5828bcb82964401fcc9ec1b810b68b6c91af564c
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80         "Use 'simple mode' rather than 'performant mode'");
81
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
97         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
98                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
99         {0,}
100 };
101
102 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
103
104 /*  board_id = Subsystem Device ID & Vendor ID
105  *  product = Marketing Name for the board
106  *  access = Address of the struct of function pointers
107  */
108 static struct board_type products[] = {
109         {0x3241103C, "Smart Array P212", &SA5_access},
110         {0x3243103C, "Smart Array P410", &SA5_access},
111         {0x3245103C, "Smart Array P410i", &SA5_access},
112         {0x3247103C, "Smart Array P411", &SA5_access},
113         {0x3249103C, "Smart Array P812", &SA5_access},
114         {0x324a103C, "Smart Array P712m", &SA5_access},
115         {0x324b103C, "Smart Array P711m", &SA5_access},
116         {0x3250103C, "Smart Array", &SA5_access},
117         {0x3250113C, "Smart Array", &SA5_access},
118         {0x3250123C, "Smart Array", &SA5_access},
119         {0x3250133C, "Smart Array", &SA5_access},
120         {0x3250143C, "Smart Array", &SA5_access},
121         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
122 };
123
124 static int number_of_controllers;
125
126 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
127 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
128 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
129 static void start_io(struct ctlr_info *h);
130
131 #ifdef CONFIG_COMPAT
132 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 #endif
134
135 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
136 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
137 static struct CommandList *cmd_alloc(struct ctlr_info *h);
138 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
139 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
140         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
141         int cmd_type);
142
143 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
144 static void hpsa_scan_start(struct Scsi_Host *);
145 static int hpsa_scan_finished(struct Scsi_Host *sh,
146         unsigned long elapsed_time);
147 static int hpsa_change_queue_depth(struct scsi_device *sdev,
148         int qdepth, int reason);
149
150 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
151 static int hpsa_slave_alloc(struct scsi_device *sdev);
152 static void hpsa_slave_destroy(struct scsi_device *sdev);
153
154 static ssize_t raid_level_show(struct device *dev,
155         struct device_attribute *attr, char *buf);
156 static ssize_t lunid_show(struct device *dev,
157         struct device_attribute *attr, char *buf);
158 static ssize_t unique_id_show(struct device *dev,
159         struct device_attribute *attr, char *buf);
160 static ssize_t host_show_firmware_revision(struct device *dev,
161              struct device_attribute *attr, char *buf);
162 static ssize_t host_show_commands_outstanding(struct device *dev,
163              struct device_attribute *attr, char *buf);
164 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
165 static ssize_t host_store_rescan(struct device *dev,
166          struct device_attribute *attr, const char *buf, size_t count);
167 static int check_for_unit_attention(struct ctlr_info *h,
168         struct CommandList *c);
169 static void check_ioctl_unit_attention(struct ctlr_info *h,
170         struct CommandList *c);
171 /* performant mode helper functions */
172 static void calc_bucket_map(int *bucket, int num_buckets,
173         int nsgs, int *bucket_map);
174 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
175 static inline u32 next_command(struct ctlr_info *h);
176 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
177         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
178         u64 *cfg_offset);
179 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
180         unsigned long *memory_bar);
181 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
182 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
183         void __iomem *vaddr, int wait_for_ready);
184 #define BOARD_NOT_READY 0
185 #define BOARD_READY 1
186
187 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
188 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
189 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
190 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
191 static DEVICE_ATTR(firmware_revision, S_IRUGO,
192         host_show_firmware_revision, NULL);
193 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
194         host_show_commands_outstanding, NULL);
195
196 static struct device_attribute *hpsa_sdev_attrs[] = {
197         &dev_attr_raid_level,
198         &dev_attr_lunid,
199         &dev_attr_unique_id,
200         NULL,
201 };
202
203 static struct device_attribute *hpsa_shost_attrs[] = {
204         &dev_attr_rescan,
205         &dev_attr_firmware_revision,
206         &dev_attr_commands_outstanding,
207         NULL,
208 };
209
210 static struct scsi_host_template hpsa_driver_template = {
211         .module                 = THIS_MODULE,
212         .name                   = "hpsa",
213         .proc_name              = "hpsa",
214         .queuecommand           = hpsa_scsi_queue_command,
215         .scan_start             = hpsa_scan_start,
216         .scan_finished          = hpsa_scan_finished,
217         .change_queue_depth     = hpsa_change_queue_depth,
218         .this_id                = -1,
219         .use_clustering         = ENABLE_CLUSTERING,
220         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
221         .ioctl                  = hpsa_ioctl,
222         .slave_alloc            = hpsa_slave_alloc,
223         .slave_destroy          = hpsa_slave_destroy,
224 #ifdef CONFIG_COMPAT
225         .compat_ioctl           = hpsa_compat_ioctl,
226 #endif
227         .sdev_attrs = hpsa_sdev_attrs,
228         .shost_attrs = hpsa_shost_attrs,
229 };
230
231 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
232 {
233         unsigned long *priv = shost_priv(sdev->host);
234         return (struct ctlr_info *) *priv;
235 }
236
237 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
238 {
239         unsigned long *priv = shost_priv(sh);
240         return (struct ctlr_info *) *priv;
241 }
242
243 static int check_for_unit_attention(struct ctlr_info *h,
244         struct CommandList *c)
245 {
246         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
247                 return 0;
248
249         switch (c->err_info->SenseInfo[12]) {
250         case STATE_CHANGED:
251                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
252                         "detected, command retried\n", h->ctlr);
253                 break;
254         case LUN_FAILED:
255                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
256                         "detected, action required\n", h->ctlr);
257                 break;
258         case REPORT_LUNS_CHANGED:
259                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
260                         "changed, action required\n", h->ctlr);
261         /*
262          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
263          */
264                 break;
265         case POWER_OR_RESET:
266                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
267                         "or device reset detected\n", h->ctlr);
268                 break;
269         case UNIT_ATTENTION_CLEARED:
270                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
271                     "cleared by another initiator\n", h->ctlr);
272                 break;
273         default:
274                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
275                         "unit attention detected\n", h->ctlr);
276                 break;
277         }
278         return 1;
279 }
280
281 static ssize_t host_store_rescan(struct device *dev,
282                                  struct device_attribute *attr,
283                                  const char *buf, size_t count)
284 {
285         struct ctlr_info *h;
286         struct Scsi_Host *shost = class_to_shost(dev);
287         h = shost_to_hba(shost);
288         hpsa_scan_start(h->scsi_host);
289         return count;
290 }
291
292 static ssize_t host_show_firmware_revision(struct device *dev,
293              struct device_attribute *attr, char *buf)
294 {
295         struct ctlr_info *h;
296         struct Scsi_Host *shost = class_to_shost(dev);
297         unsigned char *fwrev;
298
299         h = shost_to_hba(shost);
300         if (!h->hba_inquiry_data)
301                 return 0;
302         fwrev = &h->hba_inquiry_data[32];
303         return snprintf(buf, 20, "%c%c%c%c\n",
304                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
305 }
306
307 static ssize_t host_show_commands_outstanding(struct device *dev,
308              struct device_attribute *attr, char *buf)
309 {
310         struct Scsi_Host *shost = class_to_shost(dev);
311         struct ctlr_info *h = shost_to_hba(shost);
312
313         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
314 }
315
316 /* Enqueuing and dequeuing functions for cmdlists. */
317 static inline void addQ(struct hlist_head *list, struct CommandList *c)
318 {
319         hlist_add_head(&c->list, list);
320 }
321
322 static inline u32 next_command(struct ctlr_info *h)
323 {
324         u32 a;
325
326         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
327                 return h->access.command_completed(h);
328
329         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
330                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
331                 (h->reply_pool_head)++;
332                 h->commands_outstanding--;
333         } else {
334                 a = FIFO_EMPTY;
335         }
336         /* Check for wraparound */
337         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
338                 h->reply_pool_head = h->reply_pool;
339                 h->reply_pool_wraparound ^= 1;
340         }
341         return a;
342 }
343
344 /* set_performant_mode: Modify the tag for cciss performant
345  * set bit 0 for pull model, bits 3-1 for block fetch
346  * register number
347  */
348 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
349 {
350         if (likely(h->transMethod == CFGTBL_Trans_Performant))
351                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
352 }
353
354 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
355         struct CommandList *c)
356 {
357         unsigned long flags;
358
359         set_performant_mode(h, c);
360         spin_lock_irqsave(&h->lock, flags);
361         addQ(&h->reqQ, c);
362         h->Qdepth++;
363         start_io(h);
364         spin_unlock_irqrestore(&h->lock, flags);
365 }
366
367 static inline void removeQ(struct CommandList *c)
368 {
369         if (WARN_ON(hlist_unhashed(&c->list)))
370                 return;
371         hlist_del_init(&c->list);
372 }
373
374 static inline int is_hba_lunid(unsigned char scsi3addr[])
375 {
376         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
377 }
378
379 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
380 {
381         return (scsi3addr[3] & 0xC0) == 0x40;
382 }
383
384 static inline int is_scsi_rev_5(struct ctlr_info *h)
385 {
386         if (!h->hba_inquiry_data)
387                 return 0;
388         if ((h->hba_inquiry_data[2] & 0x07) == 5)
389                 return 1;
390         return 0;
391 }
392
393 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
394         "UNKNOWN"
395 };
396 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
397
398 static ssize_t raid_level_show(struct device *dev,
399              struct device_attribute *attr, char *buf)
400 {
401         ssize_t l = 0;
402         unsigned char rlevel;
403         struct ctlr_info *h;
404         struct scsi_device *sdev;
405         struct hpsa_scsi_dev_t *hdev;
406         unsigned long flags;
407
408         sdev = to_scsi_device(dev);
409         h = sdev_to_hba(sdev);
410         spin_lock_irqsave(&h->lock, flags);
411         hdev = sdev->hostdata;
412         if (!hdev) {
413                 spin_unlock_irqrestore(&h->lock, flags);
414                 return -ENODEV;
415         }
416
417         /* Is this even a logical drive? */
418         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
419                 spin_unlock_irqrestore(&h->lock, flags);
420                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
421                 return l;
422         }
423
424         rlevel = hdev->raid_level;
425         spin_unlock_irqrestore(&h->lock, flags);
426         if (rlevel > RAID_UNKNOWN)
427                 rlevel = RAID_UNKNOWN;
428         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
429         return l;
430 }
431
432 static ssize_t lunid_show(struct device *dev,
433              struct device_attribute *attr, char *buf)
434 {
435         struct ctlr_info *h;
436         struct scsi_device *sdev;
437         struct hpsa_scsi_dev_t *hdev;
438         unsigned long flags;
439         unsigned char lunid[8];
440
441         sdev = to_scsi_device(dev);
442         h = sdev_to_hba(sdev);
443         spin_lock_irqsave(&h->lock, flags);
444         hdev = sdev->hostdata;
445         if (!hdev) {
446                 spin_unlock_irqrestore(&h->lock, flags);
447                 return -ENODEV;
448         }
449         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
450         spin_unlock_irqrestore(&h->lock, flags);
451         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
452                 lunid[0], lunid[1], lunid[2], lunid[3],
453                 lunid[4], lunid[5], lunid[6], lunid[7]);
454 }
455
456 static ssize_t unique_id_show(struct device *dev,
457              struct device_attribute *attr, char *buf)
458 {
459         struct ctlr_info *h;
460         struct scsi_device *sdev;
461         struct hpsa_scsi_dev_t *hdev;
462         unsigned long flags;
463         unsigned char sn[16];
464
465         sdev = to_scsi_device(dev);
466         h = sdev_to_hba(sdev);
467         spin_lock_irqsave(&h->lock, flags);
468         hdev = sdev->hostdata;
469         if (!hdev) {
470                 spin_unlock_irqrestore(&h->lock, flags);
471                 return -ENODEV;
472         }
473         memcpy(sn, hdev->device_id, sizeof(sn));
474         spin_unlock_irqrestore(&h->lock, flags);
475         return snprintf(buf, 16 * 2 + 2,
476                         "%02X%02X%02X%02X%02X%02X%02X%02X"
477                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
478                         sn[0], sn[1], sn[2], sn[3],
479                         sn[4], sn[5], sn[6], sn[7],
480                         sn[8], sn[9], sn[10], sn[11],
481                         sn[12], sn[13], sn[14], sn[15]);
482 }
483
484 static int hpsa_find_target_lun(struct ctlr_info *h,
485         unsigned char scsi3addr[], int bus, int *target, int *lun)
486 {
487         /* finds an unused bus, target, lun for a new physical device
488          * assumes h->devlock is held
489          */
490         int i, found = 0;
491         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
492
493         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
494
495         for (i = 0; i < h->ndevices; i++) {
496                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
497                         set_bit(h->dev[i]->target, lun_taken);
498         }
499
500         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
501                 if (!test_bit(i, lun_taken)) {
502                         /* *bus = 1; */
503                         *target = i;
504                         *lun = 0;
505                         found = 1;
506                         break;
507                 }
508         }
509         return !found;
510 }
511
512 /* Add an entry into h->dev[] array. */
513 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
514                 struct hpsa_scsi_dev_t *device,
515                 struct hpsa_scsi_dev_t *added[], int *nadded)
516 {
517         /* assumes h->devlock is held */
518         int n = h->ndevices;
519         int i;
520         unsigned char addr1[8], addr2[8];
521         struct hpsa_scsi_dev_t *sd;
522
523         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
524                 dev_err(&h->pdev->dev, "too many devices, some will be "
525                         "inaccessible.\n");
526                 return -1;
527         }
528
529         /* physical devices do not have lun or target assigned until now. */
530         if (device->lun != -1)
531                 /* Logical device, lun is already assigned. */
532                 goto lun_assigned;
533
534         /* If this device a non-zero lun of a multi-lun device
535          * byte 4 of the 8-byte LUN addr will contain the logical
536          * unit no, zero otherise.
537          */
538         if (device->scsi3addr[4] == 0) {
539                 /* This is not a non-zero lun of a multi-lun device */
540                 if (hpsa_find_target_lun(h, device->scsi3addr,
541                         device->bus, &device->target, &device->lun) != 0)
542                         return -1;
543                 goto lun_assigned;
544         }
545
546         /* This is a non-zero lun of a multi-lun device.
547          * Search through our list and find the device which
548          * has the same 8 byte LUN address, excepting byte 4.
549          * Assign the same bus and target for this new LUN.
550          * Use the logical unit number from the firmware.
