9cfae0c08707d95e21a68bdd8822bc4f966e223f
[pandora-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1792                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1793                 return 0;
1794         }
1795         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1796
1797         lock = LOCK_NONE;
1798         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1799                 printk(KERN_ERR DRV_NAME
1800                        ": %s: Failed to clear ordinal lock.\n",
1801                        priv->net_dev->name);
1802                 rc = 1;
1803                 goto exit;
1804         }
1805
1806         priv->status &= ~STATUS_SCANNING;
1807
1808         if (rf_kill_active(priv)) {
1809                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1810                        priv->net_dev->name);
1811
1812                 if (priv->stop_rf_kill) {
1813                         priv->stop_rf_kill = 0;
1814                         schedule_delayed_work(&priv->rf_kill,
1815                                               round_jiffies_relative(HZ));
1816                 }
1817
1818                 deferred = 1;
1819         }
1820
1821         /* Turn on the interrupt so that commands can be processed */
1822         ipw2100_enable_interrupts(priv);
1823
1824         /* Send all of the commands that must be sent prior to
1825          * HOST_COMPLETE */
1826         if (ipw2100_adapter_setup(priv)) {
1827                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1828                        priv->net_dev->name);
1829                 rc = 1;
1830                 goto exit;
1831         }
1832
1833         if (!deferred) {
1834                 /* Enable the adapter - sends HOST_COMPLETE */
1835                 if (ipw2100_enable_adapter(priv)) {
1836                         printk(KERN_ERR DRV_NAME ": "
1837                                "%s: failed in call to enable adapter.\n",
1838                                priv->net_dev->name);
1839                         ipw2100_hw_stop_adapter(priv);
1840                         rc = 1;
1841                         goto exit;
1842                 }
1843
1844                 /* Start a scan . . . */
1845                 ipw2100_set_scan_options(priv);
1846                 ipw2100_start_scan(priv);
1847         }
1848
1849       exit:
1850         return rc;
1851 }
1852
1853 static void ipw2100_down(struct ipw2100_priv *priv)
1854 {
1855         unsigned long flags;
1856         union iwreq_data wrqu = {
1857                 .ap_addr = {
1858                             .sa_family = ARPHRD_ETHER}
1859         };
1860         int associated = priv->status & STATUS_ASSOCIATED;
1861
1862         /* Kill the RF switch timer */
1863         if (!priv->stop_rf_kill) {
1864                 priv->stop_rf_kill = 1;
1865                 cancel_delayed_work(&priv->rf_kill);
1866         }
1867
1868         /* Kill the firmware hang check timer */
1869         if (!priv->stop_hang_check) {
1870                 priv->stop_hang_check = 1;
1871                 cancel_delayed_work(&priv->hang_check);
1872         }
1873
1874         /* Kill any pending resets */
1875         if (priv->status & STATUS_RESET_PENDING)
1876                 cancel_delayed_work(&priv->reset_work);
1877
1878         /* Make sure the interrupt is on so that FW commands will be
1879          * processed correctly */
1880         spin_lock_irqsave(&priv->low_lock, flags);
1881         ipw2100_enable_interrupts(priv);
1882         spin_unlock_irqrestore(&priv->low_lock, flags);
1883
1884         if (ipw2100_hw_stop_adapter(priv))
1885                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1886                        priv->net_dev->name);
1887
1888         /* Do not disable the interrupt until _after_ we disable
1889          * the adaptor.  Otherwise the CARD_DISABLE command will never
1890          * be ack'd by the firmware */
1891         spin_lock_irqsave(&priv->low_lock, flags);
1892         ipw2100_disable_interrupts(priv);
1893         spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1896
1897         /* We have to signal any supplicant if we are disassociating */
1898         if (associated)
1899                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1900
1901         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1902         netif_carrier_off(priv->net_dev);
1903         netif_stop_queue(priv->net_dev);
1904 }
1905
1906 /* Called by register_netdev() */
1907 static int ipw2100_net_init(struct net_device *dev)
1908 {
1909         struct ipw2100_priv *priv = libipw_priv(dev);
1910
1911         return ipw2100_up(priv, 1);
1912 }
1913
1914 static int ipw2100_wdev_init(struct net_device *dev)
1915 {
1916         struct ipw2100_priv *priv = libipw_priv(dev);
1917         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1918         struct wireless_dev *wdev = &priv->ieee->wdev;
1919         int i;
1920
1921         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1922
1923         /* fill-out priv->ieee->bg_band */
1924         if (geo->bg_channels) {
1925                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1926
1927                 bg_band->band = IEEE80211_BAND_2GHZ;
1928                 bg_band->n_channels = geo->bg_channels;
1929                 bg_band->channels = kcalloc(geo->bg_channels,
1930                                             sizeof(struct ieee80211_channel),
1931                                             GFP_KERNEL);
1932                 if (!bg_band->channels) {
1933                         ipw2100_down(priv);
1934                         return -ENOMEM;
1935                 }
1936                 /* translate geo->bg to bg_band.channels */
1937                 for (i = 0; i < geo->bg_channels; i++) {
1938                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1939                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1940                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1941                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1942                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1943                                 bg_band->channels[i].flags |=
1944                                         IEEE80211_CHAN_PASSIVE_SCAN;
1945                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1946                                 bg_band->channels[i].flags |=
1947                                         IEEE80211_CHAN_NO_IBSS;
1948                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1949                                 bg_band->channels[i].flags |=
1950                                         IEEE80211_CHAN_RADAR;
1951                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1952                            LIBIPW_CH_UNIFORM_SPREADING, or
1953                            LIBIPW_CH_B_ONLY... */
1954                 }
1955                 /* point at bitrate info */
1956                 bg_band->bitrates = ipw2100_bg_rates;
1957                 bg_band->n_bitrates = RATE_COUNT;
1958
1959                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1960         }
1961
1962         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1963         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1964
1965         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1966         if (wiphy_register(wdev->wiphy))
1967                 return -EIO;
1968         return 0;
1969 }
1970
1971 static void ipw2100_reset_adapter(struct work_struct *work)
1972 {
1973         struct ipw2100_priv *priv =
1974                 container_of(work, struct ipw2100_priv, reset_work.work);
1975         unsigned long flags;
1976         union iwreq_data wrqu = {
1977                 .ap_addr = {
1978                             .sa_family = ARPHRD_ETHER}
1979         };
1980         int associated = priv->status & STATUS_ASSOCIATED;
1981
1982         spin_lock_irqsave(&priv->low_lock, flags);
1983         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1984         priv->resets++;
1985         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1986         priv->status |= STATUS_SECURITY_UPDATED;
1987
1988         /* Force a power cycle even if interface hasn't been opened
1989          * yet */
1990         cancel_delayed_work(&priv->reset_work);
1991         priv->status |= STATUS_RESET_PENDING;
1992         spin_unlock_irqrestore(&priv->low_lock, flags);
1993
1994         mutex_lock(&priv->action_mutex);
1995         /* stop timed checks so that they don't interfere with reset */
1996         priv->stop_hang_check = 1;
1997         cancel_delayed_work(&priv->hang_check);
1998
1999         /* We have to signal any supplicant if we are disassociating */
2000         if (associated)
2001                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
2002
2003         ipw2100_up(priv, 0);
2004         mutex_unlock(&priv->action_mutex);
2005
2006 }
2007
2008 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2009 {
2010
2011 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2012         int ret;
2013         unsigned int len, essid_len;
2014         char essid[IW_ESSID_MAX_SIZE];
2015         u32 txrate;
2016         u32 chan;
2017         char *txratename;
2018         u8 bssid[ETH_ALEN];
2019         DECLARE_SSID_BUF(ssid);
2020
2021         /*
2022          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2023          *      an actual MAC of the AP. Seems like FW sets this
2024          *      address too late. Read it later and expose through
2025          *      /proc or schedule a later task to query and update
2026          */
2027
2028         essid_len = IW_ESSID_MAX_SIZE;
2029         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2030                                   essid, &essid_len);
2031         if (ret) {
2032                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2033                                __LINE__);
2034                 return;
2035         }
2036
2037         len = sizeof(u32);
2038         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2039         if (ret) {
2040                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2041                                __LINE__);
2042                 return;
2043         }
2044
2045         len = sizeof(u32);
2046         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2047         if (ret) {
2048                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2049                                __LINE__);
2050                 return;
2051         }
2052         len = ETH_ALEN;
2053         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2054         if (ret) {
2055                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2056                                __LINE__);
2057                 return;
2058         }
2059         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2060
2061         switch (txrate) {
2062         case TX_RATE_1_MBIT:
2063                 txratename = "1Mbps";
2064                 break;
2065         case TX_RATE_2_MBIT:
2066                 txratename = "2Mbsp";
2067                 break;
2068         case TX_RATE_5_5_MBIT:
2069                 txratename = "5.5Mbps";
2070                 break;
2071         case TX_RATE_11_MBIT:
2072                 txratename = "11Mbps";
2073                 break;
2074         default:
2075                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2076                 txratename = "unknown rate";
2077                 break;
2078         }
2079
2080         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2081                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2082                        txratename, chan, bssid);
2083
2084         /* now we copy read ssid into dev */
2085         if (!(priv->config & CFG_STATIC_ESSID)) {
2086                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2087                 memcpy(priv->essid, essid, priv->essid_len);
2088         }
2089         priv->channel = chan;
2090         memcpy(priv->bssid, bssid, ETH_ALEN);
2091
2092         priv->status |= STATUS_ASSOCIATING;
2093         priv->connect_start = get_seconds();
2094
2095         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2096 }
2097
2098 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2099                              int length, int batch_mode)
2100 {
2101         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2102         struct host_command cmd = {
2103                 .host_command = SSID,
2104                 .host_command_sequence = 0,
2105                 .host_command_length = ssid_len
2106         };
2107         int err;
2108         DECLARE_SSID_BUF(ssid);
2109
2110         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2111
2112         if (ssid_len)
2113                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2114
2115         if (!batch_mode) {
2116                 err = ipw2100_disable_adapter(priv);
2117                 if (err)
2118                         return err;
2119         }
2120
2121         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2122          * disable auto association -- so we cheat by setting a bogus SSID */
2123         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2124                 int i;
2125                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2126                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2127                         bogus[i] = 0x18 + i;
2128                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2129         }
2130
2131         /* NOTE:  We always send the SSID command even if the provided ESSID is
2132          * the same as what we currently think is set. */
2133
2134         err = ipw2100_hw_send_command(priv, &cmd);
2135         if (!err) {
2136                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2137                 memcpy(priv->essid, essid, ssid_len);
2138                 priv->essid_len = ssid_len;
2139         }
2140
2141         if (!batch_mode) {
2142                 if (ipw2100_enable_adapter(priv))
2143                         err = -EIO;
2144         }
2145
2146         return err;
2147 }
2148
2149 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2150 {
2151         DECLARE_SSID_BUF(ssid);
2152
2153         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2154                   "disassociated: '%s' %pM\n",
2155                   print_ssid(ssid, priv->essid, priv->essid_len),
2156                   priv->bssid);
2157
2158         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2159
2160         if (priv->status & STATUS_STOPPING) {
2161                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2162                 return;
2163         }
2164
2165         memset(priv->bssid, 0, ETH_ALEN);
2166         memset(priv->ieee->bssid, 0, ETH_ALEN);
2167
2168         netif_carrier_off(priv->net_dev);
2169         netif_stop_queue(priv->net_dev);
2170
2171         if (!(priv->status & STATUS_RUNNING))
2172                 return;
2173
2174         if (priv->status & STATUS_SECURITY_UPDATED)
2175                 schedule_delayed_work(&priv->security_work, 0);
2176
2177         schedule_delayed_work(&priv->wx_event_work, 0);
2178 }
2179
2180 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2181 {
2182         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2183                        priv->net_dev->name);
2184
2185         /* RF_KILL is now enabled (else we wouldn't be here) */
2186         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2187         priv->status |= STATUS_RF_KILL_HW;
2188
2189         /* Make sure the RF Kill check timer is running */
2190         priv->stop_rf_kill = 0;
2191         cancel_delayed_work(&priv->rf_kill);
2192         schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2193 }
2194
2195 static void send_scan_event(void *data)
2196 {
2197         struct ipw2100_priv *priv = data;
2198         union iwreq_data wrqu;
2199
2200         wrqu.data.length = 0;
2201         wrqu.data.flags = 0;
2202         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2203 }
2204
2205 static void ipw2100_scan_event_later(struct work_struct *work)
2206 {
2207         send_scan_event(container_of(work, struct ipw2100_priv,
2208                                         scan_event_later.work));
2209 }
2210
2211 static void ipw2100_scan_event_now(struct work_struct *work)
2212 {
2213         send_scan_event(container_of(work, struct ipw2100_priv,
2214                                         scan_event_now));
2215 }
2216
2217 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2218 {
2219         IPW_DEBUG_SCAN("scan complete\n");
2220         /* Age the scan results... */
2221         priv->ieee->scans++;
2222         priv->status &= ~STATUS_SCANNING;
2223
2224         /* Only userspace-requested scan completion events go out immediately */
2225         if (!priv->user_requested_scan) {
2226                 if (!delayed_work_pending(&priv->scan_event_later))
2227                         schedule_delayed_work(&priv->scan_event_later,
2228                                               round_jiffies_relative(msecs_to_jiffies(4000)));
2229         } else {
2230                 priv->user_requested_scan = 0;
2231                 cancel_delayed_work(&priv->scan_event_later);
2232                 schedule_work(&priv->scan_event_now);
2233         }
2234 }
2235
2236 #ifdef CONFIG_IPW2100_DEBUG
2237 #define IPW2100_HANDLER(v, f) { v, f, # v }
2238 struct ipw2100_status_indicator {
2239         int status;
2240         void (*cb) (struct ipw2100_priv * priv, u32 status);
2241         char *name;
2242 };
2243 #else
2244 #define IPW2100_HANDLER(v, f) { v, f }
2245 struct ipw2100_status_indicator {
2246         int status;
2247         void (*cb) (struct ipw2100_priv * priv, u32 status);
2248 };
2249 #endif                          /* CONFIG_IPW2100_DEBUG */
2250
2251 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2252 {
2253         IPW_DEBUG_SCAN("Scanning...\n");
2254         priv->status |= STATUS_SCANNING;
2255 }
2256
2257 static const struct ipw2100_status_indicator status_handlers[] = {
2258         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2259         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2260         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2261         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2262         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2263         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2264         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2265         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2266         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2267         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2268         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2269         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2270         IPW2100_HANDLER(-1, NULL)
2271 };
2272
2273 static void isr_status_change(struct ipw2100_priv *priv, int status)
2274 {
2275         int i;
2276
2277         if (status == IPW_STATE_SCANNING &&
2278             priv->status & STATUS_ASSOCIATED &&
2279             !(priv->status & STATUS_SCANNING)) {
2280                 IPW_DEBUG_INFO("Scan detected while associated, with "
2281                                "no scan request.  Restarting firmware.\n");
2282
2283                 /* Wake up any sleeping jobs */
2284                 schedule_reset(priv);
2285         }
2286
2287         for (i = 0; status_handlers[i].status != -1; i++) {
2288                 if (status == status_handlers[i].status) {
2289                         IPW_DEBUG_NOTIF("Status change: %s\n",
2290                                         status_handlers[i].name);
2291                         if (status_handlers[i].cb)
2292                                 status_handlers[i].cb(priv, status);
2293                         priv->wstats.status = status;
2294                         return;
2295                 }
2296         }
2297
2298         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2299 }
2300
2301 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2302                                     struct ipw2100_cmd_header *cmd)
2303 {
2304 #ifdef CONFIG_IPW2100_DEBUG
2305         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2306                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2307                              command_types[cmd->host_command_reg],
2308                              cmd->host_command_reg);
2309         }
2310 #endif
2311         if (cmd->host_command_reg == HOST_COMPLETE)
2312                 priv->status |= STATUS_ENABLED;
2313
2314         if (cmd->host_command_reg == CARD_DISABLE)
2315                 priv->status &= ~STATUS_ENABLED;
2316
2317         priv->status &= ~STATUS_CMD_ACTIVE;
2318
2319         wake_up_interruptible(&priv->wait_command_queue);
2320 }
2321
2322 #ifdef CONFIG_IPW2100_DEBUG
2323 static const char *frame_types[] = {
2324         "COMMAND_STATUS_VAL",
2325         "STATUS_CHANGE_VAL",
2326         "P80211_DATA_VAL",
2327         "P8023_DATA_VAL",
2328         "HOST_NOTIFICATION_VAL"
2329 };
2330 #endif
2331
2332 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2333                                     struct ipw2100_rx_packet *packet)
2334 {
2335         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2336         if (!packet->skb)
2337                 return -ENOMEM;
2338
2339         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2340         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2341                                           sizeof(struct ipw2100_rx),
2342                                           PCI_DMA_FROMDEVICE);
2343         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2344          *       dma_addr */
2345
2346         return 0;
2347 }
2348
2349 #define SEARCH_ERROR   0xffffffff
2350 #define SEARCH_FAIL    0xfffffffe
2351 #define SEARCH_SUCCESS 0xfffffff0
2352 #define SEARCH_DISCARD 0
2353 #define SEARCH_SNAPSHOT 1
2354
2355 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2356 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2357 {
2358         int i;
2359         if (!priv->snapshot[0])
2360                 return;
2361         for (i = 0; i < 0x30; i++)
2362                 kfree(priv->snapshot[i]);
2363         priv->snapshot[0] = NULL;
2364 }
2365
2366 #ifdef IPW2100_DEBUG_C3
2367 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2368 {
2369         int i;
2370         if (priv->snapshot[0])
2371                 return 1;
2372         for (i = 0; i < 0x30; i++) {
2373                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2374                 if (!priv->snapshot[i]) {
2375                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2376                                        "buffer %d\n", priv->net_dev->name, i);
2377                         while (i > 0)
2378                                 kfree(priv->snapshot[--i]);
2379                         priv->snapshot[0] = NULL;
2380                         return 0;
2381                 }
2382         }
2383
2384         return 1;
2385 }
2386
2387 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2388                                     size_t len, int mode)
2389 {
2390         u32 i, j;
2391         u32 tmp;
2392         u8 *s, *d;
2393         u32 ret;
2394
2395         s = in_buf;
2396         if (mode == SEARCH_SNAPSHOT) {
2397                 if (!ipw2100_snapshot_alloc(priv))
2398                         mode = SEARCH_DISCARD;
2399         }
2400
2401         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2402                 read_nic_dword(priv->net_dev, i, &tmp);
2403                 if (mode == SEARCH_SNAPSHOT)
2404                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2405                 if (ret == SEARCH_FAIL) {
2406                         d = (u8 *) & tmp;
2407                         for (j = 0; j < 4; j++) {
2408                                 if (*s != *d) {
2409                                         s = in_buf;
2410                                         continue;
2411                                 }
2412
2413                                 s++;
2414                                 d++;
2415
2416                                 if ((s - in_buf) == len)
2417                                         ret = (i + j) - len + 1;
2418                         }
2419                 } else if (mode == SEARCH_DISCARD)
2420                         return ret;
2421         }
2422
2423         return ret;
2424 }
2425 #endif
2426
2427 /*
2428  *
2429  * 0) Disconnect the SKB from the firmware (just unmap)
2430  * 1) Pack the ETH header into the SKB
2431  * 2) Pass the SKB to the network stack
2432  *
2433  * When packet is provided by the firmware, it contains the following:
2434  *
2435  * .  libipw_hdr
2436  * .  libipw_snap_hdr
2437  *
2438  * The size of the constructed ethernet
2439  *
2440  */
2441 #ifdef IPW2100_RX_DEBUG
2442 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2443 #endif
2444
2445 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2446 {
2447 #ifdef IPW2100_DEBUG_C3
2448         struct ipw2100_status *status = &priv->status_queue.drv[i];
2449         u32 match, reg;
2450         int j;
2451 #endif
2452
2453         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2454                        i * sizeof(struct ipw2100_status));
2455
2456 #ifdef IPW2100_DEBUG_C3
2457         /* Halt the firmware so we can get a good image */
2458         write_register(priv->net_dev, IPW_REG_RESET_REG,
2459                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2460         j = 5;
2461         do {
2462                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2463                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2464
2465                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2466                         break;
2467         } while (j--);
2468
2469         match = ipw2100_match_buf(priv, (u8 *) status,
2470                                   sizeof(struct ipw2100_status),
2471                                   SEARCH_SNAPSHOT);
2472         if (match < SEARCH_SUCCESS)
2473                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2474                                "offset 0x%06X, length %d:\n",
2475                                priv->net_dev->name, match,
2476                                sizeof(struct ipw2100_status));
2477         else
2478                 IPW_DEBUG_INFO("%s: No DMA status match in "
2479                                "Firmware.\n", priv->net_dev->name);
2480
2481         printk_buf((u8 *) priv->status_queue.drv,
2482                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2483 #endif
2484
2485         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2486         priv->net_dev->stats.rx_errors++;
2487         schedule_reset(priv);
2488 }
2489
2490 static void isr_rx(struct ipw2100_priv *priv, int i,
2491                           struct libipw_rx_stats *stats)
2492 {
2493         struct net_device *dev = priv->net_dev;
2494         struct ipw2100_status *status = &priv->status_queue.drv[i];
2495         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2496
2497         IPW_DEBUG_RX("Handler...\n");
2498
2499         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2500                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2501                                "  Dropping.\n",
2502                                dev->name,
2503                                status->frame_size, skb_tailroom(packet->skb));
2504                 dev->stats.rx_errors++;
2505                 return;
2506         }
2507
2508         if (unlikely(!netif_running(dev))) {
2509                 dev->stats.rx_errors++;
2510                 priv->wstats.discard.misc++;
2511                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2512                 return;
2513         }
2514
2515         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2516                      !(priv->status & STATUS_ASSOCIATED))) {
2517                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2518                 priv->wstats.discard.misc++;
2519                 return;
2520         }
2521
2522         pci_unmap_single(priv->pci_dev,
2523                          packet->dma_addr,
2524                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2525
2526         skb_put(packet->skb, status->frame_size);
2527
2528 #ifdef IPW2100_RX_DEBUG
2529         /* Make a copy of the frame so we can dump it to the logs if
2530          * libipw_rx fails */
2531         skb_copy_from_linear_data(packet->skb, packet_data,
2532                                   min_t(u32, status->frame_size,
2533                                              IPW_RX_NIC_BUFFER_LENGTH));
2534 #endif
2535
2536         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2537 #ifdef IPW2100_RX_DEBUG
2538                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2539                                dev->name);
2540                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2541 #endif
2542                 dev->stats.rx_errors++;
2543
2544                 /* libipw_rx failed, so it didn't free the SKB */
2545                 dev_kfree_skb_any(packet->skb);
2546                 packet->skb = NULL;
2547         }
2548
2549         /* We need to allocate a new SKB and attach it to the RDB. */
2550         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2551                 printk(KERN_WARNING DRV_NAME ": "
2552                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2553                        "adapter.\n", dev->name);
2554                 /* TODO: schedule adapter shutdown */
2555                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2556         }
2557
2558         /* Update the RDB entry */
2559         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2560 }
2561
2562 #ifdef CONFIG_IPW2100_MONITOR
2563
2564 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2565                    struct libipw_rx_stats *stats)
2566 {
2567         struct net_device *dev = priv->net_dev;
2568         struct ipw2100_status *status = &priv->status_queue.drv[i];
2569         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2570
2571         /* Magic struct that slots into the radiotap header -- no reason
2572          * to build this manually element by element, we can write it much
2573          * more efficiently than we can parse it. ORDER MATTERS HERE */
2574         struct ipw_rt_hdr {
2575                 struct ieee80211_radiotap_header rt_hdr;
2576                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2577         } *ipw_rt;
2578
2579         IPW_DEBUG_RX("Handler...\n");
2580
2581         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2582                                 sizeof(struct ipw_rt_hdr))) {
2583                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2584                                "  Dropping.\n",
2585                                dev->name,
2586                                status->frame_size,
2587                                skb_tailroom(packet->skb));
2588                 dev->stats.rx_errors++;
2589                 return;
2590         }
2591
2592         if (unlikely(!netif_running(dev))) {
2593                 dev->stats.rx_errors++;
2594                 priv->wstats.discard.misc++;
2595                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2596                 return;
2597         }
2598
2599         if (unlikely(priv->config & CFG_CRC_CHECK &&
2600                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2601                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2602                 dev->stats.rx_errors++;
2603                 return;
2604         }
2605
2606         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2607                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2608         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2609                 packet->skb->data, status->frame_size);
2610
2611         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2612
2613         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2614         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2615         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2616
2617         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2618
2619         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2620
2621         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2622
2623         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2624                 dev->stats.rx_errors++;
2625
2626                 /* libipw_rx failed, so it didn't free the SKB */
2627                 dev_kfree_skb_any(packet->skb);
2628                 packet->skb = NULL;
2629         }
2630
2631         /* We need to allocate a new SKB and attach it to the RDB. */
2632         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2633                 IPW_DEBUG_WARNING(
2634                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2635                         "adapter.\n", dev->name);
2636                 /* TODO: schedule adapter shutdown */
2637                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2638         }
2639
2640         /* Update the RDB entry */
2641         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2642 }
2643
2644 #endif
2645
2646 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2647 {
2648         struct ipw2100_status *status = &priv->status_queue.drv[i];
2649         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2650         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2651
2652         switch (frame_type) {
2653         case COMMAND_STATUS_VAL:
2654                 return (status->frame_size != sizeof(u->rx_data.command));
2655         case STATUS_CHANGE_VAL:
2656                 return (status->frame_size != sizeof(u->rx_data.status));
2657         case HOST_NOTIFICATION_VAL:
2658                 return (status->frame_size < sizeof(u->rx_data.notification));
2659         case P80211_DATA_VAL:
2660         case P8023_DATA_VAL:
2661 #ifdef CONFIG_IPW2100_MONITOR
2662                 return 0;
2663 #else
2664                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2665                 case IEEE80211_FTYPE_MGMT:
2666                 case IEEE80211_FTYPE_CTL:
2667                         return 0;
2668                 case IEEE80211_FTYPE_DATA:
2669                         return (status->frame_size >
2670                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2671                 }
2672 #endif
2673         }
2674
2675         return 1;
2676 }
2677
2678 /*
2679  * ipw2100 interrupts are disabled at this point, and the ISR
2680  * is the only code that calls this method.  So, we do not need
2681  * to play with any locks.
