e24f650d719a4c40b6204a2b275687bd7e45a1b3
[pandora-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40
41 /**
42  *      t4_wait_op_done_val - wait until an operation is completed
43  *      @adapter: the adapter performing the operation
44  *      @reg: the register to check for completion
45  *      @mask: a single-bit field within @reg that indicates completion
46  *      @polarity: the value of the field when the operation is completed
47  *      @attempts: number of check iterations
48  *      @delay: delay in usecs between iterations
49  *      @valp: where to store the value of the register at completion time
50  *
51  *      Wait until an operation is completed by checking a bit in a register
52  *      up to @attempts times.  If @valp is not NULL the value of the register
53  *      at the time it indicated completion is stored there.  Returns 0 if the
54  *      operation completes and -EAGAIN otherwise.
55  */
56 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57                                int polarity, int attempts, int delay, u32 *valp)
58 {
59         while (1) {
60                 u32 val = t4_read_reg(adapter, reg);
61
62                 if (!!(val & mask) == polarity) {
63                         if (valp)
64                                 *valp = val;
65                         return 0;
66                 }
67                 if (--attempts == 0)
68                         return -EAGAIN;
69                 if (delay)
70                         udelay(delay);
71         }
72 }
73
74 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75                                   int polarity, int attempts, int delay)
76 {
77         return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78                                    delay, NULL);
79 }
80
81 /**
82  *      t4_set_reg_field - set a register field to a value
83  *      @adapter: the adapter to program
84  *      @addr: the register address
85  *      @mask: specifies the portion of the register to modify
86  *      @val: the new value for the register field
87  *
88  *      Sets a register field specified by the supplied mask to the
89  *      given value.
90  */
91 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92                       u32 val)
93 {
94         u32 v = t4_read_reg(adapter, addr) & ~mask;
95
96         t4_write_reg(adapter, addr, v | val);
97         (void) t4_read_reg(adapter, addr);      /* flush */
98 }
99
100 /**
101  *      t4_read_indirect - read indirectly addressed registers
102  *      @adap: the adapter
103  *      @addr_reg: register holding the indirect address
104  *      @data_reg: register holding the value of the indirect register
105  *      @vals: where the read register values are stored
106  *      @nregs: how many indirect registers to read
107  *      @start_idx: index of first indirect register to read
108  *
109  *      Reads registers that are accessed indirectly through an address/data
110  *      register pair.
111  */
112 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113                              unsigned int data_reg, u32 *vals,
114                              unsigned int nregs, unsigned int start_idx)
115 {
116         while (nregs--) {
117                 t4_write_reg(adap, addr_reg, start_idx);
118                 *vals++ = t4_read_reg(adap, data_reg);
119                 start_idx++;
120         }
121 }
122
123 /**
124  *      t4_write_indirect - write indirectly addressed registers
125  *      @adap: the adapter
126  *      @addr_reg: register holding the indirect addresses
127  *      @data_reg: register holding the value for the indirect registers
128  *      @vals: values to write
129  *      @nregs: how many indirect registers to write
130  *      @start_idx: address of first indirect register to write
131  *
132  *      Writes a sequential block of registers that are accessed indirectly
133  *      through an address/data register pair.
134  */
135 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136                        unsigned int data_reg, const u32 *vals,
137                        unsigned int nregs, unsigned int start_idx)
138 {
139         while (nregs--) {
140                 t4_write_reg(adap, addr_reg, start_idx++);
141                 t4_write_reg(adap, data_reg, *vals++);
142         }
143 }
144
145 /*
146  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147  * mechanism.  This guarantees that we get the real value even if we're
148  * operating within a Virtual Machine and the Hypervisor is trapping our
149  * Configuration Space accesses.
150  */
151 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
152 {
153         u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
154
155         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
156                 req |= ENABLE_F;
157         else
158                 req |= T6_ENABLE_F;
159
160         if (is_t4(adap->params.chip))
161                 req |= LOCALCFG_F;
162
163         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
164         *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
165
166         /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
167          * Configuration Space read.  (None of the other fields matter when
168          * ENABLE is 0 so a simple register write is easier than a
169          * read-modify-write via t4_set_reg_field().)
170          */
171         t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
172 }
173
174 /*
175  * t4_report_fw_error - report firmware error
176  * @adap: the adapter
177  *
178  * The adapter firmware can indicate error conditions to the host.
179  * If the firmware has indicated an error, print out the reason for
180  * the firmware error.
181  */
182 static void t4_report_fw_error(struct adapter *adap)
183 {
184         static const char *const reason[] = {
185                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
186                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
187                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
188                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
189                 "Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
190                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
191                 "Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
192                 "Reserved",                     /* reserved */
193         };
194         u32 pcie_fw;
195
196         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
197         if (pcie_fw & PCIE_FW_ERR_F)
198                 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
199                         reason[PCIE_FW_EVAL_G(pcie_fw)]);
200 }
201
202 /*
203  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
204  */
205 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
206                          u32 mbox_addr)
207 {
208         for ( ; nflit; nflit--, mbox_addr += 8)
209                 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
210 }
211
212 /*
213  * Handle a FW assertion reported in a mailbox.
214  */
215 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
216 {
217         struct fw_debug_cmd asrt;
218
219         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
220         dev_alert(adap->pdev_dev,
221                   "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
222                   asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
223                   be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
224 }
225
226 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
227 {
228         dev_err(adap->pdev_dev,
229                 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
230                 (unsigned long long)t4_read_reg64(adap, data_reg),
231                 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
232                 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
233                 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
234                 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
235                 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
236                 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
237                 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
238 }
239
240 /**
241  *      t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
242  *      @adap: the adapter
243  *      @mbox: index of the mailbox to use
244  *      @cmd: the command to write
245  *      @size: command length in bytes
246  *      @rpl: where to optionally store the reply
247  *      @sleep_ok: if true we may sleep while awaiting command completion
248  *      @timeout: time to wait for command to finish before timing out
249  *
250  *      Sends the given command to FW through the selected mailbox and waits
251  *      for the FW to execute the command.  If @rpl is not %NULL it is used to
252  *      store the FW's reply to the command.  The command and its optional
253  *      reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
254  *      to respond.  @sleep_ok determines whether we may sleep while awaiting
255  *      the response.  If sleeping is allowed we use progressive backoff
256  *      otherwise we spin.
257  *
258  *      The return value is 0 on success or a negative errno on failure.  A
259  *      failure can happen either because we are not able to execute the
260  *      command or FW executes it but signals an error.  In the latter case
261  *      the return value is the error code indicated by FW (negated).
262  */
263 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
264                             int size, void *rpl, bool sleep_ok, int timeout)
265 {
266         static const int delay[] = {
267                 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
268         };
269
270         u32 v;
271         u64 res;
272         int i, ms, delay_idx;
273         const __be64 *p = cmd;
274         u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
275         u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
276
277         if ((size & 15) || size > MBOX_LEN)
278                 return -EINVAL;
279
280         /*
281          * If the device is off-line, as in EEH, commands will time out.
282          * Fail them early so we don't waste time waiting.
283          */
284         if (adap->pdev->error_state != pci_channel_io_normal)
285                 return -EIO;
286
287         v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
288         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
289                 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
290
291         if (v != MBOX_OWNER_DRV)
292                 return v ? -EBUSY : -ETIMEDOUT;
293
294         for (i = 0; i < size; i += 8)
295                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
296
297         t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
298         t4_read_reg(adap, ctl_reg);          /* flush write */
299
300         delay_idx = 0;
301         ms = delay[0];
302
303         for (i = 0; i < timeout; i += ms) {
304                 if (sleep_ok) {
305                         ms = delay[delay_idx];  /* last element may repeat */
306                         if (delay_idx < ARRAY_SIZE(delay) - 1)
307                                 delay_idx++;
308                         msleep(ms);
309                 } else
310                         mdelay(ms);
311
312                 v = t4_read_reg(adap, ctl_reg);
313                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
314                         if (!(v & MBMSGVALID_F)) {
315                                 t4_write_reg(adap, ctl_reg, 0);
316                                 continue;
317                         }
318
319                         res = t4_read_reg64(adap, data_reg);
320                         if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
321                                 fw_asrt(adap, data_reg);
322                                 res = FW_CMD_RETVAL_V(EIO);
323                         } else if (rpl) {
324                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
325                         }
326
327                         if (FW_CMD_RETVAL_G((int)res))
328                                 dump_mbox(adap, mbox, data_reg);
329                         t4_write_reg(adap, ctl_reg, 0);
330                         return -FW_CMD_RETVAL_G((int)res);
331                 }
332         }
333
334         dump_mbox(adap, mbox, data_reg);
335         dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
336                 *(const u8 *)cmd, mbox);
337         t4_report_fw_error(adap);
338         return -ETIMEDOUT;
339 }
340
341 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
342                     void *rpl, bool sleep_ok)
343 {
344         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
345                                        FW_CMD_MAX_TIMEOUT);
346 }
347
348 /**
349  *      t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
350  *      @adap: the adapter
351  *      @win: PCI-E Memory Window to use
352  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
353  *      @addr: address within indicated memory type
354  *      @len: amount of memory to transfer
355  *      @hbuf: host memory buffer
356  *      @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
357  *
358  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
359  *      firmware memory address and host buffer must be aligned on 32-bit
360  *      boudaries; the length may be arbitrary.  The memory is transferred as
361  *      a raw byte sequence from/to the firmware's memory.  If this memory
362  *      contains data structures which contain multi-byte integers, it's the
363  *      caller's responsibility to perform appropriate byte order conversions.
364  */
365 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
366                  u32 len, void *hbuf, int dir)
367 {
368         u32 pos, offset, resid, memoffset;
369         u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
370         u32 *buf;
371
372         /* Argument sanity checks ...
373          */
374         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
375                 return -EINVAL;
376         buf = (u32 *)hbuf;
377
378         /* It's convenient to be able to handle lengths which aren't a
379          * multiple of 32-bits because we often end up transferring files to
380          * the firmware.  So we'll handle that by normalizing the length here
381          * and then handling any residual transfer at the end.
382          */
383         resid = len & 0x3;
384         len -= resid;
385
386         /* Offset into the region of memory which is being accessed
387          * MEM_EDC0 = 0
388          * MEM_EDC1 = 1
389          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
390          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
391          */
392         edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
393         if (mtype != MEM_MC1)
394                 memoffset = (mtype * (edc_size * 1024 * 1024));
395         else {
396                 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
397                                                       MA_EXT_MEMORY0_BAR_A));
398                 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
399         }
400
401         /* Determine the PCIE_MEM_ACCESS_OFFSET */
402         addr = addr + memoffset;
403
404         /* Each PCI-E Memory Window is programmed with a window size -- or
405          * "aperture" -- which controls the granularity of its mapping onto
406          * adapter memory.  We need to grab that aperture in order to know
407          * how to use the specified window.  The window is also programmed
408          * with the base address of the Memory Window in BAR0's address
409          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
410          * the address is relative to BAR0.
411          */
412         mem_reg = t4_read_reg(adap,
413                               PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
414                                                   win));
415         mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
416         mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
417         if (is_t4(adap->params.chip))
418                 mem_base -= adap->t4_bar0;
419         win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
420
421         /* Calculate our initial PCI-E Memory Window Position and Offset into
422          * that Window.
423          */
424         pos = addr & ~(mem_aperture-1);
425         offset = addr - pos;
426
427         /* Set up initial PCI-E Memory Window to cover the start of our
428          * transfer.  (Read it back to ensure that changes propagate before we
429          * attempt to use the new value.)
430          */
431         t4_write_reg(adap,
432                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
433                      pos | win_pf);
434         t4_read_reg(adap,
435                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
436
437         /* Transfer data to/from the adapter as long as there's an integral
438          * number of 32-bit transfers to complete.
439          *
440          * A note on Endianness issues:
441          *
442          * The "register" reads and writes below from/to the PCI-E Memory
443          * Window invoke the standard adapter Big-Endian to PCI-E Link
444          * Little-Endian "swizzel."  As a result, if we have the following
445          * data in adapter memory:
446          *
447          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
448          *     Address:      i+0  i+1  i+2  i+3
449          *
450          * Then a read of the adapter memory via the PCI-E Memory Window
451          * will yield:
452          *
453          *     x = readl(i)
454          *         31                  0
455          *         [ b3 | b2 | b1 | b0 ]
456          *
457          * If this value is stored into local memory on a Little-Endian system
458          * it will show up correctly in local memory as:
459          *
460          *     ( ..., b0, b1, b2, b3, ... )
461          *
462          * But on a Big-Endian system, the store will show up in memory
463          * incorrectly swizzled as:
464          *
465          *     ( ..., b3, b2, b1, b0, ... )
466          *
467          * So we need to account for this in the reads and writes to the
468          * PCI-E Memory Window below by undoing the register read/write
469          * swizzels.
470          */
471         while (len > 0) {
472                 if (dir == T4_MEMORY_READ)
473                         *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
474                                                 mem_base + offset));
475                 else
476                         t4_write_reg(adap, mem_base + offset,
477                                      (__force u32)cpu_to_le32(*buf++));
478                 offset += sizeof(__be32);
479                 len -= sizeof(__be32);
480
481                 /* If we've reached the end of our current window aperture,
482                  * move the PCI-E Memory Window on to the next.  Note that
483                  * doing this here after "len" may be 0 allows us to set up
484                  * the PCI-E Memory Window for a possible final residual
485                  * transfer below ...
486                  */
487                 if (offset == mem_aperture) {
488                         pos += mem_aperture;
489                         offset = 0;
490                         t4_write_reg(adap,
491                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
492                                                     win), pos | win_pf);
493                         t4_read_reg(adap,
494                                 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
495                                                     win));
496                 }
497         }
498
499         /* If the original transfer had a length which wasn't a multiple of
500          * 32-bits, now's where we need to finish off the transfer of the
501          * residual amount.  The PCI-E Memory Window has already been moved
502          * above (if necessary) to cover this final transfer.
503          */
504         if (resid) {
505                 union {
506                         u32 word;
507                         char byte[4];
508                 } last;
509                 unsigned char *bp;
510                 int i;
511
512                 if (dir == T4_MEMORY_READ) {
513                         last.word = le32_to_cpu(
514                                         (__force __le32)t4_read_reg(adap,
515                                                 mem_base + offset));
516                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
517                                 bp[i] = last.byte[i];
518                 } else {
519                         last.word = *buf;
520                         for (i = resid; i < 4; i++)
521                                 last.byte[i] = 0;
522                         t4_write_reg(adap, mem_base + offset,
523                                      (__force u32)cpu_to_le32(last.word));
524                 }
525         }
526
527         return 0;
528 }
529
530 /* Return the specified PCI-E Configuration Space register from our Physical
531  * Function.  We try first via a Firmware LDST Command since we prefer to let
532  * the firmware own all of these registers, but if that fails we go for it
533  * directly ourselves.
534  */
535 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
536 {
537         u32 val, ldst_addrspace;
538
539         /* If fw_attach != 0, construct and send the Firmware LDST Command to
540          * retrieve the specified PCI-E Configuration Space register.
541          */
542         struct fw_ldst_cmd ldst_cmd;
543         int ret;
544
545         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
546         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
547         ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
548                                                FW_CMD_REQUEST_F |
549                                                FW_CMD_READ_F |
550                                                ldst_addrspace);
551         ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
552         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
553         ldst_cmd.u.pcie.ctrl_to_fn =
554                 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
555         ldst_cmd.u.pcie.r = reg;
556
557         /* If the LDST Command succeeds, return the result, otherwise
558          * fall through to reading it directly ourselves ...
559          */
560         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
561                          &ldst_cmd);
562         if (ret == 0)
563                 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
564         else
565                 /* Read the desired Configuration Space register via the PCI-E
566                  * Backdoor mechanism.
567                  */
568                 t4_hw_pci_read_cfg4(adap, reg, &val);
569         return val;
570 }
571
572 /* Get the window based on base passed to it.
573  * Window aperture is currently unhandled, but there is no use case for it
574  * right now
575  */
576 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
577                          u32 memwin_base)
578 {
579         u32 ret;
580
581         if (is_t4(adap->params.chip)) {
582                 u32 bar0;
583
584                 /* Truncation intentional: we only read the bottom 32-bits of
585                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
586                  * mechanism to read BAR0 instead of using
587                  * pci_resource_start() because we could be operating from
588                  * within a Virtual Machine which is trapping our accesses to
589                  * our Configuration Space and we need to set up the PCI-E
590                  * Memory Window decoders with the actual addresses which will
591                  * be coming across the PCI-E link.
592                  */
593                 bar0 = t4_read_pcie_cfg4(adap, pci_base);
594                 bar0 &= pci_mask;
595                 adap->t4_bar0 = bar0;
596
597                 ret = bar0 + memwin_base;
598         } else {
599                 /* For T5, only relative offset inside the PCIe BAR is passed */
600                 ret = memwin_base;
601         }
602         return ret;
603 }
604
605 /* Get the default utility window (win0) used by everyone */
606 u32 t4_get_util_window(struct adapter *adap)
607 {
608         return t4_get_window(adap, PCI_BASE_ADDRESS_0,
609                              PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
610 }
611
612 /* Set up memory window for accessing adapter memory ranges.  (Read
613  * back MA register to ensure that changes propagate before we attempt
614  * to use the new values.)
615  */
616 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
617 {
618         t4_write_reg(adap,
619                      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
620                      memwin_base | BIR_V(0) |
621                      WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
622         t4_read_reg(adap,
623                     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
624 }
625
626 /**
627  *      t4_get_regs_len - return the size of the chips register set
628  *      @adapter: the adapter
629  *
630  *      Returns the size of the chip's BAR0 register space.
631  */
632 unsigned int t4_get_regs_len(struct adapter *adapter)
633 {
634         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
635
636         switch (chip_version) {
637         case CHELSIO_T4:
638                 return T4_REGMAP_SIZE;
639
640         case CHELSIO_T5:
641         case CHELSIO_T6:
642                 return T5_REGMAP_SIZE;
643         }
644
645         dev_err(adapter->pdev_dev,
646                 "Unsupported chip version %d\n", chip_version);
647         return 0;
648 }
649
650 /**
651  *      t4_get_regs - read chip registers into provided buffer
652  *      @adap: the adapter
653  *      @buf: register buffer
654  *      @buf_size: size (in bytes) of register buffer
655  *
656  *      If the provided register buffer isn't large enough for the chip's
657  *      full register range, the register dump will be truncated to the
658  *      register buffer's size.
659  */
660 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
661 {
662         static const unsigned int t4_reg_ranges[] = {
663                 0x1008, 0x1108,
664                 0x1180, 0x11b4,
665                 0x11fc, 0x123c,
666                 0x1300, 0x173c,
667                 0x1800, 0x18fc,
668                 0x3000, 0x305c,
669                 0x3068, 0x30d8,
670                 0x30e0, 0x5924,
671                 0x5960, 0x59d4,
672                 0x5a00, 0x5af8,
673                 0x6000, 0x6098,
674                 0x6100, 0x6150,
675                 0x6200, 0x6208,
676                 0x6240, 0x6248,
677                 0x6280, 0x6338,
678                 0x6370, 0x638c,
679                 0x6400, 0x643c,
680                 0x6500, 0x6524,
681                 0x6a00, 0x6a38,
682                 0x6a60, 0x6a78,
683                 0x6b00, 0x6b84,
684                 0x6bf0, 0x6c84,
685                 0x6cf0, 0x6d84,
686                 0x6df0, 0x6e84,
687                 0x6ef0, 0x6f84,
688                 0x6ff0, 0x7084,
689                 0x70f0, 0x7184,
690                 0x71f0, 0x7284,
691                 0x72f0, 0x7384,
692                 0x73f0, 0x7450,
693                 0x7500, 0x7530,
694                 0x7600, 0x761c,
695                 0x7680, 0x76cc,
696                 0x7700, 0x7798,
697                 0x77c0, 0x77fc,
698                 0x7900, 0x79fc,
699                 0x7b00, 0x7c38,
700                 0x7d00, 0x7efc,
701                 0x8dc0, 0x8e1c,
702                 0x8e30, 0x8e78,
703                 0x8ea0, 0x8f6c,
704                 0x8fc0, 0x9074,
705                 0x90fc, 0x90fc,
706                 0x9400, 0x9458,
707                 0x9600, 0x96bc,
708                 0x9800, 0x9808,
709                 0x9820, 0x983c,
710                 0x9850, 0x9864,
711                 0x9c00, 0x9c6c,
712                 0x9c80, 0x9cec,
713                 0x9d00, 0x9d6c,
714                 0x9d80, 0x9dec,
715                 0x9e00, 0x9e6c,
716                 0x9e80, 0x9eec,
717                 0x9f00, 0x9f6c,
718                 0x9f80, 0x9fec,
719                 0xd004, 0xd03c,
720                 0xdfc0, 0xdfe0,
721                 0xe000, 0xea7c,
722                 0xf000, 0x11110,
723                 0x11118, 0x11190,
724                 0x19040, 0x1906c,
725                 0x19078, 0x19080,
726                 0x1908c, 0x19124,
727                 0x19150, 0x191b0,
728                 0x191d0, 0x191e8,
729                 0x19238, 0x1924c,
730                 0x193f8, 0x19474,
731                 0x19490, 0x194f8,
732                 0x19800, 0x19f4c,
733                 0x1a000, 0x1a06c,
734                 0x1a0b0, 0x1a120,
735                 0x1a128, 0x1a138,
736                 0x1a190, 0x1a1c4,
737                 0x1a1fc, 0x1a1fc,
738                 0x1e040, 0x1e04c,
739                 0x1e284, 0x1e28c,
740                 0x1e2c0, 0x1e2c0,
741                 0x1e2e0, 0x1e2e0,
742                 0x1e300, 0x1e384,
743                 0x1e3c0, 0x1e3c8,
744                 0x1e440, 0x1e44c,
745                 0x1e684, 0x1e68c,
746                 0x1e6c0, 0x1e6c0,
747                 0x1e6e0, 0x1e6e0,
748                 0x1e700, 0x1e784,
749                 0x1e7c0, 0x1e7c8,
750                 0x1e840, 0x1e84c,
751                 0x1ea84, 0x1ea8c,
752                 0x1eac0, 0x1eac0,
753                 0x1eae0, 0x1eae0,
754                 0x1eb00, 0x1eb84,
755                 0x1ebc0, 0x1ebc8,
756                 0x1ec40, 0x1ec4c,
757                 0x1ee84, 0x1ee8c,
758                 0x1eec0, 0x1eec0,
759                 0x1eee0, 0x1eee0,
760                 0x1ef00, 0x1ef84,
761                 0x1efc0, 0x1efc8,
762                 0x1f040, 0x1f04c,
763                 0x1f284, 0x1f28c,
764                 0x1f2c0, 0x1f2c0,
765                 0x1f2e0, 0x1f2e0,
766                 0x1f300, 0x1f384,
767                 0x1f3c0, 0x1f3c8,
768                 0x1f440, 0x1f44c,
769                 0x1f684, 0x1f68c,
770                 0x1f6c0, 0x1f6c0,
771                 0x1f6e0, 0x1f6e0,
772                 0x1f700, 0x1f784,
773                 0x1f7c0, 0x1f7c8,
774                 0x1f840, 0x1f84c,
775                 0x1fa84, 0x1fa8c,
776                 0x1fac0, 0x1fac0,
777                 0x1fae0, 0x1fae0,
778                 0x1fb00, 0x1fb84,
779                 0x1fbc0, 0x1fbc8,
780                 0x1fc40, 0x1fc4c,
781                 0x1fe84, 0x1fe8c,
782                 0x1fec0, 0x1fec0,
783                 0x1fee0, 0x1fee0,
784                 0x1ff00, 0x1ff84,
785                 0x1ffc0, 0x1ffc8,
786                 0x20000, 0x2002c,
787                 0x20100, 0x2013c,
788                 0x20190, 0x201c8,
789                 0x20200, 0x20318,
790                 0x20400, 0x20528,
791                 0x20540, 0x20614,
792                 0x21000, 0x21040,
793                 0x2104c, 0x21060,
794                 0x210c0, 0x210ec,
795                 0x21200, 0x21268,
796                 0x21270, 0x21284,
797                 0x212fc, 0x21388,
798                 0x21400, 0x21404,
799                 0x21500, 0x21518,
800                 0x2152c, 0x2153c,
801                 0x21550, 0x21554,
802                 0x21600, 0x21600,
803                 0x21608, 0x21628,
804                 0x21630, 0x2163c,
805                 0x21700, 0x2171c,
806                 0x21780, 0x2178c,
807                 0x21800, 0x21c38,
808                 0x21c80, 0x21d7c,
809                 0x21e00, 0x21e04,
810                 0x22000, 0x2202c,
811                 0x22100, 0x2213c,
812                 0x22190, 0x221c8,
813                 0x22200, 0x22318,
814                 0x22400, 0x22528,
815                 0x22540, 0x22614,
816                 0x23000, 0x23040,
817                 0x2304c, 0x23060,
