079e9ca168d5a55c56fee0a13eb0326edf533a4b
[pandora-kernel.git] / drivers / net / wireless / ath5k / eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23
24 #include "ath5k.h"
25 #include "reg.h"
26 #include "debug.h"
27 #include "base.h"
28
29 /*
30  * Read from eeprom
31  */
32 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
33 {
34         u32 status, timeout;
35
36         ATH5K_TRACE(ah->ah_sc);
37         /*
38          * Initialize EEPROM access
39          */
40         if (ah->ah_version == AR5K_AR5210) {
41                 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42                 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43         } else {
44                 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45                 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46                                 AR5K_EEPROM_CMD_READ);
47         }
48
49         for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50                 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51                 if (status & AR5K_EEPROM_STAT_RDDONE) {
52                         if (status & AR5K_EEPROM_STAT_RDERR)
53                                 return -EIO;
54                         *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55                                         0xffff);
56                         return 0;
57                 }
58                 udelay(15);
59         }
60
61         return -ETIMEDOUT;
62 }
63
64 /*
65  * Translate binary channel representation in EEPROM to frequency
66  */
67 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68                                  unsigned int mode)
69 {
70         u16 val;
71
72         if (bin == AR5K_EEPROM_CHANNEL_DIS)
73                 return bin;
74
75         if (mode == AR5K_EEPROM_MODE_11A) {
76                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
77                         val = (5 * bin) + 4800;
78                 else
79                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80                                 (bin * 10) + 5100;
81         } else {
82                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
83                         val = bin + 2300;
84                 else
85                         val = bin + 2400;
86         }
87
88         return val;
89 }
90
91 /*
92  * Initialize eeprom & capabilities structs
93  */
94 static int
95 ath5k_eeprom_init_header(struct ath5k_hw *ah)
96 {
97         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98         int ret;
99         u16 val;
100
101         /* Initial TX thermal adjustment values */
102         ee->ee_tx_clip = 4;
103         ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
104         ee->ee_gain_select = 1;
105
106         /*
107          * Read values from EEPROM and store them in the capability structure
108          */
109         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
110         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
111         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
112         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
113         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
114
115         /* Return if we have an old EEPROM */
116         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
117                 return 0;
118
119 #ifdef notyet
120         /*
121          * Validate the checksum of the EEPROM date. There are some
122          * devices with invalid EEPROMs.
123          */
124         for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
125                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
126                 cksum ^= val;
127         }
128         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
129                 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
130                 return -EIO;
131         }
132 #endif
133
134         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
135             ee_ant_gain);
136
137         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
138                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
139                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
140
141                 /* XXX: Don't know which versions include these two */
142                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
143
144                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
145                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
146
147                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
148                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
149                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
150                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
151                 }
152         }
153
154         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
155                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
156                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
157                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
158
159                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
160                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
161                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
162         }
163
164         return 0;
165 }
166
167
168 /*
169  * Read antenna infos from eeprom
170  */
171 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
172                 unsigned int mode)
173 {
174         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
175         u32 o = *offset;
176         u16 val;
177         int ret, i = 0;
178
179         AR5K_EEPROM_READ(o++, val);
180         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
181         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
182         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
183
184         AR5K_EEPROM_READ(o++, val);
185         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
186         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
187         ee->ee_ant_control[mode][i++]   = val & 0x3f;
188
189         AR5K_EEPROM_READ(o++, val);
190         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
191         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
192         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
193
194         AR5K_EEPROM_READ(o++, val);
195         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
196         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
197         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
198         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
199
200         AR5K_EEPROM_READ(o++, val);
201         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
202         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
203         ee->ee_ant_control[mode][i++]   = val & 0x3f;
204
205         /* Get antenna modes */
206         ah->ah_antenna[mode][0] =
207             (ee->ee_ant_control[mode][0] << 4) | 0x1;
208         ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
209              ee->ee_ant_control[mode][1]        |
210             (ee->ee_ant_control[mode][2] << 6)  |
211             (ee->ee_ant_control[mode][3] << 12) |
212             (ee->ee_ant_control[mode][4] << 18) |
213             (ee->ee_ant_control[mode][5] << 24);
214         ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
215              ee->ee_ant_control[mode][6]        |
216             (ee->ee_ant_control[mode][7] << 6)  |
217             (ee->ee_ant_control[mode][8] << 12) |
218             (ee->ee_ant_control[mode][9] << 18) |
219             (ee->ee_ant_control[mode][10] << 24);
220
221         /* return new offset */
222         *offset = o;
223
224         return 0;
225 }
226
227 /*
228  * Read supported modes and some mode-specific calibration data
229  * from eeprom
230  */
231 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
232                 unsigned int mode)
233 {
234         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
235         u32 o = *offset;
236         u16 val;
237         int ret;
238
239         ee->ee_n_piers[mode] = 0;
240         AR5K_EEPROM_READ(o++, val);
241         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
242         switch(mode) {
243         case AR5K_EEPROM_MODE_11A:
244                 ee->ee_ob[mode][3]              = (val >> 5) & 0x7;
245                 ee->ee_db[mode][3]              = (val >> 2) & 0x7;
246                 ee->ee_ob[mode][2]              = (val << 1) & 0x7;
247
248                 AR5K_EEPROM_READ(o++, val);
249                 ee->ee_ob[mode][2]              |= (val >> 15) & 0x1;
250                 ee->ee_db[mode][2]              = (val >> 12) & 0x7;
251                 ee->ee_ob[mode][1]              = (val >> 9) & 0x7;
252                 ee->ee_db[mode][1]              = (val >> 6) & 0x7;
253                 ee->ee_ob[mode][0]              = (val >> 3) & 0x7;
254                 ee->ee_db[mode][0]              = val & 0x7;
255                 break;
256         case AR5K_EEPROM_MODE_11G:
257         case AR5K_EEPROM_MODE_11B:
258                 ee->ee_ob[mode][1]              = (val >> 4) & 0x7;
259                 ee->ee_db[mode][1]              = val & 0x7;
260                 break;
261         }
262
263         AR5K_EEPROM_READ(o++, val);
264         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
265         ee->ee_thr_62[mode]             = val & 0xff;
266
267         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
268                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
269
270         AR5K_EEPROM_READ(o++, val);
271         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
272         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
273
274         AR5K_EEPROM_READ(o++, val);
275         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
276
277         if ((val & 0xff) & 0x80)
