8210b49aeff41ce2b4af703a811e30a9d3979fa3
[pandora-kernel.git] / drivers / net / ixgbe / ixgbe_phy.c
1 /*******************************************************************************
2
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50 /**
51  *  ixgbe_identify_phy_generic - Get physical layer module
52  *  @hw: pointer to hardware structure
53  *
54  *  Determines the physical layer module found on the current adapter.
55  **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57 {
58         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59         u32 phy_addr;
60
61         if (hw->phy.type == ixgbe_phy_unknown) {
62                 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63                         if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
64                                 ixgbe_get_phy_id(hw);
65                                 hw->phy.type =
66                                         ixgbe_get_phy_type_from_id(hw->phy.id);
67                                 status = 0;
68                                 break;
69                         }
70                 }
71         } else {
72                 status = 0;
73         }
74
75         return status;
76 }
77
78 /**
79  *  ixgbe_get_phy_id - Get the phy type
80  *  @hw: pointer to hardware structure
81  *
82  **/
83 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
84 {
85         u32 status;
86         u16 phy_id_high = 0;
87         u16 phy_id_low = 0;
88
89         status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
90                                       &phy_id_high);
91
92         if (status == 0) {
93                 hw->phy.id = (u32)(phy_id_high << 16);
94                 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
95                                               &phy_id_low);
96                 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
97                 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
98         }
99         return status;
100 }
101
102 /**
103  *  ixgbe_get_phy_type_from_id - Get the phy type
104  *  @hw: pointer to hardware structure
105  *
106  **/
107 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
108 {
109         enum ixgbe_phy_type phy_type;
110
111         switch (phy_id) {
112         case TN1010_PHY_ID:
113                 phy_type = ixgbe_phy_tn;
114                 break;
115         case QT2022_PHY_ID:
116                 phy_type = ixgbe_phy_qt;
117                 break;
118         case ATH_PHY_ID:
119                 phy_type = ixgbe_phy_nl;
120                 break;
121         default:
122                 phy_type = ixgbe_phy_unknown;
123                 break;
124         }
125
126         return phy_type;
127 }
128
129 /**
130  *  ixgbe_reset_phy_generic - Performs a PHY reset
131  *  @hw: pointer to hardware structure
132  **/
133 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
134 {
135         /*
136          * Perform soft PHY reset to the PHY_XS.
137          * This will cause a soft reset to the PHY
138          */
139         return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
140                                      MDIO_CTRL1_RESET);
141 }
142
143 /**
144  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
145  *  @hw: pointer to hardware structure
146  *  @reg_addr: 32 bit address of PHY register to read
147  *  @phy_data: Pointer to read data from PHY register
148  **/
149 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
150                                u32 device_type, u16 *phy_data)
151 {
152         u32 command;
153         u32 i;
154         u32 data;
155         s32 status = 0;
156         u16 gssr;
157
158         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
159                 gssr = IXGBE_GSSR_PHY1_SM;
160         else
161                 gssr = IXGBE_GSSR_PHY0_SM;
162
163         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
164                 status = IXGBE_ERR_SWFW_SYNC;
165
166         if (status == 0) {
167                 /* Setup and write the address cycle command */
168                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
169                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
170                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
171                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
172
173                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
174
175                 /*
176                  * Check every 10 usec to see if the address cycle completed.
