_data_direction);
2117                 BUG();
2118                 break;
2119         }
2120
2121         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2122                 cmd_free(h, c);
2123                 return SCSI_MLQUEUE_HOST_BUSY;
2124         }
2125         enqueue_cmd_and_start_io(h, c);
2126         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2127         return 0;
2128 }
2129
2130 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2131
2132 static void hpsa_scan_start(struct Scsi_Host *sh)
2133 {
2134         struct ctlr_info *h = shost_to_hba(sh);
2135         unsigned long flags;
2136
2137         /* wait until any scan already in progress is finished. */
2138         while (1) {
2139                 spin_lock_irqsave(&h->scan_lock, flags);
2140                 if (h->scan_finished)
2141                         break;
2142                 spin_unlock_irqrestore(&h->scan_lock, flags);
2143                 wait_event(h->scan_wait_queue, h->scan_finished);
2144                 /* Note: We don't need to worry about a race between this
2145                  * thread and driver unload because the midlayer will
2146                  * have incremented the reference count, so unload won't
2147                  * happen if we're in here.
2148                  */
2149         }
2150         h->scan_finished = 0; /* mark scan as in progress */
2151         spin_unlock_irqrestore(&h->scan_lock, flags);
2152
2153         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2154
2155         spin_lock_irqsave(&h->scan_lock, flags);
2156         h->scan_finished = 1; /* mark scan as finished. */
2157         wake_up_all(&h->scan_wait_queue);
2158         spin_unlock_irqrestore(&h->scan_lock, flags);
2159 }
2160
2161 static int hpsa_scan_finished(struct Scsi_Host *sh,
2162         unsigned long elapsed_time)
2163 {
2164         struct ctlr_info *h = shost_to_hba(sh);
2165         unsigned long flags;
2166         int finished;
2167
2168         spin_lock_irqsave(&h->scan_lock, flags);
2169         finished = h->scan_finished;
2170         spin_unlock_irqrestore(&h->scan_lock, flags);
2171         return finished;
2172 }
2173
2174 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2175         int qdepth, int reason)
2176 {
2177         struct ctlr_info *h = sdev_to_hba(sdev);
2178
2179         if (reason != SCSI_QDEPTH_DEFAULT)
2180                 return -ENOTSUPP;
2181
2182         if (qdepth < 1)
2183                 qdepth = 1;
2184         else
2185                 if (qdepth > h->nr_cmds)
2186                         qdepth = h->nr_cmds;
2187         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2188         return sdev->queue_depth;
2189 }
2190
2191 static void hpsa_unregister_scsi(struct ctlr_info *h)
2192 {
2193         /* we are being forcibly unloaded, and may not refuse. */
2194         scsi_remove_host(h->scsi_host);
2195         scsi_host_put(h->scsi_host);
2196         h->scsi_host = NULL;
2197 }
2198
2199 static int hpsa_register_scsi(struct ctlr_info *h)
2200 {
2201         int rc;
2202
2203         rc = hpsa_scsi_detect(h);
2204         if (rc != 0)
2205                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2206                         " hpsa_scsi_detect(), rc is %d\n", rc);
2207         return rc;
2208 }
2209
2210 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2211         unsigned char lunaddr[])
2212 {
2213         int rc = 0;
2214         int count = 0;
2215         int waittime = 1; /* seconds */
2216         struct CommandList *c;
2217
2218         c = cmd_special_alloc(h);
2219         if (!c) {
2220                 dev_warn(&h->pdev->dev, "out of memory in "
2221                         "wait_for_device_to_become_ready.\n");
2222                 return IO_ERROR;
2223         }
2224
2225         /* Send test unit ready until device ready, or give up. */
2226         while (count < HPSA_TUR_RETRY_LIMIT) {
2227
2228                 /* Wait for a bit.  do this first, because if we send
2229                  * the TUR right away, the reset will just abort it.
2230                  */
2231                 msleep(1000 * waittime);
2232                 count++;
2233
2234                 /* Increase wait time with each try, up to a point. */
2235                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2236                         waittime = waittime * 2;
2237
2238                 /* Send the Test Unit Ready */
2239                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2240                 hpsa_scsi_do_simple_cmd_core(h, c);
2241                 /* no unmap needed here because no data xfer. */
2242
2243                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2244                         break;
2245
2246                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2247                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2248                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2249                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2250                         break;
2251
2252                 dev_warn(&h->pdev->dev, "waiting %d secs "
2253                         "for device to become ready.\n", waittime);
2254                 rc = 1; /* device not ready. */
2255         }
2256
2257         if (rc)
2258                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2259         else
2260                 dev_warn(&h->pdev->dev, "device is ready.\n");
2261
2262         cmd_special_free(h, c);
2263         return rc;
2264 }
2265
2266 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2267  * complaining.  Doing a host- or bus-reset can't do anything good here.
2268  */
2269 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2270 {
2271         int rc;
2272         struct ctlr_info *h;
2273         struct hpsa_scsi_dev_t *dev;
2274
2275         /* find the controller to which the command to be aborted was sent */
2276         h = sdev_to_hba(scsicmd->device);
2277         if (h == NULL) /* paranoia */
2278                 return FAILED;
2279         dev = scsicmd->device->hostdata;
2280         if (!dev) {
2281                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2282                         "device lookup failed.\n");
2283                 return FAILED;
2284         }
2285         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2286                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2287         /* send a reset to the SCSI LUN which the command was sent to */
2288         rc = hpsa_send_reset(h, dev->scsi3addr);
2289         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2290                 return SUCCESS;
2291
2292         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2293         return FAILED;
2294 }
2295
2296 /*
2297  * For operations that cannot sleep, a command block is allocated at init,
2298  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2299  * which ones are free or in use.  Lock must be held when calling this.
2300  * cmd_free() is the complement.
2301  */
2302 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2303 {
2304         struct CommandList *c;
2305         int i;
2306         union u64bit temp64;
2307         dma_addr_t cmd_dma_handle, err_dma_handle;
2308
2309         do {
2310                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2311                 if (i == h->nr_cmds)
2312                         return NULL;
2313         } while (test_and_set_bit
2314                  (i & (BITS_PER_LONG - 1),
2315                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2316         c = h->cmd_pool + i;
2317         memset(c, 0, sizeof(*c));
2318         cmd_dma_handle = h->cmd_pool_dhandle
2319             + i * sizeof(*c);
2320         c->err_info = h->errinfo_pool + i;
2321         memset(c->err_info, 0, sizeof(*c->err_info));
2322         err_dma_handle = h->errinfo_pool_dhandle
2323             + i * sizeof(*c->err_info);
2324         h->nr_allocs++;
2325
2326         c->cmdindex = i;
2327
2328         INIT_LIST_HEAD(&c->list);
2329         c->busaddr = (u32) cmd_dma_handle;
2330         temp64.val = (u64) err_dma_handle;
2331         c->ErrDesc.Addr.lower = temp64.val32.lower;
2332         c->ErrDesc.Addr.upper = temp64.val32.upper;
2333         c->ErrDesc.Len = sizeof(*c->err_info);
2334
2335         c->h = h;
2336         return c;
2337 }
2338
2339 /* For operations that can wait for kmalloc to possibly sleep,
2340  * this routine can be called. Lock need not be held to call
2341  * cmd_special_alloc. cmd_special_free() is the complement.