2682  *
2683  * RX Queue works as follows:
2684  *
2685  * Read index - firmware places packet in entry identified by the
2686  *              Read index and advances Read index.  In this manner,
2687  *              Read index will always point to the next packet to
2688  *              be filled--but not yet valid.
2689  *
2690  * Write index - driver fills this entry with an unused RBD entry.
2691  *               This entry has not filled by the firmware yet.
2692  *
2693  * In between the W and R indexes are the RBDs that have been received
2694  * but not yet processed.
2695  *
2696  * The process of handling packets will start at WRITE + 1 and advance
2697  * until it reaches the READ index.
2698  *
2699  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2700  *
2701  */
2702 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2703 {
2704         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2705         struct ipw2100_status_queue *sq = &priv->status_queue;
2706         struct ipw2100_rx_packet *packet;
2707         u16 frame_type;
2708         u32 r, w, i, s;
2709         struct ipw2100_rx *u;
2710         struct libipw_rx_stats stats = {
2711                 .mac_time = jiffies,
2712         };
2713
2714         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2715         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2716
2717         if (r >= rxq->entries) {
2718                 IPW_DEBUG_RX("exit - bad read index\n");
2719                 return;
2720         }
2721
2722         i = (rxq->next + 1) % rxq->entries;
2723         s = i;
2724         while (i != r) {
2725                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2726                    r, rxq->next, i); */
2727
2728                 packet = &priv->rx_buffers[i];
2729
2730                 /* Sync the DMA for the RX buffer so CPU is sure to get
2731                  * the correct values */
2732                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2733                                             sizeof(struct ipw2100_rx),
2734                                             PCI_DMA_FROMDEVICE);
2735
2736                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2737                         ipw2100_corruption_detected(priv, i);
2738                         goto increment;
2739                 }
2740
2741                 u = packet->rxp;
2742                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2743                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2744                 stats.len = sq->drv[i].frame_size;
2745
2746                 stats.mask = 0;
2747                 if (stats.rssi != 0)
2748                         stats.mask |= LIBIPW_STATMASK_RSSI;
2749                 stats.freq = LIBIPW_24GHZ_BAND;
2750
2751                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2752                              priv->net_dev->name, frame_types[frame_type],
2753                              stats.len);
2754
2755                 switch (frame_type) {
2756                 case COMMAND_STATUS_VAL:
2757                         /* Reset Rx watchdog */
2758                         isr_rx_complete_command(priv, &u->rx_data.command);
2759                         break;
2760
2761                 case STATUS_CHANGE_VAL:
2762                         isr_status_change(priv, u->rx_data.status);
2763                         break;
2764
2765                 case P80211_DATA_VAL:
2766                 case P8023_DATA_VAL:
2767 #ifdef CONFIG_IPW2100_MONITOR
2768                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2769                                 isr_rx_monitor(priv, i, &stats);
2770                                 break;
2771                         }
2772 #endif
2773                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2774                                 break;
2775                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2776                         case IEEE80211_FTYPE_MGMT:
2777                                 libipw_rx_mgt(priv->ieee,
2778                                                  &u->rx_data.header, &stats);
2779                                 break;
2780
2781                         case IEEE80211_FTYPE_CTL:
2782                                 break;
2783
2784                         case IEEE80211_FTYPE_DATA:
2785                                 isr_rx(priv, i, &stats);
2786                                 break;
2787
2788                         }
2789                         break;
2790                 }
2791
2792               increment:
2793                 /* clear status field associated with this RBD */
2794                 rxq->drv[i].status.info.field = 0;
2795
2796                 i = (i + 1) % rxq->entries;
2797         }
2798
2799         if (i != s) {
2800                 /* backtrack one entry, wrapping to end if at 0 */
2801                 rxq->next = (i ? i : rxq->entries) - 1;
2802
2803                 write_register(priv->net_dev,
2804                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2805         }
2806 }
2807
2808 /*
2809  * __ipw2100_tx_process
2810  *
2811  * This routine will determine whether the next packet on
2812  * the fw_pend_list has been processed by the firmware yet.
2813  *
2814  * If not, then it does nothing and returns.
2815  *
2816  * If so, then it removes the item from the fw_pend_list, frees
2817  * any associated storage, and places the item back on the
2818  * free list of its source (either msg_free_list or tx_free_list)
2819  *
2820  * TX Queue works as follows:
2821  *
2822  * Read index - points to the next TBD that the firmware will
2823  *              process.  The firmware will read the data, and once
2824  *              done processing, it will advance the Read index.
2825  *
2826  * Write index - driver fills this entry with an constructed TBD
2827  *               entry.  The Write index is not advanced until the
2828  *               packet has been configured.
2829  *
2830  * In between the W and R indexes are the TBDs that have NOT been
2831  * processed.  Lagging behind the R index are packets that have
2832  * been processed but have not been freed by the driver.
2833  *
2834  * In order to free old storage, an internal index will be maintained
2835  * that points to the next packet to be freed.  When all used
2836  * packets have been freed, the oldest index will be the same as the
2837  * firmware's read index.
2838  *
2839  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2840  *
2841  * Because the TBD structure can not contain arbitrary data, the
2842  * driver must keep an internal queue of cached allocations such that
2843  * it can put that data back into the tx_free_list and msg_free_list
2844  * for use by future command and data packets.
2845  *
2846  */
2847 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2848 {
2849         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2850         struct ipw2100_bd *tbd;
2851         struct list_head *element;
2852         struct ipw2100_tx_packet *packet;
2853         int descriptors_used;
2854         int e, i;
2855         u32 r, w, frag_num = 0;
2856
2857         if (list_empty(&priv->fw_pend_list))
2858                 return 0;
2859
2860         element = priv->fw_pend_list.next;
2861
2862         packet = list_entry(element, struct ipw2100_tx_packet, list);
2863         tbd = &txq->drv[packet->index];
2864
2865         /* Determine how many TBD entries must be finished... */
2866         switch (packet->type) {
2867         case COMMAND:
2868                 /* COMMAND uses only one slot; don't advance */
2869                 descriptors_used = 1;
2870                 e = txq->oldest;
2871                 break;
2872
2873         case DATA:
2874                 /* DATA uses two slots; advance and loop position. */
2875                 descriptors_used = tbd->num_fragments;
2876                 frag_num = tbd->num_fragments - 1;
2877                 e = txq->oldest + frag_num;
2878                 e %= txq->entries;
2879                 break;
2880
2881         default:
2882                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2883                        priv->net_dev->name);
2884                 return 0;
2885         }
2886
2887         /* if the last TBD is not done by NIC yet, then packet is
2888          * not ready to be released.
2889          *
2890          */
2891         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2892                       &r);
2893         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2894                       &w);
2895         if (w != txq->next)
2896                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2897                        priv->net_dev->name);
2898
2899         /*
2900          * txq->next is the index of the last packet written txq->oldest is
2901          * the index of the r is the index of the next packet to be read by
2902          * firmware
2903          */
2904
2905         /*
2906          * Quick graphic to help you visualize the following
2907          * if / else statement
2908          *
2909          * ===>|                     s---->|===============
2910          *                               e>|
2911          * | a | b | c | d | e | f | g | h | i | j | k | l
2912          *       r---->|
2913          *               w
2914          *
2915          * w - updated by driver
2916          * r - updated by firmware
2917          * s - start of oldest BD entry (txq->oldest)
2918          * e - end of oldest BD entry
2919          *
2920          */
2921         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2922                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2923                 return 0;
2924         }
2925
2926         list_del(element);
2927         DEC_STAT(&priv->fw_pend_stat);
2928
2929 #ifdef CONFIG_IPW2100_DEBUG
2930         {
2931                 i = txq->oldest;
2932                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2933                              &txq->drv[i],
2934                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2935                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2936
2937                 if (packet->type == DATA) {
2938                         i = (i + 1) % txq->entries;
2939
2940                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2941                                      &txq->drv[i],
2942                                      (u32) (txq->nic + i *
2943                                             sizeof(struct ipw2100_bd)),
2944                                      (u32) txq->drv[i].host_addr,
2945                                      txq->drv[i].buf_length);
2946                 }
2947         }
2948 #endif
2949
2950         switch (packet->type) {
2951         case DATA:
2952                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2953                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2954                                "Expecting DATA TBD but pulled "
2955                                "something else: ids %d=%d.\n",
2956                                priv->net_dev->name, txq->oldest, packet->index);
2957
2958                 /* DATA packet; we have to unmap and free the SKB */
2959                 for (i = 0; i < frag_num; i++) {
2960                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2961
2962                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2963                                      (packet->index + 1 + i) % txq->entries,
2964                                      tbd->host_addr, tbd->buf_length);
2965
2966                         pci_unmap_single(priv->pci_dev,
2967                                          tbd->host_addr,
2968                                          tbd->buf_length, PCI_DMA_TODEVICE);
2969                 }
2970
2971                 libipw_txb_free(packet->info.d_struct.txb);
2972                 packet->info.d_struct.txb = NULL;
2973
2974                 list_add_tail(element, &priv->tx_free_list);
2975                 INC_STAT(&priv->tx_free_stat);
2976
2977                 /* We have a free slot in the Tx queue, so wake up the
2978                  * transmit layer if it is stopped. */
2979                 if (priv->status & STATUS_ASSOCIATED)
2980                         netif_wake_queue(priv->net_dev);
2981
2982                 /* A packet was processed by the hardware, so update the
2983                  * watchdog */
2984                 priv->net_dev->trans_start = jiffies;
2985
2986                 break;
2987
2988         case COMMAND:
2989                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2990                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2991                                "Expecting COMMAND TBD but pulled "
2992                                "something else: ids %d=%d.\n",
2993                                priv->net_dev->name, txq->oldest, packet->index);
2994
2995 #ifdef CONFIG_IPW2100_DEBUG
2996                 if (packet->info.c_struct.cmd->host_command_reg <
2997                     ARRAY_SIZE(command_types))
2998                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2999                                      command_types[packet->info.c_struct.cmd->
3000                                                    host_command_reg],
3001                                      packet->info.c_struct.cmd->
3002                                      host_command_reg,
3003                                      packet->info.c_struct.cmd->cmd_status_reg);
3004 #endif
3005
3006                 list_add_tail(element, &priv->msg_free_list);
3007                 INC_STAT(&priv->msg_free_stat);
3008                 break;
3009         }
3010
3011         /* advance oldest used TBD pointer to start of next entry */
3012         txq->oldest = (e + 1) % txq->entries;
3013         /* increase available TBDs number */
3014         txq->available += descriptors_used;
3015         SET_STAT(&priv->txq_stat, txq->available);
3016
3017         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3018                      jiffies - packet->jiffy_start);
3019
3020         return (!list_empty(&priv->fw_pend_list));
3021 }
3022
3023 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3024 {
3025         int i = 0;
3026
3027         while (__ipw2100_tx_process(priv) && i < 200)
3028                 i++;
3029
3030         if (i == 200) {
3031                 printk(KERN_WARNING DRV_NAME ": "
3032                        "%s: Driver is running slow (%d iters).\n",
3033                        priv->net_dev->name, i);
3034         }
3035 }
3036
3037 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3038 {
3039         struct list_head *element;
3040         struct ipw2100_tx_packet *packet;
3041         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3042         struct ipw2100_bd *tbd;
3043         int next = txq->next;
3044
3045         while (!list_empty(&priv->msg_pend_list)) {
3046                 /* if there isn't enough space in TBD queue, then
3047                  * don't stuff a new one in.
3048                  * NOTE: 3 are needed as a command will take one,
3049                  *       and there is a minimum of 2 that must be
3050                  *       maintained between the r and w indexes
3051                  */
3052                 if (txq->available <= 3) {
3053                         IPW_DEBUG_TX("no room in tx_queue\n");
3054                         break;
3055                 }
3056
3057                 element = priv->msg_pend_list.next;
3058                 list_del(element);
3059                 DEC_STAT(&priv->msg_pend_stat);
3060
3061                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3062
3063                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3064                              &txq->drv[txq->next],
3065                              (u32) (txq->nic + txq->next *
3066                                       sizeof(struct ipw2100_bd)));
3067
3068                 packet->index = txq->next;
3069
3070                 tbd = &txq->drv[txq->next];
3071
3072                 /* initialize TBD */
3073                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3074                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3075                 /* not marking number of fragments causes problems
3076                  * with f/w debug version */
3077                 tbd->num_fragments = 1;
3078                 tbd->status.info.field =
3079                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3080                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3081
3082                 /* update TBD queue counters */
3083                 txq->next++;
3084                 txq->next %= txq->entries;
3085                 txq->available--;
3086                 DEC_STAT(&priv->txq_stat);
3087
3088                 list_add_tail(element, &priv->fw_pend_list);
3089                 INC_STAT(&priv->fw_pend_stat);
3090         }
3091
3092         if (txq->next != next) {
3093                 /* kick off the DMA by notifying firmware the
3094                  * write index has moved; make sure TBD stores are sync'd */
3095                 wmb();
3096                 write_register(priv->net_dev,
3097                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3098                                txq->next);
3099         }
3100 }
3101
3102 /*
3103  * ipw2100_tx_send_data
3104  *
3105  */
3106 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3107 {
3108         struct list_head *element;
3109         struct ipw2100_tx_packet *packet;
3110         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3111         struct ipw2100_bd *tbd;
3112         int next = txq->next;
3113         int i = 0;
3114         struct ipw2100_data_header *ipw_hdr;
3115         struct libipw_hdr_3addr *hdr;
3116
3117         while (!list_empty(&priv->tx_pend_list)) {
3118                 /* if there isn't enough space in TBD queue, then
3119                  * don't stuff a new one in.
3120                  * NOTE: 4 are needed as a data will take two,
3121                  *       and there is a minimum of 2 that must be
3122                  *       maintained between the r and w indexes
3123                  */
3124                 element = priv->tx_pend_list.next;
3125                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3126
3127                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3128                              IPW_MAX_BDS)) {
3129                         /* TODO: Support merging buffers if more than
3130                          * IPW_MAX_BDS are used */
3131                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3132                                        "Increase fragmentation level.\n",
3133                                        priv->net_dev->name);
3134                 }
3135
3136                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3137                         IPW_DEBUG_TX("no room in tx_queue\n");
3138                         break;
3139                 }
3140
3141                 list_del(element);
3142                 DEC_STAT(&priv->tx_pend_stat);
3143
3144                 tbd = &txq->drv[txq->next];
3145
3146                 packet->index = txq->next;
3147
3148                 ipw_hdr = packet->info.d_struct.data;
3149                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3150                     fragments[0]->data;
3151
3152                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3153                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3154                            Addr3 = DA */
3155                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3156                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3157                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3158                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3159                            Addr3 = BSSID */
3160                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3161                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3162                 }
3163
3164                 ipw_hdr->host_command_reg = SEND;
3165                 ipw_hdr->host_command_reg1 = 0;
3166
3167                 /* For now we only support host based encryption */
3168                 ipw_hdr->needs_encryption = 0;
3169                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3170                 if (packet->info.d_struct.txb->nr_frags > 1)
3171                         ipw_hdr->fragment_size =
3172                             packet->info.d_struct.txb->frag_size -
3173                             LIBIPW_3ADDR_LEN;
3174                 else
3175                         ipw_hdr->fragment_size = 0;
3176
3177                 tbd->host_addr = packet->info.d_struct.data_phys;
3178                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3179                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3180                 tbd->status.info.field =
3181                     IPW_BD_STATUS_TX_FRAME_802_3 |
3182                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3183                 txq->next++;
3184                 txq->next %= txq->entries;
3185
3186                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3187                              packet->index, tbd->host_addr, tbd->buf_length);
3188 #ifdef CONFIG_IPW2100_DEBUG
3189                 if (packet->info.d_struct.txb->nr_frags > 1)
3190                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3191                                        packet->info.d_struct.txb->nr_frags);
3192 #endif
3193
3194                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3195                         tbd = &txq->drv[txq->next];
3196                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3197                                 tbd->status.info.field =
3198                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3199                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3200                         else
3201                                 tbd->status.info.field =
3202                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3203                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3204
3205                         tbd->buf_length = packet->info.d_struct.txb->
3206                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3207
3208                         tbd->host_addr = pci_map_single(priv->pci_dev,
3209                                                         packet->info.d_struct.
3210                                                         txb->fragments[i]->
3211                                                         data +
3212                                                         LIBIPW_3ADDR_LEN,
3213                                                         tbd->buf_length,
3214                                                         PCI_DMA_TODEVICE);
3215
3216                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3217                                      txq->next, tbd->host_addr,
3218                                      tbd->buf_length);
3219
3220                         pci_dma_sync_single_for_device(priv->pci_dev,
3221                                                        tbd->host_addr,
3222                                                        tbd->buf_length,
3223                                                        PCI_DMA_TODEVICE);
3224
3225                         txq->next++;
3226                         txq->next %= txq->entries;
3227                 }
3228
3229                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3230                 SET_STAT(&priv->txq_stat, txq->available);
3231
3232                 list_add_tail(element, &priv->fw_pend_list);
3233                 INC_STAT(&priv->fw_pend_stat);
3234         }
3235
3236         if (txq->next != next) {
3237                 /* kick off the DMA by notifying firmware the
3238                  * write index has moved; make sure TBD stores are sync'd */
3239                 write_register(priv->net_dev,
3240                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3241                                txq->next);
3242         }
3243 }
3244
3245 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3246 {
3247         struct net_device *dev = priv->net_dev;
3248         unsigned long flags;
3249         u32 inta, tmp;
3250
3251         spin_lock_irqsave(&priv->low_lock, flags);
3252         ipw2100_disable_interrupts(priv);
3253
3254         read_register(dev, IPW_REG_INTA, &inta);
3255
3256         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3257                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3258
3259         priv->in_isr++;
3260         priv->interrupts++;
3261
3262         /* We do not loop and keep polling for more interrupts as this
3263          * is frowned upon and doesn't play nicely with other potentially
3264          * chained IRQs */
3265         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3266                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3267
3268         if (inta & IPW2100_INTA_FATAL_ERROR) {
3269                 printk(KERN_WARNING DRV_NAME
3270                        ": Fatal interrupt. Scheduling firmware restart.\n");
3271                 priv->inta_other++;
3272                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3273
3274                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3275                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3276                                priv->net_dev->name, priv->fatal_error);
3277
3278                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3279                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3280                                priv->net_dev->name, tmp);
3281
3282                 /* Wake up any sleeping jobs */
3283                 schedule_reset(priv);
3284         }
3285
3286         if (inta & IPW2100_INTA_PARITY_ERROR) {
3287                 printk(KERN_ERR DRV_NAME
3288                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3289                 priv->inta_other++;
3290                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3291         }
3292
3293         if (inta & IPW2100_INTA_RX_TRANSFER) {
3294                 IPW_DEBUG_ISR("RX interrupt\n");
3295
3296                 priv->rx_interrupts++;
3297
3298                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3299
3300                 __ipw2100_rx_process(priv);
3301                 __ipw2100_tx_complete(priv);
3302         }
3303
3304         if (inta & IPW2100_INTA_TX_TRANSFER) {
3305                 IPW_DEBUG_ISR("TX interrupt\n");
3306
3307                 priv->tx_interrupts++;
3308
3309                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3310
3311                 __ipw2100_tx_complete(priv);
3312                 ipw2100_tx_send_commands(priv);
3313                 ipw2100_tx_send_data(priv);
3314         }
3315
3316         if (inta & IPW2100_INTA_TX_COMPLETE) {
3317                 IPW_DEBUG_ISR("TX complete\n");
3318                 priv->inta_other++;
3319                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3320
3321                 __ipw2100_tx_complete(priv);
3322         }
3323
3324         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3325                 /* ipw2100_handle_event(dev); */
3326                 priv->inta_other++;
3327                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3328         }
3329
3330         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3331                 IPW_DEBUG_ISR("FW init done interrupt\n");
3332                 priv->inta_other++;
3333
3334                 read_register(dev, IPW_REG_INTA, &tmp);
3335                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3336                            IPW2100_INTA_PARITY_ERROR)) {
3337                         write_register(dev, IPW_REG_INTA,
3338                                        IPW2100_INTA_FATAL_ERROR |
3339                                        IPW2100_INTA_PARITY_ERROR);
3340                 }
3341
3342                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3343         }
3344
3345         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3346                 IPW_DEBUG_ISR("Status change interrupt\n");
3347                 priv->inta_other++;
3348                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3349         }
3350
3351         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3352                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3353                 priv->inta_other++;
3354                 write_register(dev, IPW_REG_INTA,
3355                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3356         }
3357
3358         priv->in_isr--;
3359         ipw2100_enable_interrupts(priv);
3360
3361         spin_unlock_irqrestore(&priv->low_lock, flags);
3362
3363         IPW_DEBUG_ISR("exit\n");
3364 }
3365
3366 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3367 {
3368         struct ipw2100_priv *priv = data;
3369         u32 inta, inta_mask;
3370
3371         if (!data)
3372                 return IRQ_NONE;
3373
3374         spin_lock(&priv->low_lock);
3375
3376         /* We check to see if we should be ignoring interrupts before
3377          * we touch the hardware.  During ucode load if we try and handle
3378          * an interrupt we can cause keyboard problems as well as cause
3379          * the ucode to fail to initialize */
3380         if (!(priv->status & STATUS_INT_ENABLED)) {
3381                 /* Shared IRQ */
3382                 goto none;
3383         }
3384
3385         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3386         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3387
3388         if (inta == 0xFFFFFFFF) {
3389                 /* Hardware disappeared */
3390                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3391                 goto none;
3392         }
3393
3394         inta &= IPW_INTERRUPT_MASK;
3395
3396         if (!(inta & inta_mask)) {
3397                 /* Shared interrupt */
3398                 goto none;
3399         }
3400
3401         /* We disable the hardware interrupt here just to prevent unneeded
3402          * calls to be made.  We disable this again within the actual
3403          * work tasklet, so if another part of the code re-enables the
3404          * interrupt, that is fine */
3405         ipw2100_disable_interrupts(priv);
3406
3407         tasklet_schedule(&priv->irq_tasklet);
3408         spin_unlock(&priv->low_lock);
3409
3410         return IRQ_HANDLED;
3411       none:
3412         spin_unlock(&priv->low_lock);
3413         return IRQ_NONE;
3414 }
3415
3416 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3417                               struct net_device *dev, int pri)
3418 {
3419         struct ipw2100_priv *priv = libipw_priv(dev);
3420         struct list_head *element;
3421         struct ipw2100_tx_packet *packet;
3422         unsigned long flags;
3423
3424         spin_lock_irqsave(&priv->low_lock, flags);
3425
3426         if (!(priv->status & STATUS_ASSOCIATED)) {
3427                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3428                 priv->net_dev->stats.tx_carrier_errors++;
3429                 netif_stop_queue(dev);
3430                 goto fail_unlock;
3431         }
3432
3433         if (list_empty(&priv->tx_free_list))
3434                 goto fail_unlock;
3435
3436         element = priv->tx_free_list.next;
3437         packet = list_entry(element, struct ipw2100_tx_packet, list);
3438
3439         packet->info.d_struct.txb = txb;
3440
3441         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3442         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3443
3444         packet->jiffy_start = jiffies;
3445
3446         list_del(element);
3447         DEC_STAT(&priv->tx_free_stat);
3448
3449         list_add_tail(element, &priv->tx_pend_list);
3450         INC_STAT(&priv->tx_pend_stat);
3451
3452         ipw2100_tx_send_data(priv);
3453
3454         spin_unlock_irqrestore(&priv->low_lock, flags);
3455         return NETDEV_TX_OK;
3456
3457 fail_unlock:
3458         netif_stop_queue(dev);
3459         spin_unlock_irqrestore(&priv->low_lock, flags);
3460         return NETDEV_TX_BUSY;
3461 }
3462
3463 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3464 {
3465         int i, j, err = -EINVAL;
3466         void *v;
3467         dma_addr_t p;
3468
3469         priv->msg_buffers =
3470             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3471                     GFP_KERNEL);
3472         if (!priv->msg_buffers)
3473                 return -ENOMEM;
3474
3475         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3476                 v = pci_alloc_consistent(priv->pci_dev,
3477                                          sizeof(struct ipw2100_cmd_header), &p);
3478                 if (!v) {
3479                         printk(KERN_ERR DRV_NAME ": "
3480                                "%s: PCI alloc failed for msg "
3481                                "buffers.\n", priv->net_dev->name);
3482                         err = -ENOMEM;
3483                         break;
3484                 }
3485
3486                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3487
3488                 priv->msg_buffers[i].type = COMMAND;
3489                 priv->msg_buffers[i].info.c_struct.cmd =
3490                     (struct ipw2100_cmd_header *)v;
3491                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3492         }
3493
3494         if (i == IPW_COMMAND_POOL_SIZE)
3495                 return 0;
3496
3497         for (j = 0; j < i; j++) {
3498                 pci_free_consistent(priv->pci_dev,
3499                                     sizeof(struct ipw2100_cmd_header),
3500                                     priv->msg_buffers[j].info.c_struct.cmd,
3501                                     priv->msg_buffers[j].info.c_struct.
