24ac6778b1a8cda528ff6426abd37cd24fe12e8b
[pandora-kernel.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/tech/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <asm/io.h>
50
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
53 #endif
54
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8 = {
57         .eccbytes = 3,
58         .eccpos = {0, 1, 2},
59         .oobfree = {
60                 {.offset = 3,
61                  .length = 2},
62                 {.offset = 6,
63                  .length = 2}}
64 };
65
66 static struct nand_ecclayout nand_oob_16 = {
67         .eccbytes = 6,
68         .eccpos = {0, 1, 2, 3, 6, 7},
69         .oobfree = {
70                 {.offset = 8,
71                  . length = 8}}
72 };
73
74 static struct nand_ecclayout nand_oob_64 = {
75         .eccbytes = 24,
76         .eccpos = {
77                    40, 41, 42, 43, 44, 45, 46, 47,
78                    48, 49, 50, 51, 52, 53, 54, 55,
79                    56, 57, 58, 59, 60, 61, 62, 63},
80         .oobfree = {
81                 {.offset = 2,
82                  .length = 38}}
83 };
84
85 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
86                            int new_state);
87
88 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
89                              struct mtd_oob_ops *ops);
90
91 /*
92  * For devices which display every fart in the system on a seperate LED. Is
93  * compiled away when LED support is disabled.
94  */
95 DEFINE_LED_TRIGGER(nand_led_trigger);
96
97 /**
98  * nand_release_device - [GENERIC] release chip
99  * @mtd:        MTD device structure
100  *
101  * Deselect, release chip lock and wake up anyone waiting on the device
102  */
103 static void nand_release_device(struct mtd_info *mtd)
104 {
105         struct nand_chip *chip = mtd->priv;
106
107         /* De-select the NAND device */
108         chip->select_chip(mtd, -1);
109
110         /* Release the controller and the chip */
111         spin_lock(&chip->controller->lock);
112         chip->controller->active = NULL;
113         chip->state = FL_READY;
114         wake_up(&chip->controller->wq);
115         spin_unlock(&chip->controller->lock);
116 }
117
118 /**
119  * nand_read_byte - [DEFAULT] read one byte from the chip
120  * @mtd:        MTD device structure
121  *
122  * Default read function for 8bit buswith
123  */
124 static uint8_t nand_read_byte(struct mtd_info *mtd)
125 {
126         struct nand_chip *chip = mtd->priv;
127         return readb(chip->IO_ADDR_R);
128 }
129
130 /**
131  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
132  * @mtd:        MTD device structure
133  *
134  * Default read function for 16bit buswith with
135  * endianess conversion
136  */
137 static uint8_t nand_read_byte16(struct mtd_info *mtd)
138 {
139         struct nand_chip *chip = mtd->priv;
140         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
141 }
142
143 /**
144  * nand_read_word - [DEFAULT] read one word from the chip
145  * @mtd:        MTD device structure
146  *
147  * Default read function for 16bit buswith without
148  * endianess conversion
149  */
150 static u16 nand_read_word(struct mtd_info *mtd)
151 {
152         struct nand_chip *chip = mtd->priv;
153         return readw(chip->IO_ADDR_R);
154 }
155
156 /**
157  * nand_select_chip - [DEFAULT] control CE line
158  * @mtd:        MTD device structure
159  * @chipnr:     chipnumber to select, -1 for deselect
160  *
161  * Default select function for 1 chip devices.
162  */
163 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
164 {
165         struct nand_chip *chip = mtd->priv;
166
167         switch (chipnr) {
168         case -1:
169                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
170                 break;
171         case 0:
172                 break;
173
174         default:
175                 BUG();
176         }
177 }
178
179 /**
180  * nand_write_buf - [DEFAULT] write buffer to chip
181  * @mtd:        MTD device structure
182  * @buf:        data buffer
183  * @len:        number of bytes to write
184  *
185  * Default write function for 8bit buswith
186  */
187 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
188 {
189         int i;
190         struct nand_chip *chip = mtd->priv;
191
192         for (i = 0; i < len; i++)
193                 writeb(buf[i], chip->IO_ADDR_W);
194 }
195
196 /**
197  * nand_read_buf - [DEFAULT] read chip data into buffer
198  * @mtd:        MTD device structure
199  * @buf:        buffer to store date
200  * @len:        number of bytes to read
201  *
202  * Default read function for 8bit buswith
203  */
204 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
205 {
206         int i;
207         struct nand_chip *chip = mtd->priv;
208
209         for (i = 0; i < len; i++)
210                 buf[i] = readb(chip->IO_ADDR_R);
211 }
212
213 /**
214  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
215  * @mtd:        MTD device structure
216  * @buf:        buffer containing the data to compare
217  * @len:        number of bytes to compare
218  *
219  * Default verify function for 8bit buswith
220  */
221 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
222 {
223         int i;
224         struct nand_chip *chip = mtd->priv;
225
226         for (i = 0; i < len; i++)
227                 if (buf[i] != readb(chip->IO_ADDR_R))
228                         return -EFAULT;
229         return 0;
230 }
231
232 /**
233  * nand_write_buf16 - [DEFAULT] write buffer to chip
234  * @mtd:        MTD device structure
235  * @buf:        data buffer
236  * @len:        number of bytes to write
237  *
238  * Default write function for 16bit buswith
239  */
240 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
241 {
242         int i;
243         struct nand_chip *chip = mtd->priv;
244         u16 *p = (u16 *) buf;
245         len >>= 1;
246
247         for (i = 0; i < len; i++)
248                 writew(p[i], chip->IO_ADDR_W);
249
250 }
251
252 /**
253  * nand_read_buf16 - [DEFAULT] read chip data into buffer
254  * @mtd:        MTD device structure
255  * @buf:        buffer to store date
256  * @len:        number of bytes to read
257  *
258  * Default read function for 16bit buswith
259  */
260 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
261 {
262         int i;
263         struct nand_chip *chip = mtd->priv;
264         u16 *p = (u16 *) buf;
265         len >>= 1;
266
267         for (i = 0; i < len; i++)
268                 p[i] = readw(chip->IO_ADDR_R);
269 }
270
271 /**
272  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
273  * @mtd:        MTD device structure
274  * @buf:        buffer containing the data to compare
275  * @len:        number of bytes to compare
276  *
277  * Default verify function for 16bit buswith
278  */
279 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
280 {
281         int i;
282         struct nand_chip *chip = mtd->priv;
283         u16 *p = (u16 *) buf;
284         len >>= 1;
285
286         for (i = 0; i < len; i++)
287                 if (p[i] != readw(chip->IO_ADDR_R))
288                         return -EFAULT;
289
290         return 0;
291 }
292
293 /**
294  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
295  * @mtd:        MTD device structure
296  * @ofs:        offset from device start
297  * @getchip:    0, if the chip is already selected
298  *
299  * Check, if the block is bad.
300  */
301 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
302 {
303         int page, chipnr, res = 0;
304         struct nand_chip *chip = mtd->priv;
305         u16 bad;
306
307         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
308
309         if (getchip) {
310                 chipnr = (int)(ofs >> chip->chip_shift);
311
312                 nand_get_device(chip, mtd, FL_READING);
313
314                 /* Select the NAND device */
315                 chip->select_chip(mtd, chipnr);
316         }
317
318         if (chip->options & NAND_BUSWIDTH_16) {
319                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
320                               page);
321                 bad = cpu_to_le16(chip->read_word(mtd));
322                 if (chip->badblockpos & 0x1)
323                         bad >>= 8;
324                 if ((bad & 0xFF) != 0xff)
325                         res = 1;
326         } else {
327                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
328                 if (chip->read_byte(mtd) != 0xff)
329                         res = 1;
330         }
331
332         if (getchip)
333                 nand_release_device(mtd);
334
335         return res;
336 }
337
338 /**
339  * nand_default_block_markbad - [DEFAULT] mark a block bad
340  * @mtd:        MTD device structure
341  * @ofs:        offset from device start
342  *
343  * This is the default implementation, which can be overridden by
344  * a hardware specific driver.
345 */
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
347 {
348         struct nand_chip *chip = mtd->priv;
349         uint8_t buf[2] = { 0, 0 };
350         int block, ret;
351
352         /* Get block number */
353         block = (int)(ofs >> chip->bbt_erase_shift);
354         if (chip->bbt)
355                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
356
357         /* Do we have a flash based bad block table ? */
358         if (chip->options & NAND_USE_FLASH_BBT)
359                 ret = nand_update_bbt(mtd, ofs);
360         else {
361                 /* We write two bytes, so we dont have to mess with 16 bit
362                  * access
363                  */
364                 nand_get_device(chip, mtd, FL_WRITING);
365                 ofs += mtd->oobsize;
366                 chip->ops.len = chip->ops.ooblen = 2;
367                 chip->ops.datbuf = NULL;
368                 chip->ops.oobbuf = buf;
369                 chip->ops.ooboffs = chip->badblockpos & ~0x01;
370
371                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
372                 nand_release_device(mtd);
373         }
374         if (!ret)
375                 mtd->ecc_stats.badblocks++;
376
377         return ret;
378 }
379
380 /**
381  * nand_check_wp - [GENERIC] check if the chip is write protected
382  * @mtd:        MTD device structure
383  * Check, if the device is write protected
384  *
385  * The function expects, that the device is already selected
386  */
387 static int nand_check_wp(struct mtd_info *mtd)
388 {
389         struct nand_chip *chip = mtd->priv;
390         /* Check the WP bit */
391         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
392         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
393 }
394
395 /**
396  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
397  * @mtd:        MTD device structure
398  * @ofs:        offset from device start
399  * @getchip:    0, if the chip is already selected
400  * @allowbbt:   1, if its allowed to access the bbt area
401  *
402  * Check, if the block is bad. Either by reading the bad block table or
403  * calling of the scan function.
404  */
405 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
406                                int allowbbt)
407 {
408         struct nand_chip *chip = mtd->priv;
409
410         if (!chip->bbt)
411                 return chip->block_bad(mtd, ofs, getchip);
412
413         /* Return info from the table */
414         return nand_isbad_bbt(mtd, ofs, allowbbt);
415 }
416
417 /*
418  * Wait for the ready pin, after a command
419  * The timeout is catched later.