278                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
279         else
280                 ee->ee_noise_floor_thr[mode] = val & 0xff;
281
282         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
283                 ee->ee_noise_floor_thr[mode] =
284                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
285
286         AR5K_EEPROM_READ(o++, val);
287         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
288         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
289         ee->ee_xpd[mode]                = val & 0x1;
290
291         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
292                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
293
294         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
295                 AR5K_EEPROM_READ(o++, val);
296                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
297
298                 if (mode == AR5K_EEPROM_MODE_11A)
299                         ee->ee_xr_power[mode] = val & 0x3f;
300                 else {
301                         ee->ee_ob[mode][0] = val & 0x7;
302                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
303                 }
304         }
305
306         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
307                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
308                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
309         } else {
310                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
311
312                 AR5K_EEPROM_READ(o++, val);
313                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
314
315                 if (mode == AR5K_EEPROM_MODE_11G) {
316                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
317                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
318                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
319                 }
320         }
321
322         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
323                         mode == AR5K_EEPROM_MODE_11A) {
324                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
325                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
326         }
327
328         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
329                 goto done;
330
331         /* Note: >= v5 have bg freq piers on another location
332          * so these freq piers are ignored for >= v5 (should be 0xff
333          * anyway) */
334         switch(mode) {
335         case AR5K_EEPROM_MODE_11A:
336                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
337                         break;
338
339                 AR5K_EEPROM_READ(o++, val);
340                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
341                 break;
342         case AR5K_EEPROM_MODE_11B:
343                 AR5K_EEPROM_READ(o++, val);
344
345                 ee->ee_pwr_cal_b[0].freq =
346                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
347                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
348                         ee->ee_n_piers[mode]++;
349
350                 ee->ee_pwr_cal_b[1].freq =
351                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
352                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
353                         ee->ee_n_piers[mode]++;
354
355                 AR5K_EEPROM_READ(o++, val);
356                 ee->ee_pwr_cal_b[2].freq =
357                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
358                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
359                         ee->ee_n_piers[mode]++;
360
361                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
362                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
363                 break;
364         case AR5K_EEPROM_MODE_11G:
365                 AR5K_EEPROM_READ(o++, val);
366
367                 ee->ee_pwr_cal_g[0].freq =
368                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
369                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
370                         ee->ee_n_piers[mode]++;
371
372                 ee->ee_pwr_cal_g[1].freq =
373                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
374                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
375                         ee->ee_n_piers[mode]++;
376
377                 AR5K_EEPROM_READ(o++, val);
378                 ee->ee_turbo_max_power[mode] = val & 0x7f;
379                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
380
381                 AR5K_EEPROM_READ(o++, val);
382                 ee->ee_pwr_cal_g[2].freq =
383                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
384                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
385                         ee->ee_n_piers[mode]++;
386
387                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
388                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
389
390                 AR5K_EEPROM_READ(o++, val);
391                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
392                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
393
394                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
395                         AR5K_EEPROM_READ(o++, val);
396                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
397                 }
398                 break;
399         }
400
401 done:
402         /* return new offset */
403         *offset = o;
404
405         return 0;
406 }
407
408 /*
409  * Read turbo mode information on newer EEPROM versions
410  */
411 static int
412 ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
413                               u32 *offset, unsigned int mode)
414 {
415         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
416         u32 o = *offset;
417         u16 val;
418         int ret;
419
420         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
421                 return 0;
422
423         switch (mode){
424         case AR5K_EEPROM_MODE_11A:
425                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
426
427                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
428                 AR5K_EEPROM_READ(o++, val);
429                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
430                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
431
432                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
433                 AR5K_EEPROM_READ(o++, val);
434                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
435                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
436
437                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
438                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
439                 break;
440         case AR5K_EEPROM_MODE_11G:
441                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
442
443                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
444                 AR5K_EEPROM_READ(o++, val);
445                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
446                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
447
448                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
449                 AR5K_EEPROM_READ(o++, val);
450                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
451                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
452                 break;
453         }
454
455         /* return new offset */
456         *offset = o;
457
458         return 0;
459 }
460
461 /* Read mode-specific data (except power calibration data) */
462 static int
463 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
464 {
465         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
466         u32 mode_offset[3];
467         unsigned int mode;
468         u32 offset;
469         int ret;
470
471         /*
472          * Get values for all modes
473          */
474         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
475         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
476         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
477
478         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
479                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
480
481         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
482                 offset = mode_offset[mode];
483
484                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
485                 if (ret)
486                         return ret;
487
488                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
489                 if (ret)
490                         return ret;
491
492                 ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
493                 if (ret)
494                         return ret;
495         }
496
497         /* override for older eeprom versions for better performance */
498         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
499                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
500                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
501                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
502         }
503
504         return 0;
505 }
506
507 /* Used to match PCDAC steps with power values on RF5111 chips
508  * (eeprom versions < 4). For RF5111 we have 10 pre-defined PCDAC
509  * steps that match with the power values we read from eeprom. On
510  * older eeprom versions (< 3.2) these steps are equaly spaced at
511  * 10% of the pcdac curve -until the curve reaches it's maximum-
512  * (10 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
513  * these 10 steps are spaced in a different way. This function returns
514  * the pcdac steps based on eeprom version and curve min/max so that we
515  * can have  pcdac/pwr points.