818                 0x230c0, 0x230ec,
819                 0x23200, 0x23268,
820                 0x23270, 0x23284,
821                 0x232fc, 0x23388,
822                 0x23400, 0x23404,
823                 0x23500, 0x23518,
824                 0x2352c, 0x2353c,
825                 0x23550, 0x23554,
826                 0x23600, 0x23600,
827                 0x23608, 0x23628,
828                 0x23630, 0x2363c,
829                 0x23700, 0x2371c,
830                 0x23780, 0x2378c,
831                 0x23800, 0x23c38,
832                 0x23c80, 0x23d7c,
833                 0x23e00, 0x23e04,
834                 0x24000, 0x2402c,
835                 0x24100, 0x2413c,
836                 0x24190, 0x241c8,
837                 0x24200, 0x24318,
838                 0x24400, 0x24528,
839                 0x24540, 0x24614,
840                 0x25000, 0x25040,
841                 0x2504c, 0x25060,
842                 0x250c0, 0x250ec,
843                 0x25200, 0x25268,
844                 0x25270, 0x25284,
845                 0x252fc, 0x25388,
846                 0x25400, 0x25404,
847                 0x25500, 0x25518,
848                 0x2552c, 0x2553c,
849                 0x25550, 0x25554,
850                 0x25600, 0x25600,
851                 0x25608, 0x25628,
852                 0x25630, 0x2563c,
853                 0x25700, 0x2571c,
854                 0x25780, 0x2578c,
855                 0x25800, 0x25c38,
856                 0x25c80, 0x25d7c,
857                 0x25e00, 0x25e04,
858                 0x26000, 0x2602c,
859                 0x26100, 0x2613c,
860                 0x26190, 0x261c8,
861                 0x26200, 0x26318,
862                 0x26400, 0x26528,
863                 0x26540, 0x26614,
864                 0x27000, 0x27040,
865                 0x2704c, 0x27060,
866                 0x270c0, 0x270ec,
867                 0x27200, 0x27268,
868                 0x27270, 0x27284,
869                 0x272fc, 0x27388,
870                 0x27400, 0x27404,
871                 0x27500, 0x27518,
872                 0x2752c, 0x2753c,
873                 0x27550, 0x27554,
874                 0x27600, 0x27600,
875                 0x27608, 0x27628,
876                 0x27630, 0x2763c,
877                 0x27700, 0x2771c,
878                 0x27780, 0x2778c,
879                 0x27800, 0x27c38,
880                 0x27c80, 0x27d7c,
881                 0x27e00, 0x27e04,
882         };
883
884         static const unsigned int t5_reg_ranges[] = {
885                 0x1008, 0x1148,
886                 0x1180, 0x11b4,
887                 0x11fc, 0x123c,
888                 0x1280, 0x173c,
889                 0x1800, 0x18fc,
890                 0x3000, 0x3028,
891                 0x3068, 0x30d8,
892                 0x30e0, 0x30fc,
893                 0x3140, 0x357c,
894                 0x35a8, 0x35cc,
895                 0x35ec, 0x35ec,
896                 0x3600, 0x5624,
897                 0x56cc, 0x575c,
898                 0x580c, 0x5814,
899                 0x5890, 0x58bc,
900                 0x5940, 0x59dc,
901                 0x59fc, 0x5a18,
902                 0x5a60, 0x5a9c,
903                 0x5b94, 0x5bfc,
904                 0x6000, 0x6040,
905                 0x6058, 0x614c,
906                 0x7700, 0x7798,
907                 0x77c0, 0x78fc,
908                 0x7b00, 0x7c54,
909                 0x7d00, 0x7efc,
910                 0x8dc0, 0x8de0,
911                 0x8df8, 0x8e84,
912                 0x8ea0, 0x8f84,
913                 0x8fc0, 0x90f8,
914                 0x9400, 0x9470,
915                 0x9600, 0x96f4,
916                 0x9800, 0x9808,
917                 0x9820, 0x983c,
918                 0x9850, 0x9864,
919                 0x9c00, 0x9c6c,
920                 0x9c80, 0x9cec,
921                 0x9d00, 0x9d6c,
922                 0x9d80, 0x9dec,
923                 0x9e00, 0x9e6c,
924                 0x9e80, 0x9eec,
925                 0x9f00, 0x9f6c,
926                 0x9f80, 0xa020,
927                 0xd004, 0xd03c,
928                 0xdfc0, 0xdfe0,
929                 0xe000, 0x11088,
930                 0x1109c, 0x11110,
931                 0x11118, 0x1117c,
932                 0x11190, 0x11204,
933                 0x19040, 0x1906c,
934                 0x19078, 0x19080,
935                 0x1908c, 0x19124,
936                 0x19150, 0x191b0,
937                 0x191d0, 0x191e8,
938                 0x19238, 0x19290,
939                 0x193f8, 0x19474,
940                 0x19490, 0x194cc,
941                 0x194f0, 0x194f8,
942                 0x19c00, 0x19c60,
943                 0x19c94, 0x19e10,
944                 0x19e50, 0x19f34,
945                 0x19f40, 0x19f50,
946                 0x19f90, 0x19fe4,
947                 0x1a000, 0x1a06c,
948                 0x1a0b0, 0x1a120,
949                 0x1a128, 0x1a138,
950                 0x1a190, 0x1a1c4,
951                 0x1a1fc, 0x1a1fc,
952                 0x1e008, 0x1e00c,
953                 0x1e040, 0x1e04c,
954                 0x1e284, 0x1e290,
955                 0x1e2c0, 0x1e2c0,
956                 0x1e2e0, 0x1e2e0,
957                 0x1e300, 0x1e384,
958                 0x1e3c0, 0x1e3c8,
959                 0x1e408, 0x1e40c,
960                 0x1e440, 0x1e44c,
961                 0x1e684, 0x1e690,
962                 0x1e6c0, 0x1e6c0,
963                 0x1e6e0, 0x1e6e0,
964                 0x1e700, 0x1e784,
965                 0x1e7c0, 0x1e7c8,
966                 0x1e808, 0x1e80c,
967                 0x1e840, 0x1e84c,
968                 0x1ea84, 0x1ea90,
969                 0x1eac0, 0x1eac0,
970                 0x1eae0, 0x1eae0,
971                 0x1eb00, 0x1eb84,
972                 0x1ebc0, 0x1ebc8,
973                 0x1ec08, 0x1ec0c,
974                 0x1ec40, 0x1ec4c,
975                 0x1ee84, 0x1ee90,
976                 0x1eec0, 0x1eec0,
977                 0x1eee0, 0x1eee0,
978                 0x1ef00, 0x1ef84,
979                 0x1efc0, 0x1efc8,
980                 0x1f008, 0x1f00c,
981                 0x1f040, 0x1f04c,
982                 0x1f284, 0x1f290,
983                 0x1f2c0, 0x1f2c0,
984                 0x1f2e0, 0x1f2e0,
985                 0x1f300, 0x1f384,
986                 0x1f3c0, 0x1f3c8,
987                 0x1f408, 0x1f40c,
988                 0x1f440, 0x1f44c,
989                 0x1f684, 0x1f690,
990                 0x1f6c0, 0x1f6c0,
991                 0x1f6e0, 0x1f6e0,
992                 0x1f700, 0x1f784,
993                 0x1f7c0, 0x1f7c8,
994                 0x1f808, 0x1f80c,
995                 0x1f840, 0x1f84c,
996                 0x1fa84, 0x1fa90,
997                 0x1fac0, 0x1fac0,
998                 0x1fae0, 0x1fae0,
999                 0x1fb00, 0x1fb84,
1000                 0x1fbc0, 0x1fbc8,
1001                 0x1fc08, 0x1fc0c,
1002                 0x1fc40, 0x1fc4c,
1003                 0x1fe84, 0x1fe90,
1004                 0x1fec0, 0x1fec0,
1005                 0x1fee0, 0x1fee0,
1006                 0x1ff00, 0x1ff84,
1007                 0x1ffc0, 0x1ffc8,
1008                 0x30000, 0x30030,
1009                 0x30100, 0x30144,
1010                 0x30190, 0x301d0,
1011                 0x30200, 0x30318,
1012                 0x30400, 0x3052c,
1013                 0x30540, 0x3061c,
1014                 0x30800, 0x30834,
1015                 0x308c0, 0x30908,
1016                 0x30910, 0x309ac,
1017                 0x30a00, 0x30a2c,
1018                 0x30a44, 0x30a50,
1019                 0x30a74, 0x30c24,
1020                 0x30d00, 0x30d00,
1021                 0x30d08, 0x30d14,
1022                 0x30d1c, 0x30d20,
1023                 0x30d3c, 0x30d50,
1024                 0x31200, 0x3120c,
1025                 0x31220, 0x31220,
1026                 0x31240, 0x31240,
1027                 0x31600, 0x3160c,
1028                 0x31a00, 0x31a1c,
1029                 0x31e00, 0x31e20,
1030                 0x31e38, 0x31e3c,
1031                 0x31e80, 0x31e80,
1032                 0x31e88, 0x31ea8,
1033                 0x31eb0, 0x31eb4,
1034                 0x31ec8, 0x31ed4,
1035                 0x31fb8, 0x32004,
1036                 0x32200, 0x32200,
1037                 0x32208, 0x32240,
1038                 0x32248, 0x32280,
1039                 0x32288, 0x322c0,
1040                 0x322c8, 0x322fc,
1041                 0x32600, 0x32630,
1042                 0x32a00, 0x32abc,
1043                 0x32b00, 0x32b70,
1044                 0x33000, 0x33048,
1045                 0x33060, 0x3309c,
1046                 0x330f0, 0x33148,
1047                 0x33160, 0x3319c,
1048                 0x331f0, 0x332e4,
1049                 0x332f8, 0x333e4,
1050                 0x333f8, 0x33448,
1051                 0x33460, 0x3349c,
1052                 0x334f0, 0x33548,
1053                 0x33560, 0x3359c,
1054                 0x335f0, 0x336e4,
1055                 0x336f8, 0x337e4,
1056                 0x337f8, 0x337fc,
1057                 0x33814, 0x33814,
1058                 0x3382c, 0x3382c,
1059                 0x33880, 0x3388c,
1060                 0x338e8, 0x338ec,
1061                 0x33900, 0x33948,
1062                 0x33960, 0x3399c,
1063                 0x339f0, 0x33ae4,
1064                 0x33af8, 0x33b10,
1065                 0x33b28, 0x33b28,
1066                 0x33b3c, 0x33b50,
1067                 0x33bf0, 0x33c10,
1068                 0x33c28, 0x33c28,
1069                 0x33c3c, 0x33c50,
1070                 0x33cf0, 0x33cfc,
1071                 0x34000, 0x34030,
1072                 0x34100, 0x34144,
1073                 0x34190, 0x341d0,
1074                 0x34200, 0x34318,
1075                 0x34400, 0x3452c,
1076                 0x34540, 0x3461c,
1077                 0x34800, 0x34834,
1078                 0x348c0, 0x34908,
1079                 0x34910, 0x349ac,
1080                 0x34a00, 0x34a2c,
1081                 0x34a44, 0x34a50,
1082                 0x34a74, 0x34c24,
1083                 0x34d00, 0x34d00,
1084                 0x34d08, 0x34d14,
1085                 0x34d1c, 0x34d20,
1086                 0x34d3c, 0x34d50,
1087                 0x35200, 0x3520c,
1088                 0x35220, 0x35220,
1089                 0x35240, 0x35240,
1090                 0x35600, 0x3560c,
1091                 0x35a00, 0x35a1c,
1092                 0x35e00, 0x35e20,
1093                 0x35e38, 0x35e3c,
1094                 0x35e80, 0x35e80,
1095                 0x35e88, 0x35ea8,
1096                 0x35eb0, 0x35eb4,
1097                 0x35ec8, 0x35ed4,
1098                 0x35fb8, 0x36004,
1099                 0x36200, 0x36200,
1100                 0x36208, 0x36240,
1101                 0x36248, 0x36280,
1102                 0x36288, 0x362c0,
1103                 0x362c8, 0x362fc,
1104                 0x36600, 0x36630,
1105                 0x36a00, 0x36abc,
1106                 0x36b00, 0x36b70,
1107                 0x37000, 0x37048,
1108                 0x37060, 0x3709c,
1109                 0x370f0, 0x37148,
1110                 0x37160, 0x3719c,
1111                 0x371f0, 0x372e4,
1112                 0x372f8, 0x373e4,
1113                 0x373f8, 0x37448,
1114                 0x37460, 0x3749c,
1115                 0x374f0, 0x37548,
1116                 0x37560, 0x3759c,
1117                 0x375f0, 0x376e4,
1118                 0x376f8, 0x377e4,
1119                 0x377f8, 0x377fc,
1120                 0x37814, 0x37814,
1121                 0x3782c, 0x3782c,
1122                 0x37880, 0x3788c,
1123                 0x378e8, 0x378ec,
1124                 0x37900, 0x37948,
1125                 0x37960, 0x3799c,
1126                 0x379f0, 0x37ae4,
1127                 0x37af8, 0x37b10,
1128                 0x37b28, 0x37b28,
1129                 0x37b3c, 0x37b50,
1130                 0x37bf0, 0x37c10,
1131                 0x37c28, 0x37c28,
1132                 0x37c3c, 0x37c50,
1133                 0x37cf0, 0x37cfc,
1134                 0x38000, 0x38030,
1135                 0x38100, 0x38144,
1136                 0x38190, 0x381d0,
1137                 0x38200, 0x38318,
1138                 0x38400, 0x3852c,
1139                 0x38540, 0x3861c,
1140                 0x38800, 0x38834,
1141                 0x388c0, 0x38908,
1142                 0x38910, 0x389ac,
1143                 0x38a00, 0x38a2c,
1144                 0x38a44, 0x38a50,
1145                 0x38a74, 0x38c24,
1146                 0x38d00, 0x38d00,
1147                 0x38d08, 0x38d14,
1148                 0x38d1c, 0x38d20,
1149                 0x38d3c, 0x38d50,
1150                 0x39200, 0x3920c,
1151                 0x39220, 0x39220,
1152                 0x39240, 0x39240,
1153                 0x39600, 0x3960c,
1154                 0x39a00, 0x39a1c,
1155                 0x39e00, 0x39e20,
1156                 0x39e38, 0x39e3c,
1157                 0x39e80, 0x39e80,
1158                 0x39e88, 0x39ea8,
1159                 0x39eb0, 0x39eb4,
1160                 0x39ec8, 0x39ed4,
1161                 0x39fb8, 0x3a004,
1162                 0x3a200, 0x3a200,
1163                 0x3a208, 0x3a240,
1164                 0x3a248, 0x3a280,
1165                 0x3a288, 0x3a2c0,
1166                 0x3a2c8, 0x3a2fc,
1167                 0x3a600, 0x3a630,
1168                 0x3aa00, 0x3aabc,
1169                 0x3ab00, 0x3ab70,
1170                 0x3b000, 0x3b048,
1171                 0x3b060, 0x3b09c,
1172                 0x3b0f0, 0x3b148,
1173                 0x3b160, 0x3b19c,
1174                 0x3b1f0, 0x3b2e4,
1175                 0x3b2f8, 0x3b3e4,
1176                 0x3b3f8, 0x3b448,
1177                 0x3b460, 0x3b49c,
1178                 0x3b4f0, 0x3b548,
1179                 0x3b560, 0x3b59c,
1180                 0x3b5f0, 0x3b6e4,
1181                 0x3b6f8, 0x3b7e4,
1182                 0x3b7f8, 0x3b7fc,
1183                 0x3b814, 0x3b814,
1184                 0x3b82c, 0x3b82c,
1185                 0x3b880, 0x3b88c,
1186                 0x3b8e8, 0x3b8ec,
1187                 0x3b900, 0x3b948,
1188                 0x3b960, 0x3b99c,
1189                 0x3b9f0, 0x3bae4,
1190                 0x3baf8, 0x3bb10,
1191                 0x3bb28, 0x3bb28,
1192                 0x3bb3c, 0x3bb50,
1193                 0x3bbf0, 0x3bc10,
1194                 0x3bc28, 0x3bc28,
1195                 0x3bc3c, 0x3bc50,
1196                 0x3bcf0, 0x3bcfc,
1197                 0x3c000, 0x3c030,
1198                 0x3c100, 0x3c144,
1199                 0x3c190, 0x3c1d0,
1200                 0x3c200, 0x3c318,
1201                 0x3c400, 0x3c52c,
1202                 0x3c540, 0x3c61c,
1203                 0x3c800, 0x3c834,
1204                 0x3c8c0, 0x3c908,
1205                 0x3c910, 0x3c9ac,
1206                 0x3ca00, 0x3ca2c,
1207                 0x3ca44, 0x3ca50,
1208                 0x3ca74, 0x3cc24,
1209                 0x3cd00, 0x3cd00,
1210                 0x3cd08, 0x3cd14,
1211                 0x3cd1c, 0x3cd20,
1212                 0x3cd3c, 0x3cd50,
1213                 0x3d200, 0x3d20c,
1214                 0x3d220, 0x3d220,
1215                 0x3d240, 0x3d240,
1216                 0x3d600, 0x3d60c,
1217                 0x3da00, 0x3da1c,
1218                 0x3de00, 0x3de20,
1219                 0x3de38, 0x3de3c,
1220                 0x3de80, 0x3de80,
1221                 0x3de88, 0x3dea8,
1222                 0x3deb0, 0x3deb4,
1223                 0x3dec8, 0x3ded4,
1224                 0x3dfb8, 0x3e004,
1225                 0x3e200, 0x3e200,
1226                 0x3e208, 0x3e240,
1227                 0x3e248, 0x3e280,
1228                 0x3e288, 0x3e2c0,
1229                 0x3e2c8, 0x3e2fc,
1230                 0x3e600, 0x3e630,
1231                 0x3ea00, 0x3eabc,
1232                 0x3eb00, 0x3eb70,
1233                 0x3f000, 0x3f048,
1234                 0x3f060, 0x3f09c,
1235                 0x3f0f0, 0x3f148,
1236                 0x3f160, 0x3f19c,
1237                 0x3f1f0, 0x3f2e4,
1238                 0x3f2f8, 0x3f3e4,
1239                 0x3f3f8, 0x3f448,
1240                 0x3f460, 0x3f49c,
1241                 0x3f4f0, 0x3f548,
1242                 0x3f560, 0x3f59c,
1243                 0x3f5f0, 0x3f6e4,
1244                 0x3f6f8, 0x3f7e4,
1245                 0x3f7f8, 0x3f7fc,
1246                 0x3f814, 0x3f814,
1247                 0x3f82c, 0x3f82c,
1248                 0x3f880, 0x3f88c,
1249                 0x3f8e8, 0x3f8ec,
1250                 0x3f900, 0x3f948,
1251                 0x3f960, 0x3f99c,
1252                 0x3f9f0, 0x3fae4,
1253                 0x3faf8, 0x3fb10,
1254                 0x3fb28, 0x3fb28,
1255                 0x3fb3c, 0x3fb50,
1256                 0x3fbf0, 0x3fc10,
1257                 0x3fc28, 0x3fc28,
1258                 0x3fc3c, 0x3fc50,
1259                 0x3fcf0, 0x3fcfc,
1260                 0x40000, 0x4000c,
1261                 0x40040, 0x40068,
1262                 0x4007c, 0x40144,
1263                 0x40180, 0x4018c,
1264                 0x40200, 0x40298,
1265                 0x402ac, 0x4033c,
1266                 0x403f8, 0x403fc,
1267                 0x41304, 0x413c4,
1268                 0x41400, 0x4141c,
1269                 0x41480, 0x414d0,
1270                 0x44000, 0x44078,
1271                 0x440c0, 0x44278,
1272                 0x442c0, 0x44478,
1273                 0x444c0, 0x44678,
1274                 0x446c0, 0x44878,
1275                 0x448c0, 0x449fc,
1276                 0x45000, 0x45068,
1277                 0x45080, 0x45084,
1278                 0x450a0, 0x450b0,
1279                 0x45200, 0x45268,
1280                 0x45280, 0x45284,
1281                 0x452a0, 0x452b0,
1282                 0x460c0, 0x460e4,
1283                 0x47000, 0x4708c,
1284                 0x47200, 0x47250,
1285                 0x47400, 0x47420,
1286                 0x47600, 0x47618,
1287                 0x47800, 0x47814,
1288                 0x48000, 0x4800c,
1289                 0x48040, 0x48068,
1290                 0x4807c, 0x48144,
1291                 0x48180, 0x4818c,
1292                 0x48200, 0x48298,
1293                 0x482ac, 0x4833c,
1294                 0x483f8, 0x483fc,
1295                 0x49304, 0x493c4,
1296                 0x49400, 0x4941c,
1297                 0x49480, 0x494d0,
1298                 0x4c000, 0x4c078,
1299                 0x4c0c0, 0x4c278,
1300                 0x4c2c0, 0x4c478,
1301                 0x4c4c0, 0x4c678,
1302                 0x4c6c0, 0x4c878,
1303                 0x4c8c0, 0x4c9fc,
1304                 0x4d000, 0x4d068,
1305                 0x4d080, 0x4d084,
1306                 0x4d0a0, 0x4d0b0,
1307                 0x4d200, 0x4d268,
1308                 0x4d280, 0x4d284,
1309                 0x4d2a0, 0x4d2b0,
1310                 0x4e0c0, 0x4e0e4,
1311                 0x4f000, 0x4f08c,
1312                 0x4f200, 0x4f250,
1313                 0x4f400, 0x4f420,
1314                 0x4f600, 0x4f618,
1315                 0x4f800, 0x4f814,
1316                 0x50000, 0x500cc,
1317                 0x50400, 0x50400,
1318                 0x50800, 0x508cc,
1319                 0x50c00, 0x50c00,
1320                 0x51000, 0x5101c,
1321                 0x51300, 0x51308,
1322         };
1323
1324         static const unsigned int t6_reg_ranges[] = {
1325                 0x1008, 0x114c,
1326                 0x1180, 0x11b4,
1327                 0x11fc, 0x1250,
1328                 0x1280, 0x133c,
1329                 0x1800, 0x18fc,
1330                 0x3000, 0x302c,
1331                 0x3060, 0x30d8,
1332                 0x30e0, 0x30fc,
1333                 0x3140, 0x357c,
1334                 0x35a8, 0x35cc,
1335                 0x35ec, 0x35ec,
1336                 0x3600, 0x5624,
1337                 0x56cc, 0x575c,
1338                 0x580c, 0x5814,
1339                 0x5890, 0x58bc,
1340                 0x5940, 0x595c,
1341                 0x5980, 0x598c,
1342                 0x59b0, 0x59dc,
1343                 0x59fc, 0x5a18,
1344                 0x5a60, 0x5a6c,
1345                 0x5a80, 0x5a9c,
1346                 0x5b94, 0x5bfc,
1347                 0x5c10, 0x5ec0,
1348                 0x5ec8, 0x5ec8,
1349                 0x6000, 0x6040,
1350                 0x6058, 0x6154,
1351                 0x7700, 0x7798,
1352                 0x77c0, 0x7880,
1353                 0x78cc, 0x78fc,
1354                 0x7b00, 0x7c54,
1355                 0x7d00, 0x7efc,
1356                 0x8dc0, 0x8de0,
1357                 0x8df8, 0x8e84,
1358                 0x8ea0, 0x8f88,
1359                 0x8fb8, 0x911c,
1360                 0x9400, 0x9470,
1361                 0x9600, 0x971c,
1362                 0x9800, 0x9808,
1363                 0x9820, 0x983c,
1364                 0x9850, 0x9864,
1365                 0x9c00, 0x9c6c,
1366                 0x9c80, 0x9cec,
1367                 0x9d00, 0x9d6c,
1368                 0x9d80, 0x9dec,
1369                 0x9e00, 0x9e6c,
1370                 0x9e80, 0x9eec,
1371                 0x9f00, 0x9f6c,
1372                 0x9f80, 0xa020,
1373                 0xd004, 0xd03c,
1374                 0xdfc0, 0xdfe0,
1375                 0xe000, 0xf008,
1376                 0x11000, 0x11014,
1377                 0x11048, 0x11110,
1378                 0x11118, 0x1117c,
1379                 0x11190, 0x11260,
1380                 0x11300, 0x1130c,
1381                 0x12000, 0x1205c,
1382                 0x19040, 0x1906c,
1383                 0x19078, 0x19080,
1384                 0x1908c, 0x19124,
1385                 0x19150, 0x191b0,
1386                 0x191d0, 0x191e8,
1387                 0x19238, 0x192b8,
1388                 0x193f8, 0x19474,
1389                 0x19490, 0x194cc,
1390                 0x194f0, 0x194f8,
1391                 0x19c00, 0x19c80,
1392                 0x19c94, 0x19cbc,
1393                 0x19ce4, 0x19d28,
1394                 0x19d50, 0x19d78,
1395                 0x19d94, 0x19dc8,
1396                 0x19df0, 0x19e10,
1397                 0x19e50, 0x19e6c,
1398                 0x19ea0, 0x19f34,
1399                 0x19f40, 0x19f50,
1400                 0x19f90, 0x19fac,
1401                 0x19fc4, 0x19fe4,
1402                 0x1a000, 0x1a06c,
1403                 0x1a0b0, 0x1a120,
1404                 0x1a128, 0x1a138,
1405                 0x1a190, 0x1a1c4,
1406                 0x1a1fc, 0x1a1fc,
1407                 0x1e008, 0x1e00c,
1408                 0x1e040, 0x1e04c,
1409                 0x1e284, 0x1e290,
1410                 0x1e2c0, 0x1e2c0,
1411                 0x1e2e0, 0x1e2e0,
1412                 0x1e300, 0x1e384,
1413                 0x1e3c0, 0x1e3c8,
1414                 0x1e408, 0x1e40c,
1415                 0x1e440, 0x1e44c,
1416                 0x1e684, 0x1e690,
1417                 0x1e6c0, 0x1e6c0,
1418                 0x1e6e0, 0x1e6e0,
1419                 0x1e700, 0x1e784,
1420                 0x1e7c0, 0x1e7c8,
1421                 0x1e808, 0x1e80c,
1422                 0x1e840, 0x1e84c,
1423                 0x1ea84, 0x1ea90,
1424                 0x1eac0, 0x1eac0,
1425                 0x1eae0, 0x1eae0,
1426                 0x1eb00, 0x1eb84,
1427                 0x1ebc0, 0x1ebc8,
1428                 0x1ec08, 0x1ec0c,
1429                 0x1ec40, 0x1ec4c,
1430                 0x1ee84, 0x1ee90,
1431                 0x1eec0, 0x1eec0,
1432                 0x1eee0, 0x1eee0,
1433                 0x1ef00, 0x1ef84,
1434                 0x1efc0, 0x1efc8,
1435                 0x1f008, 0x1f00c,
1436                 0x1f040, 0x1f04c,
1437                 0x1f284, 0x1f290,
1438                 0x1f2c0, 0x1f2c0,
1439                 0x1f2e0, 0x1f2e0,
1440                 0x1f300, 0x1f384,
1441                 0x1f3c0, 0x1f3c8,
1442                 0x1f408, 0x1f40c,
1443                 0x1f440, 0x1f44c,
1444                 0x1f684, 0x1f690,
1445                 0x1f6c0, 0x1f6c0,
1446                 0x1f6e0, 0x1f6e0,
1447                 0x1f700, 0x1f784,
1448                 0x1f7c0, 0x1f7c8,
1449                 0x1f808, 0x1f80c,
1450                 0x1f840, 0x1f84c,
1451                 0x1fa84, 0x1fa90,
1452                 0x1fac0, 0x1fac0,
1453                 0x1fae0, 0x1fae0,
1454                 0x1fb00, 0x1fb84,
1455                 0x1fbc0, 0x1fbc8,
1456                 0x1fc08, 0x1fc0c,
1457                 0x1fc40, 0x1fc4c,
1458                 0x1fe84, 0x1fe90,
1459                 0x1fec0, 0x1fec0,
1460                 0x1fee0, 0x1fee0,
1461                 0x1ff00, 0x1ff84,
1462                 0x1ffc0, 0x1ffc8,
1463                 0x30000, 0x30070,
1464                 0x30100, 0x3015c,
1465                 0x30190, 0x301d0,
1466                 0x30200, 0x30318,
1467                 0x30400, 0x3052c,
1468                 0x30540, 0x3061c,
1469                 0x30800, 0x3088c,
1470                 0x308c0, 0x30908,
1471                 0x30910, 0x309b8,
1472                 0x30a00, 0x30a04,
1473                 0x30a0c, 0x30a2c,
1474                 0x30a44, 0x30a50,
1475                 0x30a74, 0x30c24,
1476                 0x30d00, 0x30d3c,
1477                 0x30d44, 0x30d7c,
1478                 0x30de0, 0x30de0,
1479                 0x30e00, 0x30ed4,
1480                 0x30f00, 0x30fa4,
1481                 0x30fc0, 0x30fc4,
1482                 0x31000, 0x31004,
1483                 0x31080, 0x310fc,
1484                 0x31208, 0x31220,
1485                 0x3123c, 0x31254,
1486                 0x31300, 0x31300,
1487                 0x31308, 0x3131c,
1488                 0x31338, 0x3133c,
1489                 0x31380, 0x31380,
1490                 0x31388, 0x313a8,
1491                 0x313b4, 0x313b4,
1492                 0x31400, 0x31420,
1493                 0x31438, 0x3143c,
1494                 0x31480, 0x31480,
1495                 0x314a8, 0x314a8,
1496                 0x314b0, 0x314b4,
1497                 0x314c8, 0x314d4,
1498                 0x31a40, 0x31a4c,
1499                 0x31af0, 0x31b20,
1500                 0x31b38, 0x31b3c,
1501                 0x31b80, 0x31b80,
1502                 0x31ba8, 0x31ba8,
1503                 0x31bb0, 0x31bb4,
1504                 0x31bc8, 0x31bd4,
1505                 0x32140, 0x3218c,
1506                 0x321f0, 0x32200,
1507                 0x32218, 0x32218,
1508                 0x32400, 0x32400,
1509                 0x32408, 0x3241c,
1510                 0x32618, 0x32620,
1511                 0x32664, 0x32664,
1512                 0x326a8, 0x326a8,
1513                 0x326ec, 0x326ec,
1514                 0x32a00, 0x32abc,
1515                 0x32b00, 0x32b78,
1516                 0x32c00, 0x32c00,
1517                 0x32c08, 0x32c3c,
1518                 0x32e00, 0x32e2c,
1519                 0x32f00, 0x32f2c,
1520                 0x33000, 0x330ac,
1521                 0x330c0, 0x331ac,
1522                 0x331c0, 0x332c4,
1523                 0x332e4, 0x333c4,
1524                 0x333e4, 0x334ac,
1525                 0x334c0, 0x335ac,
1526                 0x335c0, 0x336c4,
1527                 0x336e4, 0x337c4,
1528                 0x337e4, 0x337fc,
1529                 0x33814, 0x33814,
1530                 0x33854, 0x33868,
1531                 0x33880, 0x3388c,
1532                 0x338c0, 0x338d0,
1533                 0x338e8, 0x338ec,
1534                 0x33900, 0x339ac,
1535                 0x339c0, 0x33ac4,
1536                 0x33ae4, 0x33b10,
1537                 0x33b24, 0x33b50,
1538                 0x33bf0, 0x33c10,
1539                 0x33c24, 0x33c50,
1540                 0x33cf0, 0x33cfc,
1541                 0x34000, 0x34070,
1542                 0x34100, 0x3415c,
1543                 0x34190, 0x341d0,
1544                 0x34200, 0x34318,
1545                 0x34400, 0x3452c,
1546                 0x34540, 0x3461c,
1547                 0x34800, 0x3488c,
1548                 0x348c0, 0x34908,
1549                 0x34910, 0x349b8,
1550                 0x34a00, 0x34a04,
1551                 0x34a0c, 0x34a2c,
1552                 0x34a44, 0x34a50,
1553                 0x34a74, 0x34c24,
1554                 0x34d00, 0x34d3c,
1555                 0x34d44, 0x34d7c,
1556                 0x34de0, 0x34de0,
1557                 0x34e00, 0x34ed4,
1558                 0x34f00, 0x34fa4,
1559                 0x34fc0, 0x34fc4,
1560                 0x35000, 0x35004,
1561                 0x35080, 0x350fc,
1562                 0x35208, 0x35220,
1563                 0x3523c, 0x35254,
1564                 0x35300, 0x35300,
1565                 0x35308, 0x3531c,
1566                 0x35338, 0x3533c,
1567                 0x35380, 0x35380,
1568                 0x35388, 0x353a8,
1569                 0x353b4, 0x353b4,
1570                 0x35400, 0x35420,
1571                 0x35438, 0x3543c,
1572                 0x35480, 0x35480,
1573                 0x354a8, 0x354a8,
1574                 0x354b0, 0x354b4,
1575                 0x354c8, 0x354d4,
1576                 0x35a40, 0x35a4c,
1577                 0x35af0, 0x35b20,
1578                 0x35b38, 0x35b3c,
1579                 0x35b80, 0x35b80,
1580                 0x35ba8, 0x35ba8,
1581                 0x35bb0, 0x35bb4,
1582                 0x35bc8, 0x35bd4,
1583                 0x36140, 0x3618c,
1584                 0x361f0, 0x36200,
1585                 0x36218, 0x36218,
1586                 0x36400, 0x36400,
1587                 0x36408, 0x3641c,
1588                 0x36618, 0x36620,
1589                 0x36664, 0x36664,
1590                 0x366a8, 0x366a8,
1591                 0x366ec, 0x366ec,
1592                 0x36a00, 0x36abc,
1593                 0x36b00, 0x36b78,
1594                 0x36c00, 0x36c00,
1595                 0x36c08, 0x36c3c,
1596                 0x36e00, 0x36e2c,
1597                 0x36f00, 0x36f2c,
1598                 0x37000, 0x370ac,
1599                 0x370c0, 0x371ac,
1600                 0x371c0, 0x372c4,
1601                 0x372e4, 0x373c4,
1602                 0x373e4, 0x374ac,
1603                 0x374c0, 0x375ac,
1604                 0x375c0, 0x376c4,
1605                 0x376e4, 0x377c4,
1606                 0x377e4, 0x377fc,
1607                 0x37814, 0x37814,
1608                 0x37854, 0x37868,
1609                 0x37880, 0x3788c,
1610                 0x378c0, 0x378d0,
1611                 0x378e8, 0x378ec,
1612                 0x37900, 0x379ac,
1613                 0x379c0, 0x37ac4,
1614                 0x37ae4, 0x37b10,
1615                 0x37b24, 0x37b50,
1616                 0x37bf0, 0x37c10,
1617                 0x37c24, 0x37c50,
1618                 0x37cf0, 0x37cfc,
1619                 0x40040, 0x40040,
1620                 0x40080, 0x40084,
1621                 0x40100, 0x40100,
1622                 0x40140, 0x401bc,
1623                 0x40200, 0x40214,
1624                 0x40228, 0x40228,
1625                 0x40240, 0x40258,
1626                 0x40280, 0x40280,
1627                 0x40304, 0x40304,
1628                 0x40330, 0x4033c,
1629                 0x41304, 0x413dc,
1630                 0x41400, 0x4141c,
1631                 0x41480, 0x414d0,
1632                 0x44000, 0x4407c,
1633                 0x440c0, 0x4427c,
1634                 0x442c0, 0x4447c,
1635                 0x444c0, 0x4467c,
1636                 0x446c0, 0x4487c,
1637                 0x448c0, 0x44a7c,
1638                 0x44ac0, 0x44c7c,
1639                 0x44cc0, 0x44e7c,
1640                 0x44ec0, 0x4507c,
1641                 0x450c0, 0x451fc,
1642                 0x45800, 0x45868,
1643                 0x45880, 0x45884,
1644                 0x458a0, 0x458b0,
1645                 0x45a00, 0x45a68,
1646                 0x45a80, 0x45a84,
1647                 0x45aa0, 0x45ab0,
1648                 0x460c0, 0x460e4,
1649                 0x47000, 0x4708c,
1650                 0x47200, 0x47250,
1651                 0x47400, 0x47420,
1652                 0x47600, 0x47618,
1653                 0x47800, 0x4782c,
1654                 0x50000, 0x500cc,
1655                 0x50400, 0x50400,
1656                 0x50800, 0x508cc,
1657                 0x50c00, 0x50c00,
1658                 0x51000, 0x510b0,
1659                 0x51300, 0x51324,
1660         };
1661
1662         u32 *buf_end = (u32 *)((char *)buf + buf_size);
1663         const unsigned int *reg_ranges;
1664         int reg_ranges_size, range;
1665         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1666
1667         /* Select the right set of register ranges to dump depending on the
1668          * adapter chip type.