551          */
552         memcpy(addr1, device->scsi3addr, 8);
553         addr1[4] = 0;
554         for (i = 0; i < n; i++) {
555                 sd = h->dev[i];
556                 memcpy(addr2, sd->scsi3addr, 8);
557                 addr2[4] = 0;
558                 /* differ only in byte 4? */
559                 if (memcmp(addr1, addr2, 8) == 0) {
560                         device->bus = sd->bus;
561                         device->target = sd->target;
562                         device->lun = device->scsi3addr[4];
563                         break;
564                 }
565         }
566         if (device->lun == -1) {
567                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
568                         " suspect firmware bug or unsupported hardware "
569                         "configuration.\n");
570                         return -1;
571         }
572
573 lun_assigned:
574
575         h->dev[n] = device;
576         h->ndevices++;
577         added[*nadded] = device;
578         (*nadded)++;
579
580         /* initially, (before registering with scsi layer) we don't
581          * know our hostno and we don't want to print anything first
582          * time anyway (the scsi layer's inquiries will show that info)
583          */
584         /* if (hostno != -1) */
585                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
586                         scsi_device_type(device->devtype), hostno,
587                         device->bus, device->target, device->lun);
588         return 0;
589 }
590
591 /* Replace an entry from h->dev[] array. */
592 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
593         int entry, struct hpsa_scsi_dev_t *new_entry,
594         struct hpsa_scsi_dev_t *added[], int *nadded,
595         struct hpsa_scsi_dev_t *removed[], int *nremoved)
596 {
597         /* assumes h->devlock is held */
598         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
599         removed[*nremoved] = h->dev[entry];
600         (*nremoved)++;
601         h->dev[entry] = new_entry;
602         added[*nadded] = new_entry;
603         (*nadded)++;
604         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
605                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
606                         new_entry->target, new_entry->lun);
607 }
608
609 /* Remove an entry from h->dev[] array. */
610 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
611         struct hpsa_scsi_dev_t *removed[], int *nremoved)
612 {
613         /* assumes h->devlock is held */
614         int i;
615         struct hpsa_scsi_dev_t *sd;
616
617         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
618
619         sd = h->dev[entry];
620         removed[*nremoved] = h->dev[entry];
621         (*nremoved)++;
622
623         for (i = entry; i < h->ndevices-1; i++)
624                 h->dev[i] = h->dev[i+1];
625         h->ndevices--;
626         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
627                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
628                 sd->lun);
629 }
630
631 #define SCSI3ADDR_EQ(a, b) ( \
632         (a)[7] == (b)[7] && \
633         (a)[6] == (b)[6] && \
634         (a)[5] == (b)[5] && \
635         (a)[4] == (b)[4] && \
636         (a)[3] == (b)[3] && \
637         (a)[2] == (b)[2] && \
638         (a)[1] == (b)[1] && \
639         (a)[0] == (b)[0])
640
641 static void fixup_botched_add(struct ctlr_info *h,
642         struct hpsa_scsi_dev_t *added)
643 {
644         /* called when scsi_add_device fails in order to re-adjust
645          * h->dev[] to match the mid layer's view.
646          */
647         unsigned long flags;
648         int i, j;
649
650         spin_lock_irqsave(&h->lock, flags);
651         for (i = 0; i < h->ndevices; i++) {
652                 if (h->dev[i] == added) {
653                         for (j = i; j < h->ndevices-1; j++)
654                                 h->dev[j] = h->dev[j+1];
655                         h->ndevices--;
656                         break;
657                 }
658         }
659         spin_unlock_irqrestore(&h->lock, flags);
660         kfree(added);
661 }
662
663 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
664         struct hpsa_scsi_dev_t *dev2)
665 {
666         /* we compare everything except lun and target as these
667          * are not yet assigned.  Compare parts likely
668          * to differ first
669          */
670         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
671                 sizeof(dev1->scsi3addr)) != 0)
672                 return 0;
673         if (memcmp(dev1->device_id, dev2->device_id,
674                 sizeof(dev1->device_id)) != 0)
675                 return 0;
676         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
677                 return 0;
678         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
679                 return 0;
680         if (dev1->devtype != dev2->devtype)
681                 return 0;
682         if (dev1->bus != dev2->bus)
683                 return 0;
684         return 1;
685 }
686
687 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
688  * and return needle location in *index.  If scsi3addr matches, but not
689  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
690  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
691  */
692 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
693         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
694         int *index)
695 {
696         int i;
697 #define DEVICE_NOT_FOUND 0
698 #define DEVICE_CHANGED 1
699 #define DEVICE_SAME 2
700         for (i = 0; i < haystack_size; i++) {
701                 if (haystack[i] == NULL) /* previously removed. */
702                         continue;
703                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
704                         *index = i;
705                         if (device_is_the_same(needle, haystack[i]))
706                                 return DEVICE_SAME;
707                         else
708                                 return DEVICE_CHANGED;
709                 }
710         }
711         *index = -1;
712         return DEVICE_NOT_FOUND;
713 }
714
715 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
716         struct hpsa_scsi_dev_t *sd[], int nsds)
717 {
718         /* sd contains scsi3 addresses and devtypes, and inquiry
719          * data.  This function takes what's in sd to be the current
720          * reality and updates h->dev[] to reflect that reality.
721          */
722         int i, entry, device_change, changes = 0;
723         struct hpsa_scsi_dev_t *csd;
724         unsigned long flags;
725         struct hpsa_scsi_dev_t **added, **removed;
726         int nadded, nremoved;
727         struct Scsi_Host *sh = NULL;
728
729         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
730                 GFP_KERNEL);
731         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
732                 GFP_KERNEL);
733
734         if (!added || !removed) {
735                 dev_warn(&h->pdev->dev, "out of memory in "
736                         "adjust_hpsa_scsi_table\n");
737                 goto free_and_out;
738         }
739
740         spin_lock_irqsave(&h->devlock, flags);
741
742         /* find any devices in h->dev[] that are not in
743          * sd[] and remove them from h->dev[], and for any
744          * devices which have changed, remove the old device
745          * info and add the new device info.
746          */
747         i = 0;
748         nremoved = 0;
749         nadded = 0;
750         while (i < h->ndevices) {
751                 csd = h->dev[i];
752                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
753                 if (device_change == DEVICE_NOT_FOUND) {
754                         changes++;
755                         hpsa_scsi_remove_entry(h, hostno, i,
756                                 removed, &nremoved);
757                         continue; /* remove ^^^, hence i not incremented */
758                 } else if (device_change == DEVICE_CHANGED) {
759                         changes++;
760                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
761                                 added, &nadded, removed, &nremoved);
762                         /* Set it to NULL to prevent it from being freed
763                          * at the bottom of hpsa_update_scsi_devices()
764                          */
765                         sd[entry] = NULL;
766                 }
767                 i++;
768         }
769
770         /* Now, make sure every device listed in sd[] is also
771          * listed in h->dev[], adding them if they aren't found
772          */
773
774         for (i = 0; i < nsds; i++) {
775                 if (!sd[i]) /* if already added above. */
776                         continue;
777                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
778                                         h->ndevices, &entry);
779                 if (device_change == DEVICE_NOT_FOUND) {
780                         changes++;
781                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
782                                 added, &nadded) != 0)
783                                 break;
784                         sd[i] = NULL; /* prevent from being freed later. */
785                 } else if (device_change == DEVICE_CHANGED) {
786                         /* should never happen... */
787                         changes++;
788                         dev_warn(&h->pdev->dev,
789                                 "device unexpectedly changed.\n");
790                         /* but if it does happen, we just ignore that device */
791                 }
792         }
793         spin_unlock_irqrestore(&h->devlock, flags);
794
795         /* Don't notify scsi mid layer of any changes the first time through
796          * (or if there are no changes) scsi_scan_host will do it later the
797          * first time through.
798          */
799         if (hostno == -1 || !changes)
800                 goto free_and_out;
801
802         sh = h->scsi_host;
803         /* Notify scsi mid layer of any removed devices */
804         for (i = 0; i < nremoved; i++) {
805                 struct scsi_device *sdev =
806                         scsi_device_lookup(sh, removed[i]->bus,
807                                 removed[i]->target, removed[i]->lun);
808                 if (sdev != NULL) {
809                         scsi_remove_device(sdev);
810                         scsi_device_put(sdev);
811                 } else {
812                         /* We don't expect to get here.
813                          * future cmds to this device will get selection
814                          * timeout as if the device was gone.
815                          */
816                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
817                                 " for removal.", hostno, removed[i]->bus,
818                                 removed[i]->target, removed[i]->lun);
819                 }
820                 kfree(removed[i]);
821                 removed[i] = NULL;
822         }
823
824         /* Notify scsi mid layer of any added devices */
825         for (i = 0; i < nadded; i++) {
826                 if (scsi_add_device(sh, added[i]->bus,
827                         added[i]->target, added[i]->lun) == 0)
828                         continue;
829                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
830                         "device not added.\n", hostno, added[i]->bus,
831                         added[i]->target, added[i]->lun);
832                 /* now we have to remove it from h->dev,
833                  * since it didn't get added to scsi mid layer
834                  */
835                 fixup_botched_add(h, added[i]);
836         }
837
838 free_and_out:
839         kfree(added);
840         kfree(removed);
841 }
842
843 /*
844  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
845  * Assume's h->devlock is held.
846  */
847 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
848         int bus, int target, int lun)
849 {
850         int i;
851         struct hpsa_scsi_dev_t *sd;
852
853         for (i = 0; i < h->ndevices; i++) {
854                 sd = h->dev[i];
855                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
856                         return sd;
857         }
858         return NULL;
859 }
860
861 /* link sdev->hostdata to our per-device structure. */
862 static int hpsa_slave_alloc(struct scsi_device *sdev)
863 {
864         struct hpsa_scsi_dev_t *sd;
865         unsigned long flags;
866         struct ctlr_info *h;
867
868         h = sdev_to_hba(sdev);
869         spin_lock_irqsave(&h->devlock, flags);
870         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
871                 sdev_id(sdev), sdev->lun);
872         if (sd != NULL)
873                 sdev->hostdata = sd;
874         spin_unlock_irqrestore(&h->devlock, flags);
875         return 0;
876 }
877
878 static void hpsa_slave_destroy(struct scsi_device *sdev)
879 {
880         /* nothing to do. */
881 }
882
883 static void hpsa_scsi_setup(struct ctlr_info *h)
884 {
885         h->ndevices = 0;
886         h->scsi_host = NULL;
887         spin_lock_init(&h->devlock);
888 }
889
890 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
891 {
892         int i;
893
894         if (!h->cmd_sg_list)
895                 return;
896         for (i = 0; i < h->nr_cmds; i++) {
897                 kfree(h->cmd_sg_list[i]);
898                 h->cmd_sg_list[i] = NULL;
899         }
900         kfree(h->cmd_sg_list);
901         h->cmd_sg_list = NULL;
902 }
903
904 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
905 {
906         int i;
907
908         if (h->chainsize <= 0)
909                 return 0;
910
911         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
912                                 GFP_KERNEL);
913         if (!h->cmd_sg_list)
914                 return -ENOMEM;
915         for (i = 0; i < h->nr_cmds; i++) {
916                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
917                                                 h->chainsize, GFP_KERNEL);
918                 if (!h->cmd_sg_list[i])
919                         goto clean;
920         }
921         return 0;
922
923 clean:
924         hpsa_free_sg_chain_blocks(h);
925         return -ENOMEM;
926 }
927
928 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
929         struct CommandList *c)
930 {
931         struct SGDescriptor *chain_sg, *chain_block;
932         u64 temp64;
933
934         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
935         chain_block = h->cmd_sg_list[c->cmdindex];
936         chain_sg->Ext = HPSA_SG_CHAIN;
937         chain_sg->Len = sizeof(*chain_sg) *
938                 (c->Header.SGTotal - h->max_cmd_sg_entries);
939         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
940                                 PCI_DMA_TODEVICE);
941         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
942         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
943 }
944
945 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
946         struct CommandList *c)
947 {
948         struct SGDescriptor *chain_sg;
949         union u64bit temp64;
950
951         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
952                 return;
953
954         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
955         temp64.val32.lower = chain_sg->Addr.lower;
956         temp64.val32.upper = chain_sg->Addr.upper;
957         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
958 }
959
960 static void complete_scsi_command(struct CommandList *cp,
961         int timeout, u32 tag)
962 {
963         struct scsi_cmnd *cmd;
964         struct ctlr_info *h;
965         struct ErrorInfo *ei;
966
967         unsigned char sense_key;
968         unsigned char asc;      /* additional sense code */
969         unsigned char ascq;     /* additional sense code qualifier */
970
971         ei = cp->err_info;
972         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
973         h = cp->h;
974
975         scsi_dma_unmap(cmd); /* undo the DMA mappings */
976         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
977                 hpsa_unmap_sg_chain_block(h, cp);
978
979         cmd->result = (DID_OK << 16);           /* host byte */
980         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
981         cmd->result |= ei->ScsiStatus;
982
983         /* copy the sense data whether we need to or not. */
984         memcpy(cmd->sense_buffer, ei->SenseInfo,
985                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
986                         SCSI_SENSE_BUFFERSIZE :
987                         ei->SenseLen);
988         scsi_set_resid(cmd, ei->ResidualCnt);
989
990         if (ei->CommandStatus == 0) {
991                 cmd->scsi_done(cmd);
992                 cmd_free(h, cp);
993                 return;
994         }
995
996         /* an error has occurred */
997         switch (ei->CommandStatus) {
998
999         case CMD_TARGET_STATUS:
1000                 if (ei->ScsiStatus) {
1001                         /* Get sense key */
1002                         sense_key = 0xf & ei->SenseInfo[2];
1003                         /* Get additional sense code */
1004                         asc = ei->SenseInfo[12];
1005                         /* Get addition sense code qualifier */
1006                         ascq = ei->SenseInfo[13];
1007                 }
1008
1009                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1010                         if (check_for_unit_attention(h, cp)) {
1011                                 cmd->result = DID_SOFT_ERROR << 16;
1012                                 break;
1013                         }
1014                         if (sense_key == ILLEGAL_REQUEST) {
1015                                 /*
1016                                  * SCSI REPORT_LUNS is commonly unsupported on
1017                                  * Smart Array.  Suppress noisy complaint.
1018                                  */
1019                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1020                                         break;
1021
1022                                 /* If ASC/ASCQ indicate Logical Unit
1023                                  * Not Supported condition,
1024                                  */
1025                                 if ((asc == 0x25) && (ascq == 0x0)) {
1026                                         dev_warn(&h->pdev->dev, "cp %p "
1027                                                 "has check condition\n", cp);
1028                                         break;
1029                                 }
1030                         }
1031
1032                         if (sense_key == NOT_READY) {
1033                                 /* If Sense is Not Ready, Logical Unit
1034                                  * Not ready, Manual Intervention
1035                                  * required
1036                                  */
1037                                 if ((asc == 0x04) && (ascq == 0x03)) {
1038                                         dev_warn(&h->pdev->dev, "cp %p "
1039                                                 "has check condition: unit "
1040                                                 "not ready, manual "
1041                                                 "intervention required\n", cp);
1042                                         break;
1043                                 }
1044                         }
1045                         if (sense_key == ABORTED_COMMAND) {
1046                                 /* Aborted command is retryable */
1047                                 dev_warn(&h->pdev->dev, "cp %p "
1048                                         "has check condition: aborted command: "
1049                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1050                                         cp, asc, ascq);
1051                                 cmd->result = DID_SOFT_ERROR << 16;
1052                                 break;
1053                         }
1054                         /* Must be some other type of check condition */
1055                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1056                                         "unknown type: "
1057                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1058                                         "Returning result: 0x%x, "
1059                                         "cmd=[%02x %02x %02x %02x %02x "
1060                                         "%02x %02x %02x %02x %02x %02x "
1061                                         "%02x %02x %02x %02x %02x]\n",
1062                                         cp, sense_key, asc, ascq,
1063                                         cmd->result,
1064                                         cmd->cmnd[0], cmd->cmnd[1],
1065                                         cmd->cmnd[2], cmd->cmnd[3],
1066                                         cmd->cmnd[4], cmd->cmnd[5],
1067                                         cmd->cmnd[6], cmd->cmnd[7],
1068                                         cmd->cmnd[8], cmd->cmnd[9],
1069                                         cmd->cmnd[10], cmd->cmnd[11],
1070                                         cmd->cmnd[12], cmd->cmnd[13],
1071                                         cmd->cmnd[14], cmd->cmnd[15]);
1072                         break;
1073                 }
1074
1075
1076                 /* Problem was not a check condition
1077                  * Pass it up to the upper layers...
1078                  */
1079                 if (ei->ScsiStatus) {
1080                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1081                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1082                                 "Returning result: 0x%x\n",
1083                                 cp, ei->ScsiStatus,
1084                                 sense_key, asc, ascq,
1085                                 cmd->result);
1086                 } else {  /* scsi status is zero??? How??? */
1087                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1088                                 "Returning no connection.\n", cp),
1089
1090                         /* Ordinarily, this case should never happen,
1091                          * but there is a bug in some released firmware
1092                          * revisions that allows it to happen if, for
1093                          * example, a 4100 backplane loses power and
1094                          * the tape drive is in it.  We assume that
1095                          * it's a fatal error of some kind because we
1096                          * can't show that it wasn't. We will make it
1097                          * look like selection timeout since that is
1098                          * the most common reason for this to occur,
1099                          * and it's severe enough.