2342  */
2343 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2344 {
2345         struct CommandList *c;
2346         union u64bit temp64;
2347         dma_addr_t cmd_dma_handle, err_dma_handle;
2348
2349         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2350         if (c == NULL)
2351                 return NULL;
2352         memset(c, 0, sizeof(*c));
2353
2354         c->cmdindex = -1;
2355
2356         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2357                     &err_dma_handle);
2358
2359         if (c->err_info == NULL) {
2360                 pci_free_consistent(h->pdev,
2361                         sizeof(*c), c, cmd_dma_handle);
2362                 return NULL;
2363         }
2364         memset(c->err_info, 0, sizeof(*c->err_info));
2365
2366         INIT_LIST_HEAD(&c->list);
2367         c->busaddr = (u32) cmd_dma_handle;
2368         temp64.val = (u64) err_dma_handle;
2369         c->ErrDesc.Addr.lower = temp64.val32.lower;
2370         c->ErrDesc.Addr.upper = temp64.val32.upper;
2371         c->ErrDesc.Len = sizeof(*c->err_info);
2372
2373         c->h = h;
2374         return c;
2375 }
2376
2377 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2378 {
2379         int i;
2380
2381         i = c - h->cmd_pool;
2382         clear_bit(i & (BITS_PER_LONG - 1),
2383                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2384         h->nr_frees++;
2385 }
2386
2387 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2388 {
2389         union u64bit temp64;
2390
2391         temp64.val32.lower = c->ErrDesc.Addr.lower;
2392         temp64.val32.upper = c->ErrDesc.Addr.upper;
2393         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2394                             c->err_info, (dma_addr_t) temp64.val);
2395         pci_free_consistent(h->pdev, sizeof(*c),
2396                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2397 }
2398
2399 #ifdef CONFIG_COMPAT
2400
2401 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2402 {
2403         IOCTL32_Command_struct __user *arg32 =
2404             (IOCTL32_Command_struct __user *) arg;
2405         IOCTL_Command_struct arg64;
2406         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2407         int err;
2408         u32 cp;
2409
2410         memset(&arg64, 0, sizeof(arg64));
2411         err = 0;
2412         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2413                            sizeof(arg64.LUN_info));
2414         err |= copy_from_user(&arg64.Request, &arg32->Request,
2415                            sizeof(arg64.Request));
2416         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2417                            sizeof(arg64.error_info));
2418         err |= get_user(arg64.buf_size, &arg32->buf_size);
2419         err |= get_user(cp, &arg32->buf);
2420         arg64.buf = compat_ptr(cp);
2421         err |= copy_to_user(p, &arg64, sizeof(arg64));
2422
2423         if (err)
2424                 return -EFAULT;
2425
2426         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2427         if (err)
2428                 return err;
2429         err |= copy_in_user(&arg32->error_info, &p->error_info,
2430                          sizeof(arg32->error_info));
2431         if (err)
2432                 return -EFAULT;
2433         return err;
2434 }
2435
2436 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2437         int cmd, void *arg)
2438 {
2439         BIG_IOCTL32_Command_struct __user *arg32 =
2440             (BIG_IOCTL32_Command_struct __user *) arg;
2441         BIG_IOCTL_Command_struct arg64;
2442         BIG_IOCTL_Command_struct __user *p =
2443             compat_alloc_user_space(sizeof(arg64));
2444         int err;
2445         u32 cp;
2446
2447         memset(&arg64, 0, sizeof(arg64));
2448         err = 0;
2449         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2450                            sizeof(arg64.LUN_info));
2451         err |= copy_from_user(&arg64.Request, &arg32->Request,
2452                            sizeof(arg64.Request));
2453         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2454                            sizeof(arg64.error_info));
2455         err |= get_user(arg64.buf_size, &arg32->buf_size);
2456         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2457         err |= get_user(cp, &arg32->buf);
2458         arg64.buf = compat_ptr(cp);
2459         err |= copy_to_user(p, &arg64, sizeof(arg64));
2460
2461         if (err)
2462                 return -EFAULT;
2463
2464         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2465         if (err)
2466                 return err;
2467         err |= copy_in_user(&arg32->error_info, &p->error_info,
2468                          sizeof(arg32->error_info));
2469         if (err)
2470                 return -EFAULT;
2471         return err;
2472 }
2473
2474 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2475 {
2476         switch (cmd) {
2477         case CCISS_GETPCIINFO:
2478         case CCISS_GETINTINFO:
2479         case CCISS_SETINTINFO:
2480         case CCISS_GETNODENAME:
2481         case CCISS_SETNODENAME:
2482         case CCISS_GETHEARTBEAT:
2483         case CCISS_GETBUSTYPES:
2484         case CCISS_GETFIRMVER:
2485         case CCISS_GETDRIVVER:
2486         case CCISS_REVALIDVOLS:
2487         case CCISS_DEREGDISK:
2488         case CCISS_REGNEWDISK:
2489         case CCISS_REGNEWD:
2490         case CCISS_RESCANDISK:
2491         case CCISS_GETLUNINFO:
2492                 return hpsa_ioctl(dev, cmd, arg);
2493
2494         case CCISS_PASSTHRU32:
2495                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2496         case CCISS_BIG_PASSTHRU32:
2497                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2498
2499         default:
2500                 return -ENOIOCTLCMD;
2501         }
2502 }
2503 #endif
2504
2505 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2506 {
2507         struct hpsa_pci_info pciinfo;
2508
2509         if (!argp)
2510                 return -EINVAL;
2511         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2512         pciinfo.bus = h->pdev->bus->number;
2513         pciinfo.dev_fn = h->pdev->devfn;
2514         pciinfo.board_id = h->board_id;
2515         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2516                 return -EFAULT;
2517         return 0;
2518 }
2519
2520 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2521 {
2522         DriverVer_type DriverVer;
2523         unsigned char vmaj, vmin, vsubmin;
2524         int rc;
2525
2526         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2527                 &vmaj, &vmin, &vsubmin);
2528         if (rc != 3) {
2529                 dev_info(&h->pdev->dev, "driver version string '%s' "
2530                         "unrecognized.", HPSA_DRIVER_VERSION);
2531                 vmaj = 0;
2532                 vmin = 0;
2533                 vsubmin = 0;
2534         }
2535         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2536         if (!argp)
2537                 return -EINVAL;
2538         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2539                 return -EFAULT;
2540         return 0;
2541 }
2542
2543 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2544 {
2545         IOCTL_Command_struct iocommand;
2546         struct CommandList *c;
2547         char *buff = NULL;
2548         union u64bit temp64;
2549
2550         if (!argp)
2551                 return -EINVAL;
2552         if (!capable(CAP_SYS_RAWIO))
2553                 return -EPERM;
2554         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2555                 return -EFAULT;
2556         if ((iocommand.buf_size < 1) &&
2557             (iocommand.Request.Type.Direction != XFER_NONE)) {
2558                 return -EINVAL;
2559         }
2560         if (iocommand.buf_size > 0) {
2561                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2562                 if (buff == NULL)
2563                         return -EFAULT;
2564                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2565                         /* Copy the data into the buffer we created */
2566                         if (copy_from_user(buff, iocommand.buf,
2567                                 iocommand.buf_size)) {
2568                                 kfree(buff);
2569                                 return -EFAULT;
2570                         }
2571                 } else {
2572                         memset(buff, 0, iocommand.buf_size);
2573                 }
2574         }
2575         c = cmd_special_alloc(h);
2576         if (c == NULL) {
2577                 kfree(buff);
2578                 return -ENOMEM;
2579         }
2580         /* Fill in the command type */
2581         c->cmd_type = CMD_IOCTL_PEND;
2582         /* Fill in Command Header */
2583         c->Header.ReplyQueue = 0; /* unused in simple mode */
2584         if (iocommand.buf_size > 0) {   /* buffer to fill */
2585                 c->Header.SGList = 1;
2586                 c->Header.SGTotal = 1;
2587         } else  { /* no buffers to fill */
2588                 c->Header.SGList = 0;
2589                 c->Header.SGTotal = 0;
2590         }
2591         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2592         /* use the kernel address the cmd block for tag */
2593         c->Header.Tag.lower = c->busaddr;
2594
2595         /* Fill in Request block */
2596         memcpy(&c->Request, &iocommand.Request,
2597                 sizeof(c->Request));
2598
2599         /* Fill in the scatter gather information */
2600         if (iocommand.buf_size > 0) {
2601                 temp64.val = pci_map_single(h->pdev, buff,
2602                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2603                 c->SG[0].Addr.lower = temp64.val32.lower;
2604                 c->SG[0].Addr.upper = temp64.val32.upper;
2605                 c->SG[0].Len = iocommand.buf_size;
2606                 c->SG[0].Ext = 0; /* we are not chaining*/
2607         }
2608         hpsa_scsi_do_simple_cmd_core(h, c);
2609         if (iocommand.buf_size > 0)
2610                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2611         check_ioctl_unit_attention(h, c);
2612
2613         /* Copy the error information out */
2614         memcpy(&iocommand.error_info, c->err_info,
2615                 sizeof(iocommand.error_info));
2616         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2617                 kfree(buff);
2618                 cmd_special_free(h, c);
2619                 return -EFAULT;
2620         }
2621         if (iocommand.Request.Type.Direction == XFER_READ &&
2622                 iocommand.buf_size > 0) {
2623                 /* Copy the data out of the buffer we created */
2624                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2625                         kfree(buff);
2626                         cmd_special_free(h, c);
2627                         return -EFAULT;
2628                 }
2629         }
2630         kfree(buff);
2631         cmd_special_free(h, c);
2632         return 0;
2633 }
2634
2635 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2636 {
2637         BIG_IOCTL_Command_struct *ioc;
2638         struct CommandList *c;
2639         unsigned char **buff = NULL;
2640         int *buff_size = NULL;
2641         union u64bit temp64;
2642         BYTE sg_used = 0;
2643         int status = 0;
2644         int i;
2645         u32 left;
2646         u32 sz;
2647         BYTE __user *data_ptr;
2648
2649         if (!argp)
2650                 return -EINVAL;
2651         if (!capable(CAP_SYS_RAWIO))
2652                 return -EPERM;
2653         ioc = (BIG_IOCTL_Command_struct *)
2654             kmalloc(sizeof(*ioc), GFP_KERNEL);
2655         if (!ioc) {
2656                 status = -ENOMEM;
2657                 goto cleanup1;
2658         }
2659         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2660                 status = -EFAULT;
2661                 goto cleanup1;
2662         }
2663         if ((ioc->buf_size < 1) &&
2664             (ioc->Request.Type.Direction != XFER_NONE)) {
