a45dafdf343a200d74ff1f351896b0e3f7e30f46
[pandora-kernel.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52
53 #include "e1000.h"
54
55 #define DRV_EXTRAVERSION "-k2"
56
57 #define DRV_VERSION "1.2.20" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
60
61 static const struct e1000_info *e1000_info_tbl[] = {
62         [board_82571]           = &e1000_82571_info,
63         [board_82572]           = &e1000_82572_info,
64         [board_82573]           = &e1000_82573_info,
65         [board_82574]           = &e1000_82574_info,
66         [board_82583]           = &e1000_82583_info,
67         [board_80003es2lan]     = &e1000_es2_info,
68         [board_ich8lan]         = &e1000_ich8_info,
69         [board_ich9lan]         = &e1000_ich9_info,
70         [board_ich10lan]        = &e1000_ich10_info,
71         [board_pchlan]          = &e1000_pch_info,
72         [board_pch2lan]         = &e1000_pch2_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
85
86 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
91
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
93
94         /* General Registers */
95         {E1000_CTRL, "CTRL"},
96         {E1000_STATUS, "STATUS"},
97         {E1000_CTRL_EXT, "CTRL_EXT"},
98
99         /* Interrupt Registers */
100         {E1000_ICR, "ICR"},
101
102         /* RX Registers */
103         {E1000_RCTL, "RCTL"},
104         {E1000_RDLEN, "RDLEN"},
105         {E1000_RDH, "RDH"},
106         {E1000_RDT, "RDT"},
107         {E1000_RDTR, "RDTR"},
108         {E1000_RXDCTL(0), "RXDCTL"},
109         {E1000_ERT, "ERT"},
110         {E1000_RDBAL, "RDBAL"},
111         {E1000_RDBAH, "RDBAH"},
112         {E1000_RDFH, "RDFH"},
113         {E1000_RDFT, "RDFT"},
114         {E1000_RDFHS, "RDFHS"},
115         {E1000_RDFTS, "RDFTS"},
116         {E1000_RDFPC, "RDFPC"},
117
118         /* TX Registers */
119         {E1000_TCTL, "TCTL"},
120         {E1000_TDBAL, "TDBAL"},
121         {E1000_TDBAH, "TDBAH"},
122         {E1000_TDLEN, "TDLEN"},
123         {E1000_TDH, "TDH"},
124         {E1000_TDT, "TDT"},
125         {E1000_TIDV, "TIDV"},
126         {E1000_TXDCTL(0), "TXDCTL"},
127         {E1000_TADV, "TADV"},
128         {E1000_TARC(0), "TARC"},
129         {E1000_TDFH, "TDFH"},
130         {E1000_TDFT, "TDFT"},
131         {E1000_TDFHS, "TDFHS"},
132         {E1000_TDFTS, "TDFTS"},
133         {E1000_TDFPC, "TDFPC"},
134
135         /* List Terminator */
136         {}
137 };
138
139 /*
140  * e1000_regdump - register printout routine
141  */
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144         int n = 0;
145         char rname[16];
146         u32 regs[8];
147
148         switch (reginfo->ofs) {
149         case E1000_RXDCTL(0):
150                 for (n = 0; n < 2; n++)
151                         regs[n] = __er32(hw, E1000_RXDCTL(n));
152                 break;
153         case E1000_TXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_TXDCTL(n));
156                 break;
157         case E1000_TARC(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TARC(n));
160                 break;
161         default:
162                 printk(KERN_INFO "%-15s %08x\n",
163                         reginfo->name, __er32(hw, reginfo->ofs));
164                 return;
165         }
166
167         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168         printk(KERN_INFO "%-15s ", rname);
169         for (n = 0; n < 2; n++)
170                 printk(KERN_CONT "%08x ", regs[n]);
171         printk(KERN_CONT "\n");
172 }
173
174
175 /*
176  * e1000e_dump - Print registers, tx-ring and rx-ring
177  */
178 static void e1000e_dump(struct e1000_adapter *adapter)
179 {
180         struct net_device *netdev = adapter->netdev;
181         struct e1000_hw *hw = &adapter->hw;
182         struct e1000_reg_info *reginfo;
183         struct e1000_ring *tx_ring = adapter->tx_ring;
184         struct e1000_tx_desc *tx_desc;
185         struct my_u0 { u64 a; u64 b; } *u0;
186         struct e1000_buffer *buffer_info;
187         struct e1000_ring *rx_ring = adapter->rx_ring;
188         union e1000_rx_desc_packet_split *rx_desc_ps;
189         struct e1000_rx_desc *rx_desc;
190         struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
191         u32 staterr;
192         int i = 0;
193
194         if (!netif_msg_hw(adapter))
195                 return;
196
197         /* Print netdevice Info */
198         if (netdev) {
199                 dev_info(&adapter->pdev->dev, "Net device Info\n");
200                 printk(KERN_INFO "Device Name     state            "
201                         "trans_start      last_rx\n");
202                 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
203                         netdev->name,
204                         netdev->state,
205                         netdev->trans_start,
206                         netdev->last_rx);
207         }
208
209         /* Print Registers */
210         dev_info(&adapter->pdev->dev, "Register Dump\n");
211         printk(KERN_INFO " Register Name   Value\n");
212         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
213              reginfo->name; reginfo++) {
214                 e1000_regdump(hw, reginfo);
215         }
216
217         /* Print TX Ring Summary */
218         if (!netdev || !netif_running(netdev))
219                 goto exit;
220
221         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
222         printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
223                 " leng ntw timestamp\n");
224         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
225         printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
226                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
227                 (unsigned long long)buffer_info->dma,
228                 buffer_info->length,
229                 buffer_info->next_to_watch,
230                 (unsigned long long)buffer_info->time_stamp);
231
232         /* Print TX Rings */
233         if (!netif_msg_tx_done(adapter))
234                 goto rx_ring_summary;
235
236         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
237
238         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
239          *
240          * Legacy Transmit Descriptor
241          *   +--------------------------------------------------------------+
242          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
243          *   +--------------------------------------------------------------+
244          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
245          *   +--------------------------------------------------------------+
246          *   63       48 47        36 35    32 31     24 23    16 15        0
247          *
248          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
249          *   63      48 47    40 39       32 31             16 15    8 7      0
250          *   +----------------------------------------------------------------+
251          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
252          *   +----------------------------------------------------------------+
253          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
254          *   +----------------------------------------------------------------+
255          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
256          *
257          * Extended Data Descriptor (DTYP=0x1)
258          *   +----------------------------------------------------------------+
259          * 0 |                     Buffer Address [63:0]                      |
260          *   +----------------------------------------------------------------+
261          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
262          *   +----------------------------------------------------------------+
263          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
264          */
265         printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
266                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
267                 "<-- Legacy format\n");
268         printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
269                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
270                 "<-- Ext Context format\n");
271         printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
272                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
273                 "<-- Ext Data format\n");
274         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
275                 tx_desc = E1000_TX_DESC(*tx_ring, i);
276                 buffer_info = &tx_ring->buffer_info[i];
277                 u0 = (struct my_u0 *)tx_desc;
278                 printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
279                         "%04X  %3X %016llX %p",
280                        (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
281                         ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
282                        (unsigned long long)le64_to_cpu(u0->a),
283                        (unsigned long long)le64_to_cpu(u0->b),
284                        (unsigned long long)buffer_info->dma,
285                        buffer_info->length, buffer_info->next_to_watch,
286                        (unsigned long long)buffer_info->time_stamp,
287                        buffer_info->skb);
288                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
289                         printk(KERN_CONT " NTC/U\n");
290                 else if (i == tx_ring->next_to_use)
291                         printk(KERN_CONT " NTU\n");
292                 else if (i == tx_ring->next_to_clean)
293                         printk(KERN_CONT " NTC\n");
294                 else
295                         printk(KERN_CONT "\n");
296
297                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
298                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
299                                         16, 1, phys_to_virt(buffer_info->dma),
300                                         buffer_info->length, true);
301         }
302
303         /* Print RX Rings Summary */
304 rx_ring_summary:
305         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
306         printk(KERN_INFO "Queue [NTU] [NTC]\n");
307         printk(KERN_INFO " %5d %5X %5X\n", 0,
308                 rx_ring->next_to_use, rx_ring->next_to_clean);
309
310         /* Print RX Rings */
311         if (!netif_msg_rx_status(adapter))
312                 goto exit;
313
314         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
315         switch (adapter->rx_ps_pages) {
316         case 1:
317         case 2:
318         case 3:
319                 /* [Extended] Packet Split Receive Descriptor Format
320                  *
321                  *    +-----------------------------------------------------+
322                  *  0 |                Buffer Address 0 [63:0]              |
323                  *    +-----------------------------------------------------+
324                  *  8 |                Buffer Address 1 [63:0]              |
325                  *    +-----------------------------------------------------+
326                  * 16 |                Buffer Address 2 [63:0]              |
327                  *    +-----------------------------------------------------+
328                  * 24 |                Buffer Address 3 [63:0]              |
329                  *    +-----------------------------------------------------+
330                  */
331                 printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
332                         "[buffer 1 63:0 ] "
333                        "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
334                        "[bi->skb] <-- Ext Pkt Split format\n");
335                 /* [Extended] Receive Descriptor (Write-Back) Format
336                  *
337                  *   63       48 47    32 31     13 12    8 7    4 3        0
338                  *   +------------------------------------------------------+
339                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
340                  *   | Checksum | Ident  |         | Queue |      |  Type   |
341                  *   +------------------------------------------------------+
342                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
343                  *   +------------------------------------------------------+
344                  *   63       48 47    32 31            20 19               0
345                  */
346                 printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
347                         "[vl   l0 ee  es] "
348                        "[ l3  l2  l1 hs] [reserved      ] ---------------- "
349                        "[bi->skb] <-- Ext Rx Write-Back format\n");
350                 for (i = 0; i < rx_ring->count; i++) {
351                         buffer_info = &rx_ring->buffer_info[i];
352                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353                         u1 = (struct my_u1 *)rx_desc_ps;
354                         staterr =
355                                 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356                         if (staterr & E1000_RXD_STAT_DD) {
357                                 /* Descriptor Done */
358                                 printk(KERN_INFO "RWB[0x%03X]     %016llX "
359                                         "%016llX %016llX %016llX "
360                                         "---------------- %p", i,
361                                         (unsigned long long)le64_to_cpu(u1->a),
362                                         (unsigned long long)le64_to_cpu(u1->b),
363                                         (unsigned long long)le64_to_cpu(u1->c),
364                                         (unsigned long long)le64_to_cpu(u1->d),
365                                         buffer_info->skb);
366                         } else {
367                                 printk(KERN_INFO "R  [0x%03X]     %016llX "
368                                         "%016llX %016llX %016llX %016llX %p", i,
369                                         (unsigned long long)le64_to_cpu(u1->a),
370                                         (unsigned long long)le64_to_cpu(u1->b),
371                                         (unsigned long long)le64_to_cpu(u1->c),
372                                         (unsigned long long)le64_to_cpu(u1->d),
373                                         (unsigned long long)buffer_info->dma,
374                                         buffer_info->skb);
375
376                                 if (netif_msg_pktdata(adapter))
377                                         print_hex_dump(KERN_INFO, "",
378                                                 DUMP_PREFIX_ADDRESS, 16, 1,
379                                                 phys_to_virt(buffer_info->dma),
380                                                 adapter->rx_ps_bsize0, true);
381                         }
382
383                         if (i == rx_ring->next_to_use)
384                                 printk(KERN_CONT " NTU\n");
385                         else if (i == rx_ring->next_to_clean)
386                                 printk(KERN_CONT " NTC\n");
387                         else
388                                 printk(KERN_CONT "\n");
389                 }
390                 break;
391         default:
392         case 0:
393                 /* Legacy Receive Descriptor Format
394                  *
395                  * +-----------------------------------------------------+
396                  * |                Buffer Address [63:0]                |
397                  * +-----------------------------------------------------+
398                  * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
399                  * +-----------------------------------------------------+
400                  * 63       48 47    40 39      32 31         16 15      0
401                  */
402                 printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
403                         "[vl er S cks ln] [bi->dma       ] [bi->skb] "
404                         "<-- Legacy format\n");
405                 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
406                         rx_desc = E1000_RX_DESC(*rx_ring, i);
407                         buffer_info = &rx_ring->buffer_info[i];
408                         u0 = (struct my_u0 *)rx_desc;
409                         printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
410                                 "%016llX %p", i,
411                                 (unsigned long long)le64_to_cpu(u0->a),
412                                 (unsigned long long)le64_to_cpu(u0->b),
413                                 (unsigned long long)buffer_info->dma,
414                                 buffer_info->skb);
415                         if (i == rx_ring->next_to_use)
416                                 printk(KERN_CONT " NTU\n");
417                         else if (i == rx_ring->next_to_clean)
418                                 printk(KERN_CONT " NTC\n");
419                         else
420                                 printk(KERN_CONT "\n");
421
422                         if (netif_msg_pktdata(adapter))
423                                 print_hex_dump(KERN_INFO, "",
424                                         DUMP_PREFIX_ADDRESS,
425                                         16, 1, phys_to_virt(buffer_info->dma),
426                                         adapter->rx_buffer_len, true);
427                 }
428         }
429
430 exit:
431         return;
432 }
433
434 /**
435  * e1000_desc_unused - calculate if we have unused descriptors
436  **/
437 static int e1000_desc_unused(struct e1000_ring *ring)
438 {
439         if (ring->next_to_clean > ring->next_to_use)
440                 return ring->next_to_clean - ring->next_to_use - 1;
441
442         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
443 }
444
445 /**
446  * e1000_receive_skb - helper function to handle Rx indications
447  * @adapter: board private structure
448  * @status: descriptor status field as written by hardware
449  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
450  * @skb: pointer to sk_buff to be indicated to stack
451  **/
452 static void e1000_receive_skb(struct e1000_adapter *adapter,
453                               struct net_device *netdev,
454                               struct sk_buff *skb,
455                               u8 status, __le16 vlan)
456 {
457         skb->protocol = eth_type_trans(skb, netdev);
458
459         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
460                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
461                                  le16_to_cpu(vlan), skb);
462         else
463                 napi_gro_receive(&adapter->napi, skb);
464 }
465
466 /**
467  * e1000_rx_checksum - Receive Checksum Offload for 82543
468  * @adapter:     board private structure
469  * @status_err:  receive descriptor status and error fields
470  * @csum:       receive descriptor csum field
471  * @sk_buff:     socket buffer with received data
472  **/
473 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
474                               u32 csum, struct sk_buff *skb)
475 {
476         u16 status = (u16)status_err;
477         u8 errors = (u8)(status_err >> 24);
478
479         skb_checksum_none_assert(skb);
480
481         /* Ignore Checksum bit is set */
482         if (status & E1000_RXD_STAT_IXSM)
483                 return;
484         /* TCP/UDP checksum error bit is set */
485         if (errors & E1000_RXD_ERR_TCPE) {
486                 /* let the stack verify checksum errors */
487                 adapter->hw_csum_err++;
488                 return;
489         }
490
491         /* TCP/UDP Checksum has not been calculated */
492         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
493                 return;
494
495         /* It must be a TCP or UDP packet with a valid checksum */
496         if (status & E1000_RXD_STAT_TCPCS) {
497                 /* TCP checksum is good */
498                 skb->ip_summed = CHECKSUM_UNNECESSARY;
499         } else {
500                 /*
501                  * IP fragment with UDP payload
502                  * Hardware complements the payload checksum, so we undo it
503                  * and then put the value in host order for further stack use.
504                  */
505                 __sum16 sum = (__force __sum16)htons(csum);
506                 skb->csum = csum_unfold(~sum);
507                 skb->ip_summed = CHECKSUM_COMPLETE;
508         }
509         adapter->hw_csum_good++;
510 }
511
512 /**
513  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
514  * @adapter: address of board private structure
515  **/
516 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
517                                    int cleaned_count)
518 {
519         struct net_device *netdev = adapter->netdev;
520         struct pci_dev *pdev = adapter->pdev;
521         struct e1000_ring *rx_ring = adapter->rx_ring;
522         struct e1000_rx_desc *rx_desc;
523         struct e1000_buffer *buffer_info;
524         struct sk_buff *skb;
525         unsigned int i;
526         unsigned int bufsz = adapter->rx_buffer_len;
527
528         i = rx_ring->next_to_use;
529         buffer_info = &rx_ring->buffer_info[i];
530
531         while (cleaned_count--) {
532                 skb = buffer_info->skb;
533                 if (skb) {
534                         skb_trim(skb, 0);
535                         goto map_skb;
536                 }
537
538                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
539                 if (!skb) {
540                         /* Better luck next round */
541                         adapter->alloc_rx_buff_failed++;
542                         break;
543                 }
544
545                 buffer_info->skb = skb;
546 map_skb:
547                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
548                                                   adapter->rx_buffer_len,
549                                                   DMA_FROM_DEVICE);
550                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
551                         dev_err(&pdev->dev, "RX DMA map failed\n");
552                         adapter->rx_dma_failed++;
553                         break;
554                 }
555
556                 rx_desc = E1000_RX_DESC(*rx_ring, i);
557                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
558
559                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
560                         /*
561                          * Force memory writes to complete before letting h/w
562                          * know there are new descriptors to fetch.  (Only
563                          * applicable for weak-ordered memory model archs,
564                          * such as IA-64).
565                          */
566                         wmb();
567                         writel(i, adapter->hw.hw_addr + rx_ring->tail);
568                 }
569                 i++;
570                 if (i == rx_ring->count)
571                         i = 0;
572                 buffer_info = &rx_ring->buffer_info[i];
573         }
574
575         rx_ring->next_to_use = i;
576 }
577
578 /**
579  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
580  * @adapter: address of board private structure
581  **/
582 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
583                                       int cleaned_count)
584 {
585         struct net_device *netdev = adapter->netdev;
586         struct pci_dev *pdev = adapter->pdev;
587         union e1000_rx_desc_packet_split *rx_desc;
588         struct e1000_ring *rx_ring = adapter->rx_ring;
589         struct e1000_buffer *buffer_info;
590         struct e1000_ps_page *ps_page;
591         struct sk_buff *skb;
592         unsigned int i, j;
593
594         i = rx_ring->next_to_use;
595         buffer_info = &rx_ring->buffer_info[i];
596
597         while (cleaned_count--) {
598                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
599
600                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
601                         ps_page = &buffer_info->ps_pages[j];
602                         if (j >= adapter->rx_ps_pages) {
603                                 /* all unused desc entries get hw null ptr */
604                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
605                                 continue;
606                         }
607                         if (!ps_page->page) {
608                                 ps_page->page = alloc_page(GFP_ATOMIC);
609                                 if (!ps_page->page) {
610                                         adapter->alloc_rx_buff_failed++;
611                                         goto no_buffers;
612                                 }
613                                 ps_page->dma = dma_map_page(&pdev->dev,
614                                                             ps_page->page,
615                                                             0, PAGE_SIZE,
616                                                             DMA_FROM_DEVICE);
617                                 if (dma_mapping_error(&pdev->dev,
618                                                       ps_page->dma)) {
619                                         dev_err(&adapter->pdev->dev,
620                                           "RX DMA page map failed\n");
621                                         adapter->rx_dma_failed++;
622                                         goto no_buffers;
623                                 }
624                         }
625                         /*
626                          * Refresh the desc even if buffer_addrs
627                          * didn't change because each write-back
628                          * erases this info.
629                          */
630                         rx_desc->read.buffer_addr[j+1] =
631                              cpu_to_le64(ps_page->dma);
632                 }
633
634                 skb = netdev_alloc_skb_ip_align(netdev,
635                                                 adapter->rx_ps_bsize0);
636
637                 if (!skb) {
638                         adapter->alloc_rx_buff_failed++;
639                         break;
640                 }
641
642                 buffer_info->skb = skb;
643                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
644                                                   adapter->rx_ps_bsize0,
645                                                   DMA_FROM_DEVICE);
646                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
647                         dev_err(&pdev->dev, "RX DMA map failed\n");
648                         adapter->rx_dma_failed++;
649                         /* cleanup skb */
650                         dev_kfree_skb_any(skb);
651                         buffer_info->skb = NULL;
652                         break;
653                 }
654
655                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
656
657                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
658                         /*
659                          * Force memory writes to complete before letting h/w
660                          * know there are new descriptors to fetch.  (Only
661                          * applicable for weak-ordered memory model archs,
662                          * such as IA-64).