516  */
517 static inline void
518 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
519 {
520         const static u16 intercepts3[] =
521                 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
522         const static u16 intercepts3_2[] =
523                 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
524         const u16 *ip;
525         int i;
526
527         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
528                 ip = intercepts3_2;
529         else
530                 ip = intercepts3;
531
532         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
533                 *vp++ = (ip[i] * max + (100 - ip[i]) * min) / 100;
534 }
535
536 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
537  * frequency mask) */
538 static inline int
539 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
540                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
541 {
542         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
543         int o = *offset;
544         int i = 0;
545         u8 freq1, freq2;
546         int ret;
547         u16 val;
548
549         while(i < max) {
550                 AR5K_EEPROM_READ(o++, val);
551
552                 freq1 = (val >> 8) & 0xff;
553                 freq2 = val & 0xff;
554
555                 if (freq1) {
556                         pc[i++].freq = ath5k_eeprom_bin2freq(ee,
557                                         freq1, mode);
558                         ee->ee_n_piers[mode]++;
559                 }
560
561                 if (freq2) {
562                         pc[i++].freq = ath5k_eeprom_bin2freq(ee,
563                                         freq2, mode);
564                         ee->ee_n_piers[mode]++;
565                 }
566
567                 if (!freq1 || !freq2)
568                         break;
569         }
570
571         /* return new offset */
572         *offset = o;
573
574         return 0;
575 }
576
577 /* Read frequency piers for 802.11a */
578 static int
579 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
580 {
581         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
582         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
583         int i, ret;
584         u16 val;
585         u8 mask;
586
587         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
588                 ath5k_eeprom_read_freq_list(ah, &offset,
589                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
590                         AR5K_EEPROM_MODE_11A);
591         } else {
592                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
593
594                 AR5K_EEPROM_READ(offset++, val);
595                 pcal[0].freq  = (val >> 9) & mask;
596                 pcal[1].freq  = (val >> 2) & mask;
597                 pcal[2].freq  = (val << 5) & mask;
598
599                 AR5K_EEPROM_READ(offset++, val);
600                 pcal[2].freq |= (val >> 11) & 0x1f;
601                 pcal[3].freq  = (val >> 4) & mask;
602                 pcal[4].freq  = (val << 3) & mask;
603
604                 AR5K_EEPROM_READ(offset++, val);
605                 pcal[4].freq |= (val >> 13) & 0x7;
606                 pcal[5].freq  = (val >> 6) & mask;
607                 pcal[6].freq  = (val << 1) & mask;
608
609                 AR5K_EEPROM_READ(offset++, val);
610                 pcal[6].freq |= (val >> 15) & 0x1;
611                 pcal[7].freq  = (val >> 8) & mask;
612                 pcal[8].freq  = (val >> 1) & mask;
613                 pcal[9].freq  = (val << 6) & mask;
614
615                 AR5K_EEPROM_READ(offset++, val);
616                 pcal[9].freq |= (val >> 10) & 0x3f;
617
618                 /* Fixed number of piers */
619                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
620
621                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
622                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
623                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
624                 }
625         }
626
627         return 0;
628 }
629
630 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
631 static inline int
632 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
633 {
634         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
635         struct ath5k_chan_pcal_info *pcal;
636
637         switch(mode) {
638         case AR5K_EEPROM_MODE_11B:
639                 pcal = ee->ee_pwr_cal_b;
640                 break;
641         case AR5K_EEPROM_MODE_11G:
642                 pcal = ee->ee_pwr_cal_g;
643                 break;
644         default:
645                 return -EINVAL;
646         }
647
648         ath5k_eeprom_read_freq_list(ah, &offset,
649                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
650                 mode);
651
652         return 0;
653 }
654
655 /* Read power calibration for RF5111 chips
656  * For RF5111 we have an XPD -eXternal Power Detector- curve
657  * for each calibrated channel. Each curve has PCDAC steps on
658  * x axis and power on y axis and looks like a logarithmic
659  * function. To recreate the curve and pass the power values
660  * on the pcdac table, we read 10 points here and interpolate later.