420  */
421 void nand_wait_ready(struct mtd_info *mtd)
422 {
423         struct nand_chip *chip = mtd->priv;
424         unsigned long timeo = jiffies + 2;
425
426         led_trigger_event(nand_led_trigger, LED_FULL);
427         /* wait until command is processed or timeout occures */
428         do {
429                 if (chip->dev_ready(mtd))
430                         break;
431                 touch_softlockup_watchdog();
432         } while (time_before(jiffies, timeo));
433         led_trigger_event(nand_led_trigger, LED_OFF);
434 }
435 EXPORT_SYMBOL_GPL(nand_wait_ready);
436
437 /**
438  * nand_command - [DEFAULT] Send command to NAND device
439  * @mtd:        MTD device structure
440  * @command:    the command to be sent
441  * @column:     the column address for this command, -1 if none
442  * @page_addr:  the page address for this command, -1 if none
443  *
444  * Send command to NAND device. This function is used for small page
445  * devices (256/512 Bytes per page)
446  */
447 static void nand_command(struct mtd_info *mtd, unsigned int command,
448                          int column, int page_addr)
449 {
450         register struct nand_chip *chip = mtd->priv;
451         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
452
453         /*
454          * Write out the command to the device.
455          */
456         if (command == NAND_CMD_SEQIN) {
457                 int readcmd;
458
459                 if (column >= mtd->writesize) {
460                         /* OOB area */
461                         column -= mtd->writesize;
462                         readcmd = NAND_CMD_READOOB;
463                 } else if (column < 256) {
464                         /* First 256 bytes --> READ0 */
465                         readcmd = NAND_CMD_READ0;
466                 } else {
467                         column -= 256;
468                         readcmd = NAND_CMD_READ1;
469                 }
470                 chip->cmd_ctrl(mtd, readcmd, ctrl);
471                 ctrl &= ~NAND_CTRL_CHANGE;
472         }
473         chip->cmd_ctrl(mtd, command, ctrl);
474
475         /*
476          * Address cycle, when necessary
477          */
478         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
479         /* Serially input address */
480         if (column != -1) {
481                 /* Adjust columns for 16 bit buswidth */
482                 if (chip->options & NAND_BUSWIDTH_16)
483                         column >>= 1;
484                 chip->cmd_ctrl(mtd, column, ctrl);
485                 ctrl &= ~NAND_CTRL_CHANGE;
486         }
487         if (page_addr != -1) {
488                 chip->cmd_ctrl(mtd, page_addr, ctrl);
489                 ctrl &= ~NAND_CTRL_CHANGE;
490                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
491                 /* One more address cycle for devices > 32MiB */
492                 if (chip->chipsize > (32 << 20))
493                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
494         }
495         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
496
497         /*
498          * program and erase have their own busy handlers
499          * status and sequential in needs no delay
500          */
501         switch (command) {
502
503         case NAND_CMD_PAGEPROG:
504         case NAND_CMD_ERASE1:
505         case NAND_CMD_ERASE2:
506         case NAND_CMD_SEQIN:
507         case NAND_CMD_STATUS:
508                 return;
509
510         case NAND_CMD_RESET:
511                 if (chip->dev_ready)
512                         break;
513                 udelay(chip->chip_delay);
514                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
515                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
516                 chip->cmd_ctrl(mtd,
517                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
518                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
519                 return;
520
521                 /* This applies to read commands */
522         default:
523                 /*
524                  * If we don't have access to the busy pin, we apply the given
525                  * command delay
526                  */
527                 if (!chip->dev_ready) {
528                         udelay(chip->chip_delay);
529                         return;
530                 }
531         }
532         /* Apply this short delay always to ensure that we do wait tWB in
533          * any case on any machine. */
534         ndelay(100);
535
536         nand_wait_ready(mtd);
537 }
538
539 /**
540  * nand_command_lp - [DEFAULT] Send command to NAND large page device
541  * @mtd:        MTD device structure
542  * @command:    the command to be sent
543  * @column:     the column address for this command, -1 if none
544  * @page_addr:  the page address for this command, -1 if none
545  *
546  * Send command to NAND device. This is the version for the new large page
547  * devices We dont have the separate regions as we have in the small page
548  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
549  */
550 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
551                             int column, int page_addr)
552 {
553         register struct nand_chip *chip = mtd->priv;
554
555         /* Emulate NAND_CMD_READOOB */
556         if (command == NAND_CMD_READOOB) {
557                 column += mtd->writesize;
558                 command = NAND_CMD_READ0;
559         }
560
561         /* Command latch cycle */
562         chip->cmd_ctrl(mtd, command & 0xff,
563                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
564
565         if (column != -1 || page_addr != -1) {
566                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
567
568                 /* Serially input address */
569                 if (column != -1) {
570                         /* Adjust columns for 16 bit buswidth */
571                         if (chip->options & NAND_BUSWIDTH_16)
572                                 column >>= 1;
573                         chip->cmd_ctrl(mtd, column, ctrl);
574                         ctrl &= ~NAND_CTRL_CHANGE;
575                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
576                 }
577                 if (page_addr != -1) {
578                         chip->cmd_ctrl(mtd, page_addr, ctrl);
579                         chip->cmd_ctrl(mtd, page_addr >> 8,
580                                        NAND_NCE | NAND_ALE);
581                         /* One more address cycle for devices > 128MiB */
582                         if (chip->chipsize > (128 << 20))
583                                 chip->cmd_ctrl(mtd, page_addr >> 16,
584                                                NAND_NCE | NAND_ALE);
585                 }
586         }
587         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
588
589         /*
590          * program and erase have their own busy handlers
591          * status, sequential in, and deplete1 need no delay
592          */
593         switch (command) {
594
595         case NAND_CMD_CACHEDPROG:
596         case NAND_CMD_PAGEPROG:
597         case NAND_CMD_ERASE1:
598         case NAND_CMD_ERASE2:
599         case NAND_CMD_SEQIN:
600         case NAND_CMD_RNDIN:
601         case NAND_CMD_STATUS:
602         case NAND_CMD_DEPLETE1:
603                 return;
604
605                 /*
606                  * read error status commands require only a short delay
607                  */
608         case NAND_CMD_STATUS_ERROR:
609         case NAND_CMD_STATUS_ERROR0:
610         case NAND_CMD_STATUS_ERROR1:
611         case NAND_CMD_STATUS_ERROR2:
612         case NAND_CMD_STATUS_ERROR3:
613                 udelay(chip->chip_delay);
614                 return;
615
616         case NAND_CMD_RESET:
617                 if (chip->dev_ready)
618                         break;
619                 udelay(chip->chip_delay);
620                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
621                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
622                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
623                                NAND_NCE | NAND_CTRL_CHANGE);
624                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
625                 return;
626
627         case NAND_CMD_RNDOUT:
628                 /* No ready / busy check necessary */
629                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
630                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
631                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
632                                NAND_NCE | NAND_CTRL_CHANGE);
633                 return;
634
635         case NAND_CMD_READ0:
636                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
637                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
638                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
639                                NAND_NCE | NAND_CTRL_CHANGE);
640
641                 /* This applies to read commands */
642         default:
643                 /*
644                  * If we don't have access to the busy pin, we apply the given
645                  * command delay
646                  */
647                 if (!chip->dev_ready) {
648                         udelay(chip->chip_delay);
649                         return;
650                 }
651         }
652
653         /* Apply this short delay always to ensure that we do wait tWB in
654          * any case on any machine. */
655         ndelay(100);
656
657         nand_wait_ready(mtd);
658 }
659
660 /**
661  * nand_get_device - [GENERIC] Get chip for selected access
662  * @chip:       the nand chip descriptor
663  * @mtd:        MTD device structure
664  * @new_state:  the state which is requested
665  *
666  * Get the device and lock it for exclusive access
667  */
668 static int
669 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
670 {
671         spinlock_t *lock = &chip->controller->lock;
672         wait_queue_head_t *wq = &chip->controller->wq;
673         DECLARE_WAITQUEUE(wait, current);
674  retry:
675         spin_lock(lock);
676
677         /* Hardware controller shared among independend devices */
678         /* Hardware controller shared among independend devices */
679         if (!chip->controller->active)
680                 chip->controller->active = chip;
681
682         if (chip->controller->active == chip && chip->state == FL_READY) {
683                 chip->state = new_state;
684                 spin_unlock(lock);
685                 return 0;
686         }
687         if (new_state == FL_PM_SUSPENDED) {
688                 spin_unlock(lock);
689                 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
690         }
691         set_current_state(TASK_UNINTERRUPTIBLE);
692         add_wait_queue(wq, &wait);
693         spin_unlock(lock);
694         schedule();
695         remove_wait_queue(wq, &wait);
696         goto retry;
697 }
698
699 /**
700  * nand_wait - [DEFAULT]  wait until the command is done
701  * @mtd:        MTD device structure
702  * @chip:       NAND chip structure
703  *
704  * Wait for command done. This applies to erase and program only
705  * Erase can take up to 400ms and program up to 20ms according to
706  * general NAND and SmartMedia specs
707  */
708 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
709 {
710
711         unsigned long timeo = jiffies;
712         int status, state = chip->state;
713
714         if (state == FL_ERASING)
715                 timeo += (HZ * 400) / 1000;
716         else
717                 timeo += (HZ * 20) / 1000;
718
719         led_trigger_event(nand_led_trigger, LED_FULL);
720
721         /* Apply this short delay always to ensure that we do wait tWB in
722          * any case on any machine. */
723         ndelay(100);
724
725         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
726                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
727         else
728                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
729
730         while (time_before(jiffies, timeo)) {
731                 if (chip->dev_ready) {
732                         if (chip->dev_ready(mtd))
733                                 break;
734                 } else {
735                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
736                                 break;
737                 }
738                 cond_resched();
739         }
740         led_trigger_event(nand_led_trigger, LED_OFF);
741
742         status = (int)chip->read_byte(mtd);
743         return status;
744 }
745
746 /**
747  * nand_read_page_raw - [Intern] read raw page data without ecc
748  * @mtd:        mtd info structure
749  * @chip:       nand chip info structure
750  * @buf:        buffer to store read data
751  */
752 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
753                               uint8_t *buf)
754 {
755         chip->read_buf(mtd, buf, mtd->writesize);
756         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
757         return 0;
758 }
759
760 /**
761  * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
762  * @mtd:        mtd info structure
763  * @chip:       nand chip info structure
764  * @buf:        buffer to store read data
765  */
766 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
767                                 uint8_t *buf)
768 {
769         int i, eccsize = chip->ecc.size;
770         int eccbytes = chip->ecc.bytes;
771         int eccsteps = chip->ecc.steps;
772         uint8_t *p = buf;
773         uint8_t *ecc_calc = chip->buffers->ecccalc;
774         uint8_t *ecc_code = chip->buffers->ecccode;
775         uint32_t *eccpos = chip->ecc.layout->eccpos;
776
777         chip->ecc.read_page_raw(mtd, chip, buf);
778
779         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
780                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
781
782         for (i = 0; i < chip->ecc.total; i++)
783                 ecc_code[i] = chip->oob_poi[eccpos[i]];
784
785         eccsteps = chip->ecc.steps;
786         p = buf;
787
788         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
789                 int stat;
790
791                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
792                 if (stat == -1)
793                         mtd->ecc_stats.failed++;
794                 else
795                         mtd->ecc_stats.corrected += stat;
796         }
797         return 0;
798 }
799
800 /**
801  * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
802  * @mtd:        mtd info structure
803  * @chip:       nand chip info structure
804  * @buf:        buffer to store read data
805  *
806  * Not for syndrome calculating ecc controllers which need a special oob layout
807  */
808 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
809                                 uint8_t *buf)
810 {
811         int i, eccsize = chip->ecc.size;
812         int eccbytes = chip->ecc.bytes;
813         int eccsteps = chip->ecc.steps;
814         uint8_t *p = buf;
815         uint8_t *ecc_calc = chip->buffers->ecccalc;
816         uint8_t *ecc_code = chip->buffers->ecccode;
817         uint32_t *eccpos = chip->ecc.layout->eccpos;
818
819         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
820                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
821                 chip->read_buf(mtd, p, eccsize);
822                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
823         }
824         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
825
826         for (i = 0; i < chip->ecc.total; i++)
827                 ecc_code[i] = chip->oob_poi[eccpos[i]];
828
829         eccsteps = chip->ecc.steps;
830         p = buf;
831
832         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
833                 int stat;
834
835                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
836                 if (stat == -1)
837                         mtd->ecc_stats.failed++;
838                 else
839                         mtd->ecc_stats.corrected += stat;
840         }
841         return 0;
842 }
843
844 /**
845  * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
846  * @mtd:        mtd info structure
847  * @chip:       nand chip info structure
848  * @buf:        buffer to store read data
849  *
850  * The hw generator calculates the error syndrome automatically. Therefor
851  * we need a special oob layout and handling.
