78ac7dc853c7d1b79ac38fc25d379fc8ae9e9fc2
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         bool do_wakeup = false;
348         unsigned long flags;
349
350         if (hash == NR_STRIPE_HASH_LOCKS) {
351                 size = NR_STRIPE_HASH_LOCKS;
352                 hash = NR_STRIPE_HASH_LOCKS - 1;
353         } else
354                 size = 1;
355         while (size) {
356                 struct list_head *list = &temp_inactive_list[size - 1];
357
358                 /*
359                  * We don't hold any lock here yet, get_active_stripe() might
360                  * remove stripes from the list
361                  */
362                 if (!list_empty_careful(list)) {
363                         spin_lock_irqsave(conf->hash_locks + hash, flags);
364                         if (list_empty(conf->inactive_list + hash) &&
365                             !list_empty(list))
366                                 atomic_dec(&conf->empty_inactive_list_nr);
367                         list_splice_tail_init(list, conf->inactive_list + hash);
368                         do_wakeup = true;
369                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370                 }
371                 size--;
372                 hash--;
373         }
374
375         if (do_wakeup) {
376                 wake_up(&conf->wait_for_stripe);
377                 if (conf->retry_read_aligned)
378                         md_wakeup_thread(conf->mddev->thread);
379         }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384                                struct list_head *temp_inactive_list)
385 {
386         struct stripe_head *sh;
387         int count = 0;
388         struct llist_node *head;
389
390         head = llist_del_all(&conf->released_stripes);
391         head = llist_reverse_order(head);
392         while (head) {
393                 int hash;
394
395                 sh = llist_entry(head, struct stripe_head, release_list);
396                 head = llist_next(head);
397                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398                 smp_mb();
399                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400                 /*
401                  * Don't worry the bit is set here, because if the bit is set
402                  * again, the count is always > 1. This is true for
403                  * STRIPE_ON_UNPLUG_LIST bit too.
404                  */
405                 hash = sh->hash_lock_index;
406                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407                 count++;
408         }
409
410         return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415         struct r5conf *conf = sh->raid_conf;
416         unsigned long flags;
417         struct list_head list;
418         int hash;
419         bool wakeup;
420
421         /* Avoid release_list until the last reference.
422          */
423         if (atomic_add_unless(&sh->count, -1, 1))
424                 return;
425
426         if (unlikely(!conf->mddev->thread) ||
427                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428                 goto slow_path;
429         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430         if (wakeup)
431                 md_wakeup_thread(conf->mddev->thread);
432         return;
433 slow_path:
434         local_irq_save(flags);
435         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437                 INIT_LIST_HEAD(&list);
438                 hash = sh->hash_lock_index;
439                 do_release_stripe(conf, sh, &list);
440                 spin_unlock(&conf->device_lock);
441                 release_inactive_stripe_list(conf, &list, hash);
442         }
443         local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448         pr_debug("remove_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456         struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458         pr_debug("insert_hash(), stripe %llu\n",
459                 (unsigned long long)sh->sector);
460
461         hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467         struct stripe_head *sh = NULL;
468         struct list_head *first;
469
470         if (list_empty(conf->inactive_list + hash))
471                 goto out;
472         first = (conf->inactive_list + hash)->next;
473         sh = list_entry(first, struct stripe_head, lru);
474         list_del_init(first);
475         remove_hash(sh);
476         atomic_inc(&conf->active_stripes);
477         BUG_ON(hash != sh->hash_lock_index);
478         if (list_empty(conf->inactive_list + hash))
479                 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481         return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486         struct page *p;
487         int i;
488         int num = sh->raid_conf->pool_size;
489
490         for (i = 0; i < num ; i++) {
491                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492                 p = sh->dev[i].page;
493                 if (!p)
494                         continue;
495                 sh->dev[i].page = NULL;
496                 put_page(p);
497         }
498 }
499
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502         int i;
503         int num = sh->raid_conf->pool_size;
504
505         for (i = 0; i < num; i++) {
506                 struct page *page;
507
508                 if (!(page = alloc_page(gfp))) {
509                         return 1;
510                 }
511                 sh->dev[i].page = page;
512                 sh->dev[i].orig_page = page;
513         }
514         return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519                             struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523         struct r5conf *conf = sh->raid_conf;
524         int i, seq;
525
526         BUG_ON(atomic_read(&sh->count) != 0);
527         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528         BUG_ON(stripe_operations_active(sh));
529         BUG_ON(sh->batch_head);
530
531         pr_debug("init_stripe called, stripe %llu\n",
532                 (unsigned long long)sector);
533 retry:
534         seq = read_seqcount_begin(&conf->gen_lock);
535         sh->generation = conf->generation - previous;
536         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537         sh->sector = sector;
538         stripe_set_idx(sector, conf, previous, sh);
539         sh->state = 0;
540
541         for (i = sh->disks; i--; ) {
542                 struct r5dev *dev = &sh->dev[i];
543
544                 if (dev->toread || dev->read || dev->towrite || dev->written ||
545                     test_bit(R5_LOCKED, &dev->flags)) {
546                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547                                (unsigned long long)sh->sector, i, dev->toread,
548                                dev->read, dev->towrite, dev->written,
549                                test_bit(R5_LOCKED, &dev->flags));
550                         WARN_ON(1);
551                 }
552                 dev->flags = 0;
553                 raid5_build_block(sh, i, previous);
554         }
555         if (read_seqcount_retry(&conf->gen_lock, seq))
556                 goto retry;
557         sh->overwrite_disks = 0;
558         insert_hash(conf, sh);
559         sh->cpu = smp_processor_id();
560         set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564                                          short generation)
565 {
566         struct stripe_head *sh;
567
568         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570                 if (sh->sector == sector && sh->generation == generation)
571                         return sh;
572         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573         return NULL;
574 }
575
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
589 static int calc_degraded(struct r5conf *conf)
590 {
591         int degraded, degraded2;
592         int i;
593
594         rcu_read_lock();
595         degraded = 0;
596         for (i = 0; i < conf->previous_raid_disks; i++) {
597                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = rcu_dereference(conf->disks[i].replacement);
600                 if (!rdev || test_bit(Faulty, &rdev->flags))
601                         degraded++;
602                 else if (test_bit(In_sync, &rdev->flags))
603                         ;
604                 else
605                         /* not in-sync or faulty.
606                          * If the reshape increases the number of devices,
607                          * this is being recovered by the reshape, so
608                          * this 'previous' section is not in_sync.
609                          * If the number of devices is being reduced however,
610                          * the device can only be part of the array if
611                          * we are reverting a reshape, so this section will
612                          * be in-sync.
613                          */
614                         if (conf->raid_disks >= conf->previous_raid_disks)
615                                 degraded++;
616         }
617         rcu_read_unlock();
618         if (conf->raid_disks == conf->previous_raid_disks)
619                 return degraded;
620         rcu_read_lock();
621         degraded2 = 0;
622         for (i = 0; i < conf->raid_disks; i++) {
623                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624                 if (rdev && test_bit(Faulty, &rdev->flags))
625                         rdev = rcu_dereference(conf->disks[i].replacement);
626                 if (!rdev || test_bit(Faulty, &rdev->flags))
627                         degraded2++;
628                 else if (test_bit(In_sync, &rdev->flags))
629                         ;
630                 else
631                         /* not in-sync or faulty.
632                          * If reshape increases the number of devices, this
633                          * section has already been recovered, else it
634                          * almost certainly hasn't.
635                          */
636                         if (conf->raid_disks <= conf->previous_raid_disks)
637                                 degraded2++;
638         }
639         rcu_read_unlock();
640         if (degraded2 > degraded)
641                 return degraded2;
642         return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647         int degraded;
648
649         if (conf->mddev->reshape_position == MaxSector)
650                 return conf->mddev->degraded > conf->max_degraded;
651
652         degraded = calc_degraded(conf);
653         if (degraded > conf->max_degraded)
654                 return 1;
655         return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660                   int previous, int noblock, int noquiesce)
661 {
662         struct stripe_head *sh;
663         int hash = stripe_hash_locks_hash(sector);
664
665         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667         spin_lock_irq(conf->hash_locks + hash);
668
669         do {
670                 wait_event_lock_irq(conf->wait_for_stripe,
671                                     conf->quiesce == 0 || noquiesce,
672                                     *(conf->hash_locks + hash));
673                 sh = __find_stripe(conf, sector, conf->generation - previous);
674                 if (!sh) {
675                         if (!conf->inactive_blocked)
676                                 sh = get_free_stripe(conf, hash);
677                         if (noblock && sh == NULL)
678                                 break;
679                         if (!sh) {
680                                 conf->inactive_blocked = 1;
681                                 wait_event_lock_irq(
682                                         conf->wait_for_stripe,
683                                         !list_empty(conf->inactive_list + hash) &&
684                                         (atomic_read(&conf->active_stripes)
685                                          < (conf->max_nr_stripes * 3 / 4)
686                                          || !conf->inactive_blocked),
687                                         *(conf->hash_locks + hash));
688                                 conf->inactive_blocked = 0;
689                         } else {
690                                 init_stripe(sh, sector, previous);
691                                 atomic_inc(&sh->count);
692                         }
693                 } else if (!atomic_inc_not_zero(&sh->count)) {
694                         spin_lock(&conf->device_lock);
695                         if (!atomic_read(&sh->count)) {
696                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
697                                         atomic_inc(&conf->active_stripes);
698                                 BUG_ON(list_empty(&sh->lru) &&
699                                        !test_bit(STRIPE_EXPANDING, &sh->state));
700                                 list_del_init(&sh->lru);
701                                 if (sh->group) {
702                                         sh->group->stripes_cnt--;
703                                         sh->group = NULL;
704                                 }
705                         }
706                         atomic_inc(&sh->count);
707                         spin_unlock(&conf->device_lock);
708                 }
709         } while (sh == NULL);
710
711         spin_unlock_irq(conf->hash_locks + hash);
712         return sh;
713 }
714
715 static bool is_full_stripe_write(struct stripe_head *sh)
716 {
717         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
718         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
719 }
720
721 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
722 {
723         local_irq_disable();
724         if (sh1 > sh2) {
725                 spin_lock(&sh2->stripe_lock);
726                 spin_lock_nested(&sh1->stripe_lock, 1);
727         } else {
728                 spin_lock(&sh1->stripe_lock);
729                 spin_lock_nested(&sh2->stripe_lock, 1);
730         }
731 }
732
733 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735         spin_unlock(&sh1->stripe_lock);
736         spin_unlock(&sh2->stripe_lock);
737         local_irq_enable();
738 }
739
740 /* Only freshly new full stripe normal write stripe can be added to a batch list */
741 static bool stripe_can_batch(struct stripe_head *sh)
742 {
743         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
744                 is_full_stripe_write(sh);
745 }
746
747 /* we only do back search */
748 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 {
750         struct stripe_head *head;
751         sector_t head_sector, tmp_sec;
752         int hash;
753         int dd_idx;
754
755         if (!stripe_can_batch(sh))
756                 return;
757         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
758         tmp_sec = sh->sector;
759         if (!sector_div(tmp_sec, conf->chunk_sectors))
760                 return;
761         head_sector = sh->sector - STRIPE_SECTORS;
762
763         hash = stripe_hash_locks_hash(head_sector);
764         spin_lock_irq(conf->hash_locks + hash);
765         head = __find_stripe(conf, head_sector, conf->generation);
766         if (head && !atomic_inc_not_zero(&head->count)) {
767                 spin_lock(&conf->device_lock);
768                 if (!atomic_read(&head->count)) {
769                         if (!test_bit(STRIPE_HANDLE, &head->state))
770                                 atomic_inc(&conf->active_stripes);
771                         BUG_ON(list_empty(&head->lru) &&
772                                !test_bit(STRIPE_EXPANDING, &head->state));
773                         list_del_init(&head->lru);
774                         if (head->group) {
775                                 head->group->stripes_cnt--;
776                                 head->group = NULL;
777                         }
778                 }
779                 atomic_inc(&head->count);
780                 spin_unlock(&conf->device_lock);
781         }
782         spin_unlock_irq(conf->hash_locks + hash);
783
784         if (!head)
785                 return;
786         if (!stripe_can_batch(head))
787                 goto out;
788
789         lock_two_stripes(head, sh);
790         /* clear_batch_ready clear the flag */
791         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792                 goto unlock_out;
793
794         if (sh->batch_head)
795                 goto unlock_out;
796
797         dd_idx = 0;
798         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799                 dd_idx++;
800         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
801                 goto unlock_out;
802
803         if (head->batch_head) {
804                 spin_lock(&head->batch_head->batch_lock);
805                 /* This batch list is already running */
806                 if (!stripe_can_batch(head)) {
807                         spin_unlock(&head->batch_head->batch_lock);
808                         goto unlock_out;
809                 }
810
811                 /*
812                  * at this point, head's BATCH_READY could be cleared, but we
813                  * can still add the stripe to batch list
814                  */
815                 list_add(&sh->batch_list, &head->batch_list);
816                 spin_unlock(&head->batch_head->batch_lock);
817
818                 sh->batch_head = head->batch_head;
819         } else {
820                 head->batch_head = head;
821                 sh->batch_head = head->batch_head;
822                 spin_lock(&head->batch_lock);
823                 list_add_tail(&sh->batch_list, &head->batch_list);
824                 spin_unlock(&head->batch_lock);
825         }
826
827         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
828                 if (atomic_dec_return(&conf->preread_active_stripes)
829                     < IO_THRESHOLD)
830                         md_wakeup_thread(conf->mddev->thread);
831
832         atomic_inc(&sh->count);
833 unlock_out:
834         unlock_two_stripes(head, sh);
835 out:
836         release_stripe(head);
837 }
838
839 /* Determine if 'data_offset' or 'new_data_offset' should be used
840  * in this stripe_head.
841  */
842 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
843 {
844         sector_t progress = conf->reshape_progress;
845         /* Need a memory barrier to make sure we see the value
846          * of conf->generation, or ->data_offset that was set before
847          * reshape_progress was updated.
848          */
849         smp_rmb();
850         if (progress == MaxSector)
851                 return 0;
852         if (sh->generation == conf->generation - 1)
853                 return 0;
854         /* We are in a reshape, and this is a new-generation stripe,
855          * so use new_data_offset.
856          */
857         return 1;
858 }
859
860 static void
861 raid5_end_read_request(struct bio *bi, int error);
862 static void
863 raid5_end_write_request(struct bio *bi, int error);
864
865 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
866 {
867         struct r5conf *conf = sh->raid_conf;
868         int i, disks = sh->disks;
869         struct stripe_head *head_sh = sh;
870
871         might_sleep();
872
873         for (i = disks; i--; ) {
874                 int rw;
875                 int replace_only = 0;
876                 struct bio *bi, *rbi;
877                 struct md_rdev *rdev, *rrdev = NULL;
878
879                 sh = head_sh;
880                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
881                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
882                                 rw = WRITE_FUA;
883                         else
884                                 rw = WRITE;
885                         if (test_bit(R5_Discard, &sh->dev[i].flags))
886                                 rw |= REQ_DISCARD;
887                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
888                         rw = READ;
889                 else if (test_and_clear_bit(R5_WantReplace,
890                                             &sh->dev[i].flags)) {
891                         rw = WRITE;
892                         replace_only = 1;
893                 } else
894                         continue;
895                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
896                         rw |= REQ_SYNC;
897
898 again:
899                 bi = &sh->dev[i].req;
900                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
901
902                 rcu_read_lock();
903                 rrdev = rcu_dereference(conf->disks[i].replacement);
904                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
905                 rdev = rcu_dereference(conf->disks[i].rdev);
906                 if (!rdev) {
907                         rdev = rrdev;
908                         rrdev = NULL;
909                 }
910                 if (rw & WRITE) {
911                         if (replace_only)
912                                 rdev = NULL;
913                         if (rdev == rrdev)
914                                 /* We raced and saw duplicates */
915                                 rrdev = NULL;
916                 } else {
917                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
918                                 rdev = rrdev;
919                         rrdev = NULL;
920                 }
921
922                 if (rdev && test_bit(Faulty, &rdev->flags))
923                         rdev = NULL;
924                 if (rdev)
925                         atomic_inc(&rdev->nr_pending);
926                 if (rrdev && test_bit(Faulty, &rrdev->flags))
927                         rrdev = NULL;
928                 if (rrdev)
929                         atomic_inc(&rrdev->nr_pending);
930                 rcu_read_unlock();
931
932                 /* We have already checked bad blocks for reads.  Now
933                  * need to check for writes.  We never accept write errors
934                  * on the replacement, so we don't to check rrdev.
935                  */
936                 while ((rw & WRITE) && rdev &&
937                        test_bit(WriteErrorSeen, &rdev->flags)) {
938                         sector_t first_bad;
939                         int bad_sectors;
940                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
941                                               &first_bad, &bad_sectors);
942                         if (!bad)
943                                 break;
944
945                         if (bad < 0) {
946                                 set_bit(BlockedBadBlocks, &rdev->flags);
947                                 if (!conf->mddev->external &&
948                                     conf->mddev->flags) {
949                                         /* It is very unlikely, but we might
950                                          * still need to write out the
951                                          * bad block log - better give it
952                                          * a chance*/
953                                         md_check_recovery(conf->mddev);
954                                 }
955                                 /*
956                                  * Because md_wait_for_blocked_rdev
957                                  * will dec nr_pending, we must
958                                  * increment it first.
959                                  */
960                                 atomic_inc(&rdev->nr_pending);
961                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
962                         } else {
963                                 /* Acknowledged bad block - skip the write */
964                                 rdev_dec_pending(rdev, conf->mddev);
965                                 rdev = NULL;
966                         }
967                 }
968
969                 if (rdev) {
970                         if (s->syncing || s->expanding || s->expanded
971                             || s->replacing)
972                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
973
974                         set_bit(STRIPE_IO_STARTED, &sh->state);
975
976                         bio_reset(bi);
977                         bi->bi_bdev = rdev->bdev;
978                         bi->bi_rw = rw;
979                         bi->bi_end_io = (rw & WRITE)
980                                 ? raid5_end_write_request
981                                 : raid5_end_read_request;
982                         bi->bi_private = sh;
983
984                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
985                                 __func__, (unsigned long long)sh->sector,
986                                 bi->bi_rw, i);
987                         atomic_inc(&sh->count);
988                         if (sh != head_sh)
989                                 atomic_inc(&head_sh->count);
990                         if (use_new_offset(conf, sh))
991                                 bi->bi_iter.bi_sector = (sh->sector
992                                                  + rdev->new_data_offset);
993                         else
994                                 bi->bi_iter.bi_sector = (sh->sector
995                                                  + rdev->data_offset);
996                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
997                                 bi->bi_rw |= REQ_NOMERGE;
998
999                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1000                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1001                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1002                         bi->bi_vcnt = 1;
1003                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1004                         bi->bi_io_vec[0].bv_offset = 0;
1005                         bi->bi_iter.bi_size = STRIPE_SIZE;
1006                         /*
1007                          * If this is discard request, set bi_vcnt 0. We don't
1008                          * want to confuse SCSI because SCSI will replace payload
1009                          */
1010                         if (rw & REQ_DISCARD)
1011                                 bi->bi_vcnt = 0;
1012                         if (rrdev)
1013                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1014
1015                         if (conf->mddev->gendisk)
1016                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1017                                                       bi, disk_devt(conf->mddev->gendisk),
1018                                                       sh->dev[i].sector);
1019                         generic_make_request(bi);
1020                 }
1021                 if (rrdev) {
1022                         if (s->syncing || s->expanding || s->expanded
1023                             || s->replacing)
1024                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1025
1026                         set_bit(STRIPE_IO_STARTED, &sh->state);
1027
1028                         bio_reset(rbi);
1029                         rbi->bi_bdev = rrdev->bdev;
1030                         rbi->bi_rw = rw;
1031                         BUG_ON(!(rw & WRITE));
1032                         rbi->bi_end_io = raid5_end_write_request;
1033                         rbi->bi_private = sh;
1034
1035                         pr_debug("%s: for %llu schedule op %ld on "
1036                                  "replacement disc %d\n",
1037                                 __func__, (unsigned long long)sh->sector,
1038                                 rbi->bi_rw, i);
1039                         atomic_inc(&sh->count);
1040                         if (sh != head_sh)
1041                                 atomic_inc(&head_sh->count);
1042                         if (use_new_offset(conf, sh))
1043                                 rbi->bi_iter.bi_sector = (sh->sector
1044                                                   + rrdev->new_data_offset);
1045                         else
1046                                 rbi->bi_iter.bi_sector = (sh->sector
1047                                                   + rrdev->data_offset);
1048                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1049                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1050                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1051                         rbi->bi_vcnt = 1;
1052                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1053                         rbi->bi_io_vec[0].bv_offset = 0;
1054                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1055                         /*
1056                          * If this is discard request, set bi_vcnt 0. We don't
1057                          * want to confuse SCSI because SCSI will replace payload
1058                          */
1059                         if (rw & REQ_DISCARD)
1060                                 rbi->bi_vcnt = 0;
1061                         if (conf->mddev->gendisk)
1062                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1063                                                       rbi, disk_devt(conf->mddev->gendisk),
1064                                                       sh->dev[i].sector);
1065                         generic_make_request(rbi);
1066                 }
1067                 if (!rdev && !rrdev) {
1068                         if (rw & WRITE)
1069                                 set_bit(STRIPE_DEGRADED, &sh->state);
1070                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1071                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1072                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1073                         if (sh->batch_head)
1074                                 set_bit(STRIPE_BATCH_ERR,
1075                                         &sh->batch_head->state);
1076                         set_bit(STRIPE_HANDLE, &sh->state);
1077                 }
1078
1079                 if (!head_sh->batch_head)
1080                         continue;
1081                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1082                                       batch_list);
1083                 if (sh != head_sh)
1084                         goto again;
1085         }
1086 }
1087
1088 static struct dma_async_tx_descriptor *
1089 async_copy_data(int frombio, struct bio *bio, struct page **page,
1090         sector_t sector, struct dma_async_tx_descriptor *tx,
1091         struct stripe_head *sh)
1092 {
1093         struct bio_vec bvl;
1094         struct bvec_iter iter;
1095         struct page *bio_page;
1096         int page_offset;
1097         struct async_submit_ctl submit;
1098         enum async_tx_flags flags = 0;
1099
1100         if (bio->bi_iter.bi_sector >= sector)
1101                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1102         else
1103                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1104
1105         if (frombio)
1106                 flags |= ASYNC_TX_FENCE;
1107         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1108
1109         bio_for_each_segment(bvl, bio, iter) {
1110                 int len = bvl.bv_len;
1111                 int clen;
1112                 int b_offset = 0;
1113
1114                 if (page_offset < 0) {
1115                         b_offset = -page_offset;
1116                         page_offset += b_offset;
1117                         len -= b_offset;
1118                 }
1119
1120                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1121                         clen = STRIPE_SIZE - page_offset;
1122                 else
1123                         clen = len;
1124
1125                 if (clen > 0) {
1126                         b_offset += bvl.bv_offset;
1127                         bio_page = bvl.bv_page;
1128                         if (frombio) {
1129                                 if (sh->raid_conf->skip_copy &&
1130                                     b_offset == 0 && page_offset == 0 &&
1131                                     clen == STRIPE_SIZE)
1132                                         *page = bio_page;
1133                                 else
1134                                         tx = async_memcpy(*page, bio_page, page_offset,
1135                                                   b_offset, clen, &submit);
1136                         } else
1137                                 tx = async_memcpy(bio_page, *page, b_offset,
1138                                                   page_offset, clen, &submit);
1139                 }
1140                 /* chain the operations */
1141                 submit.depend_tx = tx;
1142
1143                 if (clen < len) /* hit end of page */
1144                         break;
1145                 page_offset +=  len;
1146         }
1147
1148         return tx;
1149 }
1150
1151 static void ops_complete_biofill(void *stripe_head_ref)
1152 {
1153         struct stripe_head *sh = stripe_head_ref;
1154         struct bio *return_bi = NULL;
1155         int i;
1156
1157         pr_debug("%s: stripe %llu\n", __func__,
1158                 (unsigned long long)sh->sector);
1159
1160         /* clear completed biofills */
1161         for (i = sh->disks; i--; ) {
1162                 struct r5dev *dev = &sh->dev[i];
1163
1164                 /* acknowledge completion of a biofill operation */
1165                 /* and check if we need to reply to a read request,
1166                  * new R5_Wantfill requests are held off until
1167                  * !STRIPE_BIOFILL_RUN
1168                  */
1169                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1170                         struct bio *rbi, *rbi2;
1171
1172                         BUG_ON(!dev->read);
1173                         rbi = dev->read;
1174                         dev->read = NULL;
1175                         while (rbi && rbi->bi_iter.bi_sector <
1176                                 dev->sector + STRIPE_SECTORS) {
1177                                 rbi2 = r5_next_bio(rbi, dev->sector);
1178                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1179                                         rbi->bi_next = return_bi;
1180                                         return_bi = rbi;
1181                                 }
1182                                 rbi = rbi2;
1183                         }
1184                 }
1185         }
1186         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1187
1188         return_io(return_bi);
1189
1190         set_bit(STRIPE_HANDLE, &sh->state);
1191         release_stripe(sh);
1192 }
1193
1194 static void ops_run_biofill(struct stripe_head *sh)
1195 {
1196         struct dma_async_tx_descriptor *tx = NULL;
1197         struct async_submit_ctl submit;
1198         int i;
1199
1200         BUG_ON(sh->batch_head);
1201         pr_debug("%s: stripe %llu\n", __func__,
1202                 (unsigned long long)sh->sector);
1203
1204         for (i = sh->disks; i--; ) {
1205                 struct r5dev *dev = &sh->dev[i];
1206                 if (test_bit(R5_Wantfill, &dev->flags)) {
1207                         struct bio *rbi;
1208                         spin_lock_irq(&sh->stripe_lock);
1209                         dev->read = rbi = dev->toread;
1210                         dev->toread = NULL;
1211                         spin_unlock_irq(&sh->stripe_lock);
1212                         while (rbi && rbi->bi_iter.bi_sector <
1213                                 dev->sector + STRIPE_SECTORS) {
1214                                 tx = async_copy_data(0, rbi, &dev->page,
1215                                         dev->sector, tx, sh);
1216                                 rbi = r5_next_bio(rbi, dev->sector);
1217                         }
1218                 }
1219         }
1220
1221         atomic_inc(&sh->count);
1222         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1223         async_trigger_callback(&submit);
1224 }
1225
1226 static void mark_target_uptodate(struct stripe_head *sh, int target)
1227 {
1228         struct r5dev *tgt;
1229
1230         if (target < 0)
1231                 return;
1232
1233         tgt = &sh->dev[target];
1234         set_bit(R5_UPTODATE, &tgt->flags);
1235         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1236         clear_bit(R5_Wantcompute, &tgt->flags);
1237 }
1238
1239 static void ops_complete_compute(void *stripe_head_ref)
1240 {
1241         struct stripe_head *sh = stripe_head_ref;
1242
1243         pr_debug("%s: stripe %llu\n", __func__,
1244                 (unsigned long long)sh->sector);
1245
1246         /* mark the computed target(s) as uptodate */
1247         mark_target_uptodate(sh, sh->ops.target);
1248         mark_target_uptodate(sh, sh->ops.target2);
1249
1250         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1251         if (sh->check_state == check_state_compute_run)
1252                 sh->check_state = check_state_compute_result;
1253         set_bit(STRIPE_HANDLE, &sh->state);
1254         release_stripe(sh);
1255 }
1256
1257 /* return a pointer to the address conversion region of the scribble buffer */
1258 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1259                                  struct raid5_percpu *percpu, int i)
1260 {
1261         void *addr;
1262
1263         addr = flex_array_get(percpu->scribble, i);
1264         return addr + sizeof(struct page *) * (sh->disks + 2);
1265 }
1266
1267 /* return a pointer to the address conversion region of the scribble buffer */
1268 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1269 {
1270         void *addr;
1271
1272         addr = flex_array_get(percpu->scribble, i);
1273         return addr;
1274 }
1275
1276 static struct dma_async_tx_descriptor *
1277 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1278 {
1279         int disks = sh->disks;
1280         struct page **xor_srcs = to_addr_page(percpu, 0);
1281         int target = sh->ops.target;
1282         struct r5dev *tgt = &sh->dev[target];
1283         struct page *xor_dest = tgt->page;
1284         int count = 0;
1285         struct dma_async_tx_descriptor *tx;
1286         struct async_submit_ctl submit;
1287         int i;
1288
1289         BUG_ON(sh->batch_head);
1290
1291         pr_debug("%s: stripe %llu block: %d\n",
1292                 __func__, (unsigned long long)sh->sector, target);
1293         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1294
1295         for (i = disks; i--; )
1296                 if (i != target)
1297                         xor_srcs[count++] = sh->dev[i].page;
1298
1299         atomic_inc(&sh->count);
1300
1301         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1302                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1303         if (unlikely(count == 1))
1304                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1305         else
1306                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1307
1308         return tx;
1309 }
1310
1311 /* set_syndrome_sources - populate source buffers for gen_syndrome
1312  * @srcs - (struct page *) array of size sh->disks
1313  * @sh - stripe_head to parse
1314  *
1315  * Populates srcs in proper layout order for the stripe and returns the
1316  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1317  * destination buffer is recorded in srcs[count] and the Q destination
1318  * is recorded in srcs[count+1]].