663                          */
664                         wmb();
665                         writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
666                 }
667
668                 i++;
669                 if (i == rx_ring->count)
670                         i = 0;
671                 buffer_info = &rx_ring->buffer_info[i];
672         }
673
674 no_buffers:
675         rx_ring->next_to_use = i;
676 }
677
678 /**
679  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
680  * @adapter: address of board private structure
681  * @cleaned_count: number of buffers to allocate this pass
682  **/
683
684 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
685                                          int cleaned_count)
686 {
687         struct net_device *netdev = adapter->netdev;
688         struct pci_dev *pdev = adapter->pdev;
689         struct e1000_rx_desc *rx_desc;
690         struct e1000_ring *rx_ring = adapter->rx_ring;
691         struct e1000_buffer *buffer_info;
692         struct sk_buff *skb;
693         unsigned int i;
694         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
695
696         i = rx_ring->next_to_use;
697         buffer_info = &rx_ring->buffer_info[i];
698
699         while (cleaned_count--) {
700                 skb = buffer_info->skb;
701                 if (skb) {
702                         skb_trim(skb, 0);
703                         goto check_page;
704                 }
705
706                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
707                 if (unlikely(!skb)) {
708                         /* Better luck next round */
709                         adapter->alloc_rx_buff_failed++;
710                         break;
711                 }
712
713                 buffer_info->skb = skb;
714 check_page:
715                 /* allocate a new page if necessary */
716                 if (!buffer_info->page) {
717                         buffer_info->page = alloc_page(GFP_ATOMIC);
718                         if (unlikely(!buffer_info->page)) {
719                                 adapter->alloc_rx_buff_failed++;
720                                 break;
721                         }
722                 }
723
724                 if (!buffer_info->dma)
725                         buffer_info->dma = dma_map_page(&pdev->dev,
726                                                         buffer_info->page, 0,
727                                                         PAGE_SIZE,
728                                                         DMA_FROM_DEVICE);
729
730                 rx_desc = E1000_RX_DESC(*rx_ring, i);
731                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
732
733                 if (unlikely(++i == rx_ring->count))
734                         i = 0;
735                 buffer_info = &rx_ring->buffer_info[i];
736         }
737
738         if (likely(rx_ring->next_to_use != i)) {
739                 rx_ring->next_to_use = i;
740                 if (unlikely(i-- == 0))
741                         i = (rx_ring->count - 1);
742
743                 /* Force memory writes to complete before letting h/w
744                  * know there are new descriptors to fetch.  (Only
745                  * applicable for weak-ordered memory model archs,
746                  * such as IA-64). */
747                 wmb();
748                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
749         }
750 }
751
752 /**
753  * e1000_clean_rx_irq - Send received data up the network stack; legacy
754  * @adapter: board private structure
755  *
756  * the return value indicates whether actual cleaning was done, there
757  * is no guarantee that everything was cleaned
758  **/
759 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
760                                int *work_done, int work_to_do)
761 {
762         struct net_device *netdev = adapter->netdev;
763         struct pci_dev *pdev = adapter->pdev;
764         struct e1000_hw *hw = &adapter->hw;
765         struct e1000_ring *rx_ring = adapter->rx_ring;
766         struct e1000_rx_desc *rx_desc, *next_rxd;
767         struct e1000_buffer *buffer_info, *next_buffer;
768         u32 length;
769         unsigned int i;
770         int cleaned_count = 0;
771         bool cleaned = 0;
772         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
773
774         i = rx_ring->next_to_clean;
775         rx_desc = E1000_RX_DESC(*rx_ring, i);
776         buffer_info = &rx_ring->buffer_info[i];
777
778         while (rx_desc->status & E1000_RXD_STAT_DD) {
779                 struct sk_buff *skb;
780                 u8 status;
781
782                 if (*work_done >= work_to_do)
783                         break;
784                 (*work_done)++;
785                 rmb();  /* read descriptor and rx_buffer_info after status DD */
786
787                 status = rx_desc->status;
788                 skb = buffer_info->skb;
789                 buffer_info->skb = NULL;
790
791                 prefetch(skb->data - NET_IP_ALIGN);
792
793                 i++;
794                 if (i == rx_ring->count)
795                         i = 0;
796                 next_rxd = E1000_RX_DESC(*rx_ring, i);
797                 prefetch(next_rxd);
798
799                 next_buffer = &rx_ring->buffer_info[i];
800
801                 cleaned = 1;
802                 cleaned_count++;
803                 dma_unmap_single(&pdev->dev,
804                                  buffer_info->dma,
805                                  adapter->rx_buffer_len,
806                                  DMA_FROM_DEVICE);
807                 buffer_info->dma = 0;
808
809                 length = le16_to_cpu(rx_desc->length);
810
811                 /*
812                  * !EOP means multiple descriptors were used to store a single
813                  * packet, if that's the case we need to toss it.  In fact, we
814                  * need to toss every packet with the EOP bit clear and the
815                  * next frame that _does_ have the EOP bit set, as it is by
816                  * definition only a frame fragment
817                  */
818                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
819                         adapter->flags2 |= FLAG2_IS_DISCARDING;
820
821                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
822                         /* All receives must fit into a single buffer */
823                         e_dbg("Receive packet consumed multiple buffers\n");
824                         /* recycle */
825                         buffer_info->skb = skb;
826                         if (status & E1000_RXD_STAT_EOP)
827                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
828                         goto next_desc;
829                 }
830
831                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
832                         /* recycle */
833                         buffer_info->skb = skb;
834                         goto next_desc;
835                 }
836
837                 /* adjust length to remove Ethernet CRC */
838                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
839                         length -= 4;
840
841                 total_rx_bytes += length;
842                 total_rx_packets++;
843
844                 /*
845                  * code added for copybreak, this should improve
846                  * performance for small packets with large amounts
847                  * of reassembly being done in the stack
848                  */
849                 if (length < copybreak) {
850                         struct sk_buff *new_skb =
851                             netdev_alloc_skb_ip_align(netdev, length);
852                         if (new_skb) {
853                                 skb_copy_to_linear_data_offset(new_skb,
854                                                                -NET_IP_ALIGN,
855                                                                (skb->data -
856                                                                 NET_IP_ALIGN),
857                                                                (length +
858                                                                 NET_IP_ALIGN));
859                                 /* save the skb in buffer_info as good */
860                                 buffer_info->skb = skb;
861                                 skb = new_skb;
862                         }
863                         /* else just continue with the old one */
864                 }
865                 /* end copybreak code */
866                 skb_put(skb, length);
867
868                 /* Receive Checksum Offload */
869                 e1000_rx_checksum(adapter,
870                                   (u32)(status) |
871                                   ((u32)(rx_desc->errors) << 24),
872                                   le16_to_cpu(rx_desc->csum), skb);
873
874                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
875
876 next_desc:
877                 rx_desc->status = 0;
878
879                 /* return some buffers to hardware, one at a time is too slow */
880                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
881                         adapter->alloc_rx_buf(adapter, cleaned_count);
882                         cleaned_count = 0;
883                 }
884
885                 /* use prefetched values */
886                 rx_desc = next_rxd;
887                 buffer_info = next_buffer;
888         }
889         rx_ring->next_to_clean = i;
890
891         cleaned_count = e1000_desc_unused(rx_ring);
892         if (cleaned_count)
893                 adapter->alloc_rx_buf(adapter, cleaned_count);
894
895         adapter->total_rx_bytes += total_rx_bytes;
896         adapter->total_rx_packets += total_rx_packets;
897         netdev->stats.rx_bytes += total_rx_bytes;
898         netdev->stats.rx_packets += total_rx_packets;
899         return cleaned;
900 }
901
902 static void e1000_put_txbuf(struct e1000_adapter *adapter,
903                              struct e1000_buffer *buffer_info)
904 {
905         if (buffer_info->dma) {
906                 if (buffer_info->mapped_as_page)
907                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
908                                        buffer_info->length, DMA_TO_DEVICE);
909                 else
910                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
911                                          buffer_info->length, DMA_TO_DEVICE);
912                 buffer_info->dma = 0;
913         }
914         if (buffer_info->skb) {
915                 dev_kfree_skb_any(buffer_info->skb);
916                 buffer_info->skb = NULL;
917         }
918         buffer_info->time_stamp = 0;
919 }
920
921 static void e1000_print_hw_hang(struct work_struct *work)
922 {
923         struct e1000_adapter *adapter = container_of(work,
924                                                      struct e1000_adapter,
925                                                      print_hang_task);
926         struct e1000_ring *tx_ring = adapter->tx_ring;
927         unsigned int i = tx_ring->next_to_clean;
928         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
929         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
930         struct e1000_hw *hw = &adapter->hw;
931         u16 phy_status, phy_1000t_status, phy_ext_status;
932         u16 pci_status;
933
934         e1e_rphy(hw, PHY_STATUS, &phy_status);
935         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
936         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
937
938         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
939
940         /* detected Hardware unit hang */
941         e_err("Detected Hardware Unit Hang:\n"
942               "  TDH                  <%x>\n"
943               "  TDT                  <%x>\n"
944               "  next_to_use          <%x>\n"
945               "  next_to_clean        <%x>\n"
946               "buffer_info[next_to_clean]:\n"
947               "  time_stamp           <%lx>\n"
948               "  next_to_watch        <%x>\n"
949               "  jiffies              <%lx>\n"
950               "  next_to_watch.status <%x>\n"
951               "MAC Status             <%x>\n"
952               "PHY Status             <%x>\n"
953               "PHY 1000BASE-T Status  <%x>\n"
954               "PHY Extended Status    <%x>\n"
955               "PCI Status             <%x>\n",
956               readl(adapter->hw.hw_addr + tx_ring->head),
957               readl(adapter->hw.hw_addr + tx_ring->tail),
958               tx_ring->next_to_use,
959               tx_ring->next_to_clean,
960               tx_ring->buffer_info[eop].time_stamp,
961               eop,
962               jiffies,
963               eop_desc->upper.fields.status,
964               er32(STATUS),
965               phy_status,
966               phy_1000t_status,
967               phy_ext_status,
968               pci_status);
969 }
970
971 /**
972  * e1000_clean_tx_irq - Reclaim resources after transmit completes
973  * @adapter: board private structure
974  *
975  * the return value indicates whether actual cleaning was done, there
976  * is no guarantee that everything was cleaned
977  **/
978 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
979 {
980         struct net_device *netdev = adapter->netdev;
981         struct e1000_hw *hw = &adapter->hw;
982         struct e1000_ring *tx_ring = adapter->tx_ring;
983         struct e1000_tx_desc *tx_desc, *eop_desc;
984         struct e1000_buffer *buffer_info;
985         unsigned int i, eop;
986         unsigned int count = 0;
987         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
988
989         i = tx_ring->next_to_clean;
990         eop = tx_ring->buffer_info[i].next_to_watch;
991         eop_desc = E1000_TX_DESC(*tx_ring, eop);
992
993         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
994                (count < tx_ring->count)) {
995                 bool cleaned = false;
996                 rmb(); /* read buffer_info after eop_desc */
997                 for (; !cleaned; count++) {
998                         tx_desc = E1000_TX_DESC(*tx_ring, i);
999                         buffer_info = &tx_ring->buffer_info[i];
1000                         cleaned = (i == eop);
1001
1002                         if (cleaned) {
1003                                 total_tx_packets += buffer_info->segs;
1004                                 total_tx_bytes += buffer_info->bytecount;
1005                         }
1006
1007                         e1000_put_txbuf(adapter, buffer_info);
1008                         tx_desc->upper.data = 0;
1009
1010                         i++;
1011                         if (i == tx_ring->count)
1012                                 i = 0;
1013                 }
1014
1015                 if (i == tx_ring->next_to_use)
1016                         break;
1017                 eop = tx_ring->buffer_info[i].next_to_watch;
1018                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1019         }
1020
1021         tx_ring->next_to_clean = i;
1022
1023 #define TX_WAKE_THRESHOLD 32
1024         if (count && netif_carrier_ok(netdev) &&
1025             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1026                 /* Make sure that anybody stopping the queue after this
1027                  * sees the new next_to_clean.
1028                  */
1029                 smp_mb();
1030
1031                 if (netif_queue_stopped(netdev) &&
1032                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1033                         netif_wake_queue(netdev);
1034                         ++adapter->restart_queue;
1035                 }
1036         }
1037
1038         if (adapter->detect_tx_hung) {
1039                 /*
1040                  * Detect a transmit hang in hardware, this serializes the
1041                  * check with the clearing of time_stamp and movement of i
1042                  */
1043                 adapter->detect_tx_hung = 0;
1044                 if (tx_ring->buffer_info[i].time_stamp &&
1045                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1046                                + (adapter->tx_timeout_factor * HZ)) &&
1047                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1048                         schedule_work(&adapter->print_hang_task);
1049                         netif_stop_queue(netdev);
1050                 }
1051         }
1052         adapter->total_tx_bytes += total_tx_bytes;
1053         adapter->total_tx_packets += total_tx_packets;
1054         netdev->stats.tx_bytes += total_tx_bytes;
1055         netdev->stats.tx_packets += total_tx_packets;
1056         return count < tx_ring->count;
1057 }
1058
1059 /**
1060  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1061  * @adapter: board private structure
1062  *
1063  * the return value indicates whether actual cleaning was done, there
1064  * is no guarantee that everything was cleaned
1065  **/
1066 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1067                                   int *work_done, int work_to_do)
1068 {
1069         struct e1000_hw *hw = &adapter->hw;
1070         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1071         struct net_device *netdev = adapter->netdev;
1072         struct pci_dev *pdev = adapter->pdev;
1073         struct e1000_ring *rx_ring = adapter->rx_ring;
1074         struct e1000_buffer *buffer_info, *next_buffer;
1075         struct e1000_ps_page *ps_page;
1076         struct sk_buff *skb;
1077         unsigned int i, j;
1078         u32 length, staterr;
1079         int cleaned_count = 0;
1080         bool cleaned = 0;
1081         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1082
1083         i = rx_ring->next_to_clean;
1084         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1085         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1086         buffer_info = &rx_ring->buffer_info[i];
1087
1088         while (staterr & E1000_RXD_STAT_DD) {
1089                 if (*work_done >= work_to_do)
1090                         break;
1091                 (*work_done)++;
1092                 skb = buffer_info->skb;
1093                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1094
1095                 /* in the packet split case this is header only */
1096                 prefetch(skb->data - NET_IP_ALIGN);
1097
1098                 i++;
1099                 if (i == rx_ring->count)
1100                         i = 0;
1101                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1102                 prefetch(next_rxd);
1103
1104                 next_buffer = &rx_ring->buffer_info[i];
1105
1106                 cleaned = 1;
1107                 cleaned_count++;
1108                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1109                                  adapter->rx_ps_bsize0,
1110                                  DMA_FROM_DEVICE);
1111                 buffer_info->dma = 0;
1112
1113                 /* see !EOP comment in other rx routine */
1114                 if (!(staterr & E1000_RXD_STAT_EOP))
1115                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1116
1117                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1118                         e_dbg("Packet Split buffers didn't pick up the full "
1119                               "packet\n");
1120                         dev_kfree_skb_irq(skb);
1121                         if (staterr & E1000_RXD_STAT_EOP)
1122                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1123                         goto next_desc;
1124                 }
1125
1126                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1127                         dev_kfree_skb_irq(skb);
1128                         goto next_desc;
1129                 }
1130
1131                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1132
1133                 if (!length) {
1134                         e_dbg("Last part of the packet spanning multiple "
1135                               "descriptors\n");
1136                         dev_kfree_skb_irq(skb);
1137                         goto next_desc;
1138                 }
1139
1140                 /* Good Receive */
1141                 skb_put(skb, length);
1142
1143                 {
1144                 /*
1145                  * this looks ugly, but it seems compiler issues make it
1146                  * more efficient than reusing j
1147                  */
1148                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1149
1150                 /*
1151                  * page alloc/put takes too long and effects small packet
1152                  * throughput, so unsplit small packets and save the alloc/put
1153                  * only valid in softirq (napi) context to call kmap_*
1154                  */
1155                 if (l1 && (l1 <= copybreak) &&
1156                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1157                         u8 *vaddr;
1158
1159                         ps_page = &buffer_info->ps_pages[0];
1160
1161                         /*
1162                          * there is no documentation about how to call
1163                          * kmap_atomic, so we can't hold the mapping
1164                          * very long
1165                          */
1166                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1167                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1168                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1169                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1170                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1171                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1172                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1173
1174                         /* remove the CRC */
1175                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1176                                 l1 -= 4;
1177
1178                         skb_put(skb, l1);
1179                         goto copydone;
1180                 } /* if */
1181                 }
1182
1183                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1184                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1185                         if (!length)
1186                                 break;
1187
1188                         ps_page = &buffer_info->ps_pages[j];
1189                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1190                                        DMA_FROM_DEVICE);
1191                         ps_page->dma = 0;
1192                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1193                         ps_page->page = NULL;
1194                         skb->len += length;
1195                         skb->data_len += length;
1196                         skb->truesize += length;
1197                 }
1198
1199                 /* strip the ethernet crc, problem is we're using pages now so
1200                  * this whole operation can get a little cpu intensive
1201                  */
1202                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1203                         pskb_trim(skb, skb->len - 4);
1204
1205 copydone:
1206                 total_rx_bytes += skb->len;
1207                 total_rx_packets++;
1208
1209                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1210                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1211
1212                 if (rx_desc->wb.upper.header_status &
1213                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1214                         adapter->rx_hdr_split++;
1215
1216                 e1000_receive_skb(adapter, netdev, skb,
1217                                   staterr, rx_desc->wb.middle.vlan);
1218
1219 next_desc:
1220                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1221                 buffer_info->skb = NULL;
1222
1223                 /* return some buffers to hardware, one at a time is too slow */
1224                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1225                         adapter->alloc_rx_buf(adapter, cleaned_count);
1226                         cleaned_count = 0;
1227                 }
1228
1229                 /* use prefetched values */
1230                 rx_desc = next_rxd;
1231                 buffer_info = next_buffer;
1232
1233                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1234         }
1235         rx_ring->next_to_clean = i;
1236
1237         cleaned_count = e1000_desc_unused(rx_ring);
1238         if (cleaned_count)
1239                 adapter->alloc_rx_buf(adapter, cleaned_count);
1240
1241         adapter->total_rx_bytes += total_rx_bytes;
1242         adapter->total_rx_packets += total_rx_packets;
1243         netdev->stats.rx_bytes += total_rx_bytes;
1244         netdev->stats.rx_packets += total_rx_packets;
1245         return cleaned;
1246 }
1247
1248 /**
1249  * e1000_consume_page - helper function
1250  **/
1251 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1252                                u16 length)
1253 {
1254         bi->page = NULL;
1255         skb->len += length;
1256         skb->data_len += length;
1257         skb->truesize += length;
1258 }
1259
1260 /**
1261  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1262  * @adapter: board private structure
1263  *
1264  * the return value indicates whether actual cleaning was done, there
1265  * is no guarantee that everything was cleaned
1266  **/
1267
1268 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1269                                      int *work_done, int work_to_do)
1270 {
1271         struct net_device *netdev = adapter->netdev;
1272         struct pci_dev *pdev = adapter->pdev;
1273         struct e1000_ring *rx_ring = adapter->rx_ring;
1274         struct e1000_rx_desc *rx_desc, *next_rxd;
1275         struct e1000_buffer *buffer_info, *next_buffer;
1276         u32 length;
1277         unsigned int i;
1278         int cleaned_count = 0;
1279         bool cleaned = false;
1280         unsigned int total_rx_bytes=0, total_rx_packets=0;
1281
1282         i = rx_ring->next_to_clean;
1283         rx_desc = E1000_RX_DESC(*rx_ring, i);
1284         buffer_info = &rx_ring->buffer_info[i];
1285
1286         while (rx_desc->status & E1000_RXD_STAT_DD) {
1287                 struct sk_buff *skb;
1288                 u8 status;
1289
1290                 if (*work_done >= work_to_do)
1291                         break;
1292                 (*work_done)++;
1293                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1294
1295                 status = rx_desc->status;
1296                 skb = buffer_info->skb;
1297                 buffer_info->skb = NULL;
1298
1299                 ++i;
1300                 if (i == rx_ring->count)
1301                         i = 0;
1302                 next_rxd = E1000_RX_DESC(*rx_ring, i);
1303                 prefetch(next_rxd);
1304
1305                 next_buffer = &rx_ring->buffer_info[i];
1306
1307                 cleaned = true;
1308                 cleaned_count++;
1309                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1310                                DMA_FROM_DEVICE);
1311                 buffer_info->dma = 0;
1312
1313                 length = le16_to_cpu(rx_desc->length);
1314
1315                 /* errors is only valid for DD + EOP descriptors */
1316                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1317                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1318                                 /* recycle both page and skb */
1319                                 buffer_info->skb = skb;
1320                                 /* an error means any chain goes out the window
1321                                  * too */
1322                                 if (rx_ring->rx_skb_top)
1323                                         dev_kfree_skb(rx_ring->rx_skb_top);
1324                                 rx_ring->rx_skb_top = NULL;
1325                                 goto next_desc;
1326                 }
1327
1328 #define rxtop rx_ring->rx_skb_top
1329                 if (!(status & E1000_RXD_STAT_EOP)) {
1330                         /* this descriptor is only the beginning (or middle) */
1331                         if (!rxtop) {
1332                                 /* this is the beginning of a chain */
1333                                 rxtop = skb;
1334                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1335                                                    0, length);
1336                         } else {
1337                                 /* this is the middle of a chain */
1338                                 skb_fill_page_desc(rxtop,
1339                                     skb_shinfo(rxtop)->nr_frags,
1340                                     buffer_info->page, 0, length);
1341                                 /* re-use the skb, only consumed the page */
1342                                 buffer_info->skb = skb;
1343                         }
1344                         e1000_consume_page(buffer_info, rxtop, length);
1345                         goto next_desc;
1346                 } else {
1347                         if (rxtop) {
1348                                 /* end of the chain */
1349                                 skb_fill_page_desc(rxtop,
1350                                     skb_shinfo(rxtop)->nr_frags,
1351                                     buffer_info->page, 0, length);
1352                                 /* re-use the current skb, we only consumed the
1353                                  * page */
1354                                 buffer_info->skb = skb;
1355                                 skb = rxtop;
1356                                 rxtop = NULL;
1357                                 e1000_consume_page(buffer_info, skb, length);
1358                         } else {
1359                                 /* no chain, got EOP, this buf is the packet
1360                                  * copybreak to save the put_page/alloc_page */
1361                                 if (length <= copybreak &&
1362                                     skb_tailroom(skb) >= length) {
1363                                         u8 *vaddr;
1364                                         vaddr = kmap_atomic(buffer_info->page,
1365                                                            KM_SKB_DATA_SOFTIRQ);
1366                                         memcpy(skb_tail_pointer(skb), vaddr,
1367                                                length);
1368                                         kunmap_atomic(vaddr,
1369                                                       KM_SKB_DATA_SOFTIRQ);
1370                                         /* re-use the page, so don't erase
1371                                          * buffer_info->page */
1372                                         skb_put(skb, length);
1373                                 } else {
1374                                         skb_fill_page_desc(skb, 0,
1375                                                            buffer_info->page, 0,
1376                                                            length);
1377                                         e1000_consume_page(buffer_info, skb,
1378                                                            length);
1379                                 }
1380                         }
1381                 }
1382
1383                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1384                 e1000_rx_checksum(adapter,
1385                                   (u32)(status) |
1386                                   ((u32)(rx_desc->errors) << 24),
1387                                   le16_to_cpu(rx_desc->csum), skb);
1388
1389                 /* probably a little skewed due to removing CRC */
1390                 total_rx_bytes += skb->len;
1391                 total_rx_packets++;
1392
1393                 /* eth type trans needs skb->data to point to something */
1394                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1395                         e_err("pskb_may_pull failed.\n");
1396                         dev_kfree_skb(skb);
1397                         goto next_desc;
1398                 }
1399
1400                 e1000_receive_skb(adapter, netdev, skb, status,
1401                                   rx_desc->special);
1402
1403 next_desc:
1404                 rx_desc->status = 0;
1405
1406                 /* return some buffers to hardware, one at a time is too slow */
1407                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1408                         adapter->alloc_rx_buf(adapter, cleaned_count);
1409                         cleaned_count = 0;
1410                 }
1411
1412                 /* use prefetched values */
1413                 rx_desc = next_rxd;
1414                 buffer_info = next_buffer;
1415         }
1416         rx_ring->next_to_clean = i;
1417
1418         cleaned_count = e1000_desc_unused(rx_ring);
1419         if (cleaned_count)
1420                 adapter->alloc_rx_buf(adapter, cleaned_count);
1421
1422         adapter->total_rx_bytes += total_rx_bytes;
1423         adapter->total_rx_packets += total_rx_packets;
1424         netdev->stats.rx_bytes += total_rx_bytes;
1425         netdev->stats.rx_packets += total_rx_packets;
1426         return cleaned;
1427 }
1428
1429 /**
1430  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1431  * @adapter: board private structure
1432  **/
1433 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1434 {
1435         struct e1000_ring *rx_ring = adapter->rx_ring;
1436         struct e1000_buffer *buffer_info;
1437         struct e1000_ps_page *ps_page;
1438         struct pci_dev *pdev = adapter->pdev;
1439         unsigned int i, j;
1440
1441         /* Free all the Rx ring sk_buffs */
1442         for (i = 0; i < rx_ring->count; i++) {
1443                 buffer_info = &rx_ring->buffer_info[i];
1444                 if (buffer_info->dma) {
1445                         if (adapter->clean_rx == e1000_clean_rx_irq)
1446                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1447                                                  adapter->rx_buffer_len,
1448                                                  DMA_FROM_DEVICE);
1449                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1450                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1451                                                PAGE_SIZE,
1452                                                DMA_FROM_DEVICE);
1453                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1454                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1455                                                  adapter->rx_ps_bsize0,
1456                                                  DMA_FROM_DEVICE);
1457                         buffer_info->dma = 0;
1458                 }
1459
1460                 if (buffer_info->page) {
1461                         put_page(buffer_info->page);
1462                         buffer_info->page = NULL;
1463                 }
1464
1465                 if (buffer_info->skb) {
1466                         dev_kfree_skb(buffer_info->skb);
1467                         buffer_info->skb = NULL;
1468                 }
1469
1470                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1471                         ps_page = &buffer_info->ps_pages[j];
1472                         if (!ps_page->page)
1473                                 break;
1474                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1475                                        DMA_FROM_DEVICE);
1476                         ps_page->dma = 0;
1477                         put_page(ps_page->page);
1478                         ps_page->page = NULL;
1479                 }
1480         }
1481
1482         /* there also may be some cached data from a chained receive */
1483         if (rx_ring->rx_skb_top) {
1484                 dev_kfree_skb(rx_ring->rx_skb_top);
1485                 rx_ring->rx_skb_top = NULL;
1486         }
1487
1488         /* Zero out the descriptor ring */
1489         memset(rx_ring->desc, 0, rx_ring->size);
1490
1491         rx_ring->next_to_clean = 0;
1492         rx_ring->next_to_use = 0;
1493         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1494
1495         writel(0, adapter->hw.hw_addr + rx_ring->head);
1496         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1497 }
1498
1499 static void e1000e_downshift_workaround(struct work_struct *work)
1500 {
1501         struct e1000_adapter *adapter = container_of(work,
1502                                         struct e1000_adapter, downshift_task);
1503
1504         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1505 }
1506
1507 /**
1508  * e1000_intr_msi - Interrupt Handler
1509  * @irq: interrupt number
1510  * @data: pointer to a network interface device structure
1511  **/
1512 static irqreturn_t e1000_intr_msi(int irq, void *data)
1513 {
1514         struct net_device *netdev = data;
1515         struct e1000_adapter *adapter = netdev_priv(netdev);
1516         struct e1000_hw *hw = &adapter->hw;
1517         u32 icr = er32(ICR);
1518
1519         /*
1520          * read ICR disables interrupts using IAM
1521          */
1522
1523         if (icr & E1000_ICR_LSC) {
1524                 hw->mac.get_link_status = 1;
1525                 /*
1526                  * ICH8 workaround-- Call gig speed drop workaround on cable
1527                  * disconnect (LSC) before accessing any PHY registers
1528                  */
1529                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1530                     (!(er32(STATUS) & E1000_STATUS_LU)))
1531                         schedule_work(&adapter->downshift_task);
1532
1533                 /*
1534                  * 80003ES2LAN workaround-- For packet buffer work-around on
1535                  * link down event; disable receives here in the ISR and reset
1536                  * adapter in watchdog
1537                  */
1538                 if (netif_carrier_ok(netdev) &&
1539                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1540                         /* disable receives */
1541                         u32 rctl = er32(RCTL);
1542                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1543                         adapter->flags |= FLAG_RX_RESTART_NOW;
1544                 }
1545                 /* guard against interrupt when we're going down */
1546                 if (!test_bit(__E1000_DOWN, &adapter->state))
1547                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1548         }
1549
1550         if (napi_schedule_prep(&adapter->napi)) {
1551                 adapter->total_tx_bytes = 0;
1552                 adapter->total_tx_packets = 0;
1553                 adapter->total_rx_bytes = 0;
1554                 adapter->total_rx_packets = 0;
1555                 __napi_schedule(&adapter->napi);
1556         }
1557
1558         return IRQ_HANDLED;
1559 }
1560
1561 /**
1562  * e1000_intr - Interrupt Handler
1563  * @irq: interrupt number
1564  * @data: pointer to a network interface device structure
1565  **/
1566 static irqreturn_t e1000_intr(int irq, void *data)
1567 {
1568         struct net_device *netdev = data;
1569         struct e1000_adapter *adapter = netdev_priv(netdev);
1570         struct e1000_hw *hw = &adapter->hw;
1571         u32 rctl, icr = er32(ICR);
1572
1573         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1574                 return IRQ_NONE;  /* Not our interrupt */
1575
1576         /*
1577          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1578          * not set, then the adapter didn't send an interrupt
1579          */
1580         if (!(icr & E1000_ICR_INT_ASSERTED))
1581                 return IRQ_NONE;
1582
1583         /*
1584          * Interrupt Auto-Mask...upon reading ICR,
1585          * interrupts are masked.  No need for the
1586          * IMC write
1587          */
1588
1589         if (icr & E1000_ICR_LSC) {
1590                 hw->mac.get_link_status = 1;
1591                 /*
1592                  * ICH8 workaround-- Call gig speed drop workaround on cable
1593                  * disconnect (LSC) before accessing any PHY registers
1594                  */
1595                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1596                     (!(er32(STATUS) & E1000_STATUS_LU)))
1597                         schedule_work(&adapter->downshift_task);
1598
1599                 /*
1600                  * 80003ES2LAN workaround--
1601                  * For packet buffer work-around on link down event;
1602                  * disable receives here in the ISR and
1603                  * reset adapter in watchdog
1604                  */
1605                 if (netif_carrier_ok(netdev) &&
1606                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1607                         /* disable receives */
1608                         rctl = er32(RCTL);
1609                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1610                         adapter->flags |= FLAG_RX_RESTART_NOW;
1611                 }
1612                 /* guard against interrupt when we're going down */
1613                 if (!test_bit(__E1000_DOWN, &adapter->state))
1614                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1615         }
1616
1617         if (napi_schedule_prep(&adapter->napi)) {
1618                 adapter->total_tx_bytes = 0;
1619                 adapter->total_tx_packets = 0;
1620                 adapter->total_rx_bytes = 0;
1621                 adapter->total_rx_packets = 0;
1622                 __napi_schedule(&adapter->napi);
1623         }
1624
1625         return IRQ_HANDLED;
1626 }
1627
1628 static irqreturn_t e1000_msix_other(int irq, void *data)
1629 {
1630         struct net_device *netdev = data;
1631         struct e1000_adapter *adapter = netdev_priv(netdev);
1632         struct e1000_hw *hw = &adapter->hw;
1633         u32 icr = er32(ICR);
1634
1635         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1636                 if (!test_bit(__E1000_DOWN, &adapter->state))
1637                         ew32(IMS, E1000_IMS_OTHER);
1638                 return IRQ_NONE;
1639         }
1640
1641         if (icr & adapter->eiac_mask)
1642                 ew32(ICS, (icr & adapter->eiac_mask));
1643
1644         if (icr & E1000_ICR_OTHER) {
1645                 if (!(icr & E1000_ICR_LSC))
1646                         goto no_link_interrupt;
1647                 hw->mac.get_link_status = 1;
1648                 /* guard against interrupt when we're going down */
1649                 if (!test_bit(__E1000_DOWN, &adapter->state))
1650                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1651         }
1652
1653 no_link_interrupt:
1654         if (!test_bit(__E1000_DOWN, &adapter->state))
1655                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1656
1657         return IRQ_HANDLED;
1658 }
1659
1660
1661 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1662 {
1663         struct net_device *netdev = data;
1664         struct e1000_adapter *adapter = netdev_priv(netdev);
1665         struct e1000_hw *hw = &adapter->hw;
1666         struct e1000_ring *tx_ring = adapter->tx_ring;
1667
1668
1669         adapter->total_tx_bytes = 0;
1670         adapter->total_tx_packets = 0;
1671
1672         if (!e1000_clean_tx_irq(adapter))
1673                 /* Ring was not completely cleaned, so fire another interrupt */
1674                 ew32(ICS, tx_ring->ims_val);
1675
1676         return IRQ_HANDLED;
1677 }
1678
1679 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1680 {
1681         struct net_device *netdev = data;
1682         struct e1000_adapter *adapter = netdev_priv(netdev);
1683
1684         /* Write the ITR value calculated at the end of the
1685          * previous interrupt.