852  */
853 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
854                                    uint8_t *buf)
855 {
856         int i, eccsize = chip->ecc.size;
857         int eccbytes = chip->ecc.bytes;
858         int eccsteps = chip->ecc.steps;
859         uint8_t *p = buf;
860         uint8_t *oob = chip->oob_poi;
861
862         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
863                 int stat;
864
865                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
866                 chip->read_buf(mtd, p, eccsize);
867
868                 if (chip->ecc.prepad) {
869                         chip->read_buf(mtd, oob, chip->ecc.prepad);
870                         oob += chip->ecc.prepad;
871                 }
872
873                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
874                 chip->read_buf(mtd, oob, eccbytes);
875                 stat = chip->ecc.correct(mtd, p, oob, NULL);
876
877                 if (stat == -1)
878                         mtd->ecc_stats.failed++;
879                 else
880                         mtd->ecc_stats.corrected += stat;
881
882                 oob += eccbytes;
883
884                 if (chip->ecc.postpad) {
885                         chip->read_buf(mtd, oob, chip->ecc.postpad);
886                         oob += chip->ecc.postpad;
887                 }
888         }
889
890         /* Calculate remaining oob bytes */
891         i = mtd->oobsize - (oob - chip->oob_poi);
892         if (i)
893                 chip->read_buf(mtd, oob, i);
894
895         return 0;
896 }
897
898 /**
899  * nand_transfer_oob - [Internal] Transfer oob to client buffer
900  * @chip:       nand chip structure
901  * @oob:        oob destination address
902  * @ops:        oob ops structure
903  * @len:        size of oob to transfer
904  */
905 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
906                                   struct mtd_oob_ops *ops, size_t len)
907 {
908         switch(ops->mode) {
909
910         case MTD_OOB_PLACE:
911         case MTD_OOB_RAW:
912                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
913                 return oob + len;
914
915         case MTD_OOB_AUTO: {
916                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
917                 uint32_t boffs = 0, roffs = ops->ooboffs;
918                 size_t bytes = 0;
919
920                 for(; free->length && len; free++, len -= bytes) {
921                         /* Read request not from offset 0 ? */
922                         if (unlikely(roffs)) {
923                                 if (roffs >= free->length) {
924                                         roffs -= free->length;
925                                         continue;
926                                 }
927                                 boffs = free->offset + roffs;
928                                 bytes = min_t(size_t, len,
929                                               (free->length - roffs));
930                                 roffs = 0;
931                         } else {
932                                 bytes = min_t(size_t, len, free->length);
933                                 boffs = free->offset;
934                         }
935                         memcpy(oob, chip->oob_poi + boffs, bytes);
936                         oob += bytes;
937                 }
938                 return oob;
939         }
940         default:
941                 BUG();
942         }
943         return NULL;
944 }
945
946 /**
947  * nand_do_read_ops - [Internal] Read data with ECC
948  *
949  * @mtd:        MTD device structure
950  * @from:       offset to read from
951  * @ops:        oob ops structure
952  *
953  * Internal function. Called with chip held.
954  */
955 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
956                             struct mtd_oob_ops *ops)
957 {
958         int chipnr, page, realpage, col, bytes, aligned;
959         struct nand_chip *chip = mtd->priv;
960         struct mtd_ecc_stats stats;
961         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
962         int sndcmd = 1;
963         int ret = 0;
964         uint32_t readlen = ops->len;
965         uint32_t oobreadlen = ops->ooblen;
966         uint8_t *bufpoi, *oob, *buf;
967
968         stats = mtd->ecc_stats;
969
970         chipnr = (int)(from >> chip->chip_shift);
971         chip->select_chip(mtd, chipnr);
972
973         realpage = (int)(from >> chip->page_shift);
974         page = realpage & chip->pagemask;
975
976         col = (int)(from & (mtd->writesize - 1));
977
978         buf = ops->datbuf;
979         oob = ops->oobbuf;
980
981         while(1) {
982                 bytes = min(mtd->writesize - col, readlen);
983                 aligned = (bytes == mtd->writesize);
984
985                 /* Is the current page in the buffer ? */
986                 if (realpage != chip->pagebuf || oob) {
987                         bufpoi = aligned ? buf : chip->buffers->databuf;
988
989                         if (likely(sndcmd)) {
990                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
991                                 sndcmd = 0;
992                         }
993
994                         /* Now read the page into the buffer */
995                         if (unlikely(ops->mode == MTD_OOB_RAW))
996                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi);
997                         else
998                                 ret = chip->ecc.read_page(mtd, chip, bufpoi);
999                         if (ret < 0)
1000                                 break;
1001
1002                         /* Transfer not aligned data */
1003                         if (!aligned) {
1004                                 chip->pagebuf = realpage;
1005                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1006                         }
1007
1008                         buf += bytes;
1009
1010                         if (unlikely(oob)) {
1011                                 /* Raw mode does data:oob:data:oob */
1012                                 if (ops->mode != MTD_OOB_RAW) {
1013                                         int toread = min(oobreadlen,
1014                                                 chip->ecc.layout->oobavail);
1015                                         if (toread) {
1016                                                 oob = nand_transfer_oob(chip,
1017                                                         oob, ops, toread);
1018                                                 oobreadlen -= toread;
1019                                         }
1020                                 } else
1021                                         buf = nand_transfer_oob(chip,
1022                                                 buf, ops, mtd->oobsize);
1023                         }
1024
1025                         if (!(chip->options & NAND_NO_READRDY)) {
1026                                 /*
1027                                  * Apply delay or wait for ready/busy pin. Do
1028                                  * this before the AUTOINCR check, so no
1029                                  * problems arise if a chip which does auto
1030                                  * increment is marked as NOAUTOINCR by the
1031                                  * board driver.
1032                                  */
1033                                 if (!chip->dev_ready)
1034                                         udelay(chip->chip_delay);
1035                                 else
1036                                         nand_wait_ready(mtd);
1037                         }
1038                 } else {
1039                         memcpy(buf, chip->buffers->databuf + col, bytes);
1040                         buf += bytes;
1041                 }
1042
1043                 readlen -= bytes;
1044
1045                 if (!readlen)
1046                         break;
1047
1048                 /* For subsequent reads align to page boundary. */
1049                 col = 0;
1050                 /* Increment page address */
1051                 realpage++;
1052
1053                 page = realpage & chip->pagemask;
1054                 /* Check, if we cross a chip boundary */
1055                 if (!page) {
1056                         chipnr++;
1057                         chip->select_chip(mtd, -1);
1058                         chip->select_chip(mtd, chipnr);
1059                 }
1060
1061                 /* Check, if the chip supports auto page increment
1062                  * or if we have hit a block boundary.