1669          */
1670         switch (chip_version) {
1671         case CHELSIO_T4:
1672                 reg_ranges = t4_reg_ranges;
1673                 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
1674                 break;
1675
1676         case CHELSIO_T5:
1677                 reg_ranges = t5_reg_ranges;
1678                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1679                 break;
1680
1681         case CHELSIO_T6:
1682                 reg_ranges = t6_reg_ranges;
1683                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1684                 break;
1685
1686         default:
1687                 dev_err(adap->pdev_dev,
1688                         "Unsupported chip version %d\n", chip_version);
1689                 return;
1690         }
1691
1692         /* Clear the register buffer and insert the appropriate register
1693          * values selected by the above register ranges.
1694          */
1695         memset(buf, 0, buf_size);
1696         for (range = 0; range < reg_ranges_size; range += 2) {
1697                 unsigned int reg = reg_ranges[range];
1698                 unsigned int last_reg = reg_ranges[range + 1];
1699                 u32 *bufp = (u32 *)((char *)buf + reg);
1700
1701                 /* Iterate across the register range filling in the register
1702                  * buffer but don't write past the end of the register buffer.
1703                  */
1704                 while (reg <= last_reg && bufp < buf_end) {
1705                         *bufp++ = t4_read_reg(adap, reg);
1706                         reg += sizeof(u32);
1707                 }
1708         }
1709 }
1710
1711 #define EEPROM_STAT_ADDR   0x7bfc
1712 #define VPD_BASE           0x400
1713 #define VPD_BASE_OLD       0
1714 #define VPD_LEN            1024
1715 #define CHELSIO_VPD_UNIQUE_ID 0x82
1716
1717 /**
1718  *      t4_seeprom_wp - enable/disable EEPROM write protection
1719  *      @adapter: the adapter
1720  *      @enable: whether to enable or disable write protection
1721  *
1722  *      Enables or disables write protection on the serial EEPROM.
1723  */
1724 int t4_seeprom_wp(struct adapter *adapter, bool enable)
1725 {
1726         unsigned int v = enable ? 0xc : 0;
1727         int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
1728         return ret < 0 ? ret : 0;
1729 }
1730
1731 /**
1732  *      get_vpd_params - read VPD parameters from VPD EEPROM
1733  *      @adapter: adapter to read
1734  *      @p: where to store the parameters
1735  *
1736  *      Reads card parameters stored in VPD EEPROM.
1737  */
1738 int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
1739 {
1740         u32 cclk_param, cclk_val;
1741         int i, ret, addr;
1742         int ec, sn, pn;
1743         u8 *vpd, csum;
1744         unsigned int vpdr_len, kw_offset, id_len;
1745
1746         vpd = vmalloc(VPD_LEN);
1747         if (!vpd)
1748                 return -ENOMEM;
1749
1750         ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
1751         if (ret < 0)
1752                 goto out;
1753
1754         /* The VPD shall have a unique identifier specified by the PCI SIG.
1755          * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
1756          * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
1757          * is expected to automatically put this entry at the
1758          * beginning of the VPD.
1759          */
1760         addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
1761
1762         ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
1763         if (ret < 0)
1764                 goto out;
1765
1766         if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
1767                 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
1768                 ret = -EINVAL;
1769                 goto out;
1770         }
1771
1772         id_len = pci_vpd_lrdt_size(vpd);
1773         if (id_len > ID_LEN)
1774                 id_len = ID_LEN;
1775
1776         i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
1777         if (i < 0) {
1778                 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
1779                 ret = -EINVAL;
1780                 goto out;
1781         }
1782
1783         vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
1784         kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
1785         if (vpdr_len + kw_offset > VPD_LEN) {
1786                 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
1787                 ret = -EINVAL;
1788                 goto out;
1789         }
1790
1791 #define FIND_VPD_KW(var, name) do { \
1792         var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
1793         if (var < 0) { \
1794                 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
1795                 ret = -EINVAL; \
1796                 goto out; \
1797         } \
1798         var += PCI_VPD_INFO_FLD_HDR_SIZE; \
1799 } while (0)
1800
1801         FIND_VPD_KW(i, "RV");
1802         for (csum = 0; i >= 0; i--)
1803                 csum += vpd[i];
1804
1805         if (csum) {
1806                 dev_err(adapter->pdev_dev,
1807                         "corrupted VPD EEPROM, actual csum %u\n", csum);
1808                 ret = -EINVAL;
1809                 goto out;
1810         }
1811
1812         FIND_VPD_KW(ec, "EC");
1813         FIND_VPD_KW(sn, "SN");
1814         FIND_VPD_KW(pn, "PN");
1815 #undef FIND_VPD_KW
1816
1817         memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
1818         strim(p->id);
1819         memcpy(p->ec, vpd + ec, EC_LEN);
1820         strim(p->ec);
1821         i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
1822         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
1823         strim(p->sn);
1824         i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
1825         memcpy(p->pn, vpd + pn, min(i, PN_LEN));
1826         strim(p->pn);
1827
1828         /*
1829          * Ask firmware for the Core Clock since it knows how to translate the
1830          * Reference Clock ('V2') VPD field into a Core Clock value ...
1831          */
1832         cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1833                       FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
1834         ret = t4_query_params(adapter, adapter->mbox, 0, 0,
1835                               1, &cclk_param, &cclk_val);
1836
1837 out:
1838         vfree(vpd);
1839         if (ret)
1840                 return ret;
1841         p->cclk = cclk_val;
1842
1843         return 0;
1844 }
1845
1846 /* serial flash and firmware constants */
1847 enum {
1848         SF_ATTEMPTS = 10,             /* max retries for SF operations */
1849
1850         /* flash command opcodes */
1851         SF_PROG_PAGE    = 2,          /* program page */
1852         SF_WR_DISABLE   = 4,          /* disable writes */
1853         SF_RD_STATUS    = 5,          /* read status register */
1854         SF_WR_ENABLE    = 6,          /* enable writes */
1855         SF_RD_DATA_FAST = 0xb,        /* read flash */
1856         SF_RD_ID        = 0x9f,       /* read ID */
1857         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
1858
1859         FW_MAX_SIZE = 16 * SF_SEC_SIZE,
1860 };
1861
1862 /**
1863  *      sf1_read - read data from the serial flash
1864  *      @adapter: the adapter
1865  *      @byte_cnt: number of bytes to read
1866  *      @cont: whether another operation will be chained
1867  *      @lock: whether to lock SF for PL access only
1868  *      @valp: where to store the read data
1869  *
1870  *      Reads up to 4 bytes of data from the serial flash.  The location of
1871  *      the read needs to be specified prior to calling this by issuing the
1872  *      appropriate commands to the serial flash.
1873  */
1874 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
1875                     int lock, u32 *valp)
1876 {
1877         int ret;
1878
1879         if (!byte_cnt || byte_cnt > 4)
1880                 return -EINVAL;
1881         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1882                 return -EBUSY;
1883         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1884                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
1885         ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1886         if (!ret)
1887                 *valp = t4_read_reg(adapter, SF_DATA_A);
1888         return ret;
1889 }
1890
1891 /**
1892  *      sf1_write - write data to the serial flash
1893  *      @adapter: the adapter
1894  *      @byte_cnt: number of bytes to write
1895  *      @cont: whether another operation will be chained
1896  *      @lock: whether to lock SF for PL access only
1897  *      @val: value to write
1898  *
1899  *      Writes up to 4 bytes of data to the serial flash.  The location of
1900  *      the write needs to be specified prior to calling this by issuing the
1901  *      appropriate commands to the serial flash.
1902  */
1903 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
1904                      int lock, u32 val)
1905 {
1906         if (!byte_cnt || byte_cnt > 4)
1907                 return -EINVAL;
1908         if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1909                 return -EBUSY;
1910         t4_write_reg(adapter, SF_DATA_A, val);
1911         t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1912                      SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
1913         return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1914 }
1915
1916 /**
1917  *      flash_wait_op - wait for a flash operation to complete
1918  *      @adapter: the adapter
1919  *      @attempts: max number of polls of the status register
1920  *      @delay: delay between polls in ms
1921  *
1922  *      Wait for a flash operation to complete by polling the status register.
1923  */
1924 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
1925 {
1926         int ret;
1927         u32 status;
1928
1929         while (1) {
1930                 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
1931                     (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
1932                         return ret;
1933                 if (!(status & 1))
1934                         return 0;
1935                 if (--attempts == 0)
1936                         return -EAGAIN;
1937                 if (delay)
1938                         msleep(delay);
1939         }
1940 }
1941
1942 /**
1943  *      t4_read_flash - read words from serial flash
1944  *      @adapter: the adapter
1945  *      @addr: the start address for the read
1946  *      @nwords: how many 32-bit words to read
1947  *      @data: where to store the read data
1948  *      @byte_oriented: whether to store data as bytes or as words
1949  *
1950  *      Read the specified number of 32-bit words from the serial flash.
1951  *      If @byte_oriented is set the read data is stored as a byte array
1952  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
1953  *      natural endianness.
1954  */
1955 int t4_read_flash(struct adapter *adapter, unsigned int addr,
1956                   unsigned int nwords, u32 *data, int byte_oriented)
1957 {
1958         int ret;
1959
1960         if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
1961                 return -EINVAL;
1962
1963         addr = swab32(addr) | SF_RD_DATA_FAST;
1964
1965         if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
1966             (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
1967                 return ret;
1968
1969         for ( ; nwords; nwords--, data++) {
1970                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
1971                 if (nwords == 1)
1972                         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
1973                 if (ret)
1974                         return ret;
1975                 if (byte_oriented)
1976                         *data = (__force __u32)(cpu_to_be32(*data));
1977         }
1978         return 0;
1979 }
1980
1981 /**
1982  *      t4_write_flash - write up to a page of data to the serial flash
1983  *      @adapter: the adapter
1984  *      @addr: the start address to write
1985  *      @n: length of data to write in bytes
1986  *      @data: the data to write
1987  *
1988  *      Writes up to a page of data (256 bytes) to the serial flash starting
1989  *      at the given address.  All the data must be written to the same page.
1990  */
1991 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
1992                           unsigned int n, const u8 *data)
1993 {
1994         int ret;
1995         u32 buf[64];
1996         unsigned int i, c, left, val, offset = addr & 0xff;
1997
1998         if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
1999                 return -EINVAL;
2000
2001         val = swab32(addr) | SF_PROG_PAGE;
2002
2003         if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2004             (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2005                 goto unlock;
2006
2007         for (left = n; left; left -= c) {
2008                 c = min(left, 4U);
2009                 for (val = 0, i = 0; i < c; ++i)
2010                         val = (val << 8) + *data++;
2011
2012                 ret = sf1_write(adapter, c, c != left, 1, val);
2013                 if (ret)
2014                         goto unlock;
2015         }
2016         ret = flash_wait_op(adapter, 8, 1);
2017         if (ret)
2018                 goto unlock;
2019
2020         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2021
2022         /* Read the page to verify the write succeeded */
2023         ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2024         if (ret)
2025                 return ret;
2026
2027         if (memcmp(data - n, (u8 *)buf + offset, n)) {
2028                 dev_err(adapter->pdev_dev,
2029                         "failed to correctly write the flash page at %#x\n",
2030                         addr);
2031                 return -EIO;
2032         }
2033         return 0;
2034
2035 unlock:
2036         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2037         return ret;
2038 }
2039
2040 /**
2041  *      t4_get_fw_version - read the firmware version
2042  *      @adapter: the adapter
2043  *      @vers: where to place the version
2044  *
2045  *      Reads the FW version from flash.
2046  */
2047 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2048 {
2049         return t4_read_flash(adapter, FLASH_FW_START +
2050                              offsetof(struct fw_hdr, fw_ver), 1,
2051                              vers, 0);
2052 }
2053
2054 /**
2055  *      t4_get_tp_version - read the TP microcode version
2056  *      @adapter: the adapter
2057  *      @vers: where to place the version
2058  *
2059  *      Reads the TP microcode version from flash.
2060  */
2061 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2062 {
2063         return t4_read_flash(adapter, FLASH_FW_START +
2064                              offsetof(struct fw_hdr, tp_microcode_ver),
2065                              1, vers, 0);
2066 }
2067
2068 /**
2069  *      t4_get_exprom_version - return the Expansion ROM version (if any)
2070  *      @adapter: the adapter
2071  *      @vers: where to place the version
2072  *
2073  *      Reads the Expansion ROM header from FLASH and returns the version
2074  *      number (if present) through the @vers return value pointer.  We return
2075  *      this in the Firmware Version Format since it's convenient.  Return
2076  *      0 on success, -ENOENT if no Expansion ROM is present.
2077  */
2078 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2079 {
2080         struct exprom_header {
2081                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2082                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2083         } *hdr;
2084         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2085                                            sizeof(u32))];
2086         int ret;
2087
2088         ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2089                             ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2090                             0);
2091         if (ret)
2092                 return ret;
2093
2094         hdr = (struct exprom_header *)exprom_header_buf;
2095         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2096                 return -ENOENT;
2097
2098         *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2099                  FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2100                  FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2101                  FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2102         return 0;
2103 }
2104
2105 /* Is the given firmware API compatible with the one the driver was compiled
2106  * with?
2107  */
2108 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2109 {
2110
2111         /* short circuit if it's the exact same firmware version */
2112         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2113                 return 1;
2114
2115 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2116         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2117             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2118                 return 1;
2119 #undef SAME_INTF
2120
2121         return 0;
2122 }
2123
2124 /* The firmware in the filesystem is usable, but should it be installed?
2125  * This routine explains itself in detail if it indicates the filesystem
2126  * firmware should be installed.
2127  */
2128 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
2129                                 int k, int c)
2130 {
2131         const char *reason;
2132
2133         if (!card_fw_usable) {
2134                 reason = "incompatible or unusable";
2135                 goto install;
2136         }
2137
2138         if (k > c) {
2139                 reason = "older than the version supported with this driver";
2140                 goto install;
2141         }
2142
2143         return 0;
2144
2145 install:
2146         dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
2147                 "installing firmware %u.%u.%u.%u on card.\n",
2148                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2149                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2150                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2151                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2152
2153         return 1;
2154 }
2155
2156 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
2157                const u8 *fw_data, unsigned int fw_size,
2158                struct fw_hdr *card_fw, enum dev_state state,
2159                int *reset)
2160 {
2161         int ret, card_fw_usable, fs_fw_usable;
2162         const struct fw_hdr *fs_fw;
2163         const struct fw_hdr *drv_fw;
2164
2165         drv_fw = &fw_info->fw_hdr;
2166
2167         /* Read the header of the firmware on the card */
2168         ret = -t4_read_flash(adap, FLASH_FW_START,
2169                             sizeof(*card_fw) / sizeof(uint32_t),
2170                             (uint32_t *)card_fw, 1);
2171         if (ret == 0) {
2172                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2173         } else {
2174                 dev_err(adap->pdev_dev,
2175                         "Unable to read card's firmware header: %d\n", ret);
2176                 card_fw_usable = 0;
2177         }
2178
2179         if (fw_data != NULL) {
2180                 fs_fw = (const void *)fw_data;
2181                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2182         } else {
2183                 fs_fw = NULL;
2184                 fs_fw_usable = 0;
2185         }
2186
2187         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2188             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2189                 /* Common case: the firmware on the card is an exact match and
2190                  * the filesystem one is an exact match too, or the filesystem
2191                  * one is absent/incompatible.
2192                  */
2193         } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
2194                    should_install_fs_fw(adap, card_fw_usable,
2195                                         be32_to_cpu(fs_fw->fw_ver),
2196                                         be32_to_cpu(card_fw->fw_ver))) {
2197                 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
2198                                      fw_size, 0);
2199                 if (ret != 0) {
2200                         dev_err(adap->pdev_dev,
2201                                 "failed to install firmware: %d\n", ret);
2202                         goto bye;
2203                 }
2204
2205                 /* Installed successfully, update the cached header too. */
2206                 *card_fw = *fs_fw;
2207                 card_fw_usable = 1;
2208                 *reset = 0;     /* already reset as part of load_fw */
2209         }
2210
2211         if (!card_fw_usable) {
2212                 uint32_t d, c, k;
2213
2214                 d = be32_to_cpu(drv_fw->fw_ver);
2215                 c = be32_to_cpu(card_fw->fw_ver);
2216                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2217
2218                 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
2219                         "chip state %d, "
2220                         "driver compiled with %d.%d.%d.%d, "
2221                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2222                         state,
2223                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2224                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2225                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2226                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2227                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2228                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2229                 ret = EINVAL;
2230                 goto bye;
2231         }
2232
2233         /* We're using whatever's on the card and it's known to be good. */
2234         adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
2235         adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2236
2237 bye:
2238         return ret;
2239 }
2240
2241 /**
2242  *      t4_flash_erase_sectors - erase a range of flash sectors
2243  *      @adapter: the adapter
2244  *      @start: the first sector to erase
2245  *      @end: the last sector to erase
2246  *
2247  *      Erases the sectors in the given inclusive range.
2248  */
2249 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
2250 {
2251         int ret = 0;
2252
2253         if (end >= adapter->params.sf_nsec)
2254                 return -EINVAL;
2255
2256         while (start <= end) {
2257                 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2258                     (ret = sf1_write(adapter, 4, 0, 1,
2259                                      SF_ERASE_SECTOR | (start << 8))) != 0 ||
2260                     (ret = flash_wait_op(adapter, 14, 500)) != 0) {
2261                         dev_err(adapter->pdev_dev,
2262                                 "erase of flash sector %d failed, error %d\n",
2263                                 start, ret);
2264                         break;
2265                 }
2266                 start++;
2267         }
2268         t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2269         return ret;
2270 }
2271
2272 /**
2273  *      t4_flash_cfg_addr - return the address of the flash configuration file
2274  *      @adapter: the adapter
2275  *
2276  *      Return the address within the flash where the Firmware Configuration
2277  *      File is stored.
2278  */
2279 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
2280 {
2281         if (adapter->params.sf_size == 0x100000)
2282                 return FLASH_FPGA_CFG_START;
2283         else
2284                 return FLASH_CFG_START;
2285 }
2286
2287 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
2288  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
2289  * and emit an error message for mismatched firmware to save our caller the
2290  * effort ...
2291  */
2292 static bool t4_fw_matches_chip(const struct adapter *adap,
2293                                const struct fw_hdr *hdr)
2294 {
2295         /* The expression below will return FALSE for any unsupported adapter
2296          * which will keep us "honest" in the future ...
2297          */
2298         if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
2299             (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
2300             (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
2301                 return true;
2302
2303         dev_err(adap->pdev_dev,
2304                 "FW image (%d) is not suitable for this adapter (%d)\n",
2305                 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
2306         return false;
2307 }
2308
2309 /**
2310  *      t4_load_fw - download firmware
2311  *      @adap: the adapter
2312  *      @fw_data: the firmware image to write
2313  *      @size: image size
2314  *
2315  *      Write the supplied firmware image to the card's serial flash.
2316  */
2317 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
2318 {
2319         u32 csum;
2320         int ret, addr;
2321         unsigned int i;
2322         u8 first_page[SF_PAGE_SIZE];
2323         const __be32 *p = (const __be32 *)fw_data;
2324         const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
2325         unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
2326         unsigned int fw_img_start = adap->params.sf_fw_start;
2327         unsigned int fw_start_sec = fw_img_start / sf_sec_size;
2328
2329         if (!size) {
2330                 dev_err(adap->pdev_dev, "FW image has no data\n");
2331                 return -EINVAL;
2332         }
2333         if (size & 511) {
2334                 dev_err(adap->pdev_dev,
2335                         "FW image size not multiple of 512 bytes\n");
2336                 return -EINVAL;
2337         }
2338         if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
2339                 dev_err(adap->pdev_dev,
2340                         "FW image size differs from size in FW header\n");
2341                 return -EINVAL;
2342         }
2343         if (size > FW_MAX_SIZE) {
2344                 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
2345                         FW_MAX_SIZE);
2346                 return -EFBIG;
2347         }
2348         if (!t4_fw_matches_chip(adap, hdr))
2349                 return -EINVAL;
2350
2351         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
2352                 csum += be32_to_cpu(p[i]);
2353
2354         if (csum != 0xffffffff) {
2355                 dev_err(adap->pdev_dev,
2356                         "corrupted firmware image, checksum %#x\n", csum);
2357                 return -EINVAL;
2358         }
2359
2360         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
2361         ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
2362         if (ret)
2363                 goto out;
2364
2365         /*
2366          * We write the correct version at the end so the driver can see a bad
2367          * version if the FW write fails.  Start by writing a copy of the
2368          * first page with a bad version.