177                  * The MDI Command bit will clear when the operation is
178                  * complete
179                  */
180                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
181                         udelay(10);
182
183                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
184
185                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
186                                 break;
187                 }
188
189                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
190                         hw_dbg(hw, "PHY address command did not complete.\n");
191                         status = IXGBE_ERR_PHY;
192                 }
193
194                 if (status == 0) {
195                         /*
196                          * Address cycle complete, setup and write the read
197                          * command
198                          */
199                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
200                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
201                                    (hw->phy.mdio.prtad <<
202                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
203                                    (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
204
205                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
206
207                         /*
208                          * Check every 10 usec to see if the address cycle
209                          * completed. The MDI Command bit will clear when the
210                          * operation is complete
211                          */
212                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
213                                 udelay(10);
214
215                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
216
217                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
218                                         break;
219                         }
220
221                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
222                                 hw_dbg(hw, "PHY read command didn't complete\n");
223                                 status = IXGBE_ERR_PHY;
224                         } else {
225                                 /*
226                                  * Read operation is complete.  Get the data
227                                  * from MSRWD
228                                  */
229                                 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
230                                 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
231                                 *phy_data = (u16)(data);
232                         }
233                 }
234
235                 ixgbe_release_swfw_sync(hw, gssr);
236         }
237
238         return status;
239 }
240
241 /**
242  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
243  *  @hw: pointer to hardware structure
244  *  @reg_addr: 32 bit PHY register to write
245  *  @device_type: 5 bit device type
246  *  @phy_data: Data to write to the PHY register
247  **/
248 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
249                                 u32 device_type, u16 phy_data)
250 {
251         u32 command;
252         u32 i;
253         s32 status = 0;
254         u16 gssr;
255
256         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
257                 gssr = IXGBE_GSSR_PHY1_SM;
258         else
259                 gssr = IXGBE_GSSR_PHY0_SM;
260
261         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
262                 status = IXGBE_ERR_SWFW_SYNC;
263
264         if (status == 0) {
265                 /* Put the data in the MDI single read and write data register*/
266                 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
267
268                 /* Setup and write the address cycle command */
269                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
270                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
271                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
272                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
273
274                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
275
276                 /*
277                  * Check every 10 usec to see if the address cycle completed.
278                  * The MDI Command bit will clear when the operation is
279                  * complete
280                  */
281                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
282                         udelay(10);
283
284                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
285
286                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
287                                 break;
288                 }
289
290                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
291                         hw_dbg(hw, "PHY address cmd didn't complete\n");
292                         status = IXGBE_ERR_PHY;
293                 }
294
295                 if (status == 0) {
296                         /*
297                          * Address cycle complete, setup and write the write
298                          * command
299                          */
300                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
301                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
302                                    (hw->phy.mdio.prtad <<
303                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
304                                    (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
305
306                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
307
308                         /*
309                          * Check every 10 usec to see if the address cycle
310                          * completed. The MDI Command bit will clear when the
311                          * operation is complete
312                          */
313                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
314                                 udelay(10);
315
316                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
317
318                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
319                                         break;
320                         }
321
322                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
323                                 hw_dbg(hw, "PHY address cmd didn't complete\n");
324                                 status = IXGBE_ERR_PHY;
325                         }
326                 }
327
328                 ixgbe_release_swfw_sync(hw, gssr);
329         }
330
331         return status;
332 }
333
334 /**
335  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
336  *  @hw: pointer to hardware structure
337  *
338  *  Restart autonegotiation and PHY and waits for completion.
339  **/
340 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
341 {
342         s32 status = IXGBE_NOT_IMPLEMENTED;
343         u32 time_out;
344         u32 max_time_out = 10;
345         u16 autoneg_reg;
346
347         /*
348          * Set advertisement settings in PHY based on autoneg_advertised
349          * settings. If autoneg_advertised = 0, then advertise default values
350          * tnx devices cannot be "forced" to a autoneg 10G and fail.  But can
351          * for a 1G.
352          */
353         hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
354
355         if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
356                 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
357         else
358                 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
359
360         hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
361
362         /* Restart PHY autonegotiation and wait for completion */
363         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
364
365         autoneg_reg |= MDIO_AN_CTRL1_RESTART;
366
367         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
368
369         /* Wait for autonegotiation to finish */
370         for (time_out = 0; time_out < max_time_out; time_out++) {
371                 udelay(10);
372                 /* Restart PHY autonegotiation and wait for completion */
373                 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
374                                               &autoneg_reg);
375
376                 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
377                 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
378                         status = 0;
379                         break;
380                 }
381         }
382
383         if (time_out == max_time_out)
384                 status = IXGBE_ERR_LINK_SETUP;
385
386         return status;
387 }
388
389 /**
390  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
391  *  @hw: pointer to hardware structure
392  *  @speed: new link speed
393  *  @autoneg: true if autonegotiation enabled
394  **/
395 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
396                                        ixgbe_link_speed speed,
397                                        bool autoneg,
398                                        bool autoneg_wait_to_complete)
399 {
400
401         /*
402          * Clear autoneg_advertised and set new values based on input link
403          * speed.