1319  */
1320 static int set_syndrome_sources(struct page **srcs,
1321                                 struct stripe_head *sh,
1322                                 int srctype)
1323 {
1324         int disks = sh->disks;
1325         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1326         int d0_idx = raid6_d0(sh);
1327         int count;
1328         int i;
1329
1330         for (i = 0; i < disks; i++)
1331                 srcs[i] = NULL;
1332
1333         count = 0;
1334         i = d0_idx;
1335         do {
1336                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1337                 struct r5dev *dev = &sh->dev[i];
1338
1339                 if (i == sh->qd_idx || i == sh->pd_idx ||
1340                     (srctype == SYNDROME_SRC_ALL) ||
1341                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1342                      test_bit(R5_Wantdrain, &dev->flags)) ||
1343                     (srctype == SYNDROME_SRC_WRITTEN &&
1344                      dev->written))
1345                         srcs[slot] = sh->dev[i].page;
1346                 i = raid6_next_disk(i, disks);
1347         } while (i != d0_idx);
1348
1349         return syndrome_disks;
1350 }
1351
1352 static struct dma_async_tx_descriptor *
1353 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1354 {
1355         int disks = sh->disks;
1356         struct page **blocks = to_addr_page(percpu, 0);
1357         int target;
1358         int qd_idx = sh->qd_idx;
1359         struct dma_async_tx_descriptor *tx;
1360         struct async_submit_ctl submit;
1361         struct r5dev *tgt;
1362         struct page *dest;
1363         int i;
1364         int count;
1365
1366         BUG_ON(sh->batch_head);
1367         if (sh->ops.target < 0)
1368                 target = sh->ops.target2;
1369         else if (sh->ops.target2 < 0)
1370                 target = sh->ops.target;
1371         else
1372                 /* we should only have one valid target */
1373                 BUG();
1374         BUG_ON(target < 0);
1375         pr_debug("%s: stripe %llu block: %d\n",
1376                 __func__, (unsigned long long)sh->sector, target);
1377
1378         tgt = &sh->dev[target];
1379         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1380         dest = tgt->page;
1381
1382         atomic_inc(&sh->count);
1383
1384         if (target == qd_idx) {
1385                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1386                 blocks[count] = NULL; /* regenerating p is not necessary */
1387                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1388                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1389                                   ops_complete_compute, sh,
1390                                   to_addr_conv(sh, percpu, 0));
1391                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1392         } else {
1393                 /* Compute any data- or p-drive using XOR */
1394                 count = 0;
1395                 for (i = disks; i-- ; ) {
1396                         if (i == target || i == qd_idx)
1397                                 continue;
1398                         blocks[count++] = sh->dev[i].page;
1399                 }
1400
1401                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1402                                   NULL, ops_complete_compute, sh,
1403                                   to_addr_conv(sh, percpu, 0));
1404                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1405         }
1406
1407         return tx;
1408 }
1409
1410 static struct dma_async_tx_descriptor *
1411 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1412 {
1413         int i, count, disks = sh->disks;
1414         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1415         int d0_idx = raid6_d0(sh);
1416         int faila = -1, failb = -1;
1417         int target = sh->ops.target;
1418         int target2 = sh->ops.target2;
1419         struct r5dev *tgt = &sh->dev[target];
1420         struct r5dev *tgt2 = &sh->dev[target2];
1421         struct dma_async_tx_descriptor *tx;
1422         struct page **blocks = to_addr_page(percpu, 0);
1423         struct async_submit_ctl submit;
1424
1425         BUG_ON(sh->batch_head);
1426         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1427                  __func__, (unsigned long long)sh->sector, target, target2);
1428         BUG_ON(target < 0 || target2 < 0);
1429         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1430         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1431
1432         /* we need to open-code set_syndrome_sources to handle the
1433          * slot number conversion for 'faila' and 'failb'
1434          */
1435         for (i = 0; i < disks ; i++)
1436                 blocks[i] = NULL;
1437         count = 0;
1438         i = d0_idx;
1439         do {
1440                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1441
1442                 blocks[slot] = sh->dev[i].page;
1443
1444                 if (i == target)
1445                         faila = slot;
1446                 if (i == target2)
1447                         failb = slot;
1448                 i = raid6_next_disk(i, disks);
1449         } while (i != d0_idx);
1450
1451         BUG_ON(faila == failb);
1452         if (failb < faila)
1453                 swap(faila, failb);
1454         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1455                  __func__, (unsigned long long)sh->sector, faila, failb);
1456
1457         atomic_inc(&sh->count);
1458
1459         if (failb == syndrome_disks+1) {
1460                 /* Q disk is one of the missing disks */
1461                 if (faila == syndrome_disks) {
1462                         /* Missing P+Q, just recompute */
1463                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1464                                           ops_complete_compute, sh,
1465                                           to_addr_conv(sh, percpu, 0));
1466                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1467                                                   STRIPE_SIZE, &submit);
1468                 } else {
1469                         struct page *dest;
1470                         int data_target;
1471                         int qd_idx = sh->qd_idx;
1472
1473                         /* Missing D+Q: recompute D from P, then recompute Q */
1474                         if (target == qd_idx)
1475                                 data_target = target2;
1476                         else
1477                                 data_target = target;
1478
1479                         count = 0;
1480                         for (i = disks; i-- ; ) {
1481                                 if (i == data_target || i == qd_idx)
1482                                         continue;
1483                                 blocks[count++] = sh->dev[i].page;
1484                         }
1485                         dest = sh->dev[data_target].page;
1486                         init_async_submit(&submit,
1487                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1488                                           NULL, NULL, NULL,
1489                                           to_addr_conv(sh, percpu, 0));
1490                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1491                                        &submit);
1492
1493                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1494                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1495                                           ops_complete_compute, sh,
1496                                           to_addr_conv(sh, percpu, 0));
1497                         return async_gen_syndrome(blocks, 0, count+2,
1498                                                   STRIPE_SIZE, &submit);
1499                 }
1500         } else {
1501                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1502                                   ops_complete_compute, sh,
1503                                   to_addr_conv(sh, percpu, 0));
1504                 if (failb == syndrome_disks) {
1505                         /* We're missing D+P. */
1506                         return async_raid6_datap_recov(syndrome_disks+2,
1507                                                        STRIPE_SIZE, faila,
1508                                                        blocks, &submit);
1509                 } else {
1510                         /* We're missing D+D. */
1511                         return async_raid6_2data_recov(syndrome_disks+2,
1512                                                        STRIPE_SIZE, faila, failb,
1513                                                        blocks, &submit);
1514                 }
1515         }
1516 }
1517
1518 static void ops_complete_prexor(void *stripe_head_ref)
1519 {
1520         struct stripe_head *sh = stripe_head_ref;
1521
1522         pr_debug("%s: stripe %llu\n", __func__,
1523                 (unsigned long long)sh->sector);
1524 }
1525
1526 static struct dma_async_tx_descriptor *
1527 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1528                 struct dma_async_tx_descriptor *tx)
1529 {
1530         int disks = sh->disks;
1531         struct page **xor_srcs = to_addr_page(percpu, 0);
1532         int count = 0, pd_idx = sh->pd_idx, i;
1533         struct async_submit_ctl submit;
1534
1535         /* existing parity data subtracted */
1536         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1537
1538         BUG_ON(sh->batch_head);
1539         pr_debug("%s: stripe %llu\n", __func__,
1540                 (unsigned long long)sh->sector);
1541
1542         for (i = disks; i--; ) {
1543                 struct r5dev *dev = &sh->dev[i];
1544                 /* Only process blocks that are known to be uptodate */
1545                 if (test_bit(R5_Wantdrain, &dev->flags))
1546                         xor_srcs[count++] = dev->page;
1547         }
1548
1549         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1550                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1551         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1552
1553         return tx;
1554 }
1555
1556 static struct dma_async_tx_descriptor *
1557 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1558                 struct dma_async_tx_descriptor *tx)
1559 {
1560         struct page **blocks = to_addr_page(percpu, 0);
1561         int count;
1562         struct async_submit_ctl submit;
1563
1564         pr_debug("%s: stripe %llu\n", __func__,
1565                 (unsigned long long)sh->sector);
1566
1567         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1568
1569         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1570                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1572
1573         return tx;
1574 }
1575
1576 static struct dma_async_tx_descriptor *
1577 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1578 {
1579         int disks = sh->disks;
1580         int i;
1581         struct stripe_head *head_sh = sh;
1582
1583         pr_debug("%s: stripe %llu\n", __func__,
1584                 (unsigned long long)sh->sector);
1585
1586         for (i = disks; i--; ) {
1587                 struct r5dev *dev;
1588                 struct bio *chosen;
1589
1590                 sh = head_sh;
1591                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1592                         struct bio *wbi;
1593
1594 again:
1595                         dev = &sh->dev[i];
1596                         spin_lock_irq(&sh->stripe_lock);
1597                         chosen = dev->towrite;
1598                         dev->towrite = NULL;
1599                         sh->overwrite_disks = 0;
1600                         BUG_ON(dev->written);
1601                         wbi = dev->written = chosen;
1602                         spin_unlock_irq(&sh->stripe_lock);
1603                         WARN_ON(dev->page != dev->orig_page);
1604
1605                         while (wbi && wbi->bi_iter.bi_sector <
1606                                 dev->sector + STRIPE_SECTORS) {
1607                                 if (wbi->bi_rw & REQ_FUA)
1608                                         set_bit(R5_WantFUA, &dev->flags);
1609                                 if (wbi->bi_rw & REQ_SYNC)
1610                                         set_bit(R5_SyncIO, &dev->flags);
1611                                 if (wbi->bi_rw & REQ_DISCARD)
1612                                         set_bit(R5_Discard, &dev->flags);
1613                                 else {
1614                                         tx = async_copy_data(1, wbi, &dev->page,
1615                                                 dev->sector, tx, sh);
1616                                         if (dev->page != dev->orig_page) {
1617                                                 set_bit(R5_SkipCopy, &dev->flags);
1618                                                 clear_bit(R5_UPTODATE, &dev->flags);
1619                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1620                                         }
1621                                 }
1622                                 wbi = r5_next_bio(wbi, dev->sector);
1623                         }
1624
1625                         if (head_sh->batch_head) {
1626                                 sh = list_first_entry(&sh->batch_list,
1627                                                       struct stripe_head,
1628                                                       batch_list);
1629                                 if (sh == head_sh)
1630                                         continue;
1631                                 goto again;
1632                         }
1633                 }
1634         }
1635
1636         return tx;
1637 }
1638
1639 static void ops_complete_reconstruct(void *stripe_head_ref)
1640 {
1641         struct stripe_head *sh = stripe_head_ref;
1642         int disks = sh->disks;
1643         int pd_idx = sh->pd_idx;
1644         int qd_idx = sh->qd_idx;
1645         int i;
1646         bool fua = false, sync = false, discard = false;
1647
1648         pr_debug("%s: stripe %llu\n", __func__,
1649                 (unsigned long long)sh->sector);
1650
1651         for (i = disks; i--; ) {
1652                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1653                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1654                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1655         }
1656
1657         for (i = disks; i--; ) {
1658                 struct r5dev *dev = &sh->dev[i];
1659
1660                 if (dev->written || i == pd_idx || i == qd_idx) {
1661                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1662                                 set_bit(R5_UPTODATE, &dev->flags);
1663                         if (fua)
1664                                 set_bit(R5_WantFUA, &dev->flags);
1665                         if (sync)
1666                                 set_bit(R5_SyncIO, &dev->flags);
1667                 }
1668         }
1669
1670         if (sh->reconstruct_state == reconstruct_state_drain_run)
1671                 sh->reconstruct_state = reconstruct_state_drain_result;
1672         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1673                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1674         else {
1675                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1676                 sh->reconstruct_state = reconstruct_state_result;
1677         }
1678
1679         set_bit(STRIPE_HANDLE, &sh->state);
1680         release_stripe(sh);
1681 }
1682
1683 static void
1684 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1685                      struct dma_async_tx_descriptor *tx)
1686 {
1687         int disks = sh->disks;
1688         struct page **xor_srcs;
1689         struct async_submit_ctl submit;
1690         int count, pd_idx = sh->pd_idx, i;
1691         struct page *xor_dest;
1692         int prexor = 0;
1693         unsigned long flags;
1694         int j = 0;
1695         struct stripe_head *head_sh = sh;
1696         int last_stripe;
1697
1698         pr_debug("%s: stripe %llu\n", __func__,
1699                 (unsigned long long)sh->sector);
1700
1701         for (i = 0; i < sh->disks; i++) {
1702                 if (pd_idx == i)
1703                         continue;
1704                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1705                         break;
1706         }
1707         if (i >= sh->disks) {
1708                 atomic_inc(&sh->count);
1709                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1710                 ops_complete_reconstruct(sh);
1711                 return;
1712         }
1713 again:
1714         count = 0;
1715         xor_srcs = to_addr_page(percpu, j);
1716         /* check if prexor is active which means only process blocks
1717          * that are part of a read-modify-write (written)
1718          */
1719         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1720                 prexor = 1;
1721                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1722                 for (i = disks; i--; ) {
1723                         struct r5dev *dev = &sh->dev[i];
1724                         if (head_sh->dev[i].written)
1725                                 xor_srcs[count++] = dev->page;
1726                 }
1727         } else {
1728                 xor_dest = sh->dev[pd_idx].page;
1729                 for (i = disks; i--; ) {
1730                         struct r5dev *dev = &sh->dev[i];
1731                         if (i != pd_idx)
1732                                 xor_srcs[count++] = dev->page;
1733                 }
1734         }
1735
1736         /* 1/ if we prexor'd then the dest is reused as a source
1737          * 2/ if we did not prexor then we are redoing the parity
1738          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1739          * for the synchronous xor case
1740          */
1741         last_stripe = !head_sh->batch_head ||
1742                 list_first_entry(&sh->batch_list,
1743                                  struct stripe_head, batch_list) == head_sh;
1744         if (last_stripe) {
1745                 flags = ASYNC_TX_ACK |
1746                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1747
1748                 atomic_inc(&head_sh->count);
1749                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1750                                   to_addr_conv(sh, percpu, j));
1751         } else {
1752                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1753                 init_async_submit(&submit, flags, tx, NULL, NULL,
1754                                   to_addr_conv(sh, percpu, j));
1755         }
1756
1757         if (unlikely(count == 1))
1758                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1759         else
1760                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1761         if (!last_stripe) {
1762                 j++;
1763                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1764                                       batch_list);
1765                 goto again;
1766         }
1767 }
1768
1769 static void
1770 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1771                      struct dma_async_tx_descriptor *tx)
1772 {
1773         struct async_submit_ctl submit;
1774         struct page **blocks;
1775         int count, i, j = 0;
1776         struct stripe_head *head_sh = sh;
1777         int last_stripe;
1778         int synflags;
1779         unsigned long txflags;
1780
1781         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1782
1783         for (i = 0; i < sh->disks; i++) {
1784                 if (sh->pd_idx == i || sh->qd_idx == i)
1785                         continue;
1786                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1787                         break;
1788         }
1789         if (i >= sh->disks) {
1790                 atomic_inc(&sh->count);
1791                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1792                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1793                 ops_complete_reconstruct(sh);
1794                 return;
1795         }
1796
1797 again:
1798         blocks = to_addr_page(percpu, j);
1799
1800         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1801                 synflags = SYNDROME_SRC_WRITTEN;
1802                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1803         } else {
1804                 synflags = SYNDROME_SRC_ALL;
1805                 txflags = ASYNC_TX_ACK;
1806         }
1807
1808         count = set_syndrome_sources(blocks, sh, synflags);
1809         last_stripe = !head_sh->batch_head ||
1810                 list_first_entry(&sh->batch_list,
1811                                  struct stripe_head, batch_list) == head_sh;
1812
1813         if (last_stripe) {
1814                 atomic_inc(&head_sh->count);
1815                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1816                                   head_sh, to_addr_conv(sh, percpu, j));
1817         } else
1818                 init_async_submit(&submit, 0, tx, NULL, NULL,
1819                                   to_addr_conv(sh, percpu, j));
1820         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1821         if (!last_stripe) {
1822                 j++;
1823                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1824                                       batch_list);
1825                 goto again;
1826         }
1827 }
1828
1829 static void ops_complete_check(void *stripe_head_ref)
1830 {
1831         struct stripe_head *sh = stripe_head_ref;
1832
1833         pr_debug("%s: stripe %llu\n", __func__,
1834                 (unsigned long long)sh->sector);
1835
1836         sh->check_state = check_state_check_result;
1837         set_bit(STRIPE_HANDLE, &sh->state);
1838         release_stripe(sh);
1839 }
1840
1841 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1842 {
1843         int disks = sh->disks;
1844         int pd_idx = sh->pd_idx;
1845         int qd_idx = sh->qd_idx;
1846         struct page *xor_dest;
1847         struct page **xor_srcs = to_addr_page(percpu, 0);
1848         struct dma_async_tx_descriptor *tx;
1849         struct async_submit_ctl submit;
1850         int count;
1851         int i;
1852
1853         pr_debug("%s: stripe %llu\n", __func__,
1854                 (unsigned long long)sh->sector);
1855
1856         BUG_ON(sh->batch_head);
1857         count = 0;
1858         xor_dest = sh->dev[pd_idx].page;
1859         xor_srcs[count++] = xor_dest;
1860         for (i = disks; i--; ) {
1861                 if (i == pd_idx || i == qd_idx)
1862                         continue;
1863                 xor_srcs[count++] = sh->dev[i].page;
1864         }
1865
1866         init_async_submit(&submit, 0, NULL, NULL, NULL,
1867                           to_addr_conv(sh, percpu, 0));
1868         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1869                            &sh->ops.zero_sum_result, &submit);
1870
1871         atomic_inc(&sh->count);
1872         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1873         tx = async_trigger_callback(&submit);
1874 }
1875
1876 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1877 {
1878         struct page **srcs = to_addr_page(percpu, 0);
1879         struct async_submit_ctl submit;
1880         int count;
1881
1882         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1883                 (unsigned long long)sh->sector, checkp);
1884
1885         BUG_ON(sh->batch_head);
1886         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1887         if (!checkp)
1888                 srcs[count] = NULL;
1889
1890         atomic_inc(&sh->count);
1891         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1892                           sh, to_addr_conv(sh, percpu, 0));
1893         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1894                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1895 }
1896
1897 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1898 {
1899         int overlap_clear = 0, i, disks = sh->disks;
1900         struct dma_async_tx_descriptor *tx = NULL;
1901         struct r5conf *conf = sh->raid_conf;
1902         int level = conf->level;
1903         struct raid5_percpu *percpu;
1904         unsigned long cpu;
1905
1906         cpu = get_cpu();
1907         percpu = per_cpu_ptr(conf->percpu, cpu);
1908         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1909                 ops_run_biofill(sh);
1910                 overlap_clear++;
1911         }
1912
1913         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1914                 if (level < 6)
1915                         tx = ops_run_compute5(sh, percpu);
1916                 else {
1917                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1918                                 tx = ops_run_compute6_1(sh, percpu);
1919                         else
1920                                 tx = ops_run_compute6_2(sh, percpu);
1921                 }
1922                 /* terminate the chain if reconstruct is not set to be run */
1923                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1924                         async_tx_ack(tx);
1925         }
1926
1927         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1928                 if (level < 6)
1929                         tx = ops_run_prexor5(sh, percpu, tx);
1930                 else
1931                         tx = ops_run_prexor6(sh, percpu, tx);
1932         }
1933
1934         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1935                 tx = ops_run_biodrain(sh, tx);
1936                 overlap_clear++;
1937         }
1938
1939         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1940                 if (level < 6)
1941                         ops_run_reconstruct5(sh, percpu, tx);
1942                 else
1943                         ops_run_reconstruct6(sh, percpu, tx);
1944         }
1945
1946         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1947                 if (sh->check_state == check_state_run)
1948                         ops_run_check_p(sh, percpu);
1949                 else if (sh->check_state == check_state_run_q)
1950                         ops_run_check_pq(sh, percpu, 0);
1951                 else if (sh->check_state == check_state_run_pq)
1952                         ops_run_check_pq(sh, percpu, 1);
1953                 else
1954                         BUG();
1955         }
1956
1957         if (overlap_clear && !sh->batch_head)
1958                 for (i = disks; i--; ) {
1959                         struct r5dev *dev = &sh->dev[i];
1960                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1961                                 wake_up(&sh->raid_conf->wait_for_overlap);
1962                 }
1963         put_cpu();
1964 }
1965
1966 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1967 {
1968         struct stripe_head *sh;
1969         sh = kmem_cache_zalloc(conf->slab_cache, gfp);
1970         if (!sh)
1971                 return 0;
1972
1973         sh->raid_conf = conf;
1974
1975         spin_lock_init(&sh->stripe_lock);
1976
1977         if (grow_buffers(sh, gfp)) {
1978                 shrink_buffers(sh);
1979                 kmem_cache_free(conf->slab_cache, sh);
1980                 return 0;
1981         }
1982         sh->hash_lock_index =
1983                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1984         /* we just created an active stripe so... */
1985         atomic_set(&sh->count, 1);
1986         atomic_inc(&conf->active_stripes);
1987         INIT_LIST_HEAD(&sh->lru);
1988
1989         spin_lock_init(&sh->batch_lock);
1990         INIT_LIST_HEAD(&sh->batch_list);
1991         sh->batch_head = NULL;
1992         release_stripe(sh);
1993         conf->max_nr_stripes++;
1994         return 1;
1995 }
1996
1997 static int grow_stripes(struct r5conf *conf, int num)
1998 {
1999         struct kmem_cache *sc;
2000         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2001
2002         if (conf->mddev->gendisk)
2003                 sprintf(conf->cache_name[0],
2004                         "raid%d-%s", conf->level, mdname(conf->mddev));
2005         else
2006                 sprintf(conf->cache_name[0],
2007                         "raid%d-%p", conf->level, conf->mddev);
2008         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2009
2010         conf->active_name = 0;
2011         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2012                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2013                                0, 0, NULL);
2014         if (!sc)
2015                 return 1;
2016         conf->slab_cache = sc;
2017         conf->pool_size = devs;
2018         while (num--)
2019                 if (!grow_one_stripe(conf, GFP_KERNEL))
2020                         return 1;
2021
2022         return 0;
2023 }
2024
2025 /**
2026  * scribble_len - return the required size of the scribble region
2027  * @num - total number of disks in the array
2028  *
2029  * The size must be enough to contain:
2030  * 1/ a struct page pointer for each device in the array +2
2031  * 2/ room to convert each entry in (1) to its corresponding dma
2032  *    (dma_map_page()) or page (page_address()) address.
2033  *
2034  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2035  * calculate over all devices (not just the data blocks), using zeros in place
2036  * of the P and Q blocks.
2037  */
2038 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2039 {
2040         struct flex_array *ret;
2041         size_t len;
2042
2043         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2044         ret = flex_array_alloc(len, cnt, flags);
2045         if (!ret)
2046                 return NULL;
2047         /* always prealloc all elements, so no locking is required */
2048         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2049                 flex_array_free(ret);
2050                 return NULL;
2051         }
2052         return ret;
2053 }
2054
2055 static int resize_stripes(struct r5conf *conf, int newsize)
2056 {
2057         /* Make all the stripes able to hold 'newsize' devices.
2058          * New slots in each stripe get 'page' set to a new page.
2059          *
2060          * This happens in stages:
2061          * 1/ create a new kmem_cache and allocate the required number of
2062          *    stripe_heads.
2063          * 2/ gather all the old stripe_heads and transfer the pages across
2064          *    to the new stripe_heads.  This will have the side effect of
2065          *    freezing the array as once all stripe_heads have been collected,
2066          *    no IO will be possible.  Old stripe heads are freed once their
2067          *    pages have been transferred over, and the old kmem_cache is
2068          *    freed when all stripes are done.
2069          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2070          *    we simple return a failre status - no need to clean anything up.
2071          * 4/ allocate new pages for the new slots in the new stripe_heads.
2072          *    If this fails, we don't bother trying the shrink the
2073          *    stripe_heads down again, we just leave them as they are.
2074          *    As each stripe_head is processed the new one is released into
2075          *    active service.
2076          *
2077          * Once step2 is started, we cannot afford to wait for a write,
2078          * so we use GFP_NOIO allocations.
2079          */
2080         struct stripe_head *osh, *nsh;
2081         LIST_HEAD(newstripes);
2082         struct disk_info *ndisks;
2083         unsigned long cpu;
2084         int err;
2085         struct kmem_cache *sc;
2086         int i;
2087         int hash, cnt;
2088
2089         if (newsize <= conf->pool_size)
2090                 return 0; /* never bother to shrink */
2091
2092         err = md_allow_write(conf->mddev);
2093         if (err)
2094                 return err;
2095
2096         /* Step 1 */
2097         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2098                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2099                                0, 0, NULL);
2100         if (!sc)
2101                 return -ENOMEM;
2102
2103         for (i = conf->max_nr_stripes; i; i--) {
2104                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
2105                 if (!nsh)
2106                         break;
2107
2108                 nsh->raid_conf = conf;
2109                 spin_lock_init(&nsh->stripe_lock);
2110
2111                 list_add(&nsh->lru, &newstripes);
2112         }
2113         if (i) {
2114                 /* didn't get enough, give up */
2115                 while (!list_empty(&newstripes)) {
2116                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2117                         list_del(&nsh->lru);
2118                         kmem_cache_free(sc, nsh);
2119                 }
2120                 kmem_cache_destroy(sc);
2121                 return -ENOMEM;
2122         }
2123         /* Step 2 - Must use GFP_NOIO now.
2124          * OK, we have enough stripes, start collecting inactive
2125          * stripes and copying them over
2126          */
2127         hash = 0;
2128         cnt = 0;
2129         list_for_each_entry(nsh, &newstripes, lru) {
2130                 lock_device_hash_lock(conf, hash);
2131                 wait_event_cmd(conf->wait_for_stripe,
2132                                     !list_empty(conf->inactive_list + hash),
2133                                     unlock_device_hash_lock(conf, hash),
2134                                     lock_device_hash_lock(conf, hash));
2135                 osh = get_free_stripe(conf, hash);
2136                 unlock_device_hash_lock(conf, hash);
2137                 atomic_set(&nsh->count, 1);
2138                 for(i=0; i<conf->pool_size; i++) {
2139                         nsh->dev[i].page = osh->dev[i].page;
2140                         nsh->dev[i].orig_page = osh->dev[i].page;
2141                 }
2142                 for( ; i<newsize; i++)
2143                         nsh->dev[i].page = NULL;
2144                 nsh->hash_lock_index = hash;
2145                 kmem_cache_free(conf->slab_cache, osh);
2146                 cnt++;
2147                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2148                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2149                         hash++;
2150                         cnt = 0;
2151                 }
2152         }
2153         kmem_cache_destroy(conf->slab_cache);
2154
2155         /* Step 3.
2156          * At this point, we are holding all the stripes so the array
2157          * is completely stalled, so now is a good time to resize
2158          * conf->disks and the scribble region
2159          */
2160         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2161         if (ndisks) {
2162                 for (i=0; i<conf->raid_disks; i++)
2163                         ndisks[i] = conf->disks[i];
2164                 kfree(conf->disks);
2165                 conf->disks = ndisks;
2166         } else
2167                 err = -ENOMEM;
2168
2169         get_online_cpus();
2170         for_each_present_cpu(cpu) {
2171                 struct raid5_percpu *percpu;
2172                 struct flex_array *scribble;
2173
2174                 percpu = per_cpu_ptr(conf->percpu, cpu);
2175                 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2176                         STRIPE_SECTORS, GFP_NOIO);
2177
2178                 if (scribble) {
2179                         flex_array_free(percpu->scribble);
2180                         percpu->scribble = scribble;
2181                 } else {
2182                         err = -ENOMEM;
2183                         break;
2184                 }
2185         }
2186         put_online_cpus();
2187
2188         /* Step 4, return new stripes to service */
2189         while(!list_empty(&newstripes)) {
2190                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2191                 list_del_init(&nsh->lru);
2192
2193                 for (i=conf->raid_disks; i < newsize; i++)
2194                         if (nsh->dev[i].page == NULL) {
2195                                 struct page *p = alloc_page(GFP_NOIO);
2196                                 nsh->dev[i].page = p;
2197                                 nsh->dev[i].orig_page = p;
2198                                 if (!p)
2199                                         err = -ENOMEM;
2200                         }
2201                 release_stripe(nsh);
2202         }
2203         /* critical section pass, GFP_NOIO no longer needed */
2204
2205         conf->slab_cache = sc;
2206         conf->active_name = 1-conf->active_name;
2207         conf->pool_size = newsize;
2208         return err;
2209 }
2210
2211 static int drop_one_stripe(struct r5conf *conf)
2212 {
2213         struct stripe_head *sh;
2214         int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2215
2216         spin_lock_irq(conf->hash_locks + hash);
2217         sh = get_free_stripe(conf, hash);
2218         spin_unlock_irq(conf->hash_locks + hash);
2219         if (!sh)
2220                 return 0;
2221         BUG_ON(atomic_read(&sh->count));
2222         shrink_buffers(sh);
2223         kmem_cache_free(conf->slab_cache, sh);
2224         atomic_dec(&conf->active_stripes);
2225         conf->max_nr_stripes--;
2226         return 1;
2227 }
2228
2229 static void shrink_stripes(struct r5conf *conf)
2230 {
2231         while (conf->max_nr_stripes &&
2232                drop_one_stripe(conf))
2233                 ;
2234
2235         if (conf->slab_cache)
2236                 kmem_cache_destroy(conf->slab_cache);
2237         conf->slab_cache = NULL;
2238 }
2239
2240 static void raid5_end_read_request(struct bio * bi, int error)
2241 {
2242         struct stripe_head *sh = bi->bi_private;
2243         struct r5conf *conf = sh->raid_conf;
2244         int disks = sh->disks, i;
2245         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2246         char b[BDEVNAME_SIZE];
2247         struct md_rdev *rdev = NULL;
2248         sector_t s;
2249
2250         for (i=0 ; i<disks; i++)
2251                 if (bi == &sh->dev[i].req)
2252                         break;
2253
2254         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2255                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2256                 uptodate);
2257         if (i == disks) {
2258                 BUG();
2259                 return;
2260         }
2261         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2262                 /* If replacement finished while this request was outstanding,
2263                  * 'replacement' might be NULL already.
2264                  * In that case it moved down to 'rdev'.
2265                  * rdev is not removed until all requests are finished.
