d826a8a50e73565bccf9d049e41413b0f50d8dd3
[pandora-kernel.git] / drivers / mtd / mtdconcat.c
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34
35 #include <asm/div64.h>
36
37 /*
38  * Our storage structure:
39  * Subdev points to an array of pointers to struct mtd_info objects
40  * which is allocated along with this structure
41  *
42  */
43 struct mtd_concat {
44         struct mtd_info mtd;
45         int num_subdev;
46         struct mtd_info **subdev;
47 };
48
49 /*
50  * how to calculate the size required for the above structure,
51  * including the pointer array subdev points to:
52  */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)    \
54         ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55
56 /*
57  * Given a pointer to the MTD object in the mtd_concat structure,
58  * we can retrieve the pointer to that structure with this macro.
59  */
60 #define CONCAT(x)  ((struct mtd_concat *)(x))
61
62 /*
63  * MTD methods which look up the relevant subdevice, translate the
64  * effective address and pass through to the subdevice.
65  */
66
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69             size_t * retlen, u_char * buf)
70 {
71         struct mtd_concat *concat = CONCAT(mtd);
72         int ret = 0, err;
73         int i;
74
75         *retlen = 0;
76
77         for (i = 0; i < concat->num_subdev; i++) {
78                 struct mtd_info *subdev = concat->subdev[i];
79                 size_t size, retsize;
80
81                 if (from >= subdev->size) {
82                         /* Not destined for this subdev */
83                         size = 0;
84                         from -= subdev->size;
85                         continue;
86                 }
87                 if (from + len > subdev->size)
88                         /* First part goes into this subdev */
89                         size = subdev->size - from;
90                 else
91                         /* Entire transaction goes into this subdev */
92                         size = len;
93
94                 err = mtd_read(subdev, from, size, &retsize, buf);
95
96                 /* Save information about bitflips! */
97                 if (unlikely(err)) {
98                         if (mtd_is_eccerr(err)) {
99                                 mtd->ecc_stats.failed++;
100                                 ret = err;
101                         } else if (mtd_is_bitflip(err)) {
102                                 mtd->ecc_stats.corrected++;
103                                 /* Do not overwrite -EBADMSG !! */
104                                 if (!ret)
105                                         ret = err;
106                         } else
107                                 return err;
108                 }
109
110                 *retlen += retsize;
111                 len -= size;
112                 if (len == 0)
113                         return ret;
114
115                 buf += size;
116                 from = 0;
117         }
118         return -EINVAL;
119 }
120
121 static int
122 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
123              size_t * retlen, const u_char * buf)
124 {
125         struct mtd_concat *concat = CONCAT(mtd);
126         int err = -EINVAL;
127         int i;
128
129         if (!(mtd->flags & MTD_WRITEABLE))
130                 return -EROFS;
131
132         *retlen = 0;
133
134         for (i = 0; i < concat->num_subdev; i++) {
135                 struct mtd_info *subdev = concat->subdev[i];
136                 size_t size, retsize;
137
138                 if (to >= subdev->size) {
139                         size = 0;
140                         to -= subdev->size;
141                         continue;
142                 }
143                 if (to + len > subdev->size)
144                         size = subdev->size - to;
145                 else
146                         size = len;
147
148                 if (!(subdev->flags & MTD_WRITEABLE))
149                         err = -EROFS;
150                 else
151                         err = mtd_write(subdev, to, size, &retsize, buf);
152
153                 if (err)
154                         break;
155
156                 *retlen += retsize;
157                 len -= size;
158                 if (len == 0)
159                         break;
160
161                 err = -EINVAL;
162                 buf += size;
163                 to = 0;
164         }
165         return err;
166 }
167
168 static int
169 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
170                 unsigned long count, loff_t to, size_t * retlen)
171 {
172         struct mtd_concat *concat = CONCAT(mtd);
173         struct kvec *vecs_copy;
174         unsigned long entry_low, entry_high;
175         size_t total_len = 0;
176         int i;
177         int err = -EINVAL;
178
179         if (!(mtd->flags & MTD_WRITEABLE))
180                 return -EROFS;
181
182         *retlen = 0;
183
184         /* Calculate total length of data */
185         for (i = 0; i < count; i++)
186                 total_len += vecs[i].iov_len;
187
188         /* Do not allow write past end of device */
189         if ((to + total_len) > mtd->size)
190                 return -EINVAL;
191
192         /* Check alignment */
193         if (mtd->writesize > 1) {
194                 uint64_t __to = to;
195                 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
196                         return -EINVAL;
197         }
198
199         /* make a copy of vecs */
200         vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
201         if (!vecs_copy)
202                 return -ENOMEM;
203
204         entry_low = 0;
205         for (i = 0; i < concat->num_subdev; i++) {
206                 struct mtd_info *subdev = concat->subdev[i];
207                 size_t size, wsize, retsize, old_iov_len;
208
209                 if (to >= subdev->size) {
210                         to -= subdev->size;
211                         continue;