404          */
405         hw->phy.autoneg_advertised = 0;
406
407         if (speed & IXGBE_LINK_SPEED_10GB_FULL)
408                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
409
410         if (speed & IXGBE_LINK_SPEED_1GB_FULL)
411                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
412
413         /* Setup link based on the new speed settings */
414         hw->phy.ops.setup_link(hw);
415
416         return 0;
417 }
418
419 /**
420  *  ixgbe_reset_phy_nl - Performs a PHY reset
421  *  @hw: pointer to hardware structure
422  **/
423 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
424 {
425         u16 phy_offset, control, eword, edata, block_crc;
426         bool end_data = false;
427         u16 list_offset, data_offset;
428         u16 phy_data = 0;
429         s32 ret_val = 0;
430         u32 i;
431
432         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
433
434         /* reset the PHY and poll for completion */
435         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
436                               (phy_data | MDIO_CTRL1_RESET));
437
438         for (i = 0; i < 100; i++) {
439                 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
440                                      &phy_data);
441                 if ((phy_data & MDIO_CTRL1_RESET) == 0)
442                         break;
443                 msleep(10);
444         }
445
446         if ((phy_data & MDIO_CTRL1_RESET) != 0) {
447                 hw_dbg(hw, "PHY reset did not complete.\n");
448                 ret_val = IXGBE_ERR_PHY;
449                 goto out;
450         }
451
452         /* Get init offsets */
453         ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
454                                                       &data_offset);
455         if (ret_val != 0)
456                 goto out;
457
458         ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
459         data_offset++;
460         while (!end_data) {
461                 /*
462                  * Read control word from PHY init contents offset
463                  */
464                 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
465                 control = (eword & IXGBE_CONTROL_MASK_NL) >>
466                            IXGBE_CONTROL_SHIFT_NL;
467                 edata = eword & IXGBE_DATA_MASK_NL;
468                 switch (control) {
469                 case IXGBE_DELAY_NL:
470                         data_offset++;
471                         hw_dbg(hw, "DELAY: %d MS\n", edata);
472                         msleep(edata);
473                         break;
474                 case IXGBE_DATA_NL:
475                         hw_dbg(hw, "DATA:  \n");
476                         data_offset++;
477                         hw->eeprom.ops.read(hw, data_offset++,
478                                             &phy_offset);
479                         for (i = 0; i < edata; i++) {
480                                 hw->eeprom.ops.read(hw, data_offset, &eword);
481                                 hw->phy.ops.write_reg(hw, phy_offset,
482                                                       MDIO_MMD_PMAPMD, eword);
483                                 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
484                                        phy_offset);
485                                 data_offset++;
486                                 phy_offset++;
487                         }
488                         break;
489                 case IXGBE_CONTROL_NL:
490                         data_offset++;
491                         hw_dbg(hw, "CONTROL: \n");
492                         if (edata == IXGBE_CONTROL_EOL_NL) {
493                                 hw_dbg(hw, "EOL\n");
494                                 end_data = true;
495                         } else if (edata == IXGBE_CONTROL_SOL_NL) {
496                                 hw_dbg(hw, "SOL\n");
497                         } else {
498                                 hw_dbg(hw, "Bad control value\n");
499                                 ret_val = IXGBE_ERR_PHY;
500                                 goto out;
501                         }
502                         break;
503                 default:
504                         hw_dbg(hw, "Bad control type\n");
505                         ret_val = IXGBE_ERR_PHY;
506                         goto out;
507                 }
508         }
509
510 out:
511         return ret_val;
512 }
513
514 /**
515  *  ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
516  *                                      the PHY type.
517  *  @hw: pointer to hardware structure
518  *
519  *  Searches for and indentifies the SFP module.  Assings appropriate PHY type.