1686          */
1687         if (adapter->rx_ring->set_itr) {
1688                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1689                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1690                 adapter->rx_ring->set_itr = 0;
1691         }
1692
1693         if (napi_schedule_prep(&adapter->napi)) {
1694                 adapter->total_rx_bytes = 0;
1695                 adapter->total_rx_packets = 0;
1696                 __napi_schedule(&adapter->napi);
1697         }
1698         return IRQ_HANDLED;
1699 }
1700
1701 /**
1702  * e1000_configure_msix - Configure MSI-X hardware
1703  *
1704  * e1000_configure_msix sets up the hardware to properly
1705  * generate MSI-X interrupts.
1706  **/
1707 static void e1000_configure_msix(struct e1000_adapter *adapter)
1708 {
1709         struct e1000_hw *hw = &adapter->hw;
1710         struct e1000_ring *rx_ring = adapter->rx_ring;
1711         struct e1000_ring *tx_ring = adapter->tx_ring;
1712         int vector = 0;
1713         u32 ctrl_ext, ivar = 0;
1714
1715         adapter->eiac_mask = 0;
1716
1717         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1718         if (hw->mac.type == e1000_82574) {
1719                 u32 rfctl = er32(RFCTL);
1720                 rfctl |= E1000_RFCTL_ACK_DIS;
1721                 ew32(RFCTL, rfctl);
1722         }
1723
1724 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1725         /* Configure Rx vector */
1726         rx_ring->ims_val = E1000_IMS_RXQ0;
1727         adapter->eiac_mask |= rx_ring->ims_val;
1728         if (rx_ring->itr_val)
1729                 writel(1000000000 / (rx_ring->itr_val * 256),
1730                        hw->hw_addr + rx_ring->itr_register);
1731         else
1732                 writel(1, hw->hw_addr + rx_ring->itr_register);
1733         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1734
1735         /* Configure Tx vector */
1736         tx_ring->ims_val = E1000_IMS_TXQ0;
1737         vector++;
1738         if (tx_ring->itr_val)
1739                 writel(1000000000 / (tx_ring->itr_val * 256),
1740                        hw->hw_addr + tx_ring->itr_register);
1741         else
1742                 writel(1, hw->hw_addr + tx_ring->itr_register);
1743         adapter->eiac_mask |= tx_ring->ims_val;
1744         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1745
1746         /* set vector for Other Causes, e.g. link changes */
1747         vector++;
1748         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1749         if (rx_ring->itr_val)
1750                 writel(1000000000 / (rx_ring->itr_val * 256),
1751                        hw->hw_addr + E1000_EITR_82574(vector));
1752         else
1753                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1754
1755         /* Cause Tx interrupts on every write back */
1756         ivar |= (1 << 31);
1757
1758         ew32(IVAR, ivar);
1759
1760         /* enable MSI-X PBA support */
1761         ctrl_ext = er32(CTRL_EXT);
1762         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1763
1764         /* Auto-Mask Other interrupts upon ICR read */
1765 #define E1000_EIAC_MASK_82574   0x01F00000
1766         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1767         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1768         ew32(CTRL_EXT, ctrl_ext);
1769         e1e_flush();
1770 }
1771
1772 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1773 {
1774         if (adapter->msix_entries) {
1775                 pci_disable_msix(adapter->pdev);
1776                 kfree(adapter->msix_entries);
1777                 adapter->msix_entries = NULL;
1778         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1779                 pci_disable_msi(adapter->pdev);
1780                 adapter->flags &= ~FLAG_MSI_ENABLED;
1781         }
1782 }
1783
1784 /**
1785  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1786  *
1787  * Attempt to configure interrupts using the best available
1788  * capabilities of the hardware and kernel.
1789  **/
1790 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1791 {
1792         int err;
1793         int i;
1794
1795         switch (adapter->int_mode) {
1796         case E1000E_INT_MODE_MSIX:
1797                 if (adapter->flags & FLAG_HAS_MSIX) {
1798                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1799                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1800                                                       sizeof(struct msix_entry),
1801                                                       GFP_KERNEL);
1802                         if (adapter->msix_entries) {
1803                                 for (i = 0; i < adapter->num_vectors; i++)
1804                                         adapter->msix_entries[i].entry = i;
1805
1806                                 err = pci_enable_msix(adapter->pdev,
1807                                                       adapter->msix_entries,
1808                                                       adapter->num_vectors);
1809                                 if (err == 0) {
1810                                         return;
1811                                 }
1812                         }
1813                         /* MSI-X failed, so fall through and try MSI */
1814                         e_err("Failed to initialize MSI-X interrupts.  "
1815                               "Falling back to MSI interrupts.\n");
1816                         e1000e_reset_interrupt_capability(adapter);
1817                 }
1818                 adapter->int_mode = E1000E_INT_MODE_MSI;
1819                 /* Fall through */
1820         case E1000E_INT_MODE_MSI:
1821                 if (!pci_enable_msi(adapter->pdev)) {
1822                         adapter->flags |= FLAG_MSI_ENABLED;
1823                 } else {
1824                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1825                         e_err("Failed to initialize MSI interrupts.  Falling "
1826                               "back to legacy interrupts.\n");
1827                 }
1828                 /* Fall through */
1829         case E1000E_INT_MODE_LEGACY:
1830                 /* Don't do anything; this is the system default */
1831                 break;
1832         }
1833
1834         /* store the number of vectors being used */
1835         adapter->num_vectors = 1;
1836 }
1837
1838 /**
1839  * e1000_request_msix - Initialize MSI-X interrupts
1840  *
1841  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1842  * kernel.
1843  **/
1844 static int e1000_request_msix(struct e1000_adapter *adapter)
1845 {
1846         struct net_device *netdev = adapter->netdev;
1847         int err = 0, vector = 0;
1848
1849         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1850                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1851         else
1852                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1853         err = request_irq(adapter->msix_entries[vector].vector,
1854                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1855                           netdev);
1856         if (err)
1857                 goto out;
1858         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1859         adapter->rx_ring->itr_val = adapter->itr;
1860         vector++;
1861
1862         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1863                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1864         else
1865                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1866         err = request_irq(adapter->msix_entries[vector].vector,
1867                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1868                           netdev);
1869         if (err)
1870                 goto out;
1871         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1872         adapter->tx_ring->itr_val = adapter->itr;
1873         vector++;
1874
1875         err = request_irq(adapter->msix_entries[vector].vector,
1876                           e1000_msix_other, 0, netdev->name, netdev);
1877         if (err)
1878                 goto out;
1879
1880         e1000_configure_msix(adapter);
1881         return 0;
1882 out:
1883         return err;
1884 }
1885
1886 /**
1887  * e1000_request_irq - initialize interrupts
1888  *
1889  * Attempts to configure interrupts using the best available
1890  * capabilities of the hardware and kernel.
1891  **/
1892 static int e1000_request_irq(struct e1000_adapter *adapter)
1893 {
1894         struct net_device *netdev = adapter->netdev;
1895         int err;
1896
1897         if (adapter->msix_entries) {
1898                 err = e1000_request_msix(adapter);
1899                 if (!err)
1900                         return err;
1901                 /* fall back to MSI */
1902                 e1000e_reset_interrupt_capability(adapter);
1903                 adapter->int_mode = E1000E_INT_MODE_MSI;
1904                 e1000e_set_interrupt_capability(adapter);
1905         }
1906         if (adapter->flags & FLAG_MSI_ENABLED) {
1907                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1908                                   netdev->name, netdev);
1909                 if (!err)
1910                         return err;
1911
1912                 /* fall back to legacy interrupt */
1913                 e1000e_reset_interrupt_capability(adapter);
1914                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1915         }
1916
1917         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1918                           netdev->name, netdev);
1919         if (err)
1920                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1921
1922         return err;
1923 }
1924
1925 static void e1000_free_irq(struct e1000_adapter *adapter)
1926 {
1927         struct net_device *netdev = adapter->netdev;
1928
1929         if (adapter->msix_entries) {
1930                 int vector = 0;
1931
1932                 free_irq(adapter->msix_entries[vector].vector, netdev);
1933                 vector++;
1934
1935                 free_irq(adapter->msix_entries[vector].vector, netdev);
1936                 vector++;
1937
1938                 /* Other Causes interrupt vector */
1939                 free_irq(adapter->msix_entries[vector].vector, netdev);
1940                 return;
1941         }
1942
1943         free_irq(adapter->pdev->irq, netdev);
1944 }
1945
1946 /**
1947  * e1000_irq_disable - Mask off interrupt generation on the NIC
1948  **/
1949 static void e1000_irq_disable(struct e1000_adapter *adapter)
1950 {
1951         struct e1000_hw *hw = &adapter->hw;
1952
1953         ew32(IMC, ~0);
1954         if (adapter->msix_entries)
1955                 ew32(EIAC_82574, 0);
1956         e1e_flush();
1957
1958         if (adapter->msix_entries) {
1959                 int i;
1960                 for (i = 0; i < adapter->num_vectors; i++)
1961                         synchronize_irq(adapter->msix_entries[i].vector);
1962         } else {
1963                 synchronize_irq(adapter->pdev->irq);
1964         }
1965 }
1966
1967 /**
1968  * e1000_irq_enable - Enable default interrupt generation settings
1969  **/
1970 static void e1000_irq_enable(struct e1000_adapter *adapter)
1971 {
1972         struct e1000_hw *hw = &adapter->hw;
1973
1974         if (adapter->msix_entries) {
1975                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1976                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1977         } else {
1978                 ew32(IMS, IMS_ENABLE_MASK);
1979         }
1980         e1e_flush();
1981 }
1982
1983 /**
1984  * e1000_get_hw_control - get control of the h/w from f/w
1985  * @adapter: address of board private structure
1986  *
1987  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1988  * For ASF and Pass Through versions of f/w this means that
1989  * the driver is loaded. For AMT version (only with 82573)
1990  * of the f/w this means that the network i/f is open.
1991  **/
1992 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1993 {
1994         struct e1000_hw *hw = &adapter->hw;
1995         u32 ctrl_ext;
1996         u32 swsm;
1997
1998         /* Let firmware know the driver has taken over */
1999         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2000                 swsm = er32(SWSM);
2001                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2002         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2003                 ctrl_ext = er32(CTRL_EXT);
2004                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2005         }
2006 }
2007
2008 /**
2009  * e1000_release_hw_control - release control of the h/w to f/w
2010  * @adapter: address of board private structure
2011  *
2012  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2013  * For ASF and Pass Through versions of f/w this means that the
2014  * driver is no longer loaded. For AMT version (only with 82573) i
2015  * of the f/w this means that the network i/f is closed.
2016  *
2017  **/
2018 static void e1000_release_hw_control(struct e1000_adapter *adapter)
2019 {
2020         struct e1000_hw *hw = &adapter->hw;
2021         u32 ctrl_ext;
2022         u32 swsm;
2023
2024         /* Let firmware taken over control of h/w */
2025         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2026                 swsm = er32(SWSM);
2027                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2028         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2029                 ctrl_ext = er32(CTRL_EXT);
2030                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2031         }
2032 }
2033
2034 /**
2035  * @e1000_alloc_ring - allocate memory for a ring structure
2036  **/
2037 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2038                                 struct e1000_ring *ring)
2039 {
2040         struct pci_dev *pdev = adapter->pdev;
2041
2042         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2043                                         GFP_KERNEL);
2044         if (!ring->desc)
2045                 return -ENOMEM;
2046
2047         return 0;
2048 }
2049
2050 /**
2051  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2052  * @adapter: board private structure
2053  *
2054  * Return 0 on success, negative on failure
2055  **/
2056 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2057 {
2058         struct e1000_ring *tx_ring = adapter->tx_ring;
2059         int err = -ENOMEM, size;
2060
2061         size = sizeof(struct e1000_buffer) * tx_ring->count;
2062         tx_ring->buffer_info = vzalloc(size);
2063         if (!tx_ring->buffer_info)
2064                 goto err;
2065
2066         /* round up to nearest 4K */
2067         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2068         tx_ring->size = ALIGN(tx_ring->size, 4096);
2069
2070         err = e1000_alloc_ring_dma(adapter, tx_ring);
2071         if (err)
2072                 goto err;
2073
2074         tx_ring->next_to_use = 0;
2075         tx_ring->next_to_clean = 0;
2076
2077         return 0;
2078 err:
2079         vfree(tx_ring->buffer_info);
2080         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2081         return err;
2082 }
2083
2084 /**
2085  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2086  * @adapter: board private structure
2087  *
2088  * Returns 0 on success, negative on failure
2089  **/
2090 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2091 {
2092         struct e1000_ring *rx_ring = adapter->rx_ring;
2093         struct e1000_buffer *buffer_info;
2094         int i, size, desc_len, err = -ENOMEM;
2095
2096         size = sizeof(struct e1000_buffer) * rx_ring->count;
2097         rx_ring->buffer_info = vzalloc(size);
2098         if (!rx_ring->buffer_info)
2099                 goto err;
2100
2101         for (i = 0; i < rx_ring->count; i++) {
2102                 buffer_info = &rx_ring->buffer_info[i];
2103                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2104                                                 sizeof(struct e1000_ps_page),
2105                                                 GFP_KERNEL);
2106                 if (!buffer_info->ps_pages)
2107                         goto err_pages;
2108         }
2109
2110         desc_len = sizeof(union e1000_rx_desc_packet_split);
2111
2112         /* Round up to nearest 4K */
2113         rx_ring->size = rx_ring->count * desc_len;
2114         rx_ring->size = ALIGN(rx_ring->size, 4096);
2115
2116         err = e1000_alloc_ring_dma(adapter, rx_ring);
2117         if (err)
2118                 goto err_pages;
2119
2120         rx_ring->next_to_clean = 0;
2121         rx_ring->next_to_use = 0;
2122         rx_ring->rx_skb_top = NULL;
2123
2124         return 0;
2125
2126 err_pages:
2127         for (i = 0; i < rx_ring->count; i++) {
2128                 buffer_info = &rx_ring->buffer_info[i];
2129                 kfree(buffer_info->ps_pages);
2130         }
2131 err:
2132         vfree(rx_ring->buffer_info);
2133         e_err("Unable to allocate memory for the receive descriptor ring\n");
2134         return err;
2135 }
2136
2137 /**
2138  * e1000_clean_tx_ring - Free Tx Buffers
2139  * @adapter: board private structure
2140  **/
2141 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2142 {
2143         struct e1000_ring *tx_ring = adapter->tx_ring;
2144         struct e1000_buffer *buffer_info;
2145         unsigned long size;
2146         unsigned int i;
2147
2148         for (i = 0; i < tx_ring->count; i++) {
2149                 buffer_info = &tx_ring->buffer_info[i];
2150                 e1000_put_txbuf(adapter, buffer_info);
2151         }
2152
2153         size = sizeof(struct e1000_buffer) * tx_ring->count;
2154         memset(tx_ring->buffer_info, 0, size);
2155
2156         memset(tx_ring->desc, 0, tx_ring->size);
2157
2158         tx_ring->next_to_use = 0;
2159         tx_ring->next_to_clean = 0;
2160
2161         writel(0, adapter->hw.hw_addr + tx_ring->head);
2162         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2163 }
2164
2165 /**
2166  * e1000e_free_tx_resources - Free Tx Resources per Queue
2167  * @adapter: board private structure
2168  *
2169  * Free all transmit software resources
2170  **/
2171 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2172 {
2173         struct pci_dev *pdev = adapter->pdev;
2174         struct e1000_ring *tx_ring = adapter->tx_ring;
2175
2176         e1000_clean_tx_ring(adapter);
2177
2178         vfree(tx_ring->buffer_info);
2179         tx_ring->buffer_info = NULL;
2180
2181         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2182                           tx_ring->dma);
2183         tx_ring->desc = NULL;
2184 }
2185
2186 /**
2187  * e1000e_free_rx_resources - Free Rx Resources
2188  * @adapter: board private structure
2189  *
2190  * Free all receive software resources
2191  **/
2192
2193 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2194 {
2195         struct pci_dev *pdev = adapter->pdev;
2196         struct e1000_ring *rx_ring = adapter->rx_ring;
2197         int i;
2198
2199         e1000_clean_rx_ring(adapter);
2200
2201         for (i = 0; i < rx_ring->count; i++) {
2202                 kfree(rx_ring->buffer_info[i].ps_pages);
2203         }
2204
2205         vfree(rx_ring->buffer_info);
2206         rx_ring->buffer_info = NULL;
2207
2208         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2209                           rx_ring->dma);
2210         rx_ring->desc = NULL;
2211 }
2212
2213 /**
2214  * e1000_update_itr - update the dynamic ITR value based on statistics
2215  * @adapter: pointer to adapter
2216  * @itr_setting: current adapter->itr
2217  * @packets: the number of packets during this measurement interval
2218  * @bytes: the number of bytes during this measurement interval
2219  *
2220  *      Stores a new ITR value based on packets and byte
2221  *      counts during the last interrupt.  The advantage of per interrupt
2222  *      computation is faster updates and more accurate ITR for the current
2223  *      traffic pattern.  Constants in this function were computed
2224  *      based on theoretical maximum wire speed and thresholds were set based
2225  *      on testing data as well as attempting to minimize response time
2226  *      while increasing bulk throughput.  This functionality is controlled
2227  *      by the InterruptThrottleRate module parameter.
2228  **/
2229 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2230                                      u16 itr_setting, int packets,
2231                                      int bytes)
2232 {
2233         unsigned int retval = itr_setting;
2234
2235         if (packets == 0)
2236                 goto update_itr_done;
2237
2238         switch (itr_setting) {
2239         case lowest_latency:
2240                 /* handle TSO and jumbo frames */
2241                 if (bytes/packets > 8000)
2242                         retval = bulk_latency;
2243                 else if ((packets < 5) && (bytes > 512)) {
2244                         retval = low_latency;
2245                 }
2246                 break;
2247         case low_latency:  /* 50 usec aka 20000 ints/s */
2248                 if (bytes > 10000) {
2249                         /* this if handles the TSO accounting */
2250                         if (bytes/packets > 8000) {
2251                                 retval = bulk_latency;
2252                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2253                                 retval = bulk_latency;
2254                         } else if ((packets > 35)) {
2255                                 retval = lowest_latency;
2256                         }
2257                 } else if (bytes/packets > 2000) {
2258                         retval = bulk_latency;
2259                 } else if (packets <= 2 && bytes < 512) {
2260                         retval = lowest_latency;
2261                 }
2262                 break;
2263         case bulk_latency: /* 250 usec aka 4000 ints/s */
2264                 if (bytes > 25000) {
2265                         if (packets > 35) {
2266                                 retval = low_latency;
2267                         }
2268                 } else if (bytes < 6000) {
2269                         retval = low_latency;
2270                 }
2271                 break;
2272         }
2273
2274 update_itr_done:
2275         return retval;
2276 }
2277
2278 static void e1000_set_itr(struct e1000_adapter *adapter)
2279 {
2280         struct e1000_hw *hw = &adapter->hw;
2281         u16 current_itr;
2282         u32 new_itr = adapter->itr;
2283
2284         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2285         if (adapter->link_speed != SPEED_1000) {
2286                 current_itr = 0;
2287                 new_itr = 4000;
2288                 goto set_itr_now;
2289         }
2290
2291         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2292                 new_itr = 0;
2293                 goto set_itr_now;
2294         }
2295
2296         adapter->tx_itr = e1000_update_itr(adapter,
2297                                     adapter->tx_itr,
2298                                     adapter->total_tx_packets,
2299                                     adapter->total_tx_bytes);
2300         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2301         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2302                 adapter->tx_itr = low_latency;
2303
2304         adapter->rx_itr = e1000_update_itr(adapter,
2305                                     adapter->rx_itr,
2306                                     adapter->total_rx_packets,
2307                                     adapter->total_rx_bytes);
2308         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2309         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2310                 adapter->rx_itr = low_latency;
2311
2312         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2313
2314         switch (current_itr) {
2315         /* counts and packets in update_itr are dependent on these numbers */
2316         case lowest_latency:
2317                 new_itr = 70000;
2318                 break;
2319         case low_latency:
2320                 new_itr = 20000; /* aka hwitr = ~200 */
2321                 break;
2322         case bulk_latency:
2323                 new_itr = 4000;
2324                 break;
2325         default:
2326                 break;
2327         }
2328
2329 set_itr_now:
2330         if (new_itr != adapter->itr) {
2331                 /*
2332                  * this attempts to bias the interrupt rate towards Bulk
2333                  * by adding intermediate steps when interrupt rate is
2334                  * increasing
2335                  */
2336                 new_itr = new_itr > adapter->itr ?