3502                                     cmd_phys);
3503         }
3504
3505         kfree(priv->msg_buffers);
3506         priv->msg_buffers = NULL;
3507
3508         return err;
3509 }
3510
3511 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3512 {
3513         int i;
3514
3515         INIT_LIST_HEAD(&priv->msg_free_list);
3516         INIT_LIST_HEAD(&priv->msg_pend_list);
3517
3518         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3519                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3520         SET_STAT(&priv->msg_free_stat, i);
3521
3522         return 0;
3523 }
3524
3525 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3526 {
3527         int i;
3528
3529         if (!priv->msg_buffers)
3530                 return;
3531
3532         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3533                 pci_free_consistent(priv->pci_dev,
3534                                     sizeof(struct ipw2100_cmd_header),
3535                                     priv->msg_buffers[i].info.c_struct.cmd,
3536                                     priv->msg_buffers[i].info.c_struct.
3537                                     cmd_phys);
3538         }
3539
3540         kfree(priv->msg_buffers);
3541         priv->msg_buffers = NULL;
3542 }
3543
3544 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3545                         char *buf)
3546 {
3547         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3548         char *out = buf;
3549         int i, j;
3550         u32 val;
3551
3552         for (i = 0; i < 16; i++) {
3553                 out += sprintf(out, "[%08X] ", i * 16);
3554                 for (j = 0; j < 16; j += 4) {
3555                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3556                         out += sprintf(out, "%08X ", val);
3557                 }
3558                 out += sprintf(out, "\n");
3559         }
3560
3561         return out - buf;
3562 }
3563
3564 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3565
3566 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3567                         char *buf)
3568 {
3569         struct ipw2100_priv *p = dev_get_drvdata(d);
3570         return sprintf(buf, "0x%08x\n", (int)p->config);
3571 }
3572
3573 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3574
3575 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3576                            char *buf)
3577 {
3578         struct ipw2100_priv *p = dev_get_drvdata(d);
3579         return sprintf(buf, "0x%08x\n", (int)p->status);
3580 }
3581
3582 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3583
3584 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3585                                char *buf)
3586 {
3587         struct ipw2100_priv *p = dev_get_drvdata(d);
3588         return sprintf(buf, "0x%08x\n", (int)p->capability);
3589 }
3590
3591 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3592
3593 #define IPW2100_REG(x) { IPW_ ##x, #x }
3594 static const struct {
3595         u32 addr;
3596         const char *name;
3597 } hw_data[] = {
3598 IPW2100_REG(REG_GP_CNTRL),
3599             IPW2100_REG(REG_GPIO),
3600             IPW2100_REG(REG_INTA),
3601             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3602 #define IPW2100_NIC(x, s) { x, #x, s }
3603 static const struct {
3604         u32 addr;
3605         const char *name;
3606         size_t size;
3607 } nic_data[] = {
3608 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3609             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3610 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3611 static const struct {
3612         u8 index;
3613         const char *name;
3614         const char *desc;
3615 } ord_data[] = {
3616 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3617             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3618                                 "successful Host Tx's (MSDU)"),
3619             IPW2100_ORD(STAT_TX_DIR_DATA,
3620                                 "successful Directed Tx's (MSDU)"),
3621             IPW2100_ORD(STAT_TX_DIR_DATA1,
3622                                 "successful Directed Tx's (MSDU) @ 1MB"),
3623             IPW2100_ORD(STAT_TX_DIR_DATA2,
3624                                 "successful Directed Tx's (MSDU) @ 2MB"),
3625             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3626                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3627             IPW2100_ORD(STAT_TX_DIR_DATA11,
3628                                 "successful Directed Tx's (MSDU) @ 11MB"),
3629             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3630                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3631             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3632                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3633             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3634                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3635             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3636                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3637             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3638             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3639             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3640             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3641             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3642             IPW2100_ORD(STAT_TX_ASSN_RESP,
3643                                 "successful Association response Tx's"),
3644             IPW2100_ORD(STAT_TX_REASSN,
3645                                 "successful Reassociation Tx's"),
3646             IPW2100_ORD(STAT_TX_REASSN_RESP,
3647                                 "successful Reassociation response Tx's"),
3648             IPW2100_ORD(STAT_TX_PROBE,
3649                                 "probes successfully transmitted"),
3650             IPW2100_ORD(STAT_TX_PROBE_RESP,
3651                                 "probe responses successfully transmitted"),
3652             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3653             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3654             IPW2100_ORD(STAT_TX_DISASSN,
3655                                 "successful Disassociation TX"),
3656             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3657             IPW2100_ORD(STAT_TX_DEAUTH,
3658                                 "successful Deauthentication TX"),
3659             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3660                                 "Total successful Tx data bytes"),
3661             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3662             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3663             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3664             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3665             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3666             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3667             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3668                                 "times max tries in a hop failed"),
3669             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3670                                 "times disassociation failed"),
3671             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3672             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3673             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3674             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3675             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3676             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3677             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3678                                 "directed packets at 5.5MB"),
3679             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3680             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3681             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3682                                 "nondirected packets at 1MB"),
3683             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3684                                 "nondirected packets at 2MB"),
3685             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3686                                 "nondirected packets at 5.5MB"),
3687             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3688                                 "nondirected packets at 11MB"),
3689             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3690             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3691                                                                     "Rx CTS"),
3692             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3693             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3694             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3695             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3696             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3697             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3698             IPW2100_ORD(STAT_RX_REASSN_RESP,
3699                                 "Reassociation response Rx's"),
3700             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3701             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3702             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3703             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3704             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3705             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3706             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3707             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3708                                 "Total rx data bytes received"),
3709             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3710             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3711             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3712             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3713             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3714             IPW2100_ORD(STAT_RX_DUPLICATE1,
3715                                 "duplicate rx packets at 1MB"),
3716             IPW2100_ORD(STAT_RX_DUPLICATE2,
3717                                 "duplicate rx packets at 2MB"),
3718             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3719                                 "duplicate rx packets at 5.5MB"),
3720             IPW2100_ORD(STAT_RX_DUPLICATE11,
3721                                 "duplicate rx packets at 11MB"),
3722             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3723             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3724             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3725             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3726             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3727                                 "rx frames with invalid protocol"),
3728             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3729             IPW2100_ORD(STAT_RX_NO_BUFFER,
3730                                 "rx frames rejected due to no buffer"),
3731             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3732                                 "rx frames dropped due to missing fragment"),
3733             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3734                                 "rx frames dropped due to non-sequential fragment"),
3735             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3736                                 "rx frames dropped due to unmatched 1st frame"),
3737             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3738                                 "rx frames dropped due to uncompleted frame"),
3739             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3740                                 "ICV errors during decryption"),
3741             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3742             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3743             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3744                                 "poll response timeouts"),
3745             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3746                                 "timeouts waiting for last {broad,multi}cast pkt"),
3747             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3748             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3749             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3750             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3751             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3752                                 "current calculation of % missed beacons"),
3753             IPW2100_ORD(STAT_PERCENT_RETRIES,
3754                                 "current calculation of % missed tx retries"),
3755             IPW2100_ORD(ASSOCIATED_AP_PTR,
3756                                 "0 if not associated, else pointer to AP table entry"),
3757             IPW2100_ORD(AVAILABLE_AP_CNT,
3758                                 "AP's decsribed in the AP table"),
3759             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3760             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3761             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3762             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3763                                 "failures due to response fail"),
3764             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3765             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3766             IPW2100_ORD(STAT_ROAM_INHIBIT,
3767                                 "times roaming was inhibited due to activity"),
3768             IPW2100_ORD(RSSI_AT_ASSN,
3769                                 "RSSI of associated AP at time of association"),
3770             IPW2100_ORD(STAT_ASSN_CAUSE1,
3771                                 "reassociation: no probe response or TX on hop"),
3772             IPW2100_ORD(STAT_ASSN_CAUSE2,
3773                                 "reassociation: poor tx/rx quality"),
3774             IPW2100_ORD(STAT_ASSN_CAUSE3,
3775                                 "reassociation: tx/rx quality (excessive AP load"),
3776             IPW2100_ORD(STAT_ASSN_CAUSE4,
3777                                 "reassociation: AP RSSI level"),
3778             IPW2100_ORD(STAT_ASSN_CAUSE5,
3779                                 "reassociations due to load leveling"),
3780             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3781             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3782                                 "times authentication response failed"),
3783             IPW2100_ORD(STATION_TABLE_CNT,
3784                                 "entries in association table"),
3785             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3786             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3787             IPW2100_ORD(COUNTRY_CODE,
3788                                 "IEEE country code as recv'd from beacon"),
3789             IPW2100_ORD(COUNTRY_CHANNELS,
3790                                 "channels supported by country"),
3791             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3792             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3793             IPW2100_ORD(ANTENNA_DIVERSITY,
3794                                 "TRUE if antenna diversity is disabled"),
3795             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3796             IPW2100_ORD(OUR_FREQ,
3797                                 "current radio freq lower digits - channel ID"),
3798             IPW2100_ORD(RTC_TIME, "current RTC time"),
3799             IPW2100_ORD(PORT_TYPE, "operating mode"),
3800             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3801             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3802             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3803             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3804             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3805             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3806             IPW2100_ORD(CAPABILITIES,
3807                                 "Management frame capability field"),
3808             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3809             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3810             IPW2100_ORD(RTS_THRESHOLD,
3811                                 "Min packet length for RTS handshaking"),
3812             IPW2100_ORD(INT_MODE, "International mode"),
3813             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3814                                 "protocol frag threshold"),
3815             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3816                                 "EEPROM offset in SRAM"),
3817             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3818                                 "EEPROM size in SRAM"),
3819             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3820             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3821                                 "EEPROM IBSS 11b channel set"),
3822             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3823             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3824             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3825             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3826             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3827
3828 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3829                               char *buf)
3830 {
3831         int i;
3832         struct ipw2100_priv *priv = dev_get_drvdata(d);
3833         struct net_device *dev = priv->net_dev;
3834         char *out = buf;
3835         u32 val = 0;
3836
3837         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3838
3839         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3840                 read_register(dev, hw_data[i].addr, &val);
3841                 out += sprintf(out, "%30s [%08X] : %08X\n",
3842                                hw_data[i].name, hw_data[i].addr, val);
3843         }
3844
3845         return out - buf;
3846 }
3847
3848 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3849
3850 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3851                              char *buf)
3852 {
3853         struct ipw2100_priv *priv = dev_get_drvdata(d);
3854         struct net_device *dev = priv->net_dev;
3855         char *out = buf;
3856         int i;
3857
3858         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3859
3860         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3861                 u8 tmp8;
3862                 u16 tmp16;
3863                 u32 tmp32;
3864
3865                 switch (nic_data[i].size) {
3866                 case 1:
3867                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3868                         out += sprintf(out, "%30s [%08X] : %02X\n",
3869                                        nic_data[i].name, nic_data[i].addr,
3870                                        tmp8);
3871                         break;
3872                 case 2:
3873                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3874                         out += sprintf(out, "%30s [%08X] : %04X\n",
3875                                        nic_data[i].name, nic_data[i].addr,
3876                                        tmp16);
3877                         break;
3878                 case 4:
3879                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3880                         out += sprintf(out, "%30s [%08X] : %08X\n",
3881                                        nic_data[i].name, nic_data[i].addr,
3882                                        tmp32);
3883                         break;
3884                 }
3885         }
3886         return out - buf;
3887 }
3888
3889 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3890
3891 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3892                            char *buf)
3893 {
3894         struct ipw2100_priv *priv = dev_get_drvdata(d);
3895         struct net_device *dev = priv->net_dev;
3896         static unsigned long loop = 0;
3897         int len = 0;
3898         u32 buffer[4];
3899         int i;
3900         char line[81];
3901
3902         if (loop >= 0x30000)
3903                 loop = 0;
3904
3905         /* sysfs provides us PAGE_SIZE buffer */
3906         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3907
3908                 if (priv->snapshot[0])
3909                         for (i = 0; i < 4; i++)
3910                                 buffer[i] =
3911                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3912                 else
3913                         for (i = 0; i < 4; i++)
3914                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3915
3916                 if (priv->dump_raw)
3917                         len += sprintf(buf + len,
3918                                        "%c%c%c%c"
3919                                        "%c%c%c%c"
3920                                        "%c%c%c%c"
3921                                        "%c%c%c%c",
3922                                        ((u8 *) buffer)[0x0],
3923                                        ((u8 *) buffer)[0x1],
3924                                        ((u8 *) buffer)[0x2],
3925                                        ((u8 *) buffer)[0x3],
3926                                        ((u8 *) buffer)[0x4],
3927                                        ((u8 *) buffer)[0x5],
3928                                        ((u8 *) buffer)[0x6],
3929                                        ((u8 *) buffer)[0x7],
3930                                        ((u8 *) buffer)[0x8],
3931                                        ((u8 *) buffer)[0x9],
3932                                        ((u8 *) buffer)[0xa],
3933                                        ((u8 *) buffer)[0xb],
3934                                        ((u8 *) buffer)[0xc],
3935                                        ((u8 *) buffer)[0xd],
3936                                        ((u8 *) buffer)[0xe],
3937                                        ((u8 *) buffer)[0xf]);
3938                 else
3939                         len += sprintf(buf + len, "%s\n",
3940                                        snprint_line(line, sizeof(line),
3941                                                     (u8 *) buffer, 16, loop));
3942                 loop += 16;
3943         }
3944
3945         return len;
3946 }
3947
3948 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3949                             const char *buf, size_t count)
3950 {
3951         struct ipw2100_priv *priv = dev_get_drvdata(d);
3952         struct net_device *dev = priv->net_dev;
3953         const char *p = buf;
3954
3955         (void)dev;              /* kill unused-var warning for debug-only code */
3956
3957         if (count < 1)
3958                 return count;
3959
3960         if (p[0] == '1' ||
3961             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3962                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3963                                dev->name);
3964                 priv->dump_raw = 1;
3965
3966         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3967                                    tolower(p[1]) == 'f')) {
3968                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3969                                dev->name);
3970                 priv->dump_raw = 0;
3971
3972         } else if (tolower(p[0]) == 'r') {
3973                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3974                 ipw2100_snapshot_free(priv);
3975
3976         } else
3977                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3978                                "reset = clear memory snapshot\n", dev->name);
3979
3980         return count;
3981 }
3982
3983 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3984
3985 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3986                              char *buf)
3987 {
3988         struct ipw2100_priv *priv = dev_get_drvdata(d);
3989         u32 val = 0;
3990         int len = 0;
3991         u32 val_len;
3992         static int loop = 0;
3993
3994         if (priv->status & STATUS_RF_KILL_MASK)
3995                 return 0;
3996
3997         if (loop >= ARRAY_SIZE(ord_data))
3998                 loop = 0;
3999
4000         /* sysfs provides us PAGE_SIZE buffer */
4001         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4002                 val_len = sizeof(u32);
4003
4004                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4005                                         &val_len))
4006                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
4007                                        ord_data[loop].index,
4008                                        ord_data[loop].desc);
4009                 else
4010                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4011                                        ord_data[loop].index, val,
4012                                        ord_data[loop].desc);
4013                 loop++;
4014         }
4015
4016         return len;
4017 }
4018
4019 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4020
4021 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4022                           char *buf)
4023 {
4024         struct ipw2100_priv *priv = dev_get_drvdata(d);
4025         char *out = buf;
4026
4027         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4028                        priv->interrupts, priv->tx_interrupts,
4029                        priv->rx_interrupts, priv->inta_other);
4030         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4031         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4032 #ifdef CONFIG_IPW2100_DEBUG
4033         out += sprintf(out, "packet mismatch image: %s\n",
4034                        priv->snapshot[0] ? "YES" : "NO");
4035 #endif
4036
4037         return out - buf;
4038 }
4039
4040 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4041
4042 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4043 {
4044         int err;
4045
4046         if (mode == priv->ieee->iw_mode)
4047                 return 0;
4048
4049         err = ipw2100_disable_adapter(priv);
4050         if (err) {
4051                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4052                        priv->net_dev->name, err);
4053                 return err;
4054         }
4055
4056         switch (mode) {
4057         case IW_MODE_INFRA:
4058                 priv->net_dev->type = ARPHRD_ETHER;
4059                 break;
4060         case IW_MODE_ADHOC:
4061                 priv->net_dev->type = ARPHRD_ETHER;
4062                 break;
4063 #ifdef CONFIG_IPW2100_MONITOR
4064         case IW_MODE_MONITOR:
4065                 priv->last_mode = priv->ieee->iw_mode;
4066                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4067                 break;
4068 #endif                          /* CONFIG_IPW2100_MONITOR */
4069         }
4070
4071         priv->ieee->iw_mode = mode;
4072
4073 #ifdef CONFIG_PM
4074         /* Indicate ipw2100_download_firmware download firmware
4075          * from disk instead of memory. */
4076         ipw2100_firmware.version = 0;
4077 #endif
4078
4079         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4080         priv->reset_backoff = 0;
4081         schedule_reset(priv);
4082
4083         return 0;
4084 }
4085
4086 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4087                               char *buf)
4088 {
4089         struct ipw2100_priv *priv = dev_get_drvdata(d);
4090         int len = 0;
4091
4092 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4093
4094         if (priv->status & STATUS_ASSOCIATED)
4095                 len += sprintf(buf + len, "connected: %lu\n",
4096                                get_seconds() - priv->connect_start);
4097         else
4098                 len += sprintf(buf + len, "not connected\n");
4099
4100         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4101         DUMP_VAR(status, "08lx");
4102         DUMP_VAR(config, "08lx");
4103         DUMP_VAR(capability, "08lx");
4104
4105         len +=
4106             sprintf(buf + len, "last_rtc: %lu\n",
4107                     (unsigned long)priv->last_rtc);
4108
4109         DUMP_VAR(fatal_error, "d");
4110         DUMP_VAR(stop_hang_check, "d");
4111         DUMP_VAR(stop_rf_kill, "d");
4112         DUMP_VAR(messages_sent, "d");
4113
4114         DUMP_VAR(tx_pend_stat.value, "d");
4115         DUMP_VAR(tx_pend_stat.hi, "d");
4116
4117         DUMP_VAR(tx_free_stat.value, "d");
4118         DUMP_VAR(tx_free_stat.lo, "d");
4119
4120         DUMP_VAR(msg_free_stat.value, "d");
4121         DUMP_VAR(msg_free_stat.lo, "d");
4122
4123         DUMP_VAR(msg_pend_stat.value, "d");
4124         DUMP_VAR(msg_pend_stat.hi, "d");
4125
4126         DUMP_VAR(fw_pend_stat.value, "d");
4127         DUMP_VAR(fw_pend_stat.hi, "d");
4128
4129         DUMP_VAR(txq_stat.value, "d");
4130         DUMP_VAR(txq_stat.lo, "d");
4131
4132         DUMP_VAR(ieee->scans, "d");
4133         DUMP_VAR(reset_backoff, "d");
4134
4135         return len;
4136 }
4137
4138 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4139
4140 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4141                             char *buf)
4142 {
4143         struct ipw2100_priv *priv = dev_get_drvdata(d);
4144         char essid[IW_ESSID_MAX_SIZE + 1];
4145         u8 bssid[ETH_ALEN];
4146         u32 chan = 0;
4147         char *out = buf;
4148         unsigned int length;
4149         int ret;
4150
4151         if (priv->status & STATUS_RF_KILL_MASK)
4152                 return 0;
4153
4154         memset(essid, 0, sizeof(essid));
4155         memset(bssid, 0, sizeof(bssid));
4156
4157         length = IW_ESSID_MAX_SIZE;
4158         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4159         if (ret)
4160                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4161                                __LINE__);
4162
4163         length = sizeof(bssid);
4164         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4165                                   bssid, &length);
4166         if (ret)
4167                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4168                                __LINE__);
4169
4170         length = sizeof(u32);
4171         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4172         if (ret)
4173                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4174                                __LINE__);
4175
4176         out += sprintf(out, "ESSID: %s\n", essid);
4177         out += sprintf(out, "BSSID:   %pM\n", bssid);
4178         out += sprintf(out, "Channel: %d\n", chan);
4179
4180         return out - buf;
4181 }
4182
4183 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4184
4185 #ifdef CONFIG_IPW2100_DEBUG
4186 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4187 {
4188         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4189 }
4190
4191 static ssize_t store_debug_level(struct device_driver *d,
4192                                  const char *buf, size_t count)
4193 {
4194         char *p = (char *)buf;
4195         u32 val;
4196
4197         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4198                 p++;
4199                 if (p[0] == 'x' || p[0] == 'X')
4200                         p++;
4201                 val = simple_strtoul(p, &p, 16);
4202         } else
4203                 val = simple_strtoul(p, &p, 10);
4204         if (p == buf)
4205                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4206         else
4207                 ipw2100_debug_level = val;
4208
4209         return strnlen(buf, count);
4210 }
4211
4212 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4213                    store_debug_level);
4214 #endif                          /* CONFIG_IPW2100_DEBUG */
4215
4216 static ssize_t show_fatal_error(struct device *d,
4217                                 struct device_attribute *attr, char *buf)
4218 {
4219         struct ipw2100_priv *priv = dev_get_drvdata(d);
4220         char *out = buf;
4221         int i;
4222
4223         if (priv->fatal_error)
4224                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4225         else
4226                 out += sprintf(out, "0\n");
4227
4228         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4229                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4230                                         IPW2100_ERROR_QUEUE])
4231                         continue;
4232
4233                 out += sprintf(out, "%d. 0x%08X\n", i,
4234                                priv->fatal_errors[(priv->fatal_index - i) %
4235                                                   IPW2100_ERROR_QUEUE]);
4236         }
4237
4238         return out - buf;
4239 }
4240
4241 static ssize_t store_fatal_error(struct device *d,
4242                                  struct device_attribute *attr, const char *buf,
4243                                  size_t count)
4244 {
4245         struct ipw2100_priv *priv = dev_get_drvdata(d);
4246         schedule_reset(priv);
4247         return count;
4248 }
4249
4250 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4251                    store_fatal_error);
4252
4253 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4254                              char *buf)
4255 {
4256         struct ipw2100_priv *priv = dev_get_drvdata(d);
4257         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4258 }
4259
4260 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4261                               const char *buf, size_t count)
4262 {
4263         struct ipw2100_priv *priv = dev_get_drvdata(d);
4264         struct net_device *dev = priv->net_dev;
4265         char buffer[] = "00000000";
4266         unsigned long len =
4267             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4268         unsigned long val;
4269         char *p = buffer;
4270
4271         (void)dev;              /* kill unused-var warning for debug-only code */
4272
4273         IPW_DEBUG_INFO("enter\n");
4274
4275         strncpy(buffer, buf, len);
4276         buffer[len] = 0;
4277
4278         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4279                 p++;
4280                 if (p[0] == 'x' || p[0] == 'X')
4281                         p++;
4282                 val = simple_strtoul(p, &p, 16);
4283         } else
4284                 val = simple_strtoul(p, &p, 10);
4285         if (p == buffer) {
4286                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4287         } else {
4288                 priv->ieee->scan_age = val;
4289                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4290         }
4291
4292         IPW_DEBUG_INFO("exit\n");
4293         return len;
4294 }
4295
4296 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4297
4298 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4299                             char *buf)
4300 {
4301         /* 0 - RF kill not enabled
4302            1 - SW based RF kill active (sysfs)
4303            2 - HW based RF kill active
4304            3 - Both HW and SW baed RF kill active */
4305         struct ipw2100_priv *priv = dev_get_drvdata(d);
4306         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4307             (rf_kill_active(priv) ? 0x2 : 0x0);
4308         return sprintf(buf, "%i\n", val);
4309 }
4310
4311 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4312 {
4313         if ((disable_radio ? 1 : 0) ==
4314             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4315                 return 0;
4316
4317         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4318                           disable_radio ? "OFF" : "ON");
4319
4320         mutex_lock(&priv->action_mutex);
4321
4322         if (disable_radio) {
4323                 priv->status |= STATUS_RF_KILL_SW;
4324                 ipw2100_down(priv);
4325         } else {
4326                 priv->status &= ~STATUS_RF_KILL_SW;
4327                 if (rf_kill_active(priv)) {
4328                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4329                                           "disabled by HW switch\n");
4330                         /* Make sure the RF_KILL check timer is running */
4331                         priv->stop_rf_kill = 0;
4332                         cancel_delayed_work(&priv->rf_kill);
4333                         schedule_delayed_work(&priv->rf_kill,
4334                                               round_jiffies_relative(HZ));
4335                 } else
4336                         schedule_reset(priv);
4337         }
4338
4339         mutex_unlock(&priv->action_mutex);
4340         return 1;
4341 }
4342
4343 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4344                              const char *buf, size_t count)
4345 {
4346         struct ipw2100_priv *priv = dev_get_drvdata(d);
4347         ipw_radio_kill_sw(priv, buf[0] == '1');
4348         return count;
4349 }
4350
4351 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4352
4353 static struct attribute *ipw2100_sysfs_entries[] = {
4354         &dev_attr_hardware.attr,
4355         &dev_attr_registers.attr,
4356         &dev_attr_ordinals.attr,
4357         &dev_attr_pci.attr,
4358         &dev_attr_stats.attr,
4359         &dev_attr_internals.attr,
4360         &dev_attr_bssinfo.attr,
4361         &dev_attr_memory.attr,
4362         &dev_attr_scan_age.attr,
4363         &dev_attr_fatal_error.attr,
4364         &dev_attr_rf_kill.attr,
4365         &dev_attr_cfg.attr,
4366         &dev_attr_status.attr,
4367         &dev_attr_capability.attr,
4368         NULL,
4369 };
4370
4371 static struct attribute_group ipw2100_attribute_group = {
4372         .attrs = ipw2100_sysfs_entries,
4373 };
4374
4375 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4376 {
4377         struct ipw2100_status_queue *q = &priv->status_queue;
4378
4379         IPW_DEBUG_INFO("enter\n");
4380
4381         q->size = entries * sizeof(struct ipw2100_status);
4382         q->drv =
4383             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4384                                                           q->size, &q->nic);
4385         if (!q->drv) {
4386                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4387                 return -ENOMEM;
4388         }
4389
4390         memset(q->drv, 0, q->size);
4391
4392         IPW_DEBUG_INFO("exit\n");
4393
4394         return 0;
4395 }
4396
4397 static void status_queue_free(struct ipw2100_priv *priv)
4398 {
4399         IPW_DEBUG_INFO("enter\n");
4400
4401         if (priv->status_queue.drv) {
4402                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4403                                     priv->status_queue.drv,
4404                                     priv->status_queue.nic);
4405                 priv->status_queue.drv = NULL;
4406         }
4407
4408         IPW_DEBUG_INFO("exit\n");
4409 }
4410
4411 static int bd_queue_allocate(struct ipw2100_priv *priv,
4412                              struct ipw2100_bd_queue *q, int entries)
4413 {
4414         IPW_DEBUG_INFO("enter\n");
4415
4416         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4417
4418         q->entries = entries;
4419         q->size = entries * sizeof(struct ipw2100_bd);
4420         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4421         if (!q->drv) {
4422                 IPW_DEBUG_INFO
4423                     ("can't allocate shared memory for buffer descriptors\n");
4424                 return -ENOMEM;
4425         }
4426         memset(q->drv, 0, q->size);
4427
4428         IPW_DEBUG_INFO("exit\n");
4429
4430         return 0;
4431 }
4432
4433 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4434 {
4435         IPW_DEBUG_INFO("enter\n");
4436
4437         if (!q)
4438                 return;
4439
4440         if (q->drv) {
4441                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4442                 q->drv = NULL;
4443         }
4444
4445         IPW_DEBUG_INFO("exit\n");
4446 }
4447
4448 static void bd_queue_initialize(struct ipw2100_priv *priv,
4449                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4450                                 u32 r, u32 w)
4451 {
4452         IPW_DEBUG_INFO("enter\n");
4453
4454         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4455                        (u32) q->nic);
4456
4457         write_register(priv->net_dev, base, q->nic);
4458         write_register(priv->net_dev, size, q->entries);
4459         write_register(priv->net_dev, r, q->oldest);
4460         write_register(priv->net_dev, w, q->next);
4461
4462         IPW_DEBUG_INFO("exit\n");
4463 }
4464
4465 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4466 {
4467         priv->stop_rf_kill = 1;
4468         priv->stop_hang_check = 1;
4469         cancel_delayed_work_sync(&priv->reset_work);
4470         cancel_delayed_work_sync(&priv->security_work);
4471         cancel_delayed_work_sync(&priv->wx_event_work);
4472         cancel_delayed_work_sync(&priv->hang_check);
4473         cancel_delayed_work_sync(&priv->rf_kill);
4474         cancel_work_sync(&priv->scan_event_now);
4475         cancel_delayed_work_sync(&priv->scan_event_later);
4476 }
4477
4478 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4479 {
4480         int i, j, err = -EINVAL;
4481         void *v;
4482         dma_addr_t p;
4483
4484         IPW_DEBUG_INFO("enter\n");
4485
4486         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4487         if (err) {
4488                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4489                                 priv->net_dev->name);
4490                 return err;
4491         }
4492
4493         priv->tx_buffers =
4494             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4495                     GFP_ATOMIC);
4496         if (!priv->tx_buffers) {
4497                 printk(KERN_ERR DRV_NAME
4498                        ": %s: alloc failed form tx buffers.\n",
4499                        priv->net_dev->name);
4500                 bd_queue_free(priv, &priv->tx_queue);
4501                 return -ENOMEM;
4502         }
4503
4504         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4505                 v = pci_alloc_consistent(priv->pci_dev,
4506                                          sizeof(struct ipw2100_data_header),
4507                                          &p);
4508                 if (!v) {
4509                         printk(KERN_ERR DRV_NAME
4510                                ": %s: PCI alloc failed for tx " "buffers.\n",
4511                                priv->net_dev->name);
4512                         err = -ENOMEM;
4513                         break;
4514                 }
4515
4516                 priv->tx_buffers[i].type = DATA;
4517                 priv->tx_buffers[i].info.d_struct.data =
4518                     (struct ipw2100_data_header *)v;
4519                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4520                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4521         }
4522
4523         if (i == TX_PENDED_QUEUE_LENGTH)
4524                 return 0;
4525
4526         for (j = 0; j < i; j++) {
4527                 pci_free_consistent(priv->pci_dev,
4528                                     sizeof(struct ipw2100_data_header),
4529                                     priv->tx_buffers[j].info.d_struct.data,
4530                                     priv->tx_buffers[j].info.d_struct.