2369          */
2370         memcpy(first_page, fw_data, SF_PAGE_SIZE);
2371         ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
2372         ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
2373         if (ret)
2374                 goto out;
2375
2376         addr = fw_img_start;
2377         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
2378                 addr += SF_PAGE_SIZE;
2379                 fw_data += SF_PAGE_SIZE;
2380                 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
2381                 if (ret)
2382                         goto out;
2383         }
2384
2385         ret = t4_write_flash(adap,
2386                              fw_img_start + offsetof(struct fw_hdr, fw_ver),
2387                              sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
2388 out:
2389         if (ret)
2390                 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
2391                         ret);
2392         else
2393                 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2394         return ret;
2395 }
2396
2397 /**
2398  *      t4_phy_fw_ver - return current PHY firmware version
2399  *      @adap: the adapter
2400  *      @phy_fw_ver: return value buffer for PHY firmware version
2401  *
2402  *      Returns the current version of external PHY firmware on the
2403  *      adapter.
2404  */
2405 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
2406 {
2407         u32 param, val;
2408         int ret;
2409
2410         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2411                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2412                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2413                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
2414         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
2415                               &param, &val);
2416         if (ret < 0)
2417                 return ret;
2418         *phy_fw_ver = val;
2419         return 0;
2420 }
2421
2422 /**
2423  *      t4_load_phy_fw - download port PHY firmware
2424  *      @adap: the adapter
2425  *      @win: the PCI-E Memory Window index to use for t4_memory_rw()
2426  *      @win_lock: the lock to use to guard the memory copy
2427  *      @phy_fw_version: function to check PHY firmware versions
2428  *      @phy_fw_data: the PHY firmware image to write
2429  *      @phy_fw_size: image size
2430  *
2431  *      Transfer the specified PHY firmware to the adapter.  If a non-NULL
2432  *      @phy_fw_version is supplied, then it will be used to determine if
2433  *      it's necessary to perform the transfer by comparing the version
2434  *      of any existing adapter PHY firmware with that of the passed in
2435  *      PHY firmware image.  If @win_lock is non-NULL then it will be used
2436  *      around the call to t4_memory_rw() which transfers the PHY firmware
2437  *      to the adapter.
2438  *
2439  *      A negative error number will be returned if an error occurs.  If
2440  *      version number support is available and there's no need to upgrade
2441  *      the firmware, 0 will be returned.  If firmware is successfully
2442  *      transferred to the adapter, 1 will be retured.
2443  *
2444  *      NOTE: some adapters only have local RAM to store the PHY firmware.  As
2445  *      a result, a RESET of the adapter would cause that RAM to lose its
2446  *      contents.  Thus, loading PHY firmware on such adapters must happen
2447  *      after any FW_RESET_CMDs ...
2448  */
2449 int t4_load_phy_fw(struct adapter *adap,
2450                    int win, spinlock_t *win_lock,
2451                    int (*phy_fw_version)(const u8 *, size_t),
2452                    const u8 *phy_fw_data, size_t phy_fw_size)
2453 {
2454         unsigned long mtype = 0, maddr = 0;
2455         u32 param, val;
2456         int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
2457         int ret;
2458
2459         /* If we have version number support, then check to see if the adapter
2460          * already has up-to-date PHY firmware loaded.
2461          */
2462          if (phy_fw_version) {
2463                 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
2464                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2465                 if (ret < 0)
2466                         return ret;
2467
2468                 if (cur_phy_fw_ver >= new_phy_fw_vers) {
2469                         CH_WARN(adap, "PHY Firmware already up-to-date, "
2470                                 "version %#x\n", cur_phy_fw_ver);
2471                         return 0;
2472                 }
2473         }
2474
2475         /* Ask the firmware where it wants us to copy the PHY firmware image.
2476          * The size of the file requires a special version of the READ coommand
2477          * which will pass the file size via the values field in PARAMS_CMD and
2478          * retrieve the return value from firmware and place it in the same
2479          * buffer values
2480          */
2481         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2482                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2483                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2484                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2485         val = phy_fw_size;
2486         ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
2487                                  &param, &val, 1);
2488         if (ret < 0)
2489                 return ret;
2490         mtype = val >> 8;
2491         maddr = (val & 0xff) << 16;
2492
2493         /* Copy the supplied PHY Firmware image to the adapter memory location
2494          * allocated by the adapter firmware.
2495          */
2496         if (win_lock)
2497                 spin_lock_bh(win_lock);
2498         ret = t4_memory_rw(adap, win, mtype, maddr,
2499                            phy_fw_size, (__be32 *)phy_fw_data,
2500                            T4_MEMORY_WRITE);
2501         if (win_lock)
2502                 spin_unlock_bh(win_lock);
2503         if (ret)
2504                 return ret;
2505
2506         /* Tell the firmware that the PHY firmware image has been written to
2507          * RAM and it can now start copying it over to the PHYs.  The chip
2508          * firmware will RESET the affected PHYs as part of this operation
2509          * leaving them running the new PHY firmware image.
2510          */
2511         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2512                  FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2513                  FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2514                  FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2515         ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
2516                                     &param, &val, 30000);
2517
2518         /* If we have version number support, then check to see that the new
2519          * firmware got loaded properly.
2520          */
2521         if (phy_fw_version) {
2522                 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2523                 if (ret < 0)
2524                         return ret;
2525
2526                 if (cur_phy_fw_ver != new_phy_fw_vers) {
2527                         CH_WARN(adap, "PHY Firmware did not update: "
2528                                 "version on adapter %#x, "
2529                                 "version flashed %#x\n",
2530                                 cur_phy_fw_ver, new_phy_fw_vers);
2531                         return -ENXIO;
2532                 }
2533         }
2534
2535         return 1;
2536 }
2537
2538 /**
2539  *      t4_fwcache - firmware cache operation
2540  *      @adap: the adapter
2541  *      @op  : the operation (flush or flush and invalidate)
2542  */
2543 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
2544 {
2545         struct fw_params_cmd c;
2546
2547         memset(&c, 0, sizeof(c));
2548         c.op_to_vfn =
2549                 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
2550                             FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2551                             FW_PARAMS_CMD_PFN_V(adap->pf) |
2552                             FW_PARAMS_CMD_VFN_V(0));
2553         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2554         c.param[0].mnem =
2555                 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2556                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
2557         c.param[0].val = (__force __be32)op;
2558
2559         return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
2560 }
2561
2562 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
2563 {
2564         unsigned int i, j;
2565
2566         for (i = 0; i < 8; i++) {
2567                 u32 *p = la_buf + i;
2568
2569                 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
2570                 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
2571                 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
2572                 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
2573                         *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
2574         }
2575 }
2576
2577 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
2578                      FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
2579                      FW_PORT_CAP_ANEG)
2580
2581 /**
2582  *      t4_link_start - apply link configuration to MAC/PHY
2583  *      @phy: the PHY to setup
2584  *      @mac: the MAC to setup
2585  *      @lc: the requested link configuration
2586  *
2587  *      Set up a port's MAC and PHY according to a desired link configuration.
2588  *      - If the PHY can auto-negotiate first decide what to advertise, then
2589  *        enable/disable auto-negotiation as desired, and reset.
2590  *      - If the PHY does not auto-negotiate just reset it.
2591  *      - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2592  *        otherwise do it later based on the outcome of auto-negotiation.
2593  */
2594 int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
2595                   struct link_config *lc)
2596 {
2597         struct fw_port_cmd c;
2598         unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
2599
2600         lc->link_ok = 0;
2601         if (lc->requested_fc & PAUSE_RX)
2602                 fc |= FW_PORT_CAP_FC_RX;
2603         if (lc->requested_fc & PAUSE_TX)
2604                 fc |= FW_PORT_CAP_FC_TX;
2605
2606         memset(&c, 0, sizeof(c));
2607         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2608                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2609                                      FW_PORT_CMD_PORTID_V(port));
2610         c.action_to_len16 =
2611                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2612                             FW_LEN16(c));
2613
2614         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2615                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
2616                                              fc);
2617                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2618         } else if (lc->autoneg == AUTONEG_DISABLE) {
2619                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
2620                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2621         } else
2622                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
2623
2624         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2625 }
2626
2627 /**
2628  *      t4_restart_aneg - restart autonegotiation
2629  *      @adap: the adapter
2630  *      @mbox: mbox to use for the FW command
2631  *      @port: the port id
2632  *
2633  *      Restarts autonegotiation for the selected port.
2634  */
2635 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
2636 {
2637         struct fw_port_cmd c;
2638
2639         memset(&c, 0, sizeof(c));
2640         c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2641                                      FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2642                                      FW_PORT_CMD_PORTID_V(port));
2643         c.action_to_len16 =
2644                 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2645                             FW_LEN16(c));
2646         c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
2647         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2648 }
2649
2650 typedef void (*int_handler_t)(struct adapter *adap);
2651
2652 struct intr_info {
2653         unsigned int mask;       /* bits to check in interrupt status */
2654         const char *msg;         /* message to print or NULL */
2655         short stat_idx;          /* stat counter to increment or -1 */
2656         unsigned short fatal;    /* whether the condition reported is fatal */
2657         int_handler_t int_handler; /* platform-specific int handler */
2658 };
2659
2660 /**
2661  *      t4_handle_intr_status - table driven interrupt handler
2662  *      @adapter: the adapter that generated the interrupt
2663  *      @reg: the interrupt status register to process
2664  *      @acts: table of interrupt actions
2665  *
2666  *      A table driven interrupt handler that applies a set of masks to an
2667  *      interrupt status word and performs the corresponding actions if the
2668  *      interrupts described by the mask have occurred.  The actions include
2669  *      optionally emitting a warning or alert message.  The table is terminated
2670  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
2671  *      conditions.
2672  */
2673 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
2674                                  const struct intr_info *acts)
2675 {
2676         int fatal = 0;
2677         unsigned int mask = 0;
2678         unsigned int status = t4_read_reg(adapter, reg);
2679
2680         for ( ; acts->mask; ++acts) {
2681                 if (!(status & acts->mask))
2682                         continue;
2683                 if (acts->fatal) {
2684                         fatal++;
2685                         dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2686                                   status & acts->mask);
2687                 } else if (acts->msg && printk_ratelimit())
2688                         dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2689                                  status & acts->mask);
2690                 if (acts->int_handler)
2691                         acts->int_handler(adapter);
2692                 mask |= acts->mask;
2693         }
2694         status &= mask;
2695         if (status)                           /* clear processed interrupts */
2696                 t4_write_reg(adapter, reg, status);
2697         return fatal;
2698 }
2699
2700 /*
2701  * Interrupt handler for the PCIE module.
2702  */
2703 static void pcie_intr_handler(struct adapter *adapter)
2704 {
2705         static const struct intr_info sysbus_intr_info[] = {
2706                 { RNPP_F, "RXNP array parity error", -1, 1 },
2707                 { RPCP_F, "RXPC array parity error", -1, 1 },
2708                 { RCIP_F, "RXCIF array parity error", -1, 1 },
2709                 { RCCP_F, "Rx completions control array parity error", -1, 1 },
2710                 { RFTP_F, "RXFT array parity error", -1, 1 },
2711                 { 0 }
2712         };
2713         static const struct intr_info pcie_port_intr_info[] = {
2714                 { TPCP_F, "TXPC array parity error", -1, 1 },
2715                 { TNPP_F, "TXNP array parity error", -1, 1 },
2716                 { TFTP_F, "TXFT array parity error", -1, 1 },
2717                 { TCAP_F, "TXCA array parity error", -1, 1 },
2718                 { TCIP_F, "TXCIF array parity error", -1, 1 },
2719                 { RCAP_F, "RXCA array parity error", -1, 1 },
2720                 { OTDD_F, "outbound request TLP discarded", -1, 1 },
2721                 { RDPE_F, "Rx data parity error", -1, 1 },
2722                 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
2723                 { 0 }
2724         };
2725         static const struct intr_info pcie_intr_info[] = {
2726                 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
2727                 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
2728                 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
2729                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2730                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2731                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2732                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2733                 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
2734                 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
2735                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2736                 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
2737                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2738                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2739                 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
2740                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2741                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2742                 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
2743                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2744                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2745                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2746                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
2747                 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
2748                 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
2749                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2750                 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
2751                 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
2752                 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
2753                 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
2754                 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
2755                 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
2756                   -1, 0 },
2757                 { 0 }
2758         };
2759
2760         static struct intr_info t5_pcie_intr_info[] = {
2761                 { MSTGRPPERR_F, "Master Response Read Queue parity error",
2762                   -1, 1 },
2763                 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
2764                 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
2765                 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2766                 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2767                 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2768                 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2769                 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
2770                   -1, 1 },
2771                 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
2772                   -1, 1 },
2773                 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2774                 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
2775                 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2776                 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2777                 { DREQWRPERR_F, "PCI DMA channel write request parity error",
2778                   -1, 1 },
2779                 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2780                 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2781                 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
2782                 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2783                 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2784                 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2785                 { FIDPERR_F, "PCI FID parity error", -1, 1 },
2786                 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
2787                 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
2788                 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2789                 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
2790                   -1, 1 },
2791                 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
2792                   -1, 1 },
2793                 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
2794                 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
2795                 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2796                 { READRSPERR_F, "Outbound read error", -1, 0 },
2797                 { 0 }
2798         };
2799
2800         int fat;
2801
2802         if (is_t4(adapter->params.chip))
2803                 fat = t4_handle_intr_status(adapter,
2804                                 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
2805                                 sysbus_intr_info) +
2806                         t4_handle_intr_status(adapter,
2807                                         PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
2808                                         pcie_port_intr_info) +
2809                         t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2810                                               pcie_intr_info);
2811         else
2812                 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2813                                             t5_pcie_intr_info);
2814
2815         if (fat)
2816                 t4_fatal_err(adapter);
2817 }
2818
2819 /*
2820  * TP interrupt handler.
2821  */
2822 static void tp_intr_handler(struct adapter *adapter)
2823 {
2824         static const struct intr_info tp_intr_info[] = {
2825                 { 0x3fffffff, "TP parity error", -1, 1 },
2826                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2827                 { 0 }
2828         };
2829
2830         if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
2831                 t4_fatal_err(adapter);
2832 }
2833
2834 /*
2835  * SGE interrupt handler.
2836  */
2837 static void sge_intr_handler(struct adapter *adapter)
2838 {
2839         u64 v;
2840         u32 err;
2841
2842         static const struct intr_info sge_intr_info[] = {
2843                 { ERR_CPL_EXCEED_IQE_SIZE_F,
2844                   "SGE received CPL exceeding IQE size", -1, 1 },
2845                 { ERR_INVALID_CIDX_INC_F,
2846                   "SGE GTS CIDX increment too large", -1, 0 },
2847                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2848                 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
2849                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2850                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
2851                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2852                   0 },
2853                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2854                   0 },
2855                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2856                   0 },
2857                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2858                   0 },
2859                 { ERR_ING_CTXT_PRIO_F,
2860                   "SGE too many priority ingress contexts", -1, 0 },
2861                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2862                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2863                 { 0 }
2864         };
2865
2866         static struct intr_info t4t5_sge_intr_info[] = {
2867                 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
2868                 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
2869                 { ERR_EGR_CTXT_PRIO_F,
2870                   "SGE too many priority egress contexts", -1, 0 },
2871                 { 0 }
2872         };
2873
2874         v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
2875                 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
2876         if (v) {
2877                 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
2878                                 (unsigned long long)v);
2879                 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
2880                 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
2881         }
2882
2883         v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
2884         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2885                 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
2886                                            t4t5_sge_intr_info);
2887
2888         err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
2889         if (err & ERROR_QID_VALID_F) {
2890                 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
2891                         ERROR_QID_G(err));
2892                 if (err & UNCAPTURED_ERROR_F)
2893                         dev_err(adapter->pdev_dev,
2894                                 "SGE UNCAPTURED_ERROR set (clearing)\n");
2895                 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
2896                              UNCAPTURED_ERROR_F);
2897         }
2898
2899         if (v != 0)
2900                 t4_fatal_err(adapter);
2901 }
2902
2903 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2904                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2905 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2906                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2907
2908 /*
2909  * CIM interrupt handler.
2910  */
2911 static void cim_intr_handler(struct adapter *adapter)
2912 {
2913         static const struct intr_info cim_intr_info[] = {
2914                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2915                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2916                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2917                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2918                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2919                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2920                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
2921                 { 0 }
2922         };
2923         static const struct intr_info cim_upintr_info[] = {
2924                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2925                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2926                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
2927                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
2928                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2929                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2930                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2931                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2932                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2933                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2934                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2935                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2936                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2937                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2938                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2939                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2940                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2941                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2942                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2943                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2944                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2945                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2946                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2947                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2948                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2949                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2950                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2951                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
2952                 { 0 }
2953         };
2954
2955         int fat;
2956
2957         if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
2958                 t4_report_fw_error(adapter);
2959
2960         fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
2961                                     cim_intr_info) +
2962               t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
2963                                     cim_upintr_info);
2964         if (fat)
2965                 t4_fatal_err(adapter);
2966 }
2967
2968 /*
2969  * ULP RX interrupt handler.
2970  */
2971 static void ulprx_intr_handler(struct adapter *adapter)
2972 {
2973         static const struct intr_info ulprx_intr_info[] = {
2974                 { 0x1800000, "ULPRX context error", -1, 1 },
2975                 { 0x7fffff, "ULPRX parity error", -1, 1 },
2976                 { 0 }
2977         };
2978
2979         if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
2980                 t4_fatal_err(adapter);
2981 }
2982
2983 /*
2984  * ULP TX interrupt handler.
2985  */
2986 static void ulptx_intr_handler(struct adapter *adapter)
2987 {
2988         static const struct intr_info ulptx_intr_info[] = {
2989                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
2990                   0 },
2991                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
2992                   0 },
2993                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
2994                   0 },
2995                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
2996                   0 },
2997                 { 0xfffffff, "ULPTX parity error", -1, 1 },
2998                 { 0 }
2999         };
3000
3001         if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3002                 t4_fatal_err(adapter);
3003 }
3004
3005 /*
3006  * PM TX interrupt handler.
3007  */
3008 static void pmtx_intr_handler(struct adapter *adapter)
3009 {
3010         static const struct intr_info pmtx_intr_info[] = {
3011                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3012                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3013                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3014                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3015                 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3016                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3017                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
3018                   -1, 1 },
3019                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3020                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3021                 { 0 }
3022         };
3023
3024         if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3025                 t4_fatal_err(adapter);
3026 }
3027
3028 /*
3029  * PM RX interrupt handler.
3030  */
3031 static void pmrx_intr_handler(struct adapter *adapter)
3032 {
3033         static const struct intr_info pmrx_intr_info[] = {
3034                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3035                 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
3036                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3037                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
3038                   -1, 1 },
3039                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3040                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3041                 { 0 }
3042         };
3043
3044         if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3045                 t4_fatal_err(adapter);
3046 }
3047
3048 /*
3049  * CPL switch interrupt handler.
3050  */
3051 static void cplsw_intr_handler(struct adapter *adapter)
3052 {
3053         static const struct intr_info cplsw_intr_info[] = {
3054                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3055                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3056                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3057                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3058                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3059                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3060                 { 0 }
3061         };
3062
3063         if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
3064                 t4_fatal_err(adapter);
3065 }
3066
3067 /*
3068  * LE interrupt handler.
3069  */
3070 static void le_intr_handler(struct adapter *adap)
3071 {
3072         enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
3073         static const struct intr_info le_intr_info[] = {
3074                 { LIPMISS_F, "LE LIP miss", -1, 0 },
3075                 { LIP0_F, "LE 0 LIP error", -1, 0 },
3076                 { PARITYERR_F, "LE parity error", -1, 1 },
3077                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3078                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
3079                 { 0 }
3080         };
3081
3082         static struct intr_info t6_le_intr_info[] = {
3083                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3084                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3085                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
3086                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3087                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3088                 { 0 }
3089         };
3090
3091         if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
3092                                   (chip <= CHELSIO_T5) ?
3093                                   le_intr_info : t6_le_intr_info))
3094                 t4_fatal_err(adap);
3095 }
3096
3097 /*
3098  * MPS interrupt handler.
3099  */
3100 static void mps_intr_handler(struct adapter *adapter)
3101 {
3102         static const struct intr_info mps_rx_intr_info[] = {
3103                 { 0xffffff, "MPS Rx parity error", -1, 1 },
3104                 { 0 }
3105         };
3106         static const struct intr_info mps_tx_intr_info[] = {
3107                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3108                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3109                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3110                   -1, 1 },
3111                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3112                   -1, 1 },
3113                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
3114                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3115                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
3116                 { 0 }
3117         };
3118         static const struct intr_info mps_trc_intr_info[] = {
3119                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3120                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3121                   -1, 1 },
3122                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3123                 { 0 }
3124         };
3125         static const struct intr_info mps_stat_sram_intr_info[] = {
3126                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3127                 { 0 }
3128         };
3129         static const struct intr_info mps_stat_tx_intr_info[] = {
3130                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3131                 { 0 }
3132         };
3133         static const struct intr_info mps_stat_rx_intr_info[] = {
3134                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3135                 { 0 }
3136         };
3137         static const struct intr_info mps_cls_intr_info[] = {
3138                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3139                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3140                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3141                 { 0 }
3142         };
3143
3144         int fat;
3145
3146         fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
3147                                     mps_rx_intr_info) +
3148               t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
3149                                     mps_tx_intr_info) +
3150               t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
3151                                     mps_trc_intr_info) +
3152               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3153                                     mps_stat_sram_intr_info) +
3154               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3155                                     mps_stat_tx_intr_info) +
3156               t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3157                                     mps_stat_rx_intr_info) +
3158               t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
3159                                     mps_cls_intr_info);
3160
3161         t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
3162         t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
3163         if (fat)
3164                 t4_fatal_err(adapter);
3165 }
3166
3167 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3168                       ECC_UE_INT_CAUSE_F)
3169
3170 /*
3171  * EDC/MC interrupt handler.
3172  */
3173 static void mem_intr_handler(struct adapter *adapter, int idx)
3174 {
3175         static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
3176
3177         unsigned int addr, cnt_addr, v;
3178
3179         if (idx <= MEM_EDC1) {
3180                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3181                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3182         } else if (idx == MEM_MC) {
3183                 if (is_t4(adapter->params.chip)) {
3184                         addr = MC_INT_CAUSE_A;
3185                         cnt_addr = MC_ECC_STATUS_A;
3186                 } else {
3187                         addr = MC_P_INT_CAUSE_A;
3188                         cnt_addr = MC_P_ECC_STATUS_A;
3189                 }
3190         } else {
3191                 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
3192                 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
3193         }
3194
3195         v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
3196         if (v & PERR_INT_CAUSE_F)
3197                 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
3198                           name[idx]);
3199         if (v & ECC_CE_INT_CAUSE_F) {
3200                 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
3201
3202                 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
3203                 if (printk_ratelimit())
3204                         dev_warn(adapter->pdev_dev,
3205                                  "%u %s correctable ECC data error%s\n",
3206                                  cnt, name[idx], cnt > 1 ? "s" : "");
3207         }
3208         if (v & ECC_UE_INT_CAUSE_F)
3209                 dev_alert(adapter->pdev_dev,
3210                           "%s uncorrectable ECC data error\n", name[idx]);
3211
3212         t4_write_reg(adapter, addr, v);
3213         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3214                 t4_fatal_err(adapter);
3215 }
3216
3217 /*
3218  * MA interrupt handler.
3219  */
3220 static void ma_intr_handler(struct adapter *adap)
3221 {
3222         u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
3223
3224         if (status & MEM_PERR_INT_CAUSE_F) {
3225                 dev_alert(adap->pdev_dev,
3226                           "MA parity error, parity status %#x\n",
3227                           t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
3228                 if (is_t5(adap->params.chip))
3229                         dev_alert(adap->pdev_dev,
3230                                   "MA parity error, parity status %#x\n",
3231                                   t4_read_reg(adap,
3232                                               MA_PARITY_ERROR_STATUS2_A));
3233         }
3234         if (status & MEM_WRAP_INT_CAUSE_F) {
3235                 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
3236                 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
3237                           "client %u to address %#x\n",
3238                           MEM_WRAP_CLIENT_NUM_G(v),
3239                           MEM_WRAP_ADDRESS_G(v) << 4);
3240         }
3241         t4_write_reg(adap, MA_INT_CAUSE_A, status);
3242         t4_fatal_err(adap);
3243 }
3244
3245 /*
3246  * SMB interrupt handler.
3247  */
3248 static void smb_intr_handler(struct adapter *adap)
3249 {
3250         static const struct intr_info smb_intr_info[] = {
3251                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3252                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3253                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3254                 { 0 }
3255         };
3256
3257         if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
3258                 t4_fatal_err(adap);
3259 }
3260
3261 /*
3262  * NC-SI interrupt handler.
3263  */
3264 static void ncsi_intr_handler(struct adapter *adap)
3265 {
3266         static const struct intr_info ncsi_intr_info[] = {
3267                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3268                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3269                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3270                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3271                 { 0 }
3272         };
3273
3274         if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
3275                 t4_fatal_err(adap);
3276 }
3277
3278 /*
3279  * XGMAC interrupt handler.
3280  */
3281 static void xgmac_intr_handler(struct adapter *adap, int port)
3282 {
3283         u32 v, int_cause_reg;
3284
3285         if (is_t4(adap->params.chip))
3286                 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
3287         else
3288                 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
3289
3290         v = t4_read_reg(adap, int_cause_reg);
3291
3292         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3293         if (!v)
3294                 return;
3295
3296         if (v & TXFIFO_PRTY_ERR_F)
3297                 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
3298                           port);
3299         if (v & RXFIFO_PRTY_ERR_F)
3300                 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
3301                           port);
3302         t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
3303         t4_fatal_err(adap);
3304 }
3305
3306 /*
3307  * PL interrupt handler.
3308  */
3309 static void pl_intr_handler(struct adapter *adap)
3310 {
3311         static const struct intr_info pl_intr_info[] = {
3312                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3313                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3314                 { 0 }
3315         };
3316
3317         if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
3318                 t4_fatal_err(adap);
3319 }
3320
3321 #define PF_INTR_MASK (PFSW_F)
3322 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
3323                 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
3324                 CPL_SWITCH_F | SGE_F | ULP_TX_F)
3325
3326 /**
3327  *      t4_slow_intr_handler - control path interrupt handler
3328  *      @adapter: the adapter
3329  *
3330  *      T4 interrupt handler for non-data global interrupt events, e.g., errors.
3331  *      The designation 'slow' is because it involves register reads, while
3332  *      data interrupts typically don't involve any MMIOs.
