6b9fc58e8f2de4cdea46b2441fc850d9ea76203e
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104         return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109         return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114         --bio->bi_phys_segments;
115         return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120         unsigned short val = raid5_bi_hw_segments(bio);
121
122         --val;
123         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124         return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135         if (sh->ddf_layout)
136                 /* ddf always start from first device */
137                 return 0;
138         /* md starts just after Q block */
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156                              int *count, int syndrome_disks)
157 {
158         int slot = *count;
159
160         if (sh->ddf_layout)
161                 (*count)++;
162         if (idx == sh->pd_idx)
163                 return syndrome_disks;
164         if (idx == sh->qd_idx)
165                 return syndrome_disks + 1;
166         if (!sh->ddf_layout)
167                 (*count)++;
168         return slot;
169 }
170
171 static void return_io(struct bio *return_bi)
172 {
173         struct bio *bi = return_bi;
174         while (bi) {
175
176                 return_bi = bi->bi_next;
177                 bi->bi_next = NULL;
178                 bi->bi_size = 0;
179                 bio_endio(bi, 0);
180                 bi = return_bi;
181         }
182 }
183
184 static void print_raid5_conf (struct r5conf *conf);
185
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188         return sh->check_state || sh->reconstruct_state ||
189                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195         if (atomic_dec_and_test(&sh->count)) {
196                 BUG_ON(!list_empty(&sh->lru));
197                 BUG_ON(atomic_read(&conf->active_stripes)==0);
198                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199                         if (test_bit(STRIPE_DELAYED, &sh->state))
200                                 list_add_tail(&sh->lru, &conf->delayed_list);
201                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202                                    sh->bm_seq - conf->seq_write > 0)
203                                 list_add_tail(&sh->lru, &conf->bitmap_list);
204                         else {
205                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206                                 list_add_tail(&sh->lru, &conf->handle_list);
207                         }
208                         md_wakeup_thread(conf->mddev->thread);
209                 } else {
210                         BUG_ON(stripe_operations_active(sh));
211                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212                                 atomic_dec(&conf->preread_active_stripes);
213                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214                                         md_wakeup_thread(conf->mddev->thread);
215                         }
216                         atomic_dec(&conf->active_stripes);
217                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218                                 list_add_tail(&sh->lru, &conf->inactive_list);
219                                 wake_up(&conf->wait_for_stripe);
220                                 if (conf->retry_read_aligned)
221                                         md_wakeup_thread(conf->mddev->thread);
222                         }
223                 }
224         }
225 }
226
227 static void release_stripe(struct stripe_head *sh)
228 {
229         struct r5conf *conf = sh->raid_conf;
230         unsigned long flags;
231
232         spin_lock_irqsave(&conf->device_lock, flags);
233         __release_stripe(conf, sh);
234         spin_unlock_irqrestore(&conf->device_lock, flags);
235 }
236
237 static inline void remove_hash(struct stripe_head *sh)
238 {
239         pr_debug("remove_hash(), stripe %llu\n",
240                 (unsigned long long)sh->sector);
241
242         hlist_del_init(&sh->hash);
243 }
244
245 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
246 {
247         struct hlist_head *hp = stripe_hash(conf, sh->sector);
248
249         pr_debug("insert_hash(), stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         hlist_add_head(&sh->hash, hp);
253 }
254
255
256 /* find an idle stripe, make sure it is unhashed, and return it. */
257 static struct stripe_head *get_free_stripe(struct r5conf *conf)
258 {
259         struct stripe_head *sh = NULL;
260         struct list_head *first;
261
262         if (list_empty(&conf->inactive_list))
263                 goto out;
264         first = conf->inactive_list.next;
265         sh = list_entry(first, struct stripe_head, lru);
266         list_del_init(first);
267         remove_hash(sh);
268         atomic_inc(&conf->active_stripes);
269 out:
270         return sh;
271 }
272
273 static void shrink_buffers(struct stripe_head *sh)
274 {
275         struct page *p;
276         int i;
277         int num = sh->raid_conf->pool_size;
278
279         for (i = 0; i < num ; i++) {