2337                              min(adapter->itr + (new_itr >> 2), new_itr) :
2338                              new_itr;
2339                 adapter->itr = new_itr;
2340                 adapter->rx_ring->itr_val = new_itr;
2341                 if (adapter->msix_entries)
2342                         adapter->rx_ring->set_itr = 1;
2343                 else
2344                         if (new_itr)
2345                                 ew32(ITR, 1000000000 / (new_itr * 256));
2346                         else
2347                                 ew32(ITR, 0);
2348         }
2349 }
2350
2351 /**
2352  * e1000_alloc_queues - Allocate memory for all rings
2353  * @adapter: board private structure to initialize
2354  **/
2355 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2356 {
2357         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2358         if (!adapter->tx_ring)
2359                 goto err;
2360
2361         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2362         if (!adapter->rx_ring)
2363                 goto err;
2364
2365         return 0;
2366 err:
2367         e_err("Unable to allocate memory for queues\n");
2368         kfree(adapter->rx_ring);
2369         kfree(adapter->tx_ring);
2370         return -ENOMEM;
2371 }
2372
2373 /**
2374  * e1000_clean - NAPI Rx polling callback
2375  * @napi: struct associated with this polling callback
2376  * @budget: amount of packets driver is allowed to process this poll
2377  **/
2378 static int e1000_clean(struct napi_struct *napi, int budget)
2379 {
2380         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2381         struct e1000_hw *hw = &adapter->hw;
2382         struct net_device *poll_dev = adapter->netdev;
2383         int tx_cleaned = 1, work_done = 0;
2384
2385         adapter = netdev_priv(poll_dev);
2386
2387         if (adapter->msix_entries &&
2388             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2389                 goto clean_rx;
2390
2391         tx_cleaned = e1000_clean_tx_irq(adapter);
2392
2393 clean_rx:
2394         adapter->clean_rx(adapter, &work_done, budget);
2395
2396         if (!tx_cleaned)
2397                 work_done = budget;
2398
2399         /* If budget not fully consumed, exit the polling mode */
2400         if (work_done < budget) {
2401                 if (adapter->itr_setting & 3)
2402                         e1000_set_itr(adapter);
2403                 napi_complete(napi);
2404                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2405                         if (adapter->msix_entries)
2406                                 ew32(IMS, adapter->rx_ring->ims_val);
2407                         else
2408                                 e1000_irq_enable(adapter);
2409                 }
2410         }
2411
2412         return work_done;
2413 }
2414
2415 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2416 {
2417         struct e1000_adapter *adapter = netdev_priv(netdev);
2418         struct e1000_hw *hw = &adapter->hw;
2419         u32 vfta, index;
2420
2421         /* don't update vlan cookie if already programmed */
2422         if ((adapter->hw.mng_cookie.status &
2423              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2424             (vid == adapter->mng_vlan_id))
2425                 return;
2426
2427         /* add VID to filter table */
2428         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2429                 index = (vid >> 5) & 0x7F;
2430                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2431                 vfta |= (1 << (vid & 0x1F));
2432                 hw->mac.ops.write_vfta(hw, index, vfta);
2433         }
2434 }
2435
2436 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2437 {
2438         struct e1000_adapter *adapter = netdev_priv(netdev);
2439         struct e1000_hw *hw = &adapter->hw;
2440         u32 vfta, index;
2441
2442         if (!test_bit(__E1000_DOWN, &adapter->state))
2443                 e1000_irq_disable(adapter);
2444         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2445
2446         if (!test_bit(__E1000_DOWN, &adapter->state))
2447                 e1000_irq_enable(adapter);
2448
2449         if ((adapter->hw.mng_cookie.status &
2450              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2451             (vid == adapter->mng_vlan_id)) {
2452                 /* release control to f/w */
2453                 e1000_release_hw_control(adapter);
2454                 return;
2455         }
2456
2457         /* remove VID from filter table */
2458         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2459                 index = (vid >> 5) & 0x7F;
2460                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2461                 vfta &= ~(1 << (vid & 0x1F));
2462                 hw->mac.ops.write_vfta(hw, index, vfta);
2463         }
2464 }
2465
2466 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2467 {
2468         struct net_device *netdev = adapter->netdev;
2469         u16 vid = adapter->hw.mng_cookie.vlan_id;
2470         u16 old_vid = adapter->mng_vlan_id;
2471
2472         if (!adapter->vlgrp)
2473                 return;
2474
2475         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2476                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2477                 if (adapter->hw.mng_cookie.status &
2478                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2479                         e1000_vlan_rx_add_vid(netdev, vid);
2480                         adapter->mng_vlan_id = vid;
2481                 }
2482
2483                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2484                                 (vid != old_vid) &&
2485                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2486                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2487         } else {
2488                 adapter->mng_vlan_id = vid;
2489         }
2490 }
2491
2492
2493 static void e1000_vlan_rx_register(struct net_device *netdev,
2494                                    struct vlan_group *grp)
2495 {
2496         struct e1000_adapter *adapter = netdev_priv(netdev);
2497         struct e1000_hw *hw = &adapter->hw;
2498         u32 ctrl, rctl;
2499
2500         if (!test_bit(__E1000_DOWN, &adapter->state))
2501                 e1000_irq_disable(adapter);
2502         adapter->vlgrp = grp;
2503
2504         if (grp) {
2505                 /* enable VLAN tag insert/strip */
2506                 ctrl = er32(CTRL);
2507                 ctrl |= E1000_CTRL_VME;
2508                 ew32(CTRL, ctrl);
2509
2510                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2511                         /* enable VLAN receive filtering */
2512                         rctl = er32(RCTL);
2513                         rctl &= ~E1000_RCTL_CFIEN;
2514                         ew32(RCTL, rctl);
2515                         e1000_update_mng_vlan(adapter);
2516                 }
2517         } else {
2518                 /* disable VLAN tag insert/strip */
2519                 ctrl = er32(CTRL);
2520                 ctrl &= ~E1000_CTRL_VME;
2521                 ew32(CTRL, ctrl);
2522
2523                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2524                         if (adapter->mng_vlan_id !=
2525                             (u16)E1000_MNG_VLAN_NONE) {
2526                                 e1000_vlan_rx_kill_vid(netdev,
2527                                                        adapter->mng_vlan_id);
2528                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2529                         }
2530                 }
2531         }
2532
2533         if (!test_bit(__E1000_DOWN, &adapter->state))
2534                 e1000_irq_enable(adapter);
2535 }
2536
2537 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2538 {
2539         u16 vid;
2540
2541         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2542
2543         if (!adapter->vlgrp)
2544                 return;
2545
2546         for (vid = 0; vid < VLAN_N_VID; vid++) {
2547                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2548                         continue;
2549                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2550         }
2551 }
2552
2553 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2554 {
2555         struct e1000_hw *hw = &adapter->hw;
2556         u32 manc, manc2h, mdef, i, j;
2557
2558         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2559                 return;
2560
2561         manc = er32(MANC);
2562
2563         /*
2564          * enable receiving management packets to the host. this will probably
2565          * generate destination unreachable messages from the host OS, but
2566          * the packets will be handled on SMBUS
2567          */
2568         manc |= E1000_MANC_EN_MNG2HOST;
2569         manc2h = er32(MANC2H);
2570
2571         switch (hw->mac.type) {
2572         default:
2573                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2574                 break;
2575         case e1000_82574:
2576         case e1000_82583:
2577                 /*
2578                  * Check if IPMI pass-through decision filter already exists;
2579                  * if so, enable it.
2580                  */
2581                 for (i = 0, j = 0; i < 8; i++) {
2582                         mdef = er32(MDEF(i));
2583
2584                         /* Ignore filters with anything other than IPMI ports */
2585                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2586                                 continue;
2587
2588                         /* Enable this decision filter in MANC2H */
2589                         if (mdef)
2590                                 manc2h |= (1 << i);
2591
2592                         j |= mdef;
2593                 }
2594
2595                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2596                         break;
2597
2598                 /* Create new decision filter in an empty filter */
2599                 for (i = 0, j = 0; i < 8; i++)
2600                         if (er32(MDEF(i)) == 0) {
2601                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2602                                                E1000_MDEF_PORT_664));
2603                                 manc2h |= (1 << 1);
2604                                 j++;
2605                                 break;
2606                         }
2607
2608                 if (!j)
2609                         e_warn("Unable to create IPMI pass-through filter\n");
2610                 break;
2611         }
2612
2613         ew32(MANC2H, manc2h);
2614         ew32(MANC, manc);
2615 }
2616
2617 /**
2618  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2619  * @adapter: board private structure
2620  *
2621  * Configure the Tx unit of the MAC after a reset.
2622  **/
2623 static void e1000_configure_tx(struct e1000_adapter *adapter)
2624 {
2625         struct e1000_hw *hw = &adapter->hw;
2626         struct e1000_ring *tx_ring = adapter->tx_ring;
2627         u64 tdba;
2628         u32 tdlen, tctl, tipg, tarc;
2629         u32 ipgr1, ipgr2;
2630
2631         /* Setup the HW Tx Head and Tail descriptor pointers */
2632         tdba = tx_ring->dma;
2633         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2634         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2635         ew32(TDBAH, (tdba >> 32));
2636         ew32(TDLEN, tdlen);
2637         ew32(TDH, 0);
2638         ew32(TDT, 0);
2639         tx_ring->head = E1000_TDH;
2640         tx_ring->tail = E1000_TDT;
2641
2642         /* Set the default values for the Tx Inter Packet Gap timer */
2643         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2644         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2645         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2646
2647         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2648                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2649
2650         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2651         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2652         ew32(TIPG, tipg);
2653
2654         /* Set the Tx Interrupt Delay register */
2655         ew32(TIDV, adapter->tx_int_delay);
2656         /* Tx irq moderation */
2657         ew32(TADV, adapter->tx_abs_int_delay);
2658
2659         if (adapter->flags2 & FLAG2_DMA_BURST) {
2660                 u32 txdctl = er32(TXDCTL(0));
2661                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2662                             E1000_TXDCTL_WTHRESH);
2663                 /*
2664                  * set up some performance related parameters to encourage the
2665                  * hardware to use the bus more efficiently in bursts, depends
2666                  * on the tx_int_delay to be enabled,
2667                  * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2668                  * hthresh = 1 ==> prefetch when one or more available
2669                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2670                  * BEWARE: this seems to work but should be considered first if
2671                  * there are tx hangs or other tx related bugs
2672                  */
2673                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2674                 ew32(TXDCTL(0), txdctl);
2675                 /* erratum work around: set txdctl the same for both queues */
2676                 ew32(TXDCTL(1), txdctl);
2677         }
2678
2679         /* Program the Transmit Control Register */
2680         tctl = er32(TCTL);
2681         tctl &= ~E1000_TCTL_CT;
2682         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2683                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2684
2685         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2686                 tarc = er32(TARC(0));
2687                 /*
2688                  * set the speed mode bit, we'll clear it if we're not at
2689                  * gigabit link later
2690                  */
2691 #define SPEED_MODE_BIT (1 << 21)
2692                 tarc |= SPEED_MODE_BIT;
2693                 ew32(TARC(0), tarc);
2694         }
2695
2696         /* errata: program both queues to unweighted RR */
2697         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2698                 tarc = er32(TARC(0));
2699                 tarc |= 1;
2700                 ew32(TARC(0), tarc);
2701                 tarc = er32(TARC(1));
2702                 tarc |= 1;
2703                 ew32(TARC(1), tarc);
2704         }
2705
2706         /* Setup Transmit Descriptor Settings for eop descriptor */
2707         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2708
2709         /* only set IDE if we are delaying interrupts using the timers */
2710         if (adapter->tx_int_delay)
2711                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2712
2713         /* enable Report Status bit */
2714         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2715
2716         ew32(TCTL, tctl);
2717
2718         e1000e_config_collision_dist(hw);
2719 }
2720
2721 /**
2722  * e1000_setup_rctl - configure the receive control registers
2723  * @adapter: Board private structure
2724  **/
2725 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2726                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2727 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2728 {
2729         struct e1000_hw *hw = &adapter->hw;
2730         u32 rctl, rfctl;
2731         u32 psrctl = 0;
2732         u32 pages = 0;
2733
2734         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2735         if (hw->mac.type == e1000_pch2lan) {
2736                 s32 ret_val;
2737
2738                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2739                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2740                 else
2741                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2742         }
2743
2744         /* Program MC offset vector base */
2745         rctl = er32(RCTL);
2746         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2747         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2748                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2749                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2750
2751         /* Do not Store bad packets */
2752         rctl &= ~E1000_RCTL_SBP;
2753
2754         /* Enable Long Packet receive */
2755         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2756                 rctl &= ~E1000_RCTL_LPE;
2757         else
2758                 rctl |= E1000_RCTL_LPE;
2759
2760         /* Some systems expect that the CRC is included in SMBUS traffic. The
2761          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2762          * host memory when this is enabled
2763          */
2764         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2765                 rctl |= E1000_RCTL_SECRC;
2766
2767         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2768         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2769                 u16 phy_data;
2770
2771                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2772                 phy_data &= 0xfff8;
2773                 phy_data |= (1 << 2);
2774                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2775
2776                 e1e_rphy(hw, 22, &phy_data);
2777                 phy_data &= 0x0fff;
2778                 phy_data |= (1 << 14);
2779                 e1e_wphy(hw, 0x10, 0x2823);
2780                 e1e_wphy(hw, 0x11, 0x0003);
2781                 e1e_wphy(hw, 22, phy_data);
2782         }
2783
2784         /* Setup buffer sizes */
2785         rctl &= ~E1000_RCTL_SZ_4096;
2786         rctl |= E1000_RCTL_BSEX;
2787         switch (adapter->rx_buffer_len) {
2788         case 2048:
2789         default:
2790                 rctl |= E1000_RCTL_SZ_2048;
2791                 rctl &= ~E1000_RCTL_BSEX;
2792                 break;
2793         case 4096:
2794                 rctl |= E1000_RCTL_SZ_4096;
2795                 break;
2796         case 8192:
2797                 rctl |= E1000_RCTL_SZ_8192;
2798                 break;
2799         case 16384:
2800                 rctl |= E1000_RCTL_SZ_16384;
2801                 break;
2802         }
2803
2804         /*
2805          * 82571 and greater support packet-split where the protocol
2806          * header is placed in skb->data and the packet data is
2807          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2808          * In the case of a non-split, skb->data is linearly filled,
2809          * followed by the page buffers.  Therefore, skb->data is
2810          * sized to hold the largest protocol header.
2811          *
2812          * allocations using alloc_page take too long for regular MTU
2813          * so only enable packet split for jumbo frames
2814          *
2815          * Using pages when the page size is greater than 16k wastes
2816          * a lot of memory, since we allocate 3 pages at all times
2817          * per packet.
2818          */
2819         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2820         if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2821             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2822                 adapter->rx_ps_pages = pages;
2823         else
2824                 adapter->rx_ps_pages = 0;
2825
2826         if (adapter->rx_ps_pages) {
2827                 /* Configure extra packet-split registers */
2828                 rfctl = er32(RFCTL);
2829                 rfctl |= E1000_RFCTL_EXTEN;
2830                 /*
2831                  * disable packet split support for IPv6 extension headers,
2832                  * because some malformed IPv6 headers can hang the Rx
2833                  */
2834                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2835                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2836
2837                 ew32(RFCTL, rfctl);
2838
2839                 /* Enable Packet split descriptors */
2840                 rctl |= E1000_RCTL_DTYP_PS;
2841
2842                 psrctl |= adapter->rx_ps_bsize0 >>
2843                         E1000_PSRCTL_BSIZE0_SHIFT;
2844
2845                 switch (adapter->rx_ps_pages) {
2846                 case 3:
2847                         psrctl |= PAGE_SIZE <<
2848                                 E1000_PSRCTL_BSIZE3_SHIFT;
2849                 case 2:
2850                         psrctl |= PAGE_SIZE <<
2851                                 E1000_PSRCTL_BSIZE2_SHIFT;
2852                 case 1:
2853                         psrctl |= PAGE_SIZE >>
2854                                 E1000_PSRCTL_BSIZE1_SHIFT;
2855                         break;
2856                 }
2857
2858                 ew32(PSRCTL, psrctl);
2859         }
2860
2861         ew32(RCTL, rctl);
2862         /* just started the receive unit, no need to restart */
2863         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2864 }
2865
2866 /**
2867  * e1000_configure_rx - Configure Receive Unit after Reset
2868  * @adapter: board private structure
2869  *
2870  * Configure the Rx unit of the MAC after a reset.
2871  **/
2872 static void e1000_configure_rx(struct e1000_adapter *adapter)
2873 {
2874         struct e1000_hw *hw = &adapter->hw;
2875         struct e1000_ring *rx_ring = adapter->rx_ring;
2876         u64 rdba;
2877         u32 rdlen, rctl, rxcsum, ctrl_ext;
2878
2879         if (adapter->rx_ps_pages) {
2880                 /* this is a 32 byte descriptor */
2881                 rdlen = rx_ring->count *
2882                         sizeof(union e1000_rx_desc_packet_split);
2883                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2884                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2885         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2886                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2887                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2888                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2889         } else {
2890                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2891                 adapter->clean_rx = e1000_clean_rx_irq;
2892                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2893         }
2894
2895         /* disable receives while setting up the descriptors */
2896         rctl = er32(RCTL);
2897         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2898         e1e_flush();
2899         msleep(10);
2900
2901         if (adapter->flags2 & FLAG2_DMA_BURST) {
2902                 /*
2903                  * set the writeback threshold (only takes effect if the RDTR
2904                  * is set). set GRAN=1 and write back up to 0x4 worth, and
2905                  * enable prefetching of 0x20 rx descriptors
2906                  * granularity = 01
2907                  * wthresh = 04,
2908                  * hthresh = 04,
2909                  * pthresh = 0x20
2910                  */
2911                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
2912                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
2913
2914                 /*
2915                  * override the delay timers for enabling bursting, only if
2916                  * the value was not set by the user via module options
2917                  */
2918                 if (adapter->rx_int_delay == DEFAULT_RDTR)
2919                         adapter->rx_int_delay = BURST_RDTR;
2920                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
2921                         adapter->rx_abs_int_delay = BURST_RADV;
2922         }
2923
2924         /* set the Receive Delay Timer Register */
2925         ew32(RDTR, adapter->rx_int_delay);
2926
2927         /* irq moderation */
2928         ew32(RADV, adapter->rx_abs_int_delay);
2929         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2930                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2931
2932         ctrl_ext = er32(CTRL_EXT);
2933         /* Auto-Mask interrupts upon ICR access */
2934         ctrl_ext |= E1000_CTRL_EXT_IAME;
2935         ew32(IAM, 0xffffffff);
2936         ew32(CTRL_EXT, ctrl_ext);
2937         e1e_flush();
2938
2939         /*
2940          * Setup the HW Rx Head and Tail Descriptor Pointers and
2941          * the Base and Length of the Rx Descriptor Ring
2942          */
2943         rdba = rx_ring->dma;
2944         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2945         ew32(RDBAH, (rdba >> 32));
2946         ew32(RDLEN, rdlen);
2947         ew32(RDH, 0);
2948         ew32(RDT, 0);
2949         rx_ring->head = E1000_RDH;
2950         rx_ring->tail = E1000_RDT;
2951
2952         /* Enable Receive Checksum Offload for TCP and UDP */
2953         rxcsum = er32(RXCSUM);
2954         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2955                 rxcsum |= E1000_RXCSUM_TUOFL;
2956
2957                 /*
2958                  * IPv4 payload checksum for UDP fragments must be
2959                  * used in conjunction with packet-split.
2960                  */
2961                 if (adapter->rx_ps_pages)
2962                         rxcsum |= E1000_RXCSUM_IPPCSE;
2963         } else {
2964                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2965                 /* no need to clear IPPCSE as it defaults to 0 */
2966         }
2967         ew32(RXCSUM, rxcsum);
2968
2969         /*
2970          * Enable early receives on supported devices, only takes effect when
2971          * packet size is equal or larger than the specified value (in 8 byte
2972          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2973          */
2974         if ((adapter->flags & FLAG_HAS_ERT) ||
2975             (adapter->hw.mac.type == e1000_pch2lan)) {
2976                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2977                         u32 rxdctl = er32(RXDCTL(0));
2978                         ew32(RXDCTL(0), rxdctl | 0x3);
2979                         if (adapter->flags & FLAG_HAS_ERT)
2980                                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2981                         /*
2982                          * With jumbo frames and early-receive enabled,
2983                          * excessive C-state transition latencies result in
2984                          * dropped transactions.
2985                          */
2986                         pm_qos_update_request(
2987                                 &adapter->netdev->pm_qos_req, 55);
2988                 } else {
2989                         pm_qos_update_request(
2990                                 &adapter->netdev->pm_qos_req,
2991                                 PM_QOS_DEFAULT_VALUE);
2992                 }
2993         }
2994
2995         /* Enable Receives */
2996         ew32(RCTL, rctl);
2997 }
2998
2999 /**
3000  *  e1000_update_mc_addr_list - Update Multicast addresses
3001  *  @hw: pointer to the HW structure
3002  *  @mc_addr_list: array of multicast addresses to program
3003  *  @mc_addr_count: number of multicast addresses to program
3004  *
3005  *  Updates the Multicast Table Array.
3006  *  The caller must have a packed mc_addr_list of multicast addresses.
3007  **/
3008 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3009                                       u32 mc_addr_count)
3010 {
3011         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3012 }
3013
3014 /**
3015  * e1000_set_multi - Multicast and Promiscuous mode set
3016  * @netdev: network interface device structure
3017  *
3018  * The set_multi entry point is called whenever the multicast address
3019  * list or the network interface flags are updated.  This routine is
3020  * responsible for configuring the hardware for proper multicast,
3021  * promiscuous mode, and all-multi behavior.
3022  **/
3023 static void e1000_set_multi(struct net_device *netdev)
3024 {
3025         struct e1000_adapter *adapter = netdev_priv(netdev);
3026         struct e1000_hw *hw = &adapter->hw;
3027         struct netdev_hw_addr *ha;
3028         u8  *mta_list;
3029         u32 rctl;
3030         int i;
3031
3032         /* Check for Promiscuous and All Multicast modes */
3033
3034         rctl = er32(RCTL);
3035
3036         if (netdev->flags & IFF_PROMISC) {
3037                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3038                 rctl &= ~E1000_RCTL_VFE;
3039         } else {
3040                 if (netdev->flags & IFF_ALLMULTI) {
3041                         rctl |= E1000_RCTL_MPE;
3042                         rctl &= ~E1000_RCTL_UPE;
3043                 } else {
3044                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3045                 }
3046                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3047                         rctl |= E1000_RCTL_VFE;
3048         }
3049
3050         ew32(RCTL, rctl);
3051
3052         if (!netdev_mc_empty(netdev)) {
3053                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3054                 if (!mta_list)
3055                         return;
3056
3057                 /* prepare a packed array of only addresses. */
3058                 i = 0;
3059                 netdev_for_each_mc_addr(ha, netdev)
3060                         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3061
3062                 e1000_update_mc_addr_list(hw, mta_list, i);
3063                 kfree(mta_list);
3064         } else {
3065                 /*
3066                  * if we're called from probe, we might not have
3067                  * anything to do here, so clear out the list
3068                  */
3069                 e1000_update_mc_addr_list(hw, NULL, 0);
3070         }
3071 }
3072
3073 /**
3074  * e1000_configure - configure the hardware for Rx and Tx
3075  * @adapter: private board structure
3076  **/
3077 static void e1000_configure(struct e1000_adapter *adapter)
3078 {
3079         e1000_set_multi(adapter->netdev);
3080
3081         e1000_restore_vlan(adapter);
3082         e1000_init_manageability_pt(adapter);
3083
3084         e1000_configure_tx(adapter);
3085         e1000_setup_rctl(adapter);
3086         e1000_configure_rx(adapter);
3087         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3088 }
3089
3090 /**
3091  * e1000e_power_up_phy - restore link in case the phy was powered down
3092  * @adapter: address of board private structure
3093  *
3094  * The phy may be powered down to save power and turn off link when the
3095  * driver is unloaded and wake on lan is not enabled (among others)
3096  * *** this routine MUST be followed by a call to e1000e_reset ***
3097  **/
3098 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3099 {
3100         if (adapter->hw.phy.ops.power_up)
3101                 adapter->hw.phy.ops.power_up(&adapter->hw);
3102
3103         adapter->hw.mac.ops.setup_link(&adapter->hw);
3104 }
3105
3106 /**
3107  * e1000_power_down_phy - Power down the PHY
3108  *
3109  * Power down the PHY so no link is implied when interface is down.