3333  */
3334 int t4_slow_intr_handler(struct adapter *adapter)
3335 {
3336         u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
3337
3338         if (!(cause & GLBL_INTR_MASK))
3339                 return 0;
3340         if (cause & CIM_F)
3341                 cim_intr_handler(adapter);
3342         if (cause & MPS_F)
3343                 mps_intr_handler(adapter);
3344         if (cause & NCSI_F)
3345                 ncsi_intr_handler(adapter);
3346         if (cause & PL_F)
3347                 pl_intr_handler(adapter);
3348         if (cause & SMB_F)
3349                 smb_intr_handler(adapter);
3350         if (cause & XGMAC0_F)
3351                 xgmac_intr_handler(adapter, 0);
3352         if (cause & XGMAC1_F)
3353                 xgmac_intr_handler(adapter, 1);
3354         if (cause & XGMAC_KR0_F)
3355                 xgmac_intr_handler(adapter, 2);
3356         if (cause & XGMAC_KR1_F)
3357                 xgmac_intr_handler(adapter, 3);
3358         if (cause & PCIE_F)
3359                 pcie_intr_handler(adapter);
3360         if (cause & MC_F)
3361                 mem_intr_handler(adapter, MEM_MC);
3362         if (is_t5(adapter->params.chip) && (cause & MC1_F))
3363                 mem_intr_handler(adapter, MEM_MC1);
3364         if (cause & EDC0_F)
3365                 mem_intr_handler(adapter, MEM_EDC0);
3366         if (cause & EDC1_F)
3367                 mem_intr_handler(adapter, MEM_EDC1);
3368         if (cause & LE_F)
3369                 le_intr_handler(adapter);
3370         if (cause & TP_F)
3371                 tp_intr_handler(adapter);
3372         if (cause & MA_F)
3373                 ma_intr_handler(adapter);
3374         if (cause & PM_TX_F)
3375                 pmtx_intr_handler(adapter);
3376         if (cause & PM_RX_F)
3377                 pmrx_intr_handler(adapter);
3378         if (cause & ULP_RX_F)
3379                 ulprx_intr_handler(adapter);
3380         if (cause & CPL_SWITCH_F)
3381                 cplsw_intr_handler(adapter);
3382         if (cause & SGE_F)
3383                 sge_intr_handler(adapter);
3384         if (cause & ULP_TX_F)
3385                 ulptx_intr_handler(adapter);
3386
3387         /* Clear the interrupts just processed for which we are the master. */
3388         t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
3389         (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
3390         return 1;
3391 }
3392
3393 /**
3394  *      t4_intr_enable - enable interrupts
3395  *      @adapter: the adapter whose interrupts should be enabled
3396  *
3397  *      Enable PF-specific interrupts for the calling function and the top-level
3398  *      interrupt concentrator for global interrupts.  Interrupts are already
3399  *      enabled at each module, here we just enable the roots of the interrupt
3400  *      hierarchies.
3401  *
3402  *      Note: this function should be called only when the driver manages
3403  *      non PF-specific interrupts from the various HW modules.  Only one PCI
3404  *      function at a time should be doing this.
3405  */
3406 void t4_intr_enable(struct adapter *adapter)
3407 {
3408         u32 val = 0;
3409         u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
3410
3411         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3412                 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
3413         t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
3414                      ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3415                      ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
3416                      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
3417                      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
3418                      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3419                      DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
3420         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
3421         t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
3422 }
3423
3424 /**
3425  *      t4_intr_disable - disable interrupts
3426  *      @adapter: the adapter whose interrupts should be disabled
3427  *
3428  *      Disable interrupts.  We only disable the top-level interrupt
3429  *      concentrators.  The caller must be a PCI function managing global
3430  *      interrupts.
3431  */
3432 void t4_intr_disable(struct adapter *adapter)
3433 {
3434         u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
3435
3436         t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
3437         t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
3438 }
3439
3440 /**
3441  *      hash_mac_addr - return the hash value of a MAC address
3442  *      @addr: the 48-bit Ethernet MAC address
3443  *
3444  *      Hashes a MAC address according to the hash function used by HW inexact
3445  *      (hash) address matching.
3446  */
3447 static int hash_mac_addr(const u8 *addr)
3448 {
3449         u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
3450         u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
3451         a ^= b;
3452         a ^= (a >> 12);
3453         a ^= (a >> 6);
3454         return a & 0x3f;
3455 }
3456
3457 /**
3458  *      t4_config_rss_range - configure a portion of the RSS mapping table
3459  *      @adapter: the adapter
3460  *      @mbox: mbox to use for the FW command
3461  *      @viid: virtual interface whose RSS subtable is to be written
3462  *      @start: start entry in the table to write
3463  *      @n: how many table entries to write
3464  *      @rspq: values for the response queue lookup table
3465  *      @nrspq: number of values in @rspq
3466  *
3467  *      Programs the selected part of the VI's RSS mapping table with the
3468  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
3469  *      until the full table range is populated.
3470  *
3471  *      The caller must ensure the values in @rspq are in the range allowed for
3472  *      @viid.
3473  */
3474 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
3475                         int start, int n, const u16 *rspq, unsigned int nrspq)
3476 {
3477         int ret;
3478         const u16 *rsp = rspq;
3479         const u16 *rsp_end = rspq + nrspq;
3480         struct fw_rss_ind_tbl_cmd cmd;
3481
3482         memset(&cmd, 0, sizeof(cmd));
3483         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
3484                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3485                                FW_RSS_IND_TBL_CMD_VIID_V(viid));
3486         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
3487
3488         /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
3489         while (n > 0) {
3490                 int nq = min(n, 32);
3491                 __be32 *qp = &cmd.iq0_to_iq2;
3492
3493                 cmd.niqid = cpu_to_be16(nq);
3494                 cmd.startidx = cpu_to_be16(start);
3495
3496                 start += nq;
3497                 n -= nq;
3498
3499                 while (nq > 0) {
3500                         unsigned int v;
3501
3502                         v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
3503                         if (++rsp >= rsp_end)
3504                                 rsp = rspq;
3505                         v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
3506                         if (++rsp >= rsp_end)
3507                                 rsp = rspq;
3508                         v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
3509                         if (++rsp >= rsp_end)
3510                                 rsp = rspq;
3511
3512                         *qp++ = cpu_to_be32(v);
3513                         nq -= 3;
3514                 }
3515
3516                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
3517                 if (ret)
3518                         return ret;
3519         }
3520         return 0;
3521 }
3522
3523 /**
3524  *      t4_config_glbl_rss - configure the global RSS mode
3525  *      @adapter: the adapter
3526  *      @mbox: mbox to use for the FW command
3527  *      @mode: global RSS mode
3528  *      @flags: mode-specific flags
3529  *
3530  *      Sets the global RSS mode.
3531  */
3532 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
3533                        unsigned int flags)
3534 {
3535         struct fw_rss_glb_config_cmd c;
3536
3537         memset(&c, 0, sizeof(c));
3538         c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
3539                                     FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3540         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3541         if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
3542                 c.u.manual.mode_pkd =
3543                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3544         } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
3545                 c.u.basicvirtual.mode_pkd =
3546                         cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3547                 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
3548         } else
3549                 return -EINVAL;
3550         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3551 }
3552
3553 /**
3554  *      t4_config_vi_rss - configure per VI RSS settings
3555  *      @adapter: the adapter
3556  *      @mbox: mbox to use for the FW command
3557  *      @viid: the VI id
3558  *      @flags: RSS flags
3559  *      @defq: id of the default RSS queue for the VI.
3560  *
3561  *      Configures VI-specific RSS properties.
3562  */
3563 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
3564                      unsigned int flags, unsigned int defq)
3565 {
3566         struct fw_rss_vi_config_cmd c;
3567
3568         memset(&c, 0, sizeof(c));
3569         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
3570                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3571                                    FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
3572         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3573         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
3574                                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
3575         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3576 }
3577
3578 /* Read an RSS table row */
3579 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
3580 {
3581         t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
3582         return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
3583                                    5, 0, val);
3584 }
3585
3586 /**
3587  *      t4_read_rss - read the contents of the RSS mapping table
3588  *      @adapter: the adapter
3589  *      @map: holds the contents of the RSS mapping table
3590  *
3591  *      Reads the contents of the RSS hash->queue mapping table.
3592  */
3593 int t4_read_rss(struct adapter *adapter, u16 *map)
3594 {
3595         u32 val;
3596         int i, ret;
3597
3598         for (i = 0; i < RSS_NENTRIES / 2; ++i) {
3599                 ret = rd_rss_row(adapter, i, &val);
3600                 if (ret)
3601                         return ret;
3602                 *map++ = LKPTBLQUEUE0_G(val);
3603                 *map++ = LKPTBLQUEUE1_G(val);
3604         }
3605         return 0;
3606 }
3607
3608 /**
3609  *      t4_read_rss_key - read the global RSS key
3610  *      @adap: the adapter
3611  *      @key: 10-entry array holding the 320-bit RSS key
3612  *
3613  *      Reads the global 320-bit RSS key.
3614  */
3615 void t4_read_rss_key(struct adapter *adap, u32 *key)
3616 {
3617         t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3618                          TP_RSS_SECRET_KEY0_A);
3619 }
3620
3621 /**
3622  *      t4_write_rss_key - program one of the RSS keys
3623  *      @adap: the adapter
3624  *      @key: 10-entry array holding the 320-bit RSS key
3625  *      @idx: which RSS key to write
3626  *
3627  *      Writes one of the RSS keys with the given 320-bit value.  If @idx is
3628  *      0..15 the corresponding entry in the RSS key table is written,
3629  *      otherwise the global RSS key is written.
3630  */
3631 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
3632 {
3633         u8 rss_key_addr_cnt = 16;
3634         u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
3635
3636         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
3637          * allows access to key addresses 16-63 by using KeyWrAddrX
3638          * as index[5:4](upper 2) into key table
3639          */
3640         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
3641             (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
3642                 rss_key_addr_cnt = 32;
3643
3644         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3645                           TP_RSS_SECRET_KEY0_A);
3646
3647         if (idx >= 0 && idx < rss_key_addr_cnt) {
3648                 if (rss_key_addr_cnt > 16)
3649                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3650                                      KEYWRADDRX_V(idx >> 4) |
3651                                      T6_VFWRADDR_V(idx) | KEYWREN_F);
3652                 else
3653                         t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3654                                      KEYWRADDR_V(idx) | KEYWREN_F);
3655         }
3656 }
3657
3658 /**
3659  *      t4_read_rss_pf_config - read PF RSS Configuration Table
3660  *      @adapter: the adapter
3661  *      @index: the entry in the PF RSS table to read
3662  *      @valp: where to store the returned value
3663  *
3664  *      Reads the PF RSS Configuration Table at the specified index and returns
3665  *      the value found there.
3666  */
3667 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
3668                            u32 *valp)
3669 {
3670         t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3671                          valp, 1, TP_RSS_PF0_CONFIG_A + index);
3672 }
3673
3674 /**
3675  *      t4_read_rss_vf_config - read VF RSS Configuration Table
3676  *      @adapter: the adapter
3677  *      @index: the entry in the VF RSS table to read
3678  *      @vfl: where to store the returned VFL
3679  *      @vfh: where to store the returned VFH
3680  *
3681  *      Reads the VF RSS Configuration Table at the specified index and returns
3682  *      the (VFL, VFH) values found there.
3683  */
3684 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3685                            u32 *vfl, u32 *vfh)
3686 {
3687         u32 vrt, mask, data;
3688
3689         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3690                 mask = VFWRADDR_V(VFWRADDR_M);
3691                 data = VFWRADDR_V(index);
3692         } else {
3693                  mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
3694                  data = T6_VFWRADDR_V(index);
3695         }
3696
3697         /* Request that the index'th VF Table values be read into VFL/VFH.
3698          */
3699         vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
3700         vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
3701         vrt |= data | VFRDEN_F;
3702         t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
3703
3704         /* Grab the VFL/VFH values ...
3705          */
3706         t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3707                          vfl, 1, TP_RSS_VFL_CONFIG_A);
3708         t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3709                          vfh, 1, TP_RSS_VFH_CONFIG_A);
3710 }
3711
3712 /**
3713  *      t4_read_rss_pf_map - read PF RSS Map
3714  *      @adapter: the adapter
3715  *
3716  *      Reads the PF RSS Map register and returns its value.
3717  */
3718 u32 t4_read_rss_pf_map(struct adapter *adapter)
3719 {
3720         u32 pfmap;
3721
3722         t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3723                          &pfmap, 1, TP_RSS_PF_MAP_A);
3724         return pfmap;
3725 }
3726
3727 /**
3728  *      t4_read_rss_pf_mask - read PF RSS Mask
3729  *      @adapter: the adapter
3730  *
3731  *      Reads the PF RSS Mask register and returns its value.
3732  */
3733 u32 t4_read_rss_pf_mask(struct adapter *adapter)
3734 {
3735         u32 pfmask;
3736
3737         t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3738                          &pfmask, 1, TP_RSS_PF_MSK_A);
3739         return pfmask;
3740 }
3741
3742 /**
3743  *      t4_tp_get_tcp_stats - read TP's TCP MIB counters
3744  *      @adap: the adapter
3745  *      @v4: holds the TCP/IP counter values
3746  *      @v6: holds the TCP/IPv6 counter values
3747  *
3748  *      Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3749  *      Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3750  */
3751 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3752                          struct tp_tcp_stats *v6)
3753 {
3754         u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
3755
3756 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
3757 #define STAT(x)     val[STAT_IDX(x)]
3758 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3759
3760         if (v4) {
3761                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3762                                  ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
3763                 v4->tcp_out_rsts = STAT(OUT_RST);
3764                 v4->tcp_in_segs  = STAT64(IN_SEG);
3765                 v4->tcp_out_segs = STAT64(OUT_SEG);
3766                 v4->tcp_retrans_segs = STAT64(RXT_SEG);
3767         }
3768         if (v6) {
3769                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3770                                  ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
3771                 v6->tcp_out_rsts = STAT(OUT_RST);
3772                 v6->tcp_in_segs  = STAT64(IN_SEG);
3773                 v6->tcp_out_segs = STAT64(OUT_SEG);
3774                 v6->tcp_retrans_segs = STAT64(RXT_SEG);
3775         }
3776 #undef STAT64
3777 #undef STAT
3778 #undef STAT_IDX
3779 }
3780
3781 /**
3782  *      t4_tp_get_err_stats - read TP's error MIB counters
3783  *      @adap: the adapter
3784  *      @st: holds the counter values
3785  *
3786  *      Returns the values of TP's error counters.
3787  */
3788 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3789 {
3790         /* T6 and later has 2 channels */
3791         if (adap->params.arch.nchan == NCHAN) {
3792                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3793                                  st->mac_in_errs, 12, TP_MIB_MAC_IN_ERR_0_A);
3794                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3795                                  st->tnl_cong_drops, 8,
3796                                  TP_MIB_TNL_CNG_DROP_0_A);
3797                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3798                                  st->tnl_tx_drops, 4,
3799                                  TP_MIB_TNL_DROP_0_A);
3800                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3801                                  st->ofld_vlan_drops, 4,
3802                                  TP_MIB_OFD_VLN_DROP_0_A);
3803                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3804                                  st->tcp6_in_errs, 4,
3805                                  TP_MIB_TCP_V6IN_ERR_0_A);
3806         } else {
3807                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3808                                  st->mac_in_errs, 2, TP_MIB_MAC_IN_ERR_0_A);
3809                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3810                                  st->hdr_in_errs, 2, TP_MIB_HDR_IN_ERR_0_A);
3811                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3812                                  st->tcp_in_errs, 2, TP_MIB_TCP_IN_ERR_0_A);
3813                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3814                                  st->tnl_cong_drops, 2,
3815                                  TP_MIB_TNL_CNG_DROP_0_A);
3816                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3817                                  st->ofld_chan_drops, 2,
3818                                  TP_MIB_OFD_CHN_DROP_0_A);
3819                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3820                                  st->tnl_tx_drops, 2, TP_MIB_TNL_DROP_0_A);
3821                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3822                                  st->ofld_vlan_drops, 2,
3823                                  TP_MIB_OFD_VLN_DROP_0_A);
3824                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3825                                  st->tcp6_in_errs, 2, TP_MIB_TCP_V6IN_ERR_0_A);
3826         }
3827         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3828                          &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
3829 }
3830
3831 /**
3832  *      t4_tp_get_cpl_stats - read TP's CPL MIB counters
3833  *      @adap: the adapter
3834  *      @st: holds the counter values
3835  *
3836  *      Returns the values of TP's CPL counters.
3837  */
3838 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
3839 {
3840         /* T6 and later has 2 channels */
3841         if (adap->params.arch.nchan == NCHAN) {
3842                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
3843                                  8, TP_MIB_CPL_IN_REQ_0_A);
3844         } else {
3845                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
3846                                  2, TP_MIB_CPL_IN_REQ_0_A);
3847                 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
3848                                  2, TP_MIB_CPL_OUT_RSP_0_A);
3849         }
3850 }
3851
3852 /**
3853  *      t4_tp_get_rdma_stats - read TP's RDMA MIB counters
3854  *      @adap: the adapter
3855  *      @st: holds the counter values
3856  *
3857  *      Returns the values of TP's RDMA counters.
3858  */
3859 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
3860 {
3861         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
3862                          2, TP_MIB_RQE_DFR_PKT_A);
3863 }
3864
3865 /**
3866  *      t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
3867  *      @adap: the adapter
3868  *      @idx: the port index
3869  *      @st: holds the counter values
3870  *
3871  *      Returns the values of TP's FCoE counters for the selected port.
3872  */
3873 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
3874                        struct tp_fcoe_stats *st)
3875 {
3876         u32 val[2];
3877
3878         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
3879                          1, TP_MIB_FCOE_DDP_0_A + idx);
3880         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
3881                          1, TP_MIB_FCOE_DROP_0_A + idx);
3882         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3883                          2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
3884         st->octets_ddp = ((u64)val[0] << 32) | val[1];
3885 }
3886
3887 /**
3888  *      t4_get_usm_stats - read TP's non-TCP DDP MIB counters
3889  *      @adap: the adapter
3890  *      @st: holds the counter values
3891  *
3892  *      Returns the values of TP's counters for non-TCP directly-placed packets.
3893  */
3894 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
3895 {
3896         u32 val[4];
3897
3898         t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
3899                          TP_MIB_USM_PKTS_A);
3900         st->frames = val[0];
3901         st->drops = val[1];
3902         st->octets = ((u64)val[2] << 32) | val[3];
3903 }
3904
3905 /**
3906  *      t4_read_mtu_tbl - returns the values in the HW path MTU table
3907  *      @adap: the adapter
3908  *      @mtus: where to store the MTU values
3909  *      @mtu_log: where to store the MTU base-2 log (may be %NULL)
3910  *
3911  *      Reads the HW path MTU table.
3912  */
3913 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
3914 {
3915         u32 v;
3916         int i;
3917
3918         for (i = 0; i < NMTUS; ++i) {
3919                 t4_write_reg(adap, TP_MTU_TABLE_A,
3920                              MTUINDEX_V(0xff) | MTUVALUE_V(i));
3921                 v = t4_read_reg(adap, TP_MTU_TABLE_A);
3922                 mtus[i] = MTUVALUE_G(v);
3923                 if (mtu_log)
3924                         mtu_log[i] = MTUWIDTH_G(v);
3925         }
3926 }
3927
3928 /**
3929  *      t4_read_cong_tbl - reads the congestion control table
3930  *      @adap: the adapter
3931  *      @incr: where to store the alpha values
3932  *
3933  *      Reads the additive increments programmed into the HW congestion
3934  *      control table.
3935  */
3936 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
3937 {
3938         unsigned int mtu, w;
3939
3940         for (mtu = 0; mtu < NMTUS; ++mtu)
3941                 for (w = 0; w < NCCTRL_WIN; ++w) {
3942                         t4_write_reg(adap, TP_CCTRL_TABLE_A,
3943                                      ROWINDEX_V(0xffff) | (mtu << 5) | w);
3944                         incr[mtu][w] = (u16)t4_read_reg(adap,
3945                                                 TP_CCTRL_TABLE_A) & 0x1fff;
3946                 }
3947 }
3948
3949 /**
3950  *      t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
3951  *      @adap: the adapter
3952  *      @addr: the indirect TP register address
3953  *      @mask: specifies the field within the register to modify
3954  *      @val: new value for the field
3955  *
3956  *      Sets a field of an indirect TP register to the given value.
3957  */
3958 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
3959                             unsigned int mask, unsigned int val)
3960 {
3961         t4_write_reg(adap, TP_PIO_ADDR_A, addr);
3962         val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
3963         t4_write_reg(adap, TP_PIO_DATA_A, val);
3964 }
3965
3966 /**
3967  *      init_cong_ctrl - initialize congestion control parameters
3968  *      @a: the alpha values for congestion control
3969  *      @b: the beta values for congestion control
3970  *
3971  *      Initialize the congestion control parameters.
3972  */
3973 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
3974 {
3975         a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
3976         a[9] = 2;
3977         a[10] = 3;
3978         a[11] = 4;
3979         a[12] = 5;
3980         a[13] = 6;
3981         a[14] = 7;
3982         a[15] = 8;
3983         a[16] = 9;
3984         a[17] = 10;
3985         a[18] = 14;
3986         a[19] = 17;
3987         a[20] = 21;
3988         a[21] = 25;
3989         a[22] = 30;
3990         a[23] = 35;
3991         a[24] = 45;
3992         a[25] = 60;
3993         a[26] = 80;
3994         a[27] = 100;
3995         a[28] = 200;
3996         a[29] = 300;
3997         a[30] = 400;
3998         a[31] = 500;
3999
4000         b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
4001         b[9] = b[10] = 1;
4002         b[11] = b[12] = 2;
4003         b[13] = b[14] = b[15] = b[16] = 3;
4004         b[17] = b[18] = b[19] = b[20] = b[21] = 4;
4005         b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
4006         b[28] = b[29] = 6;
4007         b[30] = b[31] = 7;
4008 }
4009
4010 /* The minimum additive increment value for the congestion control table */
4011 #define CC_MIN_INCR 2U
4012
4013 /**
4014  *      t4_load_mtus - write the MTU and congestion control HW tables
4015  *      @adap: the adapter
4016  *      @mtus: the values for the MTU table
4017  *      @alpha: the values for the congestion control alpha parameter
4018  *      @beta: the values for the congestion control beta parameter
4019  *
4020  *      Write the HW MTU table with the supplied MTUs and the high-speed
4021  *      congestion control table with the supplied alpha, beta, and MTUs.
4022  *      We write the two tables together because the additive increments
4023  *      depend on the MTUs.
4024  */
4025 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
4026                   const unsigned short *alpha, const unsigned short *beta)
4027 {
4028         static const unsigned int avg_pkts[NCCTRL_WIN] = {
4029                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
4030                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
4031                 28672, 40960, 57344, 81920, 114688, 163840, 229376
4032         };
4033
4034         unsigned int i, w;
4035
4036         for (i = 0; i < NMTUS; ++i) {
4037                 unsigned int mtu = mtus[i];
4038                 unsigned int log2 = fls(mtu);
4039
4040                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
4041                         log2--;
4042                 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
4043                              MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
4044
4045                 for (w = 0; w < NCCTRL_WIN; ++w) {
4046                         unsigned int inc;
4047
4048                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
4049                                   CC_MIN_INCR);
4050
4051                         t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
4052                                      (w << 16) | (beta[w] << 13) | inc);
4053                 }
4054         }
4055 }
4056
4057 /**
4058  *      t4_pmtx_get_stats - returns the HW stats from PMTX
4059  *      @adap: the adapter
4060  *      @cnt: where to store the count statistics
4061  *      @cycles: where to store the cycle statistics
4062  *
4063  *      Returns performance statistics from PMTX.
4064  */
4065 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4066 {
4067         int i;
4068         u32 data[2];
4069
4070         for (i = 0; i < PM_NSTATS; i++) {
4071                 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
4072                 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
4073                 if (is_t4(adap->params.chip)) {
4074                         cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
4075                 } else {
4076                         t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
4077                                          PM_TX_DBG_DATA_A, data, 2,
4078                                          PM_TX_DBG_STAT_MSB_A);
4079                         cycles[i] = (((u64)data[0] << 32) | data[1]);
4080                 }
4081         }
4082 }
4083
4084 /**
4085  *      t4_pmrx_get_stats - returns the HW stats from PMRX
4086  *      @adap: the adapter
4087  *      @cnt: where to store the count statistics
4088  *      @cycles: where to store the cycle statistics
4089  *
4090  *      Returns performance statistics from PMRX.
4091  */
4092 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4093 {
4094         int i;
4095         u32 data[2];
4096
4097         for (i = 0; i < PM_NSTATS; i++) {
4098                 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
4099                 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
4100                 if (is_t4(adap->params.chip)) {
4101                         cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
4102                 } else {
4103                         t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
4104                                          PM_RX_DBG_DATA_A, data, 2,
4105                                          PM_RX_DBG_STAT_MSB_A);
4106                         cycles[i] = (((u64)data[0] << 32) | data[1]);
4107                 }
4108         }
4109 }
4110
4111 /**
4112  *      t4_get_mps_bg_map - return the buffer groups associated with a port
4113  *      @adap: the adapter
4114  *      @idx: the port index
4115  *
4116  *      Returns a bitmap indicating which MPS buffer groups are associated
4117  *      with the given port.  Bit i is set if buffer group i is used by the
4118  *      port.
4119  */
4120 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
4121 {
4122         u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
4123
4124         if (n == 0)
4125                 return idx == 0 ? 0xf : 0;
4126         if (n == 1)
4127                 return idx < 2 ? (3 << (2 * idx)) : 0;
4128         return 1 << idx;
4129 }
4130
4131 /**
4132  *      t4_get_port_type_description - return Port Type string description
4133  *      @port_type: firmware Port Type enumeration
4134  */
4135 const char *t4_get_port_type_description(enum fw_port_type port_type)
4136 {
4137         static const char *const port_type_description[] = {
4138                 "R XFI",
4139                 "R XAUI",
4140                 "T SGMII",
4141                 "T XFI",
4142                 "T XAUI",
4143                 "KX4",
4144                 "CX4",
4145                 "KX",
4146                 "KR",
4147                 "R SFP+",
4148                 "KR/KX",
4149                 "KR/KX/KX4",
4150                 "R QSFP_10G",
4151                 "R QSA",
4152                 "R QSFP",
4153                 "R BP40_BA",
4154         };
4155
4156         if (port_type < ARRAY_SIZE(port_type_description))
4157                 return port_type_description[port_type];
4158         return "UNKNOWN";
4159 }
4160
4161 /**
4162  *      t4_get_port_stats_offset - collect port stats relative to a previous
4163  *                                 snapshot
4164  *      @adap: The adapter
4165  *      @idx: The port
4166  *      @stats: Current stats to fill
4167  *      @offset: Previous stats snapshot
4168  */
4169 void t4_get_port_stats_offset(struct adapter *adap, int idx,
4170                               struct port_stats *stats,
4171                               struct port_stats *offset)
4172 {
4173         u64 *s, *o;
4174         int i;
4175
4176         t4_get_port_stats(adap, idx, stats);
4177         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
4178                         i < (sizeof(struct port_stats) / sizeof(u64));
4179                         i++, s++, o++)
4180                 *s -= *o;
4181 }
4182
4183 /**
4184  *      t4_get_port_stats - collect port statistics
4185  *      @adap: the adapter
4186  *      @idx: the port index
4187  *      @p: the stats structure to fill
4188  *
4189  *      Collect statistics related to the given port from HW.