280                 p = sh->dev[i].page;
281                 if (!p)
282                         continue;
283                 sh->dev[i].page = NULL;
284                 put_page(p);
285         }
286 }
287
288 static int grow_buffers(struct stripe_head *sh)
289 {
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num; i++) {
294                 struct page *page;
295
296                 if (!(page = alloc_page(GFP_KERNEL))) {
297                         return 1;
298                 }
299                 sh->dev[i].page = page;
300         }
301         return 0;
302 }
303
304 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
306                             struct stripe_head *sh);
307
308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309 {
310         struct r5conf *conf = sh->raid_conf;
311         int i;
312
313         BUG_ON(atomic_read(&sh->count) != 0);
314         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315         BUG_ON(stripe_operations_active(sh));
316
317         pr_debug("init_stripe called, stripe %llu\n",
318                 (unsigned long long)sh->sector);
319
320         remove_hash(sh);
321
322         sh->generation = conf->generation - previous;
323         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
324         sh->sector = sector;
325         stripe_set_idx(sector, conf, previous, sh);
326         sh->state = 0;
327
328
329         for (i = sh->disks; i--; ) {
330                 struct r5dev *dev = &sh->dev[i];
331
332                 if (dev->toread || dev->read || dev->towrite || dev->written ||
333                     test_bit(R5_LOCKED, &dev->flags)) {
334                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
335                                (unsigned long long)sh->sector, i, dev->toread,
336                                dev->read, dev->towrite, dev->written,
337                                test_bit(R5_LOCKED, &dev->flags));
338                         WARN_ON(1);
339                 }
340                 dev->flags = 0;
341                 raid5_build_block(sh, i, previous);
342         }
343         insert_hash(conf, sh);
344 }
345
346 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
347                                          short generation)
348 {
349         struct stripe_head *sh;
350         struct hlist_node *hn;
351
352         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354                 if (sh->sector == sector && sh->generation == generation)
355                         return sh;
356         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357         return NULL;
358 }
359
360 /*
361  * Need to check if array has failed when deciding whether to:
362  *  - start an array
363  *  - remove non-faulty devices
364  *  - add a spare
365  *  - allow a reshape
366  * This determination is simple when no reshape is happening.
367  * However if there is a reshape, we need to carefully check
368  * both the before and after sections.
369  * This is because some failed devices may only affect one
370  * of the two sections, and some non-in_sync devices may
371  * be insync in the section most affected by failed devices.
372  */
373 static int calc_degraded(struct r5conf *conf)
374 {
375         int degraded, degraded2;
376         int i;
377
378         rcu_read_lock();
379         degraded = 0;
380         for (i = 0; i < conf->previous_raid_disks; i++) {
381                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
382                 if (!rdev || test_bit(Faulty, &rdev->flags))
383                         degraded++;
384                 else if (test_bit(In_sync, &rdev->flags))
385                         ;
386                 else
387                         /* not in-sync or faulty.
388                          * If the reshape increases the number of devices,
389                          * this is being recovered by the reshape, so
390                          * this 'previous' section is not in_sync.
391                          * If the number of devices is being reduced however,
392                          * the device can only be part of the array if
393                          * we are reverting a reshape, so this section will
394                          * be in-sync.
395                          */
396                         if (conf->raid_disks >= conf->previous_raid_disks)
397                                 degraded++;
398         }
399         rcu_read_unlock();
400         if (conf->raid_disks == conf->previous_raid_disks)
401                 return degraded;
402         rcu_read_lock();
403         degraded2 = 0;
404         for (i = 0; i < conf->raid_disks; i++) {
405                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
406                 if (!rdev || test_bit(Faulty, &rdev->flags))
407                         degraded2++;
408                 else if (test_bit(In_sync, &rdev->flags))
409                         ;
410                 else
411                         /* not in-sync or faulty.
412                          * If reshape increases the number of devices, this
413                          * section has already been recovered, else it
414                          * almost certainly hasn't.