212                 }
213
214                 size = min_t(uint64_t, total_len, subdev->size - to);
215                 wsize = size; /* store for future use */
216
217                 entry_high = entry_low;
218                 while (entry_high < count) {
219                         if (size <= vecs_copy[entry_high].iov_len)
220                                 break;
221                         size -= vecs_copy[entry_high++].iov_len;
222                 }
223
224                 old_iov_len = vecs_copy[entry_high].iov_len;
225                 vecs_copy[entry_high].iov_len = size;
226
227                 if (!(subdev->flags & MTD_WRITEABLE))
228                         err = -EROFS;
229                 else
230                         err = mtd_writev(subdev, &vecs_copy[entry_low],
231                                          entry_high - entry_low + 1, to,
232                                          &retsize);
233
234                 vecs_copy[entry_high].iov_len = old_iov_len - size;
235                 vecs_copy[entry_high].iov_base += size;
236
237                 entry_low = entry_high;
238
239                 if (err)
240                         break;
241
242                 *retlen += retsize;
243                 total_len -= wsize;
244
245                 if (total_len == 0)
246                         break;
247
248                 err = -EINVAL;
249                 to = 0;
250         }
251
252         kfree(vecs_copy);
253         return err;
254 }
255
256 static int
257 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
258 {
259         struct mtd_concat *concat = CONCAT(mtd);
260         struct mtd_oob_ops devops = *ops;
261         int i, err, ret = 0;
262
263         ops->retlen = ops->oobretlen = 0;
264
265         for (i = 0; i < concat->num_subdev; i++) {
266                 struct mtd_info *subdev = concat->subdev[i];
267
268                 if (from >= subdev->size) {
269                         from -= subdev->size;
270                         continue;
271                 }
272
273                 /* partial read ? */
274                 if (from + devops.len > subdev->size)
275                         devops.len = subdev->size - from;
276
277                 err = mtd_read_oob(subdev, from, &devops);
278                 ops->retlen += devops.retlen;
279                 ops->oobretlen += devops.oobretlen;
280
281                 /* Save information about bitflips! */
282                 if (unlikely(err)) {
283                         if (mtd_is_eccerr(err)) {
284                                 mtd->ecc_stats.failed++;
285                                 ret = err;
286                         } else if (mtd_is_bitflip(err)) {
287                                 mtd->ecc_stats.corrected++;
288                                 /* Do not overwrite -EBADMSG !! */
289                                 if (!ret)
290                                         ret = err;
291                         } else
292                                 return err;
293                 }
294
295                 if (devops.datbuf) {
296                         devops.len = ops->len - ops->retlen;
297                         if (!devops.len)
298                                 return ret;
299                         devops.datbuf += devops.retlen;
300                 }
301                 if (devops.oobbuf) {
302                         devops.ooblen = ops->ooblen - ops->oobretlen;
303                         if (!devops.ooblen)
304                                 return ret;
305                         devops.oobbuf += ops->oobretlen;
306                 }
307
308                 from = 0;
309         }
310         return -EINVAL;
311 }
312
313 static int
314 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
315 {
316         struct mtd_concat *concat = CONCAT(mtd);
317         struct mtd_oob_ops devops = *ops;
318         int i, err;
319
320         if (!(mtd->flags & MTD_WRITEABLE))
321                 return -EROFS;
322
323         ops->retlen = ops->oobretlen = 0;
324
325         for (i = 0; i < concat->num_subdev; i++) {
326                 struct mtd_info *subdev = concat->subdev[i];
327
328                 if (to >= subdev->size) {
329                         to -= subdev->size;
330                         continue;
331                 }
332
333                 /* partial write ? */
334                 if (to + devops.len > subdev->size)
335                         devops.len = subdev->size - to;
336
337                 err = mtd_write_oob(subdev, to, &devops);
338                 ops->retlen += devops.oobretlen;
339                 if (err)
340                         return err;
341
342                 if (devops.datbuf) {
343                         devops.len = ops->len - ops->retlen;
344                         if (!devops.len)
345                                 return 0;
346                         devops.datbuf += devops.retlen;
347                 }
348                 if (devops.oobbuf) {
349                         devops.ooblen = ops->ooblen - ops->oobretlen;
350                         if (!devops.ooblen)
351                                 return 0;
352                         devops.oobbuf += devops.oobretlen;
353                 }
354                 to = 0;
355         }
356         return -EINVAL;
357 }
358
359 static void concat_erase_callback(struct erase_info *instr)
360 {
361         wake_up((wait_queue_head_t *) instr->priv);
362 }
363
364 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
365 {
366         int err;
367         wait_queue_head_t waitq;
368         DECLARE_WAITQUEUE(wait, current);
369
370         /*
371          * This code was stol^H^H^H^Hinspired by mtdchar.c
372          */
373         init_waitqueue_head(&waitq);
374
375         erase->mtd = mtd;
376         erase->callback = concat_erase_callback;
377         erase->priv = (unsigned long) &waitq;
378
379         /*
380          * FIXME: Allow INTERRUPTIBLE. Which means
381          * not having the wait_queue head on the stack.