4531                                     data_phys);
4532         }
4533
4534         kfree(priv->tx_buffers);
4535         priv->tx_buffers = NULL;
4536
4537         return err;
4538 }
4539
4540 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4541 {
4542         int i;
4543
4544         IPW_DEBUG_INFO("enter\n");
4545
4546         /*
4547          * reinitialize packet info lists
4548          */
4549         INIT_LIST_HEAD(&priv->fw_pend_list);
4550         INIT_STAT(&priv->fw_pend_stat);
4551
4552         /*
4553          * reinitialize lists
4554          */
4555         INIT_LIST_HEAD(&priv->tx_pend_list);
4556         INIT_LIST_HEAD(&priv->tx_free_list);
4557         INIT_STAT(&priv->tx_pend_stat);
4558         INIT_STAT(&priv->tx_free_stat);
4559
4560         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4561                 /* We simply drop any SKBs that have been queued for
4562                  * transmit */
4563                 if (priv->tx_buffers[i].info.d_struct.txb) {
4564                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4565                                            txb);
4566                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4567                 }
4568
4569                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4570         }
4571
4572         SET_STAT(&priv->tx_free_stat, i);
4573
4574         priv->tx_queue.oldest = 0;
4575         priv->tx_queue.available = priv->tx_queue.entries;
4576         priv->tx_queue.next = 0;
4577         INIT_STAT(&priv->txq_stat);
4578         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4579
4580         bd_queue_initialize(priv, &priv->tx_queue,
4581                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4582                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4583                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4584                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4585
4586         IPW_DEBUG_INFO("exit\n");
4587
4588 }
4589
4590 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4591 {
4592         int i;
4593
4594         IPW_DEBUG_INFO("enter\n");
4595
4596         bd_queue_free(priv, &priv->tx_queue);
4597
4598         if (!priv->tx_buffers)
4599                 return;
4600
4601         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4602                 if (priv->tx_buffers[i].info.d_struct.txb) {
4603                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4604                                            txb);
4605                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4606                 }
4607                 if (priv->tx_buffers[i].info.d_struct.data)
4608                         pci_free_consistent(priv->pci_dev,
4609                                             sizeof(struct ipw2100_data_header),
4610                                             priv->tx_buffers[i].info.d_struct.
4611                                             data,
4612                                             priv->tx_buffers[i].info.d_struct.
4613                                             data_phys);
4614         }
4615
4616         kfree(priv->tx_buffers);
4617         priv->tx_buffers = NULL;
4618
4619         IPW_DEBUG_INFO("exit\n");
4620 }
4621
4622 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4623 {
4624         int i, j, err = -EINVAL;
4625
4626         IPW_DEBUG_INFO("enter\n");
4627
4628         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4629         if (err) {
4630                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4631                 return err;
4632         }
4633
4634         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4635         if (err) {
4636                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4637                 bd_queue_free(priv, &priv->rx_queue);
4638                 return err;
4639         }
4640
4641         /*
4642          * allocate packets
4643          */
4644         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4645                                    sizeof(struct ipw2100_rx_packet),
4646                                    GFP_KERNEL);
4647         if (!priv->rx_buffers) {
4648                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4649
4650                 bd_queue_free(priv, &priv->rx_queue);
4651
4652                 status_queue_free(priv);
4653
4654                 return -ENOMEM;
4655         }
4656
4657         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4658                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4659
4660                 err = ipw2100_alloc_skb(priv, packet);
4661                 if (unlikely(err)) {
4662                         err = -ENOMEM;
4663                         break;
4664                 }
4665
4666                 /* The BD holds the cache aligned address */
4667                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4668                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4669                 priv->status_queue.drv[i].status_fields = 0;
4670         }
4671
4672         if (i == RX_QUEUE_LENGTH)
4673                 return 0;
4674
4675         for (j = 0; j < i; j++) {
4676                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4677                                  sizeof(struct ipw2100_rx_packet),
4678                                  PCI_DMA_FROMDEVICE);
4679                 dev_kfree_skb(priv->rx_buffers[j].skb);
4680         }
4681
4682         kfree(priv->rx_buffers);
4683         priv->rx_buffers = NULL;
4684
4685         bd_queue_free(priv, &priv->rx_queue);
4686
4687         status_queue_free(priv);
4688
4689         return err;
4690 }
4691
4692 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4693 {
4694         IPW_DEBUG_INFO("enter\n");
4695
4696         priv->rx_queue.oldest = 0;
4697         priv->rx_queue.available = priv->rx_queue.entries - 1;
4698         priv->rx_queue.next = priv->rx_queue.entries - 1;
4699
4700         INIT_STAT(&priv->rxq_stat);
4701         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4702
4703         bd_queue_initialize(priv, &priv->rx_queue,
4704                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4705                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4706                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4707                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4708
4709         /* set up the status queue */
4710         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4711                        priv->status_queue.nic);
4712
4713         IPW_DEBUG_INFO("exit\n");
4714 }
4715
4716 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4717 {
4718         int i;
4719
4720         IPW_DEBUG_INFO("enter\n");
4721
4722         bd_queue_free(priv, &priv->rx_queue);
4723         status_queue_free(priv);
4724
4725         if (!priv->rx_buffers)
4726                 return;
4727
4728         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4729                 if (priv->rx_buffers[i].rxp) {
4730                         pci_unmap_single(priv->pci_dev,
4731                                          priv->rx_buffers[i].dma_addr,
4732                                          sizeof(struct ipw2100_rx),
4733                                          PCI_DMA_FROMDEVICE);
4734                         dev_kfree_skb(priv->rx_buffers[i].skb);
4735                 }
4736         }
4737
4738         kfree(priv->rx_buffers);
4739         priv->rx_buffers = NULL;
4740
4741         IPW_DEBUG_INFO("exit\n");
4742 }
4743
4744 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4745 {
4746         u32 length = ETH_ALEN;
4747         u8 addr[ETH_ALEN];
4748
4749         int err;
4750
4751         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4752         if (err) {
4753                 IPW_DEBUG_INFO("MAC address read failed\n");
4754                 return -EIO;
4755         }
4756
4757         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4758         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4759
4760         return 0;
4761 }
4762
4763 /********************************************************************
4764  *
4765  * Firmware Commands
4766  *
4767  ********************************************************************/
4768
4769 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4770 {
4771         struct host_command cmd = {
4772                 .host_command = ADAPTER_ADDRESS,
4773                 .host_command_sequence = 0,
4774                 .host_command_length = ETH_ALEN
4775         };
4776         int err;
4777
4778         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4779
4780         IPW_DEBUG_INFO("enter\n");
4781
4782         if (priv->config & CFG_CUSTOM_MAC) {
4783                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4784                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4785         } else
4786                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4787                        ETH_ALEN);
4788
4789         err = ipw2100_hw_send_command(priv, &cmd);
4790
4791         IPW_DEBUG_INFO("exit\n");
4792         return err;
4793 }
4794
4795 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4796                                  int batch_mode)
4797 {
4798         struct host_command cmd = {
4799                 .host_command = PORT_TYPE,
4800                 .host_command_sequence = 0,
4801                 .host_command_length = sizeof(u32)
4802         };
4803         int err;
4804
4805         switch (port_type) {
4806         case IW_MODE_INFRA:
4807                 cmd.host_command_parameters[0] = IPW_BSS;
4808                 break;
4809         case IW_MODE_ADHOC:
4810                 cmd.host_command_parameters[0] = IPW_IBSS;
4811                 break;
4812         }
4813
4814         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4815                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4816
4817         if (!batch_mode) {
4818                 err = ipw2100_disable_adapter(priv);
4819                 if (err) {
4820                         printk(KERN_ERR DRV_NAME
4821                                ": %s: Could not disable adapter %d\n",
4822                                priv->net_dev->name, err);
4823                         return err;
4824                 }
4825         }
4826
4827         /* send cmd to firmware */
4828         err = ipw2100_hw_send_command(priv, &cmd);
4829
4830         if (!batch_mode)
4831                 ipw2100_enable_adapter(priv);
4832
4833         return err;
4834 }
4835
4836 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4837                                int batch_mode)
4838 {
4839         struct host_command cmd = {
4840                 .host_command = CHANNEL,
4841                 .host_command_sequence = 0,
4842                 .host_command_length = sizeof(u32)
4843         };
4844         int err;
4845
4846         cmd.host_command_parameters[0] = channel;
4847
4848         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4849
4850         /* If BSS then we don't support channel selection */
4851         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4852                 return 0;
4853
4854         if ((channel != 0) &&
4855             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4856                 return -EINVAL;
4857
4858         if (!batch_mode) {
4859                 err = ipw2100_disable_adapter(priv);
4860                 if (err)
4861                         return err;
4862         }
4863
4864         err = ipw2100_hw_send_command(priv, &cmd);
4865         if (err) {
4866                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4867                 return err;
4868         }
4869
4870         if (channel)
4871                 priv->config |= CFG_STATIC_CHANNEL;
4872         else
4873                 priv->config &= ~CFG_STATIC_CHANNEL;
4874
4875         priv->channel = channel;
4876
4877         if (!batch_mode) {
4878                 err = ipw2100_enable_adapter(priv);
4879                 if (err)
4880                         return err;
4881         }
4882
4883         return 0;
4884 }
4885
4886 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4887 {
4888         struct host_command cmd = {
4889                 .host_command = SYSTEM_CONFIG,
4890                 .host_command_sequence = 0,
4891                 .host_command_length = 12,
4892         };
4893         u32 ibss_mask, len = sizeof(u32);
4894         int err;
4895
4896         /* Set system configuration */
4897
4898         if (!batch_mode) {
4899                 err = ipw2100_disable_adapter(priv);
4900                 if (err)
4901                         return err;
4902         }
4903
4904         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4905                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4906
4907         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4908             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4909
4910         if (!(priv->config & CFG_LONG_PREAMBLE))
4911                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4912
4913         err = ipw2100_get_ordinal(priv,
4914                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4915                                   &ibss_mask, &len);
4916         if (err)
4917                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4918
4919         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4920         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4921
4922         /* 11b only */
4923         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4924
4925         err = ipw2100_hw_send_command(priv, &cmd);
4926         if (err)
4927                 return err;
4928
4929 /* If IPv6 is configured in the kernel then we don't want to filter out all
4930  * of the multicast packets as IPv6 needs some. */
4931 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4932         cmd.host_command = ADD_MULTICAST;
4933         cmd.host_command_sequence = 0;
4934         cmd.host_command_length = 0;
4935
4936         ipw2100_hw_send_command(priv, &cmd);
4937 #endif
4938         if (!batch_mode) {
4939                 err = ipw2100_enable_adapter(priv);
4940                 if (err)
4941                         return err;
4942         }
4943
4944         return 0;
4945 }
4946
4947 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4948                                 int batch_mode)
4949 {
4950         struct host_command cmd = {
4951                 .host_command = BASIC_TX_RATES,
4952                 .host_command_sequence = 0,
4953                 .host_command_length = 4
4954         };
4955         int err;
4956
4957         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4958
4959         if (!batch_mode) {
4960                 err = ipw2100_disable_adapter(priv);
4961                 if (err)
4962                         return err;
4963         }
4964
4965         /* Set BASIC TX Rate first */
4966         ipw2100_hw_send_command(priv, &cmd);
4967
4968         /* Set TX Rate */
4969         cmd.host_command = TX_RATES;
4970         ipw2100_hw_send_command(priv, &cmd);
4971
4972         /* Set MSDU TX Rate */
4973         cmd.host_command = MSDU_TX_RATES;
4974         ipw2100_hw_send_command(priv, &cmd);
4975
4976         if (!batch_mode) {
4977                 err = ipw2100_enable_adapter(priv);
4978                 if (err)
4979                         return err;
4980         }
4981
4982         priv->tx_rates = rate;
4983
4984         return 0;
4985 }
4986
4987 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4988 {
4989         struct host_command cmd = {
4990                 .host_command = POWER_MODE,
4991                 .host_command_sequence = 0,
4992                 .host_command_length = 4
4993         };
4994         int err;
4995
4996         cmd.host_command_parameters[0] = power_level;
4997
4998         err = ipw2100_hw_send_command(priv, &cmd);
4999         if (err)
5000                 return err;
5001
5002         if (power_level == IPW_POWER_MODE_CAM)
5003                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5004         else
5005                 priv->power_mode = IPW_POWER_ENABLED | power_level;
5006
5007 #ifdef IPW2100_TX_POWER
5008         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5009                 /* Set beacon interval */
5010                 cmd.host_command = TX_POWER_INDEX;
5011                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5012
5013                 err = ipw2100_hw_send_command(priv, &cmd);
5014                 if (err)
5015                         return err;
5016         }
5017 #endif
5018
5019         return 0;
5020 }
5021
5022 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5023 {
5024         struct host_command cmd = {
5025                 .host_command = RTS_THRESHOLD,
5026                 .host_command_sequence = 0,
5027                 .host_command_length = 4
5028         };
5029         int err;
5030
5031         if (threshold & RTS_DISABLED)
5032                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5033         else
5034                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5035
5036         err = ipw2100_hw_send_command(priv, &cmd);
5037         if (err)
5038                 return err;
5039
5040         priv->rts_threshold = threshold;
5041
5042         return 0;
5043 }
5044
5045 #if 0
5046 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5047                                         u32 threshold, int batch_mode)
5048 {
5049         struct host_command cmd = {
5050                 .host_command = FRAG_THRESHOLD,
5051                 .host_command_sequence = 0,
5052                 .host_command_length = 4,
5053                 .host_command_parameters[0] = 0,
5054         };
5055         int err;
5056
5057         if (!batch_mode) {
5058                 err = ipw2100_disable_adapter(priv);
5059                 if (err)
5060                         return err;
5061         }
5062
5063         if (threshold == 0)
5064                 threshold = DEFAULT_FRAG_THRESHOLD;
5065         else {
5066                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5067                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5068         }
5069
5070         cmd.host_command_parameters[0] = threshold;
5071
5072         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5073
5074         err = ipw2100_hw_send_command(priv, &cmd);
5075
5076         if (!batch_mode)
5077                 ipw2100_enable_adapter(priv);
5078
5079         if (!err)
5080                 priv->frag_threshold = threshold;
5081
5082         return err;
5083 }
5084 #endif
5085
5086 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5087 {
5088         struct host_command cmd = {
5089                 .host_command = SHORT_RETRY_LIMIT,
5090                 .host_command_sequence = 0,
5091                 .host_command_length = 4
5092         };
5093         int err;
5094
5095         cmd.host_command_parameters[0] = retry;
5096
5097         err = ipw2100_hw_send_command(priv, &cmd);
5098         if (err)
5099                 return err;
5100
5101         priv->short_retry_limit = retry;
5102
5103         return 0;
5104 }
5105
5106 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5107 {
5108         struct host_command cmd = {
5109                 .host_command = LONG_RETRY_LIMIT,
5110                 .host_command_sequence = 0,
5111                 .host_command_length = 4
5112         };
5113         int err;
5114
5115         cmd.host_command_parameters[0] = retry;
5116
5117         err = ipw2100_hw_send_command(priv, &cmd);
5118         if (err)
5119                 return err;
5120
5121         priv->long_retry_limit = retry;
5122
5123         return 0;
5124 }
5125
5126 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5127                                        int batch_mode)
5128 {
5129         struct host_command cmd = {
5130                 .host_command = MANDATORY_BSSID,
5131                 .host_command_sequence = 0,
5132                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5133         };
5134         int err;
5135
5136 #ifdef CONFIG_IPW2100_DEBUG
5137         if (bssid != NULL)
5138                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5139         else
5140                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5141 #endif
5142         /* if BSSID is empty then we disable mandatory bssid mode */
5143         if (bssid != NULL)
5144                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5145
5146         if (!batch_mode) {
5147                 err = ipw2100_disable_adapter(priv);
5148                 if (err)
5149                         return err;
5150         }
5151
5152         err = ipw2100_hw_send_command(priv, &cmd);
5153
5154         if (!batch_mode)
5155                 ipw2100_enable_adapter(priv);
5156
5157         return err;
5158 }
5159
5160 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5161 {
5162         struct host_command cmd = {
5163                 .host_command = DISASSOCIATION_BSSID,
5164                 .host_command_sequence = 0,
5165                 .host_command_length = ETH_ALEN
5166         };
5167         int err;
5168         int len;
5169
5170         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5171
5172         len = ETH_ALEN;
5173         /* The Firmware currently ignores the BSSID and just disassociates from
5174          * the currently associated AP -- but in the off chance that a future
5175          * firmware does use the BSSID provided here, we go ahead and try and
5176          * set it to the currently associated AP's BSSID */
5177         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5178
5179         err = ipw2100_hw_send_command(priv, &cmd);
5180
5181         return err;
5182 }
5183
5184 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5185                               struct ipw2100_wpa_assoc_frame *, int)
5186     __attribute__ ((unused));
5187
5188 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5189                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5190                               int batch_mode)
5191 {
5192         struct host_command cmd = {
5193                 .host_command = SET_WPA_IE,
5194                 .host_command_sequence = 0,
5195                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5196         };
5197         int err;
5198
5199         IPW_DEBUG_HC("SET_WPA_IE\n");
5200
5201         if (!batch_mode) {
5202                 err = ipw2100_disable_adapter(priv);
5203                 if (err)
5204                         return err;
5205         }
5206
5207         memcpy(cmd.host_command_parameters, wpa_frame,
5208                sizeof(struct ipw2100_wpa_assoc_frame));
5209
5210         err = ipw2100_hw_send_command(priv, &cmd);
5211
5212         if (!batch_mode) {
5213                 if (ipw2100_enable_adapter(priv))
5214                         err = -EIO;
5215         }
5216
5217         return err;
5218 }
5219
5220 struct security_info_params {
5221         u32 allowed_ciphers;
5222         u16 version;
5223         u8 auth_mode;
5224         u8 replay_counters_number;
5225         u8 unicast_using_group;
5226 } __packed;
5227
5228 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5229                                             int auth_mode,
5230                                             int security_level,
5231                                             int unicast_using_group,
5232                                             int batch_mode)
5233 {
5234         struct host_command cmd = {
5235                 .host_command = SET_SECURITY_INFORMATION,
5236                 .host_command_sequence = 0,
5237                 .host_command_length = sizeof(struct security_info_params)
5238         };
5239         struct security_info_params *security =
5240             (struct security_info_params *)&cmd.host_command_parameters;
5241         int err;
5242         memset(security, 0, sizeof(*security));
5243
5244         /* If shared key AP authentication is turned on, then we need to
5245          * configure the firmware to try and use it.