661  */
662 static int
663 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
664 {
665         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
666         struct ath5k_chan_pcal_info *pcal;
667         int offset, ret;
668         int i, j;
669         u16 val;
670
671         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
672         switch(mode) {
673         case AR5K_EEPROM_MODE_11A:
674                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
675                         return 0;
676
677                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
678                         offset + AR5K_EEPROM_GROUP1_OFFSET);
679                 if (ret < 0)
680                         return ret;
681
682                 offset += AR5K_EEPROM_GROUP2_OFFSET;
683                 pcal = ee->ee_pwr_cal_a;
684                 break;
685         case AR5K_EEPROM_MODE_11B:
686                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
687                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
688                         return 0;
689
690                 pcal = ee->ee_pwr_cal_b;
691                 offset += AR5K_EEPROM_GROUP3_OFFSET;
692
693                 /* fixed piers */
694                 pcal[0].freq = 2412;
695                 pcal[1].freq = 2447;
696                 pcal[2].freq = 2484;
697                 ee->ee_n_piers[mode] = 3;
698                 break;
699         case AR5K_EEPROM_MODE_11G:
700                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
701                         return 0;
702
703                 pcal = ee->ee_pwr_cal_g;
704                 offset += AR5K_EEPROM_GROUP4_OFFSET;
705
706                 /* fixed piers */
707                 pcal[0].freq = 2312;
708                 pcal[1].freq = 2412;
709                 pcal[2].freq = 2484;
710                 ee->ee_n_piers[mode] = 3;
711                 break;
712         default:
713                 return -EINVAL;
714         }
715
716         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
717                 struct ath5k_chan_pcal_info_rf5111 *cdata =
718                         &pcal[i].rf5111_info;
719
720                 AR5K_EEPROM_READ(offset++, val);
721                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
722                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
723                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
724
725                 AR5K_EEPROM_READ(offset++, val);
726                 cdata->pwr[0] |= ((val >> 14) & 0x3);
727                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
728                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
729                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
730
731                 AR5K_EEPROM_READ(offset++, val);
732                 cdata->pwr[3] |= ((val >> 12) & 0xf);
733                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
734                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
735
736                 AR5K_EEPROM_READ(offset++, val);
737                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
738                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
739                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
740
741                 AR5K_EEPROM_READ(offset++, val);
742                 cdata->pwr[8] |= ((val >> 14) & 0x3);
743                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
744                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
745
746                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
747                         cdata->pcdac_max, cdata->pcdac);
748
749                 for (j = 0; j < AR5K_EEPROM_N_PCDAC; j++) {
750                         cdata->pwr[j] = (u16)
751                                 (AR5K_EEPROM_POWER_STEP * cdata->pwr[j]);
752                 }
753         }
754
755         return 0;
756 }
757
758 /* Read power calibration for RF5112 chips
759  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
760  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
761  * use the higher (3) and the lower (0) curves. Each curve has PCDAC
762  * steps on x axis and power on y axis and looks like a linear
763  * function. To recreate the curve and pass the power values
764  * on the pcdac table, we read 4 points for xpd 0 and 3 points
765  * for xpd 3 here and interpolate later.
766  *
767  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
768  */
769 static int
770 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
771 {
772         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
773         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
774         struct ath5k_chan_pcal_info *gen_chan_info;
775         u32 offset;
776         unsigned int i, c;
777         u16 val;
778         int ret;
779
780         switch (mode) {
781         case AR5K_EEPROM_MODE_11A:
782                 /*
783                  * Read 5GHz EEPROM channels
784                  */
785                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
786                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
787
788                 offset += AR5K_EEPROM_GROUP2_OFFSET;
789                 gen_chan_info = ee->ee_pwr_cal_a;
790                 break;
791         case AR5K_EEPROM_MODE_11B:
792                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
793                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
794                         offset += AR5K_EEPROM_GROUP3_OFFSET;
795
796                 /* NB: frequency piers parsed during mode init */
797                 gen_chan_info = ee->ee_pwr_cal_b;
798                 break;
799         case AR5K_EEPROM_MODE_11G:
800                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
801                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
802                         offset += AR5K_EEPROM_GROUP4_OFFSET;
803                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
804                         offset += AR5K_EEPROM_GROUP2_OFFSET;
805
806                 /* NB: frequency piers parsed during mode init */
807                 gen_chan_info = ee->ee_pwr_cal_g;
808                 break;
809         default:
810                 return -EINVAL;
811         }
812
813         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
814                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
815
816                 /* Power values in dBm * 4
817                  * for the lower xpd gain curve
818                  * (0 dBm -> higher output power) */
819                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
820                         AR5K_EEPROM_READ(offset++, val);
821                         chan_pcal_info->pwr_x0[c] = (val & 0xff);
822                         chan_pcal_info->pwr_x0[++c] = ((val >> 8) & 0xff);
823                 }
824
825                 /* PCDAC steps
826                  * corresponding to the above power
827                  * measurements */
828                 AR5K_EEPROM_READ(offset++, val);
829                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
830                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
831                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
832
833                 /* Power values in dBm * 4
834                  * for the higher xpd gain curve
835                  * (18 dBm -> lower output power) */
836                 AR5K_EEPROM_READ(offset++, val);
837                 chan_pcal_info->pwr_x3[0] = (val & 0xff);
838                 chan_pcal_info->pwr_x3[1] = ((val >> 8) & 0xff);
839
840                 AR5K_EEPROM_READ(offset++, val);
841                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
842
843                 /* PCDAC steps
844                  * corresponding to the above power
845                  * measurements (fixed) */
846                 chan_pcal_info->pcdac_x3[0] = 20;
847                 chan_pcal_info->pcdac_x3[1] = 35;
848                 chan_pcal_info->pcdac_x3[2] = 63;
849
850                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
851                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0xff);
852
853                         /* Last xpd0 power level is also channel maximum */
854                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
855                 } else {
856                         chan_pcal_info->pcdac_x0[0] = 1;
857                         gen_chan_info[i].max_pwr = ((val >> 8) & 0xff);
858                 }
859
860                 /* Recreate pcdac_x0 table for this channel using pcdac steps */
861                 chan_pcal_info->pcdac_x0[1] += chan_pcal_info->pcdac_x0[0];
862                 chan_pcal_info->pcdac_x0[2] += chan_pcal_info->pcdac_x0[1];
863                 chan_pcal_info->pcdac_x0[3] += chan_pcal_info->pcdac_x0[2];
864         }
865
866         return 0;
867 }
868
869 /* For RF2413 power calibration data doesn't start on a fixed location and
870  * if a mode is not supported, it's section is missing -not zeroed-.