4190  */
4191 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
4192 {
4193         u32 bgmap = t4_get_mps_bg_map(adap, idx);
4194
4195 #define GET_STAT(name) \
4196         t4_read_reg64(adap, \
4197         (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
4198         T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
4199 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4200
4201         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
4202         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
4203         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
4204         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
4205         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
4206         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
4207         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
4208         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
4209         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
4210         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
4211         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
4212         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
4213         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
4214         p->tx_drop             = GET_STAT(TX_PORT_DROP);
4215         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
4216         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
4217         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
4218         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
4219         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
4220         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
4221         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
4222         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
4223         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
4224
4225         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
4226         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
4227         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
4228         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
4229         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
4230         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
4231         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
4232         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
4233         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
4234         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
4235         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
4236         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
4237         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
4238         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
4239         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
4240         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
4241         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
4242         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
4243         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
4244         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
4245         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
4246         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
4247         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
4248         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
4249         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
4250         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
4251         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
4252
4253         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
4254         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
4255         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
4256         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
4257         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
4258         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
4259         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
4260         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
4261
4262 #undef GET_STAT
4263 #undef GET_STAT_COM
4264 }
4265
4266 /**
4267  *      t4_get_lb_stats - collect loopback port statistics
4268  *      @adap: the adapter
4269  *      @idx: the loopback port index
4270  *      @p: the stats structure to fill
4271  *
4272  *      Return HW statistics for the given loopback port.
4273  */
4274 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
4275 {
4276         u32 bgmap = t4_get_mps_bg_map(adap, idx);
4277
4278 #define GET_STAT(name) \
4279         t4_read_reg64(adap, \
4280         (is_t4(adap->params.chip) ? \
4281         PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
4282         T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
4283 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4284
4285         p->octets           = GET_STAT(BYTES);
4286         p->frames           = GET_STAT(FRAMES);
4287         p->bcast_frames     = GET_STAT(BCAST);
4288         p->mcast_frames     = GET_STAT(MCAST);
4289         p->ucast_frames     = GET_STAT(UCAST);
4290         p->error_frames     = GET_STAT(ERROR);
4291
4292         p->frames_64        = GET_STAT(64B);
4293         p->frames_65_127    = GET_STAT(65B_127B);
4294         p->frames_128_255   = GET_STAT(128B_255B);
4295         p->frames_256_511   = GET_STAT(256B_511B);
4296         p->frames_512_1023  = GET_STAT(512B_1023B);
4297         p->frames_1024_1518 = GET_STAT(1024B_1518B);
4298         p->frames_1519_max  = GET_STAT(1519B_MAX);
4299         p->drop             = GET_STAT(DROP_FRAMES);
4300
4301         p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
4302         p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
4303         p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
4304         p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
4305         p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
4306         p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
4307         p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
4308         p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4309
4310 #undef GET_STAT
4311 #undef GET_STAT_COM
4312 }
4313
4314 /*     t4_mk_filtdelwr - create a delete filter WR
4315  *     @ftid: the filter ID
4316  *     @wr: the filter work request to populate
4317  *     @qid: ingress queue to receive the delete notification
4318  *
4319  *     Creates a filter work request to delete the supplied filter.  If @qid is
4320  *     negative the delete notification is suppressed.
4321  */
4322 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4323 {
4324         memset(wr, 0, sizeof(*wr));
4325         wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
4326         wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
4327         wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
4328                                     FW_FILTER_WR_NOREPLY_V(qid < 0));
4329         wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
4330         if (qid >= 0)
4331                 wr->rx_chan_rx_rpl_iq =
4332                         cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
4333 }
4334
4335 #define INIT_CMD(var, cmd, rd_wr) do { \
4336         (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
4337                                         FW_CMD_REQUEST_F | \
4338                                         FW_CMD_##rd_wr##_F); \
4339         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
4340 } while (0)
4341
4342 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
4343                           u32 addr, u32 val)
4344 {
4345         u32 ldst_addrspace;
4346         struct fw_ldst_cmd c;
4347
4348         memset(&c, 0, sizeof(c));
4349         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
4350         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4351                                         FW_CMD_REQUEST_F |
4352                                         FW_CMD_WRITE_F |
4353                                         ldst_addrspace);
4354         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4355         c.u.addrval.addr = cpu_to_be32(addr);
4356         c.u.addrval.val = cpu_to_be32(val);
4357
4358         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4359 }
4360
4361 /**
4362  *      t4_mdio_rd - read a PHY register through MDIO
4363  *      @adap: the adapter
4364  *      @mbox: mailbox to use for the FW command
4365  *      @phy_addr: the PHY address
4366  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
4367  *      @reg: the register to read
4368  *      @valp: where to store the value
4369  *
4370  *      Issues a FW command through the given mailbox to read a PHY register.
4371  */
4372 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4373                unsigned int mmd, unsigned int reg, u16 *valp)
4374 {
4375         int ret;
4376         u32 ldst_addrspace;
4377         struct fw_ldst_cmd c;
4378
4379         memset(&c, 0, sizeof(c));
4380         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4381         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4382                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
4383                                         ldst_addrspace);
4384         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4385         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4386                                          FW_LDST_CMD_MMD_V(mmd));
4387         c.u.mdio.raddr = cpu_to_be16(reg);
4388
4389         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4390         if (ret == 0)
4391                 *valp = be16_to_cpu(c.u.mdio.rval);
4392         return ret;
4393 }
4394
4395 /**
4396  *      t4_mdio_wr - write a PHY register through MDIO
4397  *      @adap: the adapter
4398  *      @mbox: mailbox to use for the FW command
4399  *      @phy_addr: the PHY address
4400  *      @mmd: the PHY MMD to access (0 for clause 22 PHYs)
4401  *      @reg: the register to write
4402  *      @valp: value to write
4403  *
4404  *      Issues a FW command through the given mailbox to write a PHY register.
4405  */
4406 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4407                unsigned int mmd, unsigned int reg, u16 val)
4408 {
4409         u32 ldst_addrspace;
4410         struct fw_ldst_cmd c;
4411
4412         memset(&c, 0, sizeof(c));
4413         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4414         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4415                                         FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4416                                         ldst_addrspace);
4417         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4418         c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4419                                          FW_LDST_CMD_MMD_V(mmd));
4420         c.u.mdio.raddr = cpu_to_be16(reg);
4421         c.u.mdio.rval = cpu_to_be16(val);
4422
4423         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4424 }
4425
4426 /**
4427  *      t4_sge_decode_idma_state - decode the idma state
4428  *      @adap: the adapter
4429  *      @state: the state idma is stuck in
4430  */
4431 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
4432 {
4433         static const char * const t4_decode[] = {
4434                 "IDMA_IDLE",
4435                 "IDMA_PUSH_MORE_CPL_FIFO",
4436                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4437                 "Not used",
4438                 "IDMA_PHYSADDR_SEND_PCIEHDR",
4439                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4440                 "IDMA_PHYSADDR_SEND_PAYLOAD",
4441                 "IDMA_SEND_FIFO_TO_IMSG",
4442                 "IDMA_FL_REQ_DATA_FL_PREP",
4443                 "IDMA_FL_REQ_DATA_FL",
4444                 "IDMA_FL_DROP",
4445                 "IDMA_FL_H_REQ_HEADER_FL",
4446                 "IDMA_FL_H_SEND_PCIEHDR",
4447                 "IDMA_FL_H_PUSH_CPL_FIFO",
4448                 "IDMA_FL_H_SEND_CPL",
4449                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
4450                 "IDMA_FL_H_SEND_IP_HDR",
4451                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
4452                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
4453                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
4454                 "IDMA_FL_D_SEND_PCIEHDR",
4455                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4456                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
4457                 "IDMA_FL_SEND_PCIEHDR",
4458                 "IDMA_FL_PUSH_CPL_FIFO",
4459                 "IDMA_FL_SEND_CPL",
4460                 "IDMA_FL_SEND_PAYLOAD_FIRST",
4461                 "IDMA_FL_SEND_PAYLOAD",
4462                 "IDMA_FL_REQ_NEXT_DATA_FL",
4463                 "IDMA_FL_SEND_NEXT_PCIEHDR",
4464                 "IDMA_FL_SEND_PADDING",
4465                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
4466                 "IDMA_FL_SEND_FIFO_TO_IMSG",
4467                 "IDMA_FL_REQ_DATAFL_DONE",
4468                 "IDMA_FL_REQ_HEADERFL_DONE",
4469         };
4470         static const char * const t5_decode[] = {
4471                 "IDMA_IDLE",
4472                 "IDMA_ALMOST_IDLE",
4473                 "IDMA_PUSH_MORE_CPL_FIFO",
4474                 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4475                 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
4476                 "IDMA_PHYSADDR_SEND_PCIEHDR",
4477                 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4478                 "IDMA_PHYSADDR_SEND_PAYLOAD",
4479                 "IDMA_SEND_FIFO_TO_IMSG",
4480                 "IDMA_FL_REQ_DATA_FL",
4481                 "IDMA_FL_DROP",
4482                 "IDMA_FL_DROP_SEND_INC",
4483                 "IDMA_FL_H_REQ_HEADER_FL",
4484                 "IDMA_FL_H_SEND_PCIEHDR",
4485                 "IDMA_FL_H_PUSH_CPL_FIFO",
4486                 "IDMA_FL_H_SEND_CPL",
4487                 "IDMA_FL_H_SEND_IP_HDR_FIRST",
4488                 "IDMA_FL_H_SEND_IP_HDR",
4489                 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
4490                 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
4491                 "IDMA_FL_H_SEND_IP_HDR_PADDING",
4492                 "IDMA_FL_D_SEND_PCIEHDR",
4493                 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4494                 "IDMA_FL_D_REQ_NEXT_DATA_FL",
4495                 "IDMA_FL_SEND_PCIEHDR",
4496                 "IDMA_FL_PUSH_CPL_FIFO",
4497                 "IDMA_FL_SEND_CPL",
4498                 "IDMA_FL_SEND_PAYLOAD_FIRST",
4499                 "IDMA_FL_SEND_PAYLOAD",
4500                 "IDMA_FL_REQ_NEXT_DATA_FL",
4501                 "IDMA_FL_SEND_NEXT_PCIEHDR",
4502                 "IDMA_FL_SEND_PADDING",
4503                 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
4504         };
4505         static const u32 sge_regs[] = {
4506                 SGE_DEBUG_DATA_LOW_INDEX_2_A,
4507                 SGE_DEBUG_DATA_LOW_INDEX_3_A,
4508                 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
4509         };
4510         const char **sge_idma_decode;
4511         int sge_idma_decode_nstates;
4512         int i;
4513
4514         if (is_t4(adapter->params.chip)) {
4515                 sge_idma_decode = (const char **)t4_decode;
4516                 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
4517         } else {
4518                 sge_idma_decode = (const char **)t5_decode;
4519                 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
4520         }
4521
4522         if (state < sge_idma_decode_nstates)
4523                 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
4524         else
4525                 CH_WARN(adapter, "idma state %d unknown\n", state);
4526
4527         for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
4528                 CH_WARN(adapter, "SGE register %#x value %#x\n",
4529                         sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
4530 }
4531
4532 /**
4533  *      t4_sge_ctxt_flush - flush the SGE context cache
4534  *      @adap: the adapter
4535  *      @mbox: mailbox to use for the FW command
4536  *
4537  *      Issues a FW command through the given mailbox to flush the
4538  *      SGE context cache.
4539  */
4540 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4541 {
4542         int ret;
4543         u32 ldst_addrspace;
4544         struct fw_ldst_cmd c;
4545
4546         memset(&c, 0, sizeof(c));
4547         ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
4548         c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4549                                         FW_CMD_REQUEST_F | FW_CMD_READ_F |
4550                                         ldst_addrspace);
4551         c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4552         c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
4553
4554         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4555         return ret;
4556 }
4557
4558 /**
4559  *      t4_fw_hello - establish communication with FW
4560  *      @adap: the adapter
4561  *      @mbox: mailbox to use for the FW command
4562  *      @evt_mbox: mailbox to receive async FW events
4563  *      @master: specifies the caller's willingness to be the device master
4564  *      @state: returns the current device state (if non-NULL)
4565  *
4566  *      Issues a command to establish communication with FW.  Returns either
4567  *      an error (negative integer) or the mailbox of the Master PF.
4568  */
4569 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4570                 enum dev_master master, enum dev_state *state)
4571 {
4572         int ret;
4573         struct fw_hello_cmd c;
4574         u32 v;
4575         unsigned int master_mbox;
4576         int retries = FW_CMD_HELLO_RETRIES;
4577
4578 retry:
4579         memset(&c, 0, sizeof(c));
4580         INIT_CMD(c, HELLO, WRITE);
4581         c.err_to_clearinit = cpu_to_be32(
4582                 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
4583                 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
4584                 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
4585                                         mbox : FW_HELLO_CMD_MBMASTER_M) |
4586                 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
4587                 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
4588                 FW_HELLO_CMD_CLEARINIT_F);
4589
4590         /*
4591          * Issue the HELLO command to the firmware.  If it's not successful
4592          * but indicates that we got a "busy" or "timeout" condition, retry
4593          * the HELLO until we exhaust our retry limit.  If we do exceed our
4594          * retry limit, check to see if the firmware left us any error
4595          * information and report that if so.
4596          */
4597         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4598         if (ret < 0) {
4599                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4600                         goto retry;
4601                 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
4602                         t4_report_fw_error(adap);
4603                 return ret;
4604         }
4605
4606         v = be32_to_cpu(c.err_to_clearinit);
4607         master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
4608         if (state) {
4609                 if (v & FW_HELLO_CMD_ERR_F)
4610                         *state = DEV_STATE_ERR;
4611                 else if (v & FW_HELLO_CMD_INIT_F)
4612                         *state = DEV_STATE_INIT;
4613                 else
4614                         *state = DEV_STATE_UNINIT;
4615         }
4616
4617         /*
4618          * If we're not the Master PF then we need to wait around for the
4619          * Master PF Driver to finish setting up the adapter.
4620          *
4621          * Note that we also do this wait if we're a non-Master-capable PF and
4622          * there is no current Master PF; a Master PF may show up momentarily
4623          * and we wouldn't want to fail pointlessly.  (This can happen when an
4624          * OS loads lots of different drivers rapidly at the same time).  In
4625          * this case, the Master PF returned by the firmware will be
4626          * PCIE_FW_MASTER_M so the test below will work ...
4627          */
4628         if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
4629             master_mbox != mbox) {
4630                 int waiting = FW_CMD_HELLO_TIMEOUT;
4631
4632                 /*
4633                  * Wait for the firmware to either indicate an error or
4634                  * initialized state.  If we see either of these we bail out
4635                  * and report the issue to the caller.  If we exhaust the
4636                  * "hello timeout" and we haven't exhausted our retries, try
4637                  * again.  Otherwise bail with a timeout error.
4638                  */
4639                 for (;;) {
4640                         u32 pcie_fw;
4641
4642                         msleep(50);
4643                         waiting -= 50;
4644
4645                         /*
4646                          * If neither Error nor Initialialized are indicated
4647                          * by the firmware keep waiting till we exaust our
4648                          * timeout ... and then retry if we haven't exhausted
4649                          * our retries ...
4650                          */
4651                         pcie_fw = t4_read_reg(adap, PCIE_FW_A);
4652                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
4653                                 if (waiting <= 0) {
4654                                         if (retries-- > 0)
4655                                                 goto retry;
4656
4657                                         return -ETIMEDOUT;
4658                                 }
4659                                 continue;
4660                         }
4661
4662                         /*
4663                          * We either have an Error or Initialized condition
4664                          * report errors preferentially.
4665                          */
4666                         if (state) {
4667                                 if (pcie_fw & PCIE_FW_ERR_F)
4668                                         *state = DEV_STATE_ERR;
4669                                 else if (pcie_fw & PCIE_FW_INIT_F)
4670                                         *state = DEV_STATE_INIT;
4671                         }
4672
4673                         /*
4674                          * If we arrived before a Master PF was selected and
4675                          * there's not a valid Master PF, grab its identity
4676                          * for our caller.
4677                          */
4678                         if (master_mbox == PCIE_FW_MASTER_M &&
4679                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
4680                                 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
4681                         break;
4682                 }
4683         }
4684
4685         return master_mbox;
4686 }
4687
4688 /**
4689  *      t4_fw_bye - end communication with FW
4690  *      @adap: the adapter
4691  *      @mbox: mailbox to use for the FW command
4692  *
4693  *      Issues a command to terminate communication with FW.
4694  */
4695 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
4696 {
4697         struct fw_bye_cmd c;
4698
4699         memset(&c, 0, sizeof(c));
4700         INIT_CMD(c, BYE, WRITE);
4701         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4702 }
4703
4704 /**
4705  *      t4_init_cmd - ask FW to initialize the device
4706  *      @adap: the adapter
4707  *      @mbox: mailbox to use for the FW command
4708  *
4709  *      Issues a command to FW to partially initialize the device.  This
4710  *      performs initialization that generally doesn't depend on user input.
4711  */
4712 int t4_early_init(struct adapter *adap, unsigned int mbox)
4713 {
4714         struct fw_initialize_cmd c;
4715
4716         memset(&c, 0, sizeof(c));
4717         INIT_CMD(c, INITIALIZE, WRITE);
4718         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4719 }
4720
4721 /**
4722  *      t4_fw_reset - issue a reset to FW
4723  *      @adap: the adapter
4724  *      @mbox: mailbox to use for the FW command
4725  *      @reset: specifies the type of reset to perform
4726  *
4727  *      Issues a reset command of the specified type to FW.
4728  */
4729 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4730 {
4731         struct fw_reset_cmd c;
4732
4733         memset(&c, 0, sizeof(c));
4734         INIT_CMD(c, RESET, WRITE);
4735         c.val = cpu_to_be32(reset);
4736         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4737 }
4738
4739 /**
4740  *      t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4741  *      @adap: the adapter
4742  *      @mbox: mailbox to use for the FW RESET command (if desired)
4743  *      @force: force uP into RESET even if FW RESET command fails
4744  *
4745  *      Issues a RESET command to firmware (if desired) with a HALT indication
4746  *      and then puts the microprocessor into RESET state.  The RESET command
4747  *      will only be issued if a legitimate mailbox is provided (mbox <=
4748  *      PCIE_FW_MASTER_M).
4749  *
4750  *      This is generally used in order for the host to safely manipulate the
4751  *      adapter without fear of conflicting with whatever the firmware might
4752  *      be doing.  The only way out of this state is to RESTART the firmware
4753  *      ...
4754  */
4755 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
4756 {
4757         int ret = 0;
4758
4759         /*
4760          * If a legitimate mailbox is provided, issue a RESET command
4761          * with a HALT indication.
4762          */
4763         if (mbox <= PCIE_FW_MASTER_M) {
4764                 struct fw_reset_cmd c;
4765
4766                 memset(&c, 0, sizeof(c));
4767                 INIT_CMD(c, RESET, WRITE);
4768                 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
4769                 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
4770                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4771         }
4772
4773         /*
4774          * Normally we won't complete the operation if the firmware RESET
4775          * command fails but if our caller insists we'll go ahead and put the
4776          * uP into RESET.  This can be useful if the firmware is hung or even
4777          * missing ...  We'll have to take the risk of putting the uP into
4778          * RESET without the cooperation of firmware in that case.
4779          *
4780          * We also force the firmware's HALT flag to be on in case we bypassed
4781          * the firmware RESET command above or we're dealing with old firmware
4782          * which doesn't have the HALT capability.  This will serve as a flag
4783          * for the incoming firmware to know that it's coming out of a HALT
4784          * rather than a RESET ... if it's new enough to understand that ...
4785          */
4786         if (ret == 0 || force) {
4787                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
4788                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
4789                                  PCIE_FW_HALT_F);
4790         }
4791
4792         /*
4793          * And we always return the result of the firmware RESET command
4794          * even when we force the uP into RESET ...
4795          */
4796         return ret;
4797 }
4798
4799 /**
4800  *      t4_fw_restart - restart the firmware by taking the uP out of RESET
4801  *      @adap: the adapter
4802  *      @reset: if we want to do a RESET to restart things
4803  *
4804  *      Restart firmware previously halted by t4_fw_halt().  On successful
4805  *      return the previous PF Master remains as the new PF Master and there
4806  *      is no need to issue a new HELLO command, etc.
4807  *
4808  *      We do this in two ways:
4809  *
4810  *       1. If we're dealing with newer firmware we'll simply want to take
4811  *          the chip's microprocessor out of RESET.  This will cause the
4812  *          firmware to start up from its start vector.  And then we'll loop
4813  *          until the firmware indicates it's started again (PCIE_FW.HALT
4814  *          reset to 0) or we timeout.
4815  *
4816  *       2. If we're dealing with older firmware then we'll need to RESET
4817  *          the chip since older firmware won't recognize the PCIE_FW.HALT
4818  *          flag and automatically RESET itself on startup.
4819  */
4820 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
4821 {
4822         if (reset) {
4823                 /*
4824                  * Since we're directing the RESET instead of the firmware
4825                  * doing it automatically, we need to clear the PCIE_FW.HALT
4826                  * bit.
4827                  */
4828                 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
4829
4830                 /*
4831                  * If we've been given a valid mailbox, first try to get the
4832                  * firmware to do the RESET.  If that works, great and we can
4833                  * return success.  Otherwise, if we haven't been given a
4834                  * valid mailbox or the RESET command failed, fall back to
4835                  * hitting the chip with a hammer.
4836                  */
4837                 if (mbox <= PCIE_FW_MASTER_M) {
4838                         t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
4839                         msleep(100);
4840                         if (t4_fw_reset(adap, mbox,
4841                                         PIORST_F | PIORSTMODE_F) == 0)
4842                                 return 0;
4843                 }
4844
4845                 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
4846                 msleep(2000);
4847         } else {
4848                 int ms;
4849
4850                 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
4851                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
4852                         if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
4853                                 return 0;
4854                         msleep(100);
4855                         ms += 100;
4856                 }
4857                 return -ETIMEDOUT;
4858         }
4859         return 0;
4860 }
4861
4862 /**
4863  *      t4_fw_upgrade - perform all of the steps necessary to upgrade FW
4864  *      @adap: the adapter
4865  *      @mbox: mailbox to use for the FW RESET command (if desired)
4866  *      @fw_data: the firmware image to write
4867  *      @size: image size
4868  *      @force: force upgrade even if firmware doesn't cooperate
4869  *
4870  *      Perform all of the steps necessary for upgrading an adapter's
4871  *      firmware image.  Normally this requires the cooperation of the
4872  *      existing firmware in order to halt all existing activities
4873  *      but if an invalid mailbox token is passed in we skip that step
4874  *      (though we'll still put the adapter microprocessor into RESET in
4875  *      that case).
4876  *
4877  *      On successful return the new firmware will have been loaded and
4878  *      the adapter will have been fully RESET losing all previous setup
4879  *      state.  On unsuccessful return the adapter may be completely hosed ...
4880  *      positive errno indicates that the adapter is ~probably~ intact, a
4881  *      negative errno indicates that things are looking bad ...
4882  */
4883 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
4884                   const u8 *fw_data, unsigned int size, int force)
4885 {
4886         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
4887         int reset, ret;
4888
4889         if (!t4_fw_matches_chip(adap, fw_hdr))
4890                 return -EINVAL;
4891
4892         ret = t4_fw_halt(adap, mbox, force);
4893         if (ret < 0 && !force)
4894                 return ret;
4895
4896         ret = t4_load_fw(adap, fw_data, size);
4897         if (ret < 0)
4898                 return ret;
4899
4900         /*
4901          * Older versions of the firmware don't understand the new
4902          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
4903          * restart.  So for newly loaded older firmware we'll have to do the
4904          * RESET for it so it starts up on a clean slate.  We can tell if
4905          * the newly loaded firmware will handle this right by checking
4906          * its header flags to see if it advertises the capability.
4907          */
4908         reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
4909         return t4_fw_restart(adap, mbox, reset);
4910 }
4911
4912 /**
4913  *      t4_fixup_host_params - fix up host-dependent parameters
4914  *      @adap: the adapter
4915  *      @page_size: the host's Base Page Size
4916  *      @cache_line_size: the host's Cache Line Size
4917  *
4918  *      Various registers in T4 contain values which are dependent on the
4919  *      host's Base Page and Cache Line Sizes.  This function will fix all of
4920  *      those registers with the appropriate values as passed in ...
4921  */
4922 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
4923                          unsigned int cache_line_size)
4924 {
4925         unsigned int page_shift = fls(page_size) - 1;
4926         unsigned int sge_hps = page_shift - 10;
4927         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
4928         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
4929         unsigned int fl_align_log = fls(fl_align) - 1;
4930
4931         t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
4932                      HOSTPAGESIZEPF0_V(sge_hps) |
4933                      HOSTPAGESIZEPF1_V(sge_hps) |
4934                      HOSTPAGESIZEPF2_V(sge_hps) |
4935                      HOSTPAGESIZEPF3_V(sge_hps) |
4936                      HOSTPAGESIZEPF4_V(sge_hps) |
4937                      HOSTPAGESIZEPF5_V(sge_hps) |
4938                      HOSTPAGESIZEPF6_V(sge_hps) |
4939                      HOSTPAGESIZEPF7_V(sge_hps));
4940
4941         if (is_t4(adap->params.chip)) {
4942                 t4_set_reg_field(adap, SGE_CONTROL_A,
4943                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
4944                                  EGRSTATUSPAGESIZE_F,
4945                                  INGPADBOUNDARY_V(fl_align_log -
4946                                                   INGPADBOUNDARY_SHIFT_X) |
4947                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
4948         } else {
4949                 /* T5 introduced the separation of the Free List Padding and
4950                  * Packing Boundaries.  Thus, we can select a smaller Padding
4951                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
4952                  * Bandwidth, and use a Packing Boundary which is large enough
4953                  * to avoid false sharing between CPUs, etc.
4954                  *
4955                  * For the PCI Link, the smaller the Padding Boundary the
4956                  * better.  For the Memory Controller, a smaller Padding
4957                  * Boundary is better until we cross under the Memory Line
4958                  * Size (the minimum unit of transfer to/from Memory).  If we
4959                  * have a Padding Boundary which is smaller than the Memory
4960                  * Line Size, that'll involve a Read-Modify-Write cycle on the
4961                  * Memory Controller which is never good.  For T5 the smallest
4962                  * Padding Boundary which we can select is 32 bytes which is
4963                  * larger than any known Memory Controller Line Size so we'll
4964                  * use that.
4965                  *
4966                  * T5 has a different interpretation of the "0" value for the
4967                  * Packing Boundary.  This corresponds to 16 bytes instead of
4968                  * the expected 32 bytes.  We never have a Packing Boundary
4969                  * less than 32 bytes so we can't use that special value but
4970                  * on the other hand, if we wanted 32 bytes, the best we can
4971                  * really do is 64 bytes.