382          */
383         err = mtd_erase(mtd, erase);
384         if (!err) {
385                 set_current_state(TASK_UNINTERRUPTIBLE);
386                 add_wait_queue(&waitq, &wait);
387                 if (erase->state != MTD_ERASE_DONE
388                     && erase->state != MTD_ERASE_FAILED)
389                         schedule();
390                 remove_wait_queue(&waitq, &wait);
391                 set_current_state(TASK_RUNNING);
392
393                 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
394         }
395         return err;
396 }
397
398 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
399 {
400         struct mtd_concat *concat = CONCAT(mtd);
401         struct mtd_info *subdev;
402         int i, err;
403         uint64_t length, offset = 0;
404         struct erase_info *erase;
405
406         if (!(mtd->flags & MTD_WRITEABLE))
407                 return -EROFS;
408
409         if (instr->addr > concat->mtd.size)
410                 return -EINVAL;
411
412         if (instr->len + instr->addr > concat->mtd.size)
413                 return -EINVAL;
414
415         /*
416          * Check for proper erase block alignment of the to-be-erased area.
417          * It is easier to do this based on the super device's erase
418          * region info rather than looking at each particular sub-device
419          * in turn.
420          */
421         if (!concat->mtd.numeraseregions) {
422                 /* the easy case: device has uniform erase block size */
423                 if (instr->addr & (concat->mtd.erasesize - 1))
424                         return -EINVAL;
425                 if (instr->len & (concat->mtd.erasesize - 1))
426                         return -EINVAL;
427         } else {
428                 /* device has variable erase size */
429                 struct mtd_erase_region_info *erase_regions =
430                     concat->mtd.eraseregions;
431
432                 /*
433                  * Find the erase region where the to-be-erased area begins:
434                  */
435                 for (i = 0; i < concat->mtd.numeraseregions &&
436                      instr->addr >= erase_regions[i].offset; i++) ;
437                 --i;
438
439                 /*
440                  * Now erase_regions[i] is the region in which the
441                  * to-be-erased area begins. Verify that the starting
442                  * offset is aligned to this region's erase size:
443                  */
444                 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
445                         return -EINVAL;
446
447                 /*
448                  * now find the erase region where the to-be-erased area ends:
449                  */
450                 for (; i < concat->mtd.numeraseregions &&
451                      (instr->addr + instr->len) >= erase_regions[i].offset;
452                      ++i) ;
453                 --i;
454                 /*
455                  * check if the ending offset is aligned to this region's erase size
456                  */
457                 if (i < 0 || ((instr->addr + instr->len) &
458                                         (erase_regions[i].erasesize - 1)))
459                         return -EINVAL;
460         }
461
462         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
463
464         /* make a local copy of instr to avoid modifying the caller's struct */
465         erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
466
467         if (!erase)
468                 return -ENOMEM;
469
470         *erase = *instr;
471         length = instr->len;
472
473         /*
474          * find the subdevice where the to-be-erased area begins, adjust
475          * starting offset to be relative to the subdevice start
476          */
477         for (i = 0; i < concat->num_subdev; i++) {
478                 subdev = concat->subdev[i];
479                 if (subdev->size <= erase->addr) {
480                         erase->addr -= subdev->size;
481                         offset += subdev->size;
482                 } else {
483                         break;
484                 }
485         }
486
487         /* must never happen since size limit has been verified above */
488         BUG_ON(i >= concat->num_subdev);
489
490         /* now do the erase: */
491         err = 0;
492         for (; length > 0; i++) {
493                 /* loop for all subdevices affected by this request */
494                 subdev = concat->subdev[i];     /* get current subdevice */
495
496                 /* limit length to subdevice's size: */