1063                  */
1064                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1065                         sndcmd = 1;
1066         }
1067
1068         ops->retlen = ops->len - (size_t) readlen;
1069         if (oob)
1070                 ops->oobretlen = ops->ooblen - oobreadlen;
1071
1072         if (ret)
1073                 return ret;
1074
1075         if (mtd->ecc_stats.failed - stats.failed)
1076                 return -EBADMSG;
1077
1078         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1079 }
1080
1081 /**
1082  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1083  * @mtd:        MTD device structure
1084  * @from:       offset to read from
1085  * @len:        number of bytes to read
1086  * @retlen:     pointer to variable to store the number of read bytes
1087  * @buf:        the databuffer to put data
1088  *
1089  * Get hold of the chip and call nand_do_read
1090  */
1091 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1092                      size_t *retlen, uint8_t *buf)
1093 {
1094         struct nand_chip *chip = mtd->priv;
1095         int ret;
1096
1097         /* Do not allow reads past end of device */
1098         if ((from + len) > mtd->size)
1099                 return -EINVAL;
1100         if (!len)
1101                 return 0;
1102
1103         nand_get_device(chip, mtd, FL_READING);
1104
1105         chip->ops.len = len;
1106         chip->ops.datbuf = buf;
1107         chip->ops.oobbuf = NULL;
1108
1109         ret = nand_do_read_ops(mtd, from, &chip->ops);
1110
1111         *retlen = chip->ops.retlen;
1112
1113         nand_release_device(mtd);
1114
1115         return ret;
1116 }
1117
1118 /**
1119  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1120  * @mtd:        mtd info structure
1121  * @chip:       nand chip info structure
1122  * @page:       page number to read
1123  * @sndcmd:     flag whether to issue read command or not
1124  */
1125 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1126                              int page, int sndcmd)
1127 {
1128         if (sndcmd) {
1129                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1130                 sndcmd = 0;
1131         }
1132         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1133         return sndcmd;
1134 }
1135
1136 /**
1137  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1138  *                          with syndromes
1139  * @mtd:        mtd info structure
1140  * @chip:       nand chip info structure
1141  * @page:       page number to read
1142  * @sndcmd:     flag whether to issue read command or not
1143  */
1144 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1145                                   int page, int sndcmd)
1146 {
1147         uint8_t *buf = chip->oob_poi;
1148         int length = mtd->oobsize;
1149         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1150         int eccsize = chip->ecc.size;
1151         uint8_t *bufpoi = buf;
1152         int i, toread, sndrnd = 0, pos;
1153
1154         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1155         for (i = 0; i < chip->ecc.steps; i++) {
1156                 if (sndrnd) {
1157                         pos = eccsize + i * (eccsize + chunk);
1158                         if (mtd->writesize > 512)
1159                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1160                         else
1161                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1162                 } else
1163                         sndrnd = 1;
1164                 toread = min_t(int, length, chunk);
1165                 chip->read_buf(mtd, bufpoi, toread);
1166                 bufpoi += toread;
1167                 length -= toread;
1168         }
1169         if (length > 0)
1170                 chip->read_buf(mtd, bufpoi, length);
1171
1172         return 1;
1173 }
1174
1175 /**
1176  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1177  * @mtd:        mtd info structure
1178  * @chip:       nand chip info structure
1179  * @page:       page number to write
1180  */
1181 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1182                               int page)
1183 {
1184         int status = 0;
1185         const uint8_t *buf = chip->oob_poi;
1186         int length = mtd->oobsize;
1187
1188         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1189         chip->write_buf(mtd, buf, length);
1190         /* Send command to program the OOB data */
1191         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1192
1193         status = chip->waitfunc(mtd, chip);
1194
1195         return status & NAND_STATUS_FAIL ? -EIO : 0;
1196 }
1197
1198 /**
1199  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1200  *                           with syndrome - only for large page flash !
1201  * @mtd:        mtd info structure
1202  * @chip:       nand chip info structure
1203  * @page:       page number to write
1204  */
1205 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1206                                    struct nand_chip *chip, int page)
1207 {
1208         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1209         int eccsize = chip->ecc.size, length = mtd->oobsize;
1210         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1211         const uint8_t *bufpoi = chip->oob_poi;
1212
1213         /*
1214          * data-ecc-data-ecc ... ecc-oob
1215          * or
1216          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1217          */
1218         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1219                 pos = steps * (eccsize + chunk);
1220                 steps = 0;
1221         } else
1222                 pos = eccsize;
1223
1224         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1225         for (i = 0; i < steps; i++) {
1226                 if (sndcmd) {
1227                         if (mtd->writesize <= 512) {
1228                                 uint32_t fill = 0xFFFFFFFF;
1229
1230                                 len = eccsize;
1231                                 while (len > 0) {
1232                                         int num = min_t(int, len, 4);
1233                                         chip->write_buf(mtd, (uint8_t *)&fill,
1234                                                         num);
1235                                         len -= num;
1236                                 }
1237                         } else {
1238                                 pos = eccsize + i * (eccsize + chunk);
1239                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1240                         }
1241                 } else
1242                         sndcmd = 1;
1243                 len = min_t(int, length, chunk);
1244                 chip->write_buf(mtd, bufpoi, len);
1245                 bufpoi += len;
1246                 length -= len;
1247         }
1248         if (length > 0)
1249                 chip->write_buf(mtd, bufpoi, length);
1250
1251         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1252         status = chip->waitfunc(mtd, chip);
1253
1254         return status & NAND_STATUS_FAIL ? -EIO : 0;
1255 }
1256
1257 /**
1258  * nand_do_read_oob - [Intern] NAND read out-of-band
1259  * @mtd:        MTD device structure
1260  * @from:       offset to read from
1261  * @ops:        oob operations description structure
1262  *
1263  * NAND read out-of-band data from the spare area
1264  */
1265 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1266                             struct mtd_oob_ops *ops)
1267 {
1268         int page, realpage, chipnr, sndcmd = 1;
1269         struct nand_chip *chip = mtd->priv;
1270         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1271         int readlen = ops->ooblen;
1272         int len;
1273         uint8_t *buf = ops->oobbuf;
1274
1275         DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1276               (unsigned long long)from, readlen);
1277
1278         if (ops->mode == MTD_OOB_AUTO)
1279                 len = chip->ecc.layout->oobavail;
1280         else
1281                 len = mtd->oobsize;
1282
1283         if (unlikely(ops->ooboffs >= len)) {
1284                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1285                         "Attempt to start read outside oob\n");
1286                 return -EINVAL;
1287         }
1288
1289         /* Do not allow reads past end of device */
1290         if (unlikely(from >= mtd->size ||
1291                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1292                                         (from >> chip->page_shift)) * len)) {
1293                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1294                         "Attempt read beyond end of device\n");
1295                 return -EINVAL;
1296         }
1297
1298         chipnr = (int)(from >> chip->chip_shift);
1299         chip->select_chip(mtd, chipnr);
1300
1301         /* Shift to get page */
1302         realpage = (int)(from >> chip->page_shift);
1303         page = realpage & chip->pagemask;
1304
1305         while(1) {
1306                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1307
1308                 len = min(len, readlen);
1309                 buf = nand_transfer_oob(chip, buf, ops, len);
1310
1311                 if (!(chip->options & NAND_NO_READRDY)) {
1312                         /*
1313                          * Apply delay or wait for ready/busy pin. Do this
1314                          * before the AUTOINCR check, so no problems arise if a
1315                          * chip which does auto increment is marked as
1316                          * NOAUTOINCR by the board driver.
1317                          */
1318                         if (!chip->dev_ready)
1319                                 udelay(chip->chip_delay);
1320                         else
1321                                 nand_wait_ready(mtd);
1322                 }
1323
1324                 readlen -= len;
1325                 if (!readlen)
1326                         break;
1327
1328                 /* Increment page address */
1329                 realpage++;
1330
1331                 page = realpage & chip->pagemask;
1332                 /* Check, if we cross a chip boundary */
1333                 if (!page) {
1334                         chipnr++;
1335                         chip->select_chip(mtd, -1);
1336                         chip->select_chip(mtd, chipnr);
1337                 }
1338
1339                 /* Check, if the chip supports auto page increment
1340                  * or if we have hit a block boundary.
1341                  */
1342                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1343                         sndcmd = 1;
1344         }
1345
1346         ops->oobretlen = ops->ooblen;
1347         return 0;
1348 }
1349
1350 /**
1351  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1352  * @mtd:        MTD device structure
1353  * @from:       offset to read from
1354  * @ops:        oob operation description structure
1355  *
1356  * NAND read data and/or out-of-band data
1357  */
1358 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1359                          struct mtd_oob_ops *ops)
1360 {
1361         struct nand_chip *chip = mtd->priv;
1362         int ret = -ENOTSUPP;
1363
1364         ops->retlen = 0;
1365
1366         /* Do not allow reads past end of device */
1367         if (ops->datbuf && (from + ops->len) > mtd->size) {
1368                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1369                       "Attempt read beyond end of device\n");
1370                 return -EINVAL;
1371         }
1372
1373         nand_get_device(chip, mtd, FL_READING);
1374
1375         switch(ops->mode) {
1376         case MTD_OOB_PLACE:
1377         case MTD_OOB_AUTO:
1378         case MTD_OOB_RAW:
1379                 break;
1380
1381         default:
1382                 goto out;
1383         }
1384
1385         if (!ops->datbuf)
1386                 ret = nand_do_read_oob(mtd, from, ops);
1387         else
1388                 ret = nand_do_read_ops(mtd, from, ops);
1389
1390  out:
1391         nand_release_device(mtd);
1392         return ret;
1393 }
1394
1395
1396 /**
1397  * nand_write_page_raw - [Intern] raw page write function
1398  * @mtd:        mtd info structure
1399  * @chip:       nand chip info structure
1400  * @buf:        data buffer
1401  */
1402 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1403                                 const uint8_t *buf)
1404 {
1405         chip->write_buf(mtd, buf, mtd->writesize);
1406         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1407 }
1408
1409 /**
1410  * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1411  * @mtd:        mtd info structure
1412  * @chip:       nand chip info structure
1413  * @buf:        data buffer
1414  */
1415 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1416                                   const uint8_t *buf)
1417 {
1418         int i, eccsize = chip->ecc.size;
1419         int eccbytes = chip->ecc.bytes;
1420         int eccsteps = chip->ecc.steps;
1421         uint8_t *ecc_calc = chip->buffers->ecccalc;
1422         const uint8_t *p = buf;
1423         uint32_t *eccpos = chip->ecc.layout->eccpos;
1424
1425         /* Software ecc calculation */
1426         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1427                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1428
1429         for (i = 0; i < chip->ecc.total; i++)
1430                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1431
1432         chip->ecc.write_page_raw(mtd, chip, buf);
1433 }
1434
1435 /**
1436  * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1437  * @mtd:        mtd info structure
1438  * @chip:       nand chip info structure
1439  * @buf:        data buffer
1440  */
1441 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1442                                   const uint8_t *buf)
1443 {
1444         int i, eccsize = chip->ecc.size;
1445         int eccbytes = chip->ecc.bytes;
1446         int eccsteps = chip->ecc.steps;
1447         uint8_t *ecc_calc = chip->buffers->ecccalc;
1448         const uint8_t *p = buf;
1449         uint32_t *eccpos = chip->ecc.layout->eccpos;
1450
1451         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1452                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1453                 chip->write_buf(mtd, p, eccsize);
1454                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1455         }
1456
1457         for (i = 0; i < chip->ecc.total; i++)
1458                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1459
1460         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1461 }
1462
1463 /**
1464  * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1465  * @mtd:        mtd info structure
1466  * @chip:       nand chip info structure
1467  * @buf:        data buffer
1468  *
1469  * The hw generator calculates the error syndrome automatically. Therefor
1470  * we need a special oob layout and handling.