520  **/
521 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
522 {
523         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
524         u32 vendor_oui = 0;
525         enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
526         u8 identifier = 0;
527         u8 comp_codes_1g = 0;
528         u8 comp_codes_10g = 0;
529         u8 oui_bytes[3] = {0, 0, 0};
530         u8 cable_tech = 0;
531         u16 enforce_sfp = 0;
532
533         status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
534                                              &identifier);
535
536         if (status == IXGBE_ERR_SFP_NOT_PRESENT) {
537                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
538                 goto out;
539         }
540
541         if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
542                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
543                                             &comp_codes_1g);
544                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
545                                             &comp_codes_10g);
546                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
547                                             &cable_tech);
548
549                 /* ID Module
550                  * =========
551                  * 0    SFP_DA_CU
552                  * 1    SFP_SR
553                  * 2    SFP_LR
554                  * 3    SFP_DA_CORE0 - 82599-specific
555                  * 4    SFP_DA_CORE1 - 82599-specific
556                  * 5    SFP_SR/LR_CORE0 - 82599-specific
557                  * 6    SFP_SR/LR_CORE1 - 82599-specific
558                  */
559                 if (hw->mac.type == ixgbe_mac_82598EB) {
560                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
561                                 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
562                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
563                                 hw->phy.sfp_type = ixgbe_sfp_type_sr;
564                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
565                                 hw->phy.sfp_type = ixgbe_sfp_type_lr;
566                         else
567                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
568                 } else if (hw->mac.type == ixgbe_mac_82599EB) {
569                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
570                                 if (hw->bus.lan_id == 0)
571                                         hw->phy.sfp_type =
572                                                      ixgbe_sfp_type_da_cu_core0;
573                                 else
574                                         hw->phy.sfp_type =
575                                                      ixgbe_sfp_type_da_cu_core1;
576                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
577                                 if (hw->bus.lan_id == 0)
578                                         hw->phy.sfp_type =
579                                                       ixgbe_sfp_type_srlr_core0;
580                                 else
581                                         hw->phy.sfp_type =
582                                                       ixgbe_sfp_type_srlr_core1;
583                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
584                                 if (hw->bus.lan_id == 0)
585                                         hw->phy.sfp_type =
586                                                       ixgbe_sfp_type_srlr_core0;
587                                 else
588                                         hw->phy.sfp_type =
589                                                       ixgbe_sfp_type_srlr_core1;
590                         else
591                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
592                 }
593
594                 if (hw->phy.sfp_type != stored_sfp_type)
595                         hw->phy.sfp_setup_needed = true;
596
597                 /* Determine if the SFP+ PHY is dual speed or not. */
598                 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
599                    (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
600                    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
601                    (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
602                         hw->phy.multispeed_fiber = true;
603
604                 /* Determine PHY vendor */
605                 if (hw->phy.type != ixgbe_phy_nl) {
606                         hw->phy.id = identifier;
607                         hw->phy.ops.read_i2c_eeprom(hw,
608                                                     IXGBE_SFF_VENDOR_OUI_BYTE0,
609                                                     &oui_bytes[0]);
610                         hw->phy.ops.read_i2c_eeprom(hw,
611                                                     IXGBE_SFF_VENDOR_OUI_BYTE1,
612                                                     &oui_bytes[1]);
613                         hw->phy.ops.read_i2c_eeprom(hw,
614                                                     IXGBE_SFF_VENDOR_OUI_BYTE2,
615                                                     &oui_bytes[2]);
616
617                         vendor_oui =
618                           ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
619                            (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
620                            (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
621
622                         switch (vendor_oui) {
623                         case IXGBE_SFF_VENDOR_OUI_TYCO:
624                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
625                                         hw->phy.type = ixgbe_phy_tw_tyco;
626                                 break;
627                         case IXGBE_SFF_VENDOR_OUI_FTL:
628                                 hw->phy.type = ixgbe_phy_sfp_ftl;
629                                 break;
630                         case IXGBE_SFF_VENDOR_OUI_AVAGO:
631                                 hw->phy.type = ixgbe_phy_sfp_avago;
632                                 break;
633                         case IXGBE_SFF_VENDOR_OUI_INTEL:
634                                 hw->phy.type = ixgbe_phy_sfp_intel;
635                                 break;
636                         default:
637                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
638                                         hw->phy.type = ixgbe_phy_tw_unknown;
639                                 else
640                                         hw->phy.type = ixgbe_phy_sfp_unknown;
641                                 break;
642                         }
643                 }
644
645                 /* All passive DA cables are supported */
646                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
647                         status = 0;
648                         goto out;
649                 }
650
651                 /* 1G SFP modules are not supported */
652                 if (comp_codes_10g == 0) {
653                         hw->phy.type = ixgbe_phy_sfp_unsupported;
654                         status = IXGBE_ERR_SFP_NOT_SUPPORTED;
655                         goto out;
656                 }
657
658                 /* Anything else 82598-based is supported */
659                 if (hw->mac.type == ixgbe_mac_82598EB) {
660                         status = 0;
661                         goto out;
662                 }
663
664                 /* This is guaranteed to be 82599, no need to check for NULL */
665                 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
666                 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
667                         /* Make sure we're a supported PHY type */
668                         if (hw->phy.type == ixgbe_phy_sfp_intel) {
669                                 status = 0;
670                         } else {
671                                 hw_dbg(hw, "SFP+ module not supported\n");
672                                 hw->phy.type = ixgbe_phy_sfp_unsupported;
673                                 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
674                         }
675                 } else {
676                         status = 0;
677                 }
678         }
679
680 out:
681         return status;
682 }
683
684 /**
685  *  ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
686  *  if it supports a given SFP+ module type, if so it returns the offsets to the
687  *  phy init sequence block.