497                 if (erase->addr + length > subdev->size)
498                         erase->len = subdev->size - erase->addr;
499                 else
500                         erase->len = length;
501
502                 if (!(subdev->flags & MTD_WRITEABLE)) {
503                         err = -EROFS;
504                         break;
505                 }
506                 length -= erase->len;
507                 if ((err = concat_dev_erase(subdev, erase))) {
508                         /* sanity check: should never happen since
509                          * block alignment has been checked above */
510                         BUG_ON(err == -EINVAL);
511                         if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
512                                 instr->fail_addr = erase->fail_addr + offset;
513                         break;
514                 }
515                 /*
516                  * erase->addr specifies the offset of the area to be
517                  * erased *within the current subdevice*. It can be
518                  * non-zero only the first time through this loop, i.e.
519                  * for the first subdevice where blocks need to be erased.
520                  * All the following erases must begin at the start of the
521                  * current subdevice, i.e. at offset zero.
522                  */
523                 erase->addr = 0;
524                 offset += subdev->size;
525         }
526         instr->state = erase->state;
527         kfree(erase);
528         if (err)
529                 return err;
530
531         if (instr->callback)
532                 instr->callback(instr);
533         return 0;
534 }
535
536 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
537 {
538         struct mtd_concat *concat = CONCAT(mtd);
539         int i, err = -EINVAL;
540
541         if ((len + ofs) > mtd->size)
542                 return -EINVAL;
543
544         for (i = 0; i < concat->num_subdev; i++) {
545                 struct mtd_info *subdev = concat->subdev[i];
546                 uint64_t size;
547
548                 if (ofs >= subdev->size) {
549                         size = 0;
550                         ofs -= subdev->size;
551                         continue;
552                 }
553                 if (ofs + len > subdev->size)
554                         size = subdev->size - ofs;
555                 else
556                         size = len;
557
558                 err = mtd_lock(subdev, ofs, size);
559                 if (err)
560                         break;
561
562                 len -= size;
563                 if (len == 0)
564                         break;
565
566                 err = -EINVAL;
567                 ofs = 0;
568         }
569
570         return err;
571 }
572
573 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
574 {
575         struct mtd_concat *concat = CONCAT(mtd);
576         int i, err = 0;
577
578         if ((len + ofs) > mtd->size)
579                 return -EINVAL;
580
581         for (i = 0; i < concat->num_subdev; i++) {
582                 struct mtd_info *subdev = concat->subdev[i];
583                 uint64_t size;
584
585                 if (ofs >= subdev->size) {
586                         size = 0;
587                         ofs -= subdev->size;
588                         continue;
589                 }
590                 if (ofs + len > subdev->size)
591                         size = subdev->size - ofs;
592                 else
593                         size = len;
594
595                 err = mtd_unlock(subdev, ofs, size);
596                 if (err)
597                         break;
598
599                 len -= size;
600                 if (len == 0)
601                         break;
602
603                 err = -EINVAL;
604                 ofs = 0;
605         }
606
607         return err;
608 }
609
610 static void concat_sync(struct mtd_info *mtd)
611 {
612         struct mtd_concat *concat = CONCAT(mtd);
613         int i;
614
615         for (i = 0; i < concat->num_subdev; i++) {
616                 struct mtd_info *subdev = concat->subdev[i];
617                 mtd_sync(subdev);
618         }
619 }
620
621 static int concat_suspend(struct mtd_info *mtd)
622 {
623         struct mtd_concat *concat = CONCAT(mtd);
624         int i, rc = 0;
625
626         for (i = 0; i < concat->num_subdev; i++) {
627                 struct mtd_info *subdev = concat->subdev[i];
628                 if ((rc = mtd_suspend(subdev)) < 0)
629                         return rc;
630         }