2665                 status = -EINVAL;
2666                 goto cleanup1;
2667         }
2668         /* Check kmalloc limits  using all SGs */
2669         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2670                 status = -EINVAL;
2671                 goto cleanup1;
2672         }
2673         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2674                 status = -EINVAL;
2675                 goto cleanup1;
2676         }
2677         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2678         if (!buff) {
2679                 status = -ENOMEM;
2680                 goto cleanup1;
2681         }
2682         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2683         if (!buff_size) {
2684                 status = -ENOMEM;
2685                 goto cleanup1;
2686         }
2687         left = ioc->buf_size;
2688         data_ptr = ioc->buf;
2689         while (left) {
2690                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2691                 buff_size[sg_used] = sz;
2692                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2693                 if (buff[sg_used] == NULL) {
2694                         status = -ENOMEM;
2695                         goto cleanup1;
2696                 }
2697                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2698                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2699                                 status = -ENOMEM;
2700                                 goto cleanup1;
2701                         }
2702                 } else
2703                         memset(buff[sg_used], 0, sz);
2704                 left -= sz;
2705                 data_ptr += sz;
2706                 sg_used++;
2707         }
2708         c = cmd_special_alloc(h);
2709         if (c == NULL) {
2710                 status = -ENOMEM;
2711                 goto cleanup1;
2712         }
2713         c->cmd_type = CMD_IOCTL_PEND;
2714         c->Header.ReplyQueue = 0;
2715         c->Header.SGList = c->Header.SGTotal = sg_used;
2716         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2717         c->Header.Tag.lower = c->busaddr;
2718         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2719         if (ioc->buf_size > 0) {
2720                 int i;
2721                 for (i = 0; i < sg_used; i++) {
2722                         temp64.val = pci_map_single(h->pdev, buff[i],
2723                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2724                         c->SG[i].Addr.lower = temp64.val32.lower;
2725                         c->SG[i].Addr.upper = temp64.val32.upper;
2726                         c->SG[i].Len = buff_size[i];
2727                         /* we are not chaining */
2728                         c->SG[i].Ext = 0;
2729                 }
2730         }
2731         hpsa_scsi_do_simple_cmd_core(h, c);
2732         if (sg_used)
2733                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2734         check_ioctl_unit_attention(h, c);
2735         /* Copy the error information out */
2736         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2737         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2738                 cmd_special_free(h, c);
2739                 status = -EFAULT;
2740                 goto cleanup1;
2741         }
2742         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2743                 /* Copy the data out of the buffer we created */
2744                 BYTE __user *ptr = ioc->buf;
2745                 for (i = 0; i < sg_used; i++) {
2746                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2747                                 cmd_special_free(h, c);
2748                                 status = -EFAULT;
2749                                 goto cleanup1;
2750                         }
2751                         ptr += buff_size[i];
2752                 }
2753         }
2754         cmd_special_free(h, c);
2755         status = 0;
2756 cleanup1:
2757         if (buff) {
2758                 for (i = 0; i < sg_used; i++)
2759                         kfree(buff[i]);
2760                 kfree(buff);
2761         }
2762         kfree(buff_size);
2763         kfree(ioc);
2764         return status;
2765 }
2766
2767 static void check_ioctl_unit_attention(struct ctlr_info *h,
2768         struct CommandList *c)
2769 {
2770         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2771                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2772                 (void) check_for_unit_attention(h, c);
2773 }
2774 /*
2775  * ioctl
2776  */
2777 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2778 {
2779         struct ctlr_info *h;
2780         void __user *argp = (void __user *)arg;
2781
2782         h = sdev_to_hba(dev);
2783
2784         switch (cmd) {
2785         case CCISS_DEREGDISK:
2786         case CCISS_REGNEWDISK:
2787         case CCISS_REGNEWD:
2788                 hpsa_scan_start(h->scsi_host);
2789                 return 0;
2790         case CCISS_GETPCIINFO:
2791                 return hpsa_getpciinfo_ioctl(h, argp);
2792         case CCISS_GETDRIVVER:
2793                 return hpsa_getdrivver_ioctl(h, argp);
2794         case CCISS_PASSTHRU:
2795                 return hpsa_passthru_ioctl(h, argp);
2796         case CCISS_BIG_PASSTHRU:
2797                 return hpsa_big_passthru_ioctl(h, argp);
2798         default:
2799                 return -ENOTTY;
2800         }
2801 }
2802
2803 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2804         unsigned char *scsi3addr, u8 reset_type)
2805 {
2806         struct CommandList *c;
2807
2808         c = cmd_alloc(h);
2809         if (!c)
2810                 return -ENOMEM;
2811         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2812                 RAID_CTLR_LUNID, TYPE_MSG);
2813         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2814         c->waiting = NULL;
2815         enqueue_cmd_and_start_io(h, c);
2816         /* Don't wait for completion, the reset won't complete.  Don't free
2817          * the command either.  This is the last command we will send before
2818          * re-initializing everything, so it doesn't matter and won't leak.
2819          */
2820         return 0;
2821 }
2822
2823 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2824         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2825         int cmd_type)
2826 {
2827         int pci_dir = XFER_NONE;
2828
2829         c->cmd_type = CMD_IOCTL_PEND;
2830         c->Header.ReplyQueue = 0;
2831         if (buff != NULL && size > 0) {
2832                 c->Header.SGList = 1;
2833                 c->Header.SGTotal = 1;
2834         } else {
2835                 c->Header.SGList = 0;
2836                 c->Header.SGTotal = 0;
2837         }
2838         c->Header.Tag.lower = c->busaddr;
2839         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2840
2841         c->Request.Type.Type = cmd_type;
2842         if (cmd_type == TYPE_CMD) {
2843                 switch (cmd) {
2844                 case HPSA_INQUIRY:
2845                         /* are we trying to read a vital product page */
2846                         if (page_code != 0) {
2847                                 c->Request.CDB[1] = 0x01;
2848                                 c->Request.CDB[2] = page_code;
2849                         }
2850                         c->Request.CDBLen = 6;
2851                         c->Request.Type.Attribute = ATTR_SIMPLE;
2852                         c->Request.Type.Direction = XFER_READ;
2853                         c->Request.Timeout = 0;
2854                         c->Request.CDB[0] = HPSA_INQUIRY;
2855                         c->Request.CDB[4] = size & 0xFF;
2856                         break;
2857                 case HPSA_REPORT_LOG:
2858                 case HPSA_REPORT_PHYS:
2859                         /* Talking to controller so It's a physical command
2860                            mode = 00 target = 0.  Nothing to write.
2861                          */
2862                         c->Request.CDBLen = 12;
2863                         c->Request.Type.Attribute = ATTR_SIMPLE;
2864                         c->Request.Type.Direction = XFER_READ;
2865                         c->Request.Timeout = 0;
2866                         c->Request.CDB[0] = cmd;
2867                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2868                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2869                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2870                         c->Request.CDB[9] = size & 0xFF;
2871                         break;
2872                 case HPSA_CACHE_FLUSH:
2873                         c->Request.CDBLen = 12;
2874                         c->Request.Type.Attribute = ATTR_SIMPLE;
2875                         c->Request.Type.Direction = XFER_WRITE;
2876                         c->Request.Timeout = 0;
2877                         c->Request.CDB[0] = BMIC_WRITE;
2878                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2879                         break;
2880                 case TEST_UNIT_READY:
2881                         c->Request.CDBLen = 6;
2882                         c->Request.Type.Attribute = ATTR_SIMPLE;
2883                         c->Request.Type.Direction = XFER_NONE;
2884                         c->Request.Timeout = 0;
2885                         break;
2886                 default:
2887                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2888                         BUG();
2889                         return;
2890                 }
2891         } else if (cmd_type == TYPE_MSG) {
2892                 switch (cmd) {
2893
2894                 case  HPSA_DEVICE_RESET_MSG:
2895                         c->Request.CDBLen = 16;
2896                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2897                         c->Request.Type.Attribute = ATTR_SIMPLE;
2898                         c->Request.Type.Direction = XFER_NONE;
2899                         c->Request.Timeout = 0; /* Don't time out */
2900                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2901                         c->Request.CDB[0] =  cmd;
2902                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2903                         /* If bytes 4-7 are zero, it means reset the */
2904                         /* LunID device */
2905                         c->Request.CDB[4] = 0x00;
2906                         c->Request.CDB[5] = 0x00;
2907                         c->Request.CDB[6] = 0x00;
2908                         c->Request.CDB[7] = 0x00;
2909                 break;
2910
2911                 default:
2912                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2913                                 cmd);
2914                         BUG();
2915                 }
2916         } else {
2917                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2918                 BUG();
2919         }
2920
2921         switch (c->Request.Type.Direction) {
2922         case XFER_READ:
2923                 pci_dir = PCI_DMA_FROMDEVICE;
2924                 break;
2925         case XFER_WRITE:
2926                 pci_dir = PCI_DMA_TODEVICE;
2927                 break;
2928         case XFER_NONE:
2929                 pci_dir = PCI_DMA_NONE;
2930                 break;
2931         default:
2932                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2933         }
2934
2935         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2936
2937         return;
2938 }
2939
2940 /*
2941  * Map (physical) PCI mem into (virtual) kernel space
2942  */
2943 static void __iomem *remap_pci_mem(ulong base, ulong size)
2944 {
2945         ulong page_base = ((ulong) base) & PAGE_MASK;
2946         ulong page_offs = ((ulong) base) - page_base;
2947         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2948
2949         return page_remapped ? (page_remapped + page_offs) : NULL;
2950 }
2951
2952 /* Takes cmds off the submission queue and sends them to the hardware,
2953  * then puts them on the queue of cmds waiting for completion.