871  * So we need to calculate the starting offset for each section by using
872  * these two functions */
873
874 /* Return the size of each section based on the mode and the number of pd
875  * gains available (maximum 4). */
876 static inline unsigned int
877 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
878 {
879         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
880         unsigned int sz;
881
882         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
883         sz *= ee->ee_n_piers[mode];
884
885         return sz;
886 }
887
888 /* Return the starting offset for a section based on the modes supported
889  * and each section's size. */
890 static unsigned int
891 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
892 {
893         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
894
895         switch(mode) {
896         case AR5K_EEPROM_MODE_11G:
897                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
898                         offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11B) +
899                                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
900                 /* fall through */
901         case AR5K_EEPROM_MODE_11B:
902                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
903                         offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11A) +
904                                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
905                 /* fall through */
906         case AR5K_EEPROM_MODE_11A:
907                 break;
908         default:
909                 break;
910         }
911
912         return offset;
913 }
914
915 /* Read power calibration for RF2413 chips
916  * For RF2413 we have a PDDAC table (Power Detector) instead
917  * of a PCDAC and 4 pd gain curves for each calibrated channel.
918  * Each curve has PDDAC steps on x axis and power on y axis and
919  * looks like an exponential function. To recreate the curves
920  * we read here the points and interpolate later. Note that
921  * in most cases only higher and lower curves are used (like
922  * RF5112) but vendors have the oportunity to include all 4
923  * curves on eeprom. The final curve (higher power) has an extra
924  * point for better accuracy like RF5112.
925  */
926 static int
927 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
928 {
929         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
930         struct ath5k_chan_pcal_info_rf2413 *chan_pcal_info;
931         struct ath5k_chan_pcal_info *gen_chan_info;
932         unsigned int i, c;
933         u32 offset;
934         int ret;
935         u16 val;
936         u8 pd_gains = 0;
937
938         if (ee->ee_x_gain[mode] & 0x1) pd_gains++;
939         if ((ee->ee_x_gain[mode] >> 1) & 0x1) pd_gains++;
940         if ((ee->ee_x_gain[mode] >> 2) & 0x1) pd_gains++;
941         if ((ee->ee_x_gain[mode] >> 3) & 0x1) pd_gains++;
942         ee->ee_pd_gains[mode] = pd_gains;
943
944         offset = ath5k_cal_data_offset_2413(ee, mode);
945         ee->ee_n_piers[mode] = 0;
946         switch (mode) {
947         case AR5K_EEPROM_MODE_11A:
948                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
949                         return 0;
950
951                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
952                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
953                 gen_chan_info = ee->ee_pwr_cal_a;
954                 break;
955         case AR5K_EEPROM_MODE_11B:
956                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
957                         return 0;
958
959                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
960                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
961                 gen_chan_info = ee->ee_pwr_cal_b;
962                 break;
963         case AR5K_EEPROM_MODE_11G:
964                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
965                         return 0;
966
967                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
968                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
969                 gen_chan_info = ee->ee_pwr_cal_g;
970                 break;
971         default:
972                 return -EINVAL;
973         }
974
975         if (pd_gains == 0)
976                 return 0;
977
978         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
979                 chan_pcal_info = &gen_chan_info[i].rf2413_info;
980
981                 /*
982                  * Read pwr_i, pddac_i and the first
983                  * 2 pd points (pwr, pddac)
984                  */
985                 AR5K_EEPROM_READ(offset++, val);
986                 chan_pcal_info->pwr_i[0] = val & 0x1f;
987                 chan_pcal_info->pddac_i[0] = (val >> 5) & 0x7f;
988                 chan_pcal_info->pwr[0][0] =
989                                         (val >> 12) & 0xf;
990
991                 AR5K_EEPROM_READ(offset++, val);
992                 chan_pcal_info->pddac[0][0] = val & 0x3f;
993                 chan_pcal_info->pwr[0][1] = (val >> 6) & 0xf;
994                 chan_pcal_info->pddac[0][1] =
995                                         (val >> 10) & 0x3f;
996
997                 AR5K_EEPROM_READ(offset++, val);
998                 chan_pcal_info->pwr[0][2] = val & 0xf;
999                 chan_pcal_info->pddac[0][2] =
1000                                         (val >> 4) & 0x3f;
1001
1002                 chan_pcal_info->pwr[0][3] = 0;
1003                 chan_pcal_info->pddac[0][3] = 0;
1004
1005                 if (pd_gains > 1) {
1006                         /*
1007                          * Pd gain 0 is not the last pd gain
1008                          * so it only has 2 pd points.
1009                          * Continue wih pd gain 1.