415                          */
416                         if (conf->raid_disks <= conf->previous_raid_disks)
417                                 degraded2++;
418         }
419         rcu_read_unlock();
420         if (degraded2 > degraded)
421                 return degraded2;
422         return degraded;
423 }
424
425 static int has_failed(struct r5conf *conf)
426 {
427         int degraded;
428
429         if (conf->mddev->reshape_position == MaxSector)
430                 return conf->mddev->degraded > conf->max_degraded;
431
432         degraded = calc_degraded(conf);
433         if (degraded > conf->max_degraded)
434                 return 1;
435         return 0;
436 }
437
438 static struct stripe_head *
439 get_active_stripe(struct r5conf *conf, sector_t sector,
440                   int previous, int noblock, int noquiesce)
441 {
442         struct stripe_head *sh;
443
444         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
445
446         spin_lock_irq(&conf->device_lock);
447
448         do {
449                 wait_event_lock_irq(conf->wait_for_stripe,
450                                     conf->quiesce == 0 || noquiesce,
451                                     conf->device_lock, /* nothing */);
452                 sh = __find_stripe(conf, sector, conf->generation - previous);
453                 if (!sh) {
454                         if (!conf->inactive_blocked)
455                                 sh = get_free_stripe(conf);
456                         if (noblock && sh == NULL)
457                                 break;
458                         if (!sh) {
459                                 conf->inactive_blocked = 1;
460                                 wait_event_lock_irq(conf->wait_for_stripe,
461                                                     !list_empty(&conf->inactive_list) &&
462                                                     (atomic_read(&conf->active_stripes)
463                                                      < (conf->max_nr_stripes *3/4)
464                                                      || !conf->inactive_blocked),
465                                                     conf->device_lock,
466                                                     );
467                                 conf->inactive_blocked = 0;
468                         } else
469                                 init_stripe(sh, sector, previous);
470                 } else {
471                         if (atomic_read(&sh->count)) {
472                                 BUG_ON(!list_empty(&sh->lru)
473                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
474                         } else {
475                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
476                                         atomic_inc(&conf->active_stripes);
477                                 if (list_empty(&sh->lru) &&
478                                     !test_bit(STRIPE_EXPANDING, &sh->state))
479                                         BUG();
480                                 list_del_init(&sh->lru);
481                         }
482                 }
483         } while (sh == NULL);
484
485         if (sh)
486                 atomic_inc(&sh->count);
487
488         spin_unlock_irq(&conf->device_lock);
489         return sh;
490 }
491
492 static void
493 raid5_end_read_request(struct bio *bi, int error);
494 static void
495 raid5_end_write_request(struct bio *bi, int error);
496
497 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
498 {
499         struct r5conf *conf = sh->raid_conf;
500         int i, disks = sh->disks;
501
502         might_sleep();
503
504         for (i = disks; i--; ) {
505                 int rw;
506                 struct bio *bi;
507                 struct md_rdev *rdev;
508                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
509                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
510                                 rw = WRITE_FUA;
511                         else
512                                 rw = WRITE;
513                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
514                         rw = READ;
515                 else
516                         continue;
517
518                 bi = &sh->dev[i].req;
519
520                 bi->bi_rw = rw;
521                 if (rw & WRITE)
522                         bi->bi_end_io = raid5_end_write_request;
523                 else
524                         bi->bi_end_io = raid5_end_read_request;
525
526                 rcu_read_lock();
527                 rdev = rcu_dereference(conf->disks[i].rdev);
528                 if (rdev && test_bit(Faulty, &rdev->flags))
529                         rdev = NULL;
530                 if (rdev)
531                         atomic_inc(&rdev->nr_pending);
532                 rcu_read_unlock();
533
534                 /* We have already checked bad blocks for reads.  Now
535                  * need to check for writes.
536                  */
537                 while ((rw & WRITE) && rdev &&
538                        test_bit(WriteErrorSeen, &rdev->flags)) {
539                         sector_t first_bad;
540                         int bad_sectors;
541                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
542                                               &first_bad, &bad_sectors);
543                         if (!bad)
544                                 break;
545
546                         if (bad < 0) {