1100                          */
1101
1102                         cmd->result = DID_NO_CONNECT << 16;
1103                 }
1104                 break;
1105
1106         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1107                 break;
1108         case CMD_DATA_OVERRUN:
1109                 dev_warn(&h->pdev->dev, "cp %p has"
1110                         " completed with data overrun "
1111                         "reported\n", cp);
1112                 break;
1113         case CMD_INVALID: {
1114                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1115                 print_cmd(cp); */
1116                 /* We get CMD_INVALID if you address a non-existent device
1117                  * instead of a selection timeout (no response).  You will
1118                  * see this if you yank out a drive, then try to access it.
1119                  * This is kind of a shame because it means that any other
1120                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1121                  * missing target. */
1122                 cmd->result = DID_NO_CONNECT << 16;
1123         }
1124                 break;
1125         case CMD_PROTOCOL_ERR:
1126                 dev_warn(&h->pdev->dev, "cp %p has "
1127                         "protocol error \n", cp);
1128                 break;
1129         case CMD_HARDWARE_ERR:
1130                 cmd->result = DID_ERROR << 16;
1131                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1132                 break;
1133         case CMD_CONNECTION_LOST:
1134                 cmd->result = DID_ERROR << 16;
1135                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1136                 break;
1137         case CMD_ABORTED:
1138                 cmd->result = DID_ABORT << 16;
1139                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1140                                 cp, ei->ScsiStatus);
1141                 break;
1142         case CMD_ABORT_FAILED:
1143                 cmd->result = DID_ERROR << 16;
1144                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1145                 break;
1146         case CMD_UNSOLICITED_ABORT:
1147                 cmd->result = DID_RESET << 16;
1148                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1149                         "abort\n", cp);
1150                 break;
1151         case CMD_TIMEOUT:
1152                 cmd->result = DID_TIME_OUT << 16;
1153                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1154                 break;
1155         case CMD_UNABORTABLE:
1156                 cmd->result = DID_ERROR << 16;
1157                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1158                 break;
1159         default:
1160                 cmd->result = DID_ERROR << 16;
1161                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1162                                 cp, ei->CommandStatus);
1163         }
1164         cmd->scsi_done(cmd);
1165         cmd_free(h, cp);
1166 }
1167
1168 static int hpsa_scsi_detect(struct ctlr_info *h)
1169 {
1170         struct Scsi_Host *sh;
1171         int error;
1172
1173         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1174         if (sh == NULL)
1175                 goto fail;
1176
1177         sh->io_port = 0;
1178         sh->n_io_port = 0;
1179         sh->this_id = -1;
1180         sh->max_channel = 3;
1181         sh->max_cmd_len = MAX_COMMAND_SIZE;
1182         sh->max_lun = HPSA_MAX_LUN;
1183         sh->max_id = HPSA_MAX_LUN;
1184         sh->can_queue = h->nr_cmds;
1185         sh->cmd_per_lun = h->nr_cmds;
1186         sh->sg_tablesize = h->maxsgentries;
1187         h->scsi_host = sh;
1188         sh->hostdata[0] = (unsigned long) h;
1189         sh->irq = h->intr[PERF_MODE_INT];
1190         sh->unique_id = sh->irq;
1191         error = scsi_add_host(sh, &h->pdev->dev);
1192         if (error)
1193                 goto fail_host_put;
1194         scsi_scan_host(sh);
1195         return 0;
1196
1197  fail_host_put:
1198         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1199                 " failed for controller %d\n", h->ctlr);
1200         scsi_host_put(sh);
1201         return error;
1202  fail:
1203         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1204                 " failed for controller %d\n", h->ctlr);
1205         return -ENOMEM;
1206 }
1207
1208 static void hpsa_pci_unmap(struct pci_dev *pdev,
1209         struct CommandList *c, int sg_used, int data_direction)
1210 {
1211         int i;
1212         union u64bit addr64;
1213
1214         for (i = 0; i < sg_used; i++) {
1215                 addr64.val32.lower = c->SG[i].Addr.lower;
1216                 addr64.val32.upper = c->SG[i].Addr.upper;
1217                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1218                         data_direction);
1219         }
1220 }
1221
1222 static void hpsa_map_one(struct pci_dev *pdev,
1223                 struct CommandList *cp,
1224                 unsigned char *buf,
1225                 size_t buflen,
1226                 int data_direction)
1227 {
1228         u64 addr64;
1229
1230         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1231                 cp->Header.SGList = 0;
1232                 cp->Header.SGTotal = 0;
1233                 return;
1234         }
1235
1236         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1237         cp->SG[0].Addr.lower =
1238           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1239         cp->SG[0].Addr.upper =
1240           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1241         cp->SG[0].Len = buflen;
1242         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1243         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1244 }
1245
1246 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1247         struct CommandList *c)
1248 {
1249         DECLARE_COMPLETION_ONSTACK(wait);
1250
1251         c->waiting = &wait;
1252         enqueue_cmd_and_start_io(h, c);
1253         wait_for_completion(&wait);
1254 }
1255
1256 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1257         struct CommandList *c, int data_direction)
1258 {
1259         int retry_count = 0;
1260
1261         do {
1262                 memset(c->err_info, 0, sizeof(c->err_info));
1263                 hpsa_scsi_do_simple_cmd_core(h, c);
1264                 retry_count++;
1265         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1266         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1267 }
1268
1269 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1270 {
1271         struct ErrorInfo *ei;
1272         struct device *d = &cp->h->pdev->dev;
1273
1274         ei = cp->err_info;
1275         switch (ei->CommandStatus) {
1276         case CMD_TARGET_STATUS:
1277                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1278                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1279                                 ei->ScsiStatus);
1280                 if (ei->ScsiStatus == 0)
1281                         dev_warn(d, "SCSI status is abnormally zero.  "
1282                         "(probably indicates selection timeout "
1283                         "reported incorrectly due to a known "
1284                         "firmware bug, circa July, 2001.)\n");
1285                 break;
1286         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1287                         dev_info(d, "UNDERRUN\n");
1288                 break;
1289         case CMD_DATA_OVERRUN:
1290                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1291                 break;
1292         case CMD_INVALID: {
1293                 /* controller unfortunately reports SCSI passthru's
1294                  * to non-existent targets as invalid commands.
1295                  */
1296                 dev_warn(d, "cp %p is reported invalid (probably means "
1297                         "target device no longer present)\n", cp);
1298                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1299                 print_cmd(cp);  */
1300                 }
1301                 break;
1302         case CMD_PROTOCOL_ERR:
1303                 dev_warn(d, "cp %p has protocol error \n", cp);
1304                 break;
1305         case CMD_HARDWARE_ERR:
1306                 /* cmd->result = DID_ERROR << 16; */
1307                 dev_warn(d, "cp %p had hardware error\n", cp);
1308                 break;
1309         case CMD_CONNECTION_LOST:
1310                 dev_warn(d, "cp %p had connection lost\n", cp);
1311                 break;
1312         case CMD_ABORTED:
1313                 dev_warn(d, "cp %p was aborted\n", cp);
1314                 break;
1315         case CMD_ABORT_FAILED:
1316                 dev_warn(d, "cp %p reports abort failed\n", cp);
1317                 break;
1318         case CMD_UNSOLICITED_ABORT:
1319                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1320                 break;
1321         case CMD_TIMEOUT:
1322                 dev_warn(d, "cp %p timed out\n", cp);
1323                 break;
1324         case CMD_UNABORTABLE:
1325                 dev_warn(d, "Command unabortable\n");
1326                 break;
1327         default:
1328                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1329                                 ei->CommandStatus);
1330         }
1331 }
1332
1333 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1334                         unsigned char page, unsigned char *buf,
1335                         unsigned char bufsize)
1336 {
1337         int rc = IO_OK;
1338         struct CommandList *c;
1339         struct ErrorInfo *ei;
1340
1341         c = cmd_special_alloc(h);
1342
1343         if (c == NULL) {                        /* trouble... */
1344                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1345                 return -ENOMEM;
1346         }
1347
1348         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1349         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1350         ei = c->err_info;
1351         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1352                 hpsa_scsi_interpret_error(c);
1353                 rc = -1;
1354         }
1355         cmd_special_free(h, c);
1356         return rc;
1357 }
1358
1359 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1360 {
1361         int rc = IO_OK;
1362         struct CommandList *c;
1363         struct ErrorInfo *ei;
1364
1365         c = cmd_special_alloc(h);
1366
1367         if (c == NULL) {                        /* trouble... */
1368                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1369                 return -ENOMEM;
1370         }
1371
1372         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1373         hpsa_scsi_do_simple_cmd_core(h, c);
1374         /* no unmap needed here because no data xfer. */
1375
1376         ei = c->err_info;
1377         if (ei->CommandStatus != 0) {
1378                 hpsa_scsi_interpret_error(c);
1379                 rc = -1;
1380         }
1381         cmd_special_free(h, c);
1382         return rc;
1383 }
1384
1385 static void hpsa_get_raid_level(struct ctlr_info *h,
1386         unsigned char *scsi3addr, unsigned char *raid_level)
1387 {
1388         int rc;
1389         unsigned char *buf;
1390
1391         *raid_level = RAID_UNKNOWN;
1392         buf = kzalloc(64, GFP_KERNEL);
1393         if (!buf)
1394                 return;
1395         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1396         if (rc == 0)
1397                 *raid_level = buf[8];
1398         if (*raid_level > RAID_UNKNOWN)
1399                 *raid_level = RAID_UNKNOWN;
1400         kfree(buf);
1401         return;
1402 }
1403
1404 /* Get the device id from inquiry page 0x83 */
1405 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1406         unsigned char *device_id, int buflen)
1407 {
1408         int rc;
1409         unsigned char *buf;
1410
1411         if (buflen > 16)
1412                 buflen = 16;
1413         buf = kzalloc(64, GFP_KERNEL);
1414         if (!buf)
1415                 return -1;
1416         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1417         if (rc == 0)
1418                 memcpy(device_id, &buf[8], buflen);
1419         kfree(buf);
1420         return rc != 0;
1421 }
1422
1423 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1424                 struct ReportLUNdata *buf, int bufsize,
1425                 int extended_response)
1426 {
1427         int rc = IO_OK;
1428         struct CommandList *c;
1429         unsigned char scsi3addr[8];
1430         struct ErrorInfo *ei;
1431
1432         c = cmd_special_alloc(h);
1433         if (c == NULL) {                        /* trouble... */
1434                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1435                 return -1;
1436         }
1437         /* address the controller */
1438         memset(scsi3addr, 0, sizeof(scsi3addr));
1439         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1440                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1441         if (extended_response)
1442                 c->Request.CDB[1] = extended_response;
1443         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1444         ei = c->err_info;
1445         if (ei->CommandStatus != 0 &&
1446             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1447                 hpsa_scsi_interpret_error(c);
1448                 rc = -1;
1449         }
1450         cmd_special_free(h, c);
1451         return rc;
1452 }
1453
1454 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1455                 struct ReportLUNdata *buf,
1456                 int bufsize, int extended_response)
1457 {
1458         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1459 }
1460
1461 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1462                 struct ReportLUNdata *buf, int bufsize)
1463 {
1464         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1465 }
1466
1467 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1468         int bus, int target, int lun)
1469 {
1470         device->bus = bus;
1471         device->target = target;
1472         device->lun = lun;
1473 }
1474
1475 static int hpsa_update_device_info(struct ctlr_info *h,
1476         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1477 {
1478 #define OBDR_TAPE_INQ_SIZE 49
1479         unsigned char *inq_buff;
1480
1481         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1482         if (!inq_buff)
1483                 goto bail_out;
1484
1485         /* Do an inquiry to the device to see what it is. */
1486         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1487                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1488                 /* Inquiry failed (msg printed already) */
1489                 dev_err(&h->pdev->dev,
1490                         "hpsa_update_device_info: inquiry failed\n");
1491                 goto bail_out;
1492         }
1493
1494         this_device->devtype = (inq_buff[0] & 0x1f);
1495         memcpy(this_device->scsi3addr, scsi3addr, 8);
1496         memcpy(this_device->vendor, &inq_buff[8],
1497                 sizeof(this_device->vendor));
1498         memcpy(this_device->model, &inq_buff[16],
1499                 sizeof(this_device->model));
1500         memset(this_device->device_id, 0,
1501                 sizeof(this_device->device_id));
1502         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1503                 sizeof(this_device->device_id));
1504
1505         if (this_device->devtype == TYPE_DISK &&
1506                 is_logical_dev_addr_mode(scsi3addr))
1507                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1508         else
1509                 this_device->raid_level = RAID_UNKNOWN;
1510
1511         kfree(inq_buff);
1512         return 0;
1513
1514 bail_out:
1515         kfree(inq_buff);
1516         return 1;
1517 }
1518
1519 static unsigned char *msa2xxx_model[] = {
1520         "MSA2012",
1521         "MSA2024",
1522         "MSA2312",
1523         "MSA2324",
1524         NULL,
1525 };
1526
1527 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1528 {
1529         int i;
1530
1531         for (i = 0; msa2xxx_model[i]; i++)
1532                 if (strncmp(device->model, msa2xxx_model[i],
1533                         strlen(msa2xxx_model[i])) == 0)
1534                         return 1;
1535         return 0;
1536 }
1537
1538 /* Helper function to assign bus, target, lun mapping of devices.
1539  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1540  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1541  * Logical drive target and lun are assigned at this time, but
1542  * physical device lun and target assignment are deferred (assigned
1543  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1544  */
1545 static void figure_bus_target_lun(struct ctlr_info *h,
1546         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1547         struct hpsa_scsi_dev_t *device)
1548 {
1549         u32 lunid;
1550
1551         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1552                 /* logical device */
1553                 if (unlikely(is_scsi_rev_5(h))) {
1554                         /* p1210m, logical drives lun assignments
1555                          * match SCSI REPORT LUNS data.
1556                          */
1557                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1558                         *bus = 0;
1559                         *target = 0;
1560                         *lun = (lunid & 0x3fff) + 1;
1561                 } else {
1562                         /* not p1210m... */
1563                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1564                         if (is_msa2xxx(h, device)) {
1565                                 /* msa2xxx way, put logicals on bus 1
1566                                  * and match target/lun numbers box
1567                                  * reports.
1568                                  */
1569                                 *bus = 1;
1570                                 *target = (lunid >> 16) & 0x3fff;
1571                                 *lun = lunid & 0x00ff;
1572                         } else {
1573                                 /* Traditional smart array way. */
1574                                 *bus = 0;
1575                                 *lun = 0;
1576                                 *target = lunid & 0x3fff;
1577                         }
1578                 }
1579         } else {
1580                 /* physical device */
1581                 if (is_hba_lunid(lunaddrbytes))
1582                         if (unlikely(is_scsi_rev_5(h))) {
1583                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1584                                 *target = 0;
1585                                 *lun = 0;
1586                                 return;
1587                         } else
1588                                 *bus = 3; /* traditional smartarray */
1589                 else
1590                         *bus = 2; /* physical disk */
1591                 *target = -1;
1592                 *lun = -1; /* we will fill these in later. */
1593         }
1594 }
1595
1596 /*
1597  * If there is no lun 0 on a target, linux won't find any devices.
1598  * For the MSA2xxx boxes, we have to manually detect the enclosure
1599  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1600  * it for some reason.  *tmpdevice is the target we're adding,
1601  * this_device is a pointer into the current element of currentsd[]
1602  * that we're building up in update_scsi_devices(), below.
1603  * lunzerobits is a bitmap that tracks which targets already have a
1604  * lun 0 assigned.
1605  * Returns 1 if an enclosure was added, 0 if not.