2266                  */
2267                 rdev = conf->disks[i].replacement;
2268         if (!rdev)
2269                 rdev = conf->disks[i].rdev;
2270
2271         if (use_new_offset(conf, sh))
2272                 s = sh->sector + rdev->new_data_offset;
2273         else
2274                 s = sh->sector + rdev->data_offset;
2275         if (uptodate) {
2276                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2277                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2278                         /* Note that this cannot happen on a
2279                          * replacement device.  We just fail those on
2280                          * any error
2281                          */
2282                         printk_ratelimited(
2283                                 KERN_INFO
2284                                 "md/raid:%s: read error corrected"
2285                                 " (%lu sectors at %llu on %s)\n",
2286                                 mdname(conf->mddev), STRIPE_SECTORS,
2287                                 (unsigned long long)s,
2288                                 bdevname(rdev->bdev, b));
2289                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2290                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2291                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2292                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2293                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2294
2295                 if (atomic_read(&rdev->read_errors))
2296                         atomic_set(&rdev->read_errors, 0);
2297         } else {
2298                 const char *bdn = bdevname(rdev->bdev, b);
2299                 int retry = 0;
2300                 int set_bad = 0;
2301
2302                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2303                 atomic_inc(&rdev->read_errors);
2304                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2305                         printk_ratelimited(
2306                                 KERN_WARNING
2307                                 "md/raid:%s: read error on replacement device "
2308                                 "(sector %llu on %s).\n",
2309                                 mdname(conf->mddev),
2310                                 (unsigned long long)s,
2311                                 bdn);
2312                 else if (conf->mddev->degraded >= conf->max_degraded) {
2313                         set_bad = 1;
2314                         printk_ratelimited(
2315                                 KERN_WARNING
2316                                 "md/raid:%s: read error not correctable "
2317                                 "(sector %llu on %s).\n",
2318                                 mdname(conf->mddev),
2319                                 (unsigned long long)s,
2320                                 bdn);
2321                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2322                         /* Oh, no!!! */
2323                         set_bad = 1;
2324                         printk_ratelimited(
2325                                 KERN_WARNING
2326                                 "md/raid:%s: read error NOT corrected!! "
2327                                 "(sector %llu on %s).\n",
2328                                 mdname(conf->mddev),
2329                                 (unsigned long long)s,
2330                                 bdn);
2331                 } else if (atomic_read(&rdev->read_errors)
2332                          > conf->max_nr_stripes)
2333                         printk(KERN_WARNING
2334                                "md/raid:%s: Too many read errors, failing device %s.\n",
2335                                mdname(conf->mddev), bdn);
2336                 else
2337                         retry = 1;
2338                 if (set_bad && test_bit(In_sync, &rdev->flags)
2339                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2340                         retry = 1;
2341                 if (retry)
2342                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2343                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2344                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2345                         } else
2346                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2347                 else {
2348                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2349                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2350                         if (!(set_bad
2351                               && test_bit(In_sync, &rdev->flags)
2352                               && rdev_set_badblocks(
2353                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2354                                 md_error(conf->mddev, rdev);
2355                 }
2356         }
2357         rdev_dec_pending(rdev, conf->mddev);
2358         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2359         set_bit(STRIPE_HANDLE, &sh->state);
2360         release_stripe(sh);
2361 }
2362
2363 static void raid5_end_write_request(struct bio *bi, int error)
2364 {
2365         struct stripe_head *sh = bi->bi_private;
2366         struct r5conf *conf = sh->raid_conf;
2367         int disks = sh->disks, i;
2368         struct md_rdev *uninitialized_var(rdev);
2369         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2370         sector_t first_bad;
2371         int bad_sectors;
2372         int replacement = 0;
2373
2374         for (i = 0 ; i < disks; i++) {
2375                 if (bi == &sh->dev[i].req) {
2376                         rdev = conf->disks[i].rdev;
2377                         break;
2378                 }
2379                 if (bi == &sh->dev[i].rreq) {
2380                         rdev = conf->disks[i].replacement;
2381                         if (rdev)
2382                                 replacement = 1;
2383                         else
2384                                 /* rdev was removed and 'replacement'
2385                                  * replaced it.  rdev is not removed
2386                                  * until all requests are finished.
2387                                  */
2388                                 rdev = conf->disks[i].rdev;
2389                         break;
2390                 }
2391         }
2392         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2393                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2394                 uptodate);
2395         if (i == disks) {
2396                 BUG();
2397                 return;
2398         }
2399
2400         if (replacement) {
2401                 if (!uptodate)
2402                         md_error(conf->mddev, rdev);
2403                 else if (is_badblock(rdev, sh->sector,
2404                                      STRIPE_SECTORS,
2405                                      &first_bad, &bad_sectors))
2406                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2407         } else {
2408                 if (!uptodate) {
2409                         set_bit(STRIPE_DEGRADED, &sh->state);
2410                         set_bit(WriteErrorSeen, &rdev->flags);
2411                         set_bit(R5_WriteError, &sh->dev[i].flags);
2412                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2413                                 set_bit(MD_RECOVERY_NEEDED,
2414                                         &rdev->mddev->recovery);
2415                 } else if (is_badblock(rdev, sh->sector,
2416                                        STRIPE_SECTORS,
2417                                        &first_bad, &bad_sectors)) {
2418                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2419                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2420                                 /* That was a successful write so make
2421                                  * sure it looks like we already did
2422                                  * a re-write.
2423                                  */
2424                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2425                 }
2426         }
2427         rdev_dec_pending(rdev, conf->mddev);
2428
2429         if (sh->batch_head && !uptodate)
2430                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2431
2432         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2433                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2434         set_bit(STRIPE_HANDLE, &sh->state);
2435         release_stripe(sh);
2436
2437         if (sh->batch_head && sh != sh->batch_head)
2438                 release_stripe(sh->batch_head);
2439 }
2440
2441 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2442
2443 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2444 {
2445         struct r5dev *dev = &sh->dev[i];
2446
2447         bio_init(&dev->req);
2448         dev->req.bi_io_vec = &dev->vec;
2449         dev->req.bi_max_vecs = 1;
2450         dev->req.bi_private = sh;
2451
2452         bio_init(&dev->rreq);
2453         dev->rreq.bi_io_vec = &dev->rvec;
2454         dev->rreq.bi_max_vecs = 1;
2455         dev->rreq.bi_private = sh;
2456
2457         dev->flags = 0;
2458         dev->sector = compute_blocknr(sh, i, previous);
2459 }
2460
2461 static void error(struct mddev *mddev, struct md_rdev *rdev)
2462 {
2463         char b[BDEVNAME_SIZE];
2464         struct r5conf *conf = mddev->private;
2465         unsigned long flags;
2466         pr_debug("raid456: error called\n");
2467
2468         spin_lock_irqsave(&conf->device_lock, flags);
2469         clear_bit(In_sync, &rdev->flags);
2470         mddev->degraded = calc_degraded(conf);
2471         spin_unlock_irqrestore(&conf->device_lock, flags);
2472         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2473
2474         set_bit(Blocked, &rdev->flags);
2475         set_bit(Faulty, &rdev->flags);
2476         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2477         printk(KERN_ALERT
2478                "md/raid:%s: Disk failure on %s, disabling device.\n"
2479                "md/raid:%s: Operation continuing on %d devices.\n",
2480                mdname(mddev),
2481                bdevname(rdev->bdev, b),
2482                mdname(mddev),
2483                conf->raid_disks - mddev->degraded);
2484 }
2485
2486 /*
2487  * Input: a 'big' sector number,
2488  * Output: index of the data and parity disk, and the sector # in them.
2489  */
2490 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2491                                      int previous, int *dd_idx,
2492                                      struct stripe_head *sh)
2493 {
2494         sector_t stripe, stripe2;
2495         sector_t chunk_number;
2496         unsigned int chunk_offset;
2497         int pd_idx, qd_idx;
2498         int ddf_layout = 0;
2499         sector_t new_sector;
2500         int algorithm = previous ? conf->prev_algo
2501                                  : conf->algorithm;
2502         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2503                                          : conf->chunk_sectors;
2504         int raid_disks = previous ? conf->previous_raid_disks
2505                                   : conf->raid_disks;
2506         int data_disks = raid_disks - conf->max_degraded;
2507
2508         /* First compute the information on this sector */
2509
2510         /*
2511          * Compute the chunk number and the sector offset inside the chunk
2512          */
2513         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2514         chunk_number = r_sector;
2515
2516         /*
2517          * Compute the stripe number
2518          */
2519         stripe = chunk_number;
2520         *dd_idx = sector_div(stripe, data_disks);
2521         stripe2 = stripe;
2522         /*
2523          * Select the parity disk based on the user selected algorithm.
2524          */
2525         pd_idx = qd_idx = -1;
2526         switch(conf->level) {
2527         case 4:
2528                 pd_idx = data_disks;
2529                 break;
2530         case 5:
2531                 switch (algorithm) {
2532                 case ALGORITHM_LEFT_ASYMMETRIC:
2533                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2534                         if (*dd_idx >= pd_idx)
2535                                 (*dd_idx)++;
2536                         break;
2537                 case ALGORITHM_RIGHT_ASYMMETRIC:
2538                         pd_idx = sector_div(stripe2, raid_disks);
2539                         if (*dd_idx >= pd_idx)
2540                                 (*dd_idx)++;
2541                         break;
2542                 case ALGORITHM_LEFT_SYMMETRIC:
2543                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2544                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2545                         break;
2546                 case ALGORITHM_RIGHT_SYMMETRIC:
2547                         pd_idx = sector_div(stripe2, raid_disks);
2548                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2549                         break;
2550                 case ALGORITHM_PARITY_0:
2551                         pd_idx = 0;
2552                         (*dd_idx)++;
2553                         break;
2554                 case ALGORITHM_PARITY_N:
2555                         pd_idx = data_disks;
2556                         break;
2557                 default:
2558                         BUG();
2559                 }
2560                 break;
2561         case 6:
2562
2563                 switch (algorithm) {
2564                 case ALGORITHM_LEFT_ASYMMETRIC:
2565                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2566                         qd_idx = pd_idx + 1;
2567                         if (pd_idx == raid_disks-1) {
2568                                 (*dd_idx)++;    /* Q D D D P */
2569                                 qd_idx = 0;
2570                         } else if (*dd_idx >= pd_idx)
2571                                 (*dd_idx) += 2; /* D D P Q D */
2572                         break;
2573                 case ALGORITHM_RIGHT_ASYMMETRIC:
2574                         pd_idx = sector_div(stripe2, raid_disks);
2575                         qd_idx = pd_idx + 1;
2576                         if (pd_idx == raid_disks-1) {
2577                                 (*dd_idx)++;    /* Q D D D P */
2578                                 qd_idx = 0;
2579                         } else if (*dd_idx >= pd_idx)
2580                                 (*dd_idx) += 2; /* D D P Q D */
2581                         break;
2582                 case ALGORITHM_LEFT_SYMMETRIC:
2583                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2584                         qd_idx = (pd_idx + 1) % raid_disks;
2585                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2586                         break;
2587                 case ALGORITHM_RIGHT_SYMMETRIC:
2588                         pd_idx = sector_div(stripe2, raid_disks);
2589                         qd_idx = (pd_idx + 1) % raid_disks;
2590                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2591                         break;
2592
2593                 case ALGORITHM_PARITY_0:
2594                         pd_idx = 0;
2595                         qd_idx = 1;
2596                         (*dd_idx) += 2;
2597                         break;
2598                 case ALGORITHM_PARITY_N:
2599                         pd_idx = data_disks;
2600                         qd_idx = data_disks + 1;
2601                         break;
2602
2603                 case ALGORITHM_ROTATING_ZERO_RESTART:
2604                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2605                          * of blocks for computing Q is different.
2606                          */
2607                         pd_idx = sector_div(stripe2, raid_disks);
2608                         qd_idx = pd_idx + 1;
2609                         if (pd_idx == raid_disks-1) {
2610                                 (*dd_idx)++;    /* Q D D D P */
2611                                 qd_idx = 0;
2612                         } else if (*dd_idx >= pd_idx)
2613                                 (*dd_idx) += 2; /* D D P Q D */
2614                         ddf_layout = 1;
2615                         break;
2616
2617                 case ALGORITHM_ROTATING_N_RESTART:
2618                         /* Same a left_asymmetric, by first stripe is
2619                          * D D D P Q  rather than
2620                          * Q D D D P
2621                          */
2622                         stripe2 += 1;
2623                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2624                         qd_idx = pd_idx + 1;
2625                         if (pd_idx == raid_disks-1) {
2626                                 (*dd_idx)++;    /* Q D D D P */
2627                                 qd_idx = 0;
2628                         } else if (*dd_idx >= pd_idx)
2629                                 (*dd_idx) += 2; /* D D P Q D */
2630                         ddf_layout = 1;
2631                         break;
2632
2633                 case ALGORITHM_ROTATING_N_CONTINUE:
2634                         /* Same as left_symmetric but Q is before P */
2635                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2636                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2637                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2638                         ddf_layout = 1;
2639                         break;
2640
2641                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2642                         /* RAID5 left_asymmetric, with Q on last device */
2643                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2644                         if (*dd_idx >= pd_idx)
2645                                 (*dd_idx)++;
2646                         qd_idx = raid_disks - 1;
2647                         break;
2648
2649                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2650                         pd_idx = sector_div(stripe2, raid_disks-1);
2651                         if (*dd_idx >= pd_idx)
2652                                 (*dd_idx)++;
2653                         qd_idx = raid_disks - 1;
2654                         break;
2655
2656                 case ALGORITHM_LEFT_SYMMETRIC_6:
2657                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2658                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2659                         qd_idx = raid_disks - 1;
2660                         break;
2661
2662                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2663                         pd_idx = sector_div(stripe2, raid_disks-1);
2664                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2665                         qd_idx = raid_disks - 1;
2666                         break;
2667
2668                 case ALGORITHM_PARITY_0_6:
2669                         pd_idx = 0;
2670                         (*dd_idx)++;
2671                         qd_idx = raid_disks - 1;
2672                         break;
2673
2674                 default:
2675                         BUG();
2676                 }
2677                 break;
2678         }
2679
2680         if (sh) {
2681                 sh->pd_idx = pd_idx;
2682                 sh->qd_idx = qd_idx;
2683                 sh->ddf_layout = ddf_layout;
2684         }
2685         /*
2686          * Finally, compute the new sector number
2687          */
2688         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2689         return new_sector;
2690 }
2691
2692 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2693 {
2694         struct r5conf *conf = sh->raid_conf;
2695         int raid_disks = sh->disks;
2696         int data_disks = raid_disks - conf->max_degraded;
2697         sector_t new_sector = sh->sector, check;
2698         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2699                                          : conf->chunk_sectors;
2700         int algorithm = previous ? conf->prev_algo
2701                                  : conf->algorithm;
2702         sector_t stripe;
2703         int chunk_offset;
2704         sector_t chunk_number;
2705         int dummy1, dd_idx = i;
2706         sector_t r_sector;
2707         struct stripe_head sh2;
2708
2709         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2710         stripe = new_sector;
2711
2712         if (i == sh->pd_idx)
2713                 return 0;
2714         switch(conf->level) {
2715         case 4: break;
2716         case 5:
2717                 switch (algorithm) {
2718                 case ALGORITHM_LEFT_ASYMMETRIC:
2719                 case ALGORITHM_RIGHT_ASYMMETRIC:
2720                         if (i > sh->pd_idx)
2721                                 i--;
2722                         break;
2723                 case ALGORITHM_LEFT_SYMMETRIC:
2724                 case ALGORITHM_RIGHT_SYMMETRIC:
2725                         if (i < sh->pd_idx)
2726                                 i += raid_disks;
2727                         i -= (sh->pd_idx + 1);
2728                         break;
2729                 case ALGORITHM_PARITY_0:
2730                         i -= 1;
2731                         break;
2732                 case ALGORITHM_PARITY_N:
2733                         break;
2734                 default:
2735                         BUG();
2736                 }
2737                 break;
2738         case 6:
2739                 if (i == sh->qd_idx)
2740                         return 0; /* It is the Q disk */
2741                 switch (algorithm) {
2742                 case ALGORITHM_LEFT_ASYMMETRIC:
2743                 case ALGORITHM_RIGHT_ASYMMETRIC:
2744                 case ALGORITHM_ROTATING_ZERO_RESTART:
2745                 case ALGORITHM_ROTATING_N_RESTART:
2746                         if (sh->pd_idx == raid_disks-1)
2747                                 i--;    /* Q D D D P */
2748                         else if (i > sh->pd_idx)
2749                                 i -= 2; /* D D P Q D */
2750                         break;
2751                 case ALGORITHM_LEFT_SYMMETRIC:
2752                 case ALGORITHM_RIGHT_SYMMETRIC:
2753                         if (sh->pd_idx == raid_disks-1)
2754                                 i--; /* Q D D D P */
2755                         else {
2756                                 /* D D P Q D */
2757                                 if (i < sh->pd_idx)
2758                                         i += raid_disks;
2759                                 i -= (sh->pd_idx + 2);
2760                         }
2761                         break;
2762                 case ALGORITHM_PARITY_0:
2763                         i -= 2;
2764                         break;
2765                 case ALGORITHM_PARITY_N:
2766                         break;
2767                 case ALGORITHM_ROTATING_N_CONTINUE:
2768                         /* Like left_symmetric, but P is before Q */
2769                         if (sh->pd_idx == 0)
2770                                 i--;    /* P D D D Q */
2771                         else {
2772                                 /* D D Q P D */
2773                                 if (i < sh->pd_idx)
2774                                         i += raid_disks;
2775                                 i -= (sh->pd_idx + 1);
2776                         }
2777                         break;
2778                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2779                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2780                         if (i > sh->pd_idx)
2781                                 i--;
2782                         break;
2783                 case ALGORITHM_LEFT_SYMMETRIC_6:
2784                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2785                         if (i < sh->pd_idx)
2786                                 i += data_disks + 1;
2787                         i -= (sh->pd_idx + 1);
2788                         break;
2789                 case ALGORITHM_PARITY_0_6:
2790                         i -= 1;
2791                         break;
2792                 default:
2793                         BUG();
2794                 }
2795                 break;
2796         }
2797
2798         chunk_number = stripe * data_disks + i;
2799         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2800
2801         check = raid5_compute_sector(conf, r_sector,
2802                                      previous, &dummy1, &sh2);
2803         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2804                 || sh2.qd_idx != sh->qd_idx) {
2805                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2806                        mdname(conf->mddev));
2807                 return 0;
2808         }
2809         return r_sector;
2810 }
2811
2812 static void
2813 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2814                          int rcw, int expand)
2815 {
2816         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2817         struct r5conf *conf = sh->raid_conf;
2818         int level = conf->level;
2819
2820         if (rcw) {
2821
2822                 for (i = disks; i--; ) {
2823                         struct r5dev *dev = &sh->dev[i];
2824
2825                         if (dev->towrite) {
2826                                 set_bit(R5_LOCKED, &dev->flags);
2827                                 set_bit(R5_Wantdrain, &dev->flags);
2828                                 if (!expand)
2829                                         clear_bit(R5_UPTODATE, &dev->flags);
2830                                 s->locked++;
2831                         }
2832                 }
2833                 /* if we are not expanding this is a proper write request, and
2834                  * there will be bios with new data to be drained into the
2835                  * stripe cache
2836                  */
2837                 if (!expand) {
2838                         if (!s->locked)
2839                                 /* False alarm, nothing to do */
2840                                 return;
2841                         sh->reconstruct_state = reconstruct_state_drain_run;
2842                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2843                 } else
2844                         sh->reconstruct_state = reconstruct_state_run;
2845
2846                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2847
2848                 if (s->locked + conf->max_degraded == disks)
2849                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2850                                 atomic_inc(&conf->pending_full_writes);
2851         } else {
2852                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2853                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2854                 BUG_ON(level == 6 &&
2855                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2856                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2857
2858                 for (i = disks; i--; ) {
2859                         struct r5dev *dev = &sh->dev[i];
2860                         if (i == pd_idx || i == qd_idx)
2861                                 continue;
2862
2863                         if (dev->towrite &&
2864                             (test_bit(R5_UPTODATE, &dev->flags) ||
2865                              test_bit(R5_Wantcompute, &dev->flags))) {
2866                                 set_bit(R5_Wantdrain, &dev->flags);
2867                                 set_bit(R5_LOCKED, &dev->flags);
2868                                 clear_bit(R5_UPTODATE, &dev->flags);
2869                                 s->locked++;
2870                         }
2871                 }
2872                 if (!s->locked)
2873                         /* False alarm - nothing to do */
2874                         return;
2875                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2876                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2877                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2878                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2879         }
2880
2881         /* keep the parity disk(s) locked while asynchronous operations
2882          * are in flight
2883          */
2884         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2885         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2886         s->locked++;
2887
2888         if (level == 6) {
2889                 int qd_idx = sh->qd_idx;
2890                 struct r5dev *dev = &sh->dev[qd_idx];
2891
2892                 set_bit(R5_LOCKED, &dev->flags);
2893                 clear_bit(R5_UPTODATE, &dev->flags);
2894                 s->locked++;
2895         }
2896
2897         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2898                 __func__, (unsigned long long)sh->sector,
2899                 s->locked, s->ops_request);
2900 }
2901
2902 /*
2903  * Each stripe/dev can have one or more bion attached.
2904  * toread/towrite point to the first in a chain.
2905  * The bi_next chain must be in order.
2906  */
2907 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2908                           int forwrite, int previous)
2909 {
2910         struct bio **bip;
2911         struct r5conf *conf = sh->raid_conf;
2912         int firstwrite=0;
2913
2914         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2915                 (unsigned long long)bi->bi_iter.bi_sector,
2916                 (unsigned long long)sh->sector);
2917
2918         /*
2919          * If several bio share a stripe. The bio bi_phys_segments acts as a
2920          * reference count to avoid race. The reference count should already be
2921          * increased before this function is called (for example, in
2922          * make_request()), so other bio sharing this stripe will not free the
2923          * stripe. If a stripe is owned by one stripe, the stripe lock will
2924          * protect it.
2925          */
2926         spin_lock_irq(&sh->stripe_lock);
2927         /* Don't allow new IO added to stripes in batch list */
2928         if (sh->batch_head)
2929                 goto overlap;
2930         if (forwrite) {
2931                 bip = &sh->dev[dd_idx].towrite;
2932                 if (*bip == NULL)
2933                         firstwrite = 1;
2934         } else
2935                 bip = &sh->dev[dd_idx].toread;
2936         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2937                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2938                         goto overlap;
2939                 bip = & (*bip)->bi_next;
2940         }
2941         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2942                 goto overlap;
2943
2944         if (!forwrite || previous)
2945                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2946
2947         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2948         if (*bip)
2949                 bi->bi_next = *bip;
2950         *bip = bi;
2951         raid5_inc_bi_active_stripes(bi);
2952
2953         if (forwrite) {
2954                 /* check if page is covered */
2955                 sector_t sector = sh->dev[dd_idx].sector;
2956                 for (bi=sh->dev[dd_idx].towrite;
2957                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2958                              bi && bi->bi_iter.bi_sector <= sector;
2959                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2960                         if (bio_end_sector(bi) >= sector)
2961                                 sector = bio_end_sector(bi);
2962                 }
2963                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2964                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2965                                 sh->overwrite_disks++;
2966         }
2967
2968         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2969                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2970                 (unsigned long long)sh->sector, dd_idx);
2971         spin_unlock_irq(&sh->stripe_lock);
2972
2973         if (conf->mddev->bitmap && firstwrite) {
2974                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2975                                   STRIPE_SECTORS, 0);
2976                 sh->bm_seq = conf->seq_flush+1;
2977                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2978         }
2979
2980         if (stripe_can_batch(sh))
2981                 stripe_add_to_batch_list(conf, sh);
2982         return 1;
2983
2984  overlap:
2985         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2986         spin_unlock_irq(&sh->stripe_lock);
2987         return 0;
2988 }
2989
2990 static void end_reshape(struct r5conf *conf);
2991
2992 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2993                             struct stripe_head *sh)
2994 {
2995         int sectors_per_chunk =
2996                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2997         int dd_idx;
2998         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2999         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3000
3001         raid5_compute_sector(conf,
3002                              stripe * (disks - conf->max_degraded)
3003                              *sectors_per_chunk + chunk_offset,
3004                              previous,
3005                              &dd_idx, sh);
3006 }
3007
3008 static void
3009 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3010                                 struct stripe_head_state *s, int disks,
3011                                 struct bio **return_bi)
3012 {
3013         int i;
3014         BUG_ON(sh->batch_head);
3015         for (i = disks; i--; ) {
3016                 struct bio *bi;
3017                 int bitmap_end = 0;
3018
3019                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3020                         struct md_rdev *rdev;
3021                         rcu_read_lock();
3022                         rdev = rcu_dereference(conf->disks[i].rdev);
3023                         if (rdev && test_bit(In_sync, &rdev->flags))
3024                                 atomic_inc(&rdev->nr_pending);
3025                         else
3026                                 rdev = NULL;
3027                         rcu_read_unlock();
3028                         if (rdev) {
3029                                 if (!rdev_set_badblocks(
3030                                             rdev,
3031                                             sh->sector,
3032                                             STRIPE_SECTORS, 0))
3033                                         md_error(conf->mddev, rdev);
3034                                 rdev_dec_pending(rdev, conf->mddev);
3035                         }
3036                 }
3037                 spin_lock_irq(&sh->stripe_lock);
3038                 /* fail all writes first */
3039                 bi = sh->dev[i].towrite;
3040                 sh->dev[i].towrite = NULL;
3041                 sh->overwrite_disks = 0;
3042                 spin_unlock_irq(&sh->stripe_lock);
3043                 if (bi)
3044                         bitmap_end = 1;
3045
3046                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3047                         wake_up(&conf->wait_for_overlap);
3048
3049                 while (bi && bi->bi_iter.bi_sector <
3050                         sh->dev[i].sector + STRIPE_SECTORS) {
3051                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3052                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3053                         if (!raid5_dec_bi_active_stripes(bi)) {
3054                                 md_write_end(conf->mddev);
3055                                 bi->bi_next = *return_bi;
3056                                 *return_bi = bi;
3057                         }
3058                         bi = nextbi;
3059                 }
3060                 if (bitmap_end)
3061                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3062                                 STRIPE_SECTORS, 0, 0);
3063                 bitmap_end = 0;
3064                 /* and fail all 'written' */
3065                 bi = sh->dev[i].written;
3066                 sh->dev[i].written = NULL;
3067                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3068                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3069                         sh->dev[i].page = sh->dev[i].orig_page;
3070                 }
3071
3072                 if (bi) bitmap_end = 1;
3073                 while (bi && bi->bi_iter.bi_sector <
3074                        sh->dev[i].sector + STRIPE_SECTORS) {
3075                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3076                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3077                         if (!raid5_dec_bi_active_stripes(bi)) {
3078                                 md_write_end(conf->mddev);
3079                                 bi->bi_next = *return_bi;
3080                                 *return_bi = bi;
3081                         }
3082                         bi = bi2;
3083                 }
3084
3085                 /* fail any reads if this device is non-operational and
3086                  * the data has not reached the cache yet.
3087                  */
3088                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3089                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3090                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3091                         spin_lock_irq(&sh->stripe_lock);
3092                         bi = sh->dev[i].toread;
3093                         sh->dev[i].toread = NULL;
3094                         spin_unlock_irq(&sh->stripe_lock);
3095                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3096                                 wake_up(&conf->wait_for_overlap);
3097                         while (bi && bi->bi_iter.bi_sector <
3098                                sh->dev[i].sector + STRIPE_SECTORS) {
3099                                 struct bio *nextbi =
3100                                         r5_next_bio(bi, sh->dev[i].sector);
3101                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3102                                 if (!raid5_dec_bi_active_stripes(bi)) {
3103                                         bi->bi_next = *return_bi;
3104                                         *return_bi = bi;
3105                                 }
3106                                 bi = nextbi;
3107                         }
3108                 }
3109                 if (bitmap_end)
3110                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3111                                         STRIPE_SECTORS, 0, 0);
3112                 /* If we were in the middle of a write the parity block might
3113                  * still be locked - so just clear all R5_LOCKED flags
3114                  */
3115                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3116         }
3117
3118         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3119                 if (atomic_dec_and_test(&conf->pending_full_writes))
3120                         md_wakeup_thread(conf->mddev->thread);
3121 }
3122
3123 static void
3124 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3125                    struct stripe_head_state *s)
3126 {
3127         int abort = 0;
3128         int i;
3129
3130         BUG_ON(sh->batch_head);
3131         clear_bit(STRIPE_SYNCING, &sh->state);
3132         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3133                 wake_up(&conf->wait_for_overlap);
3134         s->syncing = 0;
3135         s->replacing = 0;
3136         /* There is nothing more to do for sync/check/repair.
3137          * Don't even need to abort as that is handled elsewhere
3138          * if needed, and not always wanted e.g. if there is a known
3139          * bad block here.
3140          * For recover/replace we need to record a bad block on all
3141          * non-sync devices, or abort the recovery
3142          */
3143         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3144                 /* During recovery devices cannot be removed, so
3145                  * locking and refcounting of rdevs is not needed
3146                  */
3147                 for (i = 0; i < conf->raid_disks; i++) {
3148                         struct md_rdev *rdev = conf->disks[i].rdev;
3149                         if (rdev
3150                             && !test_bit(Faulty, &rdev->flags)
3151                             && !test_bit(In_sync, &rdev->flags)
3152                             && !rdev_set_badblocks(rdev, sh->sector,
3153                                                    STRIPE_SECTORS, 0))
3154                                 abort = 1;
3155                         rdev = conf->disks[i].replacement;
3156                         if (rdev
3157                             && !test_bit(Faulty, &rdev->flags)
3158                             && !test_bit(In_sync, &rdev->flags)
3159                             && !rdev_set_badblocks(rdev, sh->sector,
3160                                                    STRIPE_SECTORS, 0))
3161                                 abort = 1;
3162                 }
3163                 if (abort)
3164                         conf->recovery_disabled =
3165                                 conf->mddev->recovery_disabled;
3166         }
3167         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3168 }
3169
3170 static int want_replace(struct stripe_head *sh, int disk_idx)
3171 {
3172         struct md_rdev *rdev;
3173         int rv = 0;
3174         /* Doing recovery so rcu locking not required */
3175         rdev = sh->raid_conf->disks[disk_idx].replacement;
3176         if (rdev
3177             && !test_bit(Faulty, &rdev->flags)
3178             && !test_bit(In_sync, &rdev->flags)
3179             && (rdev->recovery_offset <= sh->sector
3180                 || rdev->mddev->recovery_cp <= sh->sector))
3181                 rv = 1;
3182
3183         return rv;
3184 }
3185
3186 /* fetch_block - checks the given member device to see if its data needs
3187  * to be read or computed to satisfy a request.
3188  *
3189  * Returns 1 when no more member devices need to be checked, otherwise returns
3190  * 0 to tell the loop in handle_stripe_fill to continue
3191  */
3192
3193 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3194                            int disk_idx, int disks)
3195 {
3196         struct r5dev *dev = &sh->dev[disk_idx];
3197         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3198                                   &sh->dev[s->failed_num[1]] };
3199         int i;
3200
3201
3202         if (test_bit(R5_LOCKED, &dev->flags) ||
3203             test_bit(R5_UPTODATE, &dev->flags))
3204                 /* No point reading this as we already have it or have
3205                  * decided to get it.