547                                 set_bit(BlockedBadBlocks, &rdev->flags);
548                                 if (!conf->mddev->external &&
549                                     conf->mddev->flags) {
550                                         /* It is very unlikely, but we might
551                                          * still need to write out the
552                                          * bad block log - better give it
553                                          * a chance*/
554                                         md_check_recovery(conf->mddev);
555                                 }
556                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
557                         } else {
558                                 /* Acknowledged bad block - skip the write */
559                                 rdev_dec_pending(rdev, conf->mddev);
560                                 rdev = NULL;
561                         }
562                 }
563
564                 if (rdev) {
565                         if (s->syncing || s->expanding || s->expanded)
566                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
567
568                         set_bit(STRIPE_IO_STARTED, &sh->state);
569
570                         bi->bi_bdev = rdev->bdev;
571                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
572                                 __func__, (unsigned long long)sh->sector,
573                                 bi->bi_rw, i);
574                         atomic_inc(&sh->count);
575                         bi->bi_sector = sh->sector + rdev->data_offset;
576                         bi->bi_flags = 1 << BIO_UPTODATE;
577                         bi->bi_vcnt = 1;
578                         bi->bi_max_vecs = 1;
579                         bi->bi_idx = 0;
580                         bi->bi_io_vec = &sh->dev[i].vec;
581                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
582                         bi->bi_io_vec[0].bv_offset = 0;
583                         bi->bi_size = STRIPE_SIZE;
584                         bi->bi_next = NULL;
585                         generic_make_request(bi);
586                 } else {
587                         if (rw & WRITE)
588                                 set_bit(STRIPE_DEGRADED, &sh->state);
589                         pr_debug("skip op %ld on disc %d for sector %llu\n",
590                                 bi->bi_rw, i, (unsigned long long)sh->sector);
591                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
592                         set_bit(STRIPE_HANDLE, &sh->state);
593                 }
594         }
595 }
596
597 static struct dma_async_tx_descriptor *
598 async_copy_data(int frombio, struct bio *bio, struct page *page,
599         sector_t sector, struct dma_async_tx_descriptor *tx)
600 {
601         struct bio_vec *bvl;
602         struct page *bio_page;
603         int i;
604         int page_offset;
605         struct async_submit_ctl submit;
606         enum async_tx_flags flags = 0;
607
608         if (bio->bi_sector >= sector)
609                 page_offset = (signed)(bio->bi_sector - sector) * 512;
610         else
611                 page_offset = (signed)(sector - bio->bi_sector) * -512;
612
613         if (frombio)
614                 flags |= ASYNC_TX_FENCE;
615         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
616
617         bio_for_each_segment(bvl, bio, i) {
618                 int len = bvl->bv_len;
619                 int clen;
620                 int b_offset = 0;
621
622                 if (page_offset < 0) {
623                         b_offset = -page_offset;
624                         page_offset += b_offset;
625                         len -= b_offset;
626                 }
627
628                 if (len > 0 && page_offset + len > STRIPE_SIZE)
629                         clen = STRIPE_SIZE - page_offset;
630                 else
631                         clen = len;
632
633                 if (clen > 0) {
634                         b_offset += bvl->bv_offset;
635                         bio_page = bvl->bv_page;
636                         if (frombio)
637                                 tx = async_memcpy(page, bio_page, page_offset,
638                                                   b_offset, clen, &submit);
639                         else
640                                 tx = async_memcpy(bio_page, page, b_offset,
641                                                   page_offset, clen, &submit);
642                 }
643                 /* chain the operations */
644                 submit.depend_tx = tx;
645
646                 if (clen < len) /* hit end of page */
647                         break;
648                 page_offset +=  len;
649         }
650
651         return tx;
652 }
653
654 static void ops_complete_biofill(void *stripe_head_ref)
655 {
656         struct stripe_head *sh = stripe_head_ref;
657         struct bio *return_bi = NULL;
658         struct r5conf *conf = sh->raid_conf;
659         int i;
660
661         pr_debug("%s: stripe %llu\n", __func__,
662                 (unsigned long long)sh->sector);
663
664         /* clear completed biofills */
665         spin_lock_irq(&conf->device_lock);
666         for (i = sh->disks; i--; ) {
667                 struct r5dev *dev = &sh->dev[i];
668
669                 /* acknowledge completion of a biofill operation */
670                 /* and check if we need to reply to a read request,