1606  */
1607 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1608         struct hpsa_scsi_dev_t *tmpdevice,
1609         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1610         int bus, int target, int lun, unsigned long lunzerobits[],
1611         int *nmsa2xxx_enclosures)
1612 {
1613         unsigned char scsi3addr[8];
1614
1615         if (test_bit(target, lunzerobits))
1616                 return 0; /* There is already a lun 0 on this target. */
1617
1618         if (!is_logical_dev_addr_mode(lunaddrbytes))
1619                 return 0; /* It's the logical targets that may lack lun 0. */
1620
1621         if (!is_msa2xxx(h, tmpdevice))
1622                 return 0; /* It's only the MSA2xxx that have this problem. */
1623
1624         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1625                 return 0;
1626
1627         memset(scsi3addr, 0, 8);
1628         scsi3addr[3] = target;
1629         if (is_hba_lunid(scsi3addr))
1630                 return 0; /* Don't add the RAID controller here. */
1631
1632         if (is_scsi_rev_5(h))
1633                 return 0; /* p1210m doesn't need to do this. */
1634
1635 #define MAX_MSA2XXX_ENCLOSURES 32
1636         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1637                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1638                         "enclosures exceeded.  Check your hardware "
1639                         "configuration.");
1640                 return 0;
1641         }
1642
1643         if (hpsa_update_device_info(h, scsi3addr, this_device))
1644                 return 0;
1645         (*nmsa2xxx_enclosures)++;
1646         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1647         set_bit(target, lunzerobits);
1648         return 1;
1649 }
1650
1651 /*
1652  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1653  * logdev.  The number of luns in physdev and logdev are returned in
1654  * *nphysicals and *nlogicals, respectively.
1655  * Returns 0 on success, -1 otherwise.
1656  */
1657 static int hpsa_gather_lun_info(struct ctlr_info *h,
1658         int reportlunsize,
1659         struct ReportLUNdata *physdev, u32 *nphysicals,
1660         struct ReportLUNdata *logdev, u32 *nlogicals)
1661 {
1662         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1663                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1664                 return -1;
1665         }
1666         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1667         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1668                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1669                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1670                         *nphysicals - HPSA_MAX_PHYS_LUN);
1671                 *nphysicals = HPSA_MAX_PHYS_LUN;
1672         }
1673         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1674                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1675                 return -1;
1676         }
1677         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1678         /* Reject Logicals in excess of our max capability. */
1679         if (*nlogicals > HPSA_MAX_LUN) {
1680                 dev_warn(&h->pdev->dev,
1681                         "maximum logical LUNs (%d) exceeded.  "
1682                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1683                         *nlogicals - HPSA_MAX_LUN);
1684                         *nlogicals = HPSA_MAX_LUN;
1685         }
1686         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1687                 dev_warn(&h->pdev->dev,
1688                         "maximum logical + physical LUNs (%d) exceeded. "
1689                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1690                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1691                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1692         }
1693         return 0;
1694 }
1695
1696 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1697         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1698         struct ReportLUNdata *logdev_list)
1699 {
1700         /* Helper function, figure out where the LUN ID info is coming from
1701          * given index i, lists of physical and logical devices, where in
1702          * the list the raid controller is supposed to appear (first or last)
1703          */
1704
1705         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1706         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1707
1708         if (i == raid_ctlr_position)
1709                 return RAID_CTLR_LUNID;
1710
1711         if (i < logicals_start)
1712                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1713
1714         if (i < last_device)
1715                 return &logdev_list->LUN[i - nphysicals -
1716                         (raid_ctlr_position == 0)][0];
1717         BUG();
1718         return NULL;
1719 }
1720
1721 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1722 {
1723         /* the idea here is we could get notified
1724          * that some devices have changed, so we do a report
1725          * physical luns and report logical luns cmd, and adjust
1726          * our list of devices accordingly.
1727          *
1728          * The scsi3addr's of devices won't change so long as the
1729          * adapter is not reset.  That means we can rescan and
1730          * tell which devices we already know about, vs. new
1731          * devices, vs.  disappearing devices.
1732          */
1733         struct ReportLUNdata *physdev_list = NULL;
1734         struct ReportLUNdata *logdev_list = NULL;
1735         unsigned char *inq_buff = NULL;
1736         u32 nphysicals = 0;
1737         u32 nlogicals = 0;
1738         u32 ndev_allocated = 0;
1739         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1740         int ncurrent = 0;
1741         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1742         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1743         int bus, target, lun;
1744         int raid_ctlr_position;
1745         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1746
1747         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1748                 GFP_KERNEL);
1749         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1750         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1751         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1752         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1753
1754         if (!currentsd || !physdev_list || !logdev_list ||
1755                 !inq_buff || !tmpdevice) {
1756                 dev_err(&h->pdev->dev, "out of memory\n");
1757                 goto out;
1758         }
1759         memset(lunzerobits, 0, sizeof(lunzerobits));
1760
1761         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1762                         logdev_list, &nlogicals))
1763                 goto out;
1764
1765         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1766          * but each of them 4 times through different paths.  The plus 1
1767          * is for the RAID controller.
1768          */
1769         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1770
1771         /* Allocate the per device structures */
1772         for (i = 0; i < ndevs_to_allocate; i++) {
1773                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1774                 if (!currentsd[i]) {
1775                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1776                                 __FILE__, __LINE__);
1777                         goto out;
1778                 }
1779                 ndev_allocated++;
1780         }
1781
1782         if (unlikely(is_scsi_rev_5(h)))
1783                 raid_ctlr_position = 0;
1784         else
1785                 raid_ctlr_position = nphysicals + nlogicals;
1786
1787         /* adjust our table of devices */
1788         nmsa2xxx_enclosures = 0;
1789         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1790                 u8 *lunaddrbytes;
1791
1792                 /* Figure out where the LUN ID info is coming from */
1793                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1794                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1795                 /* skip masked physical devices. */
1796                 if (lunaddrbytes[3] & 0xC0 &&
1797                         i < nphysicals + (raid_ctlr_position == 0))
1798                         continue;
1799
1800                 /* Get device type, vendor, model, device id */
1801                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1802                         continue; /* skip it if we can't talk to it. */
1803                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1804                         tmpdevice);
1805                 this_device = currentsd[ncurrent];
1806
1807                 /*
1808                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1809                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1810                  * is nonetheless an enclosure device there.  We have to
1811                  * present that otherwise linux won't find anything if
1812                  * there is no lun 0.
1813                  */
1814                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1815                                 lunaddrbytes, bus, target, lun, lunzerobits,
1816                                 &nmsa2xxx_enclosures)) {
1817                         ncurrent++;
1818                         this_device = currentsd[ncurrent];
1819                 }
1820
1821                 *this_device = *tmpdevice;
1822                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1823
1824                 switch (this_device->devtype) {
1825                 case TYPE_ROM: {
1826                         /* We don't *really* support actual CD-ROM devices,
1827                          * just "One Button Disaster Recovery" tape drive
1828                          * which temporarily pretends to be a CD-ROM drive.
1829                          * So we check that the device is really an OBDR tape
1830                          * device by checking for "$DR-10" in bytes 43-48 of
1831                          * the inquiry data.
1832                          */
1833                                 char obdr_sig[7];
1834 #define OBDR_TAPE_SIG "$DR-10"
1835                                 strncpy(obdr_sig, &inq_buff[43], 6);
1836                                 obdr_sig[6] = '\0';
1837                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1838                                         /* Not OBDR device, ignore it. */
1839                                         break;
1840                         }
1841                         ncurrent++;
1842                         break;
1843                 case TYPE_DISK:
1844                         if (i < nphysicals)
1845                                 break;
1846                         ncurrent++;
1847                         break;
1848                 case TYPE_TAPE:
1849                 case TYPE_MEDIUM_CHANGER:
1850                         ncurrent++;
1851                         break;
1852                 case TYPE_RAID:
1853                         /* Only present the Smartarray HBA as a RAID controller.
1854                          * If it's a RAID controller other than the HBA itself
1855                          * (an external RAID controller, MSA500 or similar)
1856                          * don't present it.
1857                          */
1858                         if (!is_hba_lunid(lunaddrbytes))
1859                                 break;
1860                         ncurrent++;
1861                         break;
1862                 default:
1863                         break;
1864                 }
1865                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1866                         break;
1867         }
1868         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1869 out:
1870         kfree(tmpdevice);
1871         for (i = 0; i < ndev_allocated; i++)
1872                 kfree(currentsd[i]);
1873         kfree(currentsd);
1874         kfree(inq_buff);
1875         kfree(physdev_list);
1876         kfree(logdev_list);
1877 }
1878
1879 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1880  * dma mapping  and fills in the scatter gather entries of the
1881  * hpsa command, cp.
1882  */
1883 static int hpsa_scatter_gather(struct ctlr_info *h,
1884                 struct CommandList *cp,
1885                 struct scsi_cmnd *cmd)
1886 {
1887         unsigned int len;
1888         struct scatterlist *sg;
1889         u64 addr64;
1890         int use_sg, i, sg_index, chained;
1891         struct SGDescriptor *curr_sg;
1892
1893         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1894
1895         use_sg = scsi_dma_map(cmd);
1896         if (use_sg < 0)
1897                 return use_sg;
1898
1899         if (!use_sg)
1900                 goto sglist_finished;
1901
1902         curr_sg = cp->SG;
1903         chained = 0;
1904         sg_index = 0;
1905         scsi_for_each_sg(cmd, sg, use_sg, i) {
1906                 if (i == h->max_cmd_sg_entries - 1 &&
1907                         use_sg > h->max_cmd_sg_entries) {
1908                         chained = 1;
1909                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1910                         sg_index = 0;
1911                 }
1912                 addr64 = (u64) sg_dma_address(sg);
1913                 len  = sg_dma_len(sg);
1914                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1915                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1916                 curr_sg->Len = len;
1917                 curr_sg->Ext = 0;  /* we are not chaining */
1918                 curr_sg++;
1919         }
1920
1921         if (use_sg + chained > h->maxSG)
1922                 h->maxSG = use_sg + chained;
1923
1924         if (chained) {
1925                 cp->Header.SGList = h->max_cmd_sg_entries;
1926                 cp->Header.SGTotal = (u16) (use_sg + 1);
1927                 hpsa_map_sg_chain_block(h, cp);
1928                 return 0;
1929         }
1930
1931 sglist_finished:
1932
1933         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1934         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1935         return 0;
1936 }
1937
1938
1939 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1940         void (*done)(struct scsi_cmnd *))
1941 {
1942         struct ctlr_info *h;
1943         struct hpsa_scsi_dev_t *dev;
1944         unsigned char scsi3addr[8];
1945         struct CommandList *c;
1946         unsigned long flags;
1947
1948         /* Get the ptr to our adapter structure out of cmd->host. */
1949         h = sdev_to_hba(cmd->device);
1950         dev = cmd->device->hostdata;
1951         if (!dev) {
1952                 cmd->result = DID_NO_CONNECT << 16;
1953                 done(cmd);
1954                 return 0;
1955         }
1956         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1957
1958         /* Need a lock as this is being allocated from the pool */
1959         spin_lock_irqsave(&h->lock, flags);
1960         c = cmd_alloc(h);
1961         spin_unlock_irqrestore(&h->lock, flags);
1962         if (c == NULL) {                        /* trouble... */
1963                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1964                 return SCSI_MLQUEUE_HOST_BUSY;
1965         }
1966
1967         /* Fill in the command list header */
1968
1969         cmd->scsi_done = done;    /* save this for use by completion code */
1970
1971         /* save c in case we have to abort it  */
1972         cmd->host_scribble = (unsigned char *) c;
1973
1974         c->cmd_type = CMD_SCSI;
1975         c->scsi_cmd = cmd;
1976         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1977         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1978         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1979         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1980
1981         /* Fill in the request block... */
1982
1983         c->Request.Timeout = 0;
1984         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1985         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1986         c->Request.CDBLen = cmd->cmd_len;
1987         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1988         c->Request.Type.Type = TYPE_CMD;
1989         c->Request.Type.Attribute = ATTR_SIMPLE;
1990         switch (cmd->sc_data_direction) {
1991         case DMA_TO_DEVICE:
1992                 c->Request.Type.Direction = XFER_WRITE;
1993                 break;
1994         case DMA_FROM_DEVICE:
1995                 c->Request.Type.Direction = XFER_READ;
1996                 break;
1997         case DMA_NONE:
1998                 c->Request.Type.Direction = XFER_NONE;
1999                 break;
2000         case DMA_BIDIRECTIONAL:
2001                 /* This can happen if a buggy application does a scsi passthru
2002                  * and sets both inlen and outlen to non-zero. ( see
2003                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2004                  */
2005
2006                 c->Request.Type.Direction = XFER_RSVD;
2007                 /* This is technically wrong, and hpsa controllers should
2008                  * reject it with CMD_INVALID, which is the most correct
2009                  * response, but non-fibre backends appear to let it
2010                  * slide by, and give the same results as if this field
2011                  * were set correctly.  Either way is acceptable for
2012                  * our purposes here.
2013                  */
2014
2015                 break;
2016
2017         default:
2018                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2019                         cmd->sc_data_direction);
2020                 BUG();
2021                 break;
2022         }
2023
2024         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2025                 cmd_free(h, c);
2026                 return SCSI_MLQUEUE_HOST_BUSY;
2027         }
2028         enqueue_cmd_and_start_io(h, c);
2029         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2030         return 0;
2031 }
2032
2033 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2034
2035 static void hpsa_scan_start(struct Scsi_Host *sh)
2036 {
2037         struct ctlr_info *h = shost_to_hba(sh);
2038         unsigned long flags;
2039
2040         /* wait until any scan already in progress is finished. */
2041         while (1) {
2042                 spin_lock_irqsave(&h->scan_lock, flags);
2043                 if (h->scan_finished)
2044                         break;
2045                 spin_unlock_irqrestore(&h->scan_lock, flags);
2046                 wait_event(h->scan_wait_queue, h->scan_finished);
2047                 /* Note: We don't need to worry about a race between this
2048                  * thread and driver unload because the midlayer will
2049                  * have incremented the reference count, so unload won't
2050                  * happen if we're in here.
2051                  */
2052         }
2053         h->scan_finished = 0; /* mark scan as in progress */
2054         spin_unlock_irqrestore(&h->scan_lock, flags);
2055
2056         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2057
2058         spin_lock_irqsave(&h->scan_lock, flags);
2059         h->scan_finished = 1; /* mark scan as finished. */
2060         wake_up_all(&h->scan_wait_queue);
2061         spin_unlock_irqrestore(&h->scan_lock, flags);
2062 }
2063
2064 static int hpsa_scan_finished(struct Scsi_Host *sh,
2065         unsigned long elapsed_time)
2066 {
2067         struct ctlr_info *h = shost_to_hba(sh);
2068         unsigned long flags;
2069         int finished;
2070
2071         spin_lock_irqsave(&h->scan_lock, flags);
2072         finished = h->scan_finished;
2073         spin_unlock_irqrestore(&h->scan_lock, flags);
2074         return finished;
2075 }
2076
2077 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2078         int qdepth, int reason)
2079 {
2080         struct ctlr_info *h = sdev_to_hba(sdev);
2081
2082         if (reason != SCSI_QDEPTH_DEFAULT)
2083                 return -ENOTSUPP;
2084
2085         if (qdepth < 1)
2086                 qdepth = 1;
2087         else
2088                 if (qdepth > h->nr_cmds)
2089                         qdepth = h->nr_cmds;
2090         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2091         return sdev->queue_depth;
2092 }
2093
2094 static void hpsa_unregister_scsi(struct ctlr_info *h)
2095 {
2096         /* we are being forcibly unloaded, and may not refuse. */
2097         scsi_remove_host(h->scsi_host);
2098         scsi_host_put(h->scsi_host);
2099         h->scsi_host = NULL;
2100 }
2101
2102 static int hpsa_register_scsi(struct ctlr_info *h)
2103 {
2104         int rc;
2105
2106         rc = hpsa_scsi_detect(h);
2107         if (rc != 0)
2108                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2109                         " hpsa_scsi_detect(), rc is %d\n", rc);
2110         return rc;
2111 }
2112
2113 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2114         unsigned char lunaddr[])
2115 {
2116         int rc = 0;
2117         int count = 0;
2118         int waittime = 1; /* seconds */
2119         struct CommandList *c;
2120
2121         c = cmd_special_alloc(h);
2122         if (!c) {
2123                 dev_warn(&h->pdev->dev, "out of memory in "
2124                         "wait_for_device_to_become_ready.\n");
2125                 return IO_ERROR;
2126         }
2127
2128         /* Send test unit ready until device ready, or give up. */
2129         while (count < HPSA_TUR_RETRY_LIMIT) {
2130
2131                 /* Wait for a bit.  do this first, because if we send
2132                  * the TUR right away, the reset will just abort it.