688  *  @hw: pointer to hardware structure
689  *  @list_offset: offset to the SFP ID list
690  *  @data_offset: offset to the SFP data block
691  **/
692 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
693                                         u16 *list_offset,
694                                         u16 *data_offset)
695 {
696         u16 sfp_id;
697
698         if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
699                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
700
701         if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
702                 return IXGBE_ERR_SFP_NOT_PRESENT;
703
704         if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
705             (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
706                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
707
708         /* Read offset to PHY init contents */
709         hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
710
711         if ((!*list_offset) || (*list_offset == 0xFFFF))
712                 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
713
714         /* Shift offset to first ID word */
715         (*list_offset)++;
716
717         /*
718          * Find the matching SFP ID in the EEPROM
719          * and program the init sequence
720          */
721         hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
722
723         while (sfp_id != IXGBE_PHY_INIT_END_NL) {
724                 if (sfp_id == hw->phy.sfp_type) {
725                         (*list_offset)++;
726                         hw->eeprom.ops.read(hw, *list_offset, data_offset);
727                         if ((!*data_offset) || (*data_offset == 0xFFFF)) {
728                                 hw_dbg(hw, "SFP+ module not supported\n");
729                                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
730                         } else {
731                                 break;
732                         }
733                 } else {
734                         (*list_offset) += 2;
735                         if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
736                                 return IXGBE_ERR_PHY;
737                 }
738         }
739
740         if (sfp_id == IXGBE_PHY_INIT_END_NL) {
741                 hw_dbg(hw, "No matching SFP+ module found\n");
742                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
743         }
744
745         return 0;
746 }
747
748 /**
749  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
750  *  @hw: pointer to hardware structure
751  *  @byte_offset: EEPROM byte offset to read
752  *  @eeprom_data: value read
753  *
754  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
755  **/
756 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
757                                   u8 *eeprom_data)
758 {
759         return hw->phy.ops.read_i2c_byte(hw, byte_offset,
760                                          IXGBE_I2C_EEPROM_DEV_ADDR,
761                                          eeprom_data);
762 }
763
764 /**
765  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
766  *  @hw: pointer to hardware structure
767  *  @byte_offset: EEPROM byte offset to write
768  *  @eeprom_data: value to write
769  *
770  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
771  **/
772 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
773                                    u8 eeprom_data)
774 {
775         return hw->phy.ops.write_i2c_byte(hw, byte_offset,
776                                           IXGBE_I2C_EEPROM_DEV_ADDR,
777                                           eeprom_data);
778 }
779
780 /**
781  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
782  *  @hw: pointer to hardware structure
783  *  @byte_offset: byte offset to read
784  *  @data: value read
785  *
786  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
787  *  a specified deivce address.