1471  */
1472 static void nand_write_page_syndrome(struct mtd_info *mtd,
1473                                     struct nand_chip *chip, const uint8_t *buf)
1474 {
1475         int i, eccsize = chip->ecc.size;
1476         int eccbytes = chip->ecc.bytes;
1477         int eccsteps = chip->ecc.steps;
1478         const uint8_t *p = buf;
1479         uint8_t *oob = chip->oob_poi;
1480
1481         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1482
1483                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1484                 chip->write_buf(mtd, p, eccsize);
1485
1486                 if (chip->ecc.prepad) {
1487                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1488                         oob += chip->ecc.prepad;
1489                 }
1490
1491                 chip->ecc.calculate(mtd, p, oob);
1492                 chip->write_buf(mtd, oob, eccbytes);
1493                 oob += eccbytes;
1494
1495                 if (chip->ecc.postpad) {
1496                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1497                         oob += chip->ecc.postpad;
1498                 }
1499         }
1500
1501         /* Calculate remaining oob bytes */
1502         i = mtd->oobsize - (oob - chip->oob_poi);
1503         if (i)
1504                 chip->write_buf(mtd, oob, i);
1505 }
1506
1507 /**
1508  * nand_write_page - [REPLACEABLE] write one page
1509  * @mtd:        MTD device structure
1510  * @chip:       NAND chip descriptor
1511  * @buf:        the data to write
1512  * @page:       page number to write
1513  * @cached:     cached programming
1514  * @raw:        use _raw version of write_page
1515  */
1516 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1517                            const uint8_t *buf, int page, int cached, int raw)
1518 {
1519         int status;
1520
1521         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1522
1523         if (unlikely(raw))
1524                 chip->ecc.write_page_raw(mtd, chip, buf);
1525         else
1526                 chip->ecc.write_page(mtd, chip, buf);
1527
1528         /*
1529          * Cached progamming disabled for now, Not sure if its worth the
1530          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1531          */
1532         cached = 0;
1533
1534         if (!cached || !(chip->options & NAND_CACHEPRG)) {
1535
1536                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1537                 status = chip->waitfunc(mtd, chip);
1538                 /*
1539                  * See if operation failed and additional status checks are
1540                  * available
1541                  */
1542                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1543                         status = chip->errstat(mtd, chip, FL_WRITING, status,
1544                                                page);
1545
1546                 if (status & NAND_STATUS_FAIL)
1547                         return -EIO;
1548         } else {
1549                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1550                 status = chip->waitfunc(mtd, chip);
1551         }
1552
1553 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1554         /* Send command to read back the data */
1555         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1556
1557         if (chip->verify_buf(mtd, buf, mtd->writesize))
1558                 return -EIO;
1559 #endif
1560         return 0;
1561 }
1562
1563 /**
1564  * nand_fill_oob - [Internal] Transfer client buffer to oob
1565  * @chip:       nand chip structure
1566  * @oob:        oob data buffer
1567  * @ops:        oob ops structure
1568  */
1569 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1570                                   struct mtd_oob_ops *ops)
1571 {
1572         size_t len = ops->ooblen;
1573
1574         switch(ops->mode) {
1575
1576         case MTD_OOB_PLACE:
1577         case MTD_OOB_RAW:
1578                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1579                 return oob + len;
1580
1581         case MTD_OOB_AUTO: {
1582                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1583                 uint32_t boffs = 0, woffs = ops->ooboffs;
1584                 size_t bytes = 0;
1585
1586                 for(; free->length && len; free++, len -= bytes) {
1587                         /* Write request not from offset 0 ? */
1588                         if (unlikely(woffs)) {
1589                                 if (woffs >= free->length) {
1590                                         woffs -= free->length;
1591                                         continue;
1592                                 }
1593                                 boffs = free->offset + woffs;
1594                                 bytes = min_t(size_t, len,
1595                                               (free->length - woffs));
1596                                 woffs = 0;
1597                         } else {
1598                                 bytes = min_t(size_t, len, free->length);
1599                                 boffs = free->offset;
1600                         }
1601                         memcpy(chip->oob_poi + boffs, oob, bytes);
1602                         oob += bytes;
1603                 }
1604                 return oob;
1605         }
1606         default:
1607                 BUG();
1608         }
1609         return NULL;
1610 }
1611
1612 #define NOTALIGNED(x)   (x & (chip->subpagesize - 1)) != 0
1613
1614 /**
1615  * nand_do_write_ops - [Internal] NAND write with ECC
1616  * @mtd:        MTD device structure
1617  * @to:         offset to write to
1618  * @ops:        oob operations description structure
1619  *
1620  * NAND write with ECC
1621  */
1622 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1623                              struct mtd_oob_ops *ops)
1624 {
1625         int chipnr, realpage, page, blockmask, column;
1626         struct nand_chip *chip = mtd->priv;
1627         uint32_t writelen = ops->len;
1628         uint8_t *oob = ops->oobbuf;
1629         uint8_t *buf = ops->datbuf;
1630         int ret, subpage;
1631
1632         ops->retlen = 0;
1633         if (!writelen)
1634                 return 0;
1635
1636         /* reject writes, which are not page aligned */
1637         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1638                 printk(KERN_NOTICE "nand_write: "
1639                        "Attempt to write not page aligned data\n");
1640                 return -EINVAL;
1641         }
1642
1643         column = to & (mtd->writesize - 1);
1644         subpage = column || (writelen & (mtd->writesize - 1));
1645
1646         if (subpage && oob)
1647                 return -EINVAL;
1648
1649         chipnr = (int)(to >> chip->chip_shift);
1650         chip->select_chip(mtd, chipnr);
1651
1652         /* Check, if it is write protected */
1653         if (nand_check_wp(mtd))
1654                 return -EIO;
1655
1656         realpage = (int)(to >> chip->page_shift);
1657         page = realpage & chip->pagemask;
1658         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1659
1660         /* Invalidate the page cache, when we write to the cached page */
1661         if (to <= (chip->pagebuf << chip->page_shift) &&
1662             (chip->pagebuf << chip->page_shift) < (to + ops->len))
1663                 chip->pagebuf = -1;
1664
1665         /* If we're not given explicit OOB data, let it be 0xFF */
1666         if (likely(!oob))
1667                 memset(chip->oob_poi, 0xff, mtd->oobsize);
1668
1669         while(1) {
1670                 int bytes = mtd->writesize;
1671                 int cached = writelen > bytes && page != blockmask;
1672                 uint8_t *wbuf = buf;
1673
1674                 /* Partial page write ? */
1675                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1676                         cached = 0;
1677                         bytes = min_t(int, bytes - column, (int) writelen);
1678                         chip->pagebuf = -1;
1679                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
1680                         memcpy(&chip->buffers->databuf[column], buf, bytes);
1681                         wbuf = chip->buffers->databuf;
1682                 }
1683
1684                 if (unlikely(oob))
1685                         oob = nand_fill_oob(chip, oob, ops);
1686
1687                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1688                                        (ops->mode == MTD_OOB_RAW));
1689                 if (ret)
1690                         break;
1691
1692                 writelen -= bytes;
1693                 if (!writelen)
1694                         break;
1695
1696                 column = 0;
1697                 buf += bytes;
1698                 realpage++;
1699
1700                 page = realpage & chip->pagemask;
1701                 /* Check, if we cross a chip boundary */
1702                 if (!page) {
1703                         chipnr++;
1704                         chip->select_chip(mtd, -1);
1705                         chip->select_chip(mtd, chipnr);
1706                 }
1707         }
1708
1709         ops->retlen = ops->len - writelen;
1710         if (unlikely(oob))
1711                 ops->oobretlen = ops->ooblen;
1712         return ret;
1713 }
1714
1715 /**
1716  * nand_write - [MTD Interface] NAND write with ECC
1717  * @mtd:        MTD device structure
1718  * @to:         offset to write to
1719  * @len:        number of bytes to write
1720  * @retlen:     pointer to variable to store the number of written bytes
1721  * @buf:        the data to write
1722  *
1723  * NAND write with ECC
1724  */
1725 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1726                           size_t *retlen, const uint8_t *buf)
1727 {
1728         struct nand_chip *chip = mtd->priv;
1729         int ret;
1730
1731         /* Do not allow reads past end of device */
1732         if ((to + len) > mtd->size)
1733                 return -EINVAL;
1734         if (!len)
1735                 return 0;
1736
1737         nand_get_device(chip, mtd, FL_WRITING);
1738
1739         chip->ops.len = len;
1740         chip->ops.datbuf = (uint8_t *)buf;
1741         chip->ops.oobbuf = NULL;
1742
1743         ret = nand_do_write_ops(mtd, to, &chip->ops);
1744
1745         *retlen = chip->ops.retlen;
1746
1747         nand_release_device(mtd);
1748
1749         return ret;
1750 }
1751
1752 /**
1753  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1754  * @mtd:        MTD device structure
1755  * @to:         offset to write to
1756  * @ops:        oob operation description structure
1757  *
1758  * NAND write out-of-band
1759  */
1760 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1761                              struct mtd_oob_ops *ops)
1762 {
1763         int chipnr, page, status, len;
1764         struct nand_chip *chip = mtd->priv;
1765
1766         DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1767               (unsigned int)to, (int)ops->ooblen);
1768
1769         if (ops->mode == MTD_OOB_AUTO)
1770                 len = chip->ecc.layout->oobavail;
1771         else
1772                 len = mtd->oobsize;
1773
1774         /* Do not allow write past end of page */
1775         if ((ops->ooboffs + ops->ooblen) > len) {
1776                 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1777                       "Attempt to write past end of page\n");
1778                 return -EINVAL;
1779         }
1780
1781         if (unlikely(ops->ooboffs >= len)) {
1782                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1783                         "Attempt to start write outside oob\n");
1784                 return -EINVAL;
1785         }
1786
1787         /* Do not allow reads past end of device */
1788         if (unlikely(to >= mtd->size ||
1789                      ops->ooboffs + ops->ooblen >
1790                         ((mtd->size >> chip->page_shift) -
1791                          (to >> chip->page_shift)) * len)) {
1792                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1793                         "Attempt write beyond end of device\n");
1794                 return -EINVAL;
1795         }
1796
1797         chipnr = (int)(to >> chip->chip_shift);
1798         chip->select_chip(mtd, chipnr);
1799
1800         /* Shift to get page */
1801         page = (int)(to >> chip->page_shift);
1802
1803         /*
1804          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1805          * of my DiskOnChip 2000 test units) will clear the whole data page too
1806          * if we don't do this. I have no clue why, but I seem to have 'fixed'
1807          * it in the doc2000 driver in August 1999.  dwmw2.