2954  */
2955 static void start_io(struct ctlr_info *h)
2956 {
2957         struct CommandList *c;
2958
2959         while (!list_empty(&h->reqQ)) {
2960                 c = list_entry(h->reqQ.next, struct CommandList, list);
2961                 /* can't do anything if fifo is full */
2962                 if ((h->access.fifo_full(h))) {
2963                         dev_warn(&h->pdev->dev, "fifo full\n");
2964                         break;
2965                 }
2966
2967                 /* Get the first entry from the Request Q */
2968                 removeQ(c);
2969                 h->Qdepth--;
2970
2971                 /* Tell the controller execute command */
2972                 h->access.submit_command(h, c);
2973
2974                 /* Put job onto the completed Q */
2975                 addQ(&h->cmpQ, c);
2976         }
2977 }
2978
2979 static inline unsigned long get_next_completion(struct ctlr_info *h)
2980 {
2981         return h->access.command_completed(h);
2982 }
2983
2984 static inline bool interrupt_pending(struct ctlr_info *h)
2985 {
2986         return h->access.intr_pending(h);
2987 }
2988
2989 static inline long interrupt_not_for_us(struct ctlr_info *h)
2990 {
2991         return (h->access.intr_pending(h) == 0) ||
2992                 (h->interrupts_enabled == 0);
2993 }
2994
2995 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2996         u32 raw_tag)
2997 {
2998         if (unlikely(tag_index >= h->nr_cmds)) {
2999                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3000                 return 1;
3001         }
3002         return 0;
3003 }
3004
3005 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3006 {
3007         removeQ(c);
3008         if (likely(c->cmd_type == CMD_SCSI))
3009                 complete_scsi_command(c);
3010         else if (c->cmd_type == CMD_IOCTL_PEND)
3011                 complete(c->waiting);
3012 }
3013
3014 static inline u32 hpsa_tag_contains_index(u32 tag)
3015 {
3016         return tag & DIRECT_LOOKUP_BIT;
3017 }
3018
3019 static inline u32 hpsa_tag_to_index(u32 tag)
3020 {
3021         return tag >> DIRECT_LOOKUP_SHIFT;
3022 }
3023
3024
3025 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3026 {
3027 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3028 #define HPSA_SIMPLE_ERROR_BITS 0x03
3029         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3030                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3031         return tag & ~HPSA_PERF_ERROR_BITS;
3032 }
3033
3034 /* process completion of an indexed ("direct lookup") command */
3035 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3036         u32 raw_tag)
3037 {
3038         u32 tag_index;
3039         struct CommandList *c;
3040
3041         tag_index = hpsa_tag_to_index(raw_tag);
3042         if (bad_tag(h, tag_index, raw_tag))
3043                 return next_command(h);
3044         c = h->cmd_pool + tag_index;
3045         finish_cmd(c, raw_tag);
3046         return next_command(h);
3047 }
3048
3049 /* process completion of a non-indexed command */
3050 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3051         u32 raw_tag)
3052 {
3053         u32 tag;
3054         struct CommandList *c = NULL;
3055
3056         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3057         list_for_each_entry(c, &h->cmpQ, list) {
3058                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3059                         finish_cmd(c, raw_tag);
3060                         return next_command(h);
3061                 }
3062         }
3063         bad_tag(h, h->nr_cmds + 1, raw_tag);
3064         return next_command(h);
3065 }
3066
3067 /* Some controllers, like p400, will give us one interrupt
3068  * after a soft reset, even if we turned interrupts off.
3069  * Only need to check for this in the hpsa_xxx_discard_completions
3070  * functions.
3071  */
3072 static int ignore_bogus_interrupt(struct ctlr_info *h)
3073 {
3074         if (likely(!reset_devices))
3075                 return 0;
3076
3077         if (likely(h->interrupts_enabled))
3078                 return 0;
3079
3080         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3081                 "(known firmware bug.)  Ignoring.\n");
3082
3083         return 1;
3084 }
3085
3086 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3087 {
3088         struct ctlr_info *h = dev_id;
3089         unsigned long flags;
3090         u32 raw_tag;
3091
3092         if (ignore_bogus_interrupt(h))
3093                 return IRQ_NONE;
3094
3095         if (interrupt_not_for_us(h))
3096                 return IRQ_NONE;
3097         spin_lock_irqsave(&h->lock, flags);
3098         while (interrupt_pending(h)) {
3099                 raw_tag = get_next_completion(h);
3100                 while (raw_tag != FIFO_EMPTY)
3101                         raw_tag = next_command(h);
3102         }
3103         spin_unlock_irqrestore(&h->lock, flags);
3104         return IRQ_HANDLED;
3105 }
3106
3107 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3108 {
3109         struct ctlr_info *h = dev_id;
3110         unsigned long flags;
3111         u32 raw_tag;
3112
3113         if (ignore_bogus_interrupt(h))
3114                 return IRQ_NONE;
3115
3116         spin_lock_irqsave(&h->lock, flags);
3117         raw_tag = get_next_completion(h);
3118         while (raw_tag != FIFO_EMPTY)
3119                 raw_tag = next_command(h);
3120         spin_unlock_irqrestore(&h->lock, flags);
3121         return IRQ_HANDLED;
3122 }
3123
3124 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3125 {
3126         struct ctlr_info *h = dev_id;
3127         unsigned long flags;
3128         u32 raw_tag;
3129
3130         if (interrupt_not_for_us(h))
3131                 return IRQ_NONE;
3132         spin_lock_irqsave(&h->lock, flags);
3133         while (interrupt_pending(h)) {
3134                 raw_tag = get_next_completion(h);
3135                 while (raw_tag != FIFO_EMPTY) {
3136                         if (hpsa_tag_contains_index(raw_tag))
3137                                 raw_tag = process_indexed_cmd(h, raw_tag);
3138                         else
3139                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3140                 }
3141         }
3142         spin_unlock_irqrestore(&h->lock, flags);
3143         return IRQ_HANDLED;
3144 }
3145
3146 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3147 {
3148         struct ctlr_info *h = dev_id;
3149         unsigned long flags;
3150         u32 raw_tag;
3151
3152         spin_lock_irqsave(&h->lock, flags);
3153         raw_tag = get_next_completion(h);
3154         while (raw_tag != FIFO_EMPTY) {
3155                 if (hpsa_tag_contains_index(raw_tag))
3156                         raw_tag = process_indexed_cmd(h, raw_tag);
3157                 else
3158                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3159         }
3160         spin_unlock_irqrestore(&h->lock, flags);
3161         return IRQ_HANDLED;
3162 }
3163
3164 /* Send a message CDB to the firmware. Careful, this only works
3165  * in simple mode, not performant mode due to the tag lookup.
3166  * We only ever use this immediately after a controller reset.
3167  */
3168 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3169                                                 unsigned char type)
3170 {
3171         struct Command {
3172                 struct CommandListHeader CommandHeader;
3173                 struct RequestBlock Request;
3174                 struct ErrDescriptor ErrorDescriptor;
3175         };
3176         struct Command *cmd;
3177         static const size_t cmd_sz = sizeof(*cmd) +
3178                                         sizeof(cmd->ErrorDescriptor);
3179         dma_addr_t paddr64;
3180         uint32_t paddr32, tag;
3181         void __iomem *vaddr;
3182         int i, err;
3183
3184         vaddr = pci_ioremap_bar(pdev, 0);
3185         if (vaddr == NULL)
3186                 return -ENOMEM;
3187
3188         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3189          * CCISS commands, so they must be allocated from the lower 4GiB of
3190          * memory.
3191          */
3192         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3193         if (err) {
3194                 iounmap(vaddr);
3195                 return -ENOMEM;
3196         }
3197
3198         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3199         if (cmd == NULL) {
3200                 iounmap(vaddr);
3201                 return -ENOMEM;
3202         }
3203
3204         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3205          * although there's no guarantee, we assume that the address is at
3206          * least 4-byte aligned (most likely, it's page-aligned).
3207          */
3208         paddr32 = paddr64;
3209
3210         cmd->CommandHeader.ReplyQueue = 0;
3211         cmd->CommandHeader.SGList = 0;
3212         cmd->CommandHeader.SGTotal = 0;
3213         cmd->CommandHeader.Tag.lower = paddr32;
3214         cmd->CommandHeader.Tag.upper = 0;
3215         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3216
3217         cmd->Request.CDBLen = 16;
3218         cmd->Request.Type.Type = TYPE_MSG;
3219         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3220         cmd->Request.Type.Direction = XFER_NONE;
3221         cmd->Request.Timeout = 0; /* Don't time out */
3222         cmd->Request.CDB[0] = opcode;
3223         cmd->Request.CDB[1] = type;
3224         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3225         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3226         cmd->ErrorDescriptor.Addr.upper = 0;
3227         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3228
3229         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3230
3231         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3232                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3233                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3234                         break;
3235                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3236         }
3237
3238         iounmap(vaddr);
3239
3240         /* we leak the DMA buffer here ... no choice since the controller could
3241          *  still complete the command.
3242          */
3243         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3244                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3245                         opcode, type);
3246                 return -ETIMEDOUT;
3247         }
3248
3249         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3250
3251         if (tag & HPSA_ERROR_BIT) {
3252                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3253                         opcode, type);
3254                 return -EIO;
3255         }
3256
3257         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3258                 opcode, type);
3259         return 0;
3260 }
3261
3262 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3263
3264 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3265         void * __iomem vaddr, u32 use_doorbell)
3266 {
3267         u16 pmcsr;
3268         int pos;
3269
3270         if (use_doorbell) {
3271                 /* For everything after the P600, the PCI power state method
3272                  * of resetting the controller doesn't work, so we have this
3273                  * other way using the doorbell register.