788  **/
789 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
790                                 u8 dev_addr, u8 *data)
791 {
792         s32 status = 0;
793         u32 max_retry = 1;
794         u32 retry = 0;
795         bool nack = 1;
796
797         do {
798                 ixgbe_i2c_start(hw);
799
800                 /* Device Address and write indication */
801                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
802                 if (status != 0)
803                         goto fail;
804
805                 status = ixgbe_get_i2c_ack(hw);
806                 if (status != 0)
807                         goto fail;
808
809                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
810                 if (status != 0)
811                         goto fail;
812
813                 status = ixgbe_get_i2c_ack(hw);
814                 if (status != 0)
815                         goto fail;
816
817                 ixgbe_i2c_start(hw);
818
819                 /* Device Address and read indication */
820                 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
821                 if (status != 0)
822                         goto fail;
823
824                 status = ixgbe_get_i2c_ack(hw);
825                 if (status != 0)
826                         goto fail;
827
828                 status = ixgbe_clock_in_i2c_byte(hw, data);
829                 if (status != 0)
830                         goto fail;
831
832                 status = ixgbe_clock_out_i2c_bit(hw, nack);
833                 if (status != 0)
834                         goto fail;
835
836                 ixgbe_i2c_stop(hw);
837                 break;
838
839 fail:
840                 ixgbe_i2c_bus_clear(hw);
841                 retry++;
842                 if (retry < max_retry)
843                         hw_dbg(hw, "I2C byte read error - Retrying.\n");
844                 else
845                         hw_dbg(hw, "I2C byte read error.\n");
846
847         } while (retry < max_retry);
848
849         return status;
850 }
851
852 /**
853  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
854  *  @hw: pointer to hardware structure
855  *  @byte_offset: byte offset to write
856  *  @data: value to write
857  *
858  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
859  *  a specified device address.
860  **/
861 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
862                                  u8 dev_addr, u8 data)
863 {
864         s32 status = 0;
865         u32 max_retry = 1;
866         u32 retry = 0;
867
868         do {
869                 ixgbe_i2c_start(hw);
870
871                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
872                 if (status != 0)
873                         goto fail;
874
875                 status = ixgbe_get_i2c_ack(hw);
876                 if (status != 0)
877                         goto fail;
878
879                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
880                 if (status != 0)
881                         goto fail;
882
883                 status = ixgbe_get_i2c_ack(hw);
884                 if (status != 0)
885                         goto fail;
886
887                 status = ixgbe_clock_out_i2c_byte(hw, data);
888                 if (status != 0)
889                         goto fail;
890
891                 status = ixgbe_get_i2c_ack(hw);
892                 if (status != 0)
893                         goto fail;
894
895                 ixgbe_i2c_stop(hw);
896                 break;
897
898 fail:
899                 ixgbe_i2c_bus_clear(hw);
900                 retry++;
901                 if (retry < max_retry)
902                         hw_dbg(hw, "I2C byte write error - Retrying.\n");
903                 else
904                         hw_dbg(hw, "I2C byte write error.\n");
905         } while (retry < max_retry);
906
907         return status;
908 }
909
910 /**
911  *  ixgbe_i2c_start - Sets I2C start condition
912  *  @hw: pointer to hardware structure
913  *
914  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
915  **/
916 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
917 {
918         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
919
920         /* Start condition must begin with data and clock high */
921         ixgbe_set_i2c_data(hw, &i2cctl, 1);
922         ixgbe_raise_i2c_clk(hw, &i2cctl);
923
924         /* Setup time for start condition (4.7us) */
925         udelay(IXGBE_I2C_T_SU_STA);
926
927         ixgbe_set_i2c_data(hw, &i2cctl, 0);
928
929         /* Hold time for start condition (4us) */
930         udelay(IXGBE_I2C_T_HD_STA);
931
932         ixgbe_lower_i2c_clk(hw, &i2cctl);
933
934         /* Minimum low period of clock is 4.7 us */
935         udelay(IXGBE_I2C_T_LOW);
936
937 }
938
939 /**
940  *  ixgbe_i2c_stop - Sets I2C stop condition
941  *  @hw: pointer to hardware structure
942  *
943  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
944  **/
945 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
946 {
947         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