2133                  */
2134                 msleep(1000 * waittime);
2135                 count++;
2136
2137                 /* Increase wait time with each try, up to a point. */
2138                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2139                         waittime = waittime * 2;
2140
2141                 /* Send the Test Unit Ready */
2142                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2143                 hpsa_scsi_do_simple_cmd_core(h, c);
2144                 /* no unmap needed here because no data xfer. */
2145
2146                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2147                         break;
2148
2149                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2150                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2151                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2152                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2153                         break;
2154
2155                 dev_warn(&h->pdev->dev, "waiting %d secs "
2156                         "for device to become ready.\n", waittime);
2157                 rc = 1; /* device not ready. */
2158         }
2159
2160         if (rc)
2161                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2162         else
2163                 dev_warn(&h->pdev->dev, "device is ready.\n");
2164
2165         cmd_special_free(h, c);
2166         return rc;
2167 }
2168
2169 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2170  * complaining.  Doing a host- or bus-reset can't do anything good here.
2171  */
2172 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2173 {
2174         int rc;
2175         struct ctlr_info *h;
2176         struct hpsa_scsi_dev_t *dev;
2177
2178         /* find the controller to which the command to be aborted was sent */
2179         h = sdev_to_hba(scsicmd->device);
2180         if (h == NULL) /* paranoia */
2181                 return FAILED;
2182         dev = scsicmd->device->hostdata;
2183         if (!dev) {
2184                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2185                         "device lookup failed.\n");
2186                 return FAILED;
2187         }
2188         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2189                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2190         /* send a reset to the SCSI LUN which the command was sent to */
2191         rc = hpsa_send_reset(h, dev->scsi3addr);
2192         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2193                 return SUCCESS;
2194
2195         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2196         return FAILED;
2197 }
2198
2199 /*
2200  * For operations that cannot sleep, a command block is allocated at init,
2201  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2202  * which ones are free or in use.  Lock must be held when calling this.
2203  * cmd_free() is the complement.
2204  */
2205 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2206 {
2207         struct CommandList *c;
2208         int i;
2209         union u64bit temp64;
2210         dma_addr_t cmd_dma_handle, err_dma_handle;
2211
2212         do {
2213                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2214                 if (i == h->nr_cmds)
2215                         return NULL;
2216         } while (test_and_set_bit
2217                  (i & (BITS_PER_LONG - 1),
2218                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2219         c = h->cmd_pool + i;
2220         memset(c, 0, sizeof(*c));
2221         cmd_dma_handle = h->cmd_pool_dhandle
2222             + i * sizeof(*c);
2223         c->err_info = h->errinfo_pool + i;
2224         memset(c->err_info, 0, sizeof(*c->err_info));
2225         err_dma_handle = h->errinfo_pool_dhandle
2226             + i * sizeof(*c->err_info);
2227         h->nr_allocs++;
2228
2229         c->cmdindex = i;
2230
2231         INIT_HLIST_NODE(&c->list);
2232         c->busaddr = (u32) cmd_dma_handle;
2233         temp64.val = (u64) err_dma_handle;
2234         c->ErrDesc.Addr.lower = temp64.val32.lower;
2235         c->ErrDesc.Addr.upper = temp64.val32.upper;
2236         c->ErrDesc.Len = sizeof(*c->err_info);
2237
2238         c->h = h;
2239         return c;
2240 }
2241
2242 /* For operations that can wait for kmalloc to possibly sleep,
2243  * this routine can be called. Lock need not be held to call
2244  * cmd_special_alloc. cmd_special_free() is the complement.
2245  */
2246 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2247 {
2248         struct CommandList *c;
2249         union u64bit temp64;
2250         dma_addr_t cmd_dma_handle, err_dma_handle;
2251
2252         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2253         if (c == NULL)
2254                 return NULL;
2255         memset(c, 0, sizeof(*c));
2256
2257         c->cmdindex = -1;
2258
2259         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2260                     &err_dma_handle);
2261
2262         if (c->err_info == NULL) {
2263                 pci_free_consistent(h->pdev,
2264                         sizeof(*c), c, cmd_dma_handle);
2265                 return NULL;
2266         }
2267         memset(c->err_info, 0, sizeof(*c->err_info));
2268
2269         INIT_HLIST_NODE(&c->list);
2270         c->busaddr = (u32) cmd_dma_handle;
2271         temp64.val = (u64) err_dma_handle;
2272         c->ErrDesc.Addr.lower = temp64.val32.lower;
2273         c->ErrDesc.Addr.upper = temp64.val32.upper;
2274         c->ErrDesc.Len = sizeof(*c->err_info);
2275
2276         c->h = h;
2277         return c;
2278 }
2279
2280 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2281 {
2282         int i;
2283
2284         i = c - h->cmd_pool;
2285         clear_bit(i & (BITS_PER_LONG - 1),
2286                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2287         h->nr_frees++;
2288 }
2289
2290 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2291 {
2292         union u64bit temp64;
2293
2294         temp64.val32.lower = c->ErrDesc.Addr.lower;
2295         temp64.val32.upper = c->ErrDesc.Addr.upper;
2296         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2297                             c->err_info, (dma_addr_t) temp64.val);
2298         pci_free_consistent(h->pdev, sizeof(*c),
2299                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2300 }
2301
2302 #ifdef CONFIG_COMPAT
2303
2304 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2305 {
2306         IOCTL32_Command_struct __user *arg32 =
2307             (IOCTL32_Command_struct __user *) arg;
2308         IOCTL_Command_struct arg64;
2309         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2310         int err;
2311         u32 cp;
2312
2313         err = 0;
2314         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2315                            sizeof(arg64.LUN_info));
2316         err |= copy_from_user(&arg64.Request, &arg32->Request,
2317                            sizeof(arg64.Request));
2318         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2319                            sizeof(arg64.error_info));
2320         err |= get_user(arg64.buf_size, &arg32->buf_size);
2321         err |= get_user(cp, &arg32->buf);
2322         arg64.buf = compat_ptr(cp);
2323         err |= copy_to_user(p, &arg64, sizeof(arg64));
2324
2325         if (err)
2326                 return -EFAULT;
2327
2328         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2329         if (err)
2330                 return err;
2331         err |= copy_in_user(&arg32->error_info, &p->error_info,
2332                          sizeof(arg32->error_info));
2333         if (err)
2334                 return -EFAULT;
2335         return err;
2336 }
2337
2338 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2339         int cmd, void *arg)
2340 {
2341         BIG_IOCTL32_Command_struct __user *arg32 =
2342             (BIG_IOCTL32_Command_struct __user *) arg;
2343         BIG_IOCTL_Command_struct arg64;
2344         BIG_IOCTL_Command_struct __user *p =
2345             compat_alloc_user_space(sizeof(arg64));
2346         int err;
2347         u32 cp;
2348
2349         err = 0;
2350         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2351                            sizeof(arg64.LUN_info));
2352         err |= copy_from_user(&arg64.Request, &arg32->Request,
2353                            sizeof(arg64.Request));
2354         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2355                            sizeof(arg64.error_info));
2356         err |= get_user(arg64.buf_size, &arg32->buf_size);
2357         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2358         err |= get_user(cp, &arg32->buf);
2359         arg64.buf = compat_ptr(cp);
2360         err |= copy_to_user(p, &arg64, sizeof(arg64));
2361
2362         if (err)
2363                 return -EFAULT;
2364
2365         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2366         if (err)
2367                 return err;
2368         err |= copy_in_user(&arg32->error_info, &p->error_info,
2369                          sizeof(arg32->error_info));
2370         if (err)
2371                 return -EFAULT;
2372         return err;
2373 }
2374
2375 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2376 {
2377         switch (cmd) {
2378         case CCISS_GETPCIINFO:
2379         case CCISS_GETINTINFO:
2380         case CCISS_SETINTINFO:
2381         case CCISS_GETNODENAME:
2382         case CCISS_SETNODENAME:
2383         case CCISS_GETHEARTBEAT:
2384         case CCISS_GETBUSTYPES:
2385         case CCISS_GETFIRMVER:
2386         case CCISS_GETDRIVVER:
2387         case CCISS_REVALIDVOLS:
2388         case CCISS_DEREGDISK:
2389         case CCISS_REGNEWDISK:
2390         case CCISS_REGNEWD:
2391         case CCISS_RESCANDISK:
2392         case CCISS_GETLUNINFO:
2393                 return hpsa_ioctl(dev, cmd, arg);
2394
2395         case CCISS_PASSTHRU32:
2396                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2397         case CCISS_BIG_PASSTHRU32:
2398                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2399
2400         default:
2401                 return -ENOIOCTLCMD;
2402         }
2403 }
2404 #endif
2405
2406 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2407 {
2408         struct hpsa_pci_info pciinfo;
2409
2410         if (!argp)
2411                 return -EINVAL;
2412         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2413         pciinfo.bus = h->pdev->bus->number;
2414         pciinfo.dev_fn = h->pdev->devfn;
2415         pciinfo.board_id = h->board_id;
2416         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2417                 return -EFAULT;
2418         return 0;
2419 }
2420
2421 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2422 {
2423         DriverVer_type DriverVer;
2424         unsigned char vmaj, vmin, vsubmin;
2425         int rc;
2426
2427         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2428                 &vmaj, &vmin, &vsubmin);
2429         if (rc != 3) {
2430                 dev_info(&h->pdev->dev, "driver version string '%s' "
2431                         "unrecognized.", HPSA_DRIVER_VERSION);
2432                 vmaj = 0;
2433                 vmin = 0;
2434                 vsubmin = 0;
2435         }
2436         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2437         if (!argp)
2438                 return -EINVAL;
2439         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2440                 return -EFAULT;
2441         return 0;
2442 }
2443
2444 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2445 {
2446         IOCTL_Command_struct iocommand;
2447         struct CommandList *c;
2448         char *buff = NULL;
2449         union u64bit temp64;
2450
2451         if (!argp)
2452                 return -EINVAL;
2453         if (!capable(CAP_SYS_RAWIO))
2454                 return -EPERM;
2455         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2456                 return -EFAULT;
2457         if ((iocommand.buf_size < 1) &&
2458             (iocommand.Request.Type.Direction != XFER_NONE)) {
2459                 return -EINVAL;
2460         }
2461         if (iocommand.buf_size > 0) {
2462                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2463                 if (buff == NULL)
2464                         return -EFAULT;
2465                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2466                         /* Copy the data into the buffer we created */
2467                         if (copy_from_user(buff, iocommand.buf,
2468                                 iocommand.buf_size)) {
2469                                 kfree(buff);
2470                                 return -EFAULT;
2471                         }
2472                 } else {
2473                         memset(buff, 0, iocommand.buf_size);
2474                 }
2475         }
2476         c = cmd_special_alloc(h);
2477         if (c == NULL) {
2478                 kfree(buff);
2479                 return -ENOMEM;
2480         }
2481         /* Fill in the command type */
2482         c->cmd_type = CMD_IOCTL_PEND;
2483         /* Fill in Command Header */
2484         c->Header.ReplyQueue = 0; /* unused in simple mode */
2485         if (iocommand.buf_size > 0) {   /* buffer to fill */
2486                 c->Header.SGList = 1;
2487                 c->Header.SGTotal = 1;
2488         } else  { /* no buffers to fill */
2489                 c->Header.SGList = 0;
2490                 c->Header.SGTotal = 0;
2491         }
2492         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2493         /* use the kernel address the cmd block for tag */
2494         c->Header.Tag.lower = c->busaddr;
2495
2496         /* Fill in Request block */
2497         memcpy(&c->Request, &iocommand.Request,
2498                 sizeof(c->Request));
2499
2500         /* Fill in the scatter gather information */
2501         if (iocommand.buf_size > 0) {
2502                 temp64.val = pci_map_single(h->pdev, buff,
2503                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2504                 c->SG[0].Addr.lower = temp64.val32.lower;
2505                 c->SG[0].Addr.upper = temp64.val32.upper;
2506                 c->SG[0].Len = iocommand.buf_size;
2507                 c->SG[0].Ext = 0; /* we are not chaining*/
2508         }
2509         hpsa_scsi_do_simple_cmd_core(h, c);
2510         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2511         check_ioctl_unit_attention(h, c);
2512
2513         /* Copy the error information out */
2514         memcpy(&iocommand.error_info, c->err_info,
2515                 sizeof(iocommand.error_info));
2516         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2517                 kfree(buff);
2518                 cmd_special_free(h, c);
2519                 return -EFAULT;
2520         }
2521         if (iocommand.Request.Type.Direction == XFER_READ &&
2522                 iocommand.buf_size > 0) {
2523                 /* Copy the data out of the buffer we created */
2524                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2525                         kfree(buff);
2526                         cmd_special_free(h, c);
2527                         return -EFAULT;
2528                 }
2529         }
2530         kfree(buff);
2531         cmd_special_free(h, c);
2532         return 0;
2533 }
2534
2535 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2536 {
2537         BIG_IOCTL_Command_struct *ioc;
2538         struct CommandList *c;
2539         unsigned char **buff = NULL;
2540         int *buff_size = NULL;
2541         union u64bit temp64;
2542         BYTE sg_used = 0;
2543         int status = 0;
2544         int i;
2545         u32 left;
2546         u32 sz;
2547         BYTE __user *data_ptr;
2548
2549         if (!argp)
2550                 return -EINVAL;
2551         if (!capable(CAP_SYS_RAWIO))
2552                 return -EPERM;
2553         ioc = (BIG_IOCTL_Command_struct *)
2554             kmalloc(sizeof(*ioc), GFP_KERNEL);
2555         if (!ioc) {
2556                 status = -ENOMEM;
2557                 goto cleanup1;
2558         }
2559         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2560                 status = -EFAULT;
2561                 goto cleanup1;
2562         }
2563         if ((ioc->buf_size < 1) &&
2564             (ioc->Request.Type.Direction != XFER_NONE)) {
2565                 status = -EINVAL;
2566                 goto cleanup1;
2567         }
2568         /* Check kmalloc limits  using all SGs */
2569         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2570                 status = -EINVAL;
2571                 goto cleanup1;
2572         }
2573         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2574                 status = -EINVAL;
2575                 goto cleanup1;
2576         }
2577         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2578         if (!buff) {
2579                 status = -ENOMEM;
2580                 goto cleanup1;
2581         }
2582         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2583         if (!buff_size) {
2584                 status = -ENOMEM;
2585                 goto cleanup1;
2586         }
2587         left = ioc->buf_size;
2588         data_ptr = ioc->buf;
2589         while (left) {
2590                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2591                 buff_size[sg_used] = sz;
2592                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2593                 if (buff[sg_used] == NULL) {
2594                         status = -ENOMEM;
2595                         goto cleanup1;
2596                 }
2597                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2598                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2599                                 status = -ENOMEM;
2600                                 goto cleanup1;
2601                         }
2602                 } else
2603                         memset(buff[sg_used], 0, sz);
2604                 left -= sz;
2605                 data_ptr += sz;
2606                 sg_used++;
2607         }
2608         c = cmd_special_alloc(h);
2609         if (c == NULL) {
2610                 status = -ENOMEM;
2611                 goto cleanup1;
2612         }
2613         c->cmd_type = CMD_IOCTL_PEND;
2614         c->Header.ReplyQueue = 0;
2615         c->Header.SGList = c->Header.SGTotal = sg_used;
2616         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2617         c->Header.Tag.lower = c->busaddr;
2618         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2619         if (ioc->buf_size > 0) {
2620                 int i;
2621                 for (i = 0; i < sg_used; i++) {
2622                         temp64.val = pci_map_single(h->pdev, buff[i],
2623                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2624                         c->SG[i].Addr.lower = temp64.val32.lower;
2625                         c->SG[i].Addr.upper = temp64.val32.upper;
2626                         c->SG[i].Len = buff_size[i];
2627                         /* we are not chaining */
2628                         c->SG[i].Ext = 0;
2629                 }
2630         }
2631         hpsa_scsi_do_simple_cmd_core(h, c);
2632         if (sg_used)
2633                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2634         check_ioctl_unit_attention(h, c);
2635         /* Copy the error information out */
2636         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2637         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2638                 cmd_special_free(h, c);
2639                 status = -EFAULT;
2640                 goto cleanup1;
2641         }
2642         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2643                 /* Copy the data out of the buffer we created */
2644                 BYTE __user *ptr = ioc->buf;
2645                 for (i = 0; i < sg_used; i++) {
2646                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2647                                 cmd_special_free(h, c);
2648                                 status = -EFAULT;
2649                                 goto cleanup1;
2650                         }
2651                         ptr += buff_size[i];
2652                 }
2653         }
2654         cmd_special_free(h, c);
2655         status = 0;
2656 cleanup1:
2657         if (buff) {
2658                 for (i = 0; i < sg_used; i++)
2659                         kfree(buff[i]);
2660                 kfree(buff);
2661         }
2662         kfree(buff_size);
2663         kfree(ioc);
2664         return status;
2665 }
2666
2667 static void check_ioctl_unit_attention(struct ctlr_info *h,
2668         struct CommandList *c)
2669 {
2670         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2671                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2672                 (void) check_for_unit_attention(h, c);
2673 }
2674 /*
2675  * ioctl
2676  */
2677 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2678 {
2679         struct ctlr_info *h;
2680         void __user *argp = (void __user *)arg;
2681
2682         h = sdev_to_hba(dev);
2683
2684         switch (cmd) {
2685         case CCISS_DEREGDISK:
2686         case CCISS_REGNEWDISK:
2687         case CCISS_REGNEWD:
2688                 hpsa_scan_start(h->scsi_host);
2689                 return 0;
2690         case CCISS_GETPCIINFO:
2691                 return hpsa_getpciinfo_ioctl(h, argp);
2692         case CCISS_GETDRIVVER:
2693                 return hpsa_getdrivver_ioctl(h, argp);
2694         case CCISS_PASSTHRU:
2695                 return hpsa_passthru_ioctl(h, argp);
2696         case CCISS_BIG_PASSTHRU:
2697                 return hpsa_big_passthru_ioctl(h, argp);
2698         default:
2699                 return -ENOTTY;
2700         }
2701 }
2702
2703 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2704         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2705         int cmd_type)
2706 {
2707         int pci_dir = XFER_NONE;
2708
2709         c->cmd_type = CMD_IOCTL_PEND;
2710         c->Header.ReplyQueue = 0;
2711         if (buff != NULL && size > 0) {
2712                 c->Header.SGList = 1;
2713                 c->Header.SGTotal = 1;
2714         } else {
2715                 c->Header.SGList = 0;
2716                 c->Header.SGTotal = 0;
2717         }
2718         c->Header.Tag.lower = c->busaddr;
2719         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2720
2721         c->Request.Type.Type = cmd_type;
2722         if (cmd_type == TYPE_CMD) {
2723                 switch (cmd) {
2724                 case HPSA_INQUIRY:
2725                         /* are we trying to read a vital product page */
2726                         if (page_code != 0) {
2727                                 c->Request.CDB[1] = 0x01;
2728                                 c->Request.CDB[2] = page_code;
2729                         }
2730                         c->Request.CDBLen = 6;
2731                         c->Request.Type.Attribute = ATTR_SIMPLE;
2732                         c->Request.Type.Direction = XFER_READ;
2733                         c->Request.Timeout = 0;
2734                         c->Request.CDB[0] = HPSA_INQUIRY;
2735                         c->Request.CDB[4] = size & 0xFF;
2736                         break;
2737                 case HPSA_REPORT_LOG:
2738                 case HPSA_REPORT_PHYS:
2739                         /* Talking to controller so It's a physical command
2740                            mode = 00 target = 0.  Nothing to write.