5246          *
5247          * Actual data encryption/decryption is handled by the host. */
5248         security->auth_mode = auth_mode;
5249         security->unicast_using_group = unicast_using_group;
5250
5251         switch (security_level) {
5252         default:
5253         case SEC_LEVEL_0:
5254                 security->allowed_ciphers = IPW_NONE_CIPHER;
5255                 break;
5256         case SEC_LEVEL_1:
5257                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5258                     IPW_WEP104_CIPHER;
5259                 break;
5260         case SEC_LEVEL_2:
5261                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5262                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5263                 break;
5264         case SEC_LEVEL_2_CKIP:
5265                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5266                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5267                 break;
5268         case SEC_LEVEL_3:
5269                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5270                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5271                 break;
5272         }
5273
5274         IPW_DEBUG_HC
5275             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5276              security->auth_mode, security->allowed_ciphers, security_level);
5277
5278         security->replay_counters_number = 0;
5279
5280         if (!batch_mode) {
5281                 err = ipw2100_disable_adapter(priv);
5282                 if (err)
5283                         return err;
5284         }
5285
5286         err = ipw2100_hw_send_command(priv, &cmd);
5287
5288         if (!batch_mode)
5289                 ipw2100_enable_adapter(priv);
5290
5291         return err;
5292 }
5293
5294 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5295 {
5296         struct host_command cmd = {
5297                 .host_command = TX_POWER_INDEX,
5298                 .host_command_sequence = 0,
5299                 .host_command_length = 4
5300         };
5301         int err = 0;
5302         u32 tmp = tx_power;
5303
5304         if (tx_power != IPW_TX_POWER_DEFAULT)
5305                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5306                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5307
5308         cmd.host_command_parameters[0] = tmp;
5309
5310         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5311                 err = ipw2100_hw_send_command(priv, &cmd);
5312         if (!err)
5313                 priv->tx_power = tx_power;
5314
5315         return 0;
5316 }
5317
5318 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5319                                             u32 interval, int batch_mode)
5320 {
5321         struct host_command cmd = {
5322                 .host_command = BEACON_INTERVAL,
5323                 .host_command_sequence = 0,
5324                 .host_command_length = 4
5325         };
5326         int err;
5327
5328         cmd.host_command_parameters[0] = interval;
5329
5330         IPW_DEBUG_INFO("enter\n");
5331
5332         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5333                 if (!batch_mode) {
5334                         err = ipw2100_disable_adapter(priv);
5335                         if (err)
5336                                 return err;
5337                 }
5338
5339                 ipw2100_hw_send_command(priv, &cmd);
5340
5341                 if (!batch_mode) {
5342                         err = ipw2100_enable_adapter(priv);
5343                         if (err)
5344                                 return err;
5345                 }
5346         }
5347
5348         IPW_DEBUG_INFO("exit\n");
5349
5350         return 0;
5351 }
5352
5353 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5354 {
5355         ipw2100_tx_initialize(priv);
5356         ipw2100_rx_initialize(priv);
5357         ipw2100_msg_initialize(priv);
5358 }
5359
5360 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5361 {
5362         ipw2100_tx_free(priv);
5363         ipw2100_rx_free(priv);
5364         ipw2100_msg_free(priv);
5365 }
5366
5367 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5368 {
5369         if (ipw2100_tx_allocate(priv) ||
5370             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5371                 goto fail;
5372
5373         return 0;
5374
5375       fail:
5376         ipw2100_tx_free(priv);
5377         ipw2100_rx_free(priv);
5378         ipw2100_msg_free(priv);
5379         return -ENOMEM;
5380 }
5381
5382 #define IPW_PRIVACY_CAPABLE 0x0008
5383
5384 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5385                                  int batch_mode)
5386 {
5387         struct host_command cmd = {
5388                 .host_command = WEP_FLAGS,
5389                 .host_command_sequence = 0,
5390                 .host_command_length = 4
5391         };
5392         int err;
5393
5394         cmd.host_command_parameters[0] = flags;
5395
5396         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5397
5398         if (!batch_mode) {
5399                 err = ipw2100_disable_adapter(priv);
5400                 if (err) {
5401                         printk(KERN_ERR DRV_NAME
5402                                ": %s: Could not disable adapter %d\n",
5403                                priv->net_dev->name, err);
5404                         return err;
5405                 }
5406         }
5407
5408         /* send cmd to firmware */
5409         err = ipw2100_hw_send_command(priv, &cmd);
5410
5411         if (!batch_mode)
5412                 ipw2100_enable_adapter(priv);
5413
5414         return err;
5415 }
5416
5417 struct ipw2100_wep_key {
5418         u8 idx;
5419         u8 len;
5420         u8 key[13];
5421 };
5422
5423 /* Macros to ease up priting WEP keys */
5424 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5425 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5426 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5427 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5428
5429 /**
5430  * Set a the wep key
5431  *
5432  * @priv: struct to work on
5433  * @idx: index of the key we want to set
5434  * @key: ptr to the key data to set
5435  * @len: length of the buffer at @key
5436  * @batch_mode: FIXME perform the operation in batch mode, not
5437  *              disabling the device.
5438  *
5439  * @returns 0 if OK, < 0 errno code on error.
5440  *
5441  * Fill out a command structure with the new wep key, length an
5442  * index and send it down the wire.
5443  */
5444 static int ipw2100_set_key(struct ipw2100_priv *priv,
5445                            int idx, char *key, int len, int batch_mode)
5446 {
5447         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5448         struct host_command cmd = {
5449                 .host_command = WEP_KEY_INFO,
5450                 .host_command_sequence = 0,
5451                 .host_command_length = sizeof(struct ipw2100_wep_key),
5452         };
5453         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5454         int err;
5455
5456         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5457                      idx, keylen, len);
5458
5459         /* NOTE: We don't check cached values in case the firmware was reset
5460          * or some other problem is occurring.  If the user is setting the key,
5461          * then we push the change */
5462
5463         wep_key->idx = idx;
5464         wep_key->len = keylen;
5465
5466         if (keylen) {
5467                 memcpy(wep_key->key, key, len);
5468                 memset(wep_key->key + len, 0, keylen - len);
5469         }
5470
5471         /* Will be optimized out on debug not being configured in */
5472         if (keylen == 0)
5473                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5474                               priv->net_dev->name, wep_key->idx);
5475         else if (keylen == 5)
5476                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5477                               priv->net_dev->name, wep_key->idx, wep_key->len,
5478                               WEP_STR_64(wep_key->key));
5479         else
5480                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5481                               "\n",
5482                               priv->net_dev->name, wep_key->idx, wep_key->len,
5483                               WEP_STR_128(wep_key->key));
5484
5485         if (!batch_mode) {
5486                 err = ipw2100_disable_adapter(priv);
5487                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5488                 if (err) {
5489                         printk(KERN_ERR DRV_NAME
5490                                ": %s: Could not disable adapter %d\n",
5491                                priv->net_dev->name, err);
5492                         return err;
5493                 }
5494         }
5495
5496         /* send cmd to firmware */
5497         err = ipw2100_hw_send_command(priv, &cmd);
5498
5499         if (!batch_mode) {
5500                 int err2 = ipw2100_enable_adapter(priv);
5501                 if (err == 0)
5502                         err = err2;
5503         }
5504         return err;
5505 }
5506
5507 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5508                                  int idx, int batch_mode)
5509 {
5510         struct host_command cmd = {
5511                 .host_command = WEP_KEY_INDEX,
5512                 .host_command_sequence = 0,
5513                 .host_command_length = 4,
5514                 .host_command_parameters = {idx},
5515         };
5516         int err;
5517
5518         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5519
5520         if (idx < 0 || idx > 3)
5521                 return -EINVAL;
5522
5523         if (!batch_mode) {
5524                 err = ipw2100_disable_adapter(priv);
5525                 if (err) {
5526                         printk(KERN_ERR DRV_NAME
5527                                ": %s: Could not disable adapter %d\n",
5528                                priv->net_dev->name, err);
5529                         return err;
5530                 }
5531         }
5532
5533         /* send cmd to firmware */
5534         err = ipw2100_hw_send_command(priv, &cmd);
5535
5536         if (!batch_mode)
5537                 ipw2100_enable_adapter(priv);
5538
5539         return err;
5540 }
5541
5542 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5543 {
5544         int i, err, auth_mode, sec_level, use_group;
5545
5546         if (!(priv->status & STATUS_RUNNING))
5547                 return 0;
5548
5549         if (!batch_mode) {
5550                 err = ipw2100_disable_adapter(priv);
5551                 if (err)
5552                         return err;
5553         }
5554
5555         if (!priv->ieee->sec.enabled) {
5556                 err =
5557                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5558                                                      SEC_LEVEL_0, 0, 1);
5559         } else {
5560                 auth_mode = IPW_AUTH_OPEN;
5561                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5562                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5563                                 auth_mode = IPW_AUTH_SHARED;
5564                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5565                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5566                 }
5567
5568                 sec_level = SEC_LEVEL_0;
5569                 if (priv->ieee->sec.flags & SEC_LEVEL)
5570                         sec_level = priv->ieee->sec.level;
5571
5572                 use_group = 0;
5573                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5574                         use_group = priv->ieee->sec.unicast_uses_group;
5575
5576                 err =
5577                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5578                                                      use_group, 1);
5579         }
5580
5581         if (err)
5582                 goto exit;
5583
5584         if (priv->ieee->sec.enabled) {
5585                 for (i = 0; i < 4; i++) {
5586                         if (!(priv->ieee->sec.flags & (1 << i))) {
5587                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5588                                 priv->ieee->sec.key_sizes[i] = 0;
5589                         } else {
5590                                 err = ipw2100_set_key(priv, i,
5591                                                       priv->ieee->sec.keys[i],
5592                                                       priv->ieee->sec.
5593                                                       key_sizes[i], 1);
5594                                 if (err)
5595                                         goto exit;
5596                         }
5597                 }
5598
5599                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5600         }
5601
5602         /* Always enable privacy so the Host can filter WEP packets if
5603          * encrypted data is sent up */
5604         err =
5605             ipw2100_set_wep_flags(priv,
5606                                   priv->ieee->sec.
5607                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5608         if (err)
5609                 goto exit;
5610
5611         priv->status &= ~STATUS_SECURITY_UPDATED;
5612
5613       exit:
5614         if (!batch_mode)
5615                 ipw2100_enable_adapter(priv);
5616
5617         return err;
5618 }
5619
5620 static void ipw2100_security_work(struct work_struct *work)
5621 {
5622         struct ipw2100_priv *priv =
5623                 container_of(work, struct ipw2100_priv, security_work.work);
5624
5625         /* If we happen to have reconnected before we get a chance to
5626          * process this, then update the security settings--which causes
5627          * a disassociation to occur */
5628         if (!(priv->status & STATUS_ASSOCIATED) &&
5629             priv->status & STATUS_SECURITY_UPDATED)
5630                 ipw2100_configure_security(priv, 0);
5631 }
5632
5633 static void shim__set_security(struct net_device *dev,
5634                                struct libipw_security *sec)
5635 {
5636         struct ipw2100_priv *priv = libipw_priv(dev);
5637         int i, force_update = 0;
5638
5639         mutex_lock(&priv->action_mutex);
5640         if (!(priv->status & STATUS_INITIALIZED))
5641                 goto done;
5642
5643         for (i = 0; i < 4; i++) {
5644                 if (sec->flags & (1 << i)) {
5645                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5646                         if (sec->key_sizes[i] == 0)
5647                                 priv->ieee->sec.flags &= ~(1 << i);
5648                         else
5649                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5650                                        sec->key_sizes[i]);
5651                         if (sec->level == SEC_LEVEL_1) {
5652                                 priv->ieee->sec.flags |= (1 << i);
5653                                 priv->status |= STATUS_SECURITY_UPDATED;
5654                         } else
5655                                 priv->ieee->sec.flags &= ~(1 << i);
5656                 }
5657         }
5658
5659         if ((sec->flags & SEC_ACTIVE_KEY) &&
5660             priv->ieee->sec.active_key != sec->active_key) {
5661                 if (sec->active_key <= 3) {
5662                         priv->ieee->sec.active_key = sec->active_key;
5663                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5664                 } else
5665                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5666
5667                 priv->status |= STATUS_SECURITY_UPDATED;
5668         }
5669
5670         if ((sec->flags & SEC_AUTH_MODE) &&
5671             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5672                 priv->ieee->sec.auth_mode = sec->auth_mode;
5673                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5674                 priv->status |= STATUS_SECURITY_UPDATED;
5675         }
5676
5677         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5678                 priv->ieee->sec.flags |= SEC_ENABLED;
5679                 priv->ieee->sec.enabled = sec->enabled;
5680                 priv->status |= STATUS_SECURITY_UPDATED;
5681                 force_update = 1;
5682         }
5683
5684         if (sec->flags & SEC_ENCRYPT)
5685                 priv->ieee->sec.encrypt = sec->encrypt;
5686
5687         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5688                 priv->ieee->sec.level = sec->level;
5689                 priv->ieee->sec.flags |= SEC_LEVEL;
5690                 priv->status |= STATUS_SECURITY_UPDATED;
5691         }
5692
5693         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5694                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5695                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5696                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5697                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5698                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5699                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5700                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5701                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5702                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5703
5704 /* As a temporary work around to enable WPA until we figure out why
5705  * wpa_supplicant toggles the security capability of the driver, which
5706  * forces a disassocation with force_update...
5707  *
5708  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5709         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5710                 ipw2100_configure_security(priv, 0);
5711       done:
5712         mutex_unlock(&priv->action_mutex);
5713 }
5714
5715 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5716 {
5717         int err;
5718         int batch_mode = 1;
5719         u8 *bssid;
5720
5721         IPW_DEBUG_INFO("enter\n");
5722
5723         err = ipw2100_disable_adapter(priv);
5724         if (err)
5725                 return err;
5726 #ifdef CONFIG_IPW2100_MONITOR
5727         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5728                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5729                 if (err)
5730                         return err;
5731
5732                 IPW_DEBUG_INFO("exit\n");
5733
5734                 return 0;
5735         }
5736 #endif                          /* CONFIG_IPW2100_MONITOR */
5737
5738         err = ipw2100_read_mac_address(priv);
5739         if (err)
5740                 return -EIO;
5741
5742         err = ipw2100_set_mac_address(priv, batch_mode);
5743         if (err)
5744                 return err;
5745
5746         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5747         if (err)
5748                 return err;
5749
5750         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5751                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5752                 if (err)
5753                         return err;
5754         }
5755
5756         err = ipw2100_system_config(priv, batch_mode);
5757         if (err)
5758                 return err;
5759
5760         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5761         if (err)
5762                 return err;
5763
5764         /* Default to power mode OFF */
5765         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5766         if (err)
5767                 return err;
5768
5769         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5770         if (err)
5771                 return err;
5772
5773         if (priv->config & CFG_STATIC_BSSID)
5774                 bssid = priv->bssid;
5775         else
5776                 bssid = NULL;
5777         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5778         if (err)
5779                 return err;
5780
5781         if (priv->config & CFG_STATIC_ESSID)
5782                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5783                                         batch_mode);
5784         else
5785                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5786         if (err)
5787                 return err;
5788
5789         err = ipw2100_configure_security(priv, batch_mode);
5790         if (err)
5791                 return err;
5792
5793         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5794                 err =
5795                     ipw2100_set_ibss_beacon_interval(priv,
5796                                                      priv->beacon_interval,
5797                                                      batch_mode);
5798                 if (err)
5799                         return err;
5800
5801                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5802                 if (err)
5803                         return err;
5804         }
5805
5806         /*
5807            err = ipw2100_set_fragmentation_threshold(
5808            priv, priv->frag_threshold, batch_mode);
5809            if (err)
5810            return err;
5811          */
5812
5813         IPW_DEBUG_INFO("exit\n");
5814
5815         return 0;
5816 }
5817
5818 /*************************************************************************
5819  *
5820  * EXTERNALLY CALLED METHODS
5821  *
5822  *************************************************************************/
5823
5824 /* This method is called by the network layer -- not to be confused with
5825  * ipw2100_set_mac_address() declared above called by this driver (and this
5826  * method as well) to talk to the firmware */
5827 static int ipw2100_set_address(struct net_device *dev, void *p)
5828 {
5829         struct ipw2100_priv *priv = libipw_priv(dev);
5830         struct sockaddr *addr = p;
5831         int err = 0;
5832
5833         if (!is_valid_ether_addr(addr->sa_data))
5834                 return -EADDRNOTAVAIL;
5835
5836         mutex_lock(&priv->action_mutex);
5837
5838         priv->config |= CFG_CUSTOM_MAC;
5839         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5840
5841         err = ipw2100_set_mac_address(priv, 0);
5842         if (err)
5843                 goto done;
5844
5845         priv->reset_backoff = 0;
5846         mutex_unlock(&priv->action_mutex);
5847         ipw2100_reset_adapter(&priv->reset_work.work);
5848         return 0;
5849
5850       done:
5851         mutex_unlock(&priv->action_mutex);
5852         return err;
5853 }
5854
5855 static int ipw2100_open(struct net_device *dev)
5856 {
5857         struct ipw2100_priv *priv = libipw_priv(dev);
5858         unsigned long flags;
5859         IPW_DEBUG_INFO("dev->open\n");
5860
5861         spin_lock_irqsave(&priv->low_lock, flags);
5862         if (priv->status & STATUS_ASSOCIATED) {
5863                 netif_carrier_on(dev);
5864                 netif_start_queue(dev);
5865         }
5866         spin_unlock_irqrestore(&priv->low_lock, flags);
5867
5868         return 0;
5869 }
5870
5871 static int ipw2100_close(struct net_device *dev)
5872 {
5873         struct ipw2100_priv *priv = libipw_priv(dev);
5874         unsigned long flags;
5875         struct list_head *element;
5876         struct ipw2100_tx_packet *packet;
5877
5878         IPW_DEBUG_INFO("enter\n");
5879
5880         spin_lock_irqsave(&priv->low_lock, flags);
5881
5882         if (priv->status & STATUS_ASSOCIATED)
5883                 netif_carrier_off(dev);
5884         netif_stop_queue(dev);
5885
5886         /* Flush the TX queue ... */
5887         while (!list_empty(&priv->tx_pend_list)) {
5888                 element = priv->tx_pend_list.next;
5889                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5890
5891                 list_del(element);
5892                 DEC_STAT(&priv->tx_pend_stat);
5893
5894                 libipw_txb_free(packet->info.d_struct.txb);
5895                 packet->info.d_struct.txb = NULL;
5896
5897                 list_add_tail(element, &priv->tx_free_list);
5898                 INC_STAT(&priv->tx_free_stat);
5899         }
5900         spin_unlock_irqrestore(&priv->low_lock, flags);
5901
5902         IPW_DEBUG_INFO("exit\n");
5903
5904         return 0;
5905 }
5906
5907 /*
5908  * TODO:  Fix this function... its just wrong
5909  */
5910 static void ipw2100_tx_timeout(struct net_device *dev)
5911 {
5912         struct ipw2100_priv *priv = libipw_priv(dev);
5913
5914         dev->stats.tx_errors++;
5915
5916 #ifdef CONFIG_IPW2100_MONITOR
5917         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5918                 return;
5919 #endif
5920
5921         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5922                        dev->name);
5923         schedule_reset(priv);
5924 }
5925
5926 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5927 {
5928         /* This is called when wpa_supplicant loads and closes the driver
5929          * interface. */
5930         priv->ieee->wpa_enabled = value;
5931         return 0;
5932 }
5933
5934 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5935 {
5936
5937         struct libipw_device *ieee = priv->ieee;
5938         struct libipw_security sec = {
5939                 .flags = SEC_AUTH_MODE,
5940         };
5941         int ret = 0;
5942
5943         if (value & IW_AUTH_ALG_SHARED_KEY) {
5944                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5945                 ieee->open_wep = 0;
5946         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5947                 sec.auth_mode = WLAN_AUTH_OPEN;
5948                 ieee->open_wep = 1;
5949         } else if (value & IW_AUTH_ALG_LEAP) {
5950                 sec.auth_mode = WLAN_AUTH_LEAP;
5951                 ieee->open_wep = 1;
5952         } else
5953                 return -EINVAL;
5954
5955         if (ieee->set_security)
5956                 ieee->set_security(ieee->dev, &sec);
5957         else
5958                 ret = -EOPNOTSUPP;
5959
5960         return ret;
5961 }
5962
5963 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5964                                     char *wpa_ie, int wpa_ie_len)
5965 {
5966
5967         struct ipw2100_wpa_assoc_frame frame;
5968
5969         frame.fixed_ie_mask = 0;
5970
5971         /* copy WPA IE */
5972         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5973         frame.var_ie_len = wpa_ie_len;
5974
5975         /* make sure WPA is enabled */
5976         ipw2100_wpa_enable(priv, 1);
5977         ipw2100_set_wpa_ie(priv, &frame, 0);
5978 }
5979
5980 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5981                                     struct ethtool_drvinfo *info)
5982 {
5983         struct ipw2100_priv *priv = libipw_priv(dev);
5984         char fw_ver[64], ucode_ver[64];
5985
5986         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5987         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5988
5989         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5990         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5991
5992         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5993                  fw_ver, priv->eeprom_version, ucode_ver);
5994
5995         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5996                 sizeof(info->bus_info));
5997 }
5998
5999 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6000 {
6001         struct ipw2100_priv *priv = libipw_priv(dev);
6002         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6003 }
6004
6005 static const struct ethtool_ops ipw2100_ethtool_ops = {
6006         .get_link = ipw2100_ethtool_get_link,
6007         .get_drvinfo = ipw_ethtool_get_drvinfo,
6008 };
6009
6010 static void ipw2100_hang_check(struct work_struct *work)
6011 {
6012         struct ipw2100_priv *priv =
6013                 container_of(work, struct ipw2100_priv, hang_check.work);
6014         unsigned long flags;
6015         u32 rtc = 0xa5a5a5a5;
6016         u32 len = sizeof(rtc);
6017         int restart = 0;
6018
6019         spin_lock_irqsave(&priv->low_lock, flags);
6020
6021         if (priv->fatal_error != 0) {
6022                 /* If fatal_error is set then we need to restart */
6023                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6024                                priv->net_dev->name);
6025
6026                 restart = 1;
6027         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6028                    (rtc == priv->last_rtc)) {
6029                 /* Check if firmware is hung */
6030                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6031                                priv->net_dev->name);
6032
6033                 restart = 1;
6034         }
6035
6036         if (restart) {
6037                 /* Kill timer */
6038                 priv->stop_hang_check = 1;
6039                 priv->hangs++;
6040
6041                 /* Restart the NIC */
6042                 schedule_reset(priv);
6043         }
6044
6045         priv->last_rtc = rtc;
6046
6047         if (!priv->stop_hang_check)
6048                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6049
6050         spin_unlock_irqrestore(&priv->low_lock, flags);
6051 }
6052
6053 static void ipw2100_rf_kill(struct work_struct *work)
6054 {
6055         struct ipw2100_priv *priv =
6056                 container_of(work, struct ipw2100_priv, rf_kill.work);
6057         unsigned long flags;
6058
6059         spin_lock_irqsave(&priv->low_lock, flags);
6060
6061         if (rf_kill_active(priv)) {
6062                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6063                 if (!priv->stop_rf_kill)
6064                         schedule_delayed_work(&priv->rf_kill,
6065                                               round_jiffies_relative(HZ));
6066                 goto exit_unlock;
6067         }
6068
6069         /* RF Kill is now disabled, so bring the device back up */
6070
6071         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6072                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6073                                   "device\n");
6074                 schedule_reset(priv);
6075         } else
6076                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6077                                   "enabled\n");
6078
6079       exit_unlock:
6080         spin_unlock_irqrestore(&priv->low_lock, flags);
6081 }
6082
6083 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6084
6085 static const struct net_device_ops ipw2100_netdev_ops = {
6086         .ndo_open               = ipw2100_open,
6087         .ndo_stop               = ipw2100_close,
6088         .ndo_start_xmit         = libipw_xmit,
6089         .ndo_change_mtu         = libipw_change_mtu,
6090         .ndo_init               = ipw2100_net_init,
6091         .ndo_tx_timeout         = ipw2100_tx_timeout,
6092         .ndo_set_mac_address    = ipw2100_set_address,
6093         .ndo_validate_addr      = eth_validate_addr,
6094 };
6095
6096 /* Look into using netdev destructor to shutdown libipw? */
6097
6098 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6099                                                void __iomem * ioaddr)
6100 {
6101         struct ipw2100_priv *priv;
6102         struct net_device *dev;
6103
6104         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6105         if (!dev)
6106                 return NULL;
6107         priv = libipw_priv(dev);
6108         priv->ieee = netdev_priv(dev);
6109         priv->pci_dev = pci_dev;
6110         priv->net_dev = dev;
6111         priv->ioaddr = ioaddr;
6112
6113         priv->ieee->hard_start_xmit = ipw2100_tx;
6114         priv->ieee->set_security = shim__set_security;
6115
6116         priv->ieee->perfect_rssi = -20;
6117         priv->ieee->worst_rssi = -85;
6118
6119         dev->netdev_ops = &ipw2100_netdev_ops;
6120         dev->ethtool_ops = &ipw2100_ethtool_ops;
6121         dev->wireless_handlers = &ipw2100_wx_handler_def;
6122         priv->wireless_data.libipw = priv->ieee;
6123         dev->wireless_data = &priv->wireless_data;
6124         dev->watchdog_timeo = 3 * HZ;
6125         dev->irq = 0;
6126
6127         /* NOTE: We don't use the wireless_handlers hook
6128          * in dev as the system will start throwing WX requests
6129          * to us before we're actually initialized and it just
6130          * ends up causing problems.  So, we just handle
6131          * the WX extensions through the ipw2100_ioctl interface */
6132
6133         /* memset() puts everything to 0, so we only have explicitly set
6134          * those values that need to be something else */
6135
6136         /* If power management is turned on, default to AUTO mode */
6137         priv->power_mode = IPW_POWER_AUTO;
6138
6139 #ifdef CONFIG_IPW2100_MONITOR
6140         priv->config |= CFG_CRC_CHECK;
6141 #endif
6142         priv->ieee->wpa_enabled = 0;
6143         priv->ieee->drop_unencrypted = 0;
6144         priv->ieee->privacy_invoked = 0;
6145         priv->ieee->ieee802_1x = 1;
6146
6147         /* Set module parameters */
6148         switch (network_mode) {
6149         case 1:
6150                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6151                 break;
6152 #ifdef CONFIG_IPW2100_MONITOR
6153         case 2:
6154                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6155                 break;
6156 #endif
6157         default:
6158         case 0:
6159                 priv->ieee->iw_mode = IW_MODE_INFRA;
6160                 break;
6161         }
6162
6163         if (disable == 1)
6164                 priv->status |= STATUS_RF_KILL_SW;
6165
6166         if (channel != 0 &&
6167             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6168                 priv->config |= CFG_STATIC_CHANNEL;
6169                 priv->channel = channel;
6170         }
6171
6172         if (associate)
6173                 priv->config |= CFG_ASSOCIATE;
6174
6175         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6176         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6177         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6178         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6179         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6180         priv->tx_power = IPW_TX_POWER_DEFAULT;
6181         priv->tx_rates = DEFAULT_TX_RATES;
6182
6183         strcpy(priv->nick, "ipw2100");
6184
6185         spin_lock_init(&priv->low_lock);
6186         mutex_init(&priv->action_mutex);
6187         mutex_init(&priv->adapter_mutex);
6188
6189         init_waitqueue_head(&priv->wait_command_queue);
6190
6191         netif_carrier_off(dev);
6192
6193         INIT_LIST_HEAD(&priv->msg_free_list);
6194         INIT_LIST_HEAD(&priv->msg_pend_list);
6195         INIT_STAT(&priv->msg_free_stat);
6196         INIT_STAT(&priv->msg_pend_stat);
6197
6198         INIT_LIST_HEAD(&priv->tx_free_list);
6199         INIT_LIST_HEAD(&priv->tx_pend_list);
6200         INIT_STAT(&priv->tx_free_stat);
6201         INIT_STAT(&priv->tx_pend_stat);
6202
6203         INIT_LIST_HEAD(&priv->fw_pend_list);
6204         INIT_STAT(&priv->fw_pend_stat);
6205
6206         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6207         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6208         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6209         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6210         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6211         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6212         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6213
6214         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6215                      ipw2100_irq_tasklet, (unsigned long)priv);
6216
6217         /* NOTE:  We do not start the deferred work for status checks yet */
6218         priv->stop_rf_kill = 1;
6219         priv->stop_hang_check = 1;
6220
6221         return dev;
6222 }
6223
6224 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6225                                 const struct pci_device_id *ent)
6226 {
6227         void __iomem *ioaddr;
6228         struct net_device *dev = NULL;
6229         struct ipw2100_priv *priv = NULL;
6230         int err = 0;
6231         int registered = 0;
6232         u32 val;
6233
6234         IPW_DEBUG_INFO("enter\n");
6235
6236         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6237                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6238                 err = -ENODEV;
6239                 goto out;
6240         }
6241
6242         ioaddr = pci_iomap(pci_dev, 0, 0);
6243         if (!ioaddr) {
6244                 printk(KERN_WARNING DRV_NAME
6245                        "Error calling ioremap_nocache.\n");
6246                 err = -EIO;
6247                 goto fail;
6248         }
6249
6250         /* allocate and initialize our net_device */
6251         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6252         if (!dev) {
6253                 printk(KERN_WARNING DRV_NAME
6254                        "Error calling ipw2100_alloc_device.\n");
6255                 err = -ENOMEM;
6256                 goto fail;
6257         }
6258
6259         /* set up PCI mappings for device */
6260         err = pci_enable_device(pci_dev);
6261         if (err) {
6262                 printk(KERN_WARNING DRV_NAME
6263                        "Error calling pci_enable_device.\n");
6264                 return err;
6265         }
6266
6267         priv = libipw_priv(dev);
6268
6269         pci_set_master(pci_dev);
6270         pci_set_drvdata(pci_dev, priv);
6271
6272         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6273         if (err) {
6274                 printk(KERN_WARNING DRV_NAME
6275                        "Error calling pci_set_dma_mask.\n");
6276                 pci_disable_device(pci_dev);
6277                 return err;
6278         }
6279
6280         err = pci_request_regions(pci_dev, DRV_NAME);
6281         if (err) {
6282                 printk(KERN_WARNING DRV_NAME
6283                        "Error calling pci_request_regions.\n");
6284                 pci_disable_device(pci_dev);
6285                 return err;
6286         }
6287
6288         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6289          * PCI Tx retries from interfering with C3 CPU state */
6290         pci_read_config_dword(pci_dev, 0x40, &val);
6291         if ((val & 0x0000ff00) != 0)
6292                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6293
6294         pci_set_power_state(pci_dev, PCI_D0);
6295
6296         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6297                 printk(KERN_WARNING DRV_NAME
6298                        "Device not found via register read.\n");
6299                 err = -ENODEV;
6300                 goto fail;
6301         }
6302
6303         SET_NETDEV_DEV(dev, &pci_dev->dev);
6304
6305         /* Force interrupts to be shut off on the device */
6306         priv->status |= STATUS_INT_ENABLED;
6307         ipw2100_disable_interrupts(priv);
6308
6309         /* Allocate and initialize the Tx/Rx queues and lists */
6310         if (ipw2100_queues_allocate(priv)) {
6311                 printk(KERN_WARNING DRV_NAME
6312                        "Error calling ipw2100_queues_allocate.\n");
6313                 err = -ENOMEM;
6314                 goto fail;
6315         }
6316         ipw2100_queues_initialize(priv);
6317
6318         err = request_irq(pci_dev->irq,
6319                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6320         if (err) {
6321                 printk(KERN_WARNING DRV_NAME
6322                        "Error calling request_irq: %d.\n", pci_dev->irq);
6323                 goto fail;
6324         }
6325         dev->irq = pci_dev->irq;
6326
6327         IPW_DEBUG_INFO("Attempting to register device...\n");
6328
6329         printk(KERN_INFO DRV_NAME
6330                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6331
6332         err = ipw2100_wdev_init(dev);
6333         if (err)
6334                 goto fail;
6335         registered = 1;
6336
6337         /* Bring up the interface.  Pre 0.46, after we registered the
6338          * network device we would call ipw2100_up.  This introduced a race
6339          * condition with newer hotplug configurations (network was coming
6340          * up and making calls before the device was initialized).