948
949         /* Stop condition must begin with data low and clock high */
950         ixgbe_set_i2c_data(hw, &i2cctl, 0);
951         ixgbe_raise_i2c_clk(hw, &i2cctl);
952
953         /* Setup time for stop condition (4us) */
954         udelay(IXGBE_I2C_T_SU_STO);
955
956         ixgbe_set_i2c_data(hw, &i2cctl, 1);
957
958         /* bus free time between stop and start (4.7us)*/
959         udelay(IXGBE_I2C_T_BUF);
960 }
961
962 /**
963  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
964  *  @hw: pointer to hardware structure
965  *  @data: data byte to clock in
966  *
967  *  Clocks in one byte data via I2C data/clock
968  **/
969 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
970 {
971         s32 status = 0;
972         s32 i;
973         bool bit = 0;
974
975         for (i = 7; i >= 0; i--) {
976                 status = ixgbe_clock_in_i2c_bit(hw, &bit);
977                 *data |= bit << i;
978
979                 if (status != 0)
980                         break;
981         }
982
983         return status;
984 }
985
986 /**
987  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
988  *  @hw: pointer to hardware structure
989  *  @data: data byte clocked out
990  *
991  *  Clocks out one byte data via I2C data/clock
992  **/
993 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
994 {
995         s32 status = 0;
996         s32 i;
997         u32 i2cctl;
998         bool bit = 0;
999
1000         for (i = 7; i >= 0; i--) {
1001                 bit = (data >> i) & 0x1;
1002                 status = ixgbe_clock_out_i2c_bit(hw, bit);
1003
1004                 if (status != 0)
1005                         break;
1006         }
1007
1008         /* Release SDA line (set high) */
1009         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1010         i2cctl |= IXGBE_I2C_DATA_OUT;
1011         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1012
1013         return status;
1014 }
1015
1016 /**
1017  *  ixgbe_get_i2c_ack - Polls for I2C ACK
1018  *  @hw: pointer to hardware structure
1019  *
1020  *  Clocks in/out one bit via I2C data/clock
1021  **/
1022 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1023 {
1024         s32 status;
1025         u32 i = 0;
1026         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1027         u32 timeout = 10;
1028         bool ack = 1;
1029
1030         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1031
1032         if (status != 0)
1033                 goto out;
1034
1035         /* Minimum high period of clock is 4us */
1036         udelay(IXGBE_I2C_T_HIGH);
1037
1038         /* Poll for ACK.  Note that ACK in I2C spec is
1039          * transition from 1 to 0 */
1040         for (i = 0; i < timeout; i++) {
1041                 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1042                 ack = ixgbe_get_i2c_data(&i2cctl);
1043
1044                 udelay(1);
1045                 if (ack == 0)
1046                         break;
1047         }
1048
1049         if (ack == 1) {
1050                 hw_dbg(hw, "I2C ack was not received.\n");
1051                 status = IXGBE_ERR_I2C;
1052         }
1053
1054         ixgbe_lower_i2c_clk(hw, &i2cctl);
1055
1056         /* Minimum low period of clock is 4.7 us */
1057         udelay(IXGBE_I2C_T_LOW);
1058
1059 out:
1060         return status;
1061 }
1062
1063 /**
1064  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1065  *  @hw: pointer to hardware structure
1066  *  @data: read data value
1067  *
1068  *  Clocks in one bit via I2C data/clock
1069  **/
1070 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1071 {
1072         s32 status;
1073         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1074
1075         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1076
1077         /* Minimum high period of clock is 4us */
1078         udelay(IXGBE_I2C_T_HIGH);
1079
1080         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1081         *data = ixgbe_get_i2c_data(&i2cctl);
1082
1083         ixgbe_lower_i2c_clk(hw, &i2cctl);
1084
1085         /* Minimum low period of clock is 4.7 us */
1086         udelay(IXGBE_I2C_T_LOW);
1087
1088         return status;
1089 }
1090
1091 /**
1092  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1093  *  @hw: pointer to hardware structure
1094  *  @data: data value to write
1095  *
1096  *  Clocks out one bit via I2C data/clock
1097  **/
1098 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1099 {
1100         s32 status;
1101         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1102
1103         status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1104         if (status == 0) {
1105                 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1106
1107                 /* Minimum high period of clock is 4us */
1108                 udelay(IXGBE_I2C_T_HIGH);
1109
1110                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1111
1112                 /* Minimum low period of clock is 4.7 us.
1113                  * This also takes care of the data hold time.