3110  * The PHY cannot be powered down if management or WoL is active.
3111  */
3112 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3113 {
3114         /* WoL is enabled */
3115         if (adapter->wol)
3116                 return;
3117
3118         if (adapter->hw.phy.ops.power_down)
3119                 adapter->hw.phy.ops.power_down(&adapter->hw);
3120 }
3121
3122 /**
3123  * e1000e_reset - bring the hardware into a known good state
3124  *
3125  * This function boots the hardware and enables some settings that
3126  * require a configuration cycle of the hardware - those cannot be
3127  * set/changed during runtime. After reset the device needs to be
3128  * properly configured for Rx, Tx etc.
3129  */
3130 void e1000e_reset(struct e1000_adapter *adapter)
3131 {
3132         struct e1000_mac_info *mac = &adapter->hw.mac;
3133         struct e1000_fc_info *fc = &adapter->hw.fc;
3134         struct e1000_hw *hw = &adapter->hw;
3135         u32 tx_space, min_tx_space, min_rx_space;
3136         u32 pba = adapter->pba;
3137         u16 hwm;
3138
3139         /* reset Packet Buffer Allocation to default */
3140         ew32(PBA, pba);
3141
3142         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3143                 /*
3144                  * To maintain wire speed transmits, the Tx FIFO should be
3145                  * large enough to accommodate two full transmit packets,
3146                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3147                  * the Rx FIFO should be large enough to accommodate at least
3148                  * one full receive packet and is similarly rounded up and
3149                  * expressed in KB.
3150                  */
3151                 pba = er32(PBA);
3152                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3153                 tx_space = pba >> 16;
3154                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3155                 pba &= 0xffff;
3156                 /*
3157                  * the Tx fifo also stores 16 bytes of information about the tx
3158                  * but don't include ethernet FCS because hardware appends it
3159                  */
3160                 min_tx_space = (adapter->max_frame_size +
3161                                 sizeof(struct e1000_tx_desc) -
3162                                 ETH_FCS_LEN) * 2;
3163                 min_tx_space = ALIGN(min_tx_space, 1024);
3164                 min_tx_space >>= 10;
3165                 /* software strips receive CRC, so leave room for it */
3166                 min_rx_space = adapter->max_frame_size;
3167                 min_rx_space = ALIGN(min_rx_space, 1024);
3168                 min_rx_space >>= 10;
3169
3170                 /*
3171                  * If current Tx allocation is less than the min Tx FIFO size,
3172                  * and the min Tx FIFO size is less than the current Rx FIFO
3173                  * allocation, take space away from current Rx allocation
3174                  */
3175                 if ((tx_space < min_tx_space) &&
3176                     ((min_tx_space - tx_space) < pba)) {
3177                         pba -= min_tx_space - tx_space;
3178
3179                         /*
3180                          * if short on Rx space, Rx wins and must trump tx
3181                          * adjustment or use Early Receive if available
3182                          */
3183                         if ((pba < min_rx_space) &&
3184                             (!(adapter->flags & FLAG_HAS_ERT)))
3185                                 /* ERT enabled in e1000_configure_rx */
3186                                 pba = min_rx_space;
3187                 }
3188
3189                 ew32(PBA, pba);
3190         }
3191
3192
3193         /*
3194          * flow control settings
3195          *
3196          * The high water mark must be low enough to fit one full frame
3197          * (or the size used for early receive) above it in the Rx FIFO.
3198          * Set it to the lower of:
3199          * - 90% of the Rx FIFO size, and
3200          * - the full Rx FIFO size minus the early receive size (for parts
3201          *   with ERT support assuming ERT set to E1000_ERT_2048), or
3202          * - the full Rx FIFO size minus one full frame
3203          */
3204         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3205                 fc->pause_time = 0xFFFF;
3206         else
3207                 fc->pause_time = E1000_FC_PAUSE_TIME;
3208         fc->send_xon = 1;
3209         fc->current_mode = fc->requested_mode;
3210
3211         switch (hw->mac.type) {
3212         default:
3213                 if ((adapter->flags & FLAG_HAS_ERT) &&
3214                     (adapter->netdev->mtu > ETH_DATA_LEN))
3215                         hwm = min(((pba << 10) * 9 / 10),
3216                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
3217                 else
3218                         hwm = min(((pba << 10) * 9 / 10),
3219                                   ((pba << 10) - adapter->max_frame_size));
3220
3221                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3222                 fc->low_water = fc->high_water - 8;
3223                 break;
3224         case e1000_pchlan:
3225                 /*
3226                  * Workaround PCH LOM adapter hangs with certain network
3227                  * loads.  If hangs persist, try disabling Tx flow control.
3228                  */
3229                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3230                         fc->high_water = 0x3500;
3231                         fc->low_water  = 0x1500;
3232                 } else {
3233                         fc->high_water = 0x5000;
3234                         fc->low_water  = 0x3000;
3235                 }
3236                 fc->refresh_time = 0x1000;
3237                 break;
3238         case e1000_pch2lan:
3239                 fc->high_water = 0x05C20;
3240                 fc->low_water = 0x05048;
3241                 fc->pause_time = 0x0650;
3242                 fc->refresh_time = 0x0400;
3243                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3244                         pba = 14;
3245                         ew32(PBA, pba);
3246                 }
3247                 break;
3248         }
3249
3250         /*
3251          * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3252          * fit in receive buffer and early-receive not supported.
3253          */
3254         if (adapter->itr_setting & 0x3) {
3255                 if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3256                     !(adapter->flags & FLAG_HAS_ERT)) {
3257                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3258                                 dev_info(&adapter->pdev->dev,
3259                                         "Interrupt Throttle Rate turned off\n");
3260                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3261                                 ew32(ITR, 0);
3262                         }
3263                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3264                         dev_info(&adapter->pdev->dev,
3265                                  "Interrupt Throttle Rate turned on\n");
3266                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3267                         adapter->itr = 20000;
3268                         ew32(ITR, 1000000000 / (adapter->itr * 256));
3269                 }
3270         }
3271
3272         /* Allow time for pending master requests to run */
3273         mac->ops.reset_hw(hw);
3274
3275         /*
3276          * For parts with AMT enabled, let the firmware know
3277          * that the network interface is in control
3278          */
3279         if (adapter->flags & FLAG_HAS_AMT)
3280                 e1000_get_hw_control(adapter);
3281
3282         ew32(WUC, 0);
3283
3284         if (mac->ops.init_hw(hw))
3285                 e_err("Hardware Error\n");
3286
3287         e1000_update_mng_vlan(adapter);
3288
3289         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3290         ew32(VET, ETH_P_8021Q);
3291
3292         e1000e_reset_adaptive(hw);
3293         e1000_get_phy_info(hw);
3294
3295         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3296             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3297                 u16 phy_data = 0;
3298                 /*
3299                  * speed up time to link by disabling smart power down, ignore
3300                  * the return value of this function because there is nothing
3301                  * different we would do if it failed
3302                  */
3303                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3304                 phy_data &= ~IGP02E1000_PM_SPD;
3305                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3306         }
3307 }
3308
3309 int e1000e_up(struct e1000_adapter *adapter)
3310 {
3311         struct e1000_hw *hw = &adapter->hw;
3312
3313         /* hardware has been reset, we need to reload some things */
3314         e1000_configure(adapter);
3315
3316         clear_bit(__E1000_DOWN, &adapter->state);
3317
3318         napi_enable(&adapter->napi);
3319         if (adapter->msix_entries)
3320                 e1000_configure_msix(adapter);
3321         e1000_irq_enable(adapter);
3322
3323         netif_wake_queue(adapter->netdev);
3324
3325         /* fire a link change interrupt to start the watchdog */
3326         if (adapter->msix_entries)
3327                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3328         else
3329                 ew32(ICS, E1000_ICS_LSC);
3330
3331         return 0;
3332 }
3333
3334 void e1000e_down(struct e1000_adapter *adapter)
3335 {
3336         struct net_device *netdev = adapter->netdev;
3337         struct e1000_hw *hw = &adapter->hw;
3338         u32 tctl, rctl;
3339
3340         /*
3341          * signal that we're down so the interrupt handler does not
3342          * reschedule our watchdog timer
3343          */
3344         set_bit(__E1000_DOWN, &adapter->state);
3345
3346         /* disable receives in the hardware */
3347         rctl = er32(RCTL);
3348         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3349         /* flush and sleep below */
3350
3351         netif_stop_queue(netdev);
3352
3353         /* disable transmits in the hardware */
3354         tctl = er32(TCTL);
3355         tctl &= ~E1000_TCTL_EN;
3356         ew32(TCTL, tctl);
3357         /* flush both disables and wait for them to finish */
3358         e1e_flush();
3359         msleep(10);
3360
3361         napi_disable(&adapter->napi);
3362         e1000_irq_disable(adapter);
3363
3364         del_timer_sync(&adapter->watchdog_timer);
3365         del_timer_sync(&adapter->phy_info_timer);
3366
3367         netif_carrier_off(netdev);
3368         adapter->link_speed = 0;
3369         adapter->link_duplex = 0;
3370
3371         if (!pci_channel_offline(adapter->pdev))
3372                 e1000e_reset(adapter);
3373         e1000_clean_tx_ring(adapter);
3374         e1000_clean_rx_ring(adapter);
3375
3376         /*
3377          * TODO: for power management, we could drop the link and
3378          * pci_disable_device here.
3379          */
3380 }
3381
3382 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3383 {
3384         might_sleep();
3385         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3386                 msleep(1);
3387         e1000e_down(adapter);
3388         e1000e_up(adapter);
3389         clear_bit(__E1000_RESETTING, &adapter->state);
3390 }
3391
3392 /**
3393  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3394  * @adapter: board private structure to initialize
3395  *
3396  * e1000_sw_init initializes the Adapter private data structure.
3397  * Fields are initialized based on PCI device information and
3398  * OS network device settings (MTU size).
3399  **/
3400 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3401 {
3402         struct net_device *netdev = adapter->netdev;
3403
3404         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3405         adapter->rx_ps_bsize0 = 128;
3406         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3407         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3408
3409         e1000e_set_interrupt_capability(adapter);
3410
3411         if (e1000_alloc_queues(adapter))
3412                 return -ENOMEM;
3413
3414         /* Explicitly disable IRQ since the NIC can be in any state. */
3415         e1000_irq_disable(adapter);
3416
3417         set_bit(__E1000_DOWN, &adapter->state);
3418         return 0;
3419 }
3420
3421 /**
3422  * e1000_intr_msi_test - Interrupt Handler
3423  * @irq: interrupt number
3424  * @data: pointer to a network interface device structure
3425  **/
3426 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3427 {
3428         struct net_device *netdev = data;
3429         struct e1000_adapter *adapter = netdev_priv(netdev);
3430         struct e1000_hw *hw = &adapter->hw;
3431         u32 icr = er32(ICR);
3432
3433         e_dbg("icr is %08X\n", icr);
3434         if (icr & E1000_ICR_RXSEQ) {
3435                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3436                 wmb();
3437         }
3438
3439         return IRQ_HANDLED;
3440 }
3441
3442 /**
3443  * e1000_test_msi_interrupt - Returns 0 for successful test
3444  * @adapter: board private struct
3445  *
3446  * code flow taken from tg3.c
3447  **/
3448 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3449 {
3450         struct net_device *netdev = adapter->netdev;
3451         struct e1000_hw *hw = &adapter->hw;
3452         int err;
3453
3454         /* poll_enable hasn't been called yet, so don't need disable */
3455         /* clear any pending events */
3456         er32(ICR);
3457
3458         /* free the real vector and request a test handler */
3459         e1000_free_irq(adapter);
3460         e1000e_reset_interrupt_capability(adapter);
3461
3462         /* Assume that the test fails, if it succeeds then the test
3463          * MSI irq handler will unset this flag */
3464         adapter->flags |= FLAG_MSI_TEST_FAILED;
3465
3466         err = pci_enable_msi(adapter->pdev);
3467         if (err)
3468                 goto msi_test_failed;
3469
3470         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3471                           netdev->name, netdev);
3472         if (err) {
3473                 pci_disable_msi(adapter->pdev);
3474                 goto msi_test_failed;
3475         }
3476
3477         wmb();
3478
3479         e1000_irq_enable(adapter);
3480
3481         /* fire an unusual interrupt on the test handler */
3482         ew32(ICS, E1000_ICS_RXSEQ);
3483         e1e_flush();
3484         msleep(50);
3485
3486         e1000_irq_disable(adapter);
3487
3488         rmb();
3489
3490         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3491                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3492                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3493         } else
3494                 e_dbg("MSI interrupt test succeeded!\n");
3495
3496         free_irq(adapter->pdev->irq, netdev);
3497         pci_disable_msi(adapter->pdev);
3498
3499 msi_test_failed:
3500         e1000e_set_interrupt_capability(adapter);
3501         return e1000_request_irq(adapter);
3502 }
3503
3504 /**
3505  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3506  * @adapter: board private struct
3507  *
3508  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3509  **/
3510 static int e1000_test_msi(struct e1000_adapter *adapter)
3511 {
3512         int err;
3513         u16 pci_cmd;
3514
3515         if (!(adapter->flags & FLAG_MSI_ENABLED))
3516                 return 0;
3517
3518         /* disable SERR in case the MSI write causes a master abort */
3519         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3520         if (pci_cmd & PCI_COMMAND_SERR)
3521                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3522                                       pci_cmd & ~PCI_COMMAND_SERR);
3523
3524         err = e1000_test_msi_interrupt(adapter);
3525
3526         /* re-enable SERR */
3527         if (pci_cmd & PCI_COMMAND_SERR) {
3528                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3529                 pci_cmd |= PCI_COMMAND_SERR;
3530                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3531         }
3532
3533         return err;
3534 }
3535
3536 /**
3537  * e1000_open - Called when a network interface is made active
3538  * @netdev: network interface device structure
3539  *
3540  * Returns 0 on success, negative value on failure
3541  *
3542  * The open entry point is called when a network interface is made
3543  * active by the system (IFF_UP).  At this point all resources needed
3544  * for transmit and receive operations are allocated, the interrupt
3545  * handler is registered with the OS, the watchdog timer is started,
3546  * and the stack is notified that the interface is ready.
3547  **/
3548 static int e1000_open(struct net_device *netdev)
3549 {
3550         struct e1000_adapter *adapter = netdev_priv(netdev);
3551         struct e1000_hw *hw = &adapter->hw;
3552         struct pci_dev *pdev = adapter->pdev;
3553         int err;
3554
3555         /* disallow open during test */
3556         if (test_bit(__E1000_TESTING, &adapter->state))
3557                 return -EBUSY;
3558
3559         pm_runtime_get_sync(&pdev->dev);
3560
3561         netif_carrier_off(netdev);
3562
3563         /* allocate transmit descriptors */
3564         err = e1000e_setup_tx_resources(adapter);
3565         if (err)
3566                 goto err_setup_tx;
3567
3568         /* allocate receive descriptors */
3569         err = e1000e_setup_rx_resources(adapter);
3570         if (err)
3571                 goto err_setup_rx;
3572
3573         /*
3574          * If AMT is enabled, let the firmware know that the network
3575          * interface is now open and reset the part to a known state.
3576          */
3577         if (adapter->flags & FLAG_HAS_AMT) {
3578                 e1000_get_hw_control(adapter);
3579                 e1000e_reset(adapter);
3580         }
3581
3582         e1000e_power_up_phy(adapter);
3583
3584         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3585         if ((adapter->hw.mng_cookie.status &
3586              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3587                 e1000_update_mng_vlan(adapter);
3588
3589         /* DMA latency requirement to workaround early-receive/jumbo issue */
3590         if ((adapter->flags & FLAG_HAS_ERT) ||
3591             (adapter->hw.mac.type == e1000_pch2lan))
3592                 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3593                                    PM_QOS_CPU_DMA_LATENCY,
3594                                    PM_QOS_DEFAULT_VALUE);
3595
3596         /*
3597          * before we allocate an interrupt, we must be ready to handle it.
3598          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3599          * as soon as we call pci_request_irq, so we have to setup our
3600          * clean_rx handler before we do so.
3601          */
3602         e1000_configure(adapter);
3603
3604         err = e1000_request_irq(adapter);
3605         if (err)
3606                 goto err_req_irq;
3607
3608         /*
3609          * Work around PCIe errata with MSI interrupts causing some chipsets to
3610          * ignore e1000e MSI messages, which means we need to test our MSI
3611          * interrupt now
3612          */
3613         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3614                 err = e1000_test_msi(adapter);
3615                 if (err) {
3616                         e_err("Interrupt allocation failed\n");
3617                         goto err_req_irq;
3618                 }
3619         }
3620
3621         /* From here on the code is the same as e1000e_up() */
3622         clear_bit(__E1000_DOWN, &adapter->state);
3623
3624         napi_enable(&adapter->napi);
3625
3626         e1000_irq_enable(adapter);
3627
3628         netif_start_queue(netdev);
3629
3630         adapter->idle_check = true;
3631         pm_runtime_put(&pdev->dev);
3632
3633         /* fire a link status change interrupt to start the watchdog */
3634         if (adapter->msix_entries)
3635                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3636         else
3637                 ew32(ICS, E1000_ICS_LSC);
3638
3639         return 0;
3640
3641 err_req_irq:
3642         e1000_release_hw_control(adapter);
3643         e1000_power_down_phy(adapter);
3644         e1000e_free_rx_resources(adapter);
3645 err_setup_rx:
3646         e1000e_free_tx_resources(adapter);
3647 err_setup_tx:
3648         e1000e_reset(adapter);
3649         pm_runtime_put_sync(&pdev->dev);
3650
3651         return err;
3652 }
3653
3654 /**
3655  * e1000_close - Disables a network interface
3656  * @netdev: network interface device structure
3657  *
3658  * Returns 0, this is not allowed to fail
3659  *
3660  * The close entry point is called when an interface is de-activated
3661  * by the OS.  The hardware is still under the drivers control, but
3662  * needs to be disabled.  A global MAC reset is issued to stop the
3663  * hardware, and all transmit and receive resources are freed.
3664  **/
3665 static int e1000_close(struct net_device *netdev)
3666 {
3667         struct e1000_adapter *adapter = netdev_priv(netdev);
3668         struct pci_dev *pdev = adapter->pdev;
3669
3670         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3671
3672         pm_runtime_get_sync(&pdev->dev);
3673
3674         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3675                 e1000e_down(adapter);
3676                 e1000_free_irq(adapter);
3677         }
3678         e1000_power_down_phy(adapter);
3679
3680         e1000e_free_tx_resources(adapter);
3681         e1000e_free_rx_resources(adapter);
3682
3683         /*
3684          * kill manageability vlan ID if supported, but not if a vlan with
3685          * the same ID is registered on the host OS (let 8021q kill it)
3686          */
3687         if ((adapter->hw.mng_cookie.status &
3688                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3689              !(adapter->vlgrp &&
3690                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3691                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3692
3693         /*
3694          * If AMT is enabled, let the firmware know that the network
3695          * interface is now closed
3696          */
3697         if (adapter->flags & FLAG_HAS_AMT)
3698                 e1000_release_hw_control(adapter);
3699
3700         if ((adapter->flags & FLAG_HAS_ERT) ||
3701             (adapter->hw.mac.type == e1000_pch2lan))
3702                 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3703
3704         pm_runtime_put_sync(&pdev->dev);
3705
3706         return 0;
3707 }
3708 /**
3709  * e1000_set_mac - Change the Ethernet Address of the NIC
3710  * @netdev: network interface device structure
3711  * @p: pointer to an address structure
3712  *
3713  * Returns 0 on success, negative on failure
3714  **/
3715 static int e1000_set_mac(struct net_device *netdev, void *p)
3716 {
3717         struct e1000_adapter *adapter = netdev_priv(netdev);
3718         struct sockaddr *addr = p;
3719
3720         if (!is_valid_ether_addr(addr->sa_data))
3721                 return -EADDRNOTAVAIL;
3722
3723         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3724         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3725
3726         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3727
3728         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3729                 /* activate the work around */
3730                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3731
3732                 /*
3733                  * Hold a copy of the LAA in RAR[14] This is done so that
3734                  * between the time RAR[0] gets clobbered  and the time it
3735                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3736                  * of the RARs and no incoming packets directed to this port
3737                  * are dropped. Eventually the LAA will be in RAR[0] and
3738                  * RAR[14]
3739                  */
3740                 e1000e_rar_set(&adapter->hw,
3741                               adapter->hw.mac.addr,
3742                               adapter->hw.mac.rar_entry_count - 1);
3743         }
3744
3745         return 0;
3746 }
3747
3748 /**
3749  * e1000e_update_phy_task - work thread to update phy
3750  * @work: pointer to our work struct
3751  *
3752  * this worker thread exists because we must acquire a
3753  * semaphore to read the phy, which we could msleep while
3754  * waiting for it, and we can't msleep in a timer.
3755  **/
3756 static void e1000e_update_phy_task(struct work_struct *work)
3757 {
3758         struct e1000_adapter *adapter = container_of(work,
3759                                         struct e1000_adapter, update_phy_task);
3760         e1000_get_phy_info(&adapter->hw);
3761 }
3762
3763 /*
3764  * Need to wait a few seconds after link up to get diagnostic information from
3765  * the phy
3766  */
3767 static void e1000_update_phy_info(unsigned long data)
3768 {
3769         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3770         schedule_work(&adapter->update_phy_task);
3771 }
3772
3773 /**
3774  * e1000e_update_phy_stats - Update the PHY statistics counters
3775  * @adapter: board private structure
3776  **/
3777 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3778 {
3779         struct e1000_hw *hw = &adapter->hw;
3780         s32 ret_val;
3781         u16 phy_data;
3782
3783         ret_val = hw->phy.ops.acquire(hw);
3784         if (ret_val)
3785                 return;
3786
3787         hw->phy.addr = 1;
3788
3789 #define HV_PHY_STATS_PAGE       778
3790         /*
3791          * A page set is expensive so check if already on desired page.
3792          * If not, set to the page with the PHY status registers.
3793          */
3794         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3795                                            &phy_data);
3796         if (ret_val)
3797                 goto release;
3798         if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
3799                 ret_val = e1000e_write_phy_reg_mdic(hw,
3800                                                     IGP01E1000_PHY_PAGE_SELECT,
3801                                                     (HV_PHY_STATS_PAGE <<
3802                                                      IGP_PAGE_SHIFT));
3803                 if (ret_val)
3804                         goto release;
3805         }
3806
3807         /* Read/clear the upper 16-bit registers and read/accumulate lower */
3808
3809         /* Single Collision Count */
3810         e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
3811                                  &phy_data);
3812         ret_val = e1000e_read_phy_reg_mdic(hw,
3813                                            HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
3814                                            &phy_data);
3815         if (!ret_val)
3816                 adapter->stats.scc += phy_data;
3817
3818         /* Excessive Collision Count */
3819         e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
3820                                  &phy_data);
3821         ret_val = e1000e_read_phy_reg_mdic(hw,
3822                                            HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
3823                                            &phy_data);
3824         if (!ret_val)
3825                 adapter->stats.ecol += phy_data;
3826
3827         /* Multiple Collision Count */
3828         e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
3829                                  &phy_data);
3830         ret_val = e1000e_read_phy_reg_mdic(hw,
3831                                            HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
3832                                            &phy_data);
3833         if (!ret_val)
3834                 adapter->stats.mcc += phy_data;
3835
3836         /* Late Collision Count */
3837         e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
3838                                  &phy_data);
3839         ret_val = e1000e_read_phy_reg_mdic(hw,
3840                                            HV_LATECOL_LOWER &
3841                                            MAX_PHY_REG_ADDRESS,
3842                                            &phy_data);
3843         if (!ret_val)
3844                 adapter->stats.latecol += phy_data;
3845
3846         /* Collision Count - also used for adaptive IFS */
3847         e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
3848                                  &phy_data);
3849         ret_val = e1000e_read_phy_reg_mdic(hw,
3850                                            HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
3851                                            &phy_data);
3852         if (!ret_val)
3853                 hw->mac.collision_delta = phy_data;
3854
3855         /* Defer Count */
3856         e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
3857                                  &phy_data);
3858         ret_val = e1000e_read_phy_reg_mdic(hw,
3859                                            HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
3860                                            &phy_data);
3861         if (!ret_val)
3862                 adapter->stats.dc += phy_data;
3863
3864         /* Transmit with no CRS */
3865         e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
3866                                  &phy_data);
3867         ret_val = e1000e_read_phy_reg_mdic(hw,
3868                                            HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
3869                                            &phy_data);
3870         if (!ret_val)
3871                 adapter->stats.tncrs += phy_data;
3872
3873 release:
3874         hw->phy.ops.release(hw);
3875 }
3876
3877 /**
3878  * e1000e_update_stats - Update the board statistics counters
3879  * @adapter: board private structure
3880  **/
3881 void e1000e_update_stats(struct e1000_adapter *adapter)
3882 {
3883         struct net_device *netdev = adapter->netdev;
3884         struct e1000_hw *hw = &adapter->hw;
3885         struct pci_dev *pdev = adapter->pdev;
3886
3887         /*
3888          * Prevent stats update while adapter is being reset, or if the pci
3889          * connection is down.