4972                 */
4973                 if (fl_align <= 32) {
4974                         fl_align = 64;
4975                         fl_align_log = 6;
4976                 }
4977                 t4_set_reg_field(adap, SGE_CONTROL_A,
4978                                  INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
4979                                  EGRSTATUSPAGESIZE_F,
4980                                  INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
4981                                  EGRSTATUSPAGESIZE_V(stat_len != 64));
4982                 t4_set_reg_field(adap, SGE_CONTROL2_A,
4983                                  INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
4984                                  INGPACKBOUNDARY_V(fl_align_log -
4985                                                    INGPACKBOUNDARY_SHIFT_X));
4986         }
4987         /*
4988          * Adjust various SGE Free List Host Buffer Sizes.
4989          *
4990          * This is something of a crock since we're using fixed indices into
4991          * the array which are also known by the sge.c code and the T4
4992          * Firmware Configuration File.  We need to come up with a much better
4993          * approach to managing this array.  For now, the first four entries
4994          * are:
4995          *
4996          *   0: Host Page Size
4997          *   1: 64KB
4998          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
4999          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
5000          *
5001          * For the single-MTU buffers in unpacked mode we need to include
5002          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
5003          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
5004          * Padding boundary.  All of these are accommodated in the Factory
5005          * Default Firmware Configuration File but we need to adjust it for
5006          * this host's cache line size.
5007          */
5008         t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
5009         t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
5010                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
5011                      & ~(fl_align-1));
5012         t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
5013                      (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
5014                      & ~(fl_align-1));
5015
5016         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
5017
5018         return 0;
5019 }
5020
5021 /**
5022  *      t4_fw_initialize - ask FW to initialize the device
5023  *      @adap: the adapter
5024  *      @mbox: mailbox to use for the FW command
5025  *
5026  *      Issues a command to FW to partially initialize the device.  This
5027  *      performs initialization that generally doesn't depend on user input.
5028  */
5029 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
5030 {
5031         struct fw_initialize_cmd c;
5032
5033         memset(&c, 0, sizeof(c));
5034         INIT_CMD(c, INITIALIZE, WRITE);
5035         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5036 }
5037
5038 /**
5039  *      t4_query_params_rw - query FW or device parameters
5040  *      @adap: the adapter
5041  *      @mbox: mailbox to use for the FW command
5042  *      @pf: the PF
5043  *      @vf: the VF
5044  *      @nparams: the number of parameters
5045  *      @params: the parameter names
5046  *      @val: the parameter values
5047  *      @rw: Write and read flag
5048  *
5049  *      Reads the value of FW or device parameters.  Up to 7 parameters can be
5050  *      queried at once.
5051  */
5052 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
5053                        unsigned int vf, unsigned int nparams, const u32 *params,
5054                        u32 *val, int rw)
5055 {
5056         int i, ret;
5057         struct fw_params_cmd c;
5058         __be32 *p = &c.param[0].mnem;
5059
5060         if (nparams > 7)
5061                 return -EINVAL;
5062
5063         memset(&c, 0, sizeof(c));
5064         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5065                                   FW_CMD_REQUEST_F | FW_CMD_READ_F |
5066                                   FW_PARAMS_CMD_PFN_V(pf) |
5067                                   FW_PARAMS_CMD_VFN_V(vf));
5068         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5069
5070         for (i = 0; i < nparams; i++) {
5071                 *p++ = cpu_to_be32(*params++);
5072                 if (rw)
5073                         *p = cpu_to_be32(*(val + i));
5074                 p++;
5075         }
5076
5077         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5078         if (ret == 0)
5079                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
5080                         *val++ = be32_to_cpu(*p);
5081         return ret;
5082 }
5083
5084 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5085                     unsigned int vf, unsigned int nparams, const u32 *params,
5086                     u32 *val)
5087 {
5088         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
5089 }
5090
5091 /**
5092  *      t4_set_params_timeout - sets FW or device parameters
5093  *      @adap: the adapter
5094  *      @mbox: mailbox to use for the FW command
5095  *      @pf: the PF
5096  *      @vf: the VF
5097  *      @nparams: the number of parameters
5098  *      @params: the parameter names
5099  *      @val: the parameter values
5100  *      @timeout: the timeout time
5101  *
5102  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
5103  *      specified at once.
5104  */
5105 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
5106                           unsigned int pf, unsigned int vf,
5107                           unsigned int nparams, const u32 *params,
5108                           const u32 *val, int timeout)
5109 {
5110         struct fw_params_cmd c;
5111         __be32 *p = &c.param[0].mnem;
5112
5113         if (nparams > 7)
5114                 return -EINVAL;
5115
5116         memset(&c, 0, sizeof(c));
5117         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5118                                   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5119                                   FW_PARAMS_CMD_PFN_V(pf) |
5120                                   FW_PARAMS_CMD_VFN_V(vf));
5121         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5122
5123         while (nparams--) {
5124                 *p++ = cpu_to_be32(*params++);
5125                 *p++ = cpu_to_be32(*val++);
5126         }
5127
5128         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
5129 }
5130
5131 /**
5132  *      t4_set_params - sets FW or device parameters
5133  *      @adap: the adapter
5134  *      @mbox: mailbox to use for the FW command
5135  *      @pf: the PF
5136  *      @vf: the VF
5137  *      @nparams: the number of parameters
5138  *      @params: the parameter names
5139  *      @val: the parameter values
5140  *
5141  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
5142  *      specified at once.
5143  */
5144 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5145                   unsigned int vf, unsigned int nparams, const u32 *params,
5146                   const u32 *val)
5147 {
5148         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
5149                                      FW_CMD_MAX_TIMEOUT);
5150 }
5151
5152 /**
5153  *      t4_cfg_pfvf - configure PF/VF resource limits
5154  *      @adap: the adapter
5155  *      @mbox: mailbox to use for the FW command
5156  *      @pf: the PF being configured
5157  *      @vf: the VF being configured
5158  *      @txq: the max number of egress queues
5159  *      @txq_eth_ctrl: the max number of egress Ethernet or control queues
5160  *      @rxqi: the max number of interrupt-capable ingress queues
5161  *      @rxq: the max number of interruptless ingress queues
5162  *      @tc: the PCI traffic class
5163  *      @vi: the max number of virtual interfaces
5164  *      @cmask: the channel access rights mask for the PF/VF
5165  *      @pmask: the port access rights mask for the PF/VF
5166  *      @nexact: the maximum number of exact MPS filters
5167  *      @rcaps: read capabilities
5168  *      @wxcaps: write/execute capabilities
5169  *
5170  *      Configures resource limits and capabilities for a physical or virtual
5171  *      function.
5172  */
5173 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
5174                 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
5175                 unsigned int rxqi, unsigned int rxq, unsigned int tc,
5176                 unsigned int vi, unsigned int cmask, unsigned int pmask,
5177                 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
5178 {
5179         struct fw_pfvf_cmd c;
5180
5181         memset(&c, 0, sizeof(c));
5182         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
5183                                   FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
5184                                   FW_PFVF_CMD_VFN_V(vf));
5185         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5186         c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
5187                                      FW_PFVF_CMD_NIQ_V(rxq));
5188         c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
5189                                     FW_PFVF_CMD_PMASK_V(pmask) |
5190                                     FW_PFVF_CMD_NEQ_V(txq));
5191         c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
5192                                       FW_PFVF_CMD_NVI_V(vi) |
5193                                       FW_PFVF_CMD_NEXACTF_V(nexact));
5194         c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
5195                                         FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
5196                                         FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
5197         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5198 }
5199
5200 /**
5201  *      t4_alloc_vi - allocate a virtual interface
5202  *      @adap: the adapter
5203  *      @mbox: mailbox to use for the FW command
5204  *      @port: physical port associated with the VI
5205  *      @pf: the PF owning the VI
5206  *      @vf: the VF owning the VI
5207  *      @nmac: number of MAC addresses needed (1 to 5)
5208  *      @mac: the MAC addresses of the VI
5209  *      @rss_size: size of RSS table slice associated with this VI
5210  *
5211  *      Allocates a virtual interface for the given physical port.  If @mac is
5212  *      not %NULL it contains the MAC addresses of the VI as assigned by FW.
5213  *      @mac should be large enough to hold @nmac Ethernet addresses, they are
5214  *      stored consecutively so the space needed is @nmac * 6 bytes.
5215  *      Returns a negative error number or the non-negative VI id.
5216  */
5217 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
5218                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
5219                 unsigned int *rss_size)
5220 {
5221         int ret;
5222         struct fw_vi_cmd c;
5223
5224         memset(&c, 0, sizeof(c));
5225         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
5226                                   FW_CMD_WRITE_F | FW_CMD_EXEC_F |
5227                                   FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
5228         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
5229         c.portid_pkd = FW_VI_CMD_PORTID_V(port);
5230         c.nmac = nmac - 1;
5231
5232         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5233         if (ret)
5234                 return ret;
5235
5236         if (mac) {
5237                 memcpy(mac, c.mac, sizeof(c.mac));
5238                 switch (nmac) {
5239                 case 5:
5240                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
5241                 case 4:
5242                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
5243                 case 3:
5244                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
5245                 case 2:
5246                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
5247                 }
5248         }
5249         if (rss_size)
5250                 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
5251         return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
5252 }
5253
5254 /**
5255  *      t4_free_vi - free a virtual interface
5256  *      @adap: the adapter
5257  *      @mbox: mailbox to use for the FW command
5258  *      @pf: the PF owning the VI
5259  *      @vf: the VF owning the VI
5260  *      @viid: virtual interface identifiler
5261  *
5262  *      Free a previously allocated virtual interface.
5263  */
5264 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
5265                unsigned int vf, unsigned int viid)
5266 {
5267         struct fw_vi_cmd c;
5268
5269         memset(&c, 0, sizeof(c));
5270         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
5271                                   FW_CMD_REQUEST_F |
5272                                   FW_CMD_EXEC_F |
5273                                   FW_VI_CMD_PFN_V(pf) |
5274                                   FW_VI_CMD_VFN_V(vf));
5275         c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
5276         c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
5277
5278         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5279 }
5280
5281 /**
5282  *      t4_set_rxmode - set Rx properties of a virtual interface
5283  *      @adap: the adapter
5284  *      @mbox: mailbox to use for the FW command
5285  *      @viid: the VI id
5286  *      @mtu: the new MTU or -1
5287  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
5288  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
5289  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
5290  *      @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
5291  *      @sleep_ok: if true we may sleep while awaiting command completion
5292  *
5293  *      Sets Rx properties of a virtual interface.
5294  */
5295 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
5296                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
5297                   bool sleep_ok)
5298 {
5299         struct fw_vi_rxmode_cmd c;
5300
5301         /* convert to FW values */
5302         if (mtu < 0)
5303                 mtu = FW_RXMODE_MTU_NO_CHG;
5304         if (promisc < 0)
5305                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
5306         if (all_multi < 0)
5307                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
5308         if (bcast < 0)
5309                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
5310         if (vlanex < 0)
5311                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
5312
5313         memset(&c, 0, sizeof(c));
5314         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
5315                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5316                                    FW_VI_RXMODE_CMD_VIID_V(viid));
5317         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5318         c.mtu_to_vlanexen =
5319                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
5320                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
5321                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
5322                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
5323                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
5324         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5325 }
5326
5327 /**
5328  *      t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
5329  *      @adap: the adapter
5330  *      @mbox: mailbox to use for the FW command
5331  *      @viid: the VI id
5332  *      @free: if true any existing filters for this VI id are first removed
5333  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
5334  *      @addr: the MAC address(es)
5335  *      @idx: where to store the index of each allocated filter
5336  *      @hash: pointer to hash address filter bitmap
5337  *      @sleep_ok: call is allowed to sleep
5338  *
5339  *      Allocates an exact-match filter for each of the supplied addresses and
5340  *      sets it to the corresponding address.  If @idx is not %NULL it should
5341  *      have at least @naddr entries, each of which will be set to the index of
5342  *      the filter allocated for the corresponding MAC address.  If a filter
5343  *      could not be allocated for an address its index is set to 0xffff.
5344  *      If @hash is not %NULL addresses that fail to allocate an exact filter
5345  *      are hashed and update the hash filter bitmap pointed at by @hash.
5346  *
5347  *      Returns a negative error number or the number of filters allocated.
5348  */
5349 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
5350                       unsigned int viid, bool free, unsigned int naddr,
5351                       const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
5352 {
5353         int offset, ret = 0;
5354         struct fw_vi_mac_cmd c;
5355         unsigned int nfilters = 0;
5356         unsigned int max_naddr = adap->params.arch.mps_tcam_size;
5357         unsigned int rem = naddr;
5358
5359         if (naddr > max_naddr)
5360                 return -EINVAL;
5361
5362         for (offset = 0; offset < naddr ; /**/) {
5363                 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
5364                                          rem : ARRAY_SIZE(c.u.exact));
5365                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
5366                                                      u.exact[fw_naddr]), 16);
5367                 struct fw_vi_mac_exact *p;
5368                 int i;
5369
5370                 memset(&c, 0, sizeof(c));
5371                 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5372                                            FW_CMD_REQUEST_F |
5373                                            FW_CMD_WRITE_F |
5374                                            FW_CMD_EXEC_V(free) |
5375                                            FW_VI_MAC_CMD_VIID_V(viid));
5376                 c.freemacs_to_len16 =
5377                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
5378                                     FW_CMD_LEN16_V(len16));
5379
5380                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5381                         p->valid_to_idx =
5382                                 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5383                                             FW_VI_MAC_CMD_IDX_V(
5384                                                     FW_VI_MAC_ADD_MAC));
5385                         memcpy(p->macaddr, addr[offset + i],
5386                                sizeof(p->macaddr));
5387                 }
5388
5389                 /* It's okay if we run out of space in our MAC address arena.
5390                  * Some of the addresses we submit may get stored so we need
5391                  * to run through the reply to see what the results were ...
5392                  */
5393                 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5394                 if (ret && ret != -FW_ENOMEM)
5395                         break;
5396
5397                 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5398                         u16 index = FW_VI_MAC_CMD_IDX_G(
5399                                         be16_to_cpu(p->valid_to_idx));
5400
5401                         if (idx)
5402                                 idx[offset + i] = (index >= max_naddr ?
5403                                                    0xffff : index);
5404                         if (index < max_naddr)
5405                                 nfilters++;
5406                         else if (hash)
5407                                 *hash |= (1ULL <<
5408                                           hash_mac_addr(addr[offset + i]));
5409                 }
5410
5411                 free = false;
5412                 offset += fw_naddr;
5413                 rem -= fw_naddr;
5414         }
5415
5416         if (ret == 0 || ret == -FW_ENOMEM)
5417                 ret = nfilters;
5418         return ret;
5419 }
5420
5421 /**
5422  *      t4_change_mac - modifies the exact-match filter for a MAC address
5423  *      @adap: the adapter
5424  *      @mbox: mailbox to use for the FW command
5425  *      @viid: the VI id
5426  *      @idx: index of existing filter for old value of MAC address, or -1
5427  *      @addr: the new MAC address value
5428  *      @persist: whether a new MAC allocation should be persistent
5429  *      @add_smt: if true also add the address to the HW SMT
5430  *
5431  *      Modifies an exact-match filter and sets it to the new MAC address.
5432  *      Note that in general it is not possible to modify the value of a given
5433  *      filter so the generic way to modify an address filter is to free the one
5434  *      being used by the old address value and allocate a new filter for the
5435  *      new address value.  @idx can be -1 if the address is a new addition.
5436  *
5437  *      Returns a negative error number or the index of the filter with the new
5438  *      MAC value.
5439  */
5440 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5441                   int idx, const u8 *addr, bool persist, bool add_smt)
5442 {
5443         int ret, mode;
5444         struct fw_vi_mac_cmd c;
5445         struct fw_vi_mac_exact *p = c.u.exact;
5446         unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
5447
5448         if (idx < 0)                             /* new allocation */
5449                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5450         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5451
5452         memset(&c, 0, sizeof(c));
5453         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5454                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5455                                    FW_VI_MAC_CMD_VIID_V(viid));
5456         c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
5457         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5458                                       FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
5459                                       FW_VI_MAC_CMD_IDX_V(idx));
5460         memcpy(p->macaddr, addr, sizeof(p->macaddr));
5461
5462         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5463         if (ret == 0) {
5464                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
5465                 if (ret >= max_mac_addr)
5466                         ret = -ENOMEM;
5467         }
5468         return ret;
5469 }
5470
5471 /**
5472  *      t4_set_addr_hash - program the MAC inexact-match hash filter
5473  *      @adap: the adapter
5474  *      @mbox: mailbox to use for the FW command
5475  *      @viid: the VI id
5476  *      @ucast: whether the hash filter should also match unicast addresses
5477  *      @vec: the value to be written to the hash filter
5478  *      @sleep_ok: call is allowed to sleep
5479  *
5480  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
5481  */
5482 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5483                      bool ucast, u64 vec, bool sleep_ok)
5484 {
5485         struct fw_vi_mac_cmd c;
5486
5487         memset(&c, 0, sizeof(c));
5488         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5489                                    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5490                                    FW_VI_ENABLE_CMD_VIID_V(viid));
5491         c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
5492                                           FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
5493                                           FW_CMD_LEN16_V(1));
5494         c.u.hash.hashvec = cpu_to_be64(vec);
5495         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5496 }
5497
5498 /**
5499  *      t4_enable_vi_params - enable/disable a virtual interface
5500  *      @adap: the adapter
5501  *      @mbox: mailbox to use for the FW command
5502  *      @viid: the VI id
5503  *      @rx_en: 1=enable Rx, 0=disable Rx
5504  *      @tx_en: 1=enable Tx, 0=disable Tx
5505  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
5506  *
5507  *      Enables/disables a virtual interface.  Note that setting DCB Enable
5508  *      only makes sense when enabling a Virtual Interface ...
5509  */
5510 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
5511                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
5512 {
5513         struct fw_vi_enable_cmd c;
5514
5515         memset(&c, 0, sizeof(c));
5516         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5517                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5518                                    FW_VI_ENABLE_CMD_VIID_V(viid));
5519         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
5520                                      FW_VI_ENABLE_CMD_EEN_V(tx_en) |
5521                                      FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
5522                                      FW_LEN16(c));
5523         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
5524 }
5525
5526 /**
5527  *      t4_enable_vi - enable/disable a virtual interface
5528  *      @adap: the adapter
5529  *      @mbox: mailbox to use for the FW command
5530  *      @viid: the VI id
5531  *      @rx_en: 1=enable Rx, 0=disable Rx
5532  *      @tx_en: 1=enable Tx, 0=disable Tx
5533  *
5534  *      Enables/disables a virtual interface.
5535  */
5536 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5537                  bool rx_en, bool tx_en)
5538 {
5539         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
5540 }
5541
5542 /**
5543  *      t4_identify_port - identify a VI's port by blinking its LED
5544  *      @adap: the adapter
5545  *      @mbox: mailbox to use for the FW command
5546  *      @viid: the VI id
5547  *      @nblinks: how many times to blink LED at 2.5 Hz
5548  *
5549  *      Identifies a VI's port by blinking its LED.
5550  */
5551 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5552                      unsigned int nblinks)
5553 {
5554         struct fw_vi_enable_cmd c;
5555
5556         memset(&c, 0, sizeof(c));
5557         c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5558                                    FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5559                                    FW_VI_ENABLE_CMD_VIID_V(viid));
5560         c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
5561         c.blinkdur = cpu_to_be16(nblinks);
5562         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5563 }
5564
5565 /**
5566  *      t4_iq_free - free an ingress queue and its FLs
5567  *      @adap: the adapter
5568  *      @mbox: mailbox to use for the FW command
5569  *      @pf: the PF owning the queues
5570  *      @vf: the VF owning the queues
5571  *      @iqtype: the ingress queue type
5572  *      @iqid: ingress queue id
5573  *      @fl0id: FL0 queue id or 0xffff if no attached FL0
5574  *      @fl1id: FL1 queue id or 0xffff if no attached FL1
5575  *
5576  *      Frees an ingress queue and its associated FLs, if any.
5577  */
5578 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5579                unsigned int vf, unsigned int iqtype, unsigned int iqid,
5580                unsigned int fl0id, unsigned int fl1id)
5581 {
5582         struct fw_iq_cmd c;
5583
5584         memset(&c, 0, sizeof(c));
5585         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
5586                                   FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
5587                                   FW_IQ_CMD_VFN_V(vf));
5588         c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
5589         c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
5590         c.iqid = cpu_to_be16(iqid);
5591         c.fl0id = cpu_to_be16(fl0id);
5592         c.fl1id = cpu_to_be16(fl1id);
5593         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5594 }
5595
5596 /**
5597  *      t4_eth_eq_free - free an Ethernet egress queue
5598  *      @adap: the adapter
5599  *      @mbox: mailbox to use for the FW command
5600  *      @pf: the PF owning the queue
5601  *      @vf: the VF owning the queue
5602  *      @eqid: egress queue id
5603  *
5604  *      Frees an Ethernet egress queue.
5605  */
5606 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5607                    unsigned int vf, unsigned int eqid)
5608 {
5609         struct fw_eq_eth_cmd c;
5610
5611         memset(&c, 0, sizeof(c));
5612         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
5613                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5614                                   FW_EQ_ETH_CMD_PFN_V(pf) |
5615                                   FW_EQ_ETH_CMD_VFN_V(vf));
5616         c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
5617         c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
5618         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5619 }
5620
5621 /**
5622  *      t4_ctrl_eq_free - free a control egress queue
5623  *      @adap: the adapter
5624  *      @mbox: mailbox to use for the FW command
5625  *      @pf: the PF owning the queue
5626  *      @vf: the VF owning the queue
5627  *      @eqid: egress queue id
5628  *
5629  *      Frees a control egress queue.
5630  */
5631 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5632                     unsigned int vf, unsigned int eqid)
5633 {
5634         struct fw_eq_ctrl_cmd c;
5635
5636         memset(&c, 0, sizeof(c));
5637         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
5638                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5639                                   FW_EQ_CTRL_CMD_PFN_V(pf) |
5640                                   FW_EQ_CTRL_CMD_VFN_V(vf));
5641         c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
5642         c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
5643         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5644 }
5645
5646 /**
5647  *      t4_ofld_eq_free - free an offload egress queue
5648  *      @adap: the adapter
5649  *      @mbox: mailbox to use for the FW command
5650  *      @pf: the PF owning the queue
5651  *      @vf: the VF owning the queue
5652  *      @eqid: egress queue id
5653  *
5654  *      Frees a control egress queue.
5655  */
5656 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5657                     unsigned int vf, unsigned int eqid)
5658 {
5659         struct fw_eq_ofld_cmd c;
5660
5661         memset(&c, 0, sizeof(c));
5662         c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
5663                                   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5664                                   FW_EQ_OFLD_CMD_PFN_V(pf) |
5665                                   FW_EQ_OFLD_CMD_VFN_V(vf));
5666         c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
5667         c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
5668         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5669 }
5670
5671 /**
5672  *      t4_handle_fw_rpl - process a FW reply message
5673  *      @adap: the adapter
5674  *      @rpl: start of the FW message
5675  *
5676  *      Processes a FW message, such as link state change messages.
5677  */
5678 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
5679 {
5680         u8 opcode = *(const u8 *)rpl;
5681
5682         if (opcode == FW_PORT_CMD) {    /* link/module state change message */
5683                 int speed = 0, fc = 0;
5684                 const struct fw_port_cmd *p = (void *)rpl;
5685                 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
5686                 int port = adap->chan_map[chan];
5687                 struct port_info *pi = adap2pinfo(adap, port);
5688                 struct link_config *lc = &pi->link_cfg;
5689                 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
5690                 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
5691                 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
5692
5693                 if (stat & FW_PORT_CMD_RXPAUSE_F)
5694                         fc |= PAUSE_RX;
5695                 if (stat & FW_PORT_CMD_TXPAUSE_F)
5696                         fc |= PAUSE_TX;
5697                 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
5698                         speed = 100;
5699                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
5700                         speed = 1000;
5701                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
5702                         speed = 10000;
5703                 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
5704                         speed = 40000;
5705
5706                 if (link_ok != lc->link_ok || speed != lc->speed ||
5707                     fc != lc->fc) {                    /* something changed */
5708                         lc->link_ok = link_ok;
5709                         lc->speed = speed;
5710                         lc->fc = fc;
5711                         lc->supported = be16_to_cpu(p->u.info.pcap);
5712                         t4_os_link_changed(adap, port, link_ok);
5713                 }
5714                 if (mod != pi->mod_type) {
5715                         pi->mod_type = mod;
5716                         t4_os_portmod_changed(adap, port);
5717                 }
5718         }
5719         return 0;
5720 }
5721
5722 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
5723 {
5724         u16 val;
5725
5726         if (pci_is_pcie(adapter->pdev)) {
5727                 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
5728                 p->speed = val & PCI_EXP_LNKSTA_CLS;
5729                 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
5730         }
5731 }
5732
5733 /**
5734  *      init_link_config - initialize a link's SW state
5735  *      @lc: structure holding the link state
5736  *      @caps: link capabilities
5737  *
5738  *      Initializes the SW state maintained for each link, including the link's
5739  *      capabilities and default speed/flow-control/autonegotiation settings.
5740  */
5741 static void init_link_config(struct link_config *lc, unsigned int caps)
5742 {
5743         lc->supported = caps;
5744         lc->requested_speed = 0;
5745         lc->speed = 0;
5746         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5747         if (lc->supported & FW_PORT_CAP_ANEG) {
5748                 lc->advertising = lc->supported & ADVERT_MASK;
5749                 lc->autoneg = AUTONEG_ENABLE;
5750                 lc->requested_fc |= PAUSE_AUTONEG;
5751         } else {
5752                 lc->advertising = 0;
5753                 lc->autoneg = AUTONEG_DISABLE;
5754         }
5755 }
5756
5757 #define CIM_PF_NOACCESS 0xeeeeeeee
5758
5759 int t4_wait_dev_ready(void __iomem *regs)
5760 {
5761         u32 whoami;
5762
5763         whoami = readl(regs + PL_WHOAMI_A);
5764         if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
5765                 return 0;
5766
5767         msleep(500);
5768         whoami = readl(regs + PL_WHOAMI_A);
5769         return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
5770 }
5771
5772 struct flash_desc {
5773         u32 vendor_and_model_id;
5774         u32 size_mb;
5775 };
5776
5777 static int get_flash_params(struct adapter *adap)
5778 {
5779         /* Table for non-Numonix supported flash parts.  Numonix parts are left
5780          * to the preexisting code.  All flash parts have 64KB sectors.