1010                          */
1011                         chan_pcal_info->pwr_i[1] = (val >> 10) & 0x1f;
1012
1013                         chan_pcal_info->pddac_i[1] = (val >> 15) & 0x1;
1014                         AR5K_EEPROM_READ(offset++, val);
1015                         chan_pcal_info->pddac_i[1] |= (val & 0x3F) << 1;
1016
1017                         chan_pcal_info->pwr[1][0] = (val >> 6) & 0xf;
1018                         chan_pcal_info->pddac[1][0] =
1019                                                 (val >> 10) & 0x3f;
1020
1021                         AR5K_EEPROM_READ(offset++, val);
1022                         chan_pcal_info->pwr[1][1] = val & 0xf;
1023                         chan_pcal_info->pddac[1][1] =
1024                                                 (val >> 4) & 0x3f;
1025                         chan_pcal_info->pwr[1][2] =
1026                                                 (val >> 10) & 0xf;
1027
1028                         chan_pcal_info->pddac[1][2] =
1029                                                 (val >> 14) & 0x3;
1030                         AR5K_EEPROM_READ(offset++, val);
1031                         chan_pcal_info->pddac[1][2] |=
1032                                                 (val & 0xF) << 2;
1033
1034                         chan_pcal_info->pwr[1][3] = 0;
1035                         chan_pcal_info->pddac[1][3] = 0;
1036                 } else if (pd_gains == 1) {
1037                         /*
1038                          * Pd gain 0 is the last one so
1039                          * read the extra point.
1040                          */
1041                         chan_pcal_info->pwr[0][3] =
1042                                                 (val >> 10) & 0xf;
1043
1044                         chan_pcal_info->pddac[0][3] =
1045                                                 (val >> 14) & 0x3;
1046                         AR5K_EEPROM_READ(offset++, val);
1047                         chan_pcal_info->pddac[0][3] |=
1048                                                 (val & 0xF) << 2;
1049                 }
1050
1051                 /*
1052                  * Proceed with the other pd_gains
1053                  * as above.
1054                  */
1055                 if (pd_gains > 2) {
1056                         chan_pcal_info->pwr_i[2] = (val >> 4) & 0x1f;
1057                         chan_pcal_info->pddac_i[2] = (val >> 9) & 0x7f;
1058
1059                         AR5K_EEPROM_READ(offset++, val);
1060                         chan_pcal_info->pwr[2][0] =
1061                                                 (val >> 0) & 0xf;
1062                         chan_pcal_info->pddac[2][0] =
1063                                                 (val >> 4) & 0x3f;
1064                         chan_pcal_info->pwr[2][1] =
1065                                                 (val >> 10) & 0xf;
1066
1067                         chan_pcal_info->pddac[2][1] =
1068                                                 (val >> 14) & 0x3;
1069                         AR5K_EEPROM_READ(offset++, val);
1070                         chan_pcal_info->pddac[2][1] |=
1071                                                 (val & 0xF) << 2;
1072
1073                         chan_pcal_info->pwr[2][2] =
1074                                                 (val >> 4) & 0xf;
1075                         chan_pcal_info->pddac[2][2] =
1076                                                 (val >> 8) & 0x3f;
1077
1078                         chan_pcal_info->pwr[2][3] = 0;
1079                         chan_pcal_info->pddac[2][3] = 0;
1080                 } else if (pd_gains == 2) {
1081                         chan_pcal_info->pwr[1][3] =
1082                                                 (val >> 4) & 0xf;
1083                         chan_pcal_info->pddac[1][3] =
1084                                                 (val >> 8) & 0x3f;
1085                 }
1086
1087                 if (pd_gains > 3) {
1088                         chan_pcal_info->pwr_i[3] = (val >> 14) & 0x3;
1089                         AR5K_EEPROM_READ(offset++, val);
1090                         chan_pcal_info->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1091
1092                         chan_pcal_info->pddac_i[3] = (val >> 3) & 0x7f;
1093                         chan_pcal_info->pwr[3][0] =
1094                                                 (val >> 10) & 0xf;
1095                         chan_pcal_info->pddac[3][0] =
1096                                                 (val >> 14) & 0x3;
1097
1098                         AR5K_EEPROM_READ(offset++, val);
1099                         chan_pcal_info->pddac[3][0] |=
1100                                                 (val & 0xF) << 2;
1101                         chan_pcal_info->pwr[3][1] =
1102                                                 (val >> 4) & 0xf;
1103                         chan_pcal_info->pddac[3][1] =
1104                                                 (val >> 8) & 0x3f;
1105
1106                         chan_pcal_info->pwr[3][2] =
1107                                                 (val >> 14) & 0x3;
1108                         AR5K_EEPROM_READ(offset++, val);
1109                         chan_pcal_info->pwr[3][2] |=
1110                                                 ((val >> 0) & 0x3) << 2;
1111
1112                         chan_pcal_info->pddac[3][2] =
1113                                                 (val >> 2) & 0x3f;
1114                         chan_pcal_info->pwr[3][3] =
1115                                                 (val >> 8) & 0xf;
1116
1117                         chan_pcal_info->pddac[3][3] =
1118                                                 (val >> 12) & 0xF;
1119                         AR5K_EEPROM_READ(offset++, val);
1120                         chan_pcal_info->pddac[3][3] |=
1121                                                 ((val >> 0) & 0x3) << 4;
1122                 } else if (pd_gains == 3) {
1123                         chan_pcal_info->pwr[2][3] =
1124                                                 (val >> 14) & 0x3;
1125                         AR5K_EEPROM_READ(offset++, val);