3890          */
3891         if (adapter->link_speed == 0)
3892                 return;
3893         if (pci_channel_offline(pdev))
3894                 return;
3895
3896         adapter->stats.crcerrs += er32(CRCERRS);
3897         adapter->stats.gprc += er32(GPRC);
3898         adapter->stats.gorc += er32(GORCL);
3899         er32(GORCH); /* Clear gorc */
3900         adapter->stats.bprc += er32(BPRC);
3901         adapter->stats.mprc += er32(MPRC);
3902         adapter->stats.roc += er32(ROC);
3903
3904         adapter->stats.mpc += er32(MPC);
3905
3906         /* Half-duplex statistics */
3907         if (adapter->link_duplex == HALF_DUPLEX) {
3908                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3909                         e1000e_update_phy_stats(adapter);
3910                 } else {
3911                         adapter->stats.scc += er32(SCC);
3912                         adapter->stats.ecol += er32(ECOL);
3913                         adapter->stats.mcc += er32(MCC);
3914                         adapter->stats.latecol += er32(LATECOL);
3915                         adapter->stats.dc += er32(DC);
3916
3917                         hw->mac.collision_delta = er32(COLC);
3918
3919                         if ((hw->mac.type != e1000_82574) &&
3920                             (hw->mac.type != e1000_82583))
3921                                 adapter->stats.tncrs += er32(TNCRS);
3922                 }
3923                 adapter->stats.colc += hw->mac.collision_delta;
3924         }
3925
3926         adapter->stats.xonrxc += er32(XONRXC);
3927         adapter->stats.xontxc += er32(XONTXC);
3928         adapter->stats.xoffrxc += er32(XOFFRXC);
3929         adapter->stats.xofftxc += er32(XOFFTXC);
3930         adapter->stats.gptc += er32(GPTC);
3931         adapter->stats.gotc += er32(GOTCL);
3932         er32(GOTCH); /* Clear gotc */
3933         adapter->stats.rnbc += er32(RNBC);
3934         adapter->stats.ruc += er32(RUC);
3935
3936         adapter->stats.mptc += er32(MPTC);
3937         adapter->stats.bptc += er32(BPTC);
3938
3939         /* used for adaptive IFS */
3940
3941         hw->mac.tx_packet_delta = er32(TPT);
3942         adapter->stats.tpt += hw->mac.tx_packet_delta;
3943
3944         adapter->stats.algnerrc += er32(ALGNERRC);
3945         adapter->stats.rxerrc += er32(RXERRC);
3946         adapter->stats.cexterr += er32(CEXTERR);
3947         adapter->stats.tsctc += er32(TSCTC);
3948         adapter->stats.tsctfc += er32(TSCTFC);
3949
3950         /* Fill out the OS statistics structure */
3951         netdev->stats.multicast = adapter->stats.mprc;
3952         netdev->stats.collisions = adapter->stats.colc;
3953
3954         /* Rx Errors */
3955
3956         /*
3957          * RLEC on some newer hardware can be incorrect so build
3958          * our own version based on RUC and ROC
3959          */
3960         netdev->stats.rx_errors = adapter->stats.rxerrc +
3961                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3962                 adapter->stats.ruc + adapter->stats.roc +
3963                 adapter->stats.cexterr;
3964         netdev->stats.rx_length_errors = adapter->stats.ruc +
3965                                               adapter->stats.roc;
3966         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3967         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3968         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3969
3970         /* Tx Errors */
3971         netdev->stats.tx_errors = adapter->stats.ecol +
3972                                        adapter->stats.latecol;
3973         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3974         netdev->stats.tx_window_errors = adapter->stats.latecol;
3975         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3976
3977         /* Tx Dropped needs to be maintained elsewhere */
3978
3979         /* Management Stats */
3980         adapter->stats.mgptc += er32(MGTPTC);
3981         adapter->stats.mgprc += er32(MGTPRC);
3982         adapter->stats.mgpdc += er32(MGTPDC);
3983 }
3984
3985 /**
3986  * e1000_phy_read_status - Update the PHY register status snapshot
3987  * @adapter: board private structure
3988  **/
3989 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3990 {
3991         struct e1000_hw *hw = &adapter->hw;
3992         struct e1000_phy_regs *phy = &adapter->phy_regs;
3993         int ret_val;
3994
3995         if ((er32(STATUS) & E1000_STATUS_LU) &&
3996             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3997                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3998                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3999                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4000                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4001                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4002                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4003                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4004                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4005                 if (ret_val)
4006                         e_warn("Error reading PHY register\n");
4007         } else {
4008                 /*
4009                  * Do not read PHY registers if link is not up
4010                  * Set values to typical power-on defaults
4011                  */
4012                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4013                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4014                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4015                              BMSR_ERCAP);
4016                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4017                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4018                 phy->lpa = 0;
4019                 phy->expansion = EXPANSION_ENABLENPAGE;
4020                 phy->ctrl1000 = ADVERTISE_1000FULL;
4021                 phy->stat1000 = 0;
4022                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4023         }
4024 }
4025
4026 static void e1000_print_link_info(struct e1000_adapter *adapter)
4027 {
4028         struct e1000_hw *hw = &adapter->hw;
4029         u32 ctrl = er32(CTRL);
4030
4031         /* Link status message must follow this format for user tools */
4032         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
4033                "Flow Control: %s\n",
4034                adapter->netdev->name,
4035                adapter->link_speed,
4036                (adapter->link_duplex == FULL_DUPLEX) ?
4037                                 "Full Duplex" : "Half Duplex",
4038                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4039                                 "RX/TX" :
4040                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
4041                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
4042 }
4043
4044 static bool e1000e_has_link(struct e1000_adapter *adapter)
4045 {
4046         struct e1000_hw *hw = &adapter->hw;
4047         bool link_active = 0;
4048         s32 ret_val = 0;
4049
4050         /*
4051          * get_link_status is set on LSC (link status) interrupt or
4052          * Rx sequence error interrupt.  get_link_status will stay
4053          * false until the check_for_link establishes link
4054          * for copper adapters ONLY
4055          */
4056         switch (hw->phy.media_type) {
4057         case e1000_media_type_copper:
4058                 if (hw->mac.get_link_status) {
4059                         ret_val = hw->mac.ops.check_for_link(hw);
4060                         link_active = !hw->mac.get_link_status;
4061                 } else {
4062                         link_active = 1;
4063                 }
4064                 break;
4065         case e1000_media_type_fiber:
4066                 ret_val = hw->mac.ops.check_for_link(hw);
4067                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4068                 break;
4069         case e1000_media_type_internal_serdes:
4070                 ret_val = hw->mac.ops.check_for_link(hw);
4071                 link_active = adapter->hw.mac.serdes_has_link;
4072                 break;
4073         default:
4074         case e1000_media_type_unknown:
4075                 break;
4076         }
4077
4078         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4079             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4080                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4081                 e_info("Gigabit has been disabled, downgrading speed\n");
4082         }
4083
4084         return link_active;
4085 }
4086
4087 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4088 {
4089         /* make sure the receive unit is started */
4090         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4091             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4092                 struct e1000_hw *hw = &adapter->hw;
4093                 u32 rctl = er32(RCTL);
4094                 ew32(RCTL, rctl | E1000_RCTL_EN);
4095                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4096         }
4097 }
4098
4099 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4100 {
4101         struct e1000_hw *hw = &adapter->hw;
4102
4103         /*
4104          * With 82574 controllers, PHY needs to be checked periodically
4105          * for hung state and reset, if two calls return true
4106          */
4107         if (e1000_check_phy_82574(hw))
4108                 adapter->phy_hang_count++;
4109         else
4110                 adapter->phy_hang_count = 0;
4111
4112         if (adapter->phy_hang_count > 1) {
4113                 adapter->phy_hang_count = 0;
4114                 schedule_work(&adapter->reset_task);
4115         }
4116 }
4117
4118 /**
4119  * e1000_watchdog - Timer Call-back
4120  * @data: pointer to adapter cast into an unsigned long
4121  **/
4122 static void e1000_watchdog(unsigned long data)
4123 {
4124         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4125
4126         /* Do the rest outside of interrupt context */
4127         schedule_work(&adapter->watchdog_task);
4128
4129         /* TODO: make this use queue_delayed_work() */
4130 }
4131
4132 static void e1000_watchdog_task(struct work_struct *work)
4133 {
4134         struct e1000_adapter *adapter = container_of(work,
4135                                         struct e1000_adapter, watchdog_task);
4136         struct net_device *netdev = adapter->netdev;
4137         struct e1000_mac_info *mac = &adapter->hw.mac;
4138         struct e1000_phy_info *phy = &adapter->hw.phy;
4139         struct e1000_ring *tx_ring = adapter->tx_ring;
4140         struct e1000_hw *hw = &adapter->hw;
4141         u32 link, tctl;
4142         int tx_pending = 0;
4143
4144         link = e1000e_has_link(adapter);
4145         if ((netif_carrier_ok(netdev)) && link) {
4146                 /* Cancel scheduled suspend requests. */
4147                 pm_runtime_resume(netdev->dev.parent);
4148
4149                 e1000e_enable_receives(adapter);
4150                 goto link_up;
4151         }
4152
4153         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4154             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4155                 e1000_update_mng_vlan(adapter);
4156
4157         if (link) {
4158                 if (!netif_carrier_ok(netdev)) {
4159                         bool txb2b = 1;
4160
4161                         /* Cancel scheduled suspend requests. */
4162                         pm_runtime_resume(netdev->dev.parent);
4163
4164                         /* update snapshot of PHY registers on LSC */
4165                         e1000_phy_read_status(adapter);
4166                         mac->ops.get_link_up_info(&adapter->hw,
4167                                                    &adapter->link_speed,
4168                                                    &adapter->link_duplex);
4169                         e1000_print_link_info(adapter);
4170                         /*
4171                          * On supported PHYs, check for duplex mismatch only
4172                          * if link has autonegotiated at 10/100 half
4173                          */
4174                         if ((hw->phy.type == e1000_phy_igp_3 ||
4175                              hw->phy.type == e1000_phy_bm) &&
4176                             (hw->mac.autoneg == true) &&
4177                             (adapter->link_speed == SPEED_10 ||
4178                              adapter->link_speed == SPEED_100) &&
4179                             (adapter->link_duplex == HALF_DUPLEX)) {
4180                                 u16 autoneg_exp;
4181
4182                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4183
4184                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4185                                         e_info("Autonegotiated half duplex but"
4186                                                " link partner cannot autoneg. "
4187                                                " Try forcing full duplex if "
4188                                                "link gets many collisions.\n");
4189                         }
4190
4191                         /* adjust timeout factor according to speed/duplex */
4192                         adapter->tx_timeout_factor = 1;
4193                         switch (adapter->link_speed) {
4194                         case SPEED_10:
4195                                 txb2b = 0;
4196                                 adapter->tx_timeout_factor = 16;
4197                                 break;
4198                         case SPEED_100:
4199                                 txb2b = 0;
4200                                 adapter->tx_timeout_factor = 10;
4201                                 break;
4202                         }
4203
4204                         /*
4205                          * workaround: re-program speed mode bit after
4206                          * link-up event
4207                          */
4208                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4209                             !txb2b) {
4210                                 u32 tarc0;
4211                                 tarc0 = er32(TARC(0));
4212                                 tarc0 &= ~SPEED_MODE_BIT;
4213                                 ew32(TARC(0), tarc0);
4214                         }
4215
4216                         /*
4217                          * disable TSO for pcie and 10/100 speeds, to avoid
4218                          * some hardware issues
4219                          */
4220                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4221                                 switch (adapter->link_speed) {
4222                                 case SPEED_10:
4223                                 case SPEED_100:
4224                                         e_info("10/100 speed: disabling TSO\n");
4225                                         netdev->features &= ~NETIF_F_TSO;
4226                                         netdev->features &= ~NETIF_F_TSO6;
4227                                         break;
4228                                 case SPEED_1000:
4229                                         netdev->features |= NETIF_F_TSO;
4230                                         netdev->features |= NETIF_F_TSO6;
4231                                         break;
4232                                 default:
4233                                         /* oops */
4234                                         break;
4235                                 }
4236                         }
4237
4238                         /*
4239                          * enable transmits in the hardware, need to do this
4240                          * after setting TARC(0)
4241                          */
4242                         tctl = er32(TCTL);
4243                         tctl |= E1000_TCTL_EN;
4244                         ew32(TCTL, tctl);
4245
4246                         /*
4247                          * Perform any post-link-up configuration before
4248                          * reporting link up.
4249                          */
4250                         if (phy->ops.cfg_on_link_up)
4251                                 phy->ops.cfg_on_link_up(hw);
4252
4253                         netif_carrier_on(netdev);
4254
4255                         if (!test_bit(__E1000_DOWN, &adapter->state))
4256                                 mod_timer(&adapter->phy_info_timer,
4257                                           round_jiffies(jiffies + 2 * HZ));
4258                 }
4259         } else {
4260                 if (netif_carrier_ok(netdev)) {
4261                         adapter->link_speed = 0;
4262                         adapter->link_duplex = 0;
4263                         /* Link status message must follow this format */
4264                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4265                                adapter->netdev->name);
4266                         netif_carrier_off(netdev);
4267                         if (!test_bit(__E1000_DOWN, &adapter->state))
4268                                 mod_timer(&adapter->phy_info_timer,
4269                                           round_jiffies(jiffies + 2 * HZ));
4270
4271                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4272                                 schedule_work(&adapter->reset_task);
4273                         else
4274                                 pm_schedule_suspend(netdev->dev.parent,
4275                                                         LINK_TIMEOUT);
4276                 }
4277         }
4278
4279 link_up:
4280         e1000e_update_stats(adapter);
4281
4282         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4283         adapter->tpt_old = adapter->stats.tpt;
4284         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4285         adapter->colc_old = adapter->stats.colc;
4286
4287         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4288         adapter->gorc_old = adapter->stats.gorc;
4289         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4290         adapter->gotc_old = adapter->stats.gotc;
4291
4292         e1000e_update_adaptive(&adapter->hw);
4293
4294         if (!netif_carrier_ok(netdev)) {
4295                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
4296                                tx_ring->count);
4297                 if (tx_pending) {
4298                         /*
4299                          * We've lost link, so the controller stops DMA,
4300                          * but we've got queued Tx work that's never going
4301                          * to get done, so reset controller to flush Tx.
4302                          * (Do the reset outside of interrupt context).
4303                          */
4304                         adapter->tx_timeout_count++;
4305                         schedule_work(&adapter->reset_task);
4306                         /* return immediately since reset is imminent */
4307                         return;
4308                 }
4309         }
4310
4311         /* Simple mode for Interrupt Throttle Rate (ITR) */
4312         if (adapter->itr_setting == 4) {
4313                 /*
4314                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4315                  * Total asymmetrical Tx or Rx gets ITR=8000;
4316                  * everyone else is between 2000-8000.
4317                  */
4318                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4319                 u32 dif = (adapter->gotc > adapter->gorc ?
4320                             adapter->gotc - adapter->gorc :
4321                             adapter->gorc - adapter->gotc) / 10000;
4322                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4323
4324                 ew32(ITR, 1000000000 / (itr * 256));
4325         }
4326
4327         /* Cause software interrupt to ensure Rx ring is cleaned */
4328         if (adapter->msix_entries)
4329                 ew32(ICS, adapter->rx_ring->ims_val);
4330         else
4331                 ew32(ICS, E1000_ICS_RXDMT0);
4332
4333         /* Force detection of hung controller every watchdog period */
4334         adapter->detect_tx_hung = 1;
4335
4336         /* flush partial descriptors to memory before detecting tx hang */
4337         if (adapter->flags2 & FLAG2_DMA_BURST) {
4338                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4339                 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4340                 /*
4341                  * no need to flush the writes because the timeout code does
4342                  * an er32 first thing
4343                  */
4344         }
4345
4346         /*
4347          * With 82571 controllers, LAA may be overwritten due to controller
4348          * reset from the other port. Set the appropriate LAA in RAR[0]
4349          */
4350         if (e1000e_get_laa_state_82571(hw))
4351                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4352
4353         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4354                 e1000e_check_82574_phy_workaround(adapter);
4355
4356         /* Reset the timer */
4357         if (!test_bit(__E1000_DOWN, &adapter->state))
4358                 mod_timer(&adapter->watchdog_timer,
4359                           round_jiffies(jiffies + 2 * HZ));
4360 }
4361
4362 #define E1000_TX_FLAGS_CSUM             0x00000001
4363 #define E1000_TX_FLAGS_VLAN             0x00000002
4364 #define E1000_TX_FLAGS_TSO              0x00000004
4365 #define E1000_TX_FLAGS_IPV4             0x00000008
4366 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4367 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4368
4369 static int e1000_tso(struct e1000_adapter *adapter,
4370                      struct sk_buff *skb)
4371 {
4372         struct e1000_ring *tx_ring = adapter->tx_ring;
4373         struct e1000_context_desc *context_desc;
4374         struct e1000_buffer *buffer_info;
4375         unsigned int i;
4376         u32 cmd_length = 0;
4377         u16 ipcse = 0, tucse, mss;
4378         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4379         int err;
4380
4381         if (!skb_is_gso(skb))
4382                 return 0;
4383
4384         if (skb_header_cloned(skb)) {
4385                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4386                 if (err)
4387                         return err;
4388         }
4389
4390         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4391         mss = skb_shinfo(skb)->gso_size;
4392         if (skb->protocol == htons(ETH_P_IP)) {
4393                 struct iphdr *iph = ip_hdr(skb);
4394                 iph->tot_len = 0;
4395                 iph->check = 0;
4396                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4397                                                          0, IPPROTO_TCP, 0);
4398                 cmd_length = E1000_TXD_CMD_IP;
4399                 ipcse = skb_transport_offset(skb) - 1;
4400         } else if (skb_is_gso_v6(skb)) {
4401                 ipv6_hdr(skb)->payload_len = 0;
4402                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4403                                                        &ipv6_hdr(skb)->daddr,
4404                                                        0, IPPROTO_TCP, 0);
4405                 ipcse = 0;
4406         }
4407         ipcss = skb_network_offset(skb);
4408         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4409         tucss = skb_transport_offset(skb);
4410         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4411         tucse = 0;
4412
4413         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4414                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4415
4416         i = tx_ring->next_to_use;
4417         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4418         buffer_info = &tx_ring->buffer_info[i];
4419
4420         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4421         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4422         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4423         context_desc->upper_setup.tcp_fields.tucss = tucss;
4424         context_desc->upper_setup.tcp_fields.tucso = tucso;
4425         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4426         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4427         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4428         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4429
4430         buffer_info->time_stamp = jiffies;
4431         buffer_info->next_to_watch = i;
4432
4433         i++;
4434         if (i == tx_ring->count)
4435                 i = 0;
4436         tx_ring->next_to_use = i;
4437
4438         return 1;
4439 }
4440
4441 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4442 {
4443         struct e1000_ring *tx_ring = adapter->tx_ring;
4444         struct e1000_context_desc *context_desc;
4445         struct e1000_buffer *buffer_info;
4446         unsigned int i;
4447         u8 css;
4448         u32 cmd_len = E1000_TXD_CMD_DEXT;
4449         __be16 protocol;
4450
4451         if (skb->ip_summed != CHECKSUM_PARTIAL)
4452                 return 0;
4453
4454         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4455                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4456         else
4457                 protocol = skb->protocol;
4458
4459         switch (protocol) {
4460         case cpu_to_be16(ETH_P_IP):
4461                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4462                         cmd_len |= E1000_TXD_CMD_TCP;
4463                 break;
4464         case cpu_to_be16(ETH_P_IPV6):
4465                 /* XXX not handling all IPV6 headers */
4466                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4467                         cmd_len |= E1000_TXD_CMD_TCP;
4468                 break;
4469         default:
4470                 if (unlikely(net_ratelimit()))
4471                         e_warn("checksum_partial proto=%x!\n",
4472                                be16_to_cpu(protocol));
4473                 break;
4474         }
4475
4476         css = skb_checksum_start_offset(skb);
4477
4478         i = tx_ring->next_to_use;
4479         buffer_info = &tx_ring->buffer_info[i];
4480         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4481
4482         context_desc->lower_setup.ip_config = 0;
4483         context_desc->upper_setup.tcp_fields.tucss = css;
4484         context_desc->upper_setup.tcp_fields.tucso =
4485                                 css + skb->csum_offset;
4486         context_desc->upper_setup.tcp_fields.tucse = 0;
4487         context_desc->tcp_seg_setup.data = 0;
4488         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4489
4490         buffer_info->time_stamp = jiffies;
4491         buffer_info->next_to_watch = i;
4492
4493         i++;
4494         if (i == tx_ring->count)
4495                 i = 0;
4496         tx_ring->next_to_use = i;
4497
4498         return 1;
4499 }
4500
4501 #define E1000_MAX_PER_TXD       8192
4502 #define E1000_MAX_TXD_PWR       12
4503
4504 static int e1000_tx_map(struct e1000_adapter *adapter,
4505                         struct sk_buff *skb, unsigned int first,
4506                         unsigned int max_per_txd, unsigned int nr_frags,
4507                         unsigned int mss)
4508 {
4509         struct e1000_ring *tx_ring = adapter->tx_ring;
4510         struct pci_dev *pdev = adapter->pdev;
4511         struct e1000_buffer *buffer_info;
4512         unsigned int len = skb_headlen(skb);
4513         unsigned int offset = 0, size, count = 0, i;
4514         unsigned int f, bytecount, segs;
4515
4516         i = tx_ring->next_to_use;
4517
4518         while (len) {
4519                 buffer_info = &tx_ring->buffer_info[i];
4520                 size = min(len, max_per_txd);
4521
4522                 buffer_info->length = size;
4523                 buffer_info->time_stamp = jiffies;
4524                 buffer_info->next_to_watch = i;
4525                 buffer_info->dma = dma_map_single(&pdev->dev,
4526                                                   skb->data + offset,
4527                                                   size, DMA_TO_DEVICE);
4528                 buffer_info->mapped_as_page = false;
4529                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4530                         goto dma_error;
4531
4532                 len -= size;
4533                 offset += size;
4534                 count++;
4535
4536                 if (len) {
4537                         i++;
4538                         if (i == tx_ring->count)
4539                                 i = 0;
4540                 }
4541         }
4542
4543         for (f = 0; f < nr_frags; f++) {
4544                 struct skb_frag_struct *frag;
4545
4546                 frag = &skb_shinfo(skb)->frags[f];
4547                 len = frag->size;
4548                 offset = frag->page_offset;
4549
4550                 while (len) {
4551                         i++;
4552                         if (i == tx_ring->count)
4553                                 i = 0;
4554
4555                         buffer_info = &tx_ring->buffer_info[i];
4556                         size = min(len, max_per_txd);
4557
4558                         buffer_info->length = size;
4559                         buffer_info->time_stamp = jiffies;
4560                         buffer_info->next_to_watch = i;
4561                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4562                                                         offset, size,
4563                                                         DMA_TO_DEVICE);
4564                         buffer_info->mapped_as_page = true;
4565                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4566                                 goto dma_error;
4567
4568                         len -= size;
4569                         offset += size;
4570                         count++;
4571                 }
4572         }
4573
4574         segs = skb_shinfo(skb)->gso_segs ?: 1;
4575         /* multiply data chunks by size of headers */
4576         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4577
4578         tx_ring->buffer_info[i].skb = skb;
4579         tx_ring->buffer_info[i].segs = segs;
4580         tx_ring->buffer_info[i].bytecount = bytecount;
4581         tx_ring->buffer_info[first].next_to_watch = i;
4582
4583         return count;
4584
4585 dma_error:
4586         dev_err(&pdev->dev, "TX DMA map failed\n");
4587         buffer_info->dma = 0;
4588         if (count)
4589                 count--;
4590
4591         while (count--) {
4592                 if (i==0)
4593                         i += tx_ring->count;
4594                 i--;
4595                 buffer_info = &tx_ring->buffer_info[i];
4596                 e1000_put_txbuf(adapter, buffer_info);
4597         }
4598
4599         return 0;
4600 }
4601
4602 static void e1000_tx_queue(struct e1000_adapter *adapter,
4603                            int tx_flags, int count)
4604 {
4605         struct e1000_ring *tx_ring = adapter->tx_ring;
4606         struct e1000_tx_desc *tx_desc = NULL;
4607         struct e1000_buffer *buffer_info;
4608         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4609         unsigned int i;
4610
4611         if (tx_flags & E1000_TX_FLAGS_TSO) {
4612                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4613                              E1000_TXD_CMD_TSE;
4614                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4615
4616                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4617                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4618         }
4619
4620         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4621                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4622                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4623         }
4624
4625         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4626                 txd_lower |= E1000_TXD_CMD_VLE;
4627                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4628         }
4629
4630         i = tx_ring->next_to_use;
4631
4632         do {
4633                 buffer_info = &tx_ring->buffer_info[i];
4634                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4635                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4636                 tx_desc->lower.data =
4637                         cpu_to_le32(txd_lower | buffer_info->length);
4638                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4639
4640                 i++;
4641                 if (i == tx_ring->count)
4642                         i = 0;
4643         } while (--count > 0);
4644
4645         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4646
4647         /*
4648          * Force memory writes to complete before letting h/w
4649          * know there are new descriptors to fetch.  (Only
4650          * applicable for weak-ordered memory model archs,
4651          * such as IA-64).