2741                          */
2742                         c->Request.CDBLen = 12;
2743                         c->Request.Type.Attribute = ATTR_SIMPLE;
2744                         c->Request.Type.Direction = XFER_READ;
2745                         c->Request.Timeout = 0;
2746                         c->Request.CDB[0] = cmd;
2747                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2748                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2749                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2750                         c->Request.CDB[9] = size & 0xFF;
2751                         break;
2752                 case HPSA_CACHE_FLUSH:
2753                         c->Request.CDBLen = 12;
2754                         c->Request.Type.Attribute = ATTR_SIMPLE;
2755                         c->Request.Type.Direction = XFER_WRITE;
2756                         c->Request.Timeout = 0;
2757                         c->Request.CDB[0] = BMIC_WRITE;
2758                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2759                         break;
2760                 case TEST_UNIT_READY:
2761                         c->Request.CDBLen = 6;
2762                         c->Request.Type.Attribute = ATTR_SIMPLE;
2763                         c->Request.Type.Direction = XFER_NONE;
2764                         c->Request.Timeout = 0;
2765                         break;
2766                 default:
2767                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2768                         BUG();
2769                         return;
2770                 }
2771         } else if (cmd_type == TYPE_MSG) {
2772                 switch (cmd) {
2773
2774                 case  HPSA_DEVICE_RESET_MSG:
2775                         c->Request.CDBLen = 16;
2776                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2777                         c->Request.Type.Attribute = ATTR_SIMPLE;
2778                         c->Request.Type.Direction = XFER_NONE;
2779                         c->Request.Timeout = 0; /* Don't time out */
2780                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2781                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2782                         /* If bytes 4-7 are zero, it means reset the */
2783                         /* LunID device */
2784                         c->Request.CDB[4] = 0x00;
2785                         c->Request.CDB[5] = 0x00;
2786                         c->Request.CDB[6] = 0x00;
2787                         c->Request.CDB[7] = 0x00;
2788                 break;
2789
2790                 default:
2791                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2792                                 cmd);
2793                         BUG();
2794                 }
2795         } else {
2796                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2797                 BUG();
2798         }
2799
2800         switch (c->Request.Type.Direction) {
2801         case XFER_READ:
2802                 pci_dir = PCI_DMA_FROMDEVICE;
2803                 break;
2804         case XFER_WRITE:
2805                 pci_dir = PCI_DMA_TODEVICE;
2806                 break;
2807         case XFER_NONE:
2808                 pci_dir = PCI_DMA_NONE;
2809                 break;
2810         default:
2811                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2812         }
2813
2814         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2815
2816         return;
2817 }
2818
2819 /*
2820  * Map (physical) PCI mem into (virtual) kernel space
2821  */
2822 static void __iomem *remap_pci_mem(ulong base, ulong size)
2823 {
2824         ulong page_base = ((ulong) base) & PAGE_MASK;
2825         ulong page_offs = ((ulong) base) - page_base;
2826         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2827
2828         return page_remapped ? (page_remapped + page_offs) : NULL;
2829 }
2830
2831 /* Takes cmds off the submission queue and sends them to the hardware,
2832  * then puts them on the queue of cmds waiting for completion.
2833  */
2834 static void start_io(struct ctlr_info *h)
2835 {
2836         struct CommandList *c;
2837
2838         while (!hlist_empty(&h->reqQ)) {
2839                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2840                 /* can't do anything if fifo is full */
2841                 if ((h->access.fifo_full(h))) {
2842                         dev_warn(&h->pdev->dev, "fifo full\n");
2843                         break;
2844                 }
2845
2846                 /* Get the first entry from the Request Q */
2847                 removeQ(c);
2848                 h->Qdepth--;
2849
2850                 /* Tell the controller execute command */
2851                 h->access.submit_command(h, c);
2852
2853                 /* Put job onto the completed Q */
2854                 addQ(&h->cmpQ, c);
2855         }
2856 }
2857
2858 static inline unsigned long get_next_completion(struct ctlr_info *h)
2859 {
2860         return h->access.command_completed(h);
2861 }
2862
2863 static inline bool interrupt_pending(struct ctlr_info *h)
2864 {
2865         return h->access.intr_pending(h);
2866 }
2867
2868 static inline long interrupt_not_for_us(struct ctlr_info *h)
2869 {
2870         return (h->access.intr_pending(h) == 0) ||
2871                 (h->interrupts_enabled == 0);
2872 }
2873
2874 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2875         u32 raw_tag)
2876 {
2877         if (unlikely(tag_index >= h->nr_cmds)) {
2878                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2879                 return 1;
2880         }
2881         return 0;
2882 }
2883
2884 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2885 {
2886         removeQ(c);
2887         if (likely(c->cmd_type == CMD_SCSI))
2888                 complete_scsi_command(c, 0, raw_tag);
2889         else if (c->cmd_type == CMD_IOCTL_PEND)
2890                 complete(c->waiting);
2891 }
2892
2893 static inline u32 hpsa_tag_contains_index(u32 tag)
2894 {
2895         return tag & DIRECT_LOOKUP_BIT;
2896 }
2897
2898 static inline u32 hpsa_tag_to_index(u32 tag)
2899 {
2900         return tag >> DIRECT_LOOKUP_SHIFT;
2901 }
2902
2903 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2904 {
2905 #define HPSA_ERROR_BITS 0x03
2906         return tag & ~HPSA_ERROR_BITS;
2907 }
2908
2909 /* process completion of an indexed ("direct lookup") command */
2910 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2911         u32 raw_tag)
2912 {
2913         u32 tag_index;
2914         struct CommandList *c;
2915
2916         tag_index = hpsa_tag_to_index(raw_tag);
2917         if (bad_tag(h, tag_index, raw_tag))
2918                 return next_command(h);
2919         c = h->cmd_pool + tag_index;
2920         finish_cmd(c, raw_tag);
2921         return next_command(h);
2922 }
2923
2924 /* process completion of a non-indexed command */
2925 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2926         u32 raw_tag)
2927 {
2928         u32 tag;
2929         struct CommandList *c = NULL;
2930         struct hlist_node *tmp;
2931
2932         tag = hpsa_tag_discard_error_bits(raw_tag);
2933         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2934                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2935                         finish_cmd(c, raw_tag);
2936                         return next_command(h);
2937                 }
2938         }
2939         bad_tag(h, h->nr_cmds + 1, raw_tag);
2940         return next_command(h);
2941 }
2942
2943 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2944 {
2945         struct ctlr_info *h = dev_id;
2946         unsigned long flags;
2947         u32 raw_tag;
2948
2949         if (interrupt_not_for_us(h))
2950                 return IRQ_NONE;
2951         spin_lock_irqsave(&h->lock, flags);
2952         while (interrupt_pending(h)) {
2953                 raw_tag = get_next_completion(h);
2954                 while (raw_tag != FIFO_EMPTY) {
2955                         if (hpsa_tag_contains_index(raw_tag))
2956                                 raw_tag = process_indexed_cmd(h, raw_tag);
2957                         else
2958                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
2959                 }
2960         }
2961         spin_unlock_irqrestore(&h->lock, flags);
2962         return IRQ_HANDLED;
2963 }
2964
2965 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2966 {
2967         struct ctlr_info *h = dev_id;
2968         unsigned long flags;
2969         u32 raw_tag;
2970
2971         spin_lock_irqsave(&h->lock, flags);
2972         raw_tag = get_next_completion(h);
2973         while (raw_tag != FIFO_EMPTY) {
2974                 if (hpsa_tag_contains_index(raw_tag))
2975                         raw_tag = process_indexed_cmd(h, raw_tag);
2976                 else
2977                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2978         }
2979         spin_unlock_irqrestore(&h->lock, flags);
2980         return IRQ_HANDLED;
2981 }
2982
2983 /* Send a message CDB to the firmware. */
2984 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2985                                                 unsigned char type)
2986 {
2987         struct Command {
2988                 struct CommandListHeader CommandHeader;
2989                 struct RequestBlock Request;
2990                 struct ErrDescriptor ErrorDescriptor;
2991         };
2992         struct Command *cmd;
2993         static const size_t cmd_sz = sizeof(*cmd) +
2994                                         sizeof(cmd->ErrorDescriptor);
2995         dma_addr_t paddr64;
2996         uint32_t paddr32, tag;
2997         void __iomem *vaddr;
2998         int i, err;
2999
3000         vaddr = pci_ioremap_bar(pdev, 0);
3001         if (vaddr == NULL)
3002                 return -ENOMEM;
3003
3004         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3005          * CCISS commands, so they must be allocated from the lower 4GiB of
3006          * memory.
3007          */
3008         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3009         if (err) {
3010                 iounmap(vaddr);
3011                 return -ENOMEM;
3012         }
3013
3014         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3015         if (cmd == NULL) {
3016                 iounmap(vaddr);
3017                 return -ENOMEM;
3018         }
3019
3020         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3021          * although there's no guarantee, we assume that the address is at
3022          * least 4-byte aligned (most likely, it's page-aligned).
3023          */
3024         paddr32 = paddr64;
3025
3026         cmd->CommandHeader.ReplyQueue = 0;
3027         cmd->CommandHeader.SGList = 0;
3028         cmd->CommandHeader.SGTotal = 0;
3029         cmd->CommandHeader.Tag.lower = paddr32;
3030         cmd->CommandHeader.Tag.upper = 0;
3031         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3032
3033         cmd->Request.CDBLen = 16;
3034         cmd->Request.Type.Type = TYPE_MSG;
3035         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3036         cmd->Request.Type.Direction = XFER_NONE;
3037         cmd->Request.Timeout = 0; /* Don't time out */
3038         cmd->Request.CDB[0] = opcode;
3039         cmd->Request.CDB[1] = type;
3040         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3041         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3042         cmd->ErrorDescriptor.Addr.upper = 0;
3043         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3044
3045         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3046
3047         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3048                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3049                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3050                         break;
3051                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3052         }
3053
3054         iounmap(vaddr);
3055
3056         /* we leak the DMA buffer here ... no choice since the controller could
3057          *  still complete the command.
3058          */
3059         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3060                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3061                         opcode, type);
3062                 return -ETIMEDOUT;
3063         }
3064
3065         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3066
3067         if (tag & HPSA_ERROR_BIT) {
3068                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3069                         opcode, type);
3070                 return -EIO;
3071         }
3072
3073         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3074                 opcode, type);
3075         return 0;
3076 }
3077
3078 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3079 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3080
3081 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3082         void * __iomem vaddr, bool use_doorbell)
3083 {
3084         u16 pmcsr;
3085         int pos;
3086
3087         if (use_doorbell) {
3088                 /* For everything after the P600, the PCI power state method
3089                  * of resetting the controller doesn't work, so we have this
3090                  * other way using the doorbell register.
3091                  */
3092                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3093                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3094                 msleep(1000);
3095         } else { /* Try to do it the PCI power state way */
3096
3097                 /* Quoting from the Open CISS Specification: "The Power
3098                  * Management Control/Status Register (CSR) controls the power
3099                  * state of the device.  The normal operating state is D0,
3100                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3101                  * the controller, place the interface device in D3 then to D0,
3102                  * this causes a secondary PCI reset which will reset the
3103                  * controller." */
3104
3105                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3106                 if (pos == 0) {
3107                         dev_err(&pdev->dev,
3108                                 "hpsa_reset_controller: "
3109                                 "PCI PM not supported\n");
3110                         return -ENODEV;
3111                 }
3112                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3113                 /* enter the D3hot power management state */
3114                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3115                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3116                 pmcsr |= PCI_D3hot;
3117                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3118
3119                 msleep(500);
3120
3121                 /* enter the D0 power management state */
3122                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3123                 pmcsr |= PCI_D0;
3124                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3125
3126                 msleep(500);
3127         }
3128         return 0;
3129 }
3130
3131 /* This does a hard reset of the controller using PCI power management
3132  * states or the using the doorbell register.