631         return rc;
632 }
633
634 static void concat_resume(struct mtd_info *mtd)
635 {
636         struct mtd_concat *concat = CONCAT(mtd);
637         int i;
638
639         for (i = 0; i < concat->num_subdev; i++) {
640                 struct mtd_info *subdev = concat->subdev[i];
641                 mtd_resume(subdev);
642         }
643 }
644
645 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
646 {
647         struct mtd_concat *concat = CONCAT(mtd);
648         int i, res = 0;
649
650         if (!mtd_can_have_bb(concat->subdev[0]))
651                 return res;
652
653         if (ofs > mtd->size)
654                 return -EINVAL;
655
656         for (i = 0; i < concat->num_subdev; i++) {
657                 struct mtd_info *subdev = concat->subdev[i];
658
659                 if (ofs >= subdev->size) {
660                         ofs -= subdev->size;
661                         continue;
662                 }
663
664                 res = mtd_block_isbad(subdev, ofs);
665                 break;
666         }
667
668         return res;
669 }
670
671 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
672 {
673         struct mtd_concat *concat = CONCAT(mtd);
674         int i, err = -EINVAL;
675
676         if (ofs > mtd->size)
677                 return -EINVAL;
678
679         for (i = 0; i < concat->num_subdev; i++) {
680                 struct mtd_info *subdev = concat->subdev[i];
681
682                 if (ofs >= subdev->size) {
683                         ofs -= subdev->size;
684                         continue;
685                 }
686
687                 err = mtd_block_markbad(subdev, ofs);
688                 if (!err)
689                         mtd->ecc_stats.badblocks++;
690                 break;
691         }
692
693         return err;
694 }
695
696 /*
697  * try to support NOMMU mmaps on concatenated devices
698  * - we don't support subdev spanning as we can't guarantee it'll work
699  */
700 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
701                                               unsigned long len,
702                                               unsigned long offset,
703                                               unsigned long flags)
704 {
705         struct mtd_concat *concat = CONCAT(mtd);
706         int i;
707
708         for (i = 0; i < concat->num_subdev; i++) {
709                 struct mtd_info *subdev = concat->subdev[i];
710
711                 if (offset >= subdev->size) {
712                         offset -= subdev->size;
713                         continue;
714                 }
715
716                 /* we've found the subdev over which the mapping will reside */
717                 if (offset + len > subdev->size)
718                         return (unsigned long) -EINVAL;
719
720                 return mtd_get_unmapped_area(subdev, len, offset, flags);
721         }
722
723         return (unsigned long) -ENOSYS;
724 }
725
726 /*
727  * This function constructs a virtual MTD device by concatenating
728  * num_devs MTD devices. A pointer to the new device object is
729  * stored to *new_dev upon success. This function does _not_
730  * register any devices: this is the caller's responsibility.
731  */
732 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],   /* subdevices to concatenate */
733                                    int num_devs,        /* number of subdevices      */
734                                    const char *name)
735 {                               /* name for the new device   */
736         int i;
737         size_t size;
738         struct mtd_concat *concat;
739         uint32_t max_erasesize, curr_erasesize;
740         int num_erase_region;
741         int max_writebufsize = 0;
742
743         printk(KERN_NOTICE "Concatenating MTD devices:\n");
744         for (i = 0; i < num_devs; i++)
745                 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
746         printk(KERN_NOTICE "into device \"%s\"\n", name);
747
748         /* allocate the device structure */
749         size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
750         concat = kzalloc(size, GFP_KERNEL);
751         if (!concat) {
752                 printk
753                     ("memory allocation error while creating concatenated device \"%s\"\n",
754                      name);
755                 return NULL;
756         }
757         concat->subdev = (struct mtd_info **) (concat + 1);
758
759         /*
760          * Set up the new "super" device's MTD object structure, check for
761          * incompatibilities between the subdevices.