3206                  */
3207                 return 0;
3208
3209         if (dev->toread ||
3210             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3211                 /* We need this block to directly satisfy a request */
3212                 return 1;
3213
3214         if (s->syncing || s->expanding ||
3215             (s->replacing && want_replace(sh, disk_idx)))
3216                 /* When syncing, or expanding we read everything.
3217                  * When replacing, we need the replaced block.
3218                  */
3219                 return 1;
3220
3221         if ((s->failed >= 1 && fdev[0]->toread) ||
3222             (s->failed >= 2 && fdev[1]->toread))
3223                 /* If we want to read from a failed device, then
3224                  * we need to actually read every other device.
3225                  */
3226                 return 1;
3227
3228         /* Sometimes neither read-modify-write nor reconstruct-write
3229          * cycles can work.  In those cases we read every block we
3230          * can.  Then the parity-update is certain to have enough to
3231          * work with.
3232          * This can only be a problem when we need to write something,
3233          * and some device has failed.  If either of those tests
3234          * fail we need look no further.
3235          */
3236         if (!s->failed || !s->to_write)
3237                 return 0;
3238
3239         if (test_bit(R5_Insync, &dev->flags) &&
3240             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3241                 /* Pre-reads at not permitted until after short delay
3242                  * to gather multiple requests.  However if this
3243                  * device is no Insync, the block could only be be computed
3244                  * and there is no need to delay that.
3245                  */
3246                 return 0;
3247
3248         for (i = 0; i < s->failed; i++) {
3249                 if (fdev[i]->towrite &&
3250                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3251                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3252                         /* If we have a partial write to a failed
3253                          * device, then we will need to reconstruct
3254                          * the content of that device, so all other
3255                          * devices must be read.
3256                          */
3257                         return 1;
3258         }
3259
3260         /* If we are forced to do a reconstruct-write, either because
3261          * the current RAID6 implementation only supports that, or
3262          * or because parity cannot be trusted and we are currently
3263          * recovering it, there is extra need to be careful.
3264          * If one of the devices that we would need to read, because
3265          * it is not being overwritten (and maybe not written at all)
3266          * is missing/faulty, then we need to read everything we can.
3267          */
3268         if (sh->raid_conf->level != 6 &&
3269             sh->sector < sh->raid_conf->mddev->recovery_cp)
3270                 /* reconstruct-write isn't being forced */
3271                 return 0;
3272         for (i = 0; i < s->failed; i++) {
3273                 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3274                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3275                         return 1;
3276         }
3277
3278         return 0;
3279 }
3280
3281 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3282                        int disk_idx, int disks)
3283 {
3284         struct r5dev *dev = &sh->dev[disk_idx];
3285
3286         /* is the data in this block needed, and can we get it? */
3287         if (need_this_block(sh, s, disk_idx, disks)) {
3288                 /* we would like to get this block, possibly by computing it,
3289                  * otherwise read it if the backing disk is insync
3290                  */
3291                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3292                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3293                 if ((s->uptodate == disks - 1) &&
3294                     (s->failed && (disk_idx == s->failed_num[0] ||
3295                                    disk_idx == s->failed_num[1]))) {
3296                         /* have disk failed, and we're requested to fetch it;
3297                          * do compute it
3298                          */
3299                         pr_debug("Computing stripe %llu block %d\n",
3300                                (unsigned long long)sh->sector, disk_idx);
3301                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3302                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3303                         set_bit(R5_Wantcompute, &dev->flags);
3304                         sh->ops.target = disk_idx;
3305                         sh->ops.target2 = -1; /* no 2nd target */
3306                         s->req_compute = 1;
3307                         /* Careful: from this point on 'uptodate' is in the eye
3308                          * of raid_run_ops which services 'compute' operations
3309                          * before writes. R5_Wantcompute flags a block that will
3310                          * be R5_UPTODATE by the time it is needed for a
3311                          * subsequent operation.
3312                          */
3313                         s->uptodate++;
3314                         return 1;
3315                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3316                         /* Computing 2-failure is *very* expensive; only
3317                          * do it if failed >= 2
3318                          */
3319                         int other;
3320                         for (other = disks; other--; ) {
3321                                 if (other == disk_idx)
3322                                         continue;
3323                                 if (!test_bit(R5_UPTODATE,
3324                                       &sh->dev[other].flags))
3325                                         break;
3326                         }
3327                         BUG_ON(other < 0);
3328                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3329                                (unsigned long long)sh->sector,
3330                                disk_idx, other);
3331                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3332                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3333                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3334                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3335                         sh->ops.target = disk_idx;
3336                         sh->ops.target2 = other;
3337                         s->uptodate += 2;
3338                         s->req_compute = 1;
3339                         return 1;
3340                 } else if (test_bit(R5_Insync, &dev->flags)) {
3341                         set_bit(R5_LOCKED, &dev->flags);
3342                         set_bit(R5_Wantread, &dev->flags);
3343                         s->locked++;
3344                         pr_debug("Reading block %d (sync=%d)\n",
3345                                 disk_idx, s->syncing);
3346                 }
3347         }
3348
3349         return 0;
3350 }
3351
3352 /**
3353  * handle_stripe_fill - read or compute data to satisfy pending requests.
3354  */
3355 static void handle_stripe_fill(struct stripe_head *sh,
3356                                struct stripe_head_state *s,
3357                                int disks)
3358 {
3359         int i;
3360
3361         BUG_ON(sh->batch_head);
3362         /* look for blocks to read/compute, skip this if a compute
3363          * is already in flight, or if the stripe contents are in the
3364          * midst of changing due to a write
3365          */
3366         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3367             !sh->reconstruct_state)
3368                 for (i = disks; i--; )
3369                         if (fetch_block(sh, s, i, disks))
3370                                 break;
3371         set_bit(STRIPE_HANDLE, &sh->state);
3372 }
3373
3374 /* handle_stripe_clean_event
3375  * any written block on an uptodate or failed drive can be returned.
3376  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3377  * never LOCKED, so we don't need to test 'failed' directly.
3378  */
3379 static void handle_stripe_clean_event(struct r5conf *conf,
3380         struct stripe_head *sh, int disks, struct bio **return_bi)
3381 {
3382         int i;
3383         struct r5dev *dev;
3384         int discard_pending = 0;
3385         struct stripe_head *head_sh = sh;
3386         bool do_endio = false;
3387         int wakeup_nr = 0;
3388
3389         for (i = disks; i--; )
3390                 if (sh->dev[i].written) {
3391                         dev = &sh->dev[i];
3392                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3393                             (test_bit(R5_UPTODATE, &dev->flags) ||
3394                              test_bit(R5_Discard, &dev->flags) ||
3395                              test_bit(R5_SkipCopy, &dev->flags))) {
3396                                 /* We can return any write requests */
3397                                 struct bio *wbi, *wbi2;
3398                                 pr_debug("Return write for disc %d\n", i);
3399                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3400                                         clear_bit(R5_UPTODATE, &dev->flags);
3401                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3402                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3403                                 }
3404                                 do_endio = true;
3405
3406 returnbi:
3407                                 dev->page = dev->orig_page;
3408                                 wbi = dev->written;
3409                                 dev->written = NULL;
3410                                 while (wbi && wbi->bi_iter.bi_sector <
3411                                         dev->sector + STRIPE_SECTORS) {
3412                                         wbi2 = r5_next_bio(wbi, dev->sector);
3413                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3414                                                 md_write_end(conf->mddev);
3415                                                 wbi->bi_next = *return_bi;
3416                                                 *return_bi = wbi;
3417                                         }
3418                                         wbi = wbi2;
3419                                 }
3420                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3421                                                 STRIPE_SECTORS,
3422                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3423                                                 0);
3424                                 if (head_sh->batch_head) {
3425                                         sh = list_first_entry(&sh->batch_list,
3426                                                               struct stripe_head,
3427                                                               batch_list);
3428                                         if (sh != head_sh) {
3429                                                 dev = &sh->dev[i];
3430                                                 goto returnbi;
3431                                         }
3432                                 }
3433                                 sh = head_sh;
3434                                 dev = &sh->dev[i];
3435                         } else if (test_bit(R5_Discard, &dev->flags))
3436                                 discard_pending = 1;
3437                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3438                         WARN_ON(dev->page != dev->orig_page);
3439                 }
3440         if (!discard_pending &&
3441             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3442                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3443                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3444                 if (sh->qd_idx >= 0) {
3445                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3446                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3447                 }
3448                 /* now that discard is done we can proceed with any sync */
3449                 clear_bit(STRIPE_DISCARD, &sh->state);
3450                 /*
3451                  * SCSI discard will change some bio fields and the stripe has
3452                  * no updated data, so remove it from hash list and the stripe
3453                  * will be reinitialized
3454                  */
3455                 spin_lock_irq(&conf->device_lock);
3456 unhash:
3457                 remove_hash(sh);
3458                 if (head_sh->batch_head) {
3459                         sh = list_first_entry(&sh->batch_list,
3460                                               struct stripe_head, batch_list);
3461                         if (sh != head_sh)
3462                                         goto unhash;
3463                 }
3464                 spin_unlock_irq(&conf->device_lock);
3465                 sh = head_sh;
3466
3467                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3468                         set_bit(STRIPE_HANDLE, &sh->state);
3469
3470         }
3471
3472         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3473                 if (atomic_dec_and_test(&conf->pending_full_writes))
3474                         md_wakeup_thread(conf->mddev->thread);
3475
3476         if (!head_sh->batch_head || !do_endio)
3477                 return;
3478         for (i = 0; i < head_sh->disks; i++) {
3479                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3480                         wakeup_nr++;
3481         }
3482         while (!list_empty(&head_sh->batch_list)) {
3483                 int i;
3484                 sh = list_first_entry(&head_sh->batch_list,
3485                                       struct stripe_head, batch_list);
3486                 list_del_init(&sh->batch_list);
3487
3488                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3489                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
3490                                                  (1 << STRIPE_PREREAD_ACTIVE) |
3491                                                  STRIPE_EXPAND_SYNC_FLAG));
3492                 sh->check_state = head_sh->check_state;
3493                 sh->reconstruct_state = head_sh->reconstruct_state;
3494                 for (i = 0; i < sh->disks; i++) {
3495                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3496                                 wakeup_nr++;
3497                         sh->dev[i].flags = head_sh->dev[i].flags;
3498                 }
3499
3500                 spin_lock_irq(&sh->stripe_lock);
3501                 sh->batch_head = NULL;
3502                 spin_unlock_irq(&sh->stripe_lock);
3503                 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3504                         set_bit(STRIPE_HANDLE, &sh->state);
3505                 release_stripe(sh);
3506         }
3507
3508         spin_lock_irq(&head_sh->stripe_lock);
3509         head_sh->batch_head = NULL;
3510         spin_unlock_irq(&head_sh->stripe_lock);
3511         wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3512         if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3513                 set_bit(STRIPE_HANDLE, &head_sh->state);
3514 }
3515
3516 static void handle_stripe_dirtying(struct r5conf *conf,
3517                                    struct stripe_head *sh,
3518                                    struct stripe_head_state *s,
3519                                    int disks)
3520 {
3521         int rmw = 0, rcw = 0, i;
3522         sector_t recovery_cp = conf->mddev->recovery_cp;
3523
3524         /* Check whether resync is now happening or should start.
3525          * If yes, then the array is dirty (after unclean shutdown or
3526          * initial creation), so parity in some stripes might be inconsistent.
3527          * In this case, we need to always do reconstruct-write, to ensure
3528          * that in case of drive failure or read-error correction, we
3529          * generate correct data from the parity.
3530          */
3531         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3532             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3533              s->failed == 0)) {
3534                 /* Calculate the real rcw later - for now make it
3535                  * look like rcw is cheaper
3536                  */
3537                 rcw = 1; rmw = 2;
3538                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3539                          conf->rmw_level, (unsigned long long)recovery_cp,
3540                          (unsigned long long)sh->sector);
3541         } else for (i = disks; i--; ) {
3542                 /* would I have to read this buffer for read_modify_write */
3543                 struct r5dev *dev = &sh->dev[i];
3544                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3545                     !test_bit(R5_LOCKED, &dev->flags) &&
3546                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3547                       test_bit(R5_Wantcompute, &dev->flags))) {
3548                         if (test_bit(R5_Insync, &dev->flags))
3549                                 rmw++;
3550                         else
3551                                 rmw += 2*disks;  /* cannot read it */
3552                 }
3553                 /* Would I have to read this buffer for reconstruct_write */
3554                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3555                     i != sh->pd_idx && i != sh->qd_idx &&
3556                     !test_bit(R5_LOCKED, &dev->flags) &&
3557                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3558                     test_bit(R5_Wantcompute, &dev->flags))) {
3559                         if (test_bit(R5_Insync, &dev->flags))
3560                                 rcw++;
3561                         else
3562                                 rcw += 2*disks;
3563                 }
3564         }
3565         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3566                 (unsigned long long)sh->sector, rmw, rcw);
3567         set_bit(STRIPE_HANDLE, &sh->state);
3568         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3569                 /* prefer read-modify-write, but need to get some data */
3570                 if (conf->mddev->queue)
3571                         blk_add_trace_msg(conf->mddev->queue,
3572                                           "raid5 rmw %llu %d",
3573                                           (unsigned long long)sh->sector, rmw);
3574                 for (i = disks; i--; ) {
3575                         struct r5dev *dev = &sh->dev[i];
3576                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3577                             !test_bit(R5_LOCKED, &dev->flags) &&
3578                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3579                             test_bit(R5_Wantcompute, &dev->flags)) &&
3580                             test_bit(R5_Insync, &dev->flags)) {
3581                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3582                                              &sh->state)) {
3583                                         pr_debug("Read_old block %d for r-m-w\n",
3584                                                  i);
3585                                         set_bit(R5_LOCKED, &dev->flags);
3586                                         set_bit(R5_Wantread, &dev->flags);
3587                                         s->locked++;
3588                                 } else {
3589                                         set_bit(STRIPE_DELAYED, &sh->state);
3590                                         set_bit(STRIPE_HANDLE, &sh->state);
3591                                 }
3592                         }
3593                 }
3594         }
3595         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3596                 /* want reconstruct write, but need to get some data */
3597                 int qread =0;
3598                 rcw = 0;
3599                 for (i = disks; i--; ) {
3600                         struct r5dev *dev = &sh->dev[i];
3601                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3602                             i != sh->pd_idx && i != sh->qd_idx &&
3603                             !test_bit(R5_LOCKED, &dev->flags) &&
3604                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3605                               test_bit(R5_Wantcompute, &dev->flags))) {
3606                                 rcw++;
3607                                 if (test_bit(R5_Insync, &dev->flags) &&
3608                                     test_bit(STRIPE_PREREAD_ACTIVE,
3609                                              &sh->state)) {
3610                                         pr_debug("Read_old block "
3611                                                 "%d for Reconstruct\n", i);
3612                                         set_bit(R5_LOCKED, &dev->flags);
3613                                         set_bit(R5_Wantread, &dev->flags);
3614                                         s->locked++;
3615                                         qread++;
3616                                 } else {
3617                                         set_bit(STRIPE_DELAYED, &sh->state);
3618                                         set_bit(STRIPE_HANDLE, &sh->state);
3619                                 }
3620                         }
3621                 }
3622                 if (rcw && conf->mddev->queue)
3623                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3624                                           (unsigned long long)sh->sector,
3625                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3626         }
3627
3628         if (rcw > disks && rmw > disks &&
3629             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3630                 set_bit(STRIPE_DELAYED, &sh->state);
3631
3632         /* now if nothing is locked, and if we have enough data,
3633          * we can start a write request
3634          */
3635         /* since handle_stripe can be called at any time we need to handle the
3636          * case where a compute block operation has been submitted and then a
3637          * subsequent call wants to start a write request.  raid_run_ops only
3638          * handles the case where compute block and reconstruct are requested
3639          * simultaneously.  If this is not the case then new writes need to be
3640          * held off until the compute completes.
3641          */
3642         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3643             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3644             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3645                 schedule_reconstruction(sh, s, rcw == 0, 0);
3646 }
3647
3648 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3649                                 struct stripe_head_state *s, int disks)
3650 {
3651         struct r5dev *dev = NULL;
3652
3653         BUG_ON(sh->batch_head);
3654         set_bit(STRIPE_HANDLE, &sh->state);
3655
3656         switch (sh->check_state) {
3657         case check_state_idle:
3658                 /* start a new check operation if there are no failures */
3659                 if (s->failed == 0) {
3660                         BUG_ON(s->uptodate != disks);
3661                         sh->check_state = check_state_run;
3662                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3663                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3664                         s->uptodate--;
3665                         break;
3666                 }
3667                 dev = &sh->dev[s->failed_num[0]];
3668                 /* fall through */
3669         case check_state_compute_result:
3670                 sh->check_state = check_state_idle;
3671                 if (!dev)
3672                         dev = &sh->dev[sh->pd_idx];
3673
3674                 /* check that a write has not made the stripe insync */
3675                 if (test_bit(STRIPE_INSYNC, &sh->state))
3676                         break;
3677
3678                 /* either failed parity check, or recovery is happening */
3679                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3680                 BUG_ON(s->uptodate != disks);
3681
3682                 set_bit(R5_LOCKED, &dev->flags);
3683                 s->locked++;
3684                 set_bit(R5_Wantwrite, &dev->flags);
3685
3686                 clear_bit(STRIPE_DEGRADED, &sh->state);
3687                 set_bit(STRIPE_INSYNC, &sh->state);
3688                 break;
3689         case check_state_run:
3690                 break; /* we will be called again upon completion */
3691         case check_state_check_result:
3692                 sh->check_state = check_state_idle;
3693
3694                 /* if a failure occurred during the check operation, leave
3695                  * STRIPE_INSYNC not set and let the stripe be handled again
3696                  */
3697                 if (s->failed)
3698                         break;
3699
3700                 /* handle a successful check operation, if parity is correct
3701                  * we are done.  Otherwise update the mismatch count and repair
3702                  * parity if !MD_RECOVERY_CHECK
3703                  */
3704                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3705                         /* parity is correct (on disc,
3706                          * not in buffer any more)
3707                          */
3708                         set_bit(STRIPE_INSYNC, &sh->state);
3709                 else {
3710                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3711                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3712                                 /* don't try to repair!! */
3713                                 set_bit(STRIPE_INSYNC, &sh->state);
3714                         else {
3715                                 sh->check_state = check_state_compute_run;
3716                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3717                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3718                                 set_bit(R5_Wantcompute,
3719                                         &sh->dev[sh->pd_idx].flags);
3720                                 sh->ops.target = sh->pd_idx;
3721                                 sh->ops.target2 = -1;
3722                                 s->uptodate++;
3723                         }
3724                 }
3725                 break;
3726         case check_state_compute_run:
3727                 break;
3728         default:
3729                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3730                        __func__, sh->check_state,
3731                        (unsigned long long) sh->sector);
3732                 BUG();
3733         }
3734 }
3735
3736 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3737                                   struct stripe_head_state *s,
3738                                   int disks)
3739 {
3740         int pd_idx = sh->pd_idx;
3741         int qd_idx = sh->qd_idx;
3742         struct r5dev *dev;
3743
3744         BUG_ON(sh->batch_head);
3745         set_bit(STRIPE_HANDLE, &sh->state);
3746
3747         BUG_ON(s->failed > 2);
3748
3749         /* Want to check and possibly repair P and Q.
3750          * However there could be one 'failed' device, in which
3751          * case we can only check one of them, possibly using the
3752          * other to generate missing data
3753          */
3754
3755         switch (sh->check_state) {
3756         case check_state_idle:
3757                 /* start a new check operation if there are < 2 failures */
3758                 if (s->failed == s->q_failed) {
3759                         /* The only possible failed device holds Q, so it
3760                          * makes sense to check P (If anything else were failed,
3761                          * we would have used P to recreate it).
3762                          */
3763                         sh->check_state = check_state_run;
3764                 }
3765                 if (!s->q_failed && s->failed < 2) {
3766                         /* Q is not failed, and we didn't use it to generate
3767                          * anything, so it makes sense to check it
3768                          */
3769                         if (sh->check_state == check_state_run)
3770                                 sh->check_state = check_state_run_pq;
3771                         else
3772                                 sh->check_state = check_state_run_q;
3773                 }
3774
3775                 /* discard potentially stale zero_sum_result */
3776                 sh->ops.zero_sum_result = 0;
3777
3778                 if (sh->check_state == check_state_run) {
3779                         /* async_xor_zero_sum destroys the contents of P */
3780                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3781                         s->uptodate--;
3782                 }
3783                 if (sh->check_state >= check_state_run &&
3784                     sh->check_state <= check_state_run_pq) {
3785                         /* async_syndrome_zero_sum preserves P and Q, so
3786                          * no need to mark them !uptodate here
3787                          */
3788                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3789                         break;
3790                 }
3791
3792                 /* we have 2-disk failure */
3793                 BUG_ON(s->failed != 2);
3794                 /* fall through */
3795         case check_state_compute_result:
3796                 sh->check_state = check_state_idle;
3797
3798                 /* check that a write has not made the stripe insync */
3799                 if (test_bit(STRIPE_INSYNC, &sh->state))
3800                         break;
3801
3802                 /* now write out any block on a failed drive,
3803                  * or P or Q if they were recomputed
3804                  */
3805                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3806                 if (s->failed == 2) {
3807                         dev = &sh->dev[s->failed_num[1]];
3808                         s->locked++;
3809                         set_bit(R5_LOCKED, &dev->flags);
3810                         set_bit(R5_Wantwrite, &dev->flags);
3811                 }
3812                 if (s->failed >= 1) {
3813                         dev = &sh->dev[s->failed_num[0]];
3814                         s->locked++;
3815                         set_bit(R5_LOCKED, &dev->flags);
3816                         set_bit(R5_Wantwrite, &dev->flags);
3817                 }
3818                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3819                         dev = &sh->dev[pd_idx];
3820                         s->locked++;
3821                         set_bit(R5_LOCKED, &dev->flags);
3822                         set_bit(R5_Wantwrite, &dev->flags);
3823                 }
3824                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3825                         dev = &sh->dev[qd_idx];
3826                         s->locked++;
3827                         set_bit(R5_LOCKED, &dev->flags);
3828                         set_bit(R5_Wantwrite, &dev->flags);
3829                 }
3830                 clear_bit(STRIPE_DEGRADED, &sh->state);
3831
3832                 set_bit(STRIPE_INSYNC, &sh->state);
3833                 break;
3834         case check_state_run:
3835         case check_state_run_q:
3836         case check_state_run_pq:
3837                 break; /* we will be called again upon completion */
3838         case check_state_check_result:
3839                 sh->check_state = check_state_idle;
3840
3841                 /* handle a successful check operation, if parity is correct
3842                  * we are done.  Otherwise update the mismatch count and repair
3843                  * parity if !MD_RECOVERY_CHECK
3844                  */
3845                 if (sh->ops.zero_sum_result == 0) {
3846                         /* both parities are correct */
3847                         if (!s->failed)
3848                                 set_bit(STRIPE_INSYNC, &sh->state);
3849                         else {
3850                                 /* in contrast to the raid5 case we can validate
3851                                  * parity, but still have a failure to write
3852                                  * back
3853                                  */
3854                                 sh->check_state = check_state_compute_result;
3855                                 /* Returning at this point means that we may go
3856                                  * off and bring p and/or q uptodate again so
3857                                  * we make sure to check zero_sum_result again
3858                                  * to verify if p or q need writeback
3859                                  */
3860                         }
3861                 } else {
3862                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3863                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3864                                 /* don't try to repair!! */
3865                                 set_bit(STRIPE_INSYNC, &sh->state);
3866                         else {
3867                                 int *target = &sh->ops.target;
3868
3869                                 sh->ops.target = -1;
3870                                 sh->ops.target2 = -1;
3871                                 sh->check_state = check_state_compute_run;
3872                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3873                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3874                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3875                                         set_bit(R5_Wantcompute,
3876                                                 &sh->dev[pd_idx].flags);
3877                                         *target = pd_idx;
3878                                         target = &sh->ops.target2;
3879                                         s->uptodate++;
3880                                 }
3881                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3882                                         set_bit(R5_Wantcompute,
3883                                                 &sh->dev[qd_idx].flags);
3884                                         *target = qd_idx;
3885                                         s->uptodate++;
3886                                 }
3887                         }
3888                 }
3889                 break;
3890         case check_state_compute_run:
3891                 break;
3892         default:
3893                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3894                        __func__, sh->check_state,
3895                        (unsigned long long) sh->sector);
3896                 BUG();
3897         }
3898 }
3899
3900 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3901 {
3902         int i;
3903
3904         /* We have read all the blocks in this stripe and now we need to
3905          * copy some of them into a target stripe for expand.
3906          */
3907         struct dma_async_tx_descriptor *tx = NULL;
3908         BUG_ON(sh->batch_head);
3909         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3910         for (i = 0; i < sh->disks; i++)
3911                 if (i != sh->pd_idx && i != sh->qd_idx) {
3912                         int dd_idx, j;
3913                         struct stripe_head *sh2;
3914                         struct async_submit_ctl submit;
3915
3916                         sector_t bn = compute_blocknr(sh, i, 1);
3917                         sector_t s = raid5_compute_sector(conf, bn, 0,
3918                                                           &dd_idx, NULL);
3919                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3920                         if (sh2 == NULL)
3921                                 /* so far only the early blocks of this stripe
3922                                  * have been requested.  When later blocks
3923                                  * get requested, we will try again
3924                                  */
3925                                 continue;
3926                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3927                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3928                                 /* must have already done this block */
3929                                 release_stripe(sh2);
3930                                 continue;
3931                         }
3932
3933                         /* place all the copies on one channel */
3934                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3935                         tx = async_memcpy(sh2->dev[dd_idx].page,
3936                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3937                                           &submit);
3938
3939                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3940                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3941                         for (j = 0; j < conf->raid_disks; j++)
3942                                 if (j != sh2->pd_idx &&
3943                                     j != sh2->qd_idx &&
3944                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3945                                         break;
3946                         if (j == conf->raid_disks) {
3947                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3948                                 set_bit(STRIPE_HANDLE, &sh2->state);
3949                         }
3950                         release_stripe(sh2);
3951
3952                 }
3953         /* done submitting copies, wait for them to complete */
3954         async_tx_quiesce(&tx);
3955 }
3956
3957 /*
3958  * handle_stripe - do things to a stripe.
3959  *
3960  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3961  * state of various bits to see what needs to be done.
3962  * Possible results:
3963  *    return some read requests which now have data
3964  *    return some write requests which are safely on storage
3965  *    schedule a read on some buffers
3966  *    schedule a write of some buffers
3967  *    return confirmation of parity correctness
3968  *
3969  */
3970
3971 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3972 {
3973         struct r5conf *conf = sh->raid_conf;
3974         int disks = sh->disks;
3975         struct r5dev *dev;
3976         int i;
3977         int do_recovery = 0;
3978
3979         memset(s, 0, sizeof(*s));
3980
3981         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3982         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3983         s->failed_num[0] = -1;
3984         s->failed_num[1] = -1;
3985
3986         /* Now to look around and see what can be done */
3987         rcu_read_lock();
3988         for (i=disks; i--; ) {
3989                 struct md_rdev *rdev;
3990                 sector_t first_bad;
3991                 int bad_sectors;
3992                 int is_bad = 0;
3993
3994                 dev = &sh->dev[i];
3995
3996                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3997                          i, dev->flags,
3998                          dev->toread, dev->towrite, dev->written);
3999                 /* maybe we can reply to a read
4000                  *
4001                  * new wantfill requests are only permitted while
4002                  * ops_complete_biofill is guaranteed to be inactive
4003                  */
4004                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4005                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4006                         set_bit(R5_Wantfill, &dev->flags);
4007
4008                 /* now count some things */
4009                 if (test_bit(R5_LOCKED, &dev->flags))
4010                         s->locked++;
4011                 if (test_bit(R5_UPTODATE, &dev->flags))
4012                         s->uptodate++;
4013                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4014                         s->compute++;
4015                         BUG_ON(s->compute > 2);
4016                 }
4017
4018                 if (test_bit(R5_Wantfill, &dev->flags))
4019                         s->to_fill++;
4020                 else if (dev->toread)
4021                         s->to_read++;
4022                 if (dev->towrite) {
4023                         s->to_write++;
4024                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4025                                 s->non_overwrite++;
4026                 }
4027                 if (dev->written)
4028                         s->written++;
4029                 /* Prefer to use the replacement for reads, but only
4030                  * if it is recovered enough and has no bad blocks.
4031                  */
4032                 rdev = rcu_dereference(conf->disks[i].replacement);
4033                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4034                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4035                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4036                                  &first_bad, &bad_sectors))
4037                         set_bit(R5_ReadRepl, &dev->flags);
4038                 else {
4039                         if (rdev)
4040                                 set_bit(R5_NeedReplace, &dev->flags);
4041                         rdev = rcu_dereference(conf->disks[i].rdev);
4042                         clear_bit(R5_ReadRepl, &dev->flags);
4043                 }
4044                 if (rdev && test_bit(Faulty, &rdev->flags))
4045                         rdev = NULL;
4046                 if (rdev) {
4047                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4048                                              &first_bad, &bad_sectors);
4049                         if (s->blocked_rdev == NULL
4050                             && (test_bit(Blocked, &rdev->flags)
4051                                 || is_bad < 0)) {
4052                                 if (is_bad < 0)
4053                                         set_bit(BlockedBadBlocks,
4054                                                 &rdev->flags);
4055                                 s->blocked_rdev = rdev;
4056                                 atomic_inc(&rdev->nr_pending);
4057                         }
4058                 }
4059                 clear_bit(R5_Insync, &dev->flags);
4060                 if (!rdev)
4061                         /* Not in-sync */;
4062                 else if (is_bad) {
4063                         /* also not in-sync */
4064                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4065                             test_bit(R5_UPTODATE, &dev->flags)) {
4066                                 /* treat as in-sync, but with a read error
4067                                  * which we can now try to correct
4068                                  */
4069                                 set_bit(R5_Insync, &dev->flags);
4070                                 set_bit(R5_ReadError, &dev->flags);
4071                         }
4072                 } else if (test_bit(In_sync, &rdev->flags))
4073                         set_bit(R5_Insync, &dev->flags);
4074                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4075                         /* in sync if before recovery_offset */
4076                         set_bit(R5_Insync, &dev->flags);
4077                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4078                          test_bit(R5_Expanded, &dev->flags))
4079                         /* If we've reshaped into here, we assume it is Insync.
4080                          * We will shortly update recovery_offset to make
4081                          * it official.