1808          */
1809         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1810
1811         /* Check, if it is write protected */
1812         if (nand_check_wp(mtd))
1813                 return -EROFS;
1814
1815         /* Invalidate the page cache, if we write to the cached page */
1816         if (page == chip->pagebuf)
1817                 chip->pagebuf = -1;
1818
1819         memset(chip->oob_poi, 0xff, mtd->oobsize);
1820         nand_fill_oob(chip, ops->oobbuf, ops);
1821         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1822         memset(chip->oob_poi, 0xff, mtd->oobsize);
1823
1824         if (status)
1825                 return status;
1826
1827         ops->oobretlen = ops->ooblen;
1828
1829         return 0;
1830 }
1831
1832 /**
1833  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1834  * @mtd:        MTD device structure
1835  * @to:         offset to write to
1836  * @ops:        oob operation description structure
1837  */
1838 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1839                           struct mtd_oob_ops *ops)
1840 {
1841         struct nand_chip *chip = mtd->priv;
1842         int ret = -ENOTSUPP;
1843
1844         ops->retlen = 0;
1845
1846         /* Do not allow writes past end of device */
1847         if (ops->datbuf && (to + ops->len) > mtd->size) {
1848                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1849                       "Attempt read beyond end of device\n");
1850                 return -EINVAL;
1851         }
1852
1853         nand_get_device(chip, mtd, FL_WRITING);
1854
1855         switch(ops->mode) {
1856         case MTD_OOB_PLACE:
1857         case MTD_OOB_AUTO:
1858         case MTD_OOB_RAW:
1859                 break;
1860
1861         default:
1862                 goto out;
1863         }
1864
1865         if (!ops->datbuf)
1866                 ret = nand_do_write_oob(mtd, to, ops);
1867         else
1868                 ret = nand_do_write_ops(mtd, to, ops);
1869
1870  out:
1871         nand_release_device(mtd);
1872         return ret;
1873 }
1874
1875 /**
1876  * single_erease_cmd - [GENERIC] NAND standard block erase command function
1877  * @mtd:        MTD device structure
1878  * @page:       the page address of the block which will be erased
1879  *
1880  * Standard erase command for NAND chips
1881  */
1882 static void single_erase_cmd(struct mtd_info *mtd, int page)
1883 {
1884         struct nand_chip *chip = mtd->priv;
1885         /* Send commands to erase a block */
1886         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1887         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1888 }
1889
1890 /**
1891  * multi_erease_cmd - [GENERIC] AND specific block erase command function
1892  * @mtd:        MTD device structure
1893  * @page:       the page address of the block which will be erased
1894  *
1895  * AND multi block erase command function
1896  * Erase 4 consecutive blocks
1897  */
1898 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1899 {
1900         struct nand_chip *chip = mtd->priv;
1901         /* Send commands to erase a block */
1902         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1903         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1904         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1905         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1906         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1907 }
1908
1909 /**
1910  * nand_erase - [MTD Interface] erase block(s)
1911  * @mtd:        MTD device structure
1912  * @instr:      erase instruction
1913  *
1914  * Erase one ore more blocks
1915  */
1916 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1917 {
1918         return nand_erase_nand(mtd, instr, 0);
1919 }
1920
1921 #define BBT_PAGE_MASK   0xffffff3f
1922 /**
1923  * nand_erase_nand - [Internal] erase block(s)
1924  * @mtd:        MTD device structure
1925  * @instr:      erase instruction
1926  * @allowbbt:   allow erasing the bbt area
1927  *
1928  * Erase one ore more blocks
1929  */
1930 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1931                     int allowbbt)
1932 {
1933         int page, len, status, pages_per_block, ret, chipnr;
1934         struct nand_chip *chip = mtd->priv;
1935         int rewrite_bbt[NAND_MAX_CHIPS]={0};
1936         unsigned int bbt_masked_page = 0xffffffff;
1937
1938         DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1939               (unsigned int)instr->addr, (unsigned int)instr->len);
1940
1941         /* Start address must align on block boundary */
1942         if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1943                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1944                 return -EINVAL;
1945         }
1946
1947         /* Length must align on block boundary */
1948         if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1949                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1950                       "Length not block aligned\n");
1951                 return -EINVAL;
1952         }
1953
1954         /* Do not allow erase past end of device */
1955         if ((instr->len + instr->addr) > mtd->size) {
1956                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1957                       "Erase past end of device\n");
1958                 return -EINVAL;
1959         }
1960
1961         instr->fail_addr = 0xffffffff;
1962
1963         /* Grab the lock and see if the device is available */
1964         nand_get_device(chip, mtd, FL_ERASING);
1965
1966         /* Shift to get first page */
1967         page = (int)(instr->addr >> chip->page_shift);
1968         chipnr = (int)(instr->addr >> chip->chip_shift);
1969
1970         /* Calculate pages in each block */
1971         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1972
1973         /* Select the NAND device */
1974         chip->select_chip(mtd, chipnr);
1975
1976         /* Check, if it is write protected */
1977         if (nand_check_wp(mtd)) {
1978                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1979                       "Device is write protected!!!\n");
1980                 instr->state = MTD_ERASE_FAILED;
1981                 goto erase_exit;
1982         }
1983
1984         /*
1985          * If BBT requires refresh, set the BBT page mask to see if the BBT
1986          * should be rewritten. Otherwise the mask is set to 0xffffffff which
1987          * can not be matched. This is also done when the bbt is actually
1988          * erased to avoid recusrsive updates
1989          */
1990         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1991                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1992
1993         /* Loop through the pages */
1994         len = instr->len;
1995
1996         instr->state = MTD_ERASING;
1997
1998         while (len) {
1999                 /*
2000                  * heck if we have a bad block, we do not erase bad blocks !