671                  * new R5_Wantfill requests are held off until
672                  * !STRIPE_BIOFILL_RUN
673                  */
674                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
675                         struct bio *rbi, *rbi2;
676
677                         BUG_ON(!dev->read);
678                         rbi = dev->read;
679                         dev->read = NULL;
680                         while (rbi && rbi->bi_sector <
681                                 dev->sector + STRIPE_SECTORS) {
682                                 rbi2 = r5_next_bio(rbi, dev->sector);
683                                 if (!raid5_dec_bi_phys_segments(rbi)) {
684                                         rbi->bi_next = return_bi;
685                                         return_bi = rbi;
686                                 }
687                                 rbi = rbi2;
688                         }
689                 }
690         }
691         spin_unlock_irq(&conf->device_lock);
692         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
693
694         return_io(return_bi);
695
696         set_bit(STRIPE_HANDLE, &sh->state);
697         release_stripe(sh);
698 }
699
700 static void ops_run_biofill(struct stripe_head *sh)
701 {
702         struct dma_async_tx_descriptor *tx = NULL;
703         struct r5conf *conf = sh->raid_conf;
704         struct async_submit_ctl submit;
705         int i;
706
707         pr_debug("%s: stripe %llu\n", __func__,
708                 (unsigned long long)sh->sector);
709
710         for (i = sh->disks; i--; ) {
711                 struct r5dev *dev = &sh->dev[i];
712                 if (test_bit(R5_Wantfill, &dev->flags)) {
713                         struct bio *rbi;
714                         spin_lock_irq(&conf->device_lock);
715                         dev->read = rbi = dev->toread;
716                         dev->toread = NULL;
717                         spin_unlock_irq(&conf->device_lock);
718                         while (rbi && rbi->bi_sector <
719                                 dev->sector + STRIPE_SECTORS) {
720                                 tx = async_copy_data(0, rbi, dev->page,
721                                         dev->sector, tx);
722                                 rbi = r5_next_bio(rbi, dev->sector);
723                         }
724                 }
725         }
726
727         atomic_inc(&sh->count);
728         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
729         async_trigger_callback(&submit);
730 }
731
732 static void mark_target_uptodate(struct stripe_head *sh, int target)
733 {
734         struct r5dev *tgt;
735
736         if (target < 0)
737                 return;
738
739         tgt = &sh->dev[target];
740         set_bit(R5_UPTODATE, &tgt->flags);
741         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
742         clear_bit(R5_Wantcompute, &tgt->flags);
743 }
744
745 static void ops_complete_compute(void *stripe_head_ref)
746 {
747         struct stripe_head *sh = stripe_head_ref;
748
749         pr_debug("%s: stripe %llu\n", __func__,
750                 (unsigned long long)sh->sector);
751
752         /* mark the computed target(s) as uptodate */
753         mark_target_uptodate(sh, sh->ops.target);
754         mark_target_uptodate(sh, sh->ops.target2);
755
756         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
757         if (sh->check_state == check_state_compute_run)
758                 sh->check_state = check_state_compute_result;
759         set_bit(STRIPE_HANDLE, &sh->state);
760         release_stripe(sh);
761 }
762
763 /* return a pointer to the address conversion region of the scribble buffer */
764 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
765                                  struct raid5_percpu *percpu)
766 {
767         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
768 }
769
770 static struct dma_async_tx_descriptor *
771 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
772 {
773         int disks = sh->disks;
774         struct page **xor_srcs = percpu->scribble;
775         int target = sh->ops.target;
776         struct r5dev *tgt = &sh->dev[target];
777         struct page *xor_dest = tgt->page;
778         int count = 0;
779         struct dma_async_tx_descriptor *tx;
780         struct async_submit_ctl submit;
781         int i;
782
783         pr_debug("%s: stripe %llu block: %d\n",
784                 __func__, (unsigned long long)sh->sector, target);
785         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
786
787         for (i = disks; i--; )
788                 if (i != target)
789                         xor_srcs[count++] = sh->dev[i].page;
790
791         atomic_inc(&sh->count);
792
793         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
794                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
795         if (unlikely(count == 1))
796                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
797         else
798                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
799
800         return tx;
801 }
802
803 /* set_syndrome_sources - populate source buffers for gen_syndrome
804  * @srcs - (struct page *) array of size sh->disks
805  * @sh - stripe_head to parse
806  *
807  * Populates srcs in proper layout order for the stripe and returns the
808  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
809  * destination buffer is recorded in srcs[count] and the Q destination
810  * is recorded in srcs[count+1]].