4652          */
4653         wmb();
4654
4655         tx_ring->next_to_use = i;
4656         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4657         /*
4658          * we need this if more than one processor can write to our tail
4659          * at a time, it synchronizes IO on IA64/Altix systems
4660          */
4661         mmiowb();
4662 }
4663
4664 #define MINIMUM_DHCP_PACKET_SIZE 282
4665 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4666                                     struct sk_buff *skb)
4667 {
4668         struct e1000_hw *hw =  &adapter->hw;
4669         u16 length, offset;
4670
4671         if (vlan_tx_tag_present(skb)) {
4672                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4673                     (adapter->hw.mng_cookie.status &
4674                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4675                         return 0;
4676         }
4677
4678         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4679                 return 0;
4680
4681         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4682                 return 0;
4683
4684         {
4685                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4686                 struct udphdr *udp;
4687
4688                 if (ip->protocol != IPPROTO_UDP)
4689                         return 0;
4690
4691                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4692                 if (ntohs(udp->dest) != 67)
4693                         return 0;
4694
4695                 offset = (u8 *)udp + 8 - skb->data;
4696                 length = skb->len - offset;
4697                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4698         }
4699
4700         return 0;
4701 }
4702
4703 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4704 {
4705         struct e1000_adapter *adapter = netdev_priv(netdev);
4706
4707         netif_stop_queue(netdev);
4708         /*
4709          * Herbert's original patch had:
4710          *  smp_mb__after_netif_stop_queue();
4711          * but since that doesn't exist yet, just open code it.
4712          */
4713         smp_mb();
4714
4715         /*
4716          * We need to check again in a case another CPU has just
4717          * made room available.
4718          */
4719         if (e1000_desc_unused(adapter->tx_ring) < size)
4720                 return -EBUSY;
4721
4722         /* A reprieve! */
4723         netif_start_queue(netdev);
4724         ++adapter->restart_queue;
4725         return 0;
4726 }
4727
4728 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4729 {
4730         struct e1000_adapter *adapter = netdev_priv(netdev);
4731
4732         if (e1000_desc_unused(adapter->tx_ring) >= size)
4733                 return 0;
4734         return __e1000_maybe_stop_tx(netdev, size);
4735 }
4736
4737 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4738 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4739                                     struct net_device *netdev)
4740 {
4741         struct e1000_adapter *adapter = netdev_priv(netdev);
4742         struct e1000_ring *tx_ring = adapter->tx_ring;
4743         unsigned int first;
4744         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4745         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4746         unsigned int tx_flags = 0;
4747         unsigned int len = skb_headlen(skb);
4748         unsigned int nr_frags;
4749         unsigned int mss;
4750         int count = 0;
4751         int tso;
4752         unsigned int f;
4753
4754         if (test_bit(__E1000_DOWN, &adapter->state)) {
4755                 dev_kfree_skb_any(skb);
4756                 return NETDEV_TX_OK;
4757         }
4758
4759         if (skb->len <= 0) {
4760                 dev_kfree_skb_any(skb);
4761                 return NETDEV_TX_OK;
4762         }
4763
4764         mss = skb_shinfo(skb)->gso_size;
4765         /*
4766          * The controller does a simple calculation to
4767          * make sure there is enough room in the FIFO before
4768          * initiating the DMA for each buffer.  The calc is:
4769          * 4 = ceil(buffer len/mss).  To make sure we don't
4770          * overrun the FIFO, adjust the max buffer len if mss
4771          * drops.
4772          */
4773         if (mss) {
4774                 u8 hdr_len;
4775                 max_per_txd = min(mss << 2, max_per_txd);
4776                 max_txd_pwr = fls(max_per_txd) - 1;
4777
4778                 /*
4779                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4780                  * points to just header, pull a few bytes of payload from
4781                  * frags into skb->data
4782                  */
4783                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4784                 /*
4785                  * we do this workaround for ES2LAN, but it is un-necessary,
4786                  * avoiding it could save a lot of cycles
4787                  */
4788                 if (skb->data_len && (hdr_len == len)) {
4789                         unsigned int pull_size;
4790
4791                         pull_size = min((unsigned int)4, skb->data_len);
4792                         if (!__pskb_pull_tail(skb, pull_size)) {
4793                                 e_err("__pskb_pull_tail failed.\n");
4794                                 dev_kfree_skb_any(skb);
4795                                 return NETDEV_TX_OK;
4796                         }
4797                         len = skb_headlen(skb);
4798                 }
4799         }
4800
4801         /* reserve a descriptor for the offload context */
4802         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4803                 count++;
4804         count++;
4805
4806         count += TXD_USE_COUNT(len, max_txd_pwr);
4807
4808         nr_frags = skb_shinfo(skb)->nr_frags;
4809         for (f = 0; f < nr_frags; f++)
4810                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4811                                        max_txd_pwr);
4812
4813         if (adapter->hw.mac.tx_pkt_filtering)
4814                 e1000_transfer_dhcp_info(adapter, skb);
4815
4816         /*
4817          * need: count + 2 desc gap to keep tail from touching
4818          * head, otherwise try next time
4819          */
4820         if (e1000_maybe_stop_tx(netdev, count + 2))
4821                 return NETDEV_TX_BUSY;
4822
4823         if (vlan_tx_tag_present(skb)) {
4824                 tx_flags |= E1000_TX_FLAGS_VLAN;
4825                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4826         }
4827
4828         first = tx_ring->next_to_use;
4829
4830         tso = e1000_tso(adapter, skb);
4831         if (tso < 0) {
4832                 dev_kfree_skb_any(skb);
4833                 return NETDEV_TX_OK;
4834         }
4835
4836         if (tso)
4837                 tx_flags |= E1000_TX_FLAGS_TSO;
4838         else if (e1000_tx_csum(adapter, skb))
4839                 tx_flags |= E1000_TX_FLAGS_CSUM;
4840
4841         /*
4842          * Old method was to assume IPv4 packet by default if TSO was enabled.
4843          * 82571 hardware supports TSO capabilities for IPv6 as well...
4844          * no longer assume, we must.
4845          */
4846         if (skb->protocol == htons(ETH_P_IP))
4847                 tx_flags |= E1000_TX_FLAGS_IPV4;
4848
4849         /* if count is 0 then mapping error has occured */
4850         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4851         if (count) {
4852                 e1000_tx_queue(adapter, tx_flags, count);
4853                 /* Make sure there is space in the ring for the next send. */
4854                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4855
4856         } else {
4857                 dev_kfree_skb_any(skb);
4858                 tx_ring->buffer_info[first].time_stamp = 0;
4859                 tx_ring->next_to_use = first;
4860         }
4861
4862         return NETDEV_TX_OK;
4863 }
4864
4865 /**
4866  * e1000_tx_timeout - Respond to a Tx Hang
4867  * @netdev: network interface device structure
4868  **/
4869 static void e1000_tx_timeout(struct net_device *netdev)
4870 {
4871         struct e1000_adapter *adapter = netdev_priv(netdev);
4872
4873         /* Do the reset outside of interrupt context */
4874         adapter->tx_timeout_count++;
4875         schedule_work(&adapter->reset_task);
4876 }
4877
4878 static void e1000_reset_task(struct work_struct *work)
4879 {
4880         struct e1000_adapter *adapter;
4881         adapter = container_of(work, struct e1000_adapter, reset_task);
4882
4883         if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4884               (adapter->flags & FLAG_RX_RESTART_NOW))) {
4885                 e1000e_dump(adapter);
4886                 e_err("Reset adapter\n");
4887         }
4888         e1000e_reinit_locked(adapter);
4889 }
4890
4891 /**
4892  * e1000_get_stats - Get System Network Statistics
4893  * @netdev: network interface device structure
4894  *
4895  * Returns the address of the device statistics structure.
4896  * The statistics are actually updated from the timer callback.
4897  **/
4898 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4899 {
4900         /* only return the current stats */
4901         return &netdev->stats;
4902 }
4903
4904 /**
4905  * e1000_change_mtu - Change the Maximum Transfer Unit
4906  * @netdev: network interface device structure
4907  * @new_mtu: new value for maximum frame size
4908  *
4909  * Returns 0 on success, negative on failure
4910  **/
4911 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4912 {
4913         struct e1000_adapter *adapter = netdev_priv(netdev);
4914         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4915
4916         /* Jumbo frame support */
4917         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4918             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4919                 e_err("Jumbo Frames not supported.\n");
4920                 return -EINVAL;
4921         }
4922
4923         /* Supported frame sizes */
4924         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4925             (max_frame > adapter->max_hw_frame_size)) {
4926                 e_err("Unsupported MTU setting\n");
4927                 return -EINVAL;
4928         }
4929
4930         /* Jumbo frame workaround on 82579 requires CRC be stripped */
4931         if ((adapter->hw.mac.type == e1000_pch2lan) &&
4932             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
4933             (new_mtu > ETH_DATA_LEN)) {
4934                 e_err("Jumbo Frames not supported on 82579 when CRC "
4935                       "stripping is disabled.\n");
4936                 return -EINVAL;
4937         }
4938
4939         /* 82573 Errata 17 */
4940         if (((adapter->hw.mac.type == e1000_82573) ||
4941              (adapter->hw.mac.type == e1000_82574)) &&
4942             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4943                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4944                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4945         }
4946
4947         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4948                 msleep(1);
4949         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4950         adapter->max_frame_size = max_frame;
4951         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4952         netdev->mtu = new_mtu;
4953         if (netif_running(netdev))
4954                 e1000e_down(adapter);
4955
4956         /*
4957          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4958          * means we reserve 2 more, this pushes us to allocate from the next
4959          * larger slab size.
4960          * i.e. RXBUFFER_2048 --> size-4096 slab
4961          * However with the new *_jumbo_rx* routines, jumbo receives will use
4962          * fragmented skbs
4963          */
4964
4965         if (max_frame <= 2048)
4966                 adapter->rx_buffer_len = 2048;
4967         else
4968                 adapter->rx_buffer_len = 4096;
4969
4970         /* adjust allocation if LPE protects us, and we aren't using SBP */
4971         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4972              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4973                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4974                                          + ETH_FCS_LEN;
4975
4976         if (netif_running(netdev))
4977                 e1000e_up(adapter);
4978         else
4979                 e1000e_reset(adapter);
4980
4981         clear_bit(__E1000_RESETTING, &adapter->state);
4982
4983         return 0;
4984 }
4985
4986 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4987                            int cmd)
4988 {
4989         struct e1000_adapter *adapter = netdev_priv(netdev);
4990         struct mii_ioctl_data *data = if_mii(ifr);
4991
4992         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4993                 return -EOPNOTSUPP;
4994
4995         switch (cmd) {
4996         case SIOCGMIIPHY:
4997                 data->phy_id = adapter->hw.phy.addr;
4998                 break;
4999         case SIOCGMIIREG:
5000                 e1000_phy_read_status(adapter);
5001
5002                 switch (data->reg_num & 0x1F) {
5003                 case MII_BMCR:
5004                         data->val_out = adapter->phy_regs.bmcr;
5005                         break;
5006                 case MII_BMSR:
5007                         data->val_out = adapter->phy_regs.bmsr;
5008                         break;
5009                 case MII_PHYSID1:
5010                         data->val_out = (adapter->hw.phy.id >> 16);
5011                         break;
5012                 case MII_PHYSID2:
5013                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5014                         break;
5015                 case MII_ADVERTISE:
5016                         data->val_out = adapter->phy_regs.advertise;
5017                         break;
5018                 case MII_LPA:
5019                         data->val_out = adapter->phy_regs.lpa;
5020                         break;
5021                 case MII_EXPANSION:
5022                         data->val_out = adapter->phy_regs.expansion;
5023                         break;
5024                 case MII_CTRL1000:
5025                         data->val_out = adapter->phy_regs.ctrl1000;
5026                         break;
5027                 case MII_STAT1000:
5028                         data->val_out = adapter->phy_regs.stat1000;
5029                         break;
5030                 case MII_ESTATUS:
5031                         data->val_out = adapter->phy_regs.estatus;
5032                         break;
5033                 default:
5034                         return -EIO;
5035                 }
5036                 break;
5037         case SIOCSMIIREG:
5038         default:
5039                 return -EOPNOTSUPP;
5040         }
5041         return 0;
5042 }
5043
5044 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5045 {
5046         switch (cmd) {
5047         case SIOCGMIIPHY:
5048         case SIOCGMIIREG:
5049         case SIOCSMIIREG:
5050                 return e1000_mii_ioctl(netdev, ifr, cmd);
5051         default:
5052                 return -EOPNOTSUPP;
5053         }
5054 }
5055
5056 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5057 {
5058         struct e1000_hw *hw = &adapter->hw;
5059         u32 i, mac_reg;
5060         u16 phy_reg;
5061         int retval = 0;
5062
5063         /* copy MAC RARs to PHY RARs */
5064         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5065
5066         /* copy MAC MTA to PHY MTA */
5067         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5068                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5069                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
5070                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
5071         }
5072
5073         /* configure PHY Rx Control register */
5074         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
5075         mac_reg = er32(RCTL);
5076         if (mac_reg & E1000_RCTL_UPE)
5077                 phy_reg |= BM_RCTL_UPE;
5078         if (mac_reg & E1000_RCTL_MPE)
5079                 phy_reg |= BM_RCTL_MPE;
5080         phy_reg &= ~(BM_RCTL_MO_MASK);
5081         if (mac_reg & E1000_RCTL_MO_3)
5082                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5083                                 << BM_RCTL_MO_SHIFT);
5084         if (mac_reg & E1000_RCTL_BAM)
5085                 phy_reg |= BM_RCTL_BAM;
5086         if (mac_reg & E1000_RCTL_PMCF)
5087                 phy_reg |= BM_RCTL_PMCF;
5088         mac_reg = er32(CTRL);
5089         if (mac_reg & E1000_CTRL_RFCE)
5090                 phy_reg |= BM_RCTL_RFCE;
5091         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
5092
5093         /* enable PHY wakeup in MAC register */
5094         ew32(WUFC, wufc);
5095         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5096
5097         /* configure and enable PHY wakeup in PHY registers */
5098         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
5099         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5100
5101         /* activate PHY wakeup */
5102         retval = hw->phy.ops.acquire(hw);
5103         if (retval) {
5104                 e_err("Could not acquire PHY\n");
5105                 return retval;
5106         }
5107         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
5108                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
5109         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
5110         if (retval) {
5111                 e_err("Could not read PHY page 769\n");
5112                 goto out;
5113         }
5114         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5115         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
5116         if (retval)
5117                 e_err("Could not set PHY Host Wakeup bit\n");
5118 out:
5119         hw->phy.ops.release(hw);
5120
5121         return retval;
5122 }
5123
5124 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5125                             bool runtime)
5126 {
5127         struct net_device *netdev = pci_get_drvdata(pdev);
5128         struct e1000_adapter *adapter = netdev_priv(netdev);
5129         struct e1000_hw *hw = &adapter->hw;
5130         u32 ctrl, ctrl_ext, rctl, status;
5131         /* Runtime suspend should only enable wakeup for link changes */
5132         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5133         int retval = 0;
5134
5135         netif_device_detach(netdev);
5136
5137         if (netif_running(netdev)) {
5138                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5139                 e1000e_down(adapter);
5140                 e1000_free_irq(adapter);
5141         }
5142         e1000e_reset_interrupt_capability(adapter);
5143
5144         retval = pci_save_state(pdev);
5145         if (retval)
5146                 return retval;
5147
5148         status = er32(STATUS);
5149         if (status & E1000_STATUS_LU)
5150                 wufc &= ~E1000_WUFC_LNKC;
5151
5152         if (wufc) {
5153                 e1000_setup_rctl(adapter);
5154                 e1000_set_multi(netdev);
5155
5156                 /* turn on all-multi mode if wake on multicast is enabled */
5157                 if (wufc & E1000_WUFC_MC) {
5158                         rctl = er32(RCTL);
5159                         rctl |= E1000_RCTL_MPE;
5160                         ew32(RCTL, rctl);
5161                 }
5162
5163                 ctrl = er32(CTRL);
5164                 /* advertise wake from D3Cold */
5165                 #define E1000_CTRL_ADVD3WUC 0x00100000
5166                 /* phy power management enable */
5167                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5168                 ctrl |= E1000_CTRL_ADVD3WUC;
5169                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5170                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5171                 ew32(CTRL, ctrl);
5172
5173                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5174                     adapter->hw.phy.media_type ==
5175                     e1000_media_type_internal_serdes) {
5176                         /* keep the laser running in D3 */
5177                         ctrl_ext = er32(CTRL_EXT);
5178                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5179                         ew32(CTRL_EXT, ctrl_ext);
5180                 }
5181
5182                 if (adapter->flags & FLAG_IS_ICH)
5183                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
5184
5185                 /* Allow time for pending master requests to run */
5186                 e1000e_disable_pcie_master(&adapter->hw);
5187
5188                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5189                         /* enable wakeup by the PHY */
5190                         retval = e1000_init_phy_wakeup(adapter, wufc);
5191                         if (retval)
5192                                 return retval;
5193                 } else {
5194                         /* enable wakeup by the MAC */
5195                         ew32(WUFC, wufc);
5196                         ew32(WUC, E1000_WUC_PME_EN);
5197                 }
5198         } else {
5199                 ew32(WUC, 0);
5200                 ew32(WUFC, 0);
5201         }
5202
5203         *enable_wake = !!wufc;
5204
5205         /* make sure adapter isn't asleep if manageability is enabled */
5206         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5207             (hw->mac.ops.check_mng_mode(hw)))
5208                 *enable_wake = true;
5209
5210         if (adapter->hw.phy.type == e1000_phy_igp_3)
5211                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5212
5213         /*
5214          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5215          * would have already happened in close and is redundant.
5216          */
5217         e1000_release_hw_control(adapter);
5218
5219         pci_disable_device(pdev);
5220
5221         return 0;
5222 }
5223
5224 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5225 {
5226         if (sleep && wake) {
5227                 pci_prepare_to_sleep(pdev);
5228                 return;
5229         }
5230
5231         pci_wake_from_d3(pdev, wake);
5232         pci_set_power_state(pdev, PCI_D3hot);
5233 }
5234
5235 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5236                                     bool wake)
5237 {
5238         struct net_device *netdev = pci_get_drvdata(pdev);
5239         struct e1000_adapter *adapter = netdev_priv(netdev);
5240
5241         /*
5242          * The pci-e switch on some quad port adapters will report a
5243          * correctable error when the MAC transitions from D0 to D3.  To
5244          * prevent this we need to mask off the correctable errors on the
5245          * downstream port of the pci-e switch.
5246          */
5247         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5248                 struct pci_dev *us_dev = pdev->bus->self;
5249                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5250                 u16 devctl;
5251
5252                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5253                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5254                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5255
5256                 e1000_power_off(pdev, sleep, wake);
5257
5258                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5259         } else {
5260                 e1000_power_off(pdev, sleep, wake);
5261         }
5262 }
5263
5264 #ifdef CONFIG_PCIEASPM
5265 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5266 {
5267         pci_disable_link_state(pdev, state);
5268 }
5269 #else
5270 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5271 {
5272         int pos;
5273         u16 reg16;
5274
5275         /*
5276          * Both device and parent should have the same ASPM setting.
5277          * Disable ASPM in downstream component first and then upstream.
5278          */
5279         pos = pci_pcie_cap(pdev);
5280         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5281         reg16 &= ~state;
5282         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5283
5284         if (!pdev->bus->self)
5285                 return;
5286
5287         pos = pci_pcie_cap(pdev->bus->self);
5288         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5289         reg16 &= ~state;
5290         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5291 }
5292 #endif
5293 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5294 {
5295         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5296                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5297                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5298
5299         __e1000e_disable_aspm(pdev, state);
5300 }
5301
5302 #ifdef CONFIG_PM_OPS
5303 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5304 {
5305         return !!adapter->tx_ring->buffer_info;
5306 }
5307
5308 static int __e1000_resume(struct pci_dev *pdev)
5309 {
5310         struct net_device *netdev = pci_get_drvdata(pdev);
5311         struct e1000_adapter *adapter = netdev_priv(netdev);
5312         struct e1000_hw *hw = &adapter->hw;
5313         u32 err;
5314
5315         pci_set_power_state(pdev, PCI_D0);
5316         pci_restore_state(pdev);
5317         pci_save_state(pdev);
5318         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5319                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5320
5321         e1000e_set_interrupt_capability(adapter);
5322         if (netif_running(netdev)) {
5323                 err = e1000_request_irq(adapter);
5324                 if (err)
5325                         return err;
5326         }
5327
5328         e1000e_power_up_phy(adapter);
5329
5330         /* report the system wakeup cause from S3/S4 */
5331         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5332                 u16 phy_data;
5333
5334                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5335                 if (phy_data) {
5336                         e_info("PHY Wakeup cause - %s\n",
5337                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5338                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5339                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5340                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5341                                 phy_data & E1000_WUS_LNKC ? "Link Status "
5342                                 " Change" : "other");
5343                 }
5344                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5345         } else {
5346                 u32 wus = er32(WUS);
5347                 if (wus) {
5348                         e_info("MAC Wakeup cause - %s\n",
5349                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5350                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5351                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5352                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5353                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5354                                 "other");
5355                 }
5356                 ew32(WUS, ~0);
5357         }
5358
5359         e1000e_reset(adapter);
5360
5361         e1000_init_manageability_pt(adapter);
5362
5363         if (netif_running(netdev))
5364                 e1000e_up(adapter);
5365
5366         netif_device_attach(netdev);
5367
5368         /*
5369          * If the controller has AMT, do not set DRV_LOAD until the interface
5370          * is up.  For all other cases, let the f/w know that the h/w is now
5371          * under the control of the driver.
5372          */
5373         if (!(adapter->flags & FLAG_HAS_AMT))
5374                 e1000_get_hw_control(adapter);
5375
5376         return 0;
5377 }
5378
5379 #ifdef CONFIG_PM_SLEEP
5380 static int e1000_suspend(struct device *dev)
5381 {
5382         struct pci_dev *pdev = to_pci_dev(dev);
5383         int retval;
5384         bool wake;
5385
5386         retval = __e1000_shutdown(pdev, &wake, false);
5387         if (!retval)
5388                 e1000_complete_shutdown(pdev, true, wake);
5389
5390         return retval;
5391 }
5392
5393 static int e1000_resume(struct device *dev)
5394 {
5395         struct pci_dev *pdev = to_pci_dev(dev);
5396         struct net_device *netdev = pci_get_drvdata(pdev);
5397         struct e1000_adapter *adapter = netdev_priv(netdev);
5398
5399         if (e1000e_pm_ready(adapter))
5400                 adapter->idle_check = true;
5401
5402         return __e1000_resume(pdev);
5403 }
5404 #endif /* CONFIG_PM_SLEEP */
5405
5406 #ifdef CONFIG_PM_RUNTIME
5407 static int e1000_runtime_suspend(struct device *dev)
5408 {
5409         struct pci_dev *pdev = to_pci_dev(dev);
5410         struct net_device *netdev = pci_get_drvdata(pdev);
5411         struct e1000_adapter *adapter = netdev_priv(netdev);
5412
5413         if (e1000e_pm_ready(adapter)) {
5414                 bool wake;
5415
5416                 __e1000_shutdown(pdev, &wake, true);
5417         }
5418
5419         return 0;
5420 }
5421
5422 static int e1000_idle(struct device *dev)
5423 {
5424         struct pci_dev *pdev = to_pci_dev(dev);
5425         struct net_device *netdev = pci_get_drvdata(pdev);
5426         struct e1000_adapter *adapter = netdev_priv(netdev);
5427
5428         if (!e1000e_pm_ready(adapter))
5429                 return 0;
5430
5431         if (adapter->idle_check) {
5432                 adapter->idle_check = false;
5433                 if (!e1000e_has_link(adapter))
5434                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5435         }
5436
5437         return -EBUSY;
5438 }
5439
5440 static int e1000_runtime_resume(struct device *dev)
5441 {
5442         struct pci_dev *pdev = to_pci_dev(dev);
5443         struct net_device *netdev = pci_get_drvdata(pdev);
5444         struct e1000_adapter *adapter = netdev_priv(netdev);
5445
5446         if (!e1000e_pm_ready(adapter))
5447                 return 0;
5448
5449         adapter->idle_check = !dev->power.runtime_auto;
5450         return __e1000_resume(pdev);
5451 }
5452 #endif /* CONFIG_PM_RUNTIME */
5453 #endif /* CONFIG_PM_OPS */
5454
5455 static void e1000_shutdown(struct pci_dev *pdev)
5456 {
5457         bool wake = false;
5458
5459         __e1000_shutdown(pdev, &wake, false);
5460
5461         if (system_state == SYSTEM_POWER_OFF)
5462                 e1000_complete_shutdown(pdev, false, wake);
5463 }
5464
5465 #ifdef CONFIG_NET_POLL_CONTROLLER
5466
5467 static irqreturn_t e1000_intr_msix(int irq, void *data)
5468 {
5469         struct net_device *netdev = data;
5470         struct e1000_adapter *adapter = netdev_priv(netdev);
5471         int vector, msix_irq;
5472
5473         if (adapter->msix_entries) {
5474                 vector = 0;
5475                 msix_irq = adapter->msix_entries[vector].vector;
5476                 disable_irq(msix_irq);
5477                 e1000_intr_msix_rx(msix_irq, netdev);
5478                 enable_irq(msix_irq);
5479
5480                 vector++;
5481                 msix_irq = adapter->msix_entries[vector].vector;
5482                 disable_irq(msix_irq);
5483                 e1000_intr_msix_tx(msix_irq, netdev);
5484                 enable_irq(msix_irq);
5485
5486                 vector++;
5487                 msix_irq = adapter->msix_entries[vector].vector;
5488                 disable_irq(msix_irq);
5489                 e1000_msix_other(msix_irq, netdev);
5490                 enable_irq(msix_irq);
5491         }
5492
5493         return IRQ_HANDLED;
5494 }
5495
5496 /*
5497  * Polling 'interrupt' - used by things like netconsole to send skbs
5498  * without having to re-enable interrupts. It's not called while
5499  * the interrupt routine is executing.