5781          */
5782         static struct flash_desc supported_flash[] = {
5783                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
5784         };
5785
5786         int ret;
5787         u32 info;
5788
5789         ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
5790         if (!ret)
5791                 ret = sf1_read(adap, 3, 0, 1, &info);
5792         t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
5793         if (ret)
5794                 return ret;
5795
5796         for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
5797                 if (supported_flash[ret].vendor_and_model_id == info) {
5798                         adap->params.sf_size = supported_flash[ret].size_mb;
5799                         adap->params.sf_nsec =
5800                                 adap->params.sf_size / SF_SEC_SIZE;
5801                         return 0;
5802                 }
5803
5804         if ((info & 0xff) != 0x20)             /* not a Numonix flash */
5805                 return -EINVAL;
5806         info >>= 16;                           /* log2 of size */
5807         if (info >= 0x14 && info < 0x18)
5808                 adap->params.sf_nsec = 1 << (info - 16);
5809         else if (info == 0x18)
5810                 adap->params.sf_nsec = 64;
5811         else
5812                 return -EINVAL;
5813         adap->params.sf_size = 1 << info;
5814         adap->params.sf_fw_start =
5815                 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
5816
5817         if (adap->params.sf_size < FLASH_MIN_SIZE)
5818                 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
5819                          adap->params.sf_size, FLASH_MIN_SIZE);
5820         return 0;
5821 }
5822
5823 /**
5824  *      t4_prep_adapter - prepare SW and HW for operation
5825  *      @adapter: the adapter
5826  *      @reset: if true perform a HW reset
5827  *
5828  *      Initialize adapter SW state for the various HW modules, set initial
5829  *      values for some adapter tunables, take PHYs out of reset, and
5830  *      initialize the MDIO interface.
5831  */
5832 int t4_prep_adapter(struct adapter *adapter)
5833 {
5834         int ret, ver;
5835         uint16_t device_id;
5836         u32 pl_rev;
5837
5838         get_pci_mode(adapter, &adapter->params.pci);
5839         pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
5840
5841         ret = get_flash_params(adapter);
5842         if (ret < 0) {
5843                 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
5844                 return ret;
5845         }
5846
5847         /* Retrieve adapter's device ID
5848          */
5849         pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
5850         ver = device_id >> 12;
5851         adapter->params.chip = 0;
5852         switch (ver) {
5853         case CHELSIO_T4:
5854                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5855                 adapter->params.arch.sge_fl_db = DBPRIO_F;
5856                 adapter->params.arch.mps_tcam_size =
5857                                  NUM_MPS_CLS_SRAM_L_INSTANCES;
5858                 adapter->params.arch.mps_rplc_size = 128;
5859                 adapter->params.arch.nchan = NCHAN;
5860                 adapter->params.arch.vfcount = 128;
5861                 break;
5862         case CHELSIO_T5:
5863                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5864                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
5865                 adapter->params.arch.mps_tcam_size =
5866                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5867                 adapter->params.arch.mps_rplc_size = 128;
5868                 adapter->params.arch.nchan = NCHAN;
5869                 adapter->params.arch.vfcount = 128;
5870                 break;
5871         case CHELSIO_T6:
5872                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5873                 adapter->params.arch.sge_fl_db = 0;
5874                 adapter->params.arch.mps_tcam_size =
5875                                  NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5876                 adapter->params.arch.mps_rplc_size = 256;
5877                 adapter->params.arch.nchan = 2;
5878                 adapter->params.arch.vfcount = 256;
5879                 break;
5880         default:
5881                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5882                         device_id);
5883                 return -EINVAL;
5884         }
5885
5886         adapter->params.cim_la_size = CIMLA_SIZE;
5887         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5888
5889         /*
5890          * Default port for debugging in case we can't reach FW.
5891          */
5892         adapter->params.nports = 1;
5893         adapter->params.portvec = 1;
5894         adapter->params.vpd.cclk = 50000;
5895         return 0;
5896 }
5897
5898 /**
5899  *      t4_bar2_sge_qregs - return BAR2 SGE Queue register information
5900  *      @adapter: the adapter
5901  *      @qid: the Queue ID
5902  *      @qtype: the Ingress or Egress type for @qid
5903  *      @pbar2_qoffset: BAR2 Queue Offset
5904  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
5905  *
5906  *      Returns the BAR2 SGE Queue Registers information associated with the
5907  *      indicated Absolute Queue ID.  These are passed back in return value
5908  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
5909  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
5910  *
5911  *      This may return an error which indicates that BAR2 SGE Queue
5912  *      registers aren't available.  If an error is not returned, then the
5913  *      following values are returned:
5914  *
5915  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
5916  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
5917  *
5918  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
5919  *      require the "Inferred Queue ID" ability may be used.  E.g. the
5920  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
5921  *      then these "Inferred Queue ID" register may not be used.
5922  */
5923 int t4_bar2_sge_qregs(struct adapter *adapter,
5924                       unsigned int qid,
5925                       enum t4_bar2_qtype qtype,
5926                       u64 *pbar2_qoffset,
5927                       unsigned int *pbar2_qid)
5928 {
5929         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
5930         u64 bar2_page_offset, bar2_qoffset;
5931         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
5932
5933         /* T4 doesn't support BAR2 SGE Queue registers.
5934          */
5935         if (is_t4(adapter->params.chip))
5936                 return -EINVAL;
5937
5938         /* Get our SGE Page Size parameters.
5939          */
5940         page_shift = adapter->params.sge.hps + 10;
5941         page_size = 1 << page_shift;
5942
5943         /* Get the right Queues per Page parameters for our Queue.
5944          */
5945         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
5946                      ? adapter->params.sge.eq_qpp
5947                      : adapter->params.sge.iq_qpp);
5948         qpp_mask = (1 << qpp_shift) - 1;
5949
5950         /*  Calculate the basics of the BAR2 SGE Queue register area:
5951          *  o The BAR2 page the Queue registers will be in.
5952          *  o The BAR2 Queue ID.
5953          *  o The BAR2 Queue ID Offset into the BAR2 page.
5954          */
5955         bar2_page_offset = ((qid >> qpp_shift) << page_shift);
5956         bar2_qid = qid & qpp_mask;
5957         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
5958
5959         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
5960          * hardware will infer the Absolute Queue ID simply from the writes to
5961          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
5962          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
5963          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
5964          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
5965          * from the BAR2 Page and BAR2 Queue ID.
5966          *
5967          * One important censequence of this is that some BAR2 SGE registers
5968          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
5969          * there.  But other registers synthesize the SGE Queue ID purely
5970          * from the writes to the registers -- the Write Combined Doorbell
5971          * Buffer is a good example.  These BAR2 SGE Registers are only
5972          * available for those BAR2 SGE Register areas where the SGE Absolute
5973          * Queue ID can be inferred from simple writes.
5974          */
5975         bar2_qoffset = bar2_page_offset;
5976         bar2_qinferred = (bar2_qid_offset < page_size);
5977         if (bar2_qinferred) {
5978                 bar2_qoffset += bar2_qid_offset;
5979                 bar2_qid = 0;
5980         }
5981
5982         *pbar2_qoffset = bar2_qoffset;
5983         *pbar2_qid = bar2_qid;
5984         return 0;
5985 }
5986
5987 /**
5988  *      t4_init_devlog_params - initialize adapter->params.devlog
5989  *      @adap: the adapter
5990  *
5991  *      Initialize various fields of the adapter's Firmware Device Log
5992  *      Parameters structure.
5993  */
5994 int t4_init_devlog_params(struct adapter *adap)
5995 {
5996         struct devlog_params *dparams = &adap->params.devlog;
5997         u32 pf_dparams;
5998         unsigned int devlog_meminfo;
5999         struct fw_devlog_cmd devlog_cmd;
6000         int ret;
6001
6002         /* If we're dealing with newer firmware, the Device Log Paramerters
6003          * are stored in a designated register which allows us to access the
6004          * Device Log even if we can't talk to the firmware.
6005          */
6006         pf_dparams =
6007                 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
6008         if (pf_dparams) {
6009                 unsigned int nentries, nentries128;
6010
6011                 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
6012                 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
6013
6014                 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
6015                 nentries = (nentries128 + 1) * 128;
6016                 dparams->size = nentries * sizeof(struct fw_devlog_e);
6017
6018                 return 0;
6019         }
6020
6021         /* Otherwise, ask the firmware for it's Device Log Parameters.
6022          */
6023         memset(&devlog_cmd, 0, sizeof(devlog_cmd));
6024         devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
6025                                              FW_CMD_REQUEST_F | FW_CMD_READ_F);
6026         devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
6027         ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
6028                          &devlog_cmd);
6029         if (ret)
6030                 return ret;
6031
6032         devlog_meminfo =
6033                 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
6034         dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
6035         dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
6036         dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
6037
6038         return 0;
6039 }
6040
6041 /**
6042  *      t4_init_sge_params - initialize adap->params.sge
6043  *      @adapter: the adapter
6044  *
6045  *      Initialize various fields of the adapter's SGE Parameters structure.
6046  */
6047 int t4_init_sge_params(struct adapter *adapter)
6048 {
6049         struct sge_params *sge_params = &adapter->params.sge;
6050         u32 hps, qpp;
6051         unsigned int s_hps, s_qpp;
6052
6053         /* Extract the SGE Page Size for our PF.
6054          */
6055         hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
6056         s_hps = (HOSTPAGESIZEPF0_S +
6057                  (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
6058         sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
6059
6060         /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
6061          */
6062         s_qpp = (QUEUESPERPAGEPF0_S +
6063                 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
6064         qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
6065         sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6066         qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
6067         sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6068
6069         return 0;
6070 }
6071
6072 /**
6073  *      t4_init_tp_params - initialize adap->params.tp
6074  *      @adap: the adapter
6075  *
6076  *      Initialize various fields of the adapter's TP Parameters structure.
6077  */
6078 int t4_init_tp_params(struct adapter *adap)
6079 {
6080         int chan;
6081         u32 v;
6082
6083         v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
6084         adap->params.tp.tre = TIMERRESOLUTION_G(v);
6085         adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
6086
6087         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
6088         for (chan = 0; chan < NCHAN; chan++)
6089                 adap->params.tp.tx_modq[chan] = chan;
6090
6091         /* Cache the adapter's Compressed Filter Mode and global Incress
6092          * Configuration.
6093          */
6094         t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6095                          &adap->params.tp.vlan_pri_map, 1,
6096                          TP_VLAN_PRI_MAP_A);
6097         t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6098                          &adap->params.tp.ingress_config, 1,
6099                          TP_INGRESS_CONFIG_A);
6100
6101         /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
6102          * shift positions of several elements of the Compressed Filter Tuple
6103          * for this adapter which we need frequently ...
6104          */
6105         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
6106         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
6107         adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
6108         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
6109                                                                PROTOCOL_F);
6110
6111         /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
6112          * represents the presence of an Outer VLAN instead of a VNIC ID.
6113          */
6114         if ((adap->params.tp.ingress_config & VNIC_F) == 0)
6115                 adap->params.tp.vnic_shift = -1;
6116
6117         return 0;
6118 }
6119
6120 /**
6121  *      t4_filter_field_shift - calculate filter field shift
6122  *      @adap: the adapter
6123  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
6124  *
6125  *      Return the shift position of a filter field within the Compressed
6126  *      Filter Tuple.  The filter field is specified via its selection bit
6127  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
6128  */
6129 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
6130 {
6131         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
6132         unsigned int sel;
6133         int field_shift;
6134
6135         if ((filter_mode & filter_sel) == 0)
6136                 return -1;
6137
6138         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
6139                 switch (filter_mode & sel) {
6140                 case FCOE_F:
6141                         field_shift += FT_FCOE_W;
6142                         break;
6143                 case PORT_F:
6144                         field_shift += FT_PORT_W;
6145                         break;
6146                 case VNIC_ID_F:
6147                         field_shift += FT_VNIC_ID_W;
6148                         break;
6149                 case VLAN_F:
6150                         field_shift += FT_VLAN_W;
6151                         break;
6152                 case TOS_F:
6153                         field_shift += FT_TOS_W;
6154                         break;
6155                 case PROTOCOL_F:
6156                         field_shift += FT_PROTOCOL_W;
6157                         break;
6158                 case ETHERTYPE_F:
6159                         field_shift += FT_ETHERTYPE_W;
6160                         break;
6161                 case MACMATCH_F:
6162                         field_shift += FT_MACMATCH_W;
6163                         break;
6164                 case MPSHITTYPE_F:
6165                         field_shift += FT_MPSHITTYPE_W;
6166                         break;
6167                 case FRAGMENTATION_F:
6168                         field_shift += FT_FRAGMENTATION_W;
6169                         break;
6170                 }
6171         }
6172         return field_shift;
6173 }
6174
6175 int t4_init_rss_mode(struct adapter *adap, int mbox)
6176 {
6177         int i, ret;
6178         struct fw_rss_vi_config_cmd rvc;
6179
6180         memset(&rvc, 0, sizeof(rvc));
6181
6182         for_each_port(adap, i) {
6183                 struct port_info *p = adap2pinfo(adap, i);
6184
6185                 rvc.op_to_viid =
6186                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6187                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
6188                                     FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
6189                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6190                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6191                 if (ret)
6192                         return ret;
6193                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6194         }
6195         return 0;
6196 }
6197
6198 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
6199 {
6200         u8 addr[6];
6201         int ret, i, j = 0;
6202         struct fw_port_cmd c;
6203         struct fw_rss_vi_config_cmd rvc;
6204
6205         memset(&c, 0, sizeof(c));
6206         memset(&rvc, 0, sizeof(rvc));
6207
6208         for_each_port(adap, i) {
6209                 unsigned int rss_size;
6210                 struct port_info *p = adap2pinfo(adap, i);
6211
6212                 while ((adap->params.portvec & (1 << j)) == 0)
6213                         j++;
6214
6215                 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
6216                                              FW_CMD_REQUEST_F | FW_CMD_READ_F |
6217                                              FW_PORT_CMD_PORTID_V(j));
6218                 c.action_to_len16 = cpu_to_be32(
6219                         FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
6220                         FW_LEN16(c));
6221                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6222                 if (ret)
6223                         return ret;
6224
6225                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
6226                 if (ret < 0)
6227                         return ret;
6228
6229                 p->viid = ret;
6230                 p->tx_chan = j;
6231                 p->lport = j;
6232                 p->rss_size = rss_size;
6233                 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
6234                 adap->port[i]->dev_port = j;
6235
6236                 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
6237                 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
6238                         FW_PORT_CMD_MDIOADDR_G(ret) : -1;
6239                 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
6240                 p->mod_type = FW_PORT_MOD_TYPE_NA;
6241
6242                 rvc.op_to_viid =
6243                         cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6244                                     FW_CMD_REQUEST_F | FW_CMD_READ_F |
6245                                     FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
6246                 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6247                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6248                 if (ret)
6249                         return ret;
6250                 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6251
6252                 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
6253                 j++;
6254         }
6255         return 0;
6256 }
6257
6258 /**
6259  *      t4_read_cimq_cfg - read CIM queue configuration
6260  *      @adap: the adapter
6261  *      @base: holds the queue base addresses in bytes
6262  *      @size: holds the queue sizes in bytes
6263  *      @thres: holds the queue full thresholds in bytes
6264  *
6265  *      Returns the current configuration of the CIM queues, starting with
6266  *      the IBQs, then the OBQs.
6267  */
6268 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
6269 {
6270         unsigned int i, v;
6271         int cim_num_obq = is_t4(adap->params.chip) ?
6272                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6273
6274         for (i = 0; i < CIM_NUM_IBQ; i++) {
6275                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
6276                              QUENUMSELECT_V(i));
6277                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6278                 /* value is in 256-byte units */
6279                 *base++ = CIMQBASE_G(v) * 256;
6280                 *size++ = CIMQSIZE_G(v) * 256;
6281                 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
6282         }
6283         for (i = 0; i < cim_num_obq; i++) {
6284                 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6285                              QUENUMSELECT_V(i));
6286                 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6287                 /* value is in 256-byte units */
6288                 *base++ = CIMQBASE_G(v) * 256;
6289                 *size++ = CIMQSIZE_G(v) * 256;
6290         }
6291 }
6292
6293 /**
6294  *      t4_read_cim_ibq - read the contents of a CIM inbound queue
6295  *      @adap: the adapter
6296  *      @qid: the queue index
6297  *      @data: where to store the queue contents
6298  *      @n: capacity of @data in 32-bit words
6299  *
6300  *      Reads the contents of the selected CIM queue starting at address 0 up
6301  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
6302  *      error and the number of 32-bit words actually read on success.
6303  */
6304 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6305 {
6306         int i, err, attempts;
6307         unsigned int addr;
6308         const unsigned int nwords = CIM_IBQ_SIZE * 4;
6309
6310         if (qid > 5 || (n & 3))
6311                 return -EINVAL;
6312
6313         addr = qid * nwords;
6314         if (n > nwords)
6315                 n = nwords;
6316
6317         /* It might take 3-10ms before the IBQ debug read access is allowed.
6318          * Wait for 1 Sec with a delay of 1 usec.
6319          */
6320         attempts = 1000000;
6321
6322         for (i = 0; i < n; i++, addr++) {
6323                 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
6324                              IBQDBGEN_F);
6325                 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
6326                                       attempts, 1);
6327                 if (err)
6328                         return err;
6329                 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
6330         }
6331         t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
6332         return i;
6333 }
6334
6335 /**
6336  *      t4_read_cim_obq - read the contents of a CIM outbound queue
6337  *      @adap: the adapter
6338  *      @qid: the queue index
6339  *      @data: where to store the queue contents
6340  *      @n: capacity of @data in 32-bit words
6341  *
6342  *      Reads the contents of the selected CIM queue starting at address 0 up
6343  *      to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
6344  *      error and the number of 32-bit words actually read on success.
6345  */
6346 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6347 {
6348         int i, err;
6349         unsigned int addr, v, nwords;
6350         int cim_num_obq = is_t4(adap->params.chip) ?
6351                                 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6352
6353         if ((qid > (cim_num_obq - 1)) || (n & 3))
6354                 return -EINVAL;
6355
6356         t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6357                      QUENUMSELECT_V(qid));
6358         v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6359
6360         addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
6361         nwords = CIMQSIZE_G(v) * 64;  /* same */
6362         if (n > nwords)
6363                 n = nwords;
6364
6365         for (i = 0; i < n; i++, addr++) {
6366                 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
6367                              OBQDBGEN_F);
6368                 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
6369                                       2, 1);
6370                 if (err)
6371                         return err;
6372                 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
6373         }
6374         t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
6375         return i;
6376 }
6377
6378 /**
6379  *      t4_cim_read - read a block from CIM internal address space
6380  *      @adap: the adapter
6381  *      @addr: the start address within the CIM address space
6382  *      @n: number of words to read
6383  *      @valp: where to store the result
6384  *
6385  *      Reads a block of 4-byte words from the CIM intenal address space.
6386  */
6387 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
6388                 unsigned int *valp)
6389 {
6390         int ret = 0;
6391
6392         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6393                 return -EBUSY;
6394
6395         for ( ; !ret && n--; addr += 4) {
6396                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
6397                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6398                                       0, 5, 2);
6399                 if (!ret)
6400                         *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
6401         }
6402         return ret;
6403 }
6404
6405 /**
6406  *      t4_cim_write - write a block into CIM internal address space
6407  *      @adap: the adapter
6408  *      @addr: the start address within the CIM address space
6409  *      @n: number of words to write
6410  *      @valp: set of values to write
6411  *
6412  *      Writes a block of 4-byte words into the CIM intenal address space.
6413  */
6414 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
6415                  const unsigned int *valp)
6416 {
6417         int ret = 0;
6418
6419         if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6420                 return -EBUSY;
6421
6422         for ( ; !ret && n--; addr += 4) {
6423                 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
6424                 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
6425                 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6426                                       0, 5, 2);
6427         }
6428         return ret;
6429 }
6430
6431 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
6432                          unsigned int val)
6433 {
6434         return t4_cim_write(adap, addr, 1, &val);
6435 }
6436
6437 /**
6438  *      t4_cim_read_la - read CIM LA capture buffer
6439  *      @adap: the adapter
6440  *      @la_buf: where to store the LA data
6441  *      @wrptr: the HW write pointer within the capture buffer
6442  *
6443  *      Reads the contents of the CIM LA buffer with the most recent entry at
6444  *      the end of the returned data and with the entry at @wrptr first.
6445  *      We try to leave the LA in the running state we find it in.
6446  */
6447 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
6448 {
6449         int i, ret;
6450         unsigned int cfg, val, idx;
6451
6452         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
6453         if (ret)
6454                 return ret;
6455
6456         if (cfg & UPDBGLAEN_F) {        /* LA is running, freeze it */
6457                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
6458                 if (ret)
6459                         return ret;
6460         }
6461
6462         ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6463         if (ret)
6464                 goto restart;
6465
6466         idx = UPDBGLAWRPTR_G(val);
6467         if (wrptr)
6468                 *wrptr = idx;
6469
6470         for (i = 0; i < adap->params.cim_la_size; i++) {
6471                 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6472                                     UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
6473                 if (ret)
6474                         break;
6475                 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6476                 if (ret)
6477                         break;
6478                 if (val & UPDBGLARDEN_F) {
6479                         ret = -ETIMEDOUT;
6480                         break;
6481                 }
6482                 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
6483                 if (ret)
6484                         break;
6485                 idx = (idx + 1) & UPDBGLARDPTR_M;
6486         }
6487 restart:
6488         if (cfg & UPDBGLAEN_F) {
6489                 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6490                                       cfg & ~UPDBGLARDEN_F);
6491                 if (!ret)
6492                         ret = r;
6493         }
6494         return ret;
6495 }
6496
6497 /**
6498  *      t4_tp_read_la - read TP LA capture buffer
6499  *      @adap: the adapter
6500  *      @la_buf: where to store the LA data
6501  *      @wrptr: the HW write pointer within the capture buffer
6502  *
6503  *      Reads the contents of the TP LA buffer with the most recent entry at
6504  *      the end of the returned data and with the entry at @wrptr first.
6505  *      We leave the LA in the running state we find it in.
6506  */
6507 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
6508 {
6509         bool last_incomplete;
6510         unsigned int i, cfg, val, idx;
6511
6512         cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
6513         if (cfg & DBGLAENABLE_F)                        /* freeze LA */
6514                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6515                              adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
6516
6517         val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
6518         idx = DBGLAWPTR_G(val);
6519         last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
6520         if (last_incomplete)
6521                 idx = (idx + 1) & DBGLARPTR_M;
6522         if (wrptr)
6523                 *wrptr = idx;
6524
6525         val &= 0xffff;
6526         val &= ~DBGLARPTR_V(DBGLARPTR_M);
6527         val |= adap->params.tp.la_mask;
6528
6529         for (i = 0; i < TPLA_SIZE; i++) {
6530                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
6531                 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
6532                 idx = (idx + 1) & DBGLARPTR_M;
6533         }
6534
6535         /* Wipe out last entry if it isn't valid */
6536         if (last_incomplete)
6537                 la_buf[TPLA_SIZE - 1] = ~0ULL;
6538
6539         if (cfg & DBGLAENABLE_F)                    /* restore running state */
6540                 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6541                              cfg | adap->params.tp.la_mask);
6542 }
6543
6544 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
6545  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
6546  * state for more than the Warning Threshold then we'll issue a warning about
6547  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
6548  * appears to be hung every Warning Repeat second till the situation clears.
6549  * If the situation clears, we'll note that as well.
6550  */
6551 #define SGE_IDMA_WARN_THRESH 1
6552 #define SGE_IDMA_WARN_REPEAT 300
6553
6554 /**
6555  *      t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
6556  *      @adapter: the adapter
6557  *      @idma: the adapter IDMA Monitor state
6558  *
6559  *      Initialize the state of an SGE Ingress DMA Monitor.
6560  */
6561 void t4_idma_monitor_init(struct adapter *adapter,
6562                           struct sge_idma_monitor_state *idma)
6563 {
6564         /* Initialize the state variables for detecting an SGE Ingress DMA
6565          * hang.  The SGE has internal counters which count up on each clock
6566          * tick whenever the SGE finds its Ingress DMA State Engines in the
6567          * same state they were on the previous clock tick.  The clock used is
6568          * the Core Clock so we have a limit on the maximum "time" they can
6569          * record; typically a very small number of seconds.  For instance,
6570          * with a 600MHz Core Clock, we can only count up to a bit more than
6571          * 7s.  So we'll synthesize a larger counter in order to not run the
6572          * risk of having the "timers" overflow and give us the flexibility to
6573          * maintain a Hung SGE State Machine of our own which operates across
6574          * a longer time frame.
6575          */
6576         idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
6577         idma->idma_stalled[0] = 0;
6578         idma->idma_stalled[1] = 0;
6579 }
6580
6581 /**
6582  *      t4_idma_monitor - monitor SGE Ingress DMA state
6583  *      @adapter: the adapter
6584  *      @idma: the adapter IDMA Monitor state
6585  *      @hz: number of ticks/second
6586  *      @ticks: number of ticks since the last IDMA Monitor call
6587  */
6588 void t4_idma_monitor(struct adapter *adapter,
6589                      struct sge_idma_monitor_state *idma,
6590                      int hz, int ticks)
6591 {
6592         int i, idma_same_state_cnt[2];
6593
6594          /* Read the SGE Debug Ingress DMA Same State Count registers.  These
6595           * are counters inside the SGE which count up on each clock when the
6596           * SGE finds its Ingress DMA State Engines in the same states they
6597           * were in the previous clock.  The counters will peg out at
6598           * 0xffffffff without wrapping around so once they pass the 1s
6599           * threshold they'll stay above that till the IDMA state changes.
6600           */
6601         t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
6602         idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
6603         idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6604
6605         for (i = 0; i < 2; i++) {
6606                 u32 debug0, debug11;
6607
6608                 /* If the Ingress DMA Same State Counter ("timer") is less
6609                  * than 1s, then we can reset our synthesized Stall Timer and
6610                  * continue.  If we have previously emitted warnings about a
6611                  * potential stalled Ingress Queue, issue a note indicating
6612                  * that the Ingress Queue has resumed forward progress.
6613                  */
6614                 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
6615                         if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
6616                                 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
6617                                          "resumed after %d seconds\n",
6618                                          i, idma->idma_qid[i],
6619                                          idma->idma_stalled[i] / hz);
6620                         idma->idma_stalled[i] = 0;
6621                         continue;
6622                 }
6623
6624                 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
6625                  * domain.  The first time we get here it'll be because we
6626                  * passed the 1s Threshold; each additional time it'll be
6627                  * because the RX Timer Callback is being fired on its regular
6628                  * schedule.
6629                  *
6630                  * If the stall is below our Potential Hung Ingress Queue
6631                  * Warning Threshold, continue.
6632                  */
6633                 if (idma->idma_stalled[i] == 0) {
6634                         idma->idma_stalled[i] = hz;
6635                         idma->idma_warn[i] = 0;
6636                 } else {
6637                         idma->idma_stalled[i] += ticks;
6638                         idma->idma_warn[i] -= ticks;
6639                 }
6640
6641                 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
6642                         continue;
6643
6644                 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
6645                  */
6646                 if (idma->idma_warn[i] > 0)
6647                         continue;
6648                 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
6649
6650                 /* Read and save the SGE IDMA State and Queue ID information.
6651                  * We do this every time in case it changes across time ...
6652                  * can't be too careful ...
6653                  */
6654                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
6655                 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6656                 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
6657
6658                 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
6659                 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6660                 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
6661
6662                 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
6663                          "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
6664                          i, idma->idma_qid[i], idma->idma_state[i],
6665                          idma->idma_stalled[i] / hz,
6666                          debug0, debug11);
6667                 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
6668         }
6669 }