6341          *
6342          * If we called ipw2100_up before we registered the device, then the
6343          * device name wasn't registered.  So, we instead use the net_dev->init
6344          * member to call a function that then just turns and calls ipw2100_up.
6345          * net_dev->init is called after name allocation but before the
6346          * notifier chain is called */
6347         err = register_netdev(dev);
6348         if (err) {
6349                 printk(KERN_WARNING DRV_NAME
6350                        "Error calling register_netdev.\n");
6351                 goto fail;
6352         }
6353         registered = 2;
6354
6355         mutex_lock(&priv->action_mutex);
6356
6357         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6358
6359         /* perform this after register_netdev so that dev->name is set */
6360         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6361         if (err)
6362                 goto fail_unlock;
6363
6364         /* If the RF Kill switch is disabled, go ahead and complete the
6365          * startup sequence */
6366         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6367                 /* Enable the adapter - sends HOST_COMPLETE */
6368                 if (ipw2100_enable_adapter(priv)) {
6369                         printk(KERN_WARNING DRV_NAME
6370                                ": %s: failed in call to enable adapter.\n",
6371                                priv->net_dev->name);
6372                         ipw2100_hw_stop_adapter(priv);
6373                         err = -EIO;
6374                         goto fail_unlock;
6375                 }
6376
6377                 /* Start a scan . . . */
6378                 ipw2100_set_scan_options(priv);
6379                 ipw2100_start_scan(priv);
6380         }
6381
6382         IPW_DEBUG_INFO("exit\n");
6383
6384         priv->status |= STATUS_INITIALIZED;
6385
6386         mutex_unlock(&priv->action_mutex);
6387 out:
6388         return err;
6389
6390       fail_unlock:
6391         mutex_unlock(&priv->action_mutex);
6392       fail:
6393         if (dev) {
6394                 if (registered >= 2)
6395                         unregister_netdev(dev);
6396
6397                 if (registered) {
6398                         wiphy_unregister(priv->ieee->wdev.wiphy);
6399                         kfree(priv->ieee->bg_band.channels);
6400                 }
6401
6402                 ipw2100_hw_stop_adapter(priv);
6403
6404                 ipw2100_disable_interrupts(priv);
6405
6406                 if (dev->irq)
6407                         free_irq(dev->irq, priv);
6408
6409                 ipw2100_kill_works(priv);
6410
6411                 /* These are safe to call even if they weren't allocated */
6412                 ipw2100_queues_free(priv);
6413                 sysfs_remove_group(&pci_dev->dev.kobj,
6414                                    &ipw2100_attribute_group);
6415
6416                 free_libipw(dev, 0);
6417                 pci_set_drvdata(pci_dev, NULL);
6418         }
6419
6420         pci_iounmap(pci_dev, ioaddr);
6421
6422         pci_release_regions(pci_dev);
6423         pci_disable_device(pci_dev);
6424         goto out;
6425 }
6426
6427 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6428 {
6429         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6430         struct net_device *dev = priv->net_dev;
6431
6432         mutex_lock(&priv->action_mutex);
6433
6434         priv->status &= ~STATUS_INITIALIZED;
6435
6436         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6437
6438 #ifdef CONFIG_PM
6439         if (ipw2100_firmware.version)
6440                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6441 #endif
6442         /* Take down the hardware */
6443         ipw2100_down(priv);
6444
6445         /* Release the mutex so that the network subsystem can
6446          * complete any needed calls into the driver... */
6447         mutex_unlock(&priv->action_mutex);
6448
6449         /* Unregister the device first - this results in close()
6450          * being called if the device is open.  If we free storage
6451          * first, then close() will crash.
6452          * FIXME: remove the comment above. */
6453         unregister_netdev(dev);
6454
6455         ipw2100_kill_works(priv);
6456
6457         ipw2100_queues_free(priv);
6458
6459         /* Free potential debugging firmware snapshot */
6460         ipw2100_snapshot_free(priv);
6461
6462         free_irq(dev->irq, priv);
6463
6464         pci_iounmap(pci_dev, priv->ioaddr);
6465
6466         /* wiphy_unregister needs to be here, before free_libipw */
6467         wiphy_unregister(priv->ieee->wdev.wiphy);
6468         kfree(priv->ieee->bg_band.channels);
6469         free_libipw(dev, 0);
6470
6471         pci_release_regions(pci_dev);
6472         pci_disable_device(pci_dev);
6473
6474         IPW_DEBUG_INFO("exit\n");
6475 }
6476
6477 #ifdef CONFIG_PM
6478 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6479 {
6480         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6481         struct net_device *dev = priv->net_dev;
6482
6483         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6484
6485         mutex_lock(&priv->action_mutex);
6486         if (priv->status & STATUS_INITIALIZED) {
6487                 /* Take down the device; powers it off, etc. */
6488                 ipw2100_down(priv);
6489         }
6490
6491         /* Remove the PRESENT state of the device */
6492         netif_device_detach(dev);
6493
6494         pci_save_state(pci_dev);
6495         pci_disable_device(pci_dev);
6496         pci_set_power_state(pci_dev, PCI_D3hot);
6497
6498         priv->suspend_at = get_seconds();
6499
6500         mutex_unlock(&priv->action_mutex);
6501
6502         return 0;
6503 }
6504
6505 static int ipw2100_resume(struct pci_dev *pci_dev)
6506 {
6507         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6508         struct net_device *dev = priv->net_dev;
6509         int err;
6510         u32 val;
6511
6512         if (IPW2100_PM_DISABLED)
6513                 return 0;
6514
6515         mutex_lock(&priv->action_mutex);
6516
6517         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6518
6519         pci_set_power_state(pci_dev, PCI_D0);
6520         err = pci_enable_device(pci_dev);
6521         if (err) {
6522                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6523                        dev->name);
6524                 mutex_unlock(&priv->action_mutex);
6525                 return err;
6526         }
6527         pci_restore_state(pci_dev);
6528
6529         /*
6530          * Suspend/Resume resets the PCI configuration space, so we have to
6531          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6532          * from interfering with C3 CPU state. pci_restore_state won't help
6533          * here since it only restores the first 64 bytes pci config header.
6534          */
6535         pci_read_config_dword(pci_dev, 0x40, &val);
6536         if ((val & 0x0000ff00) != 0)
6537                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6538
6539         /* Set the device back into the PRESENT state; this will also wake
6540          * the queue of needed */
6541         netif_device_attach(dev);
6542
6543         priv->suspend_time = get_seconds() - priv->suspend_at;
6544
6545         /* Bring the device back up */
6546         if (!(priv->status & STATUS_RF_KILL_SW))
6547                 ipw2100_up(priv, 0);
6548
6549         mutex_unlock(&priv->action_mutex);
6550
6551         return 0;
6552 }
6553 #endif
6554
6555 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6556 {
6557         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6558
6559         /* Take down the device; powers it off, etc. */
6560         ipw2100_down(priv);
6561
6562         pci_disable_device(pci_dev);
6563 }
6564
6565 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6566
6567 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6568         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6569         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6570         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6571         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6572         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6573         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6574         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6575         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6576         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6577         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6578         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6579         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6580         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6581
6582         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6583         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6584         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6585         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6586         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6587
6588         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6589         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6590         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6591         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6592         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6593         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6594         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6595
6596         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6597
6598         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6599         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6600         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6601         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6602         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6603         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6604         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6605
6606         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6607         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6608         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6609         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6610         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6611         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6612
6613         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6614         {0,},
6615 };
6616
6617 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6618
6619 static struct pci_driver ipw2100_pci_driver = {
6620         .name = DRV_NAME,
6621         .id_table = ipw2100_pci_id_table,
6622         .probe = ipw2100_pci_init_one,
6623         .remove = __devexit_p(ipw2100_pci_remove_one),
6624 #ifdef CONFIG_PM
6625         .suspend = ipw2100_suspend,
6626         .resume = ipw2100_resume,
6627 #endif
6628         .shutdown = ipw2100_shutdown,
6629 };
6630
6631 /**
6632  * Initialize the ipw2100 driver/module
6633  *
6634  * @returns 0 if ok, < 0 errno node con error.
6635  *
6636  * Note: we cannot init the /proc stuff until the PCI driver is there,
6637  * or we risk an unlikely race condition on someone accessing
6638  * uninitialized data in the PCI dev struct through /proc.
6639  */
6640 static int __init ipw2100_init(void)
6641 {
6642         int ret;
6643
6644         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6645         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6646
6647         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6648                            PM_QOS_DEFAULT_VALUE);
6649
6650         ret = pci_register_driver(&ipw2100_pci_driver);
6651         if (ret)
6652                 goto out;
6653
6654 #ifdef CONFIG_IPW2100_DEBUG
6655         ipw2100_debug_level = debug;
6656         ret = driver_create_file(&ipw2100_pci_driver.driver,
6657                                  &driver_attr_debug_level);
6658 #endif
6659
6660 out:
6661         return ret;
6662 }
6663
6664 /**
6665  * Cleanup ipw2100 driver registration
6666  */
6667 static void __exit ipw2100_exit(void)
6668 {
6669         /* FIXME: IPG: check that we have no instances of the devices open */
6670 #ifdef CONFIG_IPW2100_DEBUG
6671         driver_remove_file(&ipw2100_pci_driver.driver,
6672                            &driver_attr_debug_level);
6673 #endif
6674         pci_unregister_driver(&ipw2100_pci_driver);
6675         pm_qos_remove_request(&ipw2100_pm_qos_req);
6676 }
6677
6678 module_init(ipw2100_init);
6679 module_exit(ipw2100_exit);
6680
6681 static int ipw2100_wx_get_name(struct net_device *dev,
6682                                struct iw_request_info *info,
6683                                union iwreq_data *wrqu, char *extra)
6684 {
6685         /*
6686          * This can be called at any time.  No action lock required
6687          */
6688
6689         struct ipw2100_priv *priv = libipw_priv(dev);
6690         if (!(priv->status & STATUS_ASSOCIATED))
6691                 strcpy(wrqu->name, "unassociated");
6692         else
6693                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6694
6695         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6696         return 0;
6697 }
6698
6699 static int ipw2100_wx_set_freq(struct net_device *dev,
6700                                struct iw_request_info *info,
6701                                union iwreq_data *wrqu, char *extra)
6702 {
6703         struct ipw2100_priv *priv = libipw_priv(dev);
6704         struct iw_freq *fwrq = &wrqu->freq;
6705         int err = 0;
6706
6707         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6708                 return -EOPNOTSUPP;
6709
6710         mutex_lock(&priv->action_mutex);
6711         if (!(priv->status & STATUS_INITIALIZED)) {
6712                 err = -EIO;
6713                 goto done;
6714         }
6715
6716         /* if setting by freq convert to channel */
6717         if (fwrq->e == 1) {
6718                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6719                         int f = fwrq->m / 100000;
6720                         int c = 0;
6721
6722                         while ((c < REG_MAX_CHANNEL) &&
6723                                (f != ipw2100_frequencies[c]))
6724                                 c++;
6725
6726                         /* hack to fall through */
6727                         fwrq->e = 0;
6728                         fwrq->m = c + 1;
6729                 }
6730         }
6731
6732         if (fwrq->e > 0 || fwrq->m > 1000) {
6733                 err = -EOPNOTSUPP;
6734                 goto done;
6735         } else {                /* Set the channel */
6736                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6737                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6738         }
6739
6740       done:
6741         mutex_unlock(&priv->action_mutex);
6742         return err;
6743 }
6744
6745 static int ipw2100_wx_get_freq(struct net_device *dev,
6746                                struct iw_request_info *info,
6747                                union iwreq_data *wrqu, char *extra)
6748 {
6749         /*
6750          * This can be called at any time.  No action lock required
6751          */
6752
6753         struct ipw2100_priv *priv = libipw_priv(dev);
6754
6755         wrqu->freq.e = 0;
6756
6757         /* If we are associated, trying to associate, or have a statically
6758          * configured CHANNEL then return that; otherwise return ANY */
6759         if (priv->config & CFG_STATIC_CHANNEL ||
6760             priv->status & STATUS_ASSOCIATED)
6761                 wrqu->freq.m = priv->channel;
6762         else
6763                 wrqu->freq.m = 0;
6764
6765         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6766         return 0;
6767
6768 }
6769
6770 static int ipw2100_wx_set_mode(struct net_device *dev,
6771                                struct iw_request_info *info,
6772                                union iwreq_data *wrqu, char *extra)
6773 {
6774         struct ipw2100_priv *priv = libipw_priv(dev);
6775         int err = 0;
6776
6777         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6778
6779         if (wrqu->mode == priv->ieee->iw_mode)
6780                 return 0;
6781
6782         mutex_lock(&priv->action_mutex);
6783         if (!(priv->status & STATUS_INITIALIZED)) {
6784                 err = -EIO;
6785                 goto done;
6786         }
6787
6788         switch (wrqu->mode) {
6789 #ifdef CONFIG_IPW2100_MONITOR
6790         case IW_MODE_MONITOR:
6791                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6792                 break;
6793 #endif                          /* CONFIG_IPW2100_MONITOR */
6794         case IW_MODE_ADHOC:
6795                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6796                 break;
6797         case IW_MODE_INFRA:
6798         case IW_MODE_AUTO:
6799         default:
6800                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6801                 break;
6802         }
6803
6804       done:
6805         mutex_unlock(&priv->action_mutex);
6806         return err;
6807 }
6808
6809 static int ipw2100_wx_get_mode(struct net_device *dev,
6810                                struct iw_request_info *info,
6811                                union iwreq_data *wrqu, char *extra)
6812 {
6813         /*
6814          * This can be called at any time.  No action lock required
6815          */
6816
6817         struct ipw2100_priv *priv = libipw_priv(dev);
6818
6819         wrqu->mode = priv->ieee->iw_mode;
6820         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6821
6822         return 0;
6823 }
6824
6825 #define POWER_MODES 5
6826
6827 /* Values are in microsecond */
6828 static const s32 timeout_duration[POWER_MODES] = {
6829         350000,
6830         250000,
6831         75000,
6832         37000,
6833         25000,
6834 };
6835
6836 static const s32 period_duration[POWER_MODES] = {
6837         400000,
6838         700000,
6839         1000000,
6840         1000000,
6841         1000000
6842 };
6843
6844 static int ipw2100_wx_get_range(struct net_device *dev,
6845                                 struct iw_request_info *info,
6846                                 union iwreq_data *wrqu, char *extra)
6847 {
6848         /*
6849          * This can be called at any time.  No action lock required
6850          */
6851
6852         struct ipw2100_priv *priv = libipw_priv(dev);
6853         struct iw_range *range = (struct iw_range *)extra;
6854         u16 val;
6855         int i, level;
6856
6857         wrqu->data.length = sizeof(*range);
6858         memset(range, 0, sizeof(*range));
6859
6860         /* Let's try to keep this struct in the same order as in
6861          * linux/include/wireless.h
6862          */
6863
6864         /* TODO: See what values we can set, and remove the ones we can't
6865          * set, or fill them with some default data.