762          */
763         concat->mtd.type = subdev[0]->type;
764         concat->mtd.flags = subdev[0]->flags;
765         concat->mtd.size = subdev[0]->size;
766         concat->mtd.erasesize = subdev[0]->erasesize;
767         concat->mtd.writesize = subdev[0]->writesize;
768
769         for (i = 0; i < num_devs; i++)
770                 if (max_writebufsize < subdev[i]->writebufsize)
771                         max_writebufsize = subdev[i]->writebufsize;
772         concat->mtd.writebufsize = max_writebufsize;
773
774         concat->mtd.subpage_sft = subdev[0]->subpage_sft;
775         concat->mtd.oobsize = subdev[0]->oobsize;
776         concat->mtd.oobavail = subdev[0]->oobavail;
777         if (subdev[0]->_writev)
778                 concat->mtd._writev = concat_writev;
779         if (subdev[0]->_read_oob)
780                 concat->mtd._read_oob = concat_read_oob;
781         if (subdev[0]->_write_oob)
782                 concat->mtd._write_oob = concat_write_oob;
783         if (subdev[0]->_block_isbad)
784                 concat->mtd._block_isbad = concat_block_isbad;
785         if (subdev[0]->_block_markbad)
786                 concat->mtd._block_markbad = concat_block_markbad;
787
788         concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
789
790         concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
791
792         concat->subdev[0] = subdev[0];
793
794         for (i = 1; i < num_devs; i++) {
795                 if (concat->mtd.type != subdev[i]->type) {
796                         kfree(concat);
797                         printk("Incompatible device type on \"%s\"\n",
798                                subdev[i]->name);
799                         return NULL;
800                 }
801                 if (concat->mtd.flags != subdev[i]->flags) {
802                         /*
803                          * Expect all flags except MTD_WRITEABLE to be
804                          * equal on all subdevices.
805                          */
806                         if ((concat->mtd.flags ^ subdev[i]->
807                              flags) & ~MTD_WRITEABLE) {
808                                 kfree(concat);
809                                 printk("Incompatible device flags on \"%s\"\n",
810                                        subdev[i]->name);
811                                 return NULL;
812                         } else
813                                 /* if writeable attribute differs,
814                                    make super device writeable */
815                                 concat->mtd.flags |=
816                                     subdev[i]->flags & MTD_WRITEABLE;
817                 }
818
819                 /* only permit direct mapping if the BDIs are all the same
820                  * - copy-mapping is still permitted
821                  */
822                 if (concat->mtd.backing_dev_info !=
823                     subdev[i]->backing_dev_info)
824                         concat->mtd.backing_dev_info =
825                                 &default_backing_dev_info;
826
827                 concat->mtd.size += subdev[i]->size;
828                 concat->mtd.ecc_stats.badblocks +=
829                         subdev[i]->ecc_stats.badblocks;
830                 if (concat->mtd.writesize   !=  subdev[i]->writesize ||
831                     concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
832                     concat->mtd.oobsize    !=  subdev[i]->oobsize ||
833                     !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
834                     !concat->mtd._write_oob != !subdev[i]->_write_oob) {
835                         kfree(concat);
836                         printk("Incompatible OOB or ECC data on \"%s\"\n",
837                                subdev[i]->name);
838                         return NULL;
839                 }
840                 concat->subdev[i] = subdev[i];
841
842         }
843
844         concat->mtd.ecclayout = subdev[0]->ecclayout;
845
846         concat->num_subdev = num_devs;
847         concat->mtd.name = name;
848
849         concat->mtd._erase = concat_erase;
850         concat->mtd._read = concat_read;
851         concat->mtd._write = concat_write;
852         concat->mtd._sync = concat_sync;
853         concat->mtd._lock = concat_lock;
854         concat->mtd._unlock = concat_unlock;
855         concat->mtd._suspend = concat_suspend;
856         concat->mtd._resume = concat_resume;
857         concat->mtd._get_unmapped_area = concat_get_unmapped_area;
858
859         /*
860          * Combine the erase block size info of the subdevices:
861          *
862          * first, walk the map of the new device and see how
863          * many changes in erase size we have
864          */
865         max_erasesize = curr_erasesize = subdev[0]->erasesize;
866         num_erase_region = 1;
867         for (i = 0; i < num_devs; i++) {
868                 if (subdev[i]->numeraseregions == 0) {
869                         /* current subdevice has uniform erase size */
870                         if (subdev[i]->erasesize != curr_erasesize) {
871                                 /* if it differs from the last subdevice's erase size, count it */
872                                 ++num_erase_region;
873                                 curr_erasesize = subdev[i]->erasesize;
874                                 if (curr_erasesize > max_erasesize)
875                                         max_erasesize = curr_erasesize;
876                         }
877                 } else {
878                         /* current subdevice has variable erase size */
879                         int j;
880                         for (j = 0; j < subdev[i]->numeraseregions; j++) {
881
882                                 /* walk the list of erase regions, count any changes */
883                                 if (subdev[i]->eraseregions[j].erasesize !=
884                                     curr_erasesize) {
885                                         ++num_erase_region;
886                                         curr_erasesize =
887                                             subdev[i]->eraseregions[j].