4082                          */
4083                         set_bit(R5_Insync, &dev->flags);
4084
4085                 if (test_bit(R5_WriteError, &dev->flags)) {
4086                         /* This flag does not apply to '.replacement'
4087                          * only to .rdev, so make sure to check that*/
4088                         struct md_rdev *rdev2 = rcu_dereference(
4089                                 conf->disks[i].rdev);
4090                         if (rdev2 == rdev)
4091                                 clear_bit(R5_Insync, &dev->flags);
4092                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4093                                 s->handle_bad_blocks = 1;
4094                                 atomic_inc(&rdev2->nr_pending);
4095                         } else
4096                                 clear_bit(R5_WriteError, &dev->flags);
4097                 }
4098                 if (test_bit(R5_MadeGood, &dev->flags)) {
4099                         /* This flag does not apply to '.replacement'
4100                          * only to .rdev, so make sure to check that*/
4101                         struct md_rdev *rdev2 = rcu_dereference(
4102                                 conf->disks[i].rdev);
4103                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4104                                 s->handle_bad_blocks = 1;
4105                                 atomic_inc(&rdev2->nr_pending);
4106                         } else
4107                                 clear_bit(R5_MadeGood, &dev->flags);
4108                 }
4109                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4110                         struct md_rdev *rdev2 = rcu_dereference(
4111                                 conf->disks[i].replacement);
4112                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4113                                 s->handle_bad_blocks = 1;
4114                                 atomic_inc(&rdev2->nr_pending);
4115                         } else
4116                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4117                 }
4118                 if (!test_bit(R5_Insync, &dev->flags)) {
4119                         /* The ReadError flag will just be confusing now */
4120                         clear_bit(R5_ReadError, &dev->flags);
4121                         clear_bit(R5_ReWrite, &dev->flags);
4122                 }
4123                 if (test_bit(R5_ReadError, &dev->flags))
4124                         clear_bit(R5_Insync, &dev->flags);
4125                 if (!test_bit(R5_Insync, &dev->flags)) {
4126                         if (s->failed < 2)
4127                                 s->failed_num[s->failed] = i;
4128                         s->failed++;
4129                         if (rdev && !test_bit(Faulty, &rdev->flags))
4130                                 do_recovery = 1;
4131                 }
4132         }
4133         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4134                 /* If there is a failed device being replaced,
4135                  *     we must be recovering.
4136                  * else if we are after recovery_cp, we must be syncing
4137                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4138                  * else we can only be replacing
4139                  * sync and recovery both need to read all devices, and so
4140                  * use the same flag.
4141                  */
4142                 if (do_recovery ||
4143                     sh->sector >= conf->mddev->recovery_cp ||
4144                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4145                         s->syncing = 1;
4146                 else
4147                         s->replacing = 1;
4148         }
4149         rcu_read_unlock();
4150 }
4151
4152 static int clear_batch_ready(struct stripe_head *sh)
4153 {
4154         struct stripe_head *tmp;
4155         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4156                 return 0;
4157         spin_lock(&sh->stripe_lock);
4158         if (!sh->batch_head) {
4159                 spin_unlock(&sh->stripe_lock);
4160                 return 0;
4161         }
4162
4163         /*
4164          * this stripe could be added to a batch list before we check
4165          * BATCH_READY, skips it
4166          */
4167         if (sh->batch_head != sh) {
4168                 spin_unlock(&sh->stripe_lock);
4169                 return 1;
4170         }
4171         spin_lock(&sh->batch_lock);
4172         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4173                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4174         spin_unlock(&sh->batch_lock);
4175         spin_unlock(&sh->stripe_lock);
4176
4177         /*
4178          * BATCH_READY is cleared, no new stripes can be added.
4179          * batch_list can be accessed without lock
4180          */
4181         return 0;
4182 }
4183
4184 static void check_break_stripe_batch_list(struct stripe_head *sh)
4185 {
4186         struct stripe_head *head_sh, *next;
4187         int i;
4188
4189         if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4190                 return;
4191
4192         head_sh = sh;
4193         do {
4194                 sh = list_first_entry(&sh->batch_list,
4195                                       struct stripe_head, batch_list);
4196                 BUG_ON(sh == head_sh);
4197         } while (!test_bit(STRIPE_DEGRADED, &sh->state));
4198
4199         while (sh != head_sh) {
4200                 next = list_first_entry(&sh->batch_list,
4201                                         struct stripe_head, batch_list);
4202                 list_del_init(&sh->batch_list);
4203
4204                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4205                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
4206                                                  (1 << STRIPE_PREREAD_ACTIVE) |
4207                                                  (1 << STRIPE_DEGRADED) |
4208                                                  STRIPE_EXPAND_SYNC_FLAG));
4209                 sh->check_state = head_sh->check_state;
4210                 sh->reconstruct_state = head_sh->reconstruct_state;
4211                 for (i = 0; i < sh->disks; i++)
4212                         sh->dev[i].flags = head_sh->dev[i].flags &
4213                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4214
4215                 spin_lock_irq(&sh->stripe_lock);
4216                 sh->batch_head = NULL;
4217                 spin_unlock_irq(&sh->stripe_lock);
4218
4219                 set_bit(STRIPE_HANDLE, &sh->state);
4220                 release_stripe(sh);
4221
4222                 sh = next;
4223         }
4224 }
4225
4226 static void handle_stripe(struct stripe_head *sh)
4227 {
4228         struct stripe_head_state s;
4229         struct r5conf *conf = sh->raid_conf;
4230         int i;
4231         int prexor;
4232         int disks = sh->disks;
4233         struct r5dev *pdev, *qdev;
4234
4235         clear_bit(STRIPE_HANDLE, &sh->state);
4236         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4237                 /* already being handled, ensure it gets handled
4238                  * again when current action finishes */
4239                 set_bit(STRIPE_HANDLE, &sh->state);
4240                 return;
4241         }
4242
4243         if (clear_batch_ready(sh) ) {
4244                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4245                 return;
4246         }
4247
4248         check_break_stripe_batch_list(sh);
4249
4250         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4251                 spin_lock(&sh->stripe_lock);
4252                 /* Cannot process 'sync' concurrently with 'discard' */
4253                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4254                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4255                         set_bit(STRIPE_SYNCING, &sh->state);
4256                         clear_bit(STRIPE_INSYNC, &sh->state);
4257                         clear_bit(STRIPE_REPLACED, &sh->state);
4258                 }
4259                 spin_unlock(&sh->stripe_lock);
4260         }
4261         clear_bit(STRIPE_DELAYED, &sh->state);
4262
4263         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4264                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4265                (unsigned long long)sh->sector, sh->state,
4266                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4267                sh->check_state, sh->reconstruct_state);
4268
4269         analyse_stripe(sh, &s);
4270
4271         if (s.handle_bad_blocks) {
4272                 set_bit(STRIPE_HANDLE, &sh->state);
4273                 goto finish;
4274         }
4275
4276         if (unlikely(s.blocked_rdev)) {
4277                 if (s.syncing || s.expanding || s.expanded ||
4278                     s.replacing || s.to_write || s.written) {
4279                         set_bit(STRIPE_HANDLE, &sh->state);
4280                         goto finish;
4281                 }
4282                 /* There is nothing for the blocked_rdev to block */
4283                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4284                 s.blocked_rdev = NULL;
4285         }
4286
4287         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4288                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4289                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4290         }
4291
4292         pr_debug("locked=%d uptodate=%d to_read=%d"
4293                " to_write=%d failed=%d failed_num=%d,%d\n",
4294                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4295                s.failed_num[0], s.failed_num[1]);
4296         /* check if the array has lost more than max_degraded devices and,
4297          * if so, some requests might need to be failed.
4298          */
4299         if (s.failed > conf->max_degraded) {
4300                 sh->check_state = 0;
4301                 sh->reconstruct_state = 0;
4302                 if (s.to_read+s.to_write+s.written)
4303                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4304                 if (s.syncing + s.replacing)
4305                         handle_failed_sync(conf, sh, &s);
4306         }
4307
4308         /* Now we check to see if any write operations have recently
4309          * completed
4310          */
4311         prexor = 0;
4312         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4313                 prexor = 1;
4314         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4315             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4316                 sh->reconstruct_state = reconstruct_state_idle;
4317
4318                 /* All the 'written' buffers and the parity block are ready to
4319                  * be written back to disk
4320                  */
4321                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4322                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4323                 BUG_ON(sh->qd_idx >= 0 &&
4324                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4325                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4326                 for (i = disks; i--; ) {
4327                         struct r5dev *dev = &sh->dev[i];
4328                         if (test_bit(R5_LOCKED, &dev->flags) &&
4329                                 (i == sh->pd_idx || i == sh->qd_idx ||
4330                                  dev->written)) {
4331                                 pr_debug("Writing block %d\n", i);
4332                                 set_bit(R5_Wantwrite, &dev->flags);
4333                                 if (prexor)
4334                                         continue;
4335                                 if (s.failed > 1)
4336                                         continue;
4337                                 if (!test_bit(R5_Insync, &dev->flags) ||
4338                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4339                                      s.failed == 0))
4340                                         set_bit(STRIPE_INSYNC, &sh->state);
4341                         }
4342                 }
4343                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4344                         s.dec_preread_active = 1;
4345         }
4346
4347         /*
4348          * might be able to return some write requests if the parity blocks
4349          * are safe, or on a failed drive
4350          */
4351         pdev = &sh->dev[sh->pd_idx];
4352         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4353                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4354         qdev = &sh->dev[sh->qd_idx];
4355         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4356                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4357                 || conf->level < 6;
4358
4359         if (s.written &&
4360             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4361                              && !test_bit(R5_LOCKED, &pdev->flags)
4362                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4363                                  test_bit(R5_Discard, &pdev->flags))))) &&
4364             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4365                              && !test_bit(R5_LOCKED, &qdev->flags)
4366                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4367                                  test_bit(R5_Discard, &qdev->flags))))))
4368                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4369
4370         /* Now we might consider reading some blocks, either to check/generate
4371          * parity, or to satisfy requests
4372          * or to load a block that is being partially written.
4373          */
4374         if (s.to_read || s.non_overwrite
4375             || (conf->level == 6 && s.to_write && s.failed)
4376             || (s.syncing && (s.uptodate + s.compute < disks))
4377             || s.replacing
4378             || s.expanding)
4379                 handle_stripe_fill(sh, &s, disks);
4380
4381         /* Now to consider new write requests and what else, if anything
4382          * should be read.  We do not handle new writes when:
4383          * 1/ A 'write' operation (copy+xor) is already in flight.
4384          * 2/ A 'check' operation is in flight, as it may clobber the parity
4385          *    block.
4386          */
4387         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4388                 handle_stripe_dirtying(conf, sh, &s, disks);
4389
4390         /* maybe we need to check and possibly fix the parity for this stripe
4391          * Any reads will already have been scheduled, so we just see if enough
4392          * data is available.  The parity check is held off while parity
4393          * dependent operations are in flight.
4394          */
4395         if (sh->check_state ||
4396             (s.syncing && s.locked == 0 &&
4397              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4398              !test_bit(STRIPE_INSYNC, &sh->state))) {
4399                 if (conf->level == 6)
4400                         handle_parity_checks6(conf, sh, &s, disks);
4401                 else
4402                         handle_parity_checks5(conf, sh, &s, disks);
4403         }
4404
4405         if ((s.replacing || s.syncing) && s.locked == 0
4406             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4407             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4408                 /* Write out to replacement devices where possible */
4409                 for (i = 0; i < conf->raid_disks; i++)
4410                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4411                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4412                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4413                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4414                                 s.locked++;
4415                         }
4416                 if (s.replacing)
4417                         set_bit(STRIPE_INSYNC, &sh->state);
4418                 set_bit(STRIPE_REPLACED, &sh->state);
4419         }
4420         if ((s.syncing || s.replacing) && s.locked == 0 &&
4421             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4422             test_bit(STRIPE_INSYNC, &sh->state)) {
4423                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4424                 clear_bit(STRIPE_SYNCING, &sh->state);
4425                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4426                         wake_up(&conf->wait_for_overlap);
4427         }
4428
4429         /* If the failed drives are just a ReadError, then we might need
4430          * to progress the repair/check process
4431          */
4432         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4433                 for (i = 0; i < s.failed; i++) {
4434                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4435                         if (test_bit(R5_ReadError, &dev->flags)
4436                             && !test_bit(R5_LOCKED, &dev->flags)
4437                             && test_bit(R5_UPTODATE, &dev->flags)
4438                                 ) {
4439                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4440                                         set_bit(R5_Wantwrite, &dev->flags);
4441                                         set_bit(R5_ReWrite, &dev->flags);
4442                                         set_bit(R5_LOCKED, &dev->flags);
4443                                         s.locked++;
4444                                 } else {
4445                                         /* let's read it back */
4446                                         set_bit(R5_Wantread, &dev->flags);
4447                                         set_bit(R5_LOCKED, &dev->flags);
4448                                         s.locked++;
4449                                 }
4450                         }
4451                 }
4452
4453         /* Finish reconstruct operations initiated by the expansion process */
4454         if (sh->reconstruct_state == reconstruct_state_result) {
4455                 struct stripe_head *sh_src
4456                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4457                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4458                         /* sh cannot be written until sh_src has been read.
4459                          * so arrange for sh to be delayed a little
4460                          */
4461                         set_bit(STRIPE_DELAYED, &sh->state);
4462                         set_bit(STRIPE_HANDLE, &sh->state);
4463                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4464                                               &sh_src->state))
4465                                 atomic_inc(&conf->preread_active_stripes);
4466                         release_stripe(sh_src);
4467                         goto finish;
4468                 }
4469                 if (sh_src)
4470                         release_stripe(sh_src);
4471
4472                 sh->reconstruct_state = reconstruct_state_idle;
4473                 clear_bit(STRIPE_EXPANDING, &sh->state);
4474                 for (i = conf->raid_disks; i--; ) {
4475                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4476                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4477                         s.locked++;
4478                 }
4479         }
4480
4481         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4482             !sh->reconstruct_state) {
4483                 /* Need to write out all blocks after computing parity */
4484                 sh->disks = conf->raid_disks;
4485                 stripe_set_idx(sh->sector, conf, 0, sh);
4486                 schedule_reconstruction(sh, &s, 1, 1);
4487         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4488                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4489                 atomic_dec(&conf->reshape_stripes);
4490                 wake_up(&conf->wait_for_overlap);
4491                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4492         }
4493
4494         if (s.expanding && s.locked == 0 &&
4495             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4496                 handle_stripe_expansion(conf, sh);
4497
4498 finish:
4499         /* wait for this device to become unblocked */
4500         if (unlikely(s.blocked_rdev)) {
4501                 if (conf->mddev->external)
4502                         md_wait_for_blocked_rdev(s.blocked_rdev,
4503                                                  conf->mddev);
4504                 else
4505                         /* Internal metadata will immediately
4506                          * be written by raid5d, so we don't
4507                          * need to wait here.
4508                          */
4509                         rdev_dec_pending(s.blocked_rdev,
4510                                          conf->mddev);
4511         }
4512
4513         if (s.handle_bad_blocks)
4514                 for (i = disks; i--; ) {
4515                         struct md_rdev *rdev;
4516                         struct r5dev *dev = &sh->dev[i];
4517                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4518                                 /* We own a safe reference to the rdev */
4519                                 rdev = conf->disks[i].rdev;
4520                                 if (!rdev_set_badblocks(rdev, sh->sector,
4521                                                         STRIPE_SECTORS, 0))
4522                                         md_error(conf->mddev, rdev);
4523                                 rdev_dec_pending(rdev, conf->mddev);
4524                         }
4525                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4526                                 rdev = conf->disks[i].rdev;
4527                                 rdev_clear_badblocks(rdev, sh->sector,
4528                                                      STRIPE_SECTORS, 0);
4529                                 rdev_dec_pending(rdev, conf->mddev);
4530                         }
4531                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4532                                 rdev = conf->disks[i].replacement;
4533                                 if (!rdev)
4534                                         /* rdev have been moved down */
4535                                         rdev = conf->disks[i].rdev;
4536                                 rdev_clear_badblocks(rdev, sh->sector,
4537                                                      STRIPE_SECTORS, 0);
4538                                 rdev_dec_pending(rdev, conf->mddev);
4539                         }
4540                 }
4541
4542         if (s.ops_request)
4543                 raid_run_ops(sh, s.ops_request);
4544
4545         ops_run_io(sh, &s);
4546
4547         if (s.dec_preread_active) {
4548                 /* We delay this until after ops_run_io so that if make_request
4549                  * is waiting on a flush, it won't continue until the writes
4550                  * have actually been submitted.
4551                  */
4552                 atomic_dec(&conf->preread_active_stripes);
4553                 if (atomic_read(&conf->preread_active_stripes) <
4554                     IO_THRESHOLD)
4555                         md_wakeup_thread(conf->mddev->thread);
4556         }
4557
4558         return_io(s.return_bi);
4559
4560         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4561 }
4562
4563 static void raid5_activate_delayed(struct r5conf *conf)
4564 {
4565         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4566                 while (!list_empty(&conf->delayed_list)) {
4567                         struct list_head *l = conf->delayed_list.next;
4568                         struct stripe_head *sh;
4569                         sh = list_entry(l, struct stripe_head, lru);
4570                         list_del_init(l);
4571                         clear_bit(STRIPE_DELAYED, &sh->state);
4572                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4573                                 atomic_inc(&conf->preread_active_stripes);
4574                         list_add_tail(&sh->lru, &conf->hold_list);
4575                         raid5_wakeup_stripe_thread(sh);
4576                 }
4577         }
4578 }
4579
4580 static void activate_bit_delay(struct r5conf *conf,
4581         struct list_head *temp_inactive_list)
4582 {
4583         /* device_lock is held */
4584         struct list_head head;
4585         list_add(&head, &conf->bitmap_list);
4586         list_del_init(&conf->bitmap_list);
4587         while (!list_empty(&head)) {
4588                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4589                 int hash;
4590                 list_del_init(&sh->lru);
4591                 atomic_inc(&sh->count);
4592                 hash = sh->hash_lock_index;
4593                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4594         }
4595 }
4596
4597 static int raid5_congested(struct mddev *mddev, int bits)
4598 {
4599         struct r5conf *conf = mddev->private;
4600
4601         /* No difference between reads and writes.  Just check
4602          * how busy the stripe_cache is
4603          */
4604
4605         if (conf->inactive_blocked)
4606                 return 1;
4607         if (conf->quiesce)
4608                 return 1;
4609         if (atomic_read(&conf->empty_inactive_list_nr))
4610                 return 1;
4611
4612         return 0;
4613 }
4614
4615 /* We want read requests to align with chunks where possible,
4616  * but write requests don't need to.
4617  */
4618 static int raid5_mergeable_bvec(struct mddev *mddev,
4619                                 struct bvec_merge_data *bvm,
4620                                 struct bio_vec *biovec)
4621 {
4622         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4623         int max;
4624         unsigned int chunk_sectors = mddev->chunk_sectors;
4625         unsigned int bio_sectors = bvm->bi_size >> 9;
4626
4627         if ((bvm->bi_rw & 1) == WRITE)
4628                 return biovec->bv_len; /* always allow writes to be mergeable */
4629
4630         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4631                 chunk_sectors = mddev->new_chunk_sectors;
4632         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4633         if (max < 0) max = 0;
4634         if (max <= biovec->bv_len && bio_sectors == 0)
4635                 return biovec->bv_len;
4636         else
4637                 return max;
4638 }
4639
4640 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4641 {
4642         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4643         unsigned int chunk_sectors = mddev->chunk_sectors;
4644         unsigned int bio_sectors = bio_sectors(bio);
4645
4646         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4647                 chunk_sectors = mddev->new_chunk_sectors;
4648         return  chunk_sectors >=
4649                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4650 }
4651
4652 /*
4653  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4654  *  later sampled by raid5d.
4655  */
4656 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4657 {
4658         unsigned long flags;
4659
4660         spin_lock_irqsave(&conf->device_lock, flags);
4661
4662         bi->bi_next = conf->retry_read_aligned_list;
4663         conf->retry_read_aligned_list = bi;
4664
4665         spin_unlock_irqrestore(&conf->device_lock, flags);
4666         md_wakeup_thread(conf->mddev->thread);
4667 }
4668
4669 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4670 {
4671         struct bio *bi;
4672
4673         bi = conf->retry_read_aligned;
4674         if (bi) {
4675                 conf->retry_read_aligned = NULL;
4676                 return bi;
4677         }
4678         bi = conf->retry_read_aligned_list;
4679         if(bi) {
4680                 conf->retry_read_aligned_list = bi->bi_next;
4681                 bi->bi_next = NULL;
4682                 /*
4683                  * this sets the active strip count to 1 and the processed
4684                  * strip count to zero (upper 8 bits)
4685                  */
4686                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4687         }
4688
4689         return bi;
4690 }
4691
4692 /*
4693  *  The "raid5_align_endio" should check if the read succeeded and if it
4694  *  did, call bio_endio on the original bio (having bio_put the new bio
4695  *  first).
4696  *  If the read failed..
4697  */
4698 static void raid5_align_endio(struct bio *bi, int error)
4699 {
4700         struct bio* raid_bi  = bi->bi_private;
4701         struct mddev *mddev;
4702         struct r5conf *conf;
4703         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4704         struct md_rdev *rdev;
4705
4706         bio_put(bi);
4707
4708         rdev = (void*)raid_bi->bi_next;
4709         raid_bi->bi_next = NULL;
4710         mddev = rdev->mddev;
4711         conf = mddev->private;
4712
4713         rdev_dec_pending(rdev, conf->mddev);
4714
4715         if (!error && uptodate) {
4716                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4717                                          raid_bi, 0);
4718                 bio_endio(raid_bi, 0);
4719                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4720                         wake_up(&conf->wait_for_stripe);
4721                 return;
4722         }
4723
4724         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4725
4726         add_bio_to_retry(raid_bi, conf);
4727 }
4728
4729 static int bio_fits_rdev(struct bio *bi)
4730 {
4731         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4732
4733         if (bio_sectors(bi) > queue_max_sectors(q))
4734                 return 0;
4735         blk_recount_segments(q, bi);
4736         if (bi->bi_phys_segments > queue_max_segments(q))
4737                 return 0;
4738
4739         if (q->merge_bvec_fn)
4740                 /* it's too hard to apply the merge_bvec_fn at this stage,
4741                  * just just give up
4742                  */
4743                 return 0;
4744
4745         return 1;
4746 }
4747
4748 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4749 {
4750         struct r5conf *conf = mddev->private;
4751         int dd_idx;
4752         struct bio* align_bi;
4753         struct md_rdev *rdev;
4754         sector_t end_sector;
4755
4756         if (!in_chunk_boundary(mddev, raid_bio)) {
4757                 pr_debug("chunk_aligned_read : non aligned\n");
4758                 return 0;
4759         }
4760         /*
4761          * use bio_clone_mddev to make a copy of the bio
4762          */
4763         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4764         if (!align_bi)
4765                 return 0;
4766         /*
4767          *   set bi_end_io to a new function, and set bi_private to the
4768          *     original bio.
4769          */
4770         align_bi->bi_end_io  = raid5_align_endio;
4771         align_bi->bi_private = raid_bio;
4772         /*
4773          *      compute position
4774          */
4775         align_bi->bi_iter.bi_sector =
4776                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4777                                      0, &dd_idx, NULL);
4778
4779         end_sector = bio_end_sector(align_bi);
4780         rcu_read_lock();
4781         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4782         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4783             rdev->recovery_offset < end_sector) {
4784                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4785                 if (rdev &&
4786                     (test_bit(Faulty, &rdev->flags) ||
4787                     !(test_bit(In_sync, &rdev->flags) ||
4788                       rdev->recovery_offset >= end_sector)))
4789                         rdev = NULL;
4790         }
4791         if (rdev) {
4792                 sector_t first_bad;
4793                 int bad_sectors;
4794
4795                 atomic_inc(&rdev->nr_pending);
4796                 rcu_read_unlock();
4797                 raid_bio->bi_next = (void*)rdev;
4798                 align_bi->bi_bdev =  rdev->bdev;
4799                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4800
4801                 if (!bio_fits_rdev(align_bi) ||
4802                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4803                                 bio_sectors(align_bi),
4804                                 &first_bad, &bad_sectors)) {
4805                         /* too big in some way, or has a known bad block */
4806                         bio_put(align_bi);
4807                         rdev_dec_pending(rdev, mddev);
4808                         return 0;
4809                 }
4810
4811                 /* No reshape active, so we can trust rdev->data_offset */
4812                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4813
4814                 spin_lock_irq(&conf->device_lock);
4815                 wait_event_lock_irq(conf->wait_for_stripe,
4816                                     conf->quiesce == 0,
4817                                     conf->device_lock);
4818                 atomic_inc(&conf->active_aligned_reads);
4819                 spin_unlock_irq(&conf->device_lock);
4820
4821                 if (mddev->gendisk)
4822                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4823                                               align_bi, disk_devt(mddev->gendisk),
4824                                               raid_bio->bi_iter.bi_sector);
4825                 generic_make_request(align_bi);
4826                 return 1;
4827         } else {
4828                 rcu_read_unlock();
4829                 bio_put(align_bi);
4830                 return 0;
4831         }
4832 }
4833
4834 /* __get_priority_stripe - get the next stripe to process
4835  *
4836  * Full stripe writes are allowed to pass preread active stripes up until
4837  * the bypass_threshold is exceeded.  In general the bypass_count
4838  * increments when the handle_list is handled before the hold_list; however, it
4839  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4840  * stripe with in flight i/o.  The bypass_count will be reset when the
4841  * head of the hold_list has changed, i.e. the head was promoted to the
4842  * handle_list.
4843  */
4844 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4845 {
4846         struct stripe_head *sh = NULL, *tmp;
4847         struct list_head *handle_list = NULL;
4848         struct r5worker_group *wg = NULL;
4849
4850         if (conf->worker_cnt_per_group == 0) {
4851                 handle_list = &conf->handle_list;
4852         } else if (group != ANY_GROUP) {
4853                 handle_list = &conf->worker_groups[group].handle_list;
4854                 wg = &conf->worker_groups[group];
4855         } else {
4856                 int i;
4857                 for (i = 0; i < conf->group_cnt; i++) {
4858                         handle_list = &conf->worker_groups[i].handle_list;
4859                         wg = &conf->worker_groups[i];
4860                         if (!list_empty(handle_list))
4861                                 break;
4862                 }
4863         }
4864
4865         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4866                   __func__,
4867                   list_empty(handle_list) ? "empty" : "busy",
4868                   list_empty(&conf->hold_list) ? "empty" : "busy",
4869                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4870
4871         if (!list_empty(handle_list)) {
4872                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4873
4874                 if (list_empty(&conf->hold_list))
4875                         conf->bypass_count = 0;
4876                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4877                         if (conf->hold_list.next == conf->last_hold)
4878                                 conf->bypass_count++;
4879                         else {
4880                                 conf->last_hold = conf->hold_list.next;
4881                                 conf->bypass_count -= conf->bypass_threshold;
4882                                 if (conf->bypass_count < 0)
4883                                         conf->bypass_count = 0;
4884                         }
4885                 }
4886         } else if (!list_empty(&conf->hold_list) &&
4887                    ((conf->bypass_threshold &&
4888                      conf->bypass_count > conf->bypass_threshold) ||
4889                     atomic_read(&conf->pending_full_writes) == 0)) {
4890
4891                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4892                         if (conf->worker_cnt_per_group == 0 ||
4893                             group == ANY_GROUP ||
4894                             !cpu_online(tmp->cpu) ||
4895                             cpu_to_group(tmp->cpu) == group) {
4896                                 sh = tmp;
4897                                 break;
4898                         }
4899                 }
4900
4901                 if (sh) {
4902                         conf->bypass_count -= conf->bypass_threshold;
4903                         if (conf->bypass_count < 0)
4904                                 conf->bypass_count = 0;
4905                 }
4906                 wg = NULL;
4907         }
4908
4909         if (!sh)
4910                 return NULL;
4911
4912         if (wg) {
4913                 wg->stripes_cnt--;
4914                 sh->group = NULL;
4915         }
4916         list_del_init(&sh->lru);
4917         BUG_ON(atomic_inc_return(&sh->count) != 1);
4918         return sh;
4919 }
4920
4921 struct raid5_plug_cb {
4922         struct blk_plug_cb      cb;
4923         struct list_head        list;
4924         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4925 };
4926
4927 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4928 {
4929         struct raid5_plug_cb *cb = container_of(
4930                 blk_cb, struct raid5_plug_cb, cb);
4931         struct stripe_head *sh;
4932         struct mddev *mddev = cb->cb.data;
4933         struct r5conf *conf = mddev->private;
4934         int cnt = 0;
4935         int hash;
4936
4937         if (cb->list.next && !list_empty(&cb->list)) {
4938                 spin_lock_irq(&conf->device_lock);
4939                 while (!list_empty(&cb->list)) {
4940                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4941                         list_del_init(&sh->lru);
4942                         /*
4943                          * avoid race release_stripe_plug() sees
4944                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4945                          * is still in our list
4946                          */
4947                         smp_mb__before_atomic();
4948                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4949                         /*
4950                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4951                          * case, the count is always > 1 here
4952                          */
4953                         hash = sh->hash_lock_index;
4954                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4955                         cnt++;
4956                 }
4957                 spin_unlock_irq(&conf->device_lock);
4958         }
4959         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4960                                      NR_STRIPE_HASH_LOCKS);
4961         if (mddev->queue)
4962                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4963         kfree(cb);
4964 }
4965
4966 static void release_stripe_plug(struct mddev *mddev,
4967                                 struct stripe_head *sh)
4968 {
4969         struct blk_plug_cb *blk_cb = blk_check_plugged(
4970                 raid5_unplug, mddev,
4971                 sizeof(struct raid5_plug_cb));
4972         struct raid5_plug_cb *cb;
4973
4974         if (!blk_cb) {
4975                 release_stripe(sh);
4976                 return;
4977         }
4978
4979         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4980
4981         if (cb->list.next == NULL) {
4982                 int i;
4983                 INIT_LIST_HEAD(&cb->list);
4984                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4985                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4986         }
4987
4988         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4989                 list_add_tail(&sh->lru, &cb->list);
4990         else
4991                 release_stripe(sh);
4992 }
4993
4994 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4995 {
4996         struct r5conf *conf = mddev->private;
4997         sector_t logical_sector, last_sector;
4998         struct stripe_head *sh;
4999         int remaining;
5000         int stripe_sectors;
5001
5002         if (mddev->reshape_position != MaxSector)
5003                 /* Skip discard while reshape is happening */
5004                 return;
5005
5006         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5007         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5008
5009         bi->bi_next = NULL;
5010         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5011
5012         stripe_sectors = conf->chunk_sectors *
5013                 (conf->raid_disks - conf->max_degraded);
5014         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5015                                                stripe_sectors);
5016         sector_div(last_sector, stripe_sectors);
5017
5018         logical_sector *= conf->chunk_sectors;
5019         last_sector *= conf->chunk_sectors;
5020
5021         for (; logical_sector < last_sector;
5022              logical_sector += STRIPE_SECTORS) {
5023                 DEFINE_WAIT(w);
5024                 int d;
5025         again:
5026                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5027                 prepare_to_wait(&conf->wait_for_overlap, &w,
5028                                 TASK_UNINTERRUPTIBLE);
5029                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5030                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5031                         release_stripe(sh);
5032                         schedule();
5033                         goto again;
5034                 }
5035                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5036                 spin_lock_irq(&sh->stripe_lock);
5037                 for (d = 0; d < conf->raid_disks; d++) {
5038                         if (d == sh->pd_idx || d == sh->qd_idx)
5039                                 continue;
5040                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5041                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5042                                 spin_unlock_irq(&sh->stripe_lock);
5043                                 release_stripe(sh);
5044                                 schedule();
5045                                 goto again;
5046                         }
5047                 }
5048                 set_bit(STRIPE_DISCARD, &sh->state);
5049                 finish_wait(&conf->wait_for_overlap, &w);
5050                 sh->overwrite_disks = 0;
5051                 for (d = 0; d < conf->raid_disks; d++) {
5052                         if (d == sh->pd_idx || d == sh->qd_idx)
5053                                 continue;
5054                         sh->dev[d].towrite = bi;
5055                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5056                         raid5_inc_bi_active_stripes(bi);
5057                         sh->overwrite_disks++;
5058                 }
5059                 spin_unlock_irq(&sh->stripe_lock);
5060                 if (conf->mddev->bitmap) {
5061                         for (d = 0;
5062                              d < conf->raid_disks - conf->max_degraded;
5063                              d++)
5064                                 bitmap_startwrite(mddev->bitmap,
5065                                                   sh->sector,
5066                                                   STRIPE_SECTORS,
5067                                                   0);
5068                         sh->bm_seq = conf->seq_flush + 1;
5069                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5070                 }
5071
5072                 set_bit(STRIPE_HANDLE, &sh->state);
5073                 clear_bit(STRIPE_DELAYED, &sh->state);
5074                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5075                         atomic_inc(&conf->preread_active_stripes);
5076                 release_stripe_plug(mddev, sh);
5077         }
5078
5079         remaining = raid5_dec_bi_active_stripes(bi);
5080         if (remaining == 0) {
5081                 md_write_end(mddev);
5082                 bio_endio(bi, 0);
5083         }
5084 }
5085
5086 static void make_request(struct mddev *mddev, struct bio * bi)
5087 {
5088         struct r5conf *conf = mddev->private;
5089         int dd_idx;
5090         sector_t new_sector;
5091         sector_t logical_sector, last_sector;
5092         struct stripe_head *sh;
5093         const int rw = bio_data_dir(bi);
5094         int remaining;
5095         DEFINE_WAIT(w);
5096         bool do_prepare;
5097
5098         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5099                 md_flush_request(mddev, bi);
5100                 return;
5101         }
5102
5103         md_write_start(mddev, bi);
5104
5105         if (rw == READ &&
5106              mddev->reshape_position == MaxSector &&
5107              chunk_aligned_read(mddev,bi))
5108                 return;
5109
5110         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5111                 make_discard_request(mddev, bi);
5112                 return;
5113         }
5114
5115         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5116         last_sector = bio_end_sector(bi);
5117         bi->bi_next = NULL;
5118         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5119
5120         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5121         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5122                 int previous;
5123                 int seq;
5124
5125                 do_prepare = false;
5126         retry:
5127                 seq = read_seqcount_begin(&conf->gen_lock);
5128                 previous = 0;
5129                 if (do_prepare)
5130                         prepare_to_wait(&conf->wait_for_overlap, &w,
5131                                 TASK_UNINTERRUPTIBLE);
5132                 if (unlikely(conf->reshape_progress != MaxSector)) {
5133                         /* spinlock is needed as reshape_progress may be
5134                          * 64bit on a 32bit platform, and so it might be
5135                          * possible to see a half-updated value
5136                          * Of course reshape_progress could change after
5137                          * the lock is dropped, so once we get a reference
5138                          * to the stripe that we think it is, we will have
5139                          * to check again.