3274                  */
3275                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3276                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3277         } else { /* Try to do it the PCI power state way */
3278
3279                 /* Quoting from the Open CISS Specification: "The Power
3280                  * Management Control/Status Register (CSR) controls the power
3281                  * state of the device.  The normal operating state is D0,
3282                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3283                  * the controller, place the interface device in D3 then to D0,
3284                  * this causes a secondary PCI reset which will reset the
3285                  * controller." */
3286
3287                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3288                 if (pos == 0) {
3289                         dev_err(&pdev->dev,
3290                                 "hpsa_reset_controller: "
3291                                 "PCI PM not supported\n");
3292                         return -ENODEV;
3293                 }
3294                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3295                 /* enter the D3hot power management state */
3296                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3297                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3298                 pmcsr |= PCI_D3hot;
3299                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3300
3301                 msleep(500);
3302
3303                 /* enter the D0 power management state */
3304                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3305                 pmcsr |= PCI_D0;
3306                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3307         }
3308         return 0;
3309 }
3310
3311 static __devinit void init_driver_version(char *driver_version, int len)
3312 {
3313         memset(driver_version, 0, len);
3314         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3315 }
3316
3317 static __devinit int write_driver_ver_to_cfgtable(
3318         struct CfgTable __iomem *cfgtable)
3319 {
3320         char *driver_version;
3321         int i, size = sizeof(cfgtable->driver_version);
3322
3323         driver_version = kmalloc(size, GFP_KERNEL);
3324         if (!driver_version)
3325                 return -ENOMEM;
3326
3327         init_driver_version(driver_version, size);
3328         for (i = 0; i < size; i++)
3329                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3330         kfree(driver_version);
3331         return 0;
3332 }
3333
3334 static __devinit void read_driver_ver_from_cfgtable(
3335         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3336 {
3337         int i;
3338
3339         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3340                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3341 }
3342
3343 static __devinit int controller_reset_failed(
3344         struct CfgTable __iomem *cfgtable)
3345 {
3346
3347         char *driver_ver, *old_driver_ver;
3348         int rc, size = sizeof(cfgtable->driver_version);
3349
3350         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3351         if (!old_driver_ver)
3352                 return -ENOMEM;
3353         driver_ver = old_driver_ver + size;
3354
3355         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3356          * should have been changed, otherwise we know the reset failed.
3357          */
3358         init_driver_version(old_driver_ver, size);
3359         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3360         rc = !memcmp(driver_ver, old_driver_ver, size);
3361         kfree(old_driver_ver);
3362         return rc;
3363 }
3364 /* This does a hard reset of the controller using PCI power management
3365  * states or the using the doorbell register.
3366  */
3367 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3368 {
3369         u64 cfg_offset;
3370         u32 cfg_base_addr;
3371         u64 cfg_base_addr_index;
3372         void __iomem *vaddr;
3373         unsigned long paddr;
3374         u32 misc_fw_support;
3375         int rc;
3376         struct CfgTable __iomem *cfgtable;
3377         u32 use_doorbell;
3378         u32 board_id;
3379         u16 command_register;
3380
3381         /* For controllers as old as the P600, this is very nearly
3382          * the same thing as
3383          *
3384          * pci_save_state(pci_dev);
3385          * pci_set_power_state(pci_dev, PCI_D3hot);
3386          * pci_set_power_state(pci_dev, PCI_D0);
3387          * pci_restore_state(pci_dev);
3388          *
3389          * For controllers newer than the P600, the pci power state
3390          * method of resetting doesn't work so we have another way
3391          * using the doorbell register.
3392          */
3393
3394         rc = hpsa_lookup_board_id(pdev, &board_id);
3395         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3396                 dev_warn(&pdev->dev, "Not resetting device.\n");
3397                 return -ENODEV;
3398         }
3399
3400         /* if controller is soft- but not hard resettable... */
3401         if (!ctlr_is_hard_resettable(board_id))
3402                 return -ENOTSUPP; /* try soft reset later. */
3403
3404         /* Save the PCI command register */
3405         pci_read_config_word(pdev, 4, &command_register);
3406         /* Turn the board off.  This is so that later pci_restore_state()
3407          * won't turn the board on before the rest of config space is ready.
3408          */
3409         pci_disable_device(pdev);
3410         pci_save_state(pdev);
3411
3412         /* find the first memory BAR, so we can find the cfg table */
3413         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3414         if (rc)
3415                 return rc;
3416         vaddr = remap_pci_mem(paddr, 0x250);
3417         if (!vaddr)
3418                 return -ENOMEM;
3419
3420         /* find cfgtable in order to check if reset via doorbell is supported */
3421         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3422                                         &cfg_base_addr_index, &cfg_offset);
3423         if (rc)
3424                 goto unmap_vaddr;
3425         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3426                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3427         if (!cfgtable) {
3428                 rc = -ENOMEM;
3429                 goto unmap_vaddr;
3430         }
3431         rc = write_driver_ver_to_cfgtable(cfgtable);
3432         if (rc)
3433                 goto unmap_vaddr;
3434
3435         /* If reset via doorbell register is supported, use that.
3436          * There are two such methods.  Favor the newest method.
3437          */
3438         misc_fw_support = readl(&cfgtable->misc_fw_support);
3439         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3440         if (use_doorbell) {
3441                 use_doorbell = DOORBELL_CTLR_RESET2;
3442         } else {
3443                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3444                 if (use_doorbell) {
3445                         dev_warn(&pdev->dev, "Soft reset not supported. "
3446                                 "Firmware update is required.\n");
3447                         rc = -ENOTSUPP; /* try soft reset */
3448                         goto unmap_cfgtable;
3449                 }
3450         }
3451
3452         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3453         if (rc)
3454                 goto unmap_cfgtable;
3455
3456         pci_restore_state(pdev);
3457         rc = pci_enable_device(pdev);
3458         if (rc) {
3459                 dev_warn(&pdev->dev, "failed to enable device.\n");
3460                 goto unmap_cfgtable;
3461         }
3462         pci_write_config_word(pdev, 4, command_register);
3463
3464         /* Some devices (notably the HP Smart Array 5i Controller)
3465            need a little pause here */
3466         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3467
3468         /* Wait for board to become not ready, then ready. */
3469         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3470         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3471         if (rc) {
3472                 dev_warn(&pdev->dev,
3473                         "failed waiting for board to reset."
3474                         " Will try soft reset.\n");
3475                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3476                 goto unmap_cfgtable;
3477         }
3478         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3479         if (rc) {
3480                 dev_warn(&pdev->dev,
3481                         "failed waiting for board to become ready "
3482                         "after hard reset\n");
3483                 goto unmap_cfgtable;
3484         }
3485
3486         rc = controller_reset_failed(vaddr);
3487         if (rc < 0)
3488                 goto unmap_cfgtable;
3489         if (rc) {
3490                 dev_warn(&pdev->dev, "Unable to successfully reset "
3491                         "controller. Will try soft reset.\n");
3492                 rc = -ENOTSUPP;
3493         } else {
3494                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3495         }
3496
3497 unmap_cfgtable:
3498         iounmap(cfgtable);
3499
3500 unmap_vaddr:
3501         iounmap(vaddr);
3502         return rc;
3503 }
3504
3505 /*
3506  *  We cannot read the structure directly, for portability we must use
3507  *   the io functions.
3508  *   This is for debug only.
3509  */
3510 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3511 {
3512 #ifdef HPSA_DEBUG
3513         int i;
3514         char temp_name[17];
3515
3516         dev_info(dev, "Controller Configuration information\n");
3517         dev_info(dev, "------------------------------------\n");
3518         for (i = 0; i < 4; i++)
3519                 temp_name[i] = readb(&(tb->Signature[i]));
3520         temp_name[4] = '\0';
3521         dev_info(dev, "   Signature = %s\n", temp_name);
3522         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3523         dev_info(dev, "   Transport methods supported = 0x%x\n",
3524                readl(&(tb->TransportSupport)));
3525         dev_info(dev, "   Transport methods active = 0x%x\n",
3526                readl(&(tb->TransportActive)));
3527         dev_info(dev, "   Requested transport Method = 0x%x\n",
3528                readl(&(tb->HostWrite.TransportRequest)));
3529         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3530                readl(&(tb->HostWrite.CoalIntDelay)));
3531         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3532                readl(&(tb->HostWrite.CoalIntCount)));
3533         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3534                readl(&(tb->CmdsOutMax)));
3535         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3536         for (i = 0; i < 16; i++)
3537                 temp_name[i] = readb(&(tb->ServerName[i]));
3538         temp_name[16] = '\0';
3539         dev_info(dev, "   Server Name = %s\n", temp_name);
3540         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3541                 readl(&(tb->HeartBeat)));
3542 #endif                          /* HPSA_DEBUG */
3543 }
3544
3545 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3546 {
3547         int i, offset, mem_type, bar_type;
3548
3549         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3550                 return 0;
3551         offset = 0;
3552         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3553                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3554                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3555                         offset += 4;
3556                 else {
3557                         mem_type = pci_resource_flags(pdev, i) &
3558                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3559                         switch (mem_type) {
3560                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3561                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3562                                 offset += 4;    /* 32 bit */
3563                                 break;
3564                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3565                                 offset += 8;
3566                                 break;
3567                         default:        /* reserved in PCI 2.2 */
3568                                 dev_warn(&pdev->dev,
3569                                        "base address is invalid\n");
3570                                 return -1;
3571                                 break;
3572                         }
3573                 }
3574                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3575                         return i + 1;
3576         }
3577         return -1;
3578 }
3579
3580 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3581  * controllers that are capable. If not, we use IO-APIC mode.