3133  */
3134 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3135 {
3136         u64 cfg_offset;
3137         u32 cfg_base_addr;
3138         u64 cfg_base_addr_index;
3139         void __iomem *vaddr;
3140         unsigned long paddr;
3141         u32 misc_fw_support, active_transport;
3142         int rc;
3143         struct CfgTable __iomem *cfgtable;
3144         bool use_doorbell;
3145         u32 board_id;
3146         u16 command_register;
3147
3148         /* For controllers as old as the P600, this is very nearly
3149          * the same thing as
3150          *
3151          * pci_save_state(pci_dev);
3152          * pci_set_power_state(pci_dev, PCI_D3hot);
3153          * pci_set_power_state(pci_dev, PCI_D0);
3154          * pci_restore_state(pci_dev);
3155          *
3156          * For controllers newer than the P600, the pci power state
3157          * method of resetting doesn't work so we have another way
3158          * using the doorbell register.
3159          */
3160
3161         /* Exclude 640x boards.  These are two pci devices in one slot
3162          * which share a battery backed cache module.  One controls the
3163          * cache, the other accesses the cache through the one that controls
3164          * it.  If we reset the one controlling the cache, the other will
3165          * likely not be happy.  Just forbid resetting this conjoined mess.
3166          * The 640x isn't really supported by hpsa anyway.
3167          */
3168         rc = hpsa_lookup_board_id(pdev, &board_id);
3169         if (rc < 0) {
3170                 dev_warn(&pdev->dev, "Not resetting device.\n");
3171                 return -ENODEV;
3172         }
3173         if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3174                 return -ENOTSUPP;
3175
3176         /* Save the PCI command register */
3177         pci_read_config_word(pdev, 4, &command_register);
3178         /* Turn the board off.  This is so that later pci_restore_state()
3179          * won't turn the board on before the rest of config space is ready.
3180          */
3181         pci_disable_device(pdev);
3182         pci_save_state(pdev);
3183
3184         /* find the first memory BAR, so we can find the cfg table */
3185         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3186         if (rc)
3187                 return rc;
3188         vaddr = remap_pci_mem(paddr, 0x250);
3189         if (!vaddr)
3190                 return -ENOMEM;
3191
3192         /* find cfgtable in order to check if reset via doorbell is supported */
3193         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3194                                         &cfg_base_addr_index, &cfg_offset);
3195         if (rc)
3196                 goto unmap_vaddr;
3197         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3198                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3199         if (!cfgtable) {
3200                 rc = -ENOMEM;
3201                 goto unmap_vaddr;
3202         }
3203
3204         /* If reset via doorbell register is supported, use that. */
3205         misc_fw_support = readl(&cfgtable->misc_fw_support);
3206         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3207
3208         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3209         if (rc)
3210                 goto unmap_cfgtable;
3211
3212         pci_restore_state(pdev);
3213         rc = pci_enable_device(pdev);
3214         if (rc) {
3215                 dev_warn(&pdev->dev, "failed to enable device.\n");
3216                 goto unmap_cfgtable;
3217         }
3218         pci_write_config_word(pdev, 4, command_register);
3219
3220         /* Some devices (notably the HP Smart Array 5i Controller)
3221            need a little pause here */
3222         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3223
3224         /* Wait for board to become not ready, then ready. */
3225         dev_info(&pdev->dev, "Waiting for board to become ready.\n");
3226         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3227         if (rc)
3228                 dev_warn(&pdev->dev,
3229                         "failed waiting for board to become not ready\n");
3230         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3231         if (rc) {
3232                 dev_warn(&pdev->dev,
3233                         "failed waiting for board to become ready\n");
3234                 goto unmap_cfgtable;
3235         }
3236         dev_info(&pdev->dev, "board ready.\n");
3237
3238         /* Controller should be in simple mode at this point.  If it's not,
3239          * It means we're on one of those controllers which doesn't support
3240          * the doorbell reset method and on which the PCI power management reset
3241          * method doesn't work (P800, for example.)
3242          * In those cases, pretend the reset worked and hope for the best.
3243          */
3244         active_transport = readl(&cfgtable->TransportActive);
3245         if (active_transport & PERFORMANT_MODE) {
3246                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3247                         " proceeding anyway.\n");
3248                 rc = -ENOTSUPP;
3249         }
3250
3251 unmap_cfgtable:
3252         iounmap(cfgtable);
3253
3254 unmap_vaddr:
3255         iounmap(vaddr);
3256         return rc;
3257 }
3258
3259 /*
3260  *  We cannot read the structure directly, for portability we must use
3261  *   the io functions.
3262  *   This is for debug only.
3263  */
3264 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3265 {
3266 #ifdef HPSA_DEBUG
3267         int i;
3268         char temp_name[17];
3269
3270         dev_info(dev, "Controller Configuration information\n");
3271         dev_info(dev, "------------------------------------\n");
3272         for (i = 0; i < 4; i++)
3273                 temp_name[i] = readb(&(tb->Signature[i]));
3274         temp_name[4] = '\0';
3275         dev_info(dev, "   Signature = %s\n", temp_name);
3276         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3277         dev_info(dev, "   Transport methods supported = 0x%x\n",
3278                readl(&(tb->TransportSupport)));
3279         dev_info(dev, "   Transport methods active = 0x%x\n",
3280                readl(&(tb->TransportActive)));
3281         dev_info(dev, "   Requested transport Method = 0x%x\n",
3282                readl(&(tb->HostWrite.TransportRequest)));
3283         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3284                readl(&(tb->HostWrite.CoalIntDelay)));
3285         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3286                readl(&(tb->HostWrite.CoalIntCount)));
3287         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3288                readl(&(tb->CmdsOutMax)));
3289         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3290         for (i = 0; i < 16; i++)
3291                 temp_name[i] = readb(&(tb->ServerName[i]));
3292         temp_name[16] = '\0';
3293         dev_info(dev, "   Server Name = %s\n", temp_name);
3294         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3295                 readl(&(tb->HeartBeat)));
3296 #endif                          /* HPSA_DEBUG */
3297 }
3298
3299 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3300 {
3301         int i, offset, mem_type, bar_type;
3302
3303         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3304                 return 0;
3305         offset = 0;
3306         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3307                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3308                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3309                         offset += 4;
3310                 else {
3311                         mem_type = pci_resource_flags(pdev, i) &
3312                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3313                         switch (mem_type) {
3314                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3315                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3316                                 offset += 4;    /* 32 bit */
3317                                 break;
3318                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3319                                 offset += 8;
3320                                 break;
3321                         default:        /* reserved in PCI 2.2 */
3322                                 dev_warn(&pdev->dev,
3323                                        "base address is invalid\n");
3324                                 return -1;
3325                                 break;
3326                         }
3327                 }
3328                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3329                         return i + 1;
3330         }
3331         return -1;
3332 }
3333
3334 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3335  * controllers that are capable. If not, we use IO-APIC mode.
3336  */
3337
3338 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3339 {
3340 #ifdef CONFIG_PCI_MSI
3341         int err;
3342         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3343         {0, 2}, {0, 3}
3344         };
3345
3346         /* Some boards advertise MSI but don't really support it */
3347         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3348             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3349                 goto default_int_mode;
3350         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3351                 dev_info(&h->pdev->dev, "MSIX\n");
3352                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3353                 if (!err) {
3354                         h->intr[0] = hpsa_msix_entries[0].vector;
3355                         h->intr[1] = hpsa_msix_entries[1].vector;
3356                         h->intr[2] = hpsa_msix_entries[2].vector;
3357                         h->intr[3] = hpsa_msix_entries[3].vector;
3358                         h->msix_vector = 1;
3359                         return;
3360                 }
3361                 if (err > 0) {
3362                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3363                                "available\n", err);
3364                         goto default_int_mode;
3365                 } else {
3366                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3367                                err);
3368                         goto default_int_mode;
3369                 }
3370         }
3371         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3372                 dev_info(&h->pdev->dev, "MSI\n");
3373                 if (!pci_enable_msi(h->pdev))
3374                         h->msi_vector = 1;
3375                 else
3376                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3377         }
3378 default_int_mode:
3379 #endif                          /* CONFIG_PCI_MSI */
3380         /* if we get here we're going to use the default interrupt mode */
3381         h->intr[PERF_MODE_INT] = h->pdev->irq;
3382 }
3383
3384 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3385 {
3386         int i;
3387         u32 subsystem_vendor_id, subsystem_device_id;
3388
3389         subsystem_vendor_id = pdev->subsystem_vendor;
3390         subsystem_device_id = pdev->subsystem_device;
3391         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3392                     subsystem_vendor_id;
3393
3394         for (i = 0; i < ARRAY_SIZE(products); i++)
3395                 if (*board_id == products[i].board_id)
3396                         return i;
3397
3398         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3399                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3400                 !hpsa_allow_any) {
3401                 dev_warn(&pdev->dev, "unrecognized board ID: "
3402                         "0x%08x, ignoring.\n", *board_id);
3403                         return -ENODEV;
3404         }
3405         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3406 }
3407
3408 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3409 {
3410         u16 command;
3411
3412         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3413         return ((command & PCI_COMMAND_MEMORY) == 0);
3414 }
3415
3416 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3417         unsigned long *memory_bar)
3418 {
3419         int i;
3420
3421         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3422                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3423                         /* addressing mode bits already removed */
3424                         *memory_bar = pci_resource_start(pdev, i);
3425                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3426                                 *memory_bar);
3427                         return 0;
3428                 }
3429         dev_warn(&pdev->dev, "no memory BAR found\n");
3430         return -ENODEV;
3431 }
3432
3433 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3434         void __iomem *vaddr, int wait_for_ready)
3435 {
3436         int i, iterations;
3437         u32 scratchpad;
3438         if (wait_for_ready)
3439                 iterations = HPSA_BOARD_READY_ITERATIONS;
3440         else
3441                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3442
3443         for (i = 0; i < iterations; i++) {
3444                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3445                 if (wait_for_ready) {
3446                         if (scratchpad == HPSA_FIRMWARE_READY)
3447                                 return 0;
3448                 } else {
3449                         if (scratchpad != HPSA_FIRMWARE_READY)
3450                                 return 0;
3451                 }
3452                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3453         }
3454         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3455         return -ENODEV;
3456 }
3457
3458 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3459         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3460         u64 *cfg_offset)
3461 {
3462         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3463         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3464         *cfg_base_addr &= (u32) 0x0000ffff;
3465         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3466         if (*cfg_base_addr_index == -1) {
3467                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3468                 return -ENODEV;
3469         }
3470         return 0;
3471 }
3472
3473 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3474 {
3475         u64 cfg_offset;
3476         u32 cfg_base_addr;
3477         u64 cfg_base_addr_index;
3478         u32 trans_offset;
3479         int rc;
3480
3481         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3482                 &cfg_base_addr_index, &cfg_offset);
3483         if (rc)
3484                 return rc;
3485         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3486                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3487         if (!h->cfgtable)
3488                 return -ENOMEM;
3489         /* Find performant mode table. */
3490         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3491         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3492                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3493                                 sizeof(*h->transtable));
3494         if (!h->transtable)
3495                 return -ENOMEM;
3496         return 0;
3497 }
3498
3499 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3500 {
3501         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3502
3503         /* Limit commands in memory limited kdump scenario. */
3504         if (reset_devices && h->max_commands > 32)
3505                 h->max_commands = 32;
3506
3507         if (h->max_commands < 16) {
3508                 dev_warn(&h->pdev->dev, "Controller reports "
3509                         "max supported commands of %d, an obvious lie. "
3510                         "Using 16.  Ensure that firmware is up to date.\n",
3511                         h->max_commands);
3512                 h->max_commands = 16;
3513         }
3514 }
3515
3516 /* Interrogate the hardware for some limits:
3517  * max commands, max SG elements without chaining, and with chaining,
3518  * SG chain block size, etc.
3519  */
3520 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3521 {
3522         hpsa_get_max_perf_mode_cmds(h);
3523         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3524         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3525         /*
3526          * Limit in-command s/g elements to 32 save dma'able memory.
3527          * Howvever spec says if 0, use 31
3528          */
3529         h->max_cmd_sg_entries = 31;
3530         if (h->maxsgentries > 512) {
3531                 h->max_cmd_sg_entries = 32;
3532                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3533                 h->maxsgentries--; /* save one for chain pointer */
3534         } else {
3535                 h->maxsgentries = 31; /* default to traditional values */
3536                 h->chainsize = 0;
3537         }
3538 }
3539
3540 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3541 {
3542         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3543             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3544             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3545             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3546                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3547                 return false;
3548         }
3549         return true;
3550 }
3551
3552 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3553 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3554 {
3555 #ifdef CONFIG_X86
3556         u32 prefetch;
3557
3558         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3559         prefetch |= 0x100;
3560         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3561 #endif
3562 }
3563
3564 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3565  * in a prefetch beyond physical memory.
3566  */
3567 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3568 {
3569         u32 dma_prefetch;
3570
3571         if (h->board_id != 0x3225103C)
3572                 return;
3573         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3574         dma_prefetch |= 0x8000;
3575         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3576 }
3577
3578 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3579 {
3580         int i;
3581         u32 doorbell_value;
3582         unsigned long flags;
3583
3584         /* under certain very rare conditions, this can take awhile.
3585          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3586          * as we enter this code.)
3587          */
3588         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3589                 spin_lock_irqsave(&h->lock, flags);
3590                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3591                 spin_unlock_irqrestore(&h->lock, flags);
3592                 if (!doorbell_value & CFGTBL_ChangeReq)
3593                         break;
3594                 /* delay and try again */
3595                 usleep_range(10000, 20000);
3596         }
3597 }
3598
3599 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3600 {
3601         u32 trans_support;
3602
3603         trans_support = readl(&(h->cfgtable->TransportSupport));
3604         if (!(trans_support & SIMPLE_MODE))
3605                 return -ENOTSUPP;
3606
3607         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3608         /* Update the field, and then ring the doorbell */
3609         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3610         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3611         hpsa_wait_for_mode_change_ack(h);
3612         print_cfg_table(&h->pdev->dev, h->cfgtable);
3613         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3614                 dev_warn(&h->pdev->dev,
3615                         "unable to get board into simple mode\n");
3616                 return -ENODEV;
3617         }
3618         return 0;
3619 }
3620
3621 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3622 {
3623         int prod_index, err;
3624
3625         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3626         if (prod_index < 0)
3627                 return -ENODEV;
3628         h->product_name = products[prod_index].product_name;
3629         h->access = *(products[prod_index].access);
3630
3631         if (hpsa_board_disabled(h->pdev)) {
3632                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3633                 return -ENODEV;
3634         }
3635         err = pci_enable_device(h->pdev);
3636         if (err) {
3637                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3638                 return err;
3639         }
3640
3641         err = pci_request_regions(h->pdev, "hpsa");
3642         if (err) {
3643                 dev_err(&h->pdev->dev,
3644                         "cannot obtain PCI resources, aborting\n");
3645                 return err;
3646         }
3647         hpsa_interrupt_mode(h);
3648         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3649         if (err)
3650                 goto err_out_free_res;
3651         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3652         if (!h->vaddr) {
3653                 err = -ENOMEM;
3654                 goto err_out_free_res;
3655         }
3656         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3657         if (err)
3658                 goto err_out_free_res;
3659         err = hpsa_find_cfgtables(h);
3660         if (err)
3661                 goto err_out_free_res;
3662         hpsa_find_board_params(h);
3663
3664         if (!hpsa_CISS_signature_present(h)) {
3665                 err = -ENODEV;
3666                 goto err_out_free_res;
3667         }
3668         hpsa_enable_scsi_prefetch(h);
3669         hpsa_p600_dma_prefetch_quirk(h);
3670         err = hpsa_enter_simple_mode(h);
3671         if (err)
3672                 goto err_out_free_res;
3673         return 0;
3674
3675 err_out_free_res:
3676         if (h->transtable)
3677                 iounmap(h->transtable);
3678         if (h->cfgtable)
3679                 iounmap(h->cfgtable);
3680         if (h->vaddr)
3681                 iounmap(h->vaddr);
3682         /*
3683          * Deliberately omit pci_disable_device(): it does something nasty to
3684          * Smart Array controllers that pci_enable_device does not undo
3685          */
3686         pci_release_regions(h->pdev);
3687         return err;
3688 }
3689
3690 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3691 {
3692         int rc;
3693
3694 #define HBA_INQUIRY_BYTE_COUNT 64
3695         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3696         if (!h->hba_inquiry_data)
3697                 return;
3698         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3699                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3700         if (rc != 0) {
3701                 kfree(h->hba_inquiry_data);
3702                 h->hba_inquiry_data = NULL;
3703         }
3704 }
3705
3706 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3707 {
3708         int rc, i;
3709
3710         if (!reset_devices)
3711                 return 0;
3712
3713         /* Reset the controller with a PCI power-cycle or via doorbell */
3714         rc = hpsa_kdump_hard_reset_controller(pdev);
3715
3716         /* -ENOTSUPP here means we cannot reset the controller
3717          * but it's already (and still) up and running in
3718          * "performant mode".  Or, it might be 640x, which can't reset
3719          * due to concerns about shared bbwc between 6402/6404 pair.