1114                  */
1115                 udelay(IXGBE_I2C_T_LOW);
1116         } else {
1117                 status = IXGBE_ERR_I2C;
1118                 hw_dbg(hw, "I2C data was not set to %X\n", data);
1119         }
1120
1121         return status;
1122 }
1123 /**
1124  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1125  *  @hw: pointer to hardware structure
1126  *  @i2cctl: Current value of I2CCTL register
1127  *
1128  *  Raises the I2C clock line '0'->'1'
1129  **/
1130 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1131 {
1132         s32 status = 0;
1133
1134         *i2cctl |= IXGBE_I2C_CLK_OUT;
1135
1136         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1137
1138         /* SCL rise time (1000ns) */
1139         udelay(IXGBE_I2C_T_RISE);
1140
1141         return status;
1142 }
1143
1144 /**
1145  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1146  *  @hw: pointer to hardware structure
1147  *  @i2cctl: Current value of I2CCTL register
1148  *
1149  *  Lowers the I2C clock line '1'->'0'
1150  **/
1151 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1152 {
1153
1154         *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1155
1156         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1157
1158         /* SCL fall time (300ns) */
1159         udelay(IXGBE_I2C_T_FALL);
1160 }
1161
1162 /**
1163  *  ixgbe_set_i2c_data - Sets the I2C data bit
1164  *  @hw: pointer to hardware structure
1165  *  @i2cctl: Current value of I2CCTL register
1166  *  @data: I2C data value (0 or 1) to set
1167  *
1168  *  Sets the I2C data bit
1169  **/
1170 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1171 {
1172         s32 status = 0;
1173
1174         if (data)
1175                 *i2cctl |= IXGBE_I2C_DATA_OUT;
1176         else
1177                 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1178
1179         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1180
1181         /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1182         udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1183
1184         /* Verify data was set correctly */
1185         *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1186         if (data != ixgbe_get_i2c_data(i2cctl)) {
1187                 status = IXGBE_ERR_I2C;
1188                 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1189         }
1190
1191         return status;
1192 }
1193
1194 /**
1195  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
1196  *  @hw: pointer to hardware structure
1197  *  @i2cctl: Current value of I2CCTL register
1198  *
1199  *  Returns the I2C data bit value
1200  **/
1201 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1202 {
1203         bool data;
1204
1205         if (*i2cctl & IXGBE_I2C_DATA_IN)
1206                 data = 1;
1207         else
1208                 data = 0;
1209
1210         return data;
1211 }
1212
1213 /**
1214  *  ixgbe_i2c_bus_clear - Clears the I2C bus
1215  *  @hw: pointer to hardware structure
1216  *
1217  *  Clears the I2C bus by sending nine clock pulses.
1218  *  Used when data line is stuck low.
1219  **/
1220 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1221 {
1222         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1223         u32 i;
1224
1225         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1226
1227         for (i = 0; i < 9; i++) {
1228                 ixgbe_raise_i2c_clk(hw, &i2cctl);
1229
1230                 /* Min high period of clock is 4us */
1231                 udelay(IXGBE_I2C_T_HIGH);
1232
1233                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1234
1235                 /* Min low period of clock is 4.7us*/
1236                 udelay(IXGBE_I2C_T_LOW);
1237         }
1238
1239         /* Put the i2c bus back to default state */
1240         ixgbe_i2c_stop(hw);
1241 }
1242
1243 /**
1244  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1245  *  @hw: pointer to hardware structure
1246  *
1247  *  Reads the VS1 register to determine if link is up and the current speed for
1248  *  the PHY.
1249  **/
1250 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1251                              bool *link_up)
1252 {
1253         s32 status = 0;
1254         u32 time_out;
1255         u32 max_time_out = 10;
1256         u16 phy_link = 0;
1257         u16 phy_speed = 0;
1258         u16 phy_data = 0;
1259
1260         /* Initialize speed and link to default case */
1261         *link_up = false;
1262         *speed = IXGBE_LINK_SPEED_10GB_FULL;
1263
1264         /*
1265          * Check current speed and link status of the PHY register.
1266          * This is a vendor specific register and may have to
1267          * be changed for other copper PHYs.
1268          */
1269         for (time_out = 0; time_out < max_time_out; time_out++) {
1270                 udelay(10);
1271                 status = hw->phy.ops.read_reg(hw,
1272                                         IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1273                                         MDIO_MMD_VEND1,
1274                                         &phy_data);
1275                 phy_link = phy_data &
1276                            IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1277                 phy_speed = phy_data &
1278                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1279                 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1280                         *link_up = true;
1281                         if (phy_speed ==
1282                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1283                                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1284                         break;
1285                 }
1286         }
1287
1288         return status;
1289 }
1290
1291 /**
1292  *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1293  *  @hw: pointer to hardware structure
1294  *  @firmware_version: pointer to the PHY Firmware Version
1295  **/
1296 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1297                                        u16 *firmware_version)
1298 {
1299         s32 status = 0;
1300
1301         status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
1302                                       firmware_version);
1303
1304         return status;
1305 }
1306