3582  */
3583
3584 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3585 {
3586 #ifdef CONFIG_PCI_MSI
3587         int err;
3588         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3589         {0, 2}, {0, 3}
3590         };
3591
3592         /* Some boards advertise MSI but don't really support it */
3593         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3594             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3595                 goto default_int_mode;
3596         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3597                 dev_info(&h->pdev->dev, "MSIX\n");
3598                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3599                 if (!err) {
3600                         h->intr[0] = hpsa_msix_entries[0].vector;
3601                         h->intr[1] = hpsa_msix_entries[1].vector;
3602                         h->intr[2] = hpsa_msix_entries[2].vector;
3603                         h->intr[3] = hpsa_msix_entries[3].vector;
3604                         h->msix_vector = 1;
3605                         return;
3606                 }
3607                 if (err > 0) {
3608                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3609                                "available\n", err);
3610                         goto default_int_mode;
3611                 } else {
3612                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3613                                err);
3614                         goto default_int_mode;
3615                 }
3616         }
3617         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3618                 dev_info(&h->pdev->dev, "MSI\n");
3619                 if (!pci_enable_msi(h->pdev))
3620                         h->msi_vector = 1;
3621                 else
3622                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3623         }
3624 default_int_mode:
3625 #endif                          /* CONFIG_PCI_MSI */
3626         /* if we get here we're going to use the default interrupt mode */
3627         h->intr[h->intr_mode] = h->pdev->irq;
3628 }
3629
3630 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3631 {
3632         int i;
3633         u32 subsystem_vendor_id, subsystem_device_id;
3634
3635         subsystem_vendor_id = pdev->subsystem_vendor;
3636         subsystem_device_id = pdev->subsystem_device;
3637         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3638                     subsystem_vendor_id;
3639
3640         for (i = 0; i < ARRAY_SIZE(products); i++)
3641                 if (*board_id == products[i].board_id)
3642                         return i;
3643
3644         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3645                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3646                 !hpsa_allow_any) {
3647                 dev_warn(&pdev->dev, "unrecognized board ID: "
3648                         "0x%08x, ignoring.\n", *board_id);
3649                         return -ENODEV;
3650         }
3651         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3652 }
3653
3654 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3655 {
3656         u16 command;
3657
3658         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3659         return ((command & PCI_COMMAND_MEMORY) == 0);
3660 }
3661
3662 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3663         unsigned long *memory_bar)
3664 {
3665         int i;
3666
3667         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3668                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3669                         /* addressing mode bits already removed */
3670                         *memory_bar = pci_resource_start(pdev, i);
3671                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3672                                 *memory_bar);
3673                         return 0;
3674                 }
3675         dev_warn(&pdev->dev, "no memory BAR found\n");
3676         return -ENODEV;
3677 }
3678
3679 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3680         void __iomem *vaddr, int wait_for_ready)
3681 {
3682         int i, iterations;
3683         u32 scratchpad;
3684         if (wait_for_ready)
3685                 iterations = HPSA_BOARD_READY_ITERATIONS;
3686         else
3687                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3688
3689         for (i = 0; i < iterations; i++) {
3690                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3691                 if (wait_for_ready) {
3692                         if (scratchpad == HPSA_FIRMWARE_READY)
3693                                 return 0;
3694                 } else {
3695                         if (scratchpad != HPSA_FIRMWARE_READY)
3696                                 return 0;
3697                 }
3698                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3699         }
3700         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3701         return -ENODEV;
3702 }
3703
3704 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3705         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3706         u64 *cfg_offset)
3707 {
3708         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3709         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3710         *cfg_base_addr &= (u32) 0x0000ffff;
3711         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3712         if (*cfg_base_addr_index == -1) {
3713                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3714                 return -ENODEV;
3715         }
3716         return 0;
3717 }
3718
3719 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3720 {
3721         u64 cfg_offset;
3722         u32 cfg_base_addr;
3723         u64 cfg_base_addr_index;
3724         u32 trans_offset;
3725         int rc;
3726
3727         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3728                 &cfg_base_addr_index, &cfg_offset);
3729         if (rc)
3730                 return rc;
3731         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3732                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3733         if (!h->cfgtable)
3734                 return -ENOMEM;
3735         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3736         if (rc)
3737                 return rc;
3738         /* Find performant mode table. */
3739         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3740         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3741                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3742                                 sizeof(*h->transtable));
3743         if (!h->transtable)
3744                 return -ENOMEM;
3745         return 0;
3746 }
3747
3748 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3749 {
3750         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3751
3752         /* Limit commands in memory limited kdump scenario. */
3753         if (reset_devices && h->max_commands > 32)
3754                 h->max_commands = 32;
3755
3756         if (h->max_commands < 16) {
3757                 dev_warn(&h->pdev->dev, "Controller reports "
3758                         "max supported commands of %d, an obvious lie. "
3759                         "Using 16.  Ensure that firmware is up to date.\n",
3760                         h->max_commands);
3761                 h->max_commands = 16;
3762         }
3763 }
3764
3765 /* Interrogate the hardware for some limits:
3766  * max commands, max SG elements without chaining, and with chaining,
3767  * SG chain block size, etc.
3768  */
3769 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3770 {
3771         hpsa_get_max_perf_mode_cmds(h);
3772         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3773         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3774         /*
3775          * Limit in-command s/g elements to 32 save dma'able memory.
3776          * Howvever spec says if 0, use 31
3777          */
3778         h->max_cmd_sg_entries = 31;
3779         if (h->maxsgentries > 512) {
3780                 h->max_cmd_sg_entries = 32;
3781                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3782                 h->maxsgentries--; /* save one for chain pointer */
3783         } else {
3784                 h->maxsgentries = 31; /* default to traditional values */
3785                 h->chainsize = 0;
3786         }
3787 }
3788
3789 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3790 {
3791         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3792             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3793             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3794             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3795                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3796                 return false;
3797         }
3798         return true;
3799 }
3800
3801 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3802 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3803 {
3804 #ifdef CONFIG_X86
3805         u32 prefetch;
3806
3807         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3808         prefetch |= 0x100;
3809         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3810 #endif
3811 }
3812
3813 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3814  * in a prefetch beyond physical memory.
3815  */
3816 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3817 {
3818         u32 dma_prefetch;
3819
3820         if (h->board_id != 0x3225103C)
3821                 return;
3822         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3823         dma_prefetch |= 0x8000;
3824         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3825 }
3826
3827 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3828 {
3829         int i;
3830         u32 doorbell_value;
3831         unsigned long flags;
3832
3833         /* under certain very rare conditions, this can take awhile.
3834          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3835          * as we enter this code.)
3836          */
3837         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3838                 spin_lock_irqsave(&h->lock, flags);
3839                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3840                 spin_unlock_irqrestore(&h->lock, flags);
3841                 if (!(doorbell_value & CFGTBL_ChangeReq))
3842                         break;
3843                 /* delay and try again */
3844                 usleep_range(10000, 20000);
3845         }
3846 }
3847
3848 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3849 {
3850         u32 trans_support;
3851
3852         trans_support = readl(&(h->cfgtable->TransportSupport));
3853         if (!(trans_support & SIMPLE_MODE))
3854                 return -ENOTSUPP;
3855
3856         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3857         /* Update the field, and then ring the doorbell */
3858         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3859         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3860         hpsa_wait_for_mode_change_ack(h);
3861         print_cfg_table(&h->pdev->dev, h->cfgtable);
3862         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3863                 dev_warn(&h->pdev->dev,
3864                         "unable to get board into simple mode\n");
3865                 return -ENODEV;
3866         }
3867         h->transMethod = CFGTBL_Trans_Simple;
3868         return 0;
3869 }
3870
3871 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3872 {
3873         int prod_index, err;
3874
3875         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3876         if (prod_index < 0)
3877                 return -ENODEV;
3878         h->product_name = products[prod_index].product_name;
3879         h->access = *(products[prod_index].access);
3880
3881         if (hpsa_board_disabled(h->pdev)) {
3882                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3883                 return -ENODEV;
3884         }
3885         err = pci_enable_device(h->pdev);
3886         if (err) {
3887                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3888                 return err;
3889         }
3890
3891         err = pci_request_regions(h->pdev, "hpsa");
3892         if (err) {
3893                 dev_err(&h->pdev->dev,
3894                         "cannot obtain PCI resources, aborting\n");
3895                 return err;
3896         }
3897         hpsa_interrupt_mode(h);
3898         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3899         if (err)
3900                 goto err_out_free_res;
3901         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3902         if (!h->vaddr) {
3903                 err = -ENOMEM;
3904                 goto err_out_free_res;
3905         }
3906         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3907         if (err)
3908                 goto err_out_free_res;
3909         err = hpsa_find_cfgtables(h);
3910         if (err)
3911                 goto err_out_free_res;
3912         hpsa_find_board_params(h);
3913
3914         if (!hpsa_CISS_signature_present(h)) {
3915                 err = -ENODEV;
3916                 goto err_out_free_res;
3917         }
3918         hpsa_enable_scsi_prefetch(h);
3919         hpsa_p600_dma_prefetch_quirk(h);
3920         err = hpsa_enter_simple_mode(h);
3921         if (err)
3922                 goto err_out_free_res;
3923         return 0;
3924
3925 err_out_free_res:
3926         if (h->transtable)
3927                 iounmap(h->transtable);
3928         if (h->cfgtable)
3929                 iounmap(h->cfgtable);
3930         if (h->vaddr)
3931                 iounmap(h->vaddr);
3932         /*
3933          * Deliberately omit pci_disable_device(): it does something nasty to
3934          * Smart Array controllers that pci_enable_device does not undo
3935          */
3936         pci_release_regions(h->pdev);
3937         return err;
3938 }
3939
3940 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3941 {
3942         int rc;
3943
3944 #define HBA_INQUIRY_BYTE_COUNT 64
3945         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3946         if (!h->hba_inquiry_data)
3947                 return;
3948         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3949                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3950         if (rc != 0) {
3951                 kfree(h->hba_inquiry_data);
3952                 h->hba_inquiry_data = NULL;
3953         }
3954 }
3955
3956 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3957 {
3958         int rc, i;
3959
3960         if (!reset_devices)
3961                 return 0;
3962
3963         /* Reset the controller with a PCI power-cycle or via doorbell */
3964         rc = hpsa_kdump_hard_reset_controller(pdev);
3965
3966         /* -ENOTSUPP here means we cannot reset the controller
3967          * but it's already (and still) up and running in
3968          * "performant mode".  Or, it might be 640x, which can't reset
3969          * due to concerns about shared bbwc between 6402/6404 pair.