5140                          */
5141                         spin_lock_irq(&conf->device_lock);
5142                         if (mddev->reshape_backwards
5143                             ? logical_sector < conf->reshape_progress
5144                             : logical_sector >= conf->reshape_progress) {
5145                                 previous = 1;
5146                         } else {
5147                                 if (mddev->reshape_backwards
5148                                     ? logical_sector < conf->reshape_safe
5149                                     : logical_sector >= conf->reshape_safe) {
5150                                         spin_unlock_irq(&conf->device_lock);
5151                                         schedule();
5152                                         do_prepare = true;
5153                                         goto retry;
5154                                 }
5155                         }
5156                         spin_unlock_irq(&conf->device_lock);
5157                 }
5158
5159                 new_sector = raid5_compute_sector(conf, logical_sector,
5160                                                   previous,
5161                                                   &dd_idx, NULL);
5162                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5163                         (unsigned long long)new_sector,
5164                         (unsigned long long)logical_sector);
5165
5166                 sh = get_active_stripe(conf, new_sector, previous,
5167                                        (bi->bi_rw&RWA_MASK), 0);
5168                 if (sh) {
5169                         if (unlikely(previous)) {
5170                                 /* expansion might have moved on while waiting for a
5171                                  * stripe, so we must do the range check again.
5172                                  * Expansion could still move past after this
5173                                  * test, but as we are holding a reference to
5174                                  * 'sh', we know that if that happens,
5175                                  *  STRIPE_EXPANDING will get set and the expansion
5176                                  * won't proceed until we finish with the stripe.
5177                                  */
5178                                 int must_retry = 0;
5179                                 spin_lock_irq(&conf->device_lock);
5180                                 if (mddev->reshape_backwards
5181                                     ? logical_sector >= conf->reshape_progress
5182                                     : logical_sector < conf->reshape_progress)
5183                                         /* mismatch, need to try again */
5184                                         must_retry = 1;
5185                                 spin_unlock_irq(&conf->device_lock);
5186                                 if (must_retry) {
5187                                         release_stripe(sh);
5188                                         schedule();
5189                                         do_prepare = true;
5190                                         goto retry;
5191                                 }
5192                         }
5193                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5194                                 /* Might have got the wrong stripe_head
5195                                  * by accident
5196                                  */
5197                                 release_stripe(sh);
5198                                 goto retry;
5199                         }
5200
5201                         if (rw == WRITE &&
5202                             logical_sector >= mddev->suspend_lo &&
5203                             logical_sector < mddev->suspend_hi) {
5204                                 release_stripe(sh);
5205                                 /* As the suspend_* range is controlled by
5206                                  * userspace, we want an interruptible
5207                                  * wait.
5208                                  */
5209                                 flush_signals(current);
5210                                 prepare_to_wait(&conf->wait_for_overlap,
5211                                                 &w, TASK_INTERRUPTIBLE);
5212                                 if (logical_sector >= mddev->suspend_lo &&
5213                                     logical_sector < mddev->suspend_hi) {
5214                                         schedule();
5215                                         do_prepare = true;
5216                                 }
5217                                 goto retry;
5218                         }
5219
5220                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5221                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5222                                 /* Stripe is busy expanding or
5223                                  * add failed due to overlap.  Flush everything
5224                                  * and wait a while
5225                                  */
5226                                 md_wakeup_thread(mddev->thread);
5227                                 release_stripe(sh);
5228                                 schedule();
5229                                 do_prepare = true;
5230                                 goto retry;
5231                         }
5232                         set_bit(STRIPE_HANDLE, &sh->state);
5233                         clear_bit(STRIPE_DELAYED, &sh->state);
5234                         if ((!sh->batch_head || sh == sh->batch_head) &&
5235                             (bi->bi_rw & REQ_SYNC) &&
5236                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5237                                 atomic_inc(&conf->preread_active_stripes);
5238                         release_stripe_plug(mddev, sh);
5239                 } else {
5240                         /* cannot get stripe for read-ahead, just give-up */
5241                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5242                         break;
5243                 }
5244         }
5245         finish_wait(&conf->wait_for_overlap, &w);
5246
5247         remaining = raid5_dec_bi_active_stripes(bi);
5248         if (remaining == 0) {
5249
5250                 if ( rw == WRITE )
5251                         md_write_end(mddev);
5252
5253                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5254                                          bi, 0);
5255                 bio_endio(bi, 0);
5256         }
5257 }
5258
5259 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5260
5261 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5262 {
5263         /* reshaping is quite different to recovery/resync so it is
5264          * handled quite separately ... here.
5265          *
5266          * On each call to sync_request, we gather one chunk worth of
5267          * destination stripes and flag them as expanding.
5268          * Then we find all the source stripes and request reads.
5269          * As the reads complete, handle_stripe will copy the data
5270          * into the destination stripe and release that stripe.
5271          */
5272         struct r5conf *conf = mddev->private;
5273         struct stripe_head *sh;
5274         sector_t first_sector, last_sector;
5275         int raid_disks = conf->previous_raid_disks;
5276         int data_disks = raid_disks - conf->max_degraded;
5277         int new_data_disks = conf->raid_disks - conf->max_degraded;
5278         int i;
5279         int dd_idx;
5280         sector_t writepos, readpos, safepos;
5281         sector_t stripe_addr;
5282         int reshape_sectors;
5283         struct list_head stripes;
5284
5285         if (sector_nr == 0) {
5286                 /* If restarting in the middle, skip the initial sectors */
5287                 if (mddev->reshape_backwards &&
5288                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5289                         sector_nr = raid5_size(mddev, 0, 0)
5290                                 - conf->reshape_progress;
5291                 } else if (!mddev->reshape_backwards &&
5292                            conf->reshape_progress > 0)
5293                         sector_nr = conf->reshape_progress;
5294                 sector_div(sector_nr, new_data_disks);
5295                 if (sector_nr) {
5296                         mddev->curr_resync_completed = sector_nr;
5297                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5298                         *skipped = 1;
5299                         return sector_nr;
5300                 }
5301         }
5302
5303         /* We need to process a full chunk at a time.
5304          * If old and new chunk sizes differ, we need to process the
5305          * largest of these
5306          */
5307         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5308                 reshape_sectors = mddev->new_chunk_sectors;
5309         else
5310                 reshape_sectors = mddev->chunk_sectors;
5311
5312         /* We update the metadata at least every 10 seconds, or when
5313          * the data about to be copied would over-write the source of
5314          * the data at the front of the range.  i.e. one new_stripe
5315          * along from reshape_progress new_maps to after where
5316          * reshape_safe old_maps to
5317          */
5318         writepos = conf->reshape_progress;
5319         sector_div(writepos, new_data_disks);
5320         readpos = conf->reshape_progress;
5321         sector_div(readpos, data_disks);
5322         safepos = conf->reshape_safe;
5323         sector_div(safepos, data_disks);
5324         if (mddev->reshape_backwards) {
5325                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5326                 readpos += reshape_sectors;
5327                 safepos += reshape_sectors;
5328         } else {
5329                 writepos += reshape_sectors;
5330                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5331                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5332         }
5333
5334         /* Having calculated the 'writepos' possibly use it
5335          * to set 'stripe_addr' which is where we will write to.
5336          */
5337         if (mddev->reshape_backwards) {
5338                 BUG_ON(conf->reshape_progress == 0);
5339                 stripe_addr = writepos;
5340                 BUG_ON((mddev->dev_sectors &
5341                         ~((sector_t)reshape_sectors - 1))
5342                        - reshape_sectors - stripe_addr
5343                        != sector_nr);
5344         } else {
5345                 BUG_ON(writepos != sector_nr + reshape_sectors);
5346                 stripe_addr = sector_nr;
5347         }
5348
5349         /* 'writepos' is the most advanced device address we might write.
5350          * 'readpos' is the least advanced device address we might read.
5351          * 'safepos' is the least address recorded in the metadata as having
5352          *     been reshaped.
5353          * If there is a min_offset_diff, these are adjusted either by
5354          * increasing the safepos/readpos if diff is negative, or
5355          * increasing writepos if diff is positive.
5356          * If 'readpos' is then behind 'writepos', there is no way that we can
5357          * ensure safety in the face of a crash - that must be done by userspace
5358          * making a backup of the data.  So in that case there is no particular
5359          * rush to update metadata.
5360          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5361          * update the metadata to advance 'safepos' to match 'readpos' so that
5362          * we can be safe in the event of a crash.
5363          * So we insist on updating metadata if safepos is behind writepos and
5364          * readpos is beyond writepos.
5365          * In any case, update the metadata every 10 seconds.
5366          * Maybe that number should be configurable, but I'm not sure it is
5367          * worth it.... maybe it could be a multiple of safemode_delay???
5368          */
5369         if (conf->min_offset_diff < 0) {
5370                 safepos += -conf->min_offset_diff;
5371                 readpos += -conf->min_offset_diff;
5372         } else
5373                 writepos += conf->min_offset_diff;
5374
5375         if ((mddev->reshape_backwards
5376              ? (safepos > writepos && readpos < writepos)
5377              : (safepos < writepos && readpos > writepos)) ||
5378             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5379                 /* Cannot proceed until we've updated the superblock... */
5380                 wait_event(conf->wait_for_overlap,
5381                            atomic_read(&conf->reshape_stripes)==0
5382                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5383                 if (atomic_read(&conf->reshape_stripes) != 0)
5384                         return 0;
5385                 mddev->reshape_position = conf->reshape_progress;
5386                 mddev->curr_resync_completed = sector_nr;
5387                 conf->reshape_checkpoint = jiffies;
5388                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5389                 md_wakeup_thread(mddev->thread);
5390                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5391                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5392                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5393                         return 0;
5394                 spin_lock_irq(&conf->device_lock);
5395                 conf->reshape_safe = mddev->reshape_position;
5396                 spin_unlock_irq(&conf->device_lock);
5397                 wake_up(&conf->wait_for_overlap);
5398                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5399         }
5400
5401         INIT_LIST_HEAD(&stripes);
5402         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5403                 int j;
5404                 int skipped_disk = 0;
5405                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5406                 set_bit(STRIPE_EXPANDING, &sh->state);
5407                 atomic_inc(&conf->reshape_stripes);
5408                 /* If any of this stripe is beyond the end of the old
5409                  * array, then we need to zero those blocks
5410                  */
5411                 for (j=sh->disks; j--;) {
5412                         sector_t s;
5413                         if (j == sh->pd_idx)
5414                                 continue;
5415                         if (conf->level == 6 &&
5416                             j == sh->qd_idx)
5417                                 continue;
5418                         s = compute_blocknr(sh, j, 0);
5419                         if (s < raid5_size(mddev, 0, 0)) {
5420                                 skipped_disk = 1;
5421                                 continue;
5422                         }
5423                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5424                         set_bit(R5_Expanded, &sh->dev[j].flags);
5425                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5426                 }
5427                 if (!skipped_disk) {
5428                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5429                         set_bit(STRIPE_HANDLE, &sh->state);
5430                 }
5431                 list_add(&sh->lru, &stripes);
5432         }
5433         spin_lock_irq(&conf->device_lock);
5434         if (mddev->reshape_backwards)
5435                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5436         else
5437                 conf->reshape_progress += reshape_sectors * new_data_disks;
5438         spin_unlock_irq(&conf->device_lock);
5439         /* Ok, those stripe are ready. We can start scheduling
5440          * reads on the source stripes.
5441          * The source stripes are determined by mapping the first and last
5442          * block on the destination stripes.
5443          */
5444         first_sector =
5445                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5446                                      1, &dd_idx, NULL);
5447         last_sector =
5448                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5449                                             * new_data_disks - 1),
5450                                      1, &dd_idx, NULL);
5451         if (last_sector >= mddev->dev_sectors)
5452                 last_sector = mddev->dev_sectors - 1;
5453         while (first_sector <= last_sector) {
5454                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5455                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5456                 set_bit(STRIPE_HANDLE, &sh->state);
5457                 release_stripe(sh);
5458                 first_sector += STRIPE_SECTORS;
5459         }
5460         /* Now that the sources are clearly marked, we can release
5461          * the destination stripes
5462          */
5463         while (!list_empty(&stripes)) {
5464                 sh = list_entry(stripes.next, struct stripe_head, lru);
5465                 list_del_init(&sh->lru);
5466                 release_stripe(sh);
5467         }
5468         /* If this takes us to the resync_max point where we have to pause,
5469          * then we need to write out the superblock.
5470          */
5471         sector_nr += reshape_sectors;
5472         if ((sector_nr - mddev->curr_resync_completed) * 2
5473             >= mddev->resync_max - mddev->curr_resync_completed) {
5474                 /* Cannot proceed until we've updated the superblock... */
5475                 wait_event(conf->wait_for_overlap,
5476                            atomic_read(&conf->reshape_stripes) == 0
5477                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5478                 if (atomic_read(&conf->reshape_stripes) != 0)
5479                         goto ret;
5480                 mddev->reshape_position = conf->reshape_progress;
5481                 mddev->curr_resync_completed = sector_nr;
5482                 conf->reshape_checkpoint = jiffies;
5483                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5484                 md_wakeup_thread(mddev->thread);
5485                 wait_event(mddev->sb_wait,
5486                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5487                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5488                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5489                         goto ret;
5490                 spin_lock_irq(&conf->device_lock);
5491                 conf->reshape_safe = mddev->reshape_position;
5492                 spin_unlock_irq(&conf->device_lock);
5493                 wake_up(&conf->wait_for_overlap);
5494                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5495         }
5496 ret:
5497         return reshape_sectors;
5498 }
5499
5500 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5501 {
5502         struct r5conf *conf = mddev->private;
5503         struct stripe_head *sh;
5504         sector_t max_sector = mddev->dev_sectors;
5505         sector_t sync_blocks;
5506         int still_degraded = 0;
5507         int i;
5508
5509         if (sector_nr >= max_sector) {
5510                 /* just being told to finish up .. nothing much to do */
5511
5512                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5513                         end_reshape(conf);
5514                         return 0;
5515                 }
5516
5517                 if (mddev->curr_resync < max_sector) /* aborted */
5518                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5519                                         &sync_blocks, 1);
5520                 else /* completed sync */
5521                         conf->fullsync = 0;
5522                 bitmap_close_sync(mddev->bitmap);
5523
5524                 return 0;
5525         }
5526
5527         /* Allow raid5_quiesce to complete */
5528         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5529
5530         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5531                 return reshape_request(mddev, sector_nr, skipped);
5532
5533         /* No need to check resync_max as we never do more than one
5534          * stripe, and as resync_max will always be on a chunk boundary,
5535          * if the check in md_do_sync didn't fire, there is no chance
5536          * of overstepping resync_max here
5537          */
5538
5539         /* if there is too many failed drives and we are trying
5540          * to resync, then assert that we are finished, because there is
5541          * nothing we can do.
5542          */
5543         if (mddev->degraded >= conf->max_degraded &&
5544             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5545                 sector_t rv = mddev->dev_sectors - sector_nr;
5546                 *skipped = 1;
5547                 return rv;
5548         }
5549         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5550             !conf->fullsync &&
5551             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5552             sync_blocks >= STRIPE_SECTORS) {
5553                 /* we can skip this block, and probably more */
5554                 sync_blocks /= STRIPE_SECTORS;
5555                 *skipped = 1;
5556                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5557         }
5558
5559         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5560
5561         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5562         if (sh == NULL) {
5563                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5564                 /* make sure we don't swamp the stripe cache if someone else
5565                  * is trying to get access
5566                  */
5567                 schedule_timeout_uninterruptible(1);
5568         }
5569         /* Need to check if array will still be degraded after recovery/resync
5570          * Note in case of > 1 drive failures it's possible we're rebuilding
5571          * one drive while leaving another faulty drive in array.
5572          */
5573         rcu_read_lock();
5574         for (i = 0; i < conf->raid_disks; i++) {
5575                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5576
5577                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5578                         still_degraded = 1;
5579         }
5580         rcu_read_unlock();
5581
5582         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5583
5584         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5585         set_bit(STRIPE_HANDLE, &sh->state);
5586
5587         release_stripe(sh);
5588
5589         return STRIPE_SECTORS;
5590 }
5591
5592 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5593 {
5594         /* We may not be able to submit a whole bio at once as there
5595          * may not be enough stripe_heads available.
5596          * We cannot pre-allocate enough stripe_heads as we may need
5597          * more than exist in the cache (if we allow ever large chunks).
5598          * So we do one stripe head at a time and record in
5599          * ->bi_hw_segments how many have been done.
5600          *
5601          * We *know* that this entire raid_bio is in one chunk, so
5602          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5603          */
5604         struct stripe_head *sh;
5605         int dd_idx;
5606         sector_t sector, logical_sector, last_sector;
5607         int scnt = 0;
5608         int remaining;
5609         int handled = 0;
5610
5611         logical_sector = raid_bio->bi_iter.bi_sector &
5612                 ~((sector_t)STRIPE_SECTORS-1);
5613         sector = raid5_compute_sector(conf, logical_sector,
5614                                       0, &dd_idx, NULL);
5615         last_sector = bio_end_sector(raid_bio);
5616
5617         for (; logical_sector < last_sector;
5618              logical_sector += STRIPE_SECTORS,
5619                      sector += STRIPE_SECTORS,
5620                      scnt++) {
5621
5622                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5623                         /* already done this stripe */
5624                         continue;
5625
5626                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5627
5628                 if (!sh) {
5629                         /* failed to get a stripe - must wait */
5630                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5631                         conf->retry_read_aligned = raid_bio;
5632                         return handled;
5633                 }
5634
5635                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5636                         release_stripe(sh);
5637                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5638                         conf->retry_read_aligned = raid_bio;
5639                         return handled;
5640                 }
5641
5642                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5643                 handle_stripe(sh);
5644                 release_stripe(sh);
5645                 handled++;
5646         }
5647         remaining = raid5_dec_bi_active_stripes(raid_bio);
5648         if (remaining == 0) {
5649                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5650                                          raid_bio, 0);
5651                 bio_endio(raid_bio, 0);
5652         }
5653         if (atomic_dec_and_test(&conf->active_aligned_reads))
5654                 wake_up(&conf->wait_for_stripe);
5655         return handled;
5656 }
5657
5658 static int handle_active_stripes(struct r5conf *conf, int group,
5659                                  struct r5worker *worker,
5660                                  struct list_head *temp_inactive_list)
5661 {
5662         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5663         int i, batch_size = 0, hash;
5664         bool release_inactive = false;
5665
5666         while (batch_size < MAX_STRIPE_BATCH &&
5667                         (sh = __get_priority_stripe(conf, group)) != NULL)
5668                 batch[batch_size++] = sh;
5669
5670         if (batch_size == 0) {
5671                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5672                         if (!list_empty(temp_inactive_list + i))
5673                                 break;
5674                 if (i == NR_STRIPE_HASH_LOCKS)
5675                         return batch_size;
5676                 release_inactive = true;
5677         }
5678         spin_unlock_irq(&conf->device_lock);
5679
5680         release_inactive_stripe_list(conf, temp_inactive_list,
5681                                      NR_STRIPE_HASH_LOCKS);
5682
5683         if (release_inactive) {
5684                 spin_lock_irq(&conf->device_lock);
5685                 return 0;
5686         }
5687
5688         for (i = 0; i < batch_size; i++)
5689                 handle_stripe(batch[i]);
5690
5691         cond_resched();
5692
5693         spin_lock_irq(&conf->device_lock);
5694         for (i = 0; i < batch_size; i++) {
5695                 hash = batch[i]->hash_lock_index;
5696                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5697         }
5698         return batch_size;
5699 }
5700
5701 static void raid5_do_work(struct work_struct *work)
5702 {
5703         struct r5worker *worker = container_of(work, struct r5worker, work);
5704         struct r5worker_group *group = worker->group;
5705         struct r5conf *conf = group->conf;
5706         int group_id = group - conf->worker_groups;
5707         int handled;
5708         struct blk_plug plug;
5709
5710         pr_debug("+++ raid5worker active\n");
5711
5712         blk_start_plug(&plug);
5713         handled = 0;
5714         spin_lock_irq(&conf->device_lock);
5715         while (1) {
5716                 int batch_size, released;
5717
5718                 released = release_stripe_list(conf, worker->temp_inactive_list);
5719
5720                 batch_size = handle_active_stripes(conf, group_id, worker,
5721                                                    worker->temp_inactive_list);
5722                 worker->working = false;
5723                 if (!batch_size && !released)
5724                         break;
5725                 handled += batch_size;
5726         }
5727         pr_debug("%d stripes handled\n", handled);
5728
5729         spin_unlock_irq(&conf->device_lock);
5730         blk_finish_plug(&plug);
5731
5732         pr_debug("--- raid5worker inactive\n");
5733 }
5734
5735 /*
5736  * This is our raid5 kernel thread.
5737  *
5738  * We scan the hash table for stripes which can be handled now.
5739  * During the scan, completed stripes are saved for us by the interrupt
5740  * handler, so that they will not have to wait for our next wakeup.