2001                  */
2002                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2003                                         chip->page_shift, 0, allowbbt)) {
2004                         printk(KERN_WARNING "nand_erase: attempt to erase a "
2005                                "bad block at page 0x%08x\n", page);
2006                         instr->state = MTD_ERASE_FAILED;
2007                         goto erase_exit;
2008                 }
2009
2010                 /*
2011                  * Invalidate the page cache, if we erase the block which
2012                  * contains the current cached page
2013                  */
2014                 if (page <= chip->pagebuf && chip->pagebuf <
2015                     (page + pages_per_block))
2016                         chip->pagebuf = -1;
2017
2018                 chip->erase_cmd(mtd, page & chip->pagemask);
2019
2020                 status = chip->waitfunc(mtd, chip);
2021
2022                 /*
2023                  * See if operation failed and additional status checks are
2024                  * available
2025                  */
2026                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2027                         status = chip->errstat(mtd, chip, FL_ERASING,
2028                                                status, page);
2029
2030                 /* See if block erase succeeded */
2031                 if (status & NAND_STATUS_FAIL) {
2032                         DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
2033                               "Failed erase, page 0x%08x\n", page);
2034                         instr->state = MTD_ERASE_FAILED;
2035                         instr->fail_addr = (page << chip->page_shift);
2036                         goto erase_exit;
2037                 }
2038
2039                 /*
2040                  * If BBT requires refresh, set the BBT rewrite flag to the
2041                  * page being erased
2042                  */
2043                 if (bbt_masked_page != 0xffffffff &&
2044                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2045                             rewrite_bbt[chipnr] = (page << chip->page_shift);
2046
2047                 /* Increment page address and decrement length */
2048                 len -= (1 << chip->phys_erase_shift);
2049                 page += pages_per_block;
2050
2051                 /* Check, if we cross a chip boundary */
2052                 if (len && !(page & chip->pagemask)) {
2053                         chipnr++;
2054                         chip->select_chip(mtd, -1);
2055                         chip->select_chip(mtd, chipnr);
2056
2057                         /*
2058                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2059                          * page mask to see if this BBT should be rewritten
2060                          */
2061                         if (bbt_masked_page != 0xffffffff &&
2062                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2063                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2064                                         BBT_PAGE_MASK;
2065                 }
2066         }
2067         instr->state = MTD_ERASE_DONE;
2068
2069  erase_exit:
2070
2071         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2072         /* Do call back function */
2073         if (!ret)
2074                 mtd_erase_callback(instr);
2075
2076         /* Deselect and wake up anyone waiting on the device */
2077         nand_release_device(mtd);
2078
2079         /*
2080          * If BBT requires refresh and erase was successful, rewrite any
2081          * selected bad block tables
2082          */
2083         if (bbt_masked_page == 0xffffffff || ret)
2084                 return ret;
2085
2086         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2087                 if (!rewrite_bbt[chipnr])
2088                         continue;
2089                 /* update the BBT for chip */
2090                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2091                       "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2092                       chip->bbt_td->pages[chipnr]);
2093                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2094         }
2095
2096         /* Return more or less happy */
2097         return ret;
2098 }
2099
2100 /**
2101  * nand_sync - [MTD Interface] sync
2102  * @mtd:        MTD device structure
2103  *
2104  * Sync is actually a wait for chip ready function
2105  */
2106 static void nand_sync(struct mtd_info *mtd)
2107 {
2108         struct nand_chip *chip = mtd->priv;
2109
2110         DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2111
2112         /* Grab the lock and see if the device is available */
2113         nand_get_device(chip, mtd, FL_SYNCING);
2114         /* Release it and go back */
2115         nand_release_device(mtd);
2116 }
2117
2118 /**
2119  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2120  * @mtd:        MTD device structure
2121  * @offs:       offset relative to mtd start
2122  */
2123 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2124 {
2125         /* Check for invalid offset */
2126         if (offs > mtd->size)
2127                 return -EINVAL;
2128
2129         return nand_block_checkbad(mtd, offs, 1, 0);
2130 }
2131
2132 /**
2133  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2134  * @mtd:        MTD device structure
2135  * @ofs:        offset relative to mtd start
2136  */
2137 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2138 {
2139         struct nand_chip *chip = mtd->priv;
2140         int ret;
2141
2142         if ((ret = nand_block_isbad(mtd, ofs))) {
2143                 /* If it was bad already, return success and do nothing. */
2144                 if (ret > 0)
2145                         return 0;
2146                 return ret;
2147         }
2148
2149         return chip->block_markbad(mtd, ofs);
2150 }
2151
2152 /**
2153  * nand_suspend - [MTD Interface] Suspend the NAND flash
2154  * @mtd:        MTD device structure
2155  */
2156 static int nand_suspend(struct mtd_info *mtd)
2157 {
2158         struct nand_chip *chip = mtd->priv;
2159
2160         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2161 }
2162
2163 /**
2164  * nand_resume - [MTD Interface] Resume the NAND flash
2165  * @mtd:        MTD device structure
2166  */
2167 static void nand_resume(struct mtd_info *mtd)
2168 {
2169         struct nand_chip *chip = mtd->priv;
2170
2171         if (chip->state == FL_PM_SUSPENDED)
2172                 nand_release_device(mtd);
2173         else
2174                 printk(KERN_ERR "nand_resume() called for a chip which is not "
2175                        "in suspended state\n");
2176 }
2177
2178 /*
2179  * Set default functions
2180  */
2181 static void nand_set_defaults(struct nand_chip *chip, int busw)
2182 {
2183         /* check for proper chip_delay setup, set 20us if not */
2184         if (!chip->chip_delay)
2185                 chip->chip_delay = 20;
2186
2187         /* check, if a user supplied command function given */
2188         if (chip->cmdfunc == NULL)
2189                 chip->cmdfunc = nand_command;
2190
2191         /* check, if a user supplied wait function given */
2192         if (chip->waitfunc == NULL)
2193                 chip->waitfunc = nand_wait;
2194
2195         if (!chip->select_chip)
2196                 chip->select_chip = nand_select_chip;
2197         if (!chip->read_byte)
2198                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2199         if (!chip->read_word)
2200                 chip->read_word = nand_read_word;
2201         if (!chip->block_bad)
2202                 chip->block_bad = nand_block_bad;
2203         if (!chip->block_markbad)
2204                 chip->block_markbad = nand_default_block_markbad;
2205         if (!chip->write_buf)
2206                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2207         if (!chip->read_buf)
2208                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2209         if (!chip->verify_buf)
2210                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2211         if (!chip->scan_bbt)
2212                 chip->scan_bbt = nand_default_bbt;
2213
2214         if (!chip->controller) {
2215                 chip->controller = &chip->hwcontrol;
2216                 spin_lock_init(&chip->controller->lock);
2217                 init_waitqueue_head(&chip->controller->wq);
2218         }
2219
2220 }
2221
2222 /*
2223  * Get the flash and manufacturer id and lookup if the type is supported
2224  */
2225 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2226                                                   struct nand_chip *chip,
2227                                                   int busw, int *maf_id)
2228 {
2229         struct nand_flash_dev *type = NULL;
2230         int i, dev_id, maf_idx;
2231
2232         /* Select the device */
2233         chip->select_chip(mtd, 0);
2234
2235         /* Send the command for reading device ID */
2236         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2237
2238         /* Read manufacturer and device IDs */
2239         *maf_id = chip->read_byte(mtd);
2240         dev_id = chip->read_byte(mtd);
2241
2242         /* Lookup the flash id */
2243         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2244                 if (dev_id == nand_flash_ids[i].id) {
2245                         type =  &nand_flash_ids[i];
2246                         break;
2247                 }
2248         }
2249
2250         if (!type)
2251                 return ERR_PTR(-ENODEV);
2252
2253         if (!mtd->name)
2254                 mtd->name = type->name;
2255
2256         chip->chipsize = type->chipsize << 20;
2257
2258         /* Newer devices have all the information in additional id bytes */
2259         if (!type->pagesize) {
2260                 int extid;
2261                 /* The 3rd id byte holds MLC / multichip data */
2262                 chip->cellinfo = chip->read_byte(mtd);
2263                 /* The 4th id byte is the important one */
2264                 extid = chip->read_byte(mtd);
2265                 /* Calc pagesize */
2266                 mtd->writesize = 1024 << (extid & 0x3);
2267                 extid >>= 2;
2268                 /* Calc oobsize */
2269                 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2270                 extid >>= 2;
2271                 /* Calc blocksize. Blocksize is multiples of 64KiB */
2272                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2273                 extid >>= 2;
2274                 /* Get buswidth information */
2275                 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2276
2277         } else {
2278                 /*
2279                  * Old devices have chip data hardcoded in the device id table
2280                  */
2281                 mtd->erasesize = type->erasesize;
2282                 mtd->writesize = type->pagesize;
2283                 mtd->oobsize = mtd->writesize / 32;
2284                 busw = type->options & NAND_BUSWIDTH_16;
2285         }
2286
2287         /* Try to identify manufacturer */
2288         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2289                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2290                         break;
2291         }
2292
2293         /*
2294          * Check, if buswidth is correct. Hardware drivers should set
2295          * chip correct !
2296          */
2297         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2298                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2299                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2300                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2301                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2302                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2303                        busw ? 16 : 8);
2304                 return ERR_PTR(-EINVAL);
2305         }
2306
2307         /* Calculate the address shift from the page size */
2308         chip->page_shift = ffs(mtd->writesize) - 1;
2309         /* Convert chipsize to number of pages per chip -1. */
2310         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2311
2312         chip->bbt_erase_shift = chip->phys_erase_shift =
2313                 ffs(mtd->erasesize) - 1;
2314         chip->chip_shift = ffs(chip->chipsize) - 1;
2315
2316         /* Set the bad block position */
2317         chip->badblockpos = mtd->writesize > 512 ?
2318                 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2319
2320         /* Get chip options, preserve non chip based options */
2321         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2322         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2323
2324         /*
2325          * Set chip as a default. Board drivers can override it, if necessary
2326          */
2327         chip->options |= NAND_NO_AUTOINCR;
2328
2329         /* Check if chip is a not a samsung device. Do not clear the
2330          * options for chips which are not having an extended id.
2331          */
2332         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2333                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2334
2335         /* Check for AND chips with 4 page planes */
2336         if (chip->options & NAND_4PAGE_ARRAY)
2337                 chip->erase_cmd = multi_erase_cmd;
2338         else
2339                 chip->erase_cmd = single_erase_cmd;
2340
2341         /* Do not replace user supplied command function ! */
2342         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2343                 chip->cmdfunc = nand_command_lp;
2344
2345         printk(KERN_INFO "NAND device: Manufacturer ID:"
2346                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2347                nand_manuf_ids[maf_idx].name, type->name);
2348
2349         return type;
2350 }
2351
2352 /**
2353  * nand_scan_ident - [NAND Interface] Scan for the NAND device
2354  * @mtd:             MTD device structure
2355  * @maxchips:        Number of chips to scan for
2356  *
2357  * This is the first phase of the normal nand_scan() function. It
2358  * reads the flash ID and sets up MTD fields accordingly.
2359  *
2360  * The mtd->owner field must be set to the module of the caller.
2361  */
2362 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2363 {
2364         int i, busw, nand_maf_id;
2365         struct nand_chip *chip = mtd->priv;
2366         struct nand_flash_dev *type;
2367
2368         /* Get buswidth to select the correct functions */
2369         busw = chip->options & NAND_BUSWIDTH_16;
2370         /* Set the default functions */
2371         nand_set_defaults(chip, busw);
2372
2373         /* Read the flash type */
2374         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2375
2376         if (IS_ERR(type)) {
2377                 printk(KERN_WARNING "No NAND device found!!!\n");
2378                 chip->select_chip(mtd, -1);
2379                 return PTR_ERR(type);
2380         }
2381
2382         /* Check for a chip array */
2383         for (i = 1; i < maxchips; i++) {
2384                 chip->select_chip(mtd, i);
2385                 /* Send the command for reading device ID */
2386                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2387                 /* Read manufacturer and device IDs */
2388                 if (nand_maf_id != chip->read_byte(mtd) ||
2389                     type->id != chip->read_byte(mtd))
2390                         break;
2391         }
2392         if (i > 1)
2393                 printk(KERN_INFO "%d NAND chips detected\n", i);
2394
2395         /* Store the number of chips and calc total size for mtd */
2396         chip->numchips = i;
2397         mtd->size = i * chip->chipsize;
2398
2399         return 0;
2400 }
2401
2402
2403 /**
2404  * nand_scan_tail - [NAND Interface] Scan for the NAND device
2405  * @mtd:            MTD device structure
2406  * @maxchips:       Number of chips to scan for
2407  *
2408  * This is the second phase of the normal nand_scan() function. It
2409  * fills out all the uninitialized function pointers with the defaults
2410  * and scans for a bad block table if appropriate.