3970          */
3971         if (rc == -ENOTSUPP)
3972                 return rc; /* just try to do the kdump anyhow. */
3973         if (rc)
3974                 return -ENODEV;
3975
3976         /* Now try to get the controller to respond to a no-op */
3977         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3978         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3979                 if (hpsa_noop(pdev) == 0)
3980                         break;
3981                 else
3982                         dev_warn(&pdev->dev, "no-op failed%s\n",
3983                                         (i < 11 ? "; re-trying" : ""));
3984         }
3985         return 0;
3986 }
3987
3988 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3989 {
3990         h->cmd_pool_bits = kzalloc(
3991                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3992                 sizeof(unsigned long), GFP_KERNEL);
3993         h->cmd_pool = pci_alloc_consistent(h->pdev,
3994                     h->nr_cmds * sizeof(*h->cmd_pool),
3995                     &(h->cmd_pool_dhandle));
3996         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3997                     h->nr_cmds * sizeof(*h->errinfo_pool),
3998                     &(h->errinfo_pool_dhandle));
3999         if ((h->cmd_pool_bits == NULL)
4000             || (h->cmd_pool == NULL)
4001             || (h->errinfo_pool == NULL)) {
4002                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4003                 return -ENOMEM;
4004         }
4005         return 0;
4006 }
4007
4008 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4009 {
4010         kfree(h->cmd_pool_bits);
4011         if (h->cmd_pool)
4012                 pci_free_consistent(h->pdev,
4013                             h->nr_cmds * sizeof(struct CommandList),
4014                             h->cmd_pool, h->cmd_pool_dhandle);
4015         if (h->errinfo_pool)
4016                 pci_free_consistent(h->pdev,
4017                             h->nr_cmds * sizeof(struct ErrorInfo),
4018                             h->errinfo_pool,
4019                             h->errinfo_pool_dhandle);
4020 }
4021
4022 static int hpsa_request_irq(struct ctlr_info *h,
4023         irqreturn_t (*msixhandler)(int, void *),
4024         irqreturn_t (*intxhandler)(int, void *))
4025 {
4026         int rc;
4027
4028         if (h->msix_vector || h->msi_vector)
4029                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4030                                 IRQF_DISABLED, h->devname, h);
4031         else
4032                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4033                                 IRQF_DISABLED, h->devname, h);
4034         if (rc) {
4035                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4036                        h->intr[h->intr_mode], h->devname);
4037                 return -ENODEV;
4038         }
4039         return 0;
4040 }
4041
4042 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4043 {
4044         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4045                 HPSA_RESET_TYPE_CONTROLLER)) {
4046                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4047                 return -EIO;
4048         }
4049
4050         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4051         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4052                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4053                 return -1;
4054         }
4055
4056         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4057         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4058                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4059                         "after soft reset.\n");
4060                 return -1;
4061         }
4062
4063         return 0;
4064 }
4065
4066 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4067 {
4068         free_irq(h->intr[h->intr_mode], h);
4069 #ifdef CONFIG_PCI_MSI
4070         if (h->msix_vector)
4071                 pci_disable_msix(h->pdev);
4072         else if (h->msi_vector)
4073                 pci_disable_msi(h->pdev);
4074 #endif /* CONFIG_PCI_MSI */
4075         hpsa_free_sg_chain_blocks(h);
4076         hpsa_free_cmd_pool(h);
4077         kfree(h->blockFetchTable);
4078         pci_free_consistent(h->pdev, h->reply_pool_size,
4079                 h->reply_pool, h->reply_pool_dhandle);
4080         if (h->vaddr)
4081                 iounmap(h->vaddr);
4082         if (h->transtable)
4083                 iounmap(h->transtable);
4084         if (h->cfgtable)
4085                 iounmap(h->cfgtable);
4086         pci_release_regions(h->pdev);
4087         kfree(h);
4088 }
4089
4090 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4091                                     const struct pci_device_id *ent)
4092 {
4093         int dac, rc;
4094         struct ctlr_info *h;
4095         int try_soft_reset = 0;
4096         unsigned long flags;
4097
4098         if (number_of_controllers == 0)
4099                 printk(KERN_INFO DRIVER_NAME "\n");
4100
4101         rc = hpsa_init_reset_devices(pdev);
4102         if (rc) {
4103                 if (rc != -ENOTSUPP)
4104                         return rc;
4105                 /* If the reset fails in a particular way (it has no way to do
4106                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4107                  * a soft reset once we get the controller configured up to the
4108                  * point that it can accept a command.
4109                  */
4110                 try_soft_reset = 1;
4111                 rc = 0;
4112         }
4113
4114 reinit_after_soft_reset:
4115
4116         /* Command structures must be aligned on a 32-byte boundary because
4117          * the 5 lower bits of the address are used by the hardware. and by
4118          * the driver.  See comments in hpsa.h for more info.
4119          */
4120 #define COMMANDLIST_ALIGNMENT 32
4121         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4122         h = kzalloc(sizeof(*h), GFP_KERNEL);
4123         if (!h)
4124                 return -ENOMEM;
4125
4126         h->pdev = pdev;
4127         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4128         INIT_LIST_HEAD(&h->cmpQ);
4129         INIT_LIST_HEAD(&h->reqQ);
4130         spin_lock_init(&h->lock);
4131         spin_lock_init(&h->scan_lock);
4132         rc = hpsa_pci_init(h);
4133         if (rc != 0)
4134                 goto clean1;
4135
4136         sprintf(h->devname, "hpsa%d", number_of_controllers);
4137         h->ctlr = number_of_controllers;
4138         number_of_controllers++;
4139
4140         /* configure PCI DMA stuff */
4141         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4142         if (rc == 0) {
4143                 dac = 1;
4144         } else {
4145                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4146                 if (rc == 0) {
4147                         dac = 0;
4148                 } else {
4149                         dev_err(&pdev->dev, "no suitable DMA available\n");
4150                         goto clean1;
4151                 }
4152         }
4153
4154         /* make sure the board interrupts are off */
4155         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4156
4157         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4158                 goto clean2;
4159         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4160                h->devname, pdev->device,
4161                h->intr[h->intr_mode], dac ? "" : " not");
4162         if (hpsa_allocate_cmd_pool(h))
4163                 goto clean4;
4164         if (hpsa_allocate_sg_chain_blocks(h))
4165                 goto clean4;
4166         init_waitqueue_head(&h->scan_wait_queue);
4167         h->scan_finished = 1; /* no scan currently in progress */
4168
4169         pci_set_drvdata(pdev, h);
4170         h->ndevices = 0;
4171         h->scsi_host = NULL;
4172         spin_lock_init(&h->devlock);
4173         hpsa_put_ctlr_into_performant_mode(h);
4174
4175         /* At this point, the controller is ready to take commands.
4176          * Now, if reset_devices and the hard reset didn't work, try
4177          * the soft reset and see if that works.
4178          */
4179         if (try_soft_reset) {
4180
4181                 /* This is kind of gross.  We may or may not get a completion
4182                  * from the soft reset command, and if we do, then the value
4183                  * from the fifo may or may not be valid.  So, we wait 10 secs
4184                  * after the reset throwing away any completions we get during
4185                  * that time.  Unregister the interrupt handler and register
4186                  * fake ones to scoop up any residual completions.
4187                  */
4188                 spin_lock_irqsave(&h->lock, flags);
4189                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4190                 spin_unlock_irqrestore(&h->lock, flags);
4191                 free_irq(h->intr[h->intr_mode], h);
4192                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4193                                         hpsa_intx_discard_completions);
4194                 if (rc) {
4195                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4196                                 "soft reset.\n");
4197                         goto clean4;
4198                 }
4199
4200                 rc = hpsa_kdump_soft_reset(h);
4201                 if (rc)
4202                         /* Neither hard nor soft reset worked, we're hosed. */
4203                         goto clean4;
4204
4205                 dev_info(&h->pdev->dev, "Board READY.\n");
4206                 dev_info(&h->pdev->dev,
4207                         "Waiting for stale completions to drain.\n");
4208                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4209                 msleep(10000);
4210                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4211
4212                 rc = controller_reset_failed(h->cfgtable);
4213                 if (rc)
4214                         dev_info(&h->pdev->dev,
4215                                 "Soft reset appears to have failed.\n");
4216
4217                 /* since the controller's reset, we have to go back and re-init
4218                  * everything.  Easiest to just forget what we've done and do it
4219                  * all over again.
4220                  */
4221                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4222                 try_soft_reset = 0;
4223                 if (rc)
4224                         /* don't go to clean4, we already unallocated */
4225                         return -ENODEV;
4226
4227                 goto reinit_after_soft_reset;
4228         }
4229
4230         /* Turn the interrupts on so we can service requests */
4231         h->access.set_intr_mask(h, HPSA_INTR_ON);
4232
4233         hpsa_hba_inquiry(h);
4234         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4235         return 1;
4236
4237 clean4:
4238         hpsa_free_sg_chain_blocks(h);
4239         hpsa_free_cmd_pool(h);
4240         free_irq(h->intr[h->intr_mode], h);
4241 clean2:
4242 clean1:
4243         kfree(h);
4244         return rc;
4245 }
4246
4247 static void hpsa_flush_cache(struct ctlr_info *h)
4248 {
4249         char *flush_buf;
4250         struct CommandList *c;
4251
4252         flush_buf = kzalloc(4, GFP_KERNEL);
4253         if (!flush_buf)
4254                 return;
4255
4256         c = cmd_special_alloc(h);
4257         if (!c) {
4258                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4259                 goto out_of_memory;
4260         }
4261         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4262                 RAID_CTLR_LUNID, TYPE_CMD);
4263         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4264         if (c->err_info->CommandStatus != 0)
4265                 dev_warn(&h->pdev->dev,
4266                         "error flushing cache on controller\n");
4267         cmd_special_free(h, c);
4268 out_of_memory:
4269         kfree(flush_buf);
4270 }
4271
4272 static void hpsa_shutdown(struct pci_dev *pdev)
4273 {
4274         struct ctlr_info *h;
4275
4276         h = pci_get_drvdata(pdev);
4277         /* Turn board interrupts off  and send the flush cache command
4278          * sendcmd will turn off interrupt, and send the flush...