1126                         chan_pcal_info->pwr[2][3] |=
1127                                                 ((val >> 0) & 0x3) << 2;
1128
1129                         chan_pcal_info->pddac[2][3] =
1130                                                 (val >> 2) & 0x3f;
1131                 }
1132
1133                 for (c = 0; c < pd_gains; c++) {
1134                         /* Recreate pwr table for this channel using pwr steps */
1135                         chan_pcal_info->pwr[c][0] += chan_pcal_info->pwr_i[c] * 2;
1136                         chan_pcal_info->pwr[c][1] += chan_pcal_info->pwr[c][0];
1137                         chan_pcal_info->pwr[c][2] += chan_pcal_info->pwr[c][1];
1138                         chan_pcal_info->pwr[c][3] += chan_pcal_info->pwr[c][2];
1139                         if (chan_pcal_info->pwr[c][3] == chan_pcal_info->pwr[c][2])
1140                                 chan_pcal_info->pwr[c][3] = 0;
1141
1142                         /* Recreate pddac table for this channel using pddac steps */
1143                         chan_pcal_info->pddac[c][0] += chan_pcal_info->pddac_i[c];
1144                         chan_pcal_info->pddac[c][1] += chan_pcal_info->pddac[c][0];
1145                         chan_pcal_info->pddac[c][2] += chan_pcal_info->pddac[c][1];
1146                         chan_pcal_info->pddac[c][3] += chan_pcal_info->pddac[c][2];
1147                         if (chan_pcal_info->pddac[c][3] == chan_pcal_info->pddac[c][2])
1148                                 chan_pcal_info->pddac[c][3] = 0;
1149                 }
1150         }
1151
1152         return 0;
1153 }
1154
1155 /*
1156  * Read per rate target power (this is the maximum tx power
1157  * supported by the card). This info is used when setting
1158  * tx power, no matter the channel.
1159  *
1160  * This also works for v5 EEPROMs.
1161  */
1162 static int ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1163 {
1164         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1165         struct ath5k_rate_pcal_info *rate_pcal_info;
1166         u16 *rate_target_pwr_num;
1167         u32 offset;
1168         u16 val;
1169         int ret, i;
1170
1171         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1172         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1173         switch (mode) {
1174         case AR5K_EEPROM_MODE_11A:
1175                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1176                 rate_pcal_info = ee->ee_rate_tpwr_a;
1177                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1178                 break;
1179         case AR5K_EEPROM_MODE_11B:
1180                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1181                 rate_pcal_info = ee->ee_rate_tpwr_b;
1182                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1183                 break;
1184         case AR5K_EEPROM_MODE_11G:
1185                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1186                 rate_pcal_info = ee->ee_rate_tpwr_g;
1187                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1188                 break;
1189         default:
1190                 return -EINVAL;
1191         }
1192
1193         /* Different freq mask for older eeproms (<= v3.2) */
1194         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1195                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1196                         AR5K_EEPROM_READ(offset++, val);
1197                         rate_pcal_info[i].freq =
1198                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1199
1200                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1201                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1202
1203                         AR5K_EEPROM_READ(offset++, val);
1204
1205                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1206                             val == 0) {
1207                                 (*rate_target_pwr_num) = i;
1208                                 break;
1209                         }
1210
1211                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1212                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1213                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1214                 }
1215         } else {
1216                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1217                         AR5K_EEPROM_READ(offset++, val);
1218                         rate_pcal_info[i].freq =
1219                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1220
1221                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1222                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1223
1224                         AR5K_EEPROM_READ(offset++, val);
1225
1226                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1227                             val == 0) {
1228                                 (*rate_target_pwr_num) = i;
1229                                 break;
1230                         }
1231
1232                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1233                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1234                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1235                 }
1236         }
1237
1238         return 0;
1239 }
1240
1241 /*
1242  * Read per channel calibration info from EEPROM
1243  *
1244  * This info is used to calibrate the baseband power table. Imagine
1245  * that for each channel there is a power curve that's hw specific
1246  * (depends on amplifier etc) and we try to "correct" this curve using
1247  * offests we pass on to phy chip (baseband -> before amplifier) so that
1248  * it can use accurate power values when setting tx power (takes amplifier's
1249  * performance on each channel into account).
1250  *
1251  * EEPROM provides us with the offsets for some pre-calibrated channels
1252  * and we have to interpolate to create the full table for these channels and
1253  * also the table for any channel.