6866          */
6867
6868         /* ~5 Mb/s real (802.11b) */
6869         range->throughput = 5 * 1000 * 1000;
6870
6871 //      range->sensitivity;     /* signal level threshold range */
6872
6873         range->max_qual.qual = 100;
6874         /* TODO: Find real max RSSI and stick here */
6875         range->max_qual.level = 0;
6876         range->max_qual.noise = 0;
6877         range->max_qual.updated = 7;    /* Updated all three */
6878
6879         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6880         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6881         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6882         range->avg_qual.noise = 0;
6883         range->avg_qual.updated = 7;    /* Updated all three */
6884
6885         range->num_bitrates = RATE_COUNT;
6886
6887         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6888                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6889         }
6890
6891         range->min_rts = MIN_RTS_THRESHOLD;
6892         range->max_rts = MAX_RTS_THRESHOLD;
6893         range->min_frag = MIN_FRAG_THRESHOLD;
6894         range->max_frag = MAX_FRAG_THRESHOLD;
6895
6896         range->min_pmp = period_duration[0];    /* Minimal PM period */
6897         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6898         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6899         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6900
6901         /* How to decode max/min PM period */
6902         range->pmp_flags = IW_POWER_PERIOD;
6903         /* How to decode max/min PM period */
6904         range->pmt_flags = IW_POWER_TIMEOUT;
6905         /* What PM options are supported */
6906         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6907
6908         range->encoding_size[0] = 5;
6909         range->encoding_size[1] = 13;   /* Different token sizes */
6910         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6911         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6912 //      range->encoding_login_index;            /* token index for login token */
6913
6914         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6915                 range->txpower_capa = IW_TXPOW_DBM;
6916                 range->num_txpower = IW_MAX_TXPOWER;
6917                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6918                      i < IW_MAX_TXPOWER;
6919                      i++, level -=
6920                      ((IPW_TX_POWER_MAX_DBM -
6921                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6922                         range->txpower[i] = level / 16;
6923         } else {
6924                 range->txpower_capa = 0;
6925                 range->num_txpower = 0;
6926         }
6927
6928         /* Set the Wireless Extension versions */
6929         range->we_version_compiled = WIRELESS_EXT;
6930         range->we_version_source = 18;
6931
6932 //      range->retry_capa;      /* What retry options are supported */
6933 //      range->retry_flags;     /* How to decode max/min retry limit */
6934 //      range->r_time_flags;    /* How to decode max/min retry life */
6935 //      range->min_retry;       /* Minimal number of retries */
6936 //      range->max_retry;       /* Maximal number of retries */
6937 //      range->min_r_time;      /* Minimal retry lifetime */
6938 //      range->max_r_time;      /* Maximal retry lifetime */
6939
6940         range->num_channels = FREQ_COUNT;
6941
6942         val = 0;
6943         for (i = 0; i < FREQ_COUNT; i++) {
6944                 // TODO: Include only legal frequencies for some countries
6945 //              if (local->channel_mask & (1 << i)) {
6946                 range->freq[val].i = i + 1;
6947                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6948                 range->freq[val].e = 1;
6949                 val++;
6950 //              }
6951                 if (val == IW_MAX_FREQUENCIES)
6952                         break;
6953         }
6954         range->num_frequency = val;
6955
6956         /* Event capability (kernel + driver) */
6957         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6958                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6959         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6960
6961         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6962                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6963
6964         IPW_DEBUG_WX("GET Range\n");
6965
6966         return 0;
6967 }
6968
6969 static int ipw2100_wx_set_wap(struct net_device *dev,
6970                               struct iw_request_info *info,
6971                               union iwreq_data *wrqu, char *extra)
6972 {
6973         struct ipw2100_priv *priv = libipw_priv(dev);
6974         int err = 0;
6975
6976         static const unsigned char any[] = {
6977                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6978         };
6979         static const unsigned char off[] = {
6980                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6981         };
6982
6983         // sanity checks
6984         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6985                 return -EINVAL;
6986
6987         mutex_lock(&priv->action_mutex);
6988         if (!(priv->status & STATUS_INITIALIZED)) {
6989                 err = -EIO;
6990                 goto done;
6991         }
6992
6993         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6994             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6995                 /* we disable mandatory BSSID association */
6996                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6997                 priv->config &= ~CFG_STATIC_BSSID;
6998                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6999                 goto done;
7000         }
7001
7002         priv->config |= CFG_STATIC_BSSID;
7003         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7004
7005         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7006
7007         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7008
7009       done:
7010         mutex_unlock(&priv->action_mutex);
7011         return err;
7012 }
7013
7014 static int ipw2100_wx_get_wap(struct net_device *dev,
7015                               struct iw_request_info *info,
7016                               union iwreq_data *wrqu, char *extra)
7017 {
7018         /*
7019          * This can be called at any time.  No action lock required
7020          */
7021
7022         struct ipw2100_priv *priv = libipw_priv(dev);
7023
7024         /* If we are associated, trying to associate, or have a statically
7025          * configured BSSID then return that; otherwise return ANY */
7026         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7027                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7028                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7029         } else
7030                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7031
7032         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7033         return 0;
7034 }
7035
7036 static int ipw2100_wx_set_essid(struct net_device *dev,
7037                                 struct iw_request_info *info,
7038                                 union iwreq_data *wrqu, char *extra)
7039 {
7040         struct ipw2100_priv *priv = libipw_priv(dev);
7041         char *essid = "";       /* ANY */
7042         int length = 0;
7043         int err = 0;
7044         DECLARE_SSID_BUF(ssid);
7045
7046         mutex_lock(&priv->action_mutex);
7047         if (!(priv->status & STATUS_INITIALIZED)) {
7048                 err = -EIO;
7049                 goto done;
7050         }
7051
7052         if (wrqu->essid.flags && wrqu->essid.length) {
7053                 length = wrqu->essid.length;
7054                 essid = extra;
7055         }
7056
7057         if (length == 0) {
7058                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7059                 priv->config &= ~CFG_STATIC_ESSID;
7060                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7061                 goto done;
7062         }
7063
7064         length = min(length, IW_ESSID_MAX_SIZE);
7065
7066         priv->config |= CFG_STATIC_ESSID;
7067
7068         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7069                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7070                 err = 0;
7071                 goto done;
7072         }
7073
7074         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7075                      print_ssid(ssid, essid, length), length);
7076
7077         priv->essid_len = length;
7078         memcpy(priv->essid, essid, priv->essid_len);
7079
7080         err = ipw2100_set_essid(priv, essid, length, 0);
7081
7082       done:
7083         mutex_unlock(&priv->action_mutex);
7084         return err;
7085 }
7086
7087 static int ipw2100_wx_get_essid(struct net_device *dev,
7088                                 struct iw_request_info *info,
7089                                 union iwreq_data *wrqu, char *extra)
7090 {
7091         /*
7092          * This can be called at any time.  No action lock required
7093          */
7094
7095         struct ipw2100_priv *priv = libipw_priv(dev);
7096         DECLARE_SSID_BUF(ssid);
7097
7098         /* If we are associated, trying to associate, or have a statically
7099          * configured ESSID then return that; otherwise return ANY */
7100         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7101                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7102                              print_ssid(ssid, priv->essid, priv->essid_len));
7103                 memcpy(extra, priv->essid, priv->essid_len);
7104                 wrqu->essid.length = priv->essid_len;
7105                 wrqu->essid.flags = 1;  /* active */
7106         } else {
7107                 IPW_DEBUG_WX("Getting essid: ANY\n");
7108                 wrqu->essid.length = 0;
7109                 wrqu->essid.flags = 0;  /* active */
7110         }
7111
7112         return 0;
7113 }
7114
7115 static int ipw2100_wx_set_nick(struct net_device *dev,
7116                                struct iw_request_info *info,
7117                                union iwreq_data *wrqu, char *extra)
7118 {
7119         /*
7120          * This can be called at any time.  No action lock required
7121          */
7122
7123         struct ipw2100_priv *priv = libipw_priv(dev);
7124
7125         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7126                 return -E2BIG;
7127
7128         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7129         memset(priv->nick, 0, sizeof(priv->nick));
7130         memcpy(priv->nick, extra, wrqu->data.length);
7131
7132         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7133
7134         return 0;
7135 }
7136
7137 static int ipw2100_wx_get_nick(struct net_device *dev,
7138                                struct iw_request_info *info,
7139                                union iwreq_data *wrqu, char *extra)
7140 {
7141         /*
7142          * This can be called at any time.  No action lock required
7143          */
7144
7145         struct ipw2100_priv *priv = libipw_priv(dev);
7146
7147         wrqu->data.length = strlen(priv->nick);
7148         memcpy(extra, priv->nick, wrqu->data.length);
7149         wrqu->data.flags = 1;   /* active */
7150
7151         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7152
7153         return 0;
7154 }
7155
7156 static int ipw2100_wx_set_rate(struct net_device *dev,
7157                                struct iw_request_info *info,
7158                                union iwreq_data *wrqu, char *extra)
7159 {
7160         struct ipw2100_priv *priv = libipw_priv(dev);
7161         u32 target_rate = wrqu->bitrate.value;
7162         u32 rate;
7163         int err = 0;
7164
7165         mutex_lock(&priv->action_mutex);
7166         if (!(priv->status & STATUS_INITIALIZED)) {
7167                 err = -EIO;
7168                 goto done;
7169         }
7170
7171         rate = 0;
7172
7173         if (target_rate == 1000000 ||
7174             (!wrqu->bitrate.fixed && target_rate > 1000000))
7175                 rate |= TX_RATE_1_MBIT;
7176         if (target_rate == 2000000 ||
7177             (!wrqu->bitrate.fixed && target_rate > 2000000))
7178                 rate |= TX_RATE_2_MBIT;
7179         if (target_rate == 5500000 ||
7180             (!wrqu->bitrate.fixed && target_rate > 5500000))
7181                 rate |= TX_RATE_5_5_MBIT;
7182         if (target_rate == 11000000 ||
7183             (!wrqu->bitrate.fixed && target_rate > 11000000))
7184                 rate |= TX_RATE_11_MBIT;
7185         if (rate == 0)
7186                 rate = DEFAULT_TX_RATES;
7187
7188         err = ipw2100_set_tx_rates(priv, rate, 0);
7189
7190         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7191       done:
7192         mutex_unlock(&priv->action_mutex);
7193         return err;
7194 }
7195
7196 static int ipw2100_wx_get_rate(struct net_device *dev,
7197                                struct iw_request_info *info,
7198                                union iwreq_data *wrqu, char *extra)
7199 {
7200         struct ipw2100_priv *priv = libipw_priv(dev);
7201         int val;
7202         unsigned int len = sizeof(val);
7203         int err = 0;
7204
7205         if (!(priv->status & STATUS_ENABLED) ||
7206             priv->status & STATUS_RF_KILL_MASK ||
7207             !(priv->status & STATUS_ASSOCIATED)) {
7208                 wrqu->bitrate.value = 0;
7209                 return 0;
7210         }
7211
7212         mutex_lock(&priv->action_mutex);
7213         if (!(priv->status & STATUS_INITIALIZED)) {
7214                 err = -EIO;
7215                 goto done;
7216         }
7217
7218         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7219         if (err) {
7220                 IPW_DEBUG_WX("failed querying ordinals.\n");
7221                 goto done;
7222         }
7223
7224         switch (val & TX_RATE_MASK) {
7225         case TX_RATE_1_MBIT:
7226                 wrqu->bitrate.value = 1000000;
7227                 break;
7228         case TX_RATE_2_MBIT:
7229                 wrqu->bitrate.value = 2000000;
7230                 break;
7231         case TX_RATE_5_5_MBIT:
7232                 wrqu->bitrate.value = 5500000;
7233                 break;
7234         case TX_RATE_11_MBIT:
7235                 wrqu->bitrate.value = 11000000;
7236                 break;
7237         default:
7238                 wrqu->bitrate.value = 0;
7239         }
7240
7241         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7242
7243       done:
7244         mutex_unlock(&priv->action_mutex);
7245         return err;
7246 }
7247
7248 static int ipw2100_wx_set_rts(struct net_device *dev,
7249                               struct iw_request_info *info,
7250                               union iwreq_data *wrqu, char *extra)
7251 {
7252         struct ipw2100_priv *priv = libipw_priv(dev);
7253         int value, err;
7254
7255         /* Auto RTS not yet supported */
7256         if (wrqu->rts.fixed == 0)
7257                 return -EINVAL;
7258
7259         mutex_lock(&priv->action_mutex);
7260         if (!(priv->status & STATUS_INITIALIZED)) {
7261                 err = -EIO;
7262                 goto done;
7263         }
7264
7265         if (wrqu->rts.disabled)
7266                 value = priv->rts_threshold | RTS_DISABLED;
7267         else {
7268                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7269                         err = -EINVAL;
7270                         goto done;
7271                 }
7272                 value = wrqu->rts.value;
7273         }
7274
7275         err = ipw2100_set_rts_threshold(priv, value);
7276
7277         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7278       done:
7279         mutex_unlock(&priv->action_mutex);
7280         return err;
7281 }
7282
7283 static int ipw2100_wx_get_rts(struct net_device *dev,
7284                               struct iw_request_info *info,
7285                               union iwreq_data *wrqu, char *extra)
7286 {
7287         /*
7288          * This can be called at any time.  No action lock required
7289          */
7290
7291         struct ipw2100_priv *priv = libipw_priv(dev);
7292
7293         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7294         wrqu->rts.fixed = 1;    /* no auto select */
7295
7296         /* If RTS is set to the default value, then it is disabled */
7297         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7298
7299         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7300
7301         return 0;
7302 }
7303
7304 static int ipw2100_wx_set_txpow(struct net_device *dev,
7305                                 struct iw_request_info *info,
7306                                 union iwreq_data *wrqu, char *extra)
7307 {
7308         struct ipw2100_priv *priv = libipw_priv(dev);
7309         int err = 0, value;
7310         
7311         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7312                 return -EINPROGRESS;
7313
7314         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7315                 return 0;
7316
7317         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7318                 return -EINVAL;
7319
7320         if (wrqu->txpower.fixed == 0)
7321                 value = IPW_TX_POWER_DEFAULT;
7322         else {
7323                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7324                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7325                         return -EINVAL;
7326
7327                 value = wrqu->txpower.value;
7328         }
7329
7330         mutex_lock(&priv->action_mutex);
7331         if (!(priv->status & STATUS_INITIALIZED)) {
7332                 err = -EIO;
7333                 goto done;
7334         }
7335
7336         err = ipw2100_set_tx_power(priv, value);
7337
7338         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7339
7340       done:
7341         mutex_unlock(&priv->action_mutex);
7342         return err;
7343 }
7344
7345 static int ipw2100_wx_get_txpow(struct net_device *dev,
7346                                 struct iw_request_info *info,
7347                                 union iwreq_data *wrqu, char *extra)
7348 {
7349         /*
7350          * This can be called at any time.  No action lock required
7351          */
7352
7353         struct ipw2100_priv *priv = libipw_priv(dev);
7354
7355         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7356
7357         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7358                 wrqu->txpower.fixed = 0;
7359                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7360         } else {
7361                 wrqu->txpower.fixed = 1;
7362                 wrqu->txpower.value = priv->tx_power;
7363         }
7364
7365         wrqu->txpower.flags = IW_TXPOW_DBM;
7366
7367         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7368
7369         return 0;
7370 }
7371
7372 static int ipw2100_wx_set_frag(struct net_device *dev,
7373                                struct iw_request_info *info,
7374                                union iwreq_data *wrqu, char *extra)
7375 {
7376         /*
7377          * This can be called at any time.  No action lock required
7378          */
7379
7380         struct ipw2100_priv *priv = libipw_priv(dev);
7381
7382         if (!wrqu->frag.fixed)
7383                 return -EINVAL;
7384
7385         if (wrqu->frag.disabled) {
7386                 priv->frag_threshold |= FRAG_DISABLED;
7387                 priv->ieee->fts = DEFAULT_FTS;
7388         } else {
7389                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7390                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7391                         return -EINVAL;
7392
7393                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7394                 priv->frag_threshold = priv->ieee->fts;
7395         }
7396
7397         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7398
7399         return 0;
7400 }
7401
7402 static int ipw2100_wx_get_frag(struct net_device *dev,
7403                                struct iw_request_info *info,
7404                                union iwreq_data *wrqu, char *extra)
7405 {
7406         /*
7407          * This can be called at any time.  No action lock required
7408          */
7409
7410         struct ipw2100_priv *priv = libipw_priv(dev);
7411         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7412         wrqu->frag.fixed = 0;   /* no auto select */
7413         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7414
7415         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7416
7417         return 0;
7418 }
7419
7420 static int ipw2100_wx_set_retry(struct net_device *dev,
7421                                 struct iw_request_info *info,
7422                                 union iwreq_data *wrqu, char *extra)
7423 {
7424         struct ipw2100_priv *priv = libipw_priv(dev);
7425         int err = 0;
7426
7427         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7428                 return -EINVAL;
7429
7430         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7431                 return 0;
7432
7433         mutex_lock(&priv->action_mutex);
7434         if (!(priv->status & STATUS_INITIALIZED)) {
7435                 err = -EIO;
7436                 goto done;
7437         }
7438
7439         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7440                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7441                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7442                              wrqu->retry.value);
7443                 goto done;
7444         }
7445
7446         if (wrqu->retry.flags & IW_RETRY_LONG) {
7447                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7448                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7449                              wrqu->retry.value);
7450                 goto done;
7451         }
7452
7453         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7454         if (!err)
7455                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7456
7457         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7458
7459       done:
7460         mutex_unlock(&priv->action_mutex);
7461         return err;
7462 }
7463
7464 static int ipw2100_wx_get_retry(struct net_device *dev,
7465                                 struct iw_request_info *info,
7466                                 union iwreq_data *wrqu, char *extra)
7467 {
7468         /*
7469          * This can be called at any time.  No action lock required
7470          */
7471
7472         struct ipw2100_priv *priv = libipw_priv(dev);
7473
7474         wrqu->retry.disabled = 0;       /* can't be disabled */
7475
7476         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7477                 return -EINVAL;
7478
7479         if (wrqu->retry.flags & IW_RETRY_LONG) {
7480                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7481                 wrqu->retry.value = priv->long_retry_limit;
7482         } else {
7483                 wrqu->retry.flags =
7484                     (priv->short_retry_limit !=
7485                      priv->long_retry_limit) ?
7486                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7487
7488                 wrqu->retry.value = priv->short_retry_limit;
7489         }
7490
7491         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7492
7493         return 0;
7494 }
7495
7496 static int ipw2100_wx_set_scan(struct net_device *dev,
7497                                struct iw_request_info *info,
7498                                union iwreq_data *wrqu, char *extra)
7499 {
7500         struct ipw2100_priv *priv = libipw_priv(dev);
7501         int err = 0;
7502
7503         mutex_lock(&priv->action_mutex);
7504         if (!(priv->status & STATUS_INITIALIZED)) {
7505                 err = -EIO;
7506                 goto done;
7507         }
7508
7509         IPW_DEBUG_WX("Initiating scan...\n");
7510
7511         priv->user_requested_scan = 1;
7512         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7513                 IPW_DEBUG_WX("Start scan failed.\n");
7514
7515                 /* TODO: Mark a scan as pending so when hardware initialized
7516                  *       a scan starts */
7517         }
7518
7519       done:
7520         mutex_unlock(&priv->action_mutex);
7521         return err;
7522 }
7523
7524 static int ipw2100_wx_get_scan(struct net_device *dev,
7525                                struct iw_request_info *info,
7526                                union iwreq_data *wrqu, char *extra)
7527 {
7528         /*
7529          * This can be called at any time.  No action lock required
7530          */
7531
7532         struct ipw2100_priv *priv = libipw_priv(dev);
7533         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7534 }
7535
7536 /*
7537  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7538  */
7539 static int ipw2100_wx_set_encode(struct net_device *dev,
7540                                  struct iw_request_info *info,
7541                                  union iwreq_data *wrqu, char *key)
7542 {
7543         /*
7544          * No check of STATUS_INITIALIZED required
7545          */
7546
7547         struct ipw2100_priv *priv = libipw_priv(dev);
7548         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7549 }
7550
7551 static int ipw2100_wx_get_encode(struct net_device *dev,
7552                                  struct iw_request_info *info,
7553                                  union iwreq_data *wrqu, char *key)
7554 {
7555         /*
7556          * This can be called at any time.  No action lock required
7557          */
7558
7559         struct ipw2100_priv *priv = libipw_priv(dev);
7560         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7561 }
7562
7563 static int ipw2100_wx_set_power(struct net_device *dev,
7564                                 struct iw_request_info *info,
7565                                 union iwreq_data *wrqu, char *extra)
7566 {
7567         struct ipw2100_priv *priv = libipw_priv(dev);
7568         int err = 0;
7569
7570         mutex_lock(&priv->action_mutex);
7571         if (!(priv->status & STATUS_INITIALIZED)) {
7572                 err = -EIO;
7573                 goto done;
7574         }
7575
7576         if (wrqu->power.disabled) {
7577                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7578                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7579                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7580                 goto done;
7581         }
7582
7583         switch (wrqu->power.flags & IW_POWER_MODE) {
7584         case IW_POWER_ON:       /* If not specified */
7585         case IW_POWER_MODE:     /* If set all mask */
7586         case IW_POWER_ALL_R:    /* If explicitly state all */
7587                 break;
7588         default:                /* Otherwise we don't support it */
7589                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7590                              wrqu->power.flags);
7591                 err = -EOPNOTSUPP;
7592                 goto done;
7593         }
7594
7595         /* If the user hasn't specified a power management mode yet, default
7596          * to BATTERY */
7597         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7598         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7599
7600         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7601
7602       done:
7603         mutex_unlock(&priv->action_mutex);
7604         return err;
7605
7606 }
7607
7608 static int ipw2100_wx_get_power(struct net_device *dev,
7609                                 struct iw_request_info *info,
7610                                 union iwreq_data *wrqu, char *extra)
7611 {
7612         /*
7613          * This can be called at any time.  No action lock required
7614          */
7615
7616         struct ipw2100_priv *priv = libipw_priv(dev);
7617
7618         if (!(priv->power_mode & IPW_POWER_ENABLED))
7619                 wrqu->power.disabled = 1;
7620         else {
7621                 wrqu->power.disabled = 0;
7622                 wrqu->power.flags = 0;
7623         }
7624
7625         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7626
7627         return 0;
7628 }
7629
7630 /*
7631  * WE-18 WPA support
7632  */
7633
7634 /* SIOCSIWGENIE */
7635 static int ipw2100_wx_set_genie(struct net_device *dev,
7636                                 struct iw_request_info *info,
7637                                 union iwreq_data *wrqu, char *extra)
7638 {
7639
7640         struct ipw2100_priv *priv = libipw_priv(dev);
7641         struct libipw_device *ieee = priv->ieee;
7642         u8 *buf;
7643
7644         if (!ieee->wpa_enabled)
7645                 return -EOPNOTSUPP;
7646
7647         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7648             (wrqu->data.length && extra == NULL))
7649                 return -EINVAL;
7650
7651         if (wrqu->data.length) {
7652                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7653                 if (buf == NULL)
7654                         return -ENOMEM;
7655
7656                 kfree(ieee->wpa_ie);
7657                 ieee->wpa_ie = buf;
7658                 ieee->wpa_ie_len = wrqu->data.length;
7659         } else {
7660                 kfree(ieee->wpa_ie);
7661                 ieee->wpa_ie = NULL;
7662                 ieee->wpa_ie_len = 0;
7663         }
7664
7665         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7666
7667         return 0;
7668 }
7669
7670 /* SIOCGIWGENIE */
7671 static int ipw2100_wx_get_genie(struct net_device *dev,
7672                                 struct iw_request_info *info,
7673                                 union iwreq_data *wrqu, char *extra)
7674 {
7675         struct ipw2100_priv *priv = libipw_priv(dev);
7676         struct libipw_device *ieee = priv->ieee;
7677
7678         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7679                 wrqu->data.length = 0;
7680                 return 0;
7681         }
7682
7683         if (wrqu->data.length < ieee->wpa_ie_len)
7684                 return -E2BIG;
7685
7686         wrqu->data.length = ieee->wpa_ie_len;
7687         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7688
7689         return 0;
7690 }
7691
7692 /* SIOCSIWAUTH */
7693 static int ipw2100_wx_set_auth(struct net_device *dev,
7694                                struct iw_request_info *info,
7695                                union iwreq_data *wrqu, char *extra)
7696 {
7697         struct ipw2100_priv *priv = libipw_priv(dev);
7698         struct libipw_device *ieee = priv->ieee;
7699         struct iw_param *param = &wrqu->param;
7700         struct lib80211_crypt_data *crypt;
7701         unsigned long flags;
7702         int ret = 0;
7703
7704         switch (param->flags & IW_AUTH_INDEX) {
7705         case IW_AUTH_WPA_VERSION:
7706         case IW_AUTH_CIPHER_PAIRWISE:
7707         case IW_AUTH_CIPHER_GROUP:
7708         case IW_AUTH_KEY_MGMT:
7709                 /*
7710                  * ipw2200 does not use these parameters
7711                  */
7712                 break;
7713
7714         case IW_AUTH_TKIP_COUNTERMEASURES:
7715                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7716                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7717                         break;
7718
7719                 flags = crypt->ops->get_flags(crypt->priv);
7720
7721                 if (param->value)
7722                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7723                 else
7724                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7725
7726                 crypt->ops->set_flags(flags, crypt->priv);
7727
7728                 break;
7729
7730         case IW_AUTH_DROP_UNENCRYPTED:{
7731                         /* HACK:
7732                          *
7733                          * wpa_supplicant calls set_wpa_enabled when the driver
7734                          * is loaded and unloaded, regardless of if WPA is being
7735                          * used.  No other calls are made which can be used to
7736                          * determine if encryption will be used or not prior to
7737                          * association being expected.  If encryption is not being
7738                          * used, drop_unencrypted is set to false, else true -- we
7739                          * can use this to determine if the CAP_PRIVACY_ON bit should
7740                          * be set.
7741                          */
7742                         struct libipw_security sec = {
7743                                 .flags = SEC_ENABLED,
7744                                 .enabled = param->value,
7745                         };
7746                         priv->ieee->drop_unencrypted = param->value;
7747                         /* We only change SEC_LEVEL for open mode. Others
7748                          * are set by ipw_wpa_set_encryption.