4279          * To write all data in the battery backed cache to disks
4280          */
4281         hpsa_flush_cache(h);
4282         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4283         free_irq(h->intr[h->intr_mode], h);
4284 #ifdef CONFIG_PCI_MSI
4285         if (h->msix_vector)
4286                 pci_disable_msix(h->pdev);
4287         else if (h->msi_vector)
4288                 pci_disable_msi(h->pdev);
4289 #endif                          /* CONFIG_PCI_MSI */
4290 }
4291
4292 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4293 {
4294         struct ctlr_info *h;
4295
4296         if (pci_get_drvdata(pdev) == NULL) {
4297                 dev_err(&pdev->dev, "unable to remove device \n");
4298                 return;
4299         }
4300         h = pci_get_drvdata(pdev);
4301         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4302         hpsa_shutdown(pdev);
4303         iounmap(h->vaddr);
4304         iounmap(h->transtable);
4305         iounmap(h->cfgtable);
4306         hpsa_free_sg_chain_blocks(h);
4307         pci_free_consistent(h->pdev,
4308                 h->nr_cmds * sizeof(struct CommandList),
4309                 h->cmd_pool, h->cmd_pool_dhandle);
4310         pci_free_consistent(h->pdev,
4311                 h->nr_cmds * sizeof(struct ErrorInfo),
4312                 h->errinfo_pool, h->errinfo_pool_dhandle);
4313         pci_free_consistent(h->pdev, h->reply_pool_size,
4314                 h->reply_pool, h->reply_pool_dhandle);
4315         kfree(h->cmd_pool_bits);
4316         kfree(h->blockFetchTable);
4317         kfree(h->hba_inquiry_data);
4318         /*
4319          * Deliberately omit pci_disable_device(): it does something nasty to
4320          * Smart Array controllers that pci_enable_device does not undo
4321          */
4322         pci_release_regions(pdev);
4323         pci_set_drvdata(pdev, NULL);
4324         kfree(h);
4325 }
4326
4327 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4328         __attribute__((unused)) pm_message_t state)
4329 {
4330         return -ENOSYS;
4331 }
4332
4333 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4334 {
4335         return -ENOSYS;
4336 }
4337
4338 static struct pci_driver hpsa_pci_driver = {
4339         .name = "hpsa",
4340         .probe = hpsa_init_one,
4341         .remove = __devexit_p(hpsa_remove_one),
4342         .id_table = hpsa_pci_device_id, /* id_table */
4343         .shutdown = hpsa_shutdown,
4344         .suspend = hpsa_suspend,
4345         .resume = hpsa_resume,
4346 };
4347
4348 /* Fill in bucket_map[], given nsgs (the max number of
4349  * scatter gather elements supported) and bucket[],
4350  * which is an array of 8 integers.  The bucket[] array
4351  * contains 8 different DMA transfer sizes (in 16
4352  * byte increments) which the controller uses to fetch
4353  * commands.  This function fills in bucket_map[], which
4354  * maps a given number of scatter gather elements to one of
4355  * the 8 DMA transfer sizes.  The point of it is to allow the
4356  * controller to only do as much DMA as needed to fetch the
4357  * command, with the DMA transfer size encoded in the lower
4358  * bits of the command address.
4359  */
4360 static void  calc_bucket_map(int bucket[], int num_buckets,
4361         int nsgs, int *bucket_map)
4362 {
4363         int i, j, b, size;
4364
4365         /* even a command with 0 SGs requires 4 blocks */
4366 #define MINIMUM_TRANSFER_BLOCKS 4
4367 #define NUM_BUCKETS 8
4368         /* Note, bucket_map must have nsgs+1 entries. */
4369         for (i = 0; i <= nsgs; i++) {
4370                 /* Compute size of a command with i SG entries */
4371                 size = i + MINIMUM_TRANSFER_BLOCKS;
4372                 b = num_buckets; /* Assume the biggest bucket */
4373                 /* Find the bucket that is just big enough */
4374                 for (j = 0; j < 8; j++) {
4375                         if (bucket[j] >= size) {
4376                                 b = j;
4377                                 break;
4378                         }
4379                 }
4380                 /* for a command with i SG entries, use bucket b. */
4381                 bucket_map[i] = b;
4382         }
4383 }
4384
4385 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4386         u32 use_short_tags)
4387 {
4388         int i;
4389         unsigned long register_value;
4390
4391         /* This is a bit complicated.  There are 8 registers on
4392          * the controller which we write to to tell it 8 different
4393          * sizes of commands which there may be.  It's a way of
4394          * reducing the DMA done to fetch each command.  Encoded into
4395          * each command's tag are 3 bits which communicate to the controller
4396          * which of the eight sizes that command fits within.  The size of
4397          * each command depends on how many scatter gather entries there are.
4398          * Each SG entry requires 16 bytes.  The eight registers are programmed
4399          * with the number of 16-byte blocks a command of that size requires.
4400          * The smallest command possible requires 5 such 16 byte blocks.
4401          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4402          * blocks.  Note, this only extends to the SG entries contained
4403          * within the command block, and does not extend to chained blocks
4404          * of SG elements.   bft[] contains the eight values we write to
4405          * the registers.  They are not evenly distributed, but have more
4406          * sizes for small commands, and fewer sizes for larger commands.
4407          */
4408         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4409         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4410         /*  5 = 1 s/g entry or 4k
4411          *  6 = 2 s/g entry or 8k
4412          *  8 = 4 s/g entry or 16k
4413          * 10 = 6 s/g entry or 24k
4414          */
4415
4416         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4417
4418         /* Controller spec: zero out this buffer. */
4419         memset(h->reply_pool, 0, h->reply_pool_size);
4420         h->reply_pool_head = h->reply_pool;
4421
4422         bft[7] = h->max_sg_entries + 4;
4423         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4424         for (i = 0; i < 8; i++)
4425                 writel(bft[i], &h->transtable->BlockFetch[i]);
4426
4427         /* size of controller ring buffer */
4428         writel(h->max_commands, &h->transtable->RepQSize);
4429         writel(1, &h->transtable->RepQCount);
4430         writel(0, &h->transtable->RepQCtrAddrLow32);
4431         writel(0, &h->transtable->RepQCtrAddrHigh32);
4432         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4433         writel(0, &h->transtable->RepQAddr0High32);
4434         writel(CFGTBL_Trans_Performant | use_short_tags,
4435                 &(h->cfgtable->HostWrite.TransportRequest));
4436         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4437         hpsa_wait_for_mode_change_ack(h);
4438         register_value = readl(&(h->cfgtable->TransportActive));
4439         if (!(register_value & CFGTBL_Trans_Performant)) {
4440                 dev_warn(&h->pdev->dev, "unable to get board into"
4441                                         " performant mode\n");
4442                 return;
4443         }
4444         /* Change the access methods to the performant access methods */
4445         h->access = SA5_performant_access;
4446         h->transMethod = CFGTBL_Trans_Performant;
4447 }
4448
4449 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4450 {
4451         u32 trans_support;
4452
4453         if (hpsa_simple_mode)
4454                 return;
4455
4456         trans_support = readl(&(h->cfgtable->TransportSupport));
4457         if (!(trans_support & PERFORMANT_MODE))
4458                 return;
4459
4460         hpsa_get_max_perf_mode_cmds(h);
4461         h->max_sg_entries = 32;
4462         /* Performant mode ring buffer and supporting data structures */
4463         h->reply_pool_size = h->max_commands * sizeof(u64);
4464         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4465                                 &(h->reply_pool_dhandle));
4466
4467         /* Need a block fetch table for performant mode */
4468         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4469                                 sizeof(u32)), GFP_KERNEL);
4470
4471         if ((h->reply_pool == NULL)
4472                 || (h->blockFetchTable == NULL))
4473                 goto clean_up;
4474
4475         hpsa_enter_performant_mode(h,
4476                 trans_support & CFGTBL_Trans_use_short_tags);
4477
4478         return;
4479
4480 clean_up:
4481         if (h->reply_pool)
4482                 pci_free_consistent(h->pdev, h->reply_pool_size,
4483                         h->reply_pool, h->reply_pool_dhandle);
4484         kfree(h->blockFetchTable);
4485 }
4486
4487 /*
4488  *  This is it.  Register the PCI driver information for the cards we control
4489  *  the OS will call our registered routines when it finds one of our cards.
4490  */
4491 static int __init hpsa_init(void)
4492 {
4493         return pci_register_driver(&hpsa_pci_driver);
4494 }
4495
4496 static void __exit hpsa_cleanup(void)
4497 {
4498         pci_unregister_driver(&hpsa_pci_driver);
4499 }
4500
4501 module_init(hpsa_init);
4502 module_exit(hpsa_cleanup);