888                                             erasesize;
889                                         if (curr_erasesize > max_erasesize)
890                                                 max_erasesize = curr_erasesize;
891                                 }
892                         }
893                 }
894         }
895
896         if (num_erase_region == 1) {
897                 /*
898                  * All subdevices have the same uniform erase size.
899                  * This is easy:
900                  */
901                 concat->mtd.erasesize = curr_erasesize;
902                 concat->mtd.numeraseregions = 0;
903         } else {
904                 uint64_t tmp64;
905
906                 /*
907                  * erase block size varies across the subdevices: allocate
908                  * space to store the data describing the variable erase regions
909                  */
910                 struct mtd_erase_region_info *erase_region_p;
911                 uint64_t begin, position;
912
913                 concat->mtd.erasesize = max_erasesize;
914                 concat->mtd.numeraseregions = num_erase_region;
915                 concat->mtd.eraseregions = erase_region_p =
916                     kmalloc(num_erase_region *
917                             sizeof (struct mtd_erase_region_info), GFP_KERNEL);
918                 if (!erase_region_p) {
919                         kfree(concat);
920                         printk
921                             ("memory allocation error while creating erase region list"
922                              " for device \"%s\"\n", name);
923                         return NULL;
924                 }
925
926                 /*
927                  * walk the map of the new device once more and fill in
928                  * in erase region info:
929                  */
930                 curr_erasesize = subdev[0]->erasesize;
931                 begin = position = 0;
932                 for (i = 0; i < num_devs; i++) {
933                         if (subdev[i]->numeraseregions == 0) {
934                                 /* current subdevice has uniform erase size */
935                                 if (subdev[i]->erasesize != curr_erasesize) {
936                                         /*
937                                          *  fill in an mtd_erase_region_info structure for the area
938                                          *  we have walked so far:
939                                          */
940                                         erase_region_p->offset = begin;
941                                         erase_region_p->erasesize =
942                                             curr_erasesize;
943                                         tmp64 = position - begin;
944                                         do_div(tmp64, curr_erasesize);
945                                         erase_region_p->numblocks = tmp64;
946                                         begin = position;
947
948                                         curr_erasesize = subdev[i]->erasesize;
949                                         ++erase_region_p;
950                                 }
951                                 position += subdev[i]->size;
952                         } else {
953                                 /* current subdevice has variable erase size */
954                                 int j;
955                                 for (j = 0; j < subdev[i]->numeraseregions; j++) {
956                                         /* walk the list of erase regions, count any changes */
957                                         if (subdev[i]->eraseregions[j].
958                                             erasesize != curr_erasesize) {
959                                                 erase_region_p->offset = begin;
960                                                 erase_region_p->erasesize =
961                                                     curr_erasesize;
962                                                 tmp64 = position - begin;
963                                                 do_div(tmp64, curr_erasesize);
964                                                 erase_region_p->numblocks = tmp64;
965                                                 begin = position;
966
967                                                 curr_erasesize =
968                                                     subdev[i]->eraseregions[j].
969                                                     erasesize;
970                                                 ++erase_region_p;
971                                         }
972                                         position +=
973                                             subdev[i]->eraseregions[j].
974                                             numblocks * (uint64_t)curr_erasesize;
975                                 }
976                         }
977                 }
978                 /* Now write the final entry */
979                 erase_region_p->offset = begin;
980                 erase_region_p->erasesize = curr_erasesize;
981                 tmp64 = position - begin;
982                 do_div(tmp64, curr_erasesize);
983                 erase_region_p->numblocks = tmp64;
984         }
985
986         return &concat->mtd;
987 }
988
989 /*
990  * This function destroys an MTD object obtained from concat_mtd_devs()
991  */
992
993 void mtd_concat_destroy(struct mtd_info *mtd)
994 {
995         struct mtd_concat *concat = CONCAT(mtd);
996         if (concat->mtd.numeraseregions)
997                 kfree(concat->mtd.eraseregions);
998         kfree(concat);
999 }
1000
1001 EXPORT_SYMBOL(mtd_concat_create);
1002 EXPORT_SYMBOL(mtd_concat_destroy);
1003
1004 MODULE_LICENSE("GPL");
1005 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
1006 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");