5741  */
5742 static void raid5d(struct md_thread *thread)
5743 {
5744         struct mddev *mddev = thread->mddev;
5745         struct r5conf *conf = mddev->private;
5746         int handled;
5747         struct blk_plug plug;
5748
5749         pr_debug("+++ raid5d active\n");
5750
5751         md_check_recovery(mddev);
5752
5753         blk_start_plug(&plug);
5754         handled = 0;
5755         spin_lock_irq(&conf->device_lock);
5756         while (1) {
5757                 struct bio *bio;
5758                 int batch_size, released;
5759
5760                 released = release_stripe_list(conf, conf->temp_inactive_list);
5761
5762                 if (
5763                     !list_empty(&conf->bitmap_list)) {
5764                         /* Now is a good time to flush some bitmap updates */
5765                         conf->seq_flush++;
5766                         spin_unlock_irq(&conf->device_lock);
5767                         bitmap_unplug(mddev->bitmap);
5768                         spin_lock_irq(&conf->device_lock);
5769                         conf->seq_write = conf->seq_flush;
5770                         activate_bit_delay(conf, conf->temp_inactive_list);
5771                 }
5772                 raid5_activate_delayed(conf);
5773
5774                 while ((bio = remove_bio_from_retry(conf))) {
5775                         int ok;
5776                         spin_unlock_irq(&conf->device_lock);
5777                         ok = retry_aligned_read(conf, bio);
5778                         spin_lock_irq(&conf->device_lock);
5779                         if (!ok)
5780                                 break;
5781                         handled++;
5782                 }
5783
5784                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5785                                                    conf->temp_inactive_list);
5786                 if (!batch_size && !released)
5787                         break;
5788                 handled += batch_size;
5789
5790                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5791                         spin_unlock_irq(&conf->device_lock);
5792                         md_check_recovery(mddev);
5793                         spin_lock_irq(&conf->device_lock);
5794                 }
5795         }
5796         pr_debug("%d stripes handled\n", handled);
5797
5798         spin_unlock_irq(&conf->device_lock);
5799
5800         async_tx_issue_pending_all();
5801         blk_finish_plug(&plug);
5802
5803         pr_debug("--- raid5d inactive\n");
5804 }
5805
5806 static ssize_t
5807 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5808 {
5809         struct r5conf *conf;
5810         int ret = 0;
5811         spin_lock(&mddev->lock);
5812         conf = mddev->private;
5813         if (conf)
5814                 ret = sprintf(page, "%d\n", conf->max_nr_stripes);
5815         spin_unlock(&mddev->lock);
5816         return ret;
5817 }
5818
5819 int
5820 raid5_set_cache_size(struct mddev *mddev, int size)
5821 {
5822         struct r5conf *conf = mddev->private;
5823         int err;
5824
5825         if (size <= 16 || size > 32768)
5826                 return -EINVAL;
5827
5828         while (size < conf->max_nr_stripes &&
5829                drop_one_stripe(conf))
5830                 ;
5831
5832         err = md_allow_write(mddev);
5833         if (err)
5834                 return err;
5835
5836         while (size > conf->max_nr_stripes)
5837                 if (!grow_one_stripe(conf, GFP_KERNEL))
5838                         break;
5839
5840         return 0;
5841 }
5842 EXPORT_SYMBOL(raid5_set_cache_size);
5843
5844 static ssize_t
5845 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5846 {
5847         struct r5conf *conf;
5848         unsigned long new;
5849         int err;
5850
5851         if (len >= PAGE_SIZE)
5852                 return -EINVAL;
5853         if (kstrtoul(page, 10, &new))
5854                 return -EINVAL;
5855         err = mddev_lock(mddev);
5856         if (err)
5857                 return err;
5858         conf = mddev->private;
5859         if (!conf)
5860                 err = -ENODEV;
5861         else
5862                 err = raid5_set_cache_size(mddev, new);
5863         mddev_unlock(mddev);
5864
5865         return err ?: len;
5866 }
5867
5868 static struct md_sysfs_entry
5869 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5870                                 raid5_show_stripe_cache_size,
5871                                 raid5_store_stripe_cache_size);
5872
5873 static ssize_t
5874 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5875 {
5876         struct r5conf *conf = mddev->private;
5877         if (conf)
5878                 return sprintf(page, "%d\n", conf->rmw_level);
5879         else
5880                 return 0;
5881 }
5882
5883 static ssize_t
5884 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5885 {
5886         struct r5conf *conf = mddev->private;
5887         unsigned long new;
5888
5889         if (!conf)
5890                 return -ENODEV;
5891
5892         if (len >= PAGE_SIZE)
5893                 return -EINVAL;
5894
5895         if (kstrtoul(page, 10, &new))
5896                 return -EINVAL;
5897
5898         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5899                 return -EINVAL;
5900
5901         if (new != PARITY_DISABLE_RMW &&
5902             new != PARITY_ENABLE_RMW &&
5903             new != PARITY_PREFER_RMW)
5904                 return -EINVAL;
5905
5906         conf->rmw_level = new;
5907         return len;
5908 }
5909
5910 static struct md_sysfs_entry
5911 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5912                          raid5_show_rmw_level,
5913                          raid5_store_rmw_level);
5914
5915
5916 static ssize_t
5917 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5918 {
5919         struct r5conf *conf;
5920         int ret = 0;
5921         spin_lock(&mddev->lock);
5922         conf = mddev->private;
5923         if (conf)
5924                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5925         spin_unlock(&mddev->lock);
5926         return ret;
5927 }
5928
5929 static ssize_t
5930 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5931 {
5932         struct r5conf *conf;
5933         unsigned long new;
5934         int err;
5935
5936         if (len >= PAGE_SIZE)
5937                 return -EINVAL;
5938         if (kstrtoul(page, 10, &new))
5939                 return -EINVAL;
5940
5941         err = mddev_lock(mddev);
5942         if (err)
5943                 return err;
5944         conf = mddev->private;
5945         if (!conf)
5946                 err = -ENODEV;
5947         else if (new > conf->max_nr_stripes)
5948                 err = -EINVAL;
5949         else
5950                 conf->bypass_threshold = new;
5951         mddev_unlock(mddev);
5952         return err ?: len;
5953 }
5954
5955 static struct md_sysfs_entry
5956 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5957                                         S_IRUGO | S_IWUSR,
5958                                         raid5_show_preread_threshold,
5959                                         raid5_store_preread_threshold);
5960
5961 static ssize_t
5962 raid5_show_skip_copy(struct mddev *mddev, char *page)
5963 {
5964         struct r5conf *conf;
5965         int ret = 0;
5966         spin_lock(&mddev->lock);
5967         conf = mddev->private;
5968         if (conf)
5969                 ret = sprintf(page, "%d\n", conf->skip_copy);
5970         spin_unlock(&mddev->lock);
5971         return ret;
5972 }
5973
5974 static ssize_t
5975 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5976 {
5977         struct r5conf *conf;
5978         unsigned long new;
5979         int err;
5980
5981         if (len >= PAGE_SIZE)
5982                 return -EINVAL;
5983         if (kstrtoul(page, 10, &new))
5984                 return -EINVAL;
5985         new = !!new;
5986
5987         err = mddev_lock(mddev);
5988         if (err)
5989                 return err;
5990         conf = mddev->private;
5991         if (!conf)
5992                 err = -ENODEV;
5993         else if (new != conf->skip_copy) {
5994                 mddev_suspend(mddev);
5995                 conf->skip_copy = new;
5996                 if (new)
5997                         mddev->queue->backing_dev_info.capabilities |=
5998                                 BDI_CAP_STABLE_WRITES;
5999                 else
6000                         mddev->queue->backing_dev_info.capabilities &=
6001                                 ~BDI_CAP_STABLE_WRITES;
6002                 mddev_resume(mddev);
6003         }
6004         mddev_unlock(mddev);
6005         return err ?: len;
6006 }
6007
6008 static struct md_sysfs_entry
6009 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6010                                         raid5_show_skip_copy,
6011                                         raid5_store_skip_copy);
6012
6013 static ssize_t
6014 stripe_cache_active_show(struct mddev *mddev, char *page)
6015 {
6016         struct r5conf *conf = mddev->private;
6017         if (conf)
6018                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6019         else
6020                 return 0;
6021 }
6022
6023 static struct md_sysfs_entry
6024 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6025
6026 static ssize_t
6027 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6028 {
6029         struct r5conf *conf;
6030         int ret = 0;
6031         spin_lock(&mddev->lock);
6032         conf = mddev->private;
6033         if (conf)
6034                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6035         spin_unlock(&mddev->lock);
6036         return ret;
6037 }
6038
6039 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6040                                int *group_cnt,
6041                                int *worker_cnt_per_group,
6042                                struct r5worker_group **worker_groups);
6043 static ssize_t
6044 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6045 {
6046         struct r5conf *conf;
6047         unsigned long new;
6048         int err;
6049         struct r5worker_group *new_groups, *old_groups;
6050         int group_cnt, worker_cnt_per_group;
6051
6052         if (len >= PAGE_SIZE)
6053                 return -EINVAL;
6054         if (kstrtoul(page, 10, &new))
6055                 return -EINVAL;
6056
6057         err = mddev_lock(mddev);
6058         if (err)
6059                 return err;
6060         conf = mddev->private;
6061         if (!conf)
6062                 err = -ENODEV;
6063         else if (new != conf->worker_cnt_per_group) {
6064                 mddev_suspend(mddev);
6065
6066                 old_groups = conf->worker_groups;
6067                 if (old_groups)
6068                         flush_workqueue(raid5_wq);
6069
6070                 err = alloc_thread_groups(conf, new,
6071                                           &group_cnt, &worker_cnt_per_group,
6072                                           &new_groups);
6073                 if (!err) {
6074                         spin_lock_irq(&conf->device_lock);
6075                         conf->group_cnt = group_cnt;
6076                         conf->worker_cnt_per_group = worker_cnt_per_group;
6077                         conf->worker_groups = new_groups;
6078                         spin_unlock_irq(&conf->device_lock);
6079
6080                         if (old_groups)
6081                                 kfree(old_groups[0].workers);
6082                         kfree(old_groups);
6083                 }
6084                 mddev_resume(mddev);
6085         }
6086         mddev_unlock(mddev);
6087
6088         return err ?: len;
6089 }
6090
6091 static struct md_sysfs_entry
6092 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6093                                 raid5_show_group_thread_cnt,
6094                                 raid5_store_group_thread_cnt);
6095
6096 static struct attribute *raid5_attrs[] =  {
6097         &raid5_stripecache_size.attr,
6098         &raid5_stripecache_active.attr,
6099         &raid5_preread_bypass_threshold.attr,
6100         &raid5_group_thread_cnt.attr,
6101         &raid5_skip_copy.attr,
6102         &raid5_rmw_level.attr,
6103         NULL,
6104 };
6105 static struct attribute_group raid5_attrs_group = {
6106         .name = NULL,
6107         .attrs = raid5_attrs,
6108 };
6109
6110 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6111                                int *group_cnt,
6112                                int *worker_cnt_per_group,
6113                                struct r5worker_group **worker_groups)
6114 {
6115         int i, j, k;
6116         ssize_t size;
6117         struct r5worker *workers;
6118
6119         *worker_cnt_per_group = cnt;
6120         if (cnt == 0) {
6121                 *group_cnt = 0;
6122                 *worker_groups = NULL;
6123                 return 0;
6124         }
6125         *group_cnt = num_possible_nodes();
6126         size = sizeof(struct r5worker) * cnt;
6127         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6128         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6129                                 *group_cnt, GFP_NOIO);
6130         if (!*worker_groups || !workers) {
6131                 kfree(workers);
6132                 kfree(*worker_groups);
6133                 return -ENOMEM;
6134         }
6135
6136         for (i = 0; i < *group_cnt; i++) {
6137                 struct r5worker_group *group;
6138
6139                 group = &(*worker_groups)[i];
6140                 INIT_LIST_HEAD(&group->handle_list);
6141                 group->conf = conf;
6142                 group->workers = workers + i * cnt;
6143
6144                 for (j = 0; j < cnt; j++) {
6145                         struct r5worker *worker = group->workers + j;
6146                         worker->group = group;
6147                         INIT_WORK(&worker->work, raid5_do_work);
6148
6149                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6150                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6151                 }
6152         }
6153
6154         return 0;
6155 }
6156
6157 static void free_thread_groups(struct r5conf *conf)
6158 {
6159         if (conf->worker_groups)
6160                 kfree(conf->worker_groups[0].workers);
6161         kfree(conf->worker_groups);
6162         conf->worker_groups = NULL;
6163 }
6164
6165 static sector_t
6166 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6167 {
6168         struct r5conf *conf = mddev->private;
6169
6170         if (!sectors)
6171                 sectors = mddev->dev_sectors;
6172         if (!raid_disks)
6173                 /* size is defined by the smallest of previous and new size */
6174                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6175
6176         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6177         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6178         return sectors * (raid_disks - conf->max_degraded);
6179 }
6180
6181 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6182 {
6183         safe_put_page(percpu->spare_page);
6184         if (percpu->scribble)
6185                 flex_array_free(percpu->scribble);
6186         percpu->spare_page = NULL;
6187         percpu->scribble = NULL;
6188 }
6189
6190 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6191 {
6192         if (conf->level == 6 && !percpu->spare_page)
6193                 percpu->spare_page = alloc_page(GFP_KERNEL);
6194         if (!percpu->scribble)
6195                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6196                         conf->previous_raid_disks), conf->chunk_sectors /
6197                         STRIPE_SECTORS, GFP_KERNEL);
6198
6199         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6200                 free_scratch_buffer(conf, percpu);
6201                 return -ENOMEM;
6202         }
6203
6204         return 0;
6205 }
6206
6207 static void raid5_free_percpu(struct r5conf *conf)
6208 {
6209         unsigned long cpu;
6210
6211         if (!conf->percpu)
6212                 return;
6213
6214 #ifdef CONFIG_HOTPLUG_CPU
6215         unregister_cpu_notifier(&conf->cpu_notify);
6216 #endif
6217
6218         get_online_cpus();
6219         for_each_possible_cpu(cpu)
6220                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6221         put_online_cpus();
6222
6223         free_percpu(conf->percpu);
6224 }
6225
6226 static void free_conf(struct r5conf *conf)
6227 {
6228         free_thread_groups(conf);
6229         shrink_stripes(conf);
6230         raid5_free_percpu(conf);
6231         kfree(conf->disks);
6232         kfree(conf->stripe_hashtbl);
6233         kfree(conf);
6234 }
6235
6236 #ifdef CONFIG_HOTPLUG_CPU
6237 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6238                               void *hcpu)
6239 {
6240         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6241         long cpu = (long)hcpu;
6242         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6243
6244         switch (action) {
6245         case CPU_UP_PREPARE:
6246         case CPU_UP_PREPARE_FROZEN:
6247                 if (alloc_scratch_buffer(conf, percpu)) {
6248                         pr_err("%s: failed memory allocation for cpu%ld\n",
6249                                __func__, cpu);
6250                         return notifier_from_errno(-ENOMEM);
6251                 }
6252                 break;
6253         case CPU_DEAD:
6254         case CPU_DEAD_FROZEN:
6255                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6256                 break;
6257         default:
6258                 break;
6259         }
6260         return NOTIFY_OK;
6261 }
6262 #endif
6263
6264 static int raid5_alloc_percpu(struct r5conf *conf)
6265 {
6266         unsigned long cpu;
6267         int err = 0;
6268
6269         conf->percpu = alloc_percpu(struct raid5_percpu);
6270         if (!conf->percpu)
6271                 return -ENOMEM;
6272
6273 #ifdef CONFIG_HOTPLUG_CPU
6274         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6275         conf->cpu_notify.priority = 0;
6276         err = register_cpu_notifier(&conf->cpu_notify);
6277         if (err)
6278                 return err;
6279 #endif
6280
6281         get_online_cpus();
6282         for_each_present_cpu(cpu) {
6283                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6284                 if (err) {
6285                         pr_err("%s: failed memory allocation for cpu%ld\n",
6286                                __func__, cpu);
6287                         break;
6288                 }
6289         }
6290         put_online_cpus();
6291
6292         return err;
6293 }
6294
6295 static struct r5conf *setup_conf(struct mddev *mddev)
6296 {
6297         struct r5conf *conf;
6298         int raid_disk, memory, max_disks;
6299         struct md_rdev *rdev;
6300         struct disk_info *disk;
6301         char pers_name[6];
6302         int i;
6303         int group_cnt, worker_cnt_per_group;
6304         struct r5worker_group *new_group;
6305
6306         if (mddev->new_level != 5
6307             && mddev->new_level != 4
6308             && mddev->new_level != 6) {
6309                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6310                        mdname(mddev), mddev->new_level);
6311                 return ERR_PTR(-EIO);
6312         }
6313         if ((mddev->new_level == 5
6314              && !algorithm_valid_raid5(mddev->new_layout)) ||
6315             (mddev->new_level == 6
6316              && !algorithm_valid_raid6(mddev->new_layout))) {
6317                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6318                        mdname(mddev), mddev->new_layout);
6319                 return ERR_PTR(-EIO);
6320         }
6321         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6322                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6323                        mdname(mddev), mddev->raid_disks);
6324                 return ERR_PTR(-EINVAL);
6325         }
6326
6327         if (!mddev->new_chunk_sectors ||
6328             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6329             !is_power_of_2(mddev->new_chunk_sectors)) {
6330                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6331                        mdname(mddev), mddev->new_chunk_sectors << 9);
6332                 return ERR_PTR(-EINVAL);
6333         }
6334
6335         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6336         if (conf == NULL)
6337                 goto abort;
6338         /* Don't enable multi-threading by default*/
6339         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6340                                  &new_group)) {
6341                 conf->group_cnt = group_cnt;
6342                 conf->worker_cnt_per_group = worker_cnt_per_group;
6343                 conf->worker_groups = new_group;
6344         } else
6345                 goto abort;
6346         spin_lock_init(&conf->device_lock);
6347         seqcount_init(&conf->gen_lock);
6348         init_waitqueue_head(&conf->wait_for_stripe);
6349         init_waitqueue_head(&conf->wait_for_overlap);
6350         INIT_LIST_HEAD(&conf->handle_list);
6351         INIT_LIST_HEAD(&conf->hold_list);
6352         INIT_LIST_HEAD(&conf->delayed_list);
6353         INIT_LIST_HEAD(&conf->bitmap_list);
6354         init_llist_head(&conf->released_stripes);
6355         atomic_set(&conf->active_stripes, 0);
6356         atomic_set(&conf->preread_active_stripes, 0);
6357         atomic_set(&conf->active_aligned_reads, 0);
6358         conf->bypass_threshold = BYPASS_THRESHOLD;
6359         conf->recovery_disabled = mddev->recovery_disabled - 1;
6360
6361         conf->raid_disks = mddev->raid_disks;
6362         if (mddev->reshape_position == MaxSector)
6363                 conf->previous_raid_disks = mddev->raid_disks;
6364         else
6365                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6366         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6367
6368         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6369                               GFP_KERNEL);
6370         if (!conf->disks)
6371                 goto abort;
6372
6373         conf->mddev = mddev;
6374
6375         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6376                 goto abort;
6377
6378         /* We init hash_locks[0] separately to that it can be used
6379          * as the reference lock in the spin_lock_nest_lock() call
6380          * in lock_all_device_hash_locks_irq in order to convince
6381          * lockdep that we know what we are doing.
6382          */
6383         spin_lock_init(conf->hash_locks);
6384         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6385                 spin_lock_init(conf->hash_locks + i);
6386
6387         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6388                 INIT_LIST_HEAD(conf->inactive_list + i);
6389
6390         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6391                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6392
6393         conf->level = mddev->new_level;
6394         conf->chunk_sectors = mddev->new_chunk_sectors;
6395         if (raid5_alloc_percpu(conf) != 0)
6396                 goto abort;
6397
6398         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6399
6400         rdev_for_each(rdev, mddev) {
6401                 raid_disk = rdev->raid_disk;
6402                 if (raid_disk >= max_disks
6403                     || raid_disk < 0)
6404                         continue;
6405                 disk = conf->disks + raid_disk;
6406
6407                 if (test_bit(Replacement, &rdev->flags)) {
6408                         if (disk->replacement)
6409                                 goto abort;
6410                         disk->replacement = rdev;
6411                 } else {
6412                         if (disk->rdev)
6413                                 goto abort;
6414                         disk->rdev = rdev;
6415                 }
6416
6417                 if (test_bit(In_sync, &rdev->flags)) {
6418                         char b[BDEVNAME_SIZE];
6419                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6420                                " disk %d\n",
6421                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6422                 } else if (rdev->saved_raid_disk != raid_disk)
6423                         /* Cannot rely on bitmap to complete recovery */
6424                         conf->fullsync = 1;
6425         }
6426
6427         conf->level = mddev->new_level;
6428         if (conf->level == 6) {
6429                 conf->max_degraded = 2;
6430                 if (raid6_call.xor_syndrome)
6431                         conf->rmw_level = PARITY_ENABLE_RMW;
6432                 else
6433                         conf->rmw_level = PARITY_DISABLE_RMW;
6434         } else {
6435                 conf->max_degraded = 1;
6436                 conf->rmw_level = PARITY_ENABLE_RMW;
6437         }
6438         conf->algorithm = mddev->new_layout;
6439         conf->reshape_progress = mddev->reshape_position;
6440         if (conf->reshape_progress != MaxSector) {
6441                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6442                 conf->prev_algo = mddev->layout;
6443         }
6444
6445         memory = NR_STRIPES * (sizeof(struct stripe_head) +
6446                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6447         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6448         if (grow_stripes(conf, NR_STRIPES)) {
6449                 printk(KERN_ERR
6450                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6451                        mdname(mddev), memory);
6452                 goto abort;
6453         } else
6454                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6455                        mdname(mddev), memory);
6456
6457         sprintf(pers_name, "raid%d", mddev->new_level);
6458         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6459         if (!conf->thread) {
6460                 printk(KERN_ERR
6461                        "md/raid:%s: couldn't allocate thread.\n",
6462                        mdname(mddev));
6463                 goto abort;
6464         }
6465
6466         return conf;
6467
6468  abort:
6469         if (conf) {
6470                 free_conf(conf);
6471                 return ERR_PTR(-EIO);
6472         } else
6473                 return ERR_PTR(-ENOMEM);
6474 }
6475
6476 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6477 {
6478         switch (algo) {
6479         case ALGORITHM_PARITY_0:
6480                 if (raid_disk < max_degraded)
6481                         return 1;
6482                 break;
6483         case ALGORITHM_PARITY_N:
6484                 if (raid_disk >= raid_disks - max_degraded)
6485                         return 1;
6486                 break;
6487         case ALGORITHM_PARITY_0_6:
6488                 if (raid_disk == 0 ||
6489                     raid_disk == raid_disks - 1)
6490                         return 1;
6491                 break;
6492         case ALGORITHM_LEFT_ASYMMETRIC_6:
6493         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6494         case ALGORITHM_LEFT_SYMMETRIC_6:
6495         case ALGORITHM_RIGHT_SYMMETRIC_6:
6496                 if (raid_disk == raid_disks - 1)
6497                         return 1;
6498         }
6499         return 0;
6500 }
6501
6502 static int run(struct mddev *mddev)
6503 {
6504         struct r5conf *conf;
6505         int working_disks = 0;
6506         int dirty_parity_disks = 0;
6507         struct md_rdev *rdev;
6508         sector_t reshape_offset = 0;
6509         int i;
6510         long long min_offset_diff = 0;
6511         int first = 1;
6512
6513         if (mddev->recovery_cp != MaxSector)
6514                 printk(KERN_NOTICE "md/raid:%s: not clean"
6515                        " -- starting background reconstruction\n",
6516                        mdname(mddev));
6517
6518         rdev_for_each(rdev, mddev) {
6519                 long long diff;
6520                 if (rdev->raid_disk < 0)
6521                         continue;
6522                 diff = (rdev->new_data_offset - rdev->data_offset);
6523                 if (first) {
6524                         min_offset_diff = diff;
6525                         first = 0;
6526                 } else if (mddev->reshape_backwards &&
6527                          diff < min_offset_diff)
6528                         min_offset_diff = diff;
6529                 else if (!mddev->reshape_backwards &&
6530                          diff > min_offset_diff)
6531                         min_offset_diff = diff;
6532         }
6533
6534         if (mddev->reshape_position != MaxSector) {
6535                 /* Check that we can continue the reshape.
6536                  * Difficulties arise if the stripe we would write to
6537                  * next is at or after the stripe we would read from next.
6538                  * For a reshape that changes the number of devices, this
6539                  * is only possible for a very short time, and mdadm makes
6540                  * sure that time appears to have past before assembling
6541                  * the array.  So we fail if that time hasn't passed.
6542                  * For a reshape that keeps the number of devices the same
6543                  * mdadm must be monitoring the reshape can keeping the
6544                  * critical areas read-only and backed up.  It will start
6545                  * the array in read-only mode, so we check for that.
6546                  */
6547                 sector_t here_new, here_old;
6548                 int old_disks;
6549                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6550
6551                 if (mddev->new_level != mddev->level) {
6552                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6553                                "required - aborting.\n",
6554                                mdname(mddev));
6555                         return -EINVAL;
6556                 }
6557                 old_disks = mddev->raid_disks - mddev->delta_disks;
6558                 /* reshape_position must be on a new-stripe boundary, and one
6559                  * further up in new geometry must map after here in old
6560                  * geometry.
6561                  */
6562                 here_new = mddev->reshape_position;
6563                 if (sector_div(here_new, mddev->new_chunk_sectors *
6564                                (mddev->raid_disks - max_degraded))) {
6565                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6566                                "on a stripe boundary\n", mdname(mddev));
6567                         return -EINVAL;
6568                 }
6569                 reshape_offset = here_new * mddev->new_chunk_sectors;
6570                 /* here_new is the stripe we will write to */
6571                 here_old = mddev->reshape_position;
6572                 sector_div(here_old, mddev->chunk_sectors *
6573                            (old_disks-max_degraded));
6574                 /* here_old is the first stripe that we might need to read
6575                  * from */
6576                 if (mddev->delta_disks == 0) {
6577                         if ((here_new * mddev->new_chunk_sectors !=
6578                              here_old * mddev->chunk_sectors)) {
6579                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6580                                        " confused - aborting\n", mdname(mddev));
6581                                 return -EINVAL;
6582                         }
6583                         /* We cannot be sure it is safe to start an in-place
6584                          * reshape.  It is only safe if user-space is monitoring
6585                          * and taking constant backups.
6586                          * mdadm always starts a situation like this in
6587                          * readonly mode so it can take control before
6588                          * allowing any writes.  So just check for that.
6589                          */
6590                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6591                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6592                                 /* not really in-place - so OK */;
6593                         else if (mddev->ro == 0) {
6594                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6595                                        "must be started in read-only mode "
6596                                        "- aborting\n",
6597                                        mdname(mddev));
6598                                 return -EINVAL;
6599                         }
6600                 } else if (mddev->reshape_backwards
6601                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6602                        here_old * mddev->chunk_sectors)
6603                     : (here_new * mddev->new_chunk_sectors >=
6604                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6605                         /* Reading from the same stripe as writing to - bad */
6606                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6607                                "auto-recovery - aborting.\n",
6608                                mdname(mddev));
6609                         return -EINVAL;
6610                 }
6611                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6612                        mdname(mddev));
6613                 /* OK, we should be able to continue; */
6614         } else {
6615                 BUG_ON(mddev->level != mddev->new_level);
6616                 BUG_ON(mddev->layout != mddev->new_layout);
6617                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6618                 BUG_ON(mddev->delta_disks != 0);
6619         }
6620
6621         if (mddev->private == NULL)
6622                 conf = setup_conf(mddev);
6623         else
6624                 conf = mddev->private;
6625
6626         if (IS_ERR(conf))
6627                 return PTR_ERR(conf);
6628
6629         conf->min_offset_diff = min_offset_diff;
6630         mddev->thread = conf->thread;
6631         conf->thread = NULL;
6632         mddev->private = conf;
6633
6634         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6635              i++) {
6636                 rdev = conf->disks[i].rdev;
6637                 if (!rdev && conf->disks[i].replacement) {
6638                         /* The replacement is all we have yet */
6639                         rdev = conf->disks[i].replacement;
6640                         conf->disks[i].replacement = NULL;
6641                         clear_bit(Replacement, &rdev->flags);
6642                         conf->disks[i].rdev = rdev;
6643                 }
6644                 if (!rdev)
6645                         continue;
6646                 if (conf->disks[i].replacement &&
6647                     conf->reshape_progress != MaxSector) {
6648                         /* replacements and reshape simply do not mix. */
6649                         printk(KERN_ERR "md: cannot handle concurrent "
6650                                "replacement and reshape.\n");
6651                         goto abort;
6652                 }
6653                 if (test_bit(In_sync, &rdev->flags)) {
6654                         working_disks++;
6655                         continue;
6656                 }
6657                 /* This disc is not fully in-sync.  However if it
6658                  * just stored parity (beyond the recovery_offset),
6659                  * when we don't need to be concerned about the
6660                  * array being dirty.
6661                  * When reshape goes 'backwards', we never have
6662                  * partially completed devices, so we only need
6663                  * to worry about reshape going forwards.
6664                  */
6665                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6666                 if (mddev->major_version == 0 &&
6667                     mddev->minor_version > 90)
6668                         rdev->recovery_offset = reshape_offset;
6669
6670                 if (rdev->recovery_offset < reshape_offset) {
6671                         /* We need to check old and new layout */
6672                         if (!only_parity(rdev->raid_disk,
6673                                          conf->algorithm,
6674                                          conf->raid_disks,
6675                                          conf->max_degraded))
6676                                 continue;
6677                 }
6678                 if (!only_parity(rdev->raid_disk,
6679                                  conf->prev_algo,
6680                                  conf->previous_raid_disks,
6681                                  conf->max_degraded))
6682                         continue;
6683                 dirty_parity_disks++;
6684         }
6685
6686         /*
6687          * 0 for a fully functional array, 1 or 2 for a degraded array.
6688          */
6689         mddev->degraded = calc_degraded(conf);
6690
6691         if (has_failed(conf)) {
6692                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6693                         " (%d/%d failed)\n",
6694                         mdname(mddev), mddev->degraded, conf->raid_disks);
6695                 goto abort;
6696         }
6697
6698         /* device size must be a multiple of chunk size */
6699         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6700         mddev->resync_max_sectors = mddev->dev_sectors;
6701
6702         if (mddev->degraded > dirty_parity_disks &&
6703             mddev->recovery_cp != MaxSector) {
6704                 if (mddev->ok_start_degraded)
6705                         printk(KERN_WARNING
6706                                "md/raid:%s: starting dirty degraded array"
6707                                " - data corruption possible.\n",
6708                                mdname(mddev));
6709                 else {
6710                         printk(KERN_ERR
6711                                "md/raid:%s: cannot start dirty degraded array.\n",
6712                                mdname(mddev));
6713                         goto abort;
6714                 }
6715         }
6716
6717         if (mddev->degraded == 0)
6718                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6719                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6720                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6721                        mddev->new_layout);
6722         else
6723                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6724                        " out of %d devices, algorithm %d\n",
6725                        mdname(mddev), conf->level,
6726                        mddev->raid_disks - mddev->degraded,
6727                        mddev->raid_disks, mddev->new_layout);
6728
6729         print_raid5_conf(conf);
6730
6731         if (conf->reshape_progress != MaxSector) {
6732                 conf->reshape_safe = conf->reshape_progress;
6733                 atomic_set(&conf->reshape_stripes, 0);
6734                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6735                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6736                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6737                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6738                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6739                                                         "reshape");
6740         }
6741
6742         /* Ok, everything is just fine now */
6743         if (mddev->to_remove == &raid5_attrs_group)
6744                 mddev->to_remove = NULL;
6745         else if (mddev->kobj.sd &&
6746             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6747                 printk(KERN_WARNING
6748                        "raid5: failed to create sysfs attributes for %s\n",
6749                        mdname(mddev));
6750         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6751
6752         if (mddev->queue) {
6753                 int chunk_size;
6754                 bool discard_supported = true;
6755                 /* read-ahead size must cover two whole stripes, which
6756                  * is 2 * (datadisks) * chunksize where 'n' is the
6757                  * number of raid devices
6758                  */
6759                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6760                 int stripe = data_disks *
6761                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6762                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6763                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6764
6765                 chunk_size = mddev->chunk_sectors << 9;
6766                 blk_queue_io_min(mddev->queue, chunk_size);
6767                 blk_queue_io_opt(mddev->queue, chunk_size *
6768                                  (conf->raid_disks - conf->max_degraded));
6769                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6770                 /*
6771                  * We can only discard a whole stripe. It doesn't make sense to
6772                  * discard data disk but write parity disk
6773                  */
6774                 stripe = stripe * PAGE_SIZE;
6775                 /* Round up to power of 2, as discard handling
6776                  * currently assumes that */
6777                 while ((stripe-1) & stripe)
6778                         stripe = (stripe | (stripe-1)) + 1;
6779                 mddev->queue->limits.discard_alignment = stripe;
6780                 mddev->queue->limits.discard_granularity = stripe;
6781                 /*
6782                  * unaligned part of discard request will be ignored, so can't
6783                  * guarantee discard_zeroes_data
6784                  */
6785                 mddev->queue->limits.discard_zeroes_data = 0;
6786
6787                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6788
6789                 rdev_for_each(rdev, mddev) {
6790                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6791                                           rdev->data_offset << 9);
6792                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6793                                           rdev->new_data_offset << 9);
6794                         /*
6795                          * discard_zeroes_data is required, otherwise data
6796                          * could be lost. Consider a scenario: discard a stripe
6797                          * (the stripe could be inconsistent if
6798                          * discard_zeroes_data is 0); write one disk of the
6799                          * stripe (the stripe could be inconsistent again
6800                          * depending on which disks are used to calculate
6801                          * parity); the disk is broken; The stripe data of this
6802                          * disk is lost.
6803                          */
6804                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6805                             !bdev_get_queue(rdev->bdev)->
6806                                                 limits.discard_zeroes_data)
6807                                 discard_supported = false;
6808                         /* Unfortunately, discard_zeroes_data is not currently
6809                          * a guarantee - just a hint.  So we only allow DISCARD
6810                          * if the sysadmin has confirmed that only safe devices
6811                          * are in use by setting a module parameter.