3720          */
3721         if (rc == -ENOTSUPP)
3722                 return 0; /* just try to do the kdump anyhow. */
3723         if (rc)
3724                 return -ENODEV;
3725
3726         /* Now try to get the controller to respond to a no-op */
3727         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3728                 if (hpsa_noop(pdev) == 0)
3729                         break;
3730                 else
3731                         dev_warn(&pdev->dev, "no-op failed%s\n",
3732                                         (i < 11 ? "; re-trying" : ""));
3733         }
3734         return 0;
3735 }
3736
3737 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3738                                     const struct pci_device_id *ent)
3739 {
3740         int dac, rc;
3741         struct ctlr_info *h;
3742
3743         if (number_of_controllers == 0)
3744                 printk(KERN_INFO DRIVER_NAME "\n");
3745
3746         rc = hpsa_init_reset_devices(pdev);
3747         if (rc)
3748                 return rc;
3749
3750         /* Command structures must be aligned on a 32-byte boundary because
3751          * the 5 lower bits of the address are used by the hardware. and by
3752          * the driver.  See comments in hpsa.h for more info.
3753          */
3754 #define COMMANDLIST_ALIGNMENT 32
3755         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3756         h = kzalloc(sizeof(*h), GFP_KERNEL);
3757         if (!h)
3758                 return -ENOMEM;
3759
3760         h->pdev = pdev;
3761         h->busy_initializing = 1;
3762         INIT_HLIST_HEAD(&h->cmpQ);
3763         INIT_HLIST_HEAD(&h->reqQ);
3764         spin_lock_init(&h->lock);
3765         spin_lock_init(&h->scan_lock);
3766         rc = hpsa_pci_init(h);
3767         if (rc != 0)
3768                 goto clean1;
3769
3770         sprintf(h->devname, "hpsa%d", number_of_controllers);
3771         h->ctlr = number_of_controllers;
3772         number_of_controllers++;
3773
3774         /* configure PCI DMA stuff */
3775         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3776         if (rc == 0) {
3777                 dac = 1;
3778         } else {
3779                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3780                 if (rc == 0) {
3781                         dac = 0;
3782                 } else {
3783                         dev_err(&pdev->dev, "no suitable DMA available\n");
3784                         goto clean1;
3785                 }
3786         }
3787
3788         /* make sure the board interrupts are off */
3789         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3790
3791         if (h->msix_vector || h->msi_vector)
3792                 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
3793                                 IRQF_DISABLED, h->devname, h);
3794         else
3795                 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
3796                                 IRQF_DISABLED, h->devname, h);
3797         if (rc) {
3798                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3799                        h->intr[PERF_MODE_INT], h->devname);
3800                 goto clean2;
3801         }
3802
3803         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3804                h->devname, pdev->device,
3805                h->intr[PERF_MODE_INT], dac ? "" : " not");
3806
3807         h->cmd_pool_bits =
3808             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3809                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3810         h->cmd_pool = pci_alloc_consistent(h->pdev,
3811                     h->nr_cmds * sizeof(*h->cmd_pool),
3812                     &(h->cmd_pool_dhandle));
3813         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3814                     h->nr_cmds * sizeof(*h->errinfo_pool),
3815                     &(h->errinfo_pool_dhandle));
3816         if ((h->cmd_pool_bits == NULL)
3817             || (h->cmd_pool == NULL)
3818             || (h->errinfo_pool == NULL)) {
3819                 dev_err(&pdev->dev, "out of memory");
3820                 rc = -ENOMEM;
3821                 goto clean4;
3822         }
3823         if (hpsa_allocate_sg_chain_blocks(h))
3824                 goto clean4;
3825         init_waitqueue_head(&h->scan_wait_queue);
3826         h->scan_finished = 1; /* no scan currently in progress */
3827
3828         pci_set_drvdata(pdev, h);
3829         memset(h->cmd_pool_bits, 0,
3830                ((h->nr_cmds + BITS_PER_LONG -
3831                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3832
3833         hpsa_scsi_setup(h);
3834
3835         /* Turn the interrupts on so we can service requests */
3836         h->access.set_intr_mask(h, HPSA_INTR_ON);
3837
3838         hpsa_put_ctlr_into_performant_mode(h);
3839         hpsa_hba_inquiry(h);
3840         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3841         h->busy_initializing = 0;
3842         return 1;
3843
3844 clean4:
3845         hpsa_free_sg_chain_blocks(h);
3846         kfree(h->cmd_pool_bits);
3847         if (h->cmd_pool)
3848                 pci_free_consistent(h->pdev,
3849                             h->nr_cmds * sizeof(struct CommandList),
3850                             h->cmd_pool, h->cmd_pool_dhandle);
3851         if (h->errinfo_pool)
3852                 pci_free_consistent(h->pdev,
3853                             h->nr_cmds * sizeof(struct ErrorInfo),
3854                             h->errinfo_pool,
3855                             h->errinfo_pool_dhandle);
3856         free_irq(h->intr[PERF_MODE_INT], h);
3857 clean2:
3858 clean1:
3859         h->busy_initializing = 0;
3860         kfree(h);
3861         return rc;
3862 }
3863
3864 static void hpsa_flush_cache(struct ctlr_info *h)
3865 {
3866         char *flush_buf;
3867         struct CommandList *c;
3868
3869         flush_buf = kzalloc(4, GFP_KERNEL);
3870         if (!flush_buf)
3871                 return;
3872
3873         c = cmd_special_alloc(h);
3874         if (!c) {
3875                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3876                 goto out_of_memory;
3877         }
3878         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3879                 RAID_CTLR_LUNID, TYPE_CMD);
3880         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3881         if (c->err_info->CommandStatus != 0)
3882                 dev_warn(&h->pdev->dev,
3883                         "error flushing cache on controller\n");
3884         cmd_special_free(h, c);
3885 out_of_memory:
3886         kfree(flush_buf);
3887 }
3888
3889 static void hpsa_shutdown(struct pci_dev *pdev)
3890 {
3891         struct ctlr_info *h;
3892
3893         h = pci_get_drvdata(pdev);
3894         /* Turn board interrupts off  and send the flush cache command
3895          * sendcmd will turn off interrupt, and send the flush...
3896          * To write all data in the battery backed cache to disks
3897          */
3898         hpsa_flush_cache(h);
3899         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3900         free_irq(h->intr[PERF_MODE_INT], h);
3901 #ifdef CONFIG_PCI_MSI
3902         if (h->msix_vector)
3903                 pci_disable_msix(h->pdev);
3904         else if (h->msi_vector)
3905                 pci_disable_msi(h->pdev);
3906 #endif                          /* CONFIG_PCI_MSI */
3907 }
3908
3909 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3910 {
3911         struct ctlr_info *h;
3912
3913         if (pci_get_drvdata(pdev) == NULL) {
3914                 dev_err(&pdev->dev, "unable to remove device \n");
3915                 return;
3916         }
3917         h = pci_get_drvdata(pdev);
3918         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3919         hpsa_shutdown(pdev);
3920         iounmap(h->vaddr);
3921         iounmap(h->transtable);
3922         iounmap(h->cfgtable);
3923         hpsa_free_sg_chain_blocks(h);
3924         pci_free_consistent(h->pdev,
3925                 h->nr_cmds * sizeof(struct CommandList),
3926                 h->cmd_pool, h->cmd_pool_dhandle);
3927         pci_free_consistent(h->pdev,
3928                 h->nr_cmds * sizeof(struct ErrorInfo),
3929                 h->errinfo_pool, h->errinfo_pool_dhandle);
3930         pci_free_consistent(h->pdev, h->reply_pool_size,
3931                 h->reply_pool, h->reply_pool_dhandle);
3932         kfree(h->cmd_pool_bits);
3933         kfree(h->blockFetchTable);
3934         kfree(h->hba_inquiry_data);
3935         /*
3936          * Deliberately omit pci_disable_device(): it does something nasty to
3937          * Smart Array controllers that pci_enable_device does not undo
3938          */
3939         pci_release_regions(pdev);
3940         pci_set_drvdata(pdev, NULL);
3941         kfree(h);
3942 }
3943
3944 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3945         __attribute__((unused)) pm_message_t state)
3946 {
3947         return -ENOSYS;
3948 }
3949
3950 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3951 {
3952         return -ENOSYS;
3953 }
3954
3955 static struct pci_driver hpsa_pci_driver = {
3956         .name = "hpsa",
3957         .probe = hpsa_init_one,
3958         .remove = __devexit_p(hpsa_remove_one),
3959         .id_table = hpsa_pci_device_id, /* id_table */
3960         .shutdown = hpsa_shutdown,
3961         .suspend = hpsa_suspend,
3962         .resume = hpsa_resume,
3963 };
3964
3965 /* Fill in bucket_map[], given nsgs (the max number of
3966  * scatter gather elements supported) and bucket[],
3967  * which is an array of 8 integers.  The bucket[] array
3968  * contains 8 different DMA transfer sizes (in 16
3969  * byte increments) which the controller uses to fetch
3970  * commands.  This function fills in bucket_map[], which
3971  * maps a given number of scatter gather elements to one of
3972  * the 8 DMA transfer sizes.  The point of it is to allow the
3973  * controller to only do as much DMA as needed to fetch the
3974  * command, with the DMA transfer size encoded in the lower
3975  * bits of the command address.
3976  */
3977 static void  calc_bucket_map(int bucket[], int num_buckets,
3978         int nsgs, int *bucket_map)
3979 {
3980         int i, j, b, size;
3981
3982         /* even a command with 0 SGs requires 4 blocks */
3983 #define MINIMUM_TRANSFER_BLOCKS 4
3984 #define NUM_BUCKETS 8
3985         /* Note, bucket_map must have nsgs+1 entries. */
3986         for (i = 0; i <= nsgs; i++) {
3987                 /* Compute size of a command with i SG entries */
3988                 size = i + MINIMUM_TRANSFER_BLOCKS;
3989                 b = num_buckets; /* Assume the biggest bucket */
3990                 /* Find the bucket that is just big enough */
3991                 for (j = 0; j < 8; j++) {
3992                         if (bucket[j] >= size) {
3993                                 b = j;
3994                                 break;
3995                         }
3996                 }
3997                 /* for a command with i SG entries, use bucket b. */
3998                 bucket_map[i] = b;
3999         }
4000 }
4001
4002 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
4003 {
4004         int i;
4005         unsigned long register_value;
4006
4007         /* This is a bit complicated.  There are 8 registers on
4008          * the controller which we write to to tell it 8 different
4009          * sizes of commands which there may be.  It's a way of
4010          * reducing the DMA done to fetch each command.  Encoded into
4011          * each command's tag are 3 bits which communicate to the controller
4012          * which of the eight sizes that command fits within.  The size of
4013          * each command depends on how many scatter gather entries there are.
4014          * Each SG entry requires 16 bytes.  The eight registers are programmed
4015          * with the number of 16-byte blocks a command of that size requires.
4016          * The smallest command possible requires 5 such 16 byte blocks.
4017          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4018          * blocks.  Note, this only extends to the SG entries contained
4019          * within the command block, and does not extend to chained blocks
4020          * of SG elements.   bft[] contains the eight values we write to
4021          * the registers.  They are not evenly distributed, but have more
4022          * sizes for small commands, and fewer sizes for larger commands.
4023          */
4024         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4025         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4026         /*  5 = 1 s/g entry or 4k
4027          *  6 = 2 s/g entry or 8k
4028          *  8 = 4 s/g entry or 16k
4029          * 10 = 6 s/g entry or 24k
4030          */
4031
4032         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4033
4034         /* Controller spec: zero out this buffer. */
4035         memset(h->reply_pool, 0, h->reply_pool_size);
4036         h->reply_pool_head = h->reply_pool;
4037
4038         bft[7] = h->max_sg_entries + 4;
4039         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4040         for (i = 0; i < 8; i++)
4041                 writel(bft[i], &h->transtable->BlockFetch[i]);
4042
4043         /* size of controller ring buffer */
4044         writel(h->max_commands, &h->transtable->RepQSize);
4045         writel(1, &h->transtable->RepQCount);
4046         writel(0, &h->transtable->RepQCtrAddrLow32);
4047         writel(0, &h->transtable->RepQCtrAddrHigh32);
4048         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4049         writel(0, &h->transtable->RepQAddr0High32);
4050         writel(CFGTBL_Trans_Performant,
4051                 &(h->cfgtable->HostWrite.TransportRequest));
4052         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4053         hpsa_wait_for_mode_change_ack(h);
4054         register_value = readl(&(h->cfgtable->TransportActive));
4055         if (!(register_value & CFGTBL_Trans_Performant)) {
4056                 dev_warn(&h->pdev->dev, "unable to get board into"
4057                                         " performant mode\n");
4058                 return;
4059         }
4060 }
4061
4062 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4063 {
4064         u32 trans_support;
4065
4066         if (hpsa_simple_mode)
4067                 return;
4068
4069         trans_support = readl(&(h->cfgtable->TransportSupport));
4070         if (!(trans_support & PERFORMANT_MODE))
4071                 return;
4072
4073         hpsa_get_max_perf_mode_cmds(h);
4074         h->max_sg_entries = 32;
4075         /* Performant mode ring buffer and supporting data structures */
4076         h->reply_pool_size = h->max_commands * sizeof(u64);
4077         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4078                                 &(h->reply_pool_dhandle));
4079
4080         /* Need a block fetch table for performant mode */
4081         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4082                                 sizeof(u32)), GFP_KERNEL);
4083
4084         if ((h->reply_pool == NULL)
4085                 || (h->blockFetchTable == NULL))
4086                 goto clean_up;
4087
4088         hpsa_enter_performant_mode(h);
4089
4090         /* Change the access methods to the performant access methods */
4091         h->access = SA5_performant_access;
4092         h->transMethod = CFGTBL_Trans_Performant;
4093
4094         return;
4095
4096 clean_up:
4097         if (h->reply_pool)
4098                 pci_free_consistent(h->pdev, h->reply_pool_size,
4099                         h->reply_pool, h->reply_pool_dhandle);
4100         kfree(h->blockFetchTable);
4101 }
4102
4103 /*
4104  *  This is it.  Register the PCI driver information for the cards we control
4105  *  the OS will call our registered routines when it finds one of our cards.
4106  */
4107 static int __init hpsa_init(void)
4108 {
4109         return pci_register_driver(&hpsa_pci_driver);
4110 }
4111
4112 static void __exit hpsa_cleanup(void)
4113 {
4114         pci_unregister_driver(&hpsa_pci_driver);
4115 }
4116
4117 module_init(hpsa_init);
4118 module_exit(hpsa_cleanup);