1254  */
1255 static int
1256 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1257 {
1258         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1259         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1260         int mode;
1261         int err;
1262
1263         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1264                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1265                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1266         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1267                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1268                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1269         else
1270                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1271
1272         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
1273                 err = read_pcal(ah, mode);
1274                 if (err)
1275                         return err;
1276
1277                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1278                 if (err < 0)
1279                         return err;
1280         }
1281
1282         return 0;
1283 }
1284
1285 /* Read conformance test limits used for regulatory control */
1286 static int
1287 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1288 {
1289         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1290         struct ath5k_edge_power *rep;
1291         unsigned int fmask, pmask;
1292         unsigned int ctl_mode;
1293         int ret, i, j;
1294         u32 offset;
1295         u16 val;
1296
1297         pmask = AR5K_EEPROM_POWER_M;
1298         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1299         offset = AR5K_EEPROM_CTL(ee->ee_version);
1300         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1301         for (i = 0; i < ee->ee_ctls; i += 2) {
1302                 AR5K_EEPROM_READ(offset++, val);
1303                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1304                 ee->ee_ctl[i + 1] = val & 0xff;
1305         }
1306
1307         offset = AR5K_EEPROM_GROUP8_OFFSET;
1308         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1309                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1310                         AR5K_EEPROM_GROUP5_OFFSET;
1311         else
1312                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1313
1314         rep = ee->ee_ctl_pwr;
1315         for(i = 0; i < ee->ee_ctls; i++) {
1316                 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1317                 case AR5K_CTL_11A:
1318                 case AR5K_CTL_TURBO:
1319                         ctl_mode = AR5K_EEPROM_MODE_11A;
1320                         break;
1321                 default:
1322                         ctl_mode = AR5K_EEPROM_MODE_11G;
1323                         break;
1324                 }
1325                 if (ee->ee_ctl[i] == 0) {
1326                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1327                                 offset += 8;
1328                         else
1329                                 offset += 7;
1330                         rep += AR5K_EEPROM_N_EDGES;
1331                         continue;
1332                 }
1333                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1334                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1335                                 AR5K_EEPROM_READ(offset++, val);
1336                                 rep[j].freq = (val >> 8) & fmask;
1337                                 rep[j + 1].freq = val & fmask;
1338                         }
1339                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1340                                 AR5K_EEPROM_READ(offset++, val);
1341                                 rep[j].edge = (val >> 8) & pmask;
1342                                 rep[j].flag = (val >> 14) & 1;
1343                                 rep[j + 1].edge = val & pmask;
1344                                 rep[j + 1].flag = (val >> 6) & 1;
1345                         }
1346                 } else {
1347                         AR5K_EEPROM_READ(offset++, val);
1348                         rep[0].freq = (val >> 9) & fmask;
1349                         rep[1].freq = (val >> 2) & fmask;
1350                         rep[2].freq = (val << 5) & fmask;
1351
1352                         AR5K_EEPROM_READ(offset++, val);
1353                         rep[2].freq |= (val >> 11) & 0x1f;
1354                         rep[3].freq = (val >> 4) & fmask;
1355                         rep[4].freq = (val << 3) & fmask;
1356
1357                         AR5K_EEPROM_READ(offset++, val);
1358                         rep[4].freq |= (val >> 13) & 0x7;
1359                         rep[5].freq = (val >> 6) & fmask;
1360                         rep[6].freq = (val << 1) & fmask;
1361
1362                         AR5K_EEPROM_READ(offset++, val);
1363                         rep[6].freq |= (val >> 15) & 0x1;
1364                         rep[7].freq = (val >> 8) & fmask;
1365
1366                         rep[0].edge = (val >> 2) & pmask;
1367                         rep[1].edge = (val << 4) & pmask;
1368
1369                         AR5K_EEPROM_READ(offset++, val);
1370                         rep[1].edge |= (val >> 12) & 0xf;
1371                         rep[2].edge = (val >> 6) & pmask;
1372                         rep[3].edge = val & pmask;
1373
1374                         AR5K_EEPROM_READ(offset++, val);
1375                         rep[4].edge = (val >> 10) & pmask;
1376                         rep[5].edge = (val >> 4) & pmask;
1377                         rep[6].edge = (val << 2) & pmask;
1378
1379                         AR5K_EEPROM_READ(offset++, val);
1380                         rep[6].edge |= (val >> 14) & 0x3;
1381                         rep[7].edge = (val >> 8) & pmask;
1382                 }
1383                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1384                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1385                                 rep[j].freq, ctl_mode);
1386                 }
1387                 rep += AR5K_EEPROM_N_EDGES;
1388         }
1389
1390         return 0;
1391 }
1392
1393
1394 /*
1395  * Initialize eeprom power tables
1396  */
1397 int
1398 ath5k_eeprom_init(struct ath5k_hw *ah)
1399 {
1400         int err;
1401
1402         err = ath5k_eeprom_init_header(ah);
1403         if (err < 0)
1404                 return err;
1405
1406         err = ath5k_eeprom_init_modes(ah);
1407         if (err < 0)
1408                 return err;
1409
1410         err = ath5k_eeprom_read_pcal_info(ah);
1411         if (err < 0)
1412                 return err;
1413
1414         err = ath5k_eeprom_read_ctl_info(ah);
1415         if (err < 0)
1416                 return err;
1417
1418         return 0;
1419 }
1420 /*
1421  * Read the MAC address from eeprom
1422  */
1423 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1424 {
1425         u8 mac_d[ETH_ALEN];
1426         u32 total, offset;
1427         u16 data;
1428         int octet, ret;
1429
1430         memset(mac, 0, ETH_ALEN);
1431         memset(mac_d, 0, ETH_ALEN);
1432
1433         ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1434         if (ret)
1435                 return ret;
1436
1437         for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1438                 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1439                 if (ret)
1440                         return ret;
1441
1442                 total += data;
1443                 mac_d[octet + 1] = data & 0xff;
1444                 mac_d[octet] = data >> 8;
1445                 octet += 2;
1446         }
1447
1448         memcpy(mac, mac_d, ETH_ALEN);
1449
1450         if (!total || total == 3 * 0xffff)
1451                 return -EINVAL;
1452
1453         return 0;
1454 }
1455