2411  */
2412 int nand_scan_tail(struct mtd_info *mtd)
2413 {
2414         int i;
2415         struct nand_chip *chip = mtd->priv;
2416
2417         if (!(chip->options & NAND_OWN_BUFFERS))
2418                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2419         if (!chip->buffers)
2420                 return -ENOMEM;
2421
2422         /* Set the internal oob buffer location, just after the page data */
2423         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2424
2425         /*
2426          * If no default placement scheme is given, select an appropriate one
2427          */
2428         if (!chip->ecc.layout) {
2429                 switch (mtd->oobsize) {
2430                 case 8:
2431                         chip->ecc.layout = &nand_oob_8;
2432                         break;
2433                 case 16:
2434                         chip->ecc.layout = &nand_oob_16;
2435                         break;
2436                 case 64:
2437                         chip->ecc.layout = &nand_oob_64;
2438                         break;
2439                 default:
2440                         printk(KERN_WARNING "No oob scheme defined for "
2441                                "oobsize %d\n", mtd->oobsize);
2442                         BUG();
2443                 }
2444         }
2445
2446         if (!chip->write_page)
2447                 chip->write_page = nand_write_page;
2448
2449         /*
2450          * check ECC mode, default to software if 3byte/512byte hardware ECC is
2451          * selected and we have 256 byte pagesize fallback to software ECC
2452          */
2453         if (!chip->ecc.read_page_raw)
2454                 chip->ecc.read_page_raw = nand_read_page_raw;
2455         if (!chip->ecc.write_page_raw)
2456                 chip->ecc.write_page_raw = nand_write_page_raw;
2457
2458         switch (chip->ecc.mode) {
2459         case NAND_ECC_HW:
2460                 /* Use standard hwecc read page function ? */
2461                 if (!chip->ecc.read_page)
2462                         chip->ecc.read_page = nand_read_page_hwecc;
2463                 if (!chip->ecc.write_page)
2464                         chip->ecc.write_page = nand_write_page_hwecc;
2465                 if (!chip->ecc.read_oob)
2466                         chip->ecc.read_oob = nand_read_oob_std;
2467                 if (!chip->ecc.write_oob)
2468                         chip->ecc.write_oob = nand_write_oob_std;
2469
2470         case NAND_ECC_HW_SYNDROME:
2471                 if (!chip->ecc.calculate || !chip->ecc.correct ||
2472                     !chip->ecc.hwctl) {
2473                         printk(KERN_WARNING "No ECC functions supplied, "
2474                                "Hardware ECC not possible\n");
2475                         BUG();
2476                 }
2477                 /* Use standard syndrome read/write page function ? */
2478                 if (!chip->ecc.read_page)
2479                         chip->ecc.read_page = nand_read_page_syndrome;
2480                 if (!chip->ecc.write_page)
2481                         chip->ecc.write_page = nand_write_page_syndrome;
2482                 if (!chip->ecc.read_oob)
2483                         chip->ecc.read_oob = nand_read_oob_syndrome;
2484                 if (!chip->ecc.write_oob)
2485                         chip->ecc.write_oob = nand_write_oob_syndrome;
2486
2487                 if (mtd->writesize >= chip->ecc.size)
2488                         break;
2489                 printk(KERN_WARNING "%d byte HW ECC not possible on "
2490                        "%d byte page size, fallback to SW ECC\n",
2491                        chip->ecc.size, mtd->writesize);
2492                 chip->ecc.mode = NAND_ECC_SOFT;
2493
2494         case NAND_ECC_SOFT:
2495                 chip->ecc.calculate = nand_calculate_ecc;
2496                 chip->ecc.correct = nand_correct_data;
2497                 chip->ecc.read_page = nand_read_page_swecc;
2498                 chip->ecc.write_page = nand_write_page_swecc;
2499                 chip->ecc.read_oob = nand_read_oob_std;
2500                 chip->ecc.write_oob = nand_write_oob_std;
2501                 chip->ecc.size = 256;
2502                 chip->ecc.bytes = 3;
2503                 break;
2504
2505         case NAND_ECC_NONE:
2506                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2507                        "This is not recommended !!\n");
2508                 chip->ecc.read_page = nand_read_page_raw;
2509                 chip->ecc.write_page = nand_write_page_raw;
2510                 chip->ecc.read_oob = nand_read_oob_std;
2511                 chip->ecc.write_oob = nand_write_oob_std;
2512                 chip->ecc.size = mtd->writesize;
2513                 chip->ecc.bytes = 0;
2514                 break;
2515
2516         default:
2517                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2518                        chip->ecc.mode);
2519                 BUG();
2520         }
2521
2522         /*
2523          * The number of bytes available for a client to place data into
2524          * the out of band area
2525          */
2526         chip->ecc.layout->oobavail = 0;
2527         for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2528                 chip->ecc.layout->oobavail +=
2529                         chip->ecc.layout->oobfree[i].length;
2530         mtd->oobavail = chip->ecc.layout->oobavail;
2531
2532         /*
2533          * Set the number of read / write steps for one page depending on ECC
2534          * mode
2535          */
2536         chip->ecc.steps = mtd->writesize / chip->ecc.size;
2537         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2538                 printk(KERN_WARNING "Invalid ecc parameters\n");
2539                 BUG();
2540         }
2541         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2542
2543         /*
2544          * Allow subpage writes up to ecc.steps. Not possible for MLC
2545          * FLASH.
2546          */
2547         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2548             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2549                 switch(chip->ecc.steps) {
2550                 case 2:
2551                         mtd->subpage_sft = 1;
2552                         break;
2553                 case 4:
2554                 case 8:
2555                         mtd->subpage_sft = 2;
2556                         break;
2557                 }
2558         }
2559         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2560
2561         /* Initialize state */
2562         chip->state = FL_READY;
2563
2564         /* De-select the device */
2565         chip->select_chip(mtd, -1);
2566
2567         /* Invalidate the pagebuffer reference */
2568         chip->pagebuf = -1;
2569
2570         /* Fill in remaining MTD driver data */
2571         mtd->type = MTD_NANDFLASH;
2572         mtd->flags = MTD_CAP_NANDFLASH;
2573         mtd->erase = nand_erase;
2574         mtd->point = NULL;
2575         mtd->unpoint = NULL;
2576         mtd->read = nand_read;
2577         mtd->write = nand_write;
2578         mtd->read_oob = nand_read_oob;
2579         mtd->write_oob = nand_write_oob;
2580         mtd->sync = nand_sync;
2581         mtd->lock = NULL;
2582         mtd->unlock = NULL;
2583         mtd->suspend = nand_suspend;
2584         mtd->resume = nand_resume;
2585         mtd->block_isbad = nand_block_isbad;
2586         mtd->block_markbad = nand_block_markbad;
2587
2588         /* propagate ecc.layout to mtd_info */
2589         mtd->ecclayout = chip->ecc.layout;
2590
2591         /* Check, if we should skip the bad block table scan */
2592         if (chip->options & NAND_SKIP_BBTSCAN)
2593                 return 0;
2594
2595         /* Build bad block table */
2596         return chip->scan_bbt(mtd);
2597 }
2598
2599 /* module_text_address() isn't exported, and it's mostly a pointless
2600    test if this is a module _anyway_ -- they'd have to try _really_ hard
2601    to call us from in-kernel code if the core NAND support is modular. */
2602 #ifdef MODULE
2603 #define caller_is_module() (1)
2604 #else
2605 #define caller_is_module() \
2606         module_text_address((unsigned long)__builtin_return_address(0))
2607 #endif
2608
2609 /**
2610  * nand_scan - [NAND Interface] Scan for the NAND device
2611  * @mtd:        MTD device structure
2612  * @maxchips:   Number of chips to scan for
2613  *
2614  * This fills out all the uninitialized function pointers
2615  * with the defaults.
2616  * The flash ID is read and the mtd/chip structures are
2617  * filled with the appropriate values.
2618  * The mtd->owner field must be set to the module of the caller
2619  *
2620  */
2621 int nand_scan(struct mtd_info *mtd, int maxchips)
2622 {
2623         int ret;
2624
2625         /* Many callers got this wrong, so check for it for a while... */
2626         if (!mtd->owner && caller_is_module()) {
2627                 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2628                 BUG();
2629         }
2630
2631         ret = nand_scan_ident(mtd, maxchips);
2632         if (!ret)
2633                 ret = nand_scan_tail(mtd);
2634         return ret;
2635 }
2636
2637 /**
2638  * nand_release - [NAND Interface] Free resources held by the NAND device
2639  * @mtd:        MTD device structure
2640 */
2641 void nand_release(struct mtd_info *mtd)
2642 {
2643         struct nand_chip *chip = mtd->priv;
2644
2645 #ifdef CONFIG_MTD_PARTITIONS
2646         /* Deregister partitions */
2647         del_mtd_partitions(mtd);
2648 #endif
2649         /* Deregister the device */
2650         del_mtd_device(mtd);
2651
2652         /* Free bad block table memory */
2653         kfree(chip->bbt);
2654         if (!(chip->options & NAND_OWN_BUFFERS))
2655                 kfree(chip->buffers);
2656 }
2657
2658 EXPORT_SYMBOL_GPL(nand_scan);
2659 EXPORT_SYMBOL_GPL(nand_scan_ident);
2660 EXPORT_SYMBOL_GPL(nand_scan_tail);
2661 EXPORT_SYMBOL_GPL(nand_release);
2662
2663 static int __init nand_base_init(void)
2664 {
2665         led_trigger_register_simple("nand-disk", &nand_led_trigger);
2666         return 0;
2667 }
2668
2669 static void __exit nand_base_exit(void)
2670 {
2671         led_trigger_unregister_simple(nand_led_trigger);
2672 }
2673
2674 module_init(nand_base_init);
2675 module_exit(nand_base_exit);
2676
2677 MODULE_LICENSE("GPL");
2678 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2679 MODULE_DESCRIPTION("Generic NAND flash driver code");