5500  */
5501 static void e1000_netpoll(struct net_device *netdev)
5502 {
5503         struct e1000_adapter *adapter = netdev_priv(netdev);
5504
5505         switch (adapter->int_mode) {
5506         case E1000E_INT_MODE_MSIX:
5507                 e1000_intr_msix(adapter->pdev->irq, netdev);
5508                 break;
5509         case E1000E_INT_MODE_MSI:
5510                 disable_irq(adapter->pdev->irq);
5511                 e1000_intr_msi(adapter->pdev->irq, netdev);
5512                 enable_irq(adapter->pdev->irq);
5513                 break;
5514         default: /* E1000E_INT_MODE_LEGACY */
5515                 disable_irq(adapter->pdev->irq);
5516                 e1000_intr(adapter->pdev->irq, netdev);
5517                 enable_irq(adapter->pdev->irq);
5518                 break;
5519         }
5520 }
5521 #endif
5522
5523 /**
5524  * e1000_io_error_detected - called when PCI error is detected
5525  * @pdev: Pointer to PCI device
5526  * @state: The current pci connection state
5527  *
5528  * This function is called after a PCI bus error affecting
5529  * this device has been detected.
5530  */
5531 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5532                                                 pci_channel_state_t state)
5533 {
5534         struct net_device *netdev = pci_get_drvdata(pdev);
5535         struct e1000_adapter *adapter = netdev_priv(netdev);
5536
5537         netif_device_detach(netdev);
5538
5539         if (state == pci_channel_io_perm_failure)
5540                 return PCI_ERS_RESULT_DISCONNECT;
5541
5542         if (netif_running(netdev))
5543                 e1000e_down(adapter);
5544         pci_disable_device(pdev);
5545
5546         /* Request a slot slot reset. */
5547         return PCI_ERS_RESULT_NEED_RESET;
5548 }
5549
5550 /**
5551  * e1000_io_slot_reset - called after the pci bus has been reset.
5552  * @pdev: Pointer to PCI device
5553  *
5554  * Restart the card from scratch, as if from a cold-boot. Implementation
5555  * resembles the first-half of the e1000_resume routine.
5556  */
5557 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5558 {
5559         struct net_device *netdev = pci_get_drvdata(pdev);
5560         struct e1000_adapter *adapter = netdev_priv(netdev);
5561         struct e1000_hw *hw = &adapter->hw;
5562         int err;
5563         pci_ers_result_t result;
5564
5565         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5566                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5567         err = pci_enable_device_mem(pdev);
5568         if (err) {
5569                 dev_err(&pdev->dev,
5570                         "Cannot re-enable PCI device after reset.\n");
5571                 result = PCI_ERS_RESULT_DISCONNECT;
5572         } else {
5573                 pci_set_master(pdev);
5574                 pdev->state_saved = true;
5575                 pci_restore_state(pdev);
5576
5577                 pci_enable_wake(pdev, PCI_D3hot, 0);
5578                 pci_enable_wake(pdev, PCI_D3cold, 0);
5579
5580                 e1000e_reset(adapter);
5581                 ew32(WUS, ~0);
5582                 result = PCI_ERS_RESULT_RECOVERED;
5583         }
5584
5585         pci_cleanup_aer_uncorrect_error_status(pdev);
5586
5587         return result;
5588 }
5589
5590 /**
5591  * e1000_io_resume - called when traffic can start flowing again.
5592  * @pdev: Pointer to PCI device
5593  *
5594  * This callback is called when the error recovery driver tells us that
5595  * its OK to resume normal operation. Implementation resembles the
5596  * second-half of the e1000_resume routine.
5597  */
5598 static void e1000_io_resume(struct pci_dev *pdev)
5599 {
5600         struct net_device *netdev = pci_get_drvdata(pdev);
5601         struct e1000_adapter *adapter = netdev_priv(netdev);
5602
5603         e1000_init_manageability_pt(adapter);
5604
5605         if (netif_running(netdev)) {
5606                 if (e1000e_up(adapter)) {
5607                         dev_err(&pdev->dev,
5608                                 "can't bring device back up after reset\n");
5609                         return;
5610                 }
5611         }
5612
5613         netif_device_attach(netdev);
5614
5615         /*
5616          * If the controller has AMT, do not set DRV_LOAD until the interface
5617          * is up.  For all other cases, let the f/w know that the h/w is now
5618          * under the control of the driver.
5619          */
5620         if (!(adapter->flags & FLAG_HAS_AMT))
5621                 e1000_get_hw_control(adapter);
5622
5623 }
5624
5625 static void e1000_print_device_info(struct e1000_adapter *adapter)
5626 {
5627         struct e1000_hw *hw = &adapter->hw;
5628         struct net_device *netdev = adapter->netdev;
5629         u32 ret_val;
5630         u8 pba_str[E1000_PBANUM_LENGTH];
5631
5632         /* print bus type/speed/width info */
5633         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5634                /* bus width */
5635                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5636                 "Width x1"),
5637                /* MAC address */
5638                netdev->dev_addr);
5639         e_info("Intel(R) PRO/%s Network Connection\n",
5640                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5641         ret_val = e1000_read_pba_string_generic(hw, pba_str,
5642                                                 E1000_PBANUM_LENGTH);
5643         if (ret_val)
5644                 strcpy(pba_str, "Unknown");
5645         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5646                hw->mac.type, hw->phy.type, pba_str);
5647 }
5648
5649 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5650 {
5651         struct e1000_hw *hw = &adapter->hw;
5652         int ret_val;
5653         u16 buf = 0;
5654
5655         if (hw->mac.type != e1000_82573)
5656                 return;
5657
5658         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5659         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5660                 /* Deep Smart Power Down (DSPD) */
5661                 dev_warn(&adapter->pdev->dev,
5662                          "Warning: detected DSPD enabled in EEPROM\n");
5663         }
5664 }
5665
5666 static const struct net_device_ops e1000e_netdev_ops = {
5667         .ndo_open               = e1000_open,
5668         .ndo_stop               = e1000_close,
5669         .ndo_start_xmit         = e1000_xmit_frame,
5670         .ndo_get_stats          = e1000_get_stats,
5671         .ndo_set_multicast_list = e1000_set_multi,
5672         .ndo_set_mac_address    = e1000_set_mac,
5673         .ndo_change_mtu         = e1000_change_mtu,
5674         .ndo_do_ioctl           = e1000_ioctl,
5675         .ndo_tx_timeout         = e1000_tx_timeout,
5676         .ndo_validate_addr      = eth_validate_addr,
5677
5678         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
5679         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
5680         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
5681 #ifdef CONFIG_NET_POLL_CONTROLLER
5682         .ndo_poll_controller    = e1000_netpoll,
5683 #endif
5684 };
5685
5686 /**
5687  * e1000_probe - Device Initialization Routine
5688  * @pdev: PCI device information struct
5689  * @ent: entry in e1000_pci_tbl
5690  *
5691  * Returns 0 on success, negative on failure
5692  *
5693  * e1000_probe initializes an adapter identified by a pci_dev structure.
5694  * The OS initialization, configuring of the adapter private structure,
5695  * and a hardware reset occur.
5696  **/
5697 static int __devinit e1000_probe(struct pci_dev *pdev,
5698                                  const struct pci_device_id *ent)
5699 {
5700         struct net_device *netdev;
5701         struct e1000_adapter *adapter;
5702         struct e1000_hw *hw;
5703         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5704         resource_size_t mmio_start, mmio_len;
5705         resource_size_t flash_start, flash_len;
5706
5707         static int cards_found;
5708         int i, err, pci_using_dac;
5709         u16 eeprom_data = 0;
5710         u16 eeprom_apme_mask = E1000_EEPROM_APME;
5711
5712         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5713                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5714
5715         err = pci_enable_device_mem(pdev);
5716         if (err)
5717                 return err;
5718
5719         pci_using_dac = 0;
5720         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5721         if (!err) {
5722                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5723                 if (!err)
5724                         pci_using_dac = 1;
5725         } else {
5726                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5727                 if (err) {
5728                         err = dma_set_coherent_mask(&pdev->dev,
5729                                                     DMA_BIT_MASK(32));
5730                         if (err) {
5731                                 dev_err(&pdev->dev, "No usable DMA "
5732                                         "configuration, aborting\n");
5733                                 goto err_dma;
5734                         }
5735                 }
5736         }
5737
5738         err = pci_request_selected_regions_exclusive(pdev,
5739                                           pci_select_bars(pdev, IORESOURCE_MEM),
5740                                           e1000e_driver_name);
5741         if (err)
5742                 goto err_pci_reg;
5743
5744         /* AER (Advanced Error Reporting) hooks */
5745         pci_enable_pcie_error_reporting(pdev);
5746
5747         pci_set_master(pdev);
5748         /* PCI config space info */
5749         err = pci_save_state(pdev);
5750         if (err)
5751                 goto err_alloc_etherdev;
5752
5753         err = -ENOMEM;
5754         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5755         if (!netdev)
5756                 goto err_alloc_etherdev;
5757
5758         SET_NETDEV_DEV(netdev, &pdev->dev);
5759
5760         netdev->irq = pdev->irq;
5761
5762         pci_set_drvdata(pdev, netdev);
5763         adapter = netdev_priv(netdev);
5764         hw = &adapter->hw;
5765         adapter->netdev = netdev;
5766         adapter->pdev = pdev;
5767         adapter->ei = ei;
5768         adapter->pba = ei->pba;
5769         adapter->flags = ei->flags;
5770         adapter->flags2 = ei->flags2;
5771         adapter->hw.adapter = adapter;
5772         adapter->hw.mac.type = ei->mac;
5773         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5774         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5775
5776         mmio_start = pci_resource_start(pdev, 0);
5777         mmio_len = pci_resource_len(pdev, 0);
5778
5779         err = -EIO;
5780         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5781         if (!adapter->hw.hw_addr)
5782                 goto err_ioremap;
5783
5784         if ((adapter->flags & FLAG_HAS_FLASH) &&
5785             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5786                 flash_start = pci_resource_start(pdev, 1);
5787                 flash_len = pci_resource_len(pdev, 1);
5788                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5789                 if (!adapter->hw.flash_address)
5790                         goto err_flashmap;
5791         }
5792
5793         /* construct the net_device struct */
5794         netdev->netdev_ops              = &e1000e_netdev_ops;
5795         e1000e_set_ethtool_ops(netdev);
5796         netdev->watchdog_timeo          = 5 * HZ;
5797         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5798         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5799
5800         netdev->mem_start = mmio_start;
5801         netdev->mem_end = mmio_start + mmio_len;
5802
5803         adapter->bd_number = cards_found++;
5804
5805         e1000e_check_options(adapter);
5806
5807         /* setup adapter struct */
5808         err = e1000_sw_init(adapter);
5809         if (err)
5810                 goto err_sw_init;
5811
5812         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5813         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5814         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5815
5816         err = ei->get_variants(adapter);
5817         if (err)
5818                 goto err_hw_init;
5819
5820         if ((adapter->flags & FLAG_IS_ICH) &&
5821             (adapter->flags & FLAG_READ_ONLY_NVM))
5822                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5823
5824         hw->mac.ops.get_bus_info(&adapter->hw);
5825
5826         adapter->hw.phy.autoneg_wait_to_complete = 0;
5827
5828         /* Copper options */
5829         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5830                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5831                 adapter->hw.phy.disable_polarity_correction = 0;
5832                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5833         }
5834
5835         if (e1000_check_reset_block(&adapter->hw))
5836                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5837
5838         netdev->features = NETIF_F_SG |
5839                            NETIF_F_HW_CSUM |
5840                            NETIF_F_HW_VLAN_TX |
5841                            NETIF_F_HW_VLAN_RX;
5842
5843         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5844                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5845
5846         netdev->features |= NETIF_F_TSO;
5847         netdev->features |= NETIF_F_TSO6;
5848
5849         netdev->vlan_features |= NETIF_F_TSO;
5850         netdev->vlan_features |= NETIF_F_TSO6;
5851         netdev->vlan_features |= NETIF_F_HW_CSUM;
5852         netdev->vlan_features |= NETIF_F_SG;
5853
5854         if (pci_using_dac) {
5855                 netdev->features |= NETIF_F_HIGHDMA;
5856                 netdev->vlan_features |= NETIF_F_HIGHDMA;
5857         }
5858
5859         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5860                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5861
5862         /*
5863          * before reading the NVM, reset the controller to
5864          * put the device in a known good starting state
5865          */
5866         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5867
5868         /*
5869          * systems with ASPM and others may see the checksum fail on the first
5870          * attempt. Let's give it a few tries
5871          */
5872         for (i = 0;; i++) {
5873                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5874                         break;
5875                 if (i == 2) {
5876                         e_err("The NVM Checksum Is Not Valid\n");
5877                         err = -EIO;
5878                         goto err_eeprom;
5879                 }
5880         }
5881
5882         e1000_eeprom_checks(adapter);
5883
5884         /* copy the MAC address */
5885         if (e1000e_read_mac_addr(&adapter->hw))
5886                 e_err("NVM Read Error while reading MAC address\n");
5887
5888         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5889         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5890
5891         if (!is_valid_ether_addr(netdev->perm_addr)) {
5892                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5893                 err = -EIO;
5894                 goto err_eeprom;
5895         }
5896
5897         init_timer(&adapter->watchdog_timer);
5898         adapter->watchdog_timer.function = e1000_watchdog;
5899         adapter->watchdog_timer.data = (unsigned long) adapter;
5900
5901         init_timer(&adapter->phy_info_timer);
5902         adapter->phy_info_timer.function = e1000_update_phy_info;
5903         adapter->phy_info_timer.data = (unsigned long) adapter;
5904
5905         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5906         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5907         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5908         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5909         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5910         INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
5911
5912         /* Initialize link parameters. User can change them with ethtool */
5913         adapter->hw.mac.autoneg = 1;
5914         adapter->fc_autoneg = 1;
5915         adapter->hw.fc.requested_mode = e1000_fc_default;
5916         adapter->hw.fc.current_mode = e1000_fc_default;
5917         adapter->hw.phy.autoneg_advertised = 0x2f;
5918
5919         /* ring size defaults */
5920         adapter->rx_ring->count = 256;
5921         adapter->tx_ring->count = 256;
5922
5923         /*
5924          * Initial Wake on LAN setting - If APM wake is enabled in
5925          * the EEPROM, enable the ACPI Magic Packet filter
5926          */
5927         if (adapter->flags & FLAG_APME_IN_WUC) {
5928                 /* APME bit in EEPROM is mapped to WUC.APME */
5929                 eeprom_data = er32(WUC);
5930                 eeprom_apme_mask = E1000_WUC_APME;
5931                 if (eeprom_data & E1000_WUC_PHY_WAKE)
5932                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5933         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5934                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5935                     (adapter->hw.bus.func == 1))
5936                         e1000_read_nvm(&adapter->hw,
5937                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5938                 else
5939                         e1000_read_nvm(&adapter->hw,
5940                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5941         }
5942
5943         /* fetch WoL from EEPROM */
5944         if (eeprom_data & eeprom_apme_mask)
5945                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5946
5947         /*
5948          * now that we have the eeprom settings, apply the special cases
5949          * where the eeprom may be wrong or the board simply won't support
5950          * wake on lan on a particular port
5951          */
5952         if (!(adapter->flags & FLAG_HAS_WOL))
5953                 adapter->eeprom_wol = 0;
5954
5955         /* initialize the wol settings based on the eeprom settings */
5956         adapter->wol = adapter->eeprom_wol;
5957         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5958
5959         /* save off EEPROM version number */
5960         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5961
5962         /* reset the hardware with the new settings */
5963         e1000e_reset(adapter);
5964
5965         /*
5966          * If the controller has AMT, do not set DRV_LOAD until the interface
5967          * is up.  For all other cases, let the f/w know that the h/w is now
5968          * under the control of the driver.
5969          */
5970         if (!(adapter->flags & FLAG_HAS_AMT))
5971                 e1000_get_hw_control(adapter);
5972
5973         strcpy(netdev->name, "eth%d");
5974         err = register_netdev(netdev);
5975         if (err)
5976                 goto err_register;
5977
5978         /* carrier off reporting is important to ethtool even BEFORE open */
5979         netif_carrier_off(netdev);
5980
5981         e1000_print_device_info(adapter);
5982
5983         if (pci_dev_run_wake(pdev))
5984                 pm_runtime_put_noidle(&pdev->dev);
5985
5986         return 0;
5987
5988 err_register:
5989         if (!(adapter->flags & FLAG_HAS_AMT))
5990                 e1000_release_hw_control(adapter);
5991 err_eeprom:
5992         if (!e1000_check_reset_block(&adapter->hw))
5993                 e1000_phy_hw_reset(&adapter->hw);
5994 err_hw_init:
5995
5996         kfree(adapter->tx_ring);
5997         kfree(adapter->rx_ring);
5998 err_sw_init:
5999         if (adapter->hw.flash_address)
6000                 iounmap(adapter->hw.flash_address);
6001         e1000e_reset_interrupt_capability(adapter);
6002 err_flashmap:
6003         iounmap(adapter->hw.hw_addr);
6004 err_ioremap:
6005         free_netdev(netdev);
6006 err_alloc_etherdev:
6007         pci_release_selected_regions(pdev,
6008                                      pci_select_bars(pdev, IORESOURCE_MEM));
6009 err_pci_reg:
6010 err_dma:
6011         pci_disable_device(pdev);
6012         return err;
6013 }
6014
6015 /**
6016  * e1000_remove - Device Removal Routine
6017  * @pdev: PCI device information struct
6018  *
6019  * e1000_remove is called by the PCI subsystem to alert the driver
6020  * that it should release a PCI device.  The could be caused by a
6021  * Hot-Plug event, or because the driver is going to be removed from
6022  * memory.
6023  **/
6024 static void __devexit e1000_remove(struct pci_dev *pdev)
6025 {
6026         struct net_device *netdev = pci_get_drvdata(pdev);
6027         struct e1000_adapter *adapter = netdev_priv(netdev);
6028         bool down = test_bit(__E1000_DOWN, &adapter->state);
6029
6030         /*
6031          * The timers may be rescheduled, so explicitly disable them
6032          * from being rescheduled.
6033          */
6034         if (!down)
6035                 set_bit(__E1000_DOWN, &adapter->state);
6036         del_timer_sync(&adapter->watchdog_timer);
6037         del_timer_sync(&adapter->phy_info_timer);
6038
6039         cancel_work_sync(&adapter->reset_task);
6040         cancel_work_sync(&adapter->watchdog_task);
6041         cancel_work_sync(&adapter->downshift_task);
6042         cancel_work_sync(&adapter->update_phy_task);
6043         cancel_work_sync(&adapter->led_blink_task);
6044         cancel_work_sync(&adapter->print_hang_task);
6045
6046         if (!(netdev->flags & IFF_UP))
6047                 e1000_power_down_phy(adapter);
6048
6049         /* Don't lie to e1000_close() down the road. */
6050         if (!down)
6051                 clear_bit(__E1000_DOWN, &adapter->state);
6052         unregister_netdev(netdev);
6053
6054         if (pci_dev_run_wake(pdev))
6055                 pm_runtime_get_noresume(&pdev->dev);
6056
6057         /*
6058          * Release control of h/w to f/w.  If f/w is AMT enabled, this
6059          * would have already happened in close and is redundant.
6060          */
6061         e1000_release_hw_control(adapter);
6062
6063         e1000e_reset_interrupt_capability(adapter);
6064         kfree(adapter->tx_ring);
6065         kfree(adapter->rx_ring);
6066
6067         iounmap(adapter->hw.hw_addr);
6068         if (adapter->hw.flash_address)
6069                 iounmap(adapter->hw.flash_address);
6070         pci_release_selected_regions(pdev,
6071                                      pci_select_bars(pdev, IORESOURCE_MEM));
6072
6073         free_netdev(netdev);
6074
6075         /* AER disable */
6076         pci_disable_pcie_error_reporting(pdev);
6077
6078         pci_disable_device(pdev);
6079 }
6080
6081 /* PCI Error Recovery (ERS) */
6082 static struct pci_error_handlers e1000_err_handler = {
6083         .error_detected = e1000_io_error_detected,
6084         .slot_reset = e1000_io_slot_reset,
6085         .resume = e1000_io_resume,
6086 };
6087
6088 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6089         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6090         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6091         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6092         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6093         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6094         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6095         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6096         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6097         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6098
6099         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6103
6104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6107
6108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6111
6112         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6113           board_80003es2lan },
6114         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6115           board_80003es2lan },
6116         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6117           board_80003es2lan },
6118         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6119           board_80003es2lan },
6120
6121         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6122         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6123         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6124         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6125         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6126         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6127         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6128         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6129
6130         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6131         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6132         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6133         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6134         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6135         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6136         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6137         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6138         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6139
6140         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6141         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6142         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6143
6144         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6145         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6146         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6147
6148         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6149         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6150         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6151         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6152
6153         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6154         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6155
6156         { }     /* terminate list */
6157 };
6158 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6159
6160 #ifdef CONFIG_PM_OPS
6161 static const struct dev_pm_ops e1000_pm_ops = {
6162         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6163         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6164                                 e1000_runtime_resume, e1000_idle)
6165 };
6166 #endif
6167
6168 /* PCI Device API Driver */
6169 static struct pci_driver e1000_driver = {
6170         .name     = e1000e_driver_name,
6171         .id_table = e1000_pci_tbl,
6172         .probe    = e1000_probe,
6173         .remove   = __devexit_p(e1000_remove),
6174 #ifdef CONFIG_PM_OPS
6175         .driver.pm = &e1000_pm_ops,
6176 #endif
6177         .shutdown = e1000_shutdown,
6178         .err_handler = &e1000_err_handler
6179 };
6180
6181 /**
6182  * e1000_init_module - Driver Registration Routine
6183  *
6184  * e1000_init_module is the first routine called when the driver is
6185  * loaded. All it does is register with the PCI subsystem.
6186  **/
6187 static int __init e1000_init_module(void)
6188 {
6189         int ret;
6190         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6191                 e1000e_driver_version);
6192         pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n");
6193         ret = pci_register_driver(&e1000_driver);
6194
6195         return ret;
6196 }
6197 module_init(e1000_init_module);
6198
6199 /**
6200  * e1000_exit_module - Driver Exit Cleanup Routine
6201  *
6202  * e1000_exit_module is called just before the driver is removed
6203  * from memory.
6204  **/
6205 static void __exit e1000_exit_module(void)
6206 {
6207         pci_unregister_driver(&e1000_driver);
6208 }
6209 module_exit(e1000_exit_module);
6210
6211
6212 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6213 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6214 MODULE_LICENSE("GPL");
6215 MODULE_VERSION(DRV_VERSION);
6216
6217 /* e1000_main.c */