7749                          */
7750                         if (!param->value) {
7751                                 sec.flags |= SEC_LEVEL;
7752                                 sec.level = SEC_LEVEL_0;
7753                         } else {
7754                                 sec.flags |= SEC_LEVEL;
7755                                 sec.level = SEC_LEVEL_1;
7756                         }
7757                         if (priv->ieee->set_security)
7758                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7759                         break;
7760                 }
7761
7762         case IW_AUTH_80211_AUTH_ALG:
7763                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7764                 break;
7765
7766         case IW_AUTH_WPA_ENABLED:
7767                 ret = ipw2100_wpa_enable(priv, param->value);
7768                 break;
7769
7770         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7771                 ieee->ieee802_1x = param->value;
7772                 break;
7773
7774                 //case IW_AUTH_ROAMING_CONTROL:
7775         case IW_AUTH_PRIVACY_INVOKED:
7776                 ieee->privacy_invoked = param->value;
7777                 break;
7778
7779         default:
7780                 return -EOPNOTSUPP;
7781         }
7782         return ret;
7783 }
7784
7785 /* SIOCGIWAUTH */
7786 static int ipw2100_wx_get_auth(struct net_device *dev,
7787                                struct iw_request_info *info,
7788                                union iwreq_data *wrqu, char *extra)
7789 {
7790         struct ipw2100_priv *priv = libipw_priv(dev);
7791         struct libipw_device *ieee = priv->ieee;
7792         struct lib80211_crypt_data *crypt;
7793         struct iw_param *param = &wrqu->param;
7794         int ret = 0;
7795
7796         switch (param->flags & IW_AUTH_INDEX) {
7797         case IW_AUTH_WPA_VERSION:
7798         case IW_AUTH_CIPHER_PAIRWISE:
7799         case IW_AUTH_CIPHER_GROUP:
7800         case IW_AUTH_KEY_MGMT:
7801                 /*
7802                  * wpa_supplicant will control these internally
7803                  */
7804                 ret = -EOPNOTSUPP;
7805                 break;
7806
7807         case IW_AUTH_TKIP_COUNTERMEASURES:
7808                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7809                 if (!crypt || !crypt->ops->get_flags) {
7810                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7811                                           "crypt not set!\n");
7812                         break;
7813                 }
7814
7815                 param->value = (crypt->ops->get_flags(crypt->priv) &
7816                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7817
7818                 break;
7819
7820         case IW_AUTH_DROP_UNENCRYPTED:
7821                 param->value = ieee->drop_unencrypted;
7822                 break;
7823
7824         case IW_AUTH_80211_AUTH_ALG:
7825                 param->value = priv->ieee->sec.auth_mode;
7826                 break;
7827
7828         case IW_AUTH_WPA_ENABLED:
7829                 param->value = ieee->wpa_enabled;
7830                 break;
7831
7832         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7833                 param->value = ieee->ieee802_1x;
7834                 break;
7835
7836         case IW_AUTH_ROAMING_CONTROL:
7837         case IW_AUTH_PRIVACY_INVOKED:
7838                 param->value = ieee->privacy_invoked;
7839                 break;
7840
7841         default:
7842                 return -EOPNOTSUPP;
7843         }
7844         return 0;
7845 }
7846
7847 /* SIOCSIWENCODEEXT */
7848 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7849                                     struct iw_request_info *info,
7850                                     union iwreq_data *wrqu, char *extra)
7851 {
7852         struct ipw2100_priv *priv = libipw_priv(dev);
7853         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7854 }
7855
7856 /* SIOCGIWENCODEEXT */
7857 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7858                                     struct iw_request_info *info,
7859                                     union iwreq_data *wrqu, char *extra)
7860 {
7861         struct ipw2100_priv *priv = libipw_priv(dev);
7862         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7863 }
7864
7865 /* SIOCSIWMLME */
7866 static int ipw2100_wx_set_mlme(struct net_device *dev,
7867                                struct iw_request_info *info,
7868                                union iwreq_data *wrqu, char *extra)
7869 {
7870         struct ipw2100_priv *priv = libipw_priv(dev);
7871         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7872         __le16 reason;
7873
7874         reason = cpu_to_le16(mlme->reason_code);
7875
7876         switch (mlme->cmd) {
7877         case IW_MLME_DEAUTH:
7878                 // silently ignore
7879                 break;
7880
7881         case IW_MLME_DISASSOC:
7882                 ipw2100_disassociate_bssid(priv);
7883                 break;
7884
7885         default:
7886                 return -EOPNOTSUPP;
7887         }
7888         return 0;
7889 }
7890
7891 /*
7892  *
7893  * IWPRIV handlers
7894  *
7895  */
7896 #ifdef CONFIG_IPW2100_MONITOR
7897 static int ipw2100_wx_set_promisc(struct net_device *dev,
7898                                   struct iw_request_info *info,
7899                                   union iwreq_data *wrqu, char *extra)
7900 {
7901         struct ipw2100_priv *priv = libipw_priv(dev);
7902         int *parms = (int *)extra;
7903         int enable = (parms[0] > 0);
7904         int err = 0;
7905
7906         mutex_lock(&priv->action_mutex);
7907         if (!(priv->status & STATUS_INITIALIZED)) {
7908                 err = -EIO;
7909                 goto done;
7910         }
7911
7912         if (enable) {
7913                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7914                         err = ipw2100_set_channel(priv, parms[1], 0);
7915                         goto done;
7916                 }
7917                 priv->channel = parms[1];
7918                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7919         } else {
7920                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7921                         err = ipw2100_switch_mode(priv, priv->last_mode);
7922         }
7923       done:
7924         mutex_unlock(&priv->action_mutex);
7925         return err;
7926 }
7927
7928 static int ipw2100_wx_reset(struct net_device *dev,
7929                             struct iw_request_info *info,
7930                             union iwreq_data *wrqu, char *extra)
7931 {
7932         struct ipw2100_priv *priv = libipw_priv(dev);
7933         if (priv->status & STATUS_INITIALIZED)
7934                 schedule_reset(priv);
7935         return 0;
7936 }
7937
7938 #endif
7939
7940 static int ipw2100_wx_set_powermode(struct net_device *dev,
7941                                     struct iw_request_info *info,
7942                                     union iwreq_data *wrqu, char *extra)
7943 {
7944         struct ipw2100_priv *priv = libipw_priv(dev);
7945         int err = 0, mode = *(int *)extra;
7946
7947         mutex_lock(&priv->action_mutex);
7948         if (!(priv->status & STATUS_INITIALIZED)) {
7949                 err = -EIO;
7950                 goto done;
7951         }
7952
7953         if ((mode < 0) || (mode > POWER_MODES))
7954                 mode = IPW_POWER_AUTO;
7955
7956         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7957                 err = ipw2100_set_power_mode(priv, mode);
7958       done:
7959         mutex_unlock(&priv->action_mutex);
7960         return err;
7961 }
7962
7963 #define MAX_POWER_STRING 80
7964 static int ipw2100_wx_get_powermode(struct net_device *dev,
7965                                     struct iw_request_info *info,
7966                                     union iwreq_data *wrqu, char *extra)
7967 {
7968         /*
7969          * This can be called at any time.  No action lock required
7970          */
7971
7972         struct ipw2100_priv *priv = libipw_priv(dev);
7973         int level = IPW_POWER_LEVEL(priv->power_mode);
7974         s32 timeout, period;
7975
7976         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7977                 snprintf(extra, MAX_POWER_STRING,
7978                          "Power save level: %d (Off)", level);
7979         } else {
7980                 switch (level) {
7981                 case IPW_POWER_MODE_CAM:
7982                         snprintf(extra, MAX_POWER_STRING,
7983                                  "Power save level: %d (None)", level);
7984                         break;
7985                 case IPW_POWER_AUTO:
7986                         snprintf(extra, MAX_POWER_STRING,
7987                                  "Power save level: %d (Auto)", level);
7988                         break;
7989                 default:
7990                         timeout = timeout_duration[level - 1] / 1000;
7991                         period = period_duration[level - 1] / 1000;
7992                         snprintf(extra, MAX_POWER_STRING,
7993                                  "Power save level: %d "
7994                                  "(Timeout %dms, Period %dms)",
7995                                  level, timeout, period);
7996                 }
7997         }
7998
7999         wrqu->data.length = strlen(extra) + 1;
8000
8001         return 0;
8002 }
8003
8004 static int ipw2100_wx_set_preamble(struct net_device *dev,
8005                                    struct iw_request_info *info,
8006                                    union iwreq_data *wrqu, char *extra)
8007 {
8008         struct ipw2100_priv *priv = libipw_priv(dev);
8009         int err, mode = *(int *)extra;
8010
8011         mutex_lock(&priv->action_mutex);
8012         if (!(priv->status & STATUS_INITIALIZED)) {
8013                 err = -EIO;
8014                 goto done;
8015         }
8016
8017         if (mode == 1)
8018                 priv->config |= CFG_LONG_PREAMBLE;
8019         else if (mode == 0)
8020                 priv->config &= ~CFG_LONG_PREAMBLE;
8021         else {
8022                 err = -EINVAL;
8023                 goto done;
8024         }
8025
8026         err = ipw2100_system_config(priv, 0);
8027
8028       done:
8029         mutex_unlock(&priv->action_mutex);
8030         return err;
8031 }
8032
8033 static int ipw2100_wx_get_preamble(struct net_device *dev,
8034                                    struct iw_request_info *info,
8035                                    union iwreq_data *wrqu, char *extra)
8036 {
8037         /*
8038          * This can be called at any time.  No action lock required
8039          */
8040
8041         struct ipw2100_priv *priv = libipw_priv(dev);
8042
8043         if (priv->config & CFG_LONG_PREAMBLE)
8044                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8045         else
8046                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8047
8048         return 0;
8049 }
8050
8051 #ifdef CONFIG_IPW2100_MONITOR
8052 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8053                                     struct iw_request_info *info,
8054                                     union iwreq_data *wrqu, char *extra)
8055 {
8056         struct ipw2100_priv *priv = libipw_priv(dev);
8057         int err, mode = *(int *)extra;
8058
8059         mutex_lock(&priv->action_mutex);
8060         if (!(priv->status & STATUS_INITIALIZED)) {
8061                 err = -EIO;
8062                 goto done;
8063         }
8064
8065         if (mode == 1)
8066                 priv->config |= CFG_CRC_CHECK;
8067         else if (mode == 0)
8068                 priv->config &= ~CFG_CRC_CHECK;
8069         else {
8070                 err = -EINVAL;
8071                 goto done;
8072         }
8073         err = 0;
8074
8075       done:
8076         mutex_unlock(&priv->action_mutex);
8077         return err;
8078 }
8079
8080 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8081                                     struct iw_request_info *info,
8082                                     union iwreq_data *wrqu, char *extra)
8083 {
8084         /*
8085          * This can be called at any time.  No action lock required
8086          */
8087
8088         struct ipw2100_priv *priv = libipw_priv(dev);
8089
8090         if (priv->config & CFG_CRC_CHECK)
8091                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8092         else
8093                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8094
8095         return 0;
8096 }
8097 #endif                          /* CONFIG_IPW2100_MONITOR */
8098
8099 static iw_handler ipw2100_wx_handlers[] = {
8100         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8101         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8102         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8103         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8104         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8105         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8106         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8107         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8108         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8109         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8110         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8111         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8112         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8113         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8114         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8115         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8116         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8117         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8118         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8119         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8120         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8121         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8122         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8123         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8124         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8125         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8126         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8127         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8128         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8129         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8130         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8131         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8132         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8133         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8134         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8135 };
8136
8137 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8138 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8139 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8140 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8141 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8142 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8143 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8144 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8145
8146 static const struct iw_priv_args ipw2100_private_args[] = {
8147
8148 #ifdef CONFIG_IPW2100_MONITOR
8149         {
8150          IPW2100_PRIV_SET_MONITOR,
8151          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8152         {
8153          IPW2100_PRIV_RESET,
8154          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8155 #endif                          /* CONFIG_IPW2100_MONITOR */
8156
8157         {
8158          IPW2100_PRIV_SET_POWER,
8159          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8160         {
8161          IPW2100_PRIV_GET_POWER,
8162          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8163          "get_power"},
8164         {
8165          IPW2100_PRIV_SET_LONGPREAMBLE,
8166          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8167         {
8168          IPW2100_PRIV_GET_LONGPREAMBLE,
8169          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8170 #ifdef CONFIG_IPW2100_MONITOR
8171         {
8172          IPW2100_PRIV_SET_CRC_CHECK,
8173          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8174         {
8175          IPW2100_PRIV_GET_CRC_CHECK,
8176          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8177 #endif                          /* CONFIG_IPW2100_MONITOR */
8178 };
8179
8180 static iw_handler ipw2100_private_handler[] = {
8181 #ifdef CONFIG_IPW2100_MONITOR
8182         ipw2100_wx_set_promisc,
8183         ipw2100_wx_reset,
8184 #else                           /* CONFIG_IPW2100_MONITOR */
8185         NULL,
8186         NULL,
8187 #endif                          /* CONFIG_IPW2100_MONITOR */
8188         ipw2100_wx_set_powermode,
8189         ipw2100_wx_get_powermode,
8190         ipw2100_wx_set_preamble,
8191         ipw2100_wx_get_preamble,
8192 #ifdef CONFIG_IPW2100_MONITOR
8193         ipw2100_wx_set_crc_check,
8194         ipw2100_wx_get_crc_check,
8195 #else                           /* CONFIG_IPW2100_MONITOR */
8196         NULL,
8197         NULL,
8198 #endif                          /* CONFIG_IPW2100_MONITOR */
8199 };
8200
8201 /*
8202  * Get wireless statistics.
8203  * Called by /proc/net/wireless
8204  * Also called by SIOCGIWSTATS
8205  */
8206 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8207 {
8208         enum {
8209                 POOR = 30,
8210                 FAIR = 60,
8211                 GOOD = 80,
8212                 VERY_GOOD = 90,
8213                 EXCELLENT = 95,
8214                 PERFECT = 100
8215         };
8216         int rssi_qual;
8217         int tx_qual;
8218         int beacon_qual;
8219         int quality;
8220
8221         struct ipw2100_priv *priv = libipw_priv(dev);
8222         struct iw_statistics *wstats;
8223         u32 rssi, tx_retries, missed_beacons, tx_failures;
8224         u32 ord_len = sizeof(u32);
8225
8226         if (!priv)
8227                 return (struct iw_statistics *)NULL;
8228
8229         wstats = &priv->wstats;
8230
8231         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8232          * ipw2100_wx_wireless_stats seems to be called before fw is
8233          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8234          * and associated; if not associcated, the values are all meaningless
8235          * anyway, so set them all to NULL and INVALID */
8236         if (!(priv->status & STATUS_ASSOCIATED)) {
8237                 wstats->miss.beacon = 0;
8238                 wstats->discard.retries = 0;
8239                 wstats->qual.qual = 0;
8240                 wstats->qual.level = 0;
8241                 wstats->qual.noise = 0;
8242                 wstats->qual.updated = 7;
8243                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8244                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8245                 return wstats;
8246         }
8247
8248         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8249                                 &missed_beacons, &ord_len))
8250                 goto fail_get_ordinal;
8251
8252         /* If we don't have a connection the quality and level is 0 */
8253         if (!(priv->status & STATUS_ASSOCIATED)) {
8254                 wstats->qual.qual = 0;
8255                 wstats->qual.level = 0;
8256         } else {
8257                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8258                                         &rssi, &ord_len))
8259                         goto fail_get_ordinal;
8260                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8261                 if (rssi < 10)
8262                         rssi_qual = rssi * POOR / 10;
8263                 else if (rssi < 15)
8264                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8265                 else if (rssi < 20)
8266                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8267                 else if (rssi < 30)
8268                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8269                             10 + GOOD;
8270                 else
8271                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8272                             10 + VERY_GOOD;
8273
8274                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8275                                         &tx_retries, &ord_len))
8276                         goto fail_get_ordinal;
8277
8278                 if (tx_retries > 75)
8279                         tx_qual = (90 - tx_retries) * POOR / 15;
8280                 else if (tx_retries > 70)
8281                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8282                 else if (tx_retries > 65)
8283                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8284                 else if (tx_retries > 50)
8285                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8286                             15 + GOOD;
8287                 else
8288                         tx_qual = (50 - tx_retries) *
8289                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8290
8291                 if (missed_beacons > 50)
8292                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8293                 else if (missed_beacons > 40)
8294                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8295                             10 + POOR;
8296                 else if (missed_beacons > 32)
8297                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8298                             18 + FAIR;
8299                 else if (missed_beacons > 20)
8300                         beacon_qual = (32 - missed_beacons) *
8301                             (VERY_GOOD - GOOD) / 20 + GOOD;
8302                 else
8303                         beacon_qual = (20 - missed_beacons) *
8304                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8305
8306                 quality = min(tx_qual, rssi_qual);
8307                 quality = min(beacon_qual, quality);
8308
8309 #ifdef CONFIG_IPW2100_DEBUG
8310                 if (beacon_qual == quality)
8311                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8312                 else if (tx_qual == quality)
8313                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8314                 else if (quality != 100)
8315                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8316                 else
8317                         IPW_DEBUG_WX("Quality not clamped.\n");
8318 #endif
8319
8320                 wstats->qual.qual = quality;
8321                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8322         }
8323
8324         wstats->qual.noise = 0;
8325         wstats->qual.updated = 7;
8326         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8327
8328         /* FIXME: this is percent and not a # */
8329         wstats->miss.beacon = missed_beacons;
8330
8331         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8332                                 &tx_failures, &ord_len))
8333                 goto fail_get_ordinal;
8334         wstats->discard.retries = tx_failures;
8335
8336         return wstats;
8337
8338       fail_get_ordinal:
8339         IPW_DEBUG_WX("failed querying ordinals.\n");
8340
8341         return (struct iw_statistics *)NULL;
8342 }
8343
8344 static struct iw_handler_def ipw2100_wx_handler_def = {
8345         .standard = ipw2100_wx_handlers,
8346         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8347         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8348         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8349         .private = (iw_handler *) ipw2100_private_handler,
8350         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8351         .get_wireless_stats = ipw2100_wx_wireless_stats,
8352 };
8353
8354 static void ipw2100_wx_event_work(struct work_struct *work)
8355 {
8356         struct ipw2100_priv *priv =
8357                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8358         union iwreq_data wrqu;
8359         unsigned int len = ETH_ALEN;
8360
8361         if (priv->status & STATUS_STOPPING)
8362                 return;
8363
8364         mutex_lock(&priv->action_mutex);
8365
8366         IPW_DEBUG_WX("enter\n");
8367
8368         mutex_unlock(&priv->action_mutex);
8369
8370         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8371
8372         /* Fetch BSSID from the hardware */
8373         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8374             priv->status & STATUS_RF_KILL_MASK ||
8375             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8376                                 &priv->bssid, &len)) {
8377                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8378         } else {
8379                 /* We now have the BSSID, so can finish setting to the full
8380                  * associated state */
8381                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8382                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8383                 priv->status &= ~STATUS_ASSOCIATING;
8384                 priv->status |= STATUS_ASSOCIATED;
8385                 netif_carrier_on(priv->net_dev);
8386                 netif_wake_queue(priv->net_dev);
8387         }
8388
8389         if (!(priv->status & STATUS_ASSOCIATED)) {
8390                 IPW_DEBUG_WX("Configuring ESSID\n");
8391                 mutex_lock(&priv->action_mutex);
8392                 /* This is a disassociation event, so kick the firmware to
8393                  * look for another AP */
8394                 if (priv->config & CFG_STATIC_ESSID)
8395                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8396                                           0);
8397                 else
8398                         ipw2100_set_essid(priv, NULL, 0, 0);
8399                 mutex_unlock(&priv->action_mutex);
8400         }
8401
8402         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8403 }
8404
8405 #define IPW2100_FW_MAJOR_VERSION 1
8406 #define IPW2100_FW_MINOR_VERSION 3
8407
8408 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8409 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8410
8411 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8412                              IPW2100_FW_MAJOR_VERSION)
8413
8414 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8415 "." __stringify(IPW2100_FW_MINOR_VERSION)
8416
8417 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8418
8419 /*
8420
8421 BINARY FIRMWARE HEADER FORMAT
8422
8423 offset      length   desc
8424 0           2        version
8425 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8426 4           4        fw_len
8427 8           4        uc_len
8428 C           fw_len   firmware data
8429 12 + fw_len uc_len   microcode data
8430
8431 */
8432
8433 struct ipw2100_fw_header {
8434         short version;
8435         short mode;
8436         unsigned int fw_size;
8437         unsigned int uc_size;
8438 } __packed;
8439
8440 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8441 {
8442         struct ipw2100_fw_header *h =
8443             (struct ipw2100_fw_header *)fw->fw_entry->data;
8444
8445         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8446                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8447                        "(detected version id of %u). "
8448                        "See Documentation/networking/README.ipw2100\n",
8449                        h->version);
8450                 return 1;
8451         }
8452
8453         fw->version = h->version;
8454         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8455         fw->fw.size = h->fw_size;
8456         fw->uc.data = fw->fw.data + h->fw_size;
8457         fw->uc.size = h->uc_size;
8458
8459         return 0;
8460 }
8461
8462 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8463                                 struct ipw2100_fw *fw)
8464 {
8465         char *fw_name;
8466         int rc;
8467
8468         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8469                        priv->net_dev->name);
8470
8471         switch (priv->ieee->iw_mode) {
8472         case IW_MODE_ADHOC:
8473                 fw_name = IPW2100_FW_NAME("-i");
8474                 break;
8475 #ifdef CONFIG_IPW2100_MONITOR
8476         case IW_MODE_MONITOR:
8477                 fw_name = IPW2100_FW_NAME("-p");
8478                 break;
8479 #endif
8480         case IW_MODE_INFRA:
8481         default:
8482                 fw_name = IPW2100_FW_NAME("");
8483                 break;
8484         }
8485
8486         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8487
8488         if (rc < 0) {
8489                 printk(KERN_ERR DRV_NAME ": "
8490                        "%s: Firmware '%s' not available or load failed.\n",
8491                        priv->net_dev->name, fw_name);
8492                 return rc;
8493         }
8494         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8495                        fw->fw_entry->size);
8496
8497         ipw2100_mod_firmware_load(fw);
8498
8499         return 0;
8500 }
8501
8502 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8503 #ifdef CONFIG_IPW2100_MONITOR
8504 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8505 #endif
8506 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8507
8508 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8509                                      struct ipw2100_fw *fw)
8510 {
8511         fw->version = 0;
8512         release_firmware(fw->fw_entry);
8513         fw->fw_entry = NULL;
8514 }
8515
8516 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8517                                  size_t max)
8518 {
8519         char ver[MAX_FW_VERSION_LEN];
8520         u32 len = MAX_FW_VERSION_LEN;
8521         u32 tmp;
8522         int i;
8523         /* firmware version is an ascii string (max len of 14) */
8524         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8525                 return -EIO;
8526         tmp = max;
8527         if (len >= max)
8528                 len = max - 1;
8529         for (i = 0; i < len; i++)
8530                 buf[i] = ver[i];
8531         buf[i] = '\0';
8532         return tmp;
8533 }
8534
8535 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8536                                     size_t max)
8537 {
8538         u32 ver;
8539         u32 len = sizeof(ver);
8540         /* microcode version is a 32 bit integer */
8541         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8542                 return -EIO;
8543         return snprintf(buf, max, "%08X", ver);
8544 }
8545
8546 /*
8547  * On exit, the firmware will have been freed from the fw list
8548  */
8549 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8550 {
8551         /* firmware is constructed of N contiguous entries, each entry is
8552          * structured as:
8553          *
8554          * offset    sie         desc
8555          * 0         4           address to write to
8556          * 4         2           length of data run
8557          * 6         length      data
8558          */
8559         unsigned int addr;
8560         unsigned short len;
8561
8562         const unsigned char *firmware_data = fw->fw.data;
8563         unsigned int firmware_data_left = fw->fw.size;
8564
8565         while (firmware_data_left > 0) {
8566                 addr = *(u32 *) (firmware_data);
8567                 firmware_data += 4;
8568                 firmware_data_left -= 4;
8569
8570                 len = *(u16 *) (firmware_data);
8571                 firmware_data += 2;
8572                 firmware_data_left -= 2;
8573
8574                 if (len > 32) {
8575                         printk(KERN_ERR DRV_NAME ": "
8576                                "Invalid firmware run-length of %d bytes\n",
8577                                len);
8578                         return -EINVAL;
8579                 }
8580
8581                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8582                 firmware_data += len;
8583                 firmware_data_left -= len;
8584         }
8585
8586         return 0;
8587 }
8588
8589 struct symbol_alive_response {
8590         u8 cmd_id;
8591         u8 seq_num;
8592         u8 ucode_rev;
8593         u8 eeprom_valid;
8594         u16 valid_flags;
8595         u8 IEEE_addr[6];
8596         u16 flags;
8597         u16 pcb_rev;
8598         u16 clock_settle_time;  // 1us LSB
8599         u16 powerup_settle_time;        // 1us LSB
8600         u16 hop_settle_time;    // 1us LSB
8601         u8 date[3];             // month, day, year
8602         u8 time[2];             // hours, minutes
8603         u8 ucode_valid;
8604 };
8605
8606 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8607                                   struct ipw2100_fw *fw)
8608 {
8609         struct net_device *dev = priv->net_dev;
8610         const unsigned char *microcode_data = fw->uc.data;
8611         unsigned int microcode_data_left = fw->uc.size;
8612         void __iomem *reg = priv->ioaddr;
8613
8614         struct symbol_alive_response response;
8615         int i, j;
8616         u8 data;
8617
8618         /* Symbol control */
8619         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8620         readl(reg);
8621         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8622         readl(reg);
8623
8624         /* HW config */
8625         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8626         readl(reg);
8627         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8628         readl(reg);
8629
8630         /* EN_CS_ACCESS bit to reset control store pointer */
8631         write_nic_byte(dev, 0x210000, 0x40);
8632         readl(reg);
8633         write_nic_byte(dev, 0x210000, 0x0);
8634         readl(reg);
8635         write_nic_byte(dev, 0x210000, 0x40);
8636         readl(reg);
8637
8638         /* copy microcode from buffer into Symbol */
8639
8640         while (microcode_data_left > 0) {
8641                 write_nic_byte(dev, 0x210010, *microcode_data++);
8642                 write_nic_byte(dev, 0x210010, *microcode_data++);
8643                 microcode_data_left -= 2;
8644         }
8645
8646         /* EN_CS_ACCESS bit to reset the control store pointer */
8647         write_nic_byte(dev, 0x210000, 0x0);
8648         readl(reg);
8649
8650         /* Enable System (Reg 0)
8651          * first enable causes garbage in RX FIFO */
8652         write_nic_byte(dev, 0x210000, 0x0);
8653         readl(reg);
8654         write_nic_byte(dev, 0x210000, 0x80);
8655         readl(reg);
8656
8657         /* Reset External Baseband Reg */
8658         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8659         readl(reg);
8660         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8661         readl(reg);
8662
8663         /* HW Config (Reg 5) */
8664         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8665         readl(reg);
8666         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8667         readl(reg);
8668
8669         /* Enable System (Reg 0)
8670          * second enable should be OK */
8671         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8672         readl(reg);
8673         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8674
8675         /* check Symbol is enabled - upped this from 5 as it wasn't always
8676          * catching the update */
8677         for (i = 0; i < 10; i++) {
8678                 udelay(10);
8679
8680                 /* check Dino is enabled bit */
8681                 read_nic_byte(dev, 0x210000, &data);
8682                 if (data & 0x1)
8683                         break;
8684         }
8685
8686         if (i == 10) {
8687                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8688                        dev->name);
8689                 return -EIO;
8690         }
8691
8692         /* Get Symbol alive response */
8693         for (i = 0; i < 30; i++) {
8694                 /* Read alive response structure */
8695                 for (j = 0;
8696                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8697                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8698
8699                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8700                         break;
8701                 udelay(10);
8702         }
8703
8704         if (i == 30) {
8705                 printk(KERN_ERR DRV_NAME
8706                        ": %s: No response from Symbol - hw not alive\n",
8707                        dev->name);
8708                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8709                 return -EIO;
8710         }
8711
8712         return 0;
8713 }