6812                          */
6813                         if (!devices_handle_discard_safely) {
6814                                 if (discard_supported) {
6815                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6816                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6817                                 }
6818                                 discard_supported = false;
6819                         }
6820                 }
6821
6822                 if (discard_supported &&
6823                    mddev->queue->limits.max_discard_sectors >= stripe &&
6824                    mddev->queue->limits.discard_granularity >= stripe)
6825                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6826                                                 mddev->queue);
6827                 else
6828                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6829                                                 mddev->queue);
6830         }
6831
6832         return 0;
6833 abort:
6834         md_unregister_thread(&mddev->thread);
6835         print_raid5_conf(conf);
6836         free_conf(conf);
6837         mddev->private = NULL;
6838         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6839         return -EIO;
6840 }
6841
6842 static void raid5_free(struct mddev *mddev, void *priv)
6843 {
6844         struct r5conf *conf = priv;
6845
6846         free_conf(conf);
6847         mddev->to_remove = &raid5_attrs_group;
6848 }
6849
6850 static void status(struct seq_file *seq, struct mddev *mddev)
6851 {
6852         struct r5conf *conf = mddev->private;
6853         int i;
6854
6855         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6856                 mddev->chunk_sectors / 2, mddev->layout);
6857         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6858         for (i = 0; i < conf->raid_disks; i++)
6859                 seq_printf (seq, "%s",
6860                                conf->disks[i].rdev &&
6861                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6862         seq_printf (seq, "]");
6863 }
6864
6865 static void print_raid5_conf (struct r5conf *conf)
6866 {
6867         int i;
6868         struct disk_info *tmp;
6869
6870         printk(KERN_DEBUG "RAID conf printout:\n");
6871         if (!conf) {
6872                 printk("(conf==NULL)\n");
6873                 return;
6874         }
6875         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6876                conf->raid_disks,
6877                conf->raid_disks - conf->mddev->degraded);
6878
6879         for (i = 0; i < conf->raid_disks; i++) {
6880                 char b[BDEVNAME_SIZE];
6881                 tmp = conf->disks + i;
6882                 if (tmp->rdev)
6883                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6884                                i, !test_bit(Faulty, &tmp->rdev->flags),
6885                                bdevname(tmp->rdev->bdev, b));
6886         }
6887 }
6888
6889 static int raid5_spare_active(struct mddev *mddev)
6890 {
6891         int i;
6892         struct r5conf *conf = mddev->private;
6893         struct disk_info *tmp;
6894         int count = 0;
6895         unsigned long flags;
6896
6897         for (i = 0; i < conf->raid_disks; i++) {
6898                 tmp = conf->disks + i;
6899                 if (tmp->replacement
6900                     && tmp->replacement->recovery_offset == MaxSector
6901                     && !test_bit(Faulty, &tmp->replacement->flags)
6902                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6903                         /* Replacement has just become active. */
6904                         if (!tmp->rdev
6905                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6906                                 count++;
6907                         if (tmp->rdev) {
6908                                 /* Replaced device not technically faulty,
6909                                  * but we need to be sure it gets removed
6910                                  * and never re-added.
6911                                  */
6912                                 set_bit(Faulty, &tmp->rdev->flags);
6913                                 sysfs_notify_dirent_safe(
6914                                         tmp->rdev->sysfs_state);
6915                         }
6916                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6917                 } else if (tmp->rdev
6918                     && tmp->rdev->recovery_offset == MaxSector
6919                     && !test_bit(Faulty, &tmp->rdev->flags)
6920                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6921                         count++;
6922                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6923                 }
6924         }
6925         spin_lock_irqsave(&conf->device_lock, flags);
6926         mddev->degraded = calc_degraded(conf);
6927         spin_unlock_irqrestore(&conf->device_lock, flags);
6928         print_raid5_conf(conf);
6929         return count;
6930 }
6931
6932 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6933 {
6934         struct r5conf *conf = mddev->private;
6935         int err = 0;
6936         int number = rdev->raid_disk;
6937         struct md_rdev **rdevp;
6938         struct disk_info *p = conf->disks + number;
6939
6940         print_raid5_conf(conf);
6941         if (rdev == p->rdev)
6942                 rdevp = &p->rdev;
6943         else if (rdev == p->replacement)
6944                 rdevp = &p->replacement;
6945         else
6946                 return 0;
6947
6948         if (number >= conf->raid_disks &&
6949             conf->reshape_progress == MaxSector)
6950                 clear_bit(In_sync, &rdev->flags);
6951
6952         if (test_bit(In_sync, &rdev->flags) ||
6953             atomic_read(&rdev->nr_pending)) {
6954                 err = -EBUSY;
6955                 goto abort;
6956         }
6957         /* Only remove non-faulty devices if recovery
6958          * isn't possible.
6959          */
6960         if (!test_bit(Faulty, &rdev->flags) &&
6961             mddev->recovery_disabled != conf->recovery_disabled &&
6962             !has_failed(conf) &&
6963             (!p->replacement || p->replacement == rdev) &&
6964             number < conf->raid_disks) {
6965                 err = -EBUSY;
6966                 goto abort;
6967         }
6968         *rdevp = NULL;
6969         synchronize_rcu();
6970         if (atomic_read(&rdev->nr_pending)) {
6971                 /* lost the race, try later */
6972                 err = -EBUSY;
6973                 *rdevp = rdev;
6974         } else if (p->replacement) {
6975                 /* We must have just cleared 'rdev' */
6976                 p->rdev = p->replacement;
6977                 clear_bit(Replacement, &p->replacement->flags);
6978                 smp_mb(); /* Make sure other CPUs may see both as identical
6979                            * but will never see neither - if they are careful
6980                            */
6981                 p->replacement = NULL;
6982                 clear_bit(WantReplacement, &rdev->flags);
6983         } else
6984                 /* We might have just removed the Replacement as faulty-
6985                  * clear the bit just in case
6986                  */
6987                 clear_bit(WantReplacement, &rdev->flags);
6988 abort:
6989
6990         print_raid5_conf(conf);
6991         return err;
6992 }
6993
6994 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6995 {
6996         struct r5conf *conf = mddev->private;
6997         int err = -EEXIST;
6998         int disk;
6999         struct disk_info *p;
7000         int first = 0;
7001         int last = conf->raid_disks - 1;
7002
7003         if (mddev->recovery_disabled == conf->recovery_disabled)
7004                 return -EBUSY;
7005
7006         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7007                 /* no point adding a device */
7008                 return -EINVAL;
7009
7010         if (rdev->raid_disk >= 0)
7011                 first = last = rdev->raid_disk;
7012
7013         /*
7014          * find the disk ... but prefer rdev->saved_raid_disk
7015          * if possible.
7016          */
7017         if (rdev->saved_raid_disk >= 0 &&
7018             rdev->saved_raid_disk >= first &&
7019             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7020                 first = rdev->saved_raid_disk;
7021
7022         for (disk = first; disk <= last; disk++) {
7023                 p = conf->disks + disk;
7024                 if (p->rdev == NULL) {
7025                         clear_bit(In_sync, &rdev->flags);
7026                         rdev->raid_disk = disk;
7027                         err = 0;
7028                         if (rdev->saved_raid_disk != disk)
7029                                 conf->fullsync = 1;
7030                         rcu_assign_pointer(p->rdev, rdev);
7031                         goto out;
7032                 }
7033         }
7034         for (disk = first; disk <= last; disk++) {
7035                 p = conf->disks + disk;
7036                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7037                     p->replacement == NULL) {
7038                         clear_bit(In_sync, &rdev->flags);
7039                         set_bit(Replacement, &rdev->flags);
7040                         rdev->raid_disk = disk;
7041                         err = 0;
7042                         conf->fullsync = 1;
7043                         rcu_assign_pointer(p->replacement, rdev);
7044                         break;
7045                 }
7046         }
7047 out:
7048         print_raid5_conf(conf);
7049         return err;
7050 }
7051
7052 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7053 {
7054         /* no resync is happening, and there is enough space
7055          * on all devices, so we can resize.
7056          * We need to make sure resync covers any new space.
7057          * If the array is shrinking we should possibly wait until
7058          * any io in the removed space completes, but it hardly seems
7059          * worth it.
7060          */
7061         sector_t newsize;
7062         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7063         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7064         if (mddev->external_size &&
7065             mddev->array_sectors > newsize)
7066                 return -EINVAL;
7067         if (mddev->bitmap) {
7068                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7069                 if (ret)
7070                         return ret;
7071         }
7072         md_set_array_sectors(mddev, newsize);
7073         set_capacity(mddev->gendisk, mddev->array_sectors);
7074         revalidate_disk(mddev->gendisk);
7075         if (sectors > mddev->dev_sectors &&
7076             mddev->recovery_cp > mddev->dev_sectors) {
7077                 mddev->recovery_cp = mddev->dev_sectors;
7078                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7079         }
7080         mddev->dev_sectors = sectors;
7081         mddev->resync_max_sectors = sectors;
7082         return 0;
7083 }
7084
7085 static int check_stripe_cache(struct mddev *mddev)
7086 {
7087         /* Can only proceed if there are plenty of stripe_heads.
7088          * We need a minimum of one full stripe,, and for sensible progress
7089          * it is best to have about 4 times that.
7090          * If we require 4 times, then the default 256 4K stripe_heads will
7091          * allow for chunk sizes up to 256K, which is probably OK.
7092          * If the chunk size is greater, user-space should request more
7093          * stripe_heads first.
7094          */
7095         struct r5conf *conf = mddev->private;
7096         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7097             > conf->max_nr_stripes ||
7098             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7099             > conf->max_nr_stripes) {
7100                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7101                        mdname(mddev),
7102                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7103                         / STRIPE_SIZE)*4);
7104                 return 0;
7105         }
7106         return 1;
7107 }
7108
7109 static int check_reshape(struct mddev *mddev)
7110 {
7111         struct r5conf *conf = mddev->private;
7112
7113         if (mddev->delta_disks == 0 &&
7114             mddev->new_layout == mddev->layout &&
7115             mddev->new_chunk_sectors == mddev->chunk_sectors)
7116                 return 0; /* nothing to do */
7117         if (has_failed(conf))
7118                 return -EINVAL;
7119         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7120                 /* We might be able to shrink, but the devices must
7121                  * be made bigger first.
7122                  * For raid6, 4 is the minimum size.
7123                  * Otherwise 2 is the minimum
7124                  */
7125                 int min = 2;
7126                 if (mddev->level == 6)
7127                         min = 4;
7128                 if (mddev->raid_disks + mddev->delta_disks < min)
7129                         return -EINVAL;
7130         }
7131
7132         if (!check_stripe_cache(mddev))
7133                 return -ENOSPC;
7134
7135         return resize_stripes(conf, (conf->previous_raid_disks
7136                                      + mddev->delta_disks));
7137 }
7138
7139 static int raid5_start_reshape(struct mddev *mddev)
7140 {
7141         struct r5conf *conf = mddev->private;
7142         struct md_rdev *rdev;
7143         int spares = 0;
7144         unsigned long flags;
7145
7146         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7147                 return -EBUSY;
7148
7149         if (!check_stripe_cache(mddev))
7150                 return -ENOSPC;
7151
7152         if (has_failed(conf))
7153                 return -EINVAL;
7154
7155         rdev_for_each(rdev, mddev) {
7156                 if (!test_bit(In_sync, &rdev->flags)
7157                     && !test_bit(Faulty, &rdev->flags))
7158                         spares++;
7159         }
7160
7161         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7162                 /* Not enough devices even to make a degraded array
7163                  * of that size
7164                  */
7165                 return -EINVAL;
7166
7167         /* Refuse to reduce size of the array.  Any reductions in
7168          * array size must be through explicit setting of array_size
7169          * attribute.
7170          */
7171         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7172             < mddev->array_sectors) {
7173                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7174                        "before number of disks\n", mdname(mddev));
7175                 return -EINVAL;
7176         }
7177
7178         atomic_set(&conf->reshape_stripes, 0);
7179         spin_lock_irq(&conf->device_lock);
7180         write_seqcount_begin(&conf->gen_lock);
7181         conf->previous_raid_disks = conf->raid_disks;
7182         conf->raid_disks += mddev->delta_disks;
7183         conf->prev_chunk_sectors = conf->chunk_sectors;
7184         conf->chunk_sectors = mddev->new_chunk_sectors;
7185         conf->prev_algo = conf->algorithm;
7186         conf->algorithm = mddev->new_layout;
7187         conf->generation++;
7188         /* Code that selects data_offset needs to see the generation update
7189          * if reshape_progress has been set - so a memory barrier needed.
7190          */
7191         smp_mb();
7192         if (mddev->reshape_backwards)
7193                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7194         else
7195                 conf->reshape_progress = 0;
7196         conf->reshape_safe = conf->reshape_progress;
7197         write_seqcount_end(&conf->gen_lock);
7198         spin_unlock_irq(&conf->device_lock);
7199
7200         /* Now make sure any requests that proceeded on the assumption
7201          * the reshape wasn't running - like Discard or Read - have
7202          * completed.
7203          */
7204         mddev_suspend(mddev);
7205         mddev_resume(mddev);
7206
7207         /* Add some new drives, as many as will fit.
7208          * We know there are enough to make the newly sized array work.
7209          * Don't add devices if we are reducing the number of
7210          * devices in the array.  This is because it is not possible
7211          * to correctly record the "partially reconstructed" state of
7212          * such devices during the reshape and confusion could result.
7213          */
7214         if (mddev->delta_disks >= 0) {
7215                 rdev_for_each(rdev, mddev)
7216                         if (rdev->raid_disk < 0 &&
7217                             !test_bit(Faulty, &rdev->flags)) {
7218                                 if (raid5_add_disk(mddev, rdev) == 0) {
7219                                         if (rdev->raid_disk
7220                                             >= conf->previous_raid_disks)
7221                                                 set_bit(In_sync, &rdev->flags);
7222                                         else
7223                                                 rdev->recovery_offset = 0;
7224
7225                                         if (sysfs_link_rdev(mddev, rdev))
7226                                                 /* Failure here is OK */;
7227                                 }
7228                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7229                                    && !test_bit(Faulty, &rdev->flags)) {
7230                                 /* This is a spare that was manually added */
7231                                 set_bit(In_sync, &rdev->flags);
7232                         }
7233
7234                 /* When a reshape changes the number of devices,
7235                  * ->degraded is measured against the larger of the
7236                  * pre and post number of devices.
7237                  */
7238                 spin_lock_irqsave(&conf->device_lock, flags);
7239                 mddev->degraded = calc_degraded(conf);
7240                 spin_unlock_irqrestore(&conf->device_lock, flags);
7241         }
7242         mddev->raid_disks = conf->raid_disks;
7243         mddev->reshape_position = conf->reshape_progress;
7244         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7245
7246         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7247         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7248         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7249         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7250         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7251                                                 "reshape");
7252         if (!mddev->sync_thread) {
7253                 mddev->recovery = 0;
7254                 spin_lock_irq(&conf->device_lock);
7255                 write_seqcount_begin(&conf->gen_lock);
7256                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7257                 mddev->new_chunk_sectors =
7258                         conf->chunk_sectors = conf->prev_chunk_sectors;
7259                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7260                 rdev_for_each(rdev, mddev)
7261                         rdev->new_data_offset = rdev->data_offset;
7262                 smp_wmb();
7263                 conf->generation --;
7264                 conf->reshape_progress = MaxSector;
7265                 mddev->reshape_position = MaxSector;
7266                 write_seqcount_end(&conf->gen_lock);
7267                 spin_unlock_irq(&conf->device_lock);
7268                 return -EAGAIN;
7269         }
7270         conf->reshape_checkpoint = jiffies;
7271         md_wakeup_thread(mddev->sync_thread);
7272         md_new_event(mddev);
7273         return 0;
7274 }
7275
7276 /* This is called from the reshape thread and should make any
7277  * changes needed in 'conf'
7278  */
7279 static void end_reshape(struct r5conf *conf)
7280 {
7281
7282         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7283                 struct md_rdev *rdev;
7284
7285                 spin_lock_irq(&conf->device_lock);
7286                 conf->previous_raid_disks = conf->raid_disks;
7287                 rdev_for_each(rdev, conf->mddev)
7288                         rdev->data_offset = rdev->new_data_offset;
7289                 smp_wmb();
7290                 conf->reshape_progress = MaxSector;
7291                 spin_unlock_irq(&conf->device_lock);
7292                 wake_up(&conf->wait_for_overlap);
7293
7294                 /* read-ahead size must cover two whole stripes, which is
7295                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7296                  */
7297                 if (conf->mddev->queue) {
7298                         int data_disks = conf->raid_disks - conf->max_degraded;
7299                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7300                                                    / PAGE_SIZE);
7301                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7302                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7303                 }
7304         }
7305 }
7306
7307 /* This is called from the raid5d thread with mddev_lock held.
7308  * It makes config changes to the device.
7309  */
7310 static void raid5_finish_reshape(struct mddev *mddev)
7311 {
7312         struct r5conf *conf = mddev->private;
7313
7314         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7315
7316                 if (mddev->delta_disks > 0) {
7317                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7318                         set_capacity(mddev->gendisk, mddev->array_sectors);
7319                         revalidate_disk(mddev->gendisk);
7320                 } else {
7321                         int d;
7322                         spin_lock_irq(&conf->device_lock);
7323                         mddev->degraded = calc_degraded(conf);
7324                         spin_unlock_irq(&conf->device_lock);
7325                         for (d = conf->raid_disks ;
7326                              d < conf->raid_disks - mddev->delta_disks;
7327                              d++) {
7328                                 struct md_rdev *rdev = conf->disks[d].rdev;
7329                                 if (rdev)
7330                                         clear_bit(In_sync, &rdev->flags);
7331                                 rdev = conf->disks[d].replacement;
7332                                 if (rdev)
7333                                         clear_bit(In_sync, &rdev->flags);
7334                         }
7335                 }
7336                 mddev->layout = conf->algorithm;
7337                 mddev->chunk_sectors = conf->chunk_sectors;
7338                 mddev->reshape_position = MaxSector;
7339                 mddev->delta_disks = 0;
7340                 mddev->reshape_backwards = 0;
7341         }
7342 }
7343
7344 static void raid5_quiesce(struct mddev *mddev, int state)
7345 {
7346         struct r5conf *conf = mddev->private;
7347
7348         switch(state) {
7349         case 2: /* resume for a suspend */
7350                 wake_up(&conf->wait_for_overlap);
7351                 break;
7352
7353         case 1: /* stop all writes */
7354                 lock_all_device_hash_locks_irq(conf);
7355                 /* '2' tells resync/reshape to pause so that all
7356                  * active stripes can drain
7357                  */
7358                 conf->quiesce = 2;
7359                 wait_event_cmd(conf->wait_for_stripe,
7360                                     atomic_read(&conf->active_stripes) == 0 &&
7361                                     atomic_read(&conf->active_aligned_reads) == 0,
7362                                     unlock_all_device_hash_locks_irq(conf),
7363                                     lock_all_device_hash_locks_irq(conf));
7364                 conf->quiesce = 1;
7365                 unlock_all_device_hash_locks_irq(conf);
7366                 /* allow reshape to continue */
7367                 wake_up(&conf->wait_for_overlap);
7368                 break;
7369
7370         case 0: /* re-enable writes */
7371                 lock_all_device_hash_locks_irq(conf);
7372                 conf->quiesce = 0;
7373                 wake_up(&conf->wait_for_stripe);
7374                 wake_up(&conf->wait_for_overlap);
7375                 unlock_all_device_hash_locks_irq(conf);
7376                 break;
7377         }
7378 }
7379
7380 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7381 {
7382         struct r0conf *raid0_conf = mddev->private;
7383         sector_t sectors;
7384
7385         /* for raid0 takeover only one zone is supported */
7386         if (raid0_conf->nr_strip_zones > 1) {
7387                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7388                        mdname(mddev));
7389                 return ERR_PTR(-EINVAL);
7390         }
7391
7392         sectors = raid0_conf->strip_zone[0].zone_end;
7393         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7394         mddev->dev_sectors = sectors;
7395         mddev->new_level = level;
7396         mddev->new_layout = ALGORITHM_PARITY_N;
7397         mddev->new_chunk_sectors = mddev->chunk_sectors;
7398         mddev->raid_disks += 1;
7399         mddev->delta_disks = 1;
7400         /* make sure it will be not marked as dirty */
7401         mddev->recovery_cp = MaxSector;
7402
7403         return setup_conf(mddev);
7404 }
7405
7406 static void *raid5_takeover_raid1(struct mddev *mddev)
7407 {
7408         int chunksect;
7409
7410         if (mddev->raid_disks != 2 ||
7411             mddev->degraded > 1)
7412                 return ERR_PTR(-EINVAL);
7413
7414         /* Should check if there are write-behind devices? */
7415
7416         chunksect = 64*2; /* 64K by default */
7417
7418         /* The array must be an exact multiple of chunksize */
7419         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7420                 chunksect >>= 1;
7421
7422         if ((chunksect<<9) < STRIPE_SIZE)
7423                 /* array size does not allow a suitable chunk size */
7424                 return ERR_PTR(-EINVAL);
7425
7426         mddev->new_level = 5;
7427         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7428         mddev->new_chunk_sectors = chunksect;
7429
7430         return setup_conf(mddev);
7431 }
7432
7433 static void *raid5_takeover_raid6(struct mddev *mddev)
7434 {
7435         int new_layout;
7436
7437         switch (mddev->layout) {
7438         case ALGORITHM_LEFT_ASYMMETRIC_6:
7439                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7440                 break;
7441         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7442                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7443                 break;
7444         case ALGORITHM_LEFT_SYMMETRIC_6:
7445                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7446                 break;
7447         case ALGORITHM_RIGHT_SYMMETRIC_6:
7448                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7449                 break;
7450         case ALGORITHM_PARITY_0_6:
7451                 new_layout = ALGORITHM_PARITY_0;
7452                 break;
7453         case ALGORITHM_PARITY_N:
7454                 new_layout = ALGORITHM_PARITY_N;
7455                 break;
7456         default:
7457                 return ERR_PTR(-EINVAL);
7458         }
7459         mddev->new_level = 5;
7460         mddev->new_layout = new_layout;
7461         mddev->delta_disks = -1;
7462         mddev->raid_disks -= 1;
7463         return setup_conf(mddev);
7464 }
7465
7466 static int raid5_check_reshape(struct mddev *mddev)
7467 {
7468         /* For a 2-drive array, the layout and chunk size can be changed
7469          * immediately as not restriping is needed.
7470          * For larger arrays we record the new value - after validation
7471          * to be used by a reshape pass.
7472          */
7473         struct r5conf *conf = mddev->private;
7474         int new_chunk = mddev->new_chunk_sectors;
7475
7476         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7477                 return -EINVAL;
7478         if (new_chunk > 0) {
7479                 if (!is_power_of_2(new_chunk))
7480                         return -EINVAL;
7481                 if (new_chunk < (PAGE_SIZE>>9))
7482                         return -EINVAL;
7483                 if (mddev->array_sectors & (new_chunk-1))
7484                         /* not factor of array size */
7485                         return -EINVAL;
7486         }
7487
7488         /* They look valid */
7489
7490         if (mddev->raid_disks == 2) {
7491                 /* can make the change immediately */
7492                 if (mddev->new_layout >= 0) {
7493                         conf->algorithm = mddev->new_layout;
7494                         mddev->layout = mddev->new_layout;
7495                 }
7496                 if (new_chunk > 0) {
7497                         conf->chunk_sectors = new_chunk ;
7498                         mddev->chunk_sectors = new_chunk;
7499                 }
7500                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7501                 md_wakeup_thread(mddev->thread);
7502         }
7503         return check_reshape(mddev);
7504 }
7505
7506 static int raid6_check_reshape(struct mddev *mddev)
7507 {
7508         int new_chunk = mddev->new_chunk_sectors;
7509
7510         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7511                 return -EINVAL;
7512         if (new_chunk > 0) {
7513                 if (!is_power_of_2(new_chunk))
7514                         return -EINVAL;
7515                 if (new_chunk < (PAGE_SIZE >> 9))
7516                         return -EINVAL;
7517                 if (mddev->array_sectors & (new_chunk-1))
7518                         /* not factor of array size */
7519                         return -EINVAL;
7520         }
7521
7522         /* They look valid */
7523         return check_reshape(mddev);
7524 }
7525
7526 static void *raid5_takeover(struct mddev *mddev)
7527 {
7528         /* raid5 can take over:
7529          *  raid0 - if there is only one strip zone - make it a raid4 layout
7530          *  raid1 - if there are two drives.  We need to know the chunk size
7531          *  raid4 - trivial - just use a raid4 layout.
7532          *  raid6 - Providing it is a *_6 layout
7533          */
7534         if (mddev->level == 0)
7535                 return raid45_takeover_raid0(mddev, 5);
7536         if (mddev->level == 1)
7537                 return raid5_takeover_raid1(mddev);
7538         if (mddev->level == 4) {
7539                 mddev->new_layout = ALGORITHM_PARITY_N;
7540                 mddev->new_level = 5;
7541                 return setup_conf(mddev);
7542         }
7543         if (mddev->level == 6)
7544                 return raid5_takeover_raid6(mddev);
7545
7546         return ERR_PTR(-EINVAL);
7547 }
7548
7549 static void *raid4_takeover(struct mddev *mddev)
7550 {
7551         /* raid4 can take over:
7552          *  raid0 - if there is only one strip zone
7553          *  raid5 - if layout is right
7554          */
7555         if (mddev->level == 0)
7556                 return raid45_takeover_raid0(mddev, 4);
7557         if (mddev->level == 5 &&
7558             mddev->layout == ALGORITHM_PARITY_N) {
7559                 mddev->new_layout = 0;
7560                 mddev->new_level = 4;
7561                 return setup_conf(mddev);
7562         }
7563         return ERR_PTR(-EINVAL);
7564 }
7565
7566 static struct md_personality raid5_personality;
7567
7568 static void *raid6_takeover(struct mddev *mddev)
7569 {
7570         /* Currently can only take over a raid5.  We map the
7571          * personality to an equivalent raid6 personality
7572          * with the Q block at the end.
7573          */
7574         int new_layout;
7575
7576         if (mddev->pers != &raid5_personality)
7577                 return ERR_PTR(-EINVAL);
7578         if (mddev->degraded > 1)
7579                 return ERR_PTR(-EINVAL);
7580         if (mddev->raid_disks > 253)
7581                 return ERR_PTR(-EINVAL);
7582         if (mddev->raid_disks < 3)
7583                 return ERR_PTR(-EINVAL);
7584
7585         switch (mddev->layout) {
7586         case ALGORITHM_LEFT_ASYMMETRIC:
7587                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7588                 break;
7589         case ALGORITHM_RIGHT_ASYMMETRIC:
7590                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7591                 break;
7592         case ALGORITHM_LEFT_SYMMETRIC:
7593                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7594                 break;
7595         case ALGORITHM_RIGHT_SYMMETRIC:
7596                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7597                 break;
7598         case ALGORITHM_PARITY_0:
7599                 new_layout = ALGORITHM_PARITY_0_6;
7600                 break;
7601         case ALGORITHM_PARITY_N:
7602                 new_layout = ALGORITHM_PARITY_N;
7603                 break;
7604         default:
7605                 return ERR_PTR(-EINVAL);
7606         }
7607         mddev->new_level = 6;
7608         mddev->new_layout = new_layout;
7609         mddev->delta_disks = 1;
7610         mddev->raid_disks += 1;
7611         return setup_conf(mddev);
7612 }
7613
7614 static struct md_personality raid6_personality =
7615 {
7616         .name           = "raid6",
7617         .level          = 6,
7618         .owner          = THIS_MODULE,
7619         .make_request   = make_request,
7620         .run            = run,
7621         .free           = raid5_free,
7622         .status         = status,
7623         .error_handler  = error,
7624         .hot_add_disk   = raid5_add_disk,
7625         .hot_remove_disk= raid5_remove_disk,
7626         .spare_active   = raid5_spare_active,
7627         .sync_request   = sync_request,
7628         .resize         = raid5_resize,
7629         .size           = raid5_size,
7630         .check_reshape  = raid6_check_reshape,
7631         .start_reshape  = raid5_start_reshape,
7632         .finish_reshape = raid5_finish_reshape,
7633         .quiesce        = raid5_quiesce,
7634         .takeover       = raid6_takeover,
7635         .congested      = raid5_congested,
7636         .mergeable_bvec = raid5_mergeable_bvec,
7637 };
7638 static struct md_personality raid5_personality =
7639 {
7640         .name           = "raid5",
7641         .level          = 5,
7642         .owner          = THIS_MODULE,
7643         .make_request   = make_request,
7644         .run            = run,
7645         .free           = raid5_free,
7646         .status         = status,
7647         .error_handler  = error,
7648         .hot_add_disk   = raid5_add_disk,
7649         .hot_remove_disk= raid5_remove_disk,
7650         .spare_active   = raid5_spare_active,
7651         .sync_request   = sync_request,
7652         .resize         = raid5_resize,
7653         .size           = raid5_size,
7654         .check_reshape  = raid5_check_reshape,
7655         .start_reshape  = raid5_start_reshape,
7656         .finish_reshape = raid5_finish_reshape,
7657         .quiesce        = raid5_quiesce,
7658         .takeover       = raid5_takeover,
7659         .congested      = raid5_congested,
7660         .mergeable_bvec = raid5_mergeable_bvec,
7661 };
7662
7663 static struct md_personality raid4_personality =
7664 {
7665         .name           = "raid4",
7666         .level          = 4,
7667         .owner          = THIS_MODULE,
7668         .make_request   = make_request,
7669         .run            = run,
7670         .free           = raid5_free,
7671         .status         = status,
7672         .error_handler  = error,
7673         .hot_add_disk   = raid5_add_disk,
7674         .hot_remove_disk= raid5_remove_disk,
7675         .spare_active   = raid5_spare_active,
7676         .sync_request   = sync_request,
7677         .resize         = raid5_resize,
7678         .size           = raid5_size,
7679         .check_reshape  = raid5_check_reshape,
7680         .start_reshape  = raid5_start_reshape,
7681         .finish_reshape = raid5_finish_reshape,
7682         .quiesce        = raid5_quiesce,
7683         .takeover       = raid4_takeover,
7684         .congested      = raid5_congested,
7685         .mergeable_bvec = raid5_mergeable_bvec,
7686 };
7687
7688 static int __init raid5_init(void)
7689 {
7690         raid5_wq = alloc_workqueue("raid5wq",
7691                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7692         if (!raid5_wq)
7693                 return -ENOMEM;
7694         register_md_personality(&raid6_personality);
7695         register_md_personality(&raid5_personality);
7696         register_md_personality(&raid4_personality);
7697         return 0;
7698 }
7699
7700 static void raid5_exit(void)
7701 {
7702         unregister_md_personality(&raid6_personality);
7703         unregister_md_personality(&raid5_personality);
7704         unregister_md_personality(&raid4_personality);
7705         destroy_workqueue(raid5_wq);
7706 }
7707
7708 module_init(raid5_init);
7709 module_exit(raid5_exit);
7710 MODULE_LICENSE("GPL");
7711 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7712 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7713 MODULE_ALIAS("md-raid5");
7714 MODULE_ALIAS("md-raid4");
7715 MODULE_ALIAS("md-level-5");
7716 MODULE_ALIAS("md-level-4");
7717 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7718 MODULE_ALIAS("md-raid6");
7719 MODULE_ALIAS("md-level-6");
7720
7721 /* This used to be two separate modules, they were: */
7722 MODULE_ALIAS("raid5");
7723 MODULE_ALIAS("raid6");