811  */
812 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
813 {
814         int disks = sh->disks;
815         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
816         int d0_idx = raid6_d0(sh);
817         int count;
818         int i;
819
820         for (i = 0; i < disks; i++)
821                 srcs[i] = NULL;
822
823         count = 0;
824         i = d0_idx;
825         do {
826                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
827
828                 srcs[slot] = sh->dev[i].page;
829                 i = raid6_next_disk(i, disks);
830         } while (i != d0_idx);
831
832         return syndrome_disks;
833 }
834
835 static struct dma_async_tx_descriptor *
836 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
837 {
838         int disks = sh->disks;
839         struct page **blocks = percpu->scribble;
840         int target;
841         int qd_idx = sh->qd_idx;
842         struct dma_async_tx_descriptor *tx;
843         struct async_submit_ctl submit;
844         struct r5dev *tgt;
845         struct page *dest;
846         int i;
847         int count;
848
849         if (sh->ops.target < 0)
850                 target = sh->ops.target2;
851         else if (sh->ops.target2 < 0)
852                 target = sh->ops.target;
853         else
854                 /* we should only have one valid target */
855                 BUG();
856         BUG_ON(target < 0);
857         pr_debug("%s: stripe %llu block: %d\n",
858                 __func__, (unsigned long long)sh->sector, target);
859
860         tgt = &sh->dev[target];
861         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
862         dest = tgt->page;
863
864         atomic_inc(&sh->count);
865
866         if (target == qd_idx) {
867                 count = set_syndrome_sources(blocks, sh);
868                 blocks[count] = NULL; /* regenerating p is not necessary */
869                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
870                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
871                                   ops_complete_compute, sh,
872                                   to_addr_conv(sh, percpu));
873                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
874         } else {
875                 /* Compute any data- or p-drive using XOR */
876                 count = 0;
877                 for (i = disks; i-- ; ) {
878                         if (i == target || i == qd_idx)
879                                 continue;
880                         blocks[count++] = sh->dev[i].page;
881                 }
882
883                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
884                                   NULL, ops_complete_compute, sh,
885                                   to_addr_conv(sh, percpu));
886                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
887         }
888
889         return tx;
890 }
891
892 static struct dma_async_tx_descriptor *
893 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
894 {
895         int i, count, disks = sh->disks;
896         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
897         int d0_idx = raid6_d0(sh);
898         int faila = -1, failb = -1;
899         int target = sh->ops.target;
900         int target2 = sh->ops.target2;
901         struct r5dev *tgt = &sh->dev[target];
902         struct r5dev *tgt2 = &sh->dev[target2];
903         struct dma_async_tx_descriptor *tx;
904         struct page **blocks = percpu->scribble;
905         struct async_submit_ctl submit;
906
907         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
908                  __func__, (unsigned long long)sh->sector, target, target2);
909         BUG_ON(target < 0 || target2 < 0);
910         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
911         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
912
913         /* we need to open-code set_syndrome_sources to handle the
914          * slot number conversion for 'faila' and 'failb'
915          */
916         for (i = 0; i < disks ; i++)
917                 blocks[i] = NULL;
918         count = 0;
919         i = d0_idx;
920         do {
921                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
922
923                 blocks[slot] = sh->dev[i].page;
924
925                 if (i == target)
926                         faila = slot;
927                 if (i == target2)
928                         failb = slot;
929                 i = raid6_next_disk(i, disks);
930         } while (i != d0_idx);
931
932         BUG_ON(faila == failb);
933         if (failb < faila)
934                 swap(faila, failb);
935         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
936                  __func__, (unsigned long long)sh->sector, faila, failb);
937
938         atomic_inc(&sh->count);
939
940         if (failb == syndrome_disks+1) {
941                 /* Q disk is one of the missing disks */
942                 if (faila == syndrome_disks) {
943                         /* Missing P+Q, just recompute */
944                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
945                                           ops_complete_compute, sh,
946                                           to_addr_conv(sh, percpu));
947                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
948                                                   STRIPE_SIZE, &submit);
949                 } else {
950                         struct page *dest;
951                         int data_target;
952                         int qd_idx = sh->qd_idx;
953
954                         /* Missing D+Q: recompute D from P, then recompute Q */
955                         if (target == qd_idx)
956                                 data_target = target2;
957                         else
958                                 data_target = target;
959
960                         count = 0;
961                         for (i = disks; i-- ; ) {
962                                 if (i == data_target || i == qd_idx)
963                                         continue;
964                                 blocks[count++] = sh->dev[i].page;
965                         }
966                         dest = sh->dev[data_target].page;
967                         init_async_submit(&submit,
968                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
969                                           NULL, NULL, NULL,
970                                           to_addr_conv(sh, percpu));
971                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
972                                        &submit);
973
974                         count = set_syndrome_sources(blocks, sh);
975                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
976                                           ops_complete_compute, sh,
977                                           to_addr_conv(sh, percpu));
978                         return async_gen_syndrome(blocks, 0, count+2,
979                                                   STRIPE_SIZE, &submit);
980                 }
981         } else {
982                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
983                                   ops_complete_compute, sh,
984                                   to_addr_conv(sh, percpu));
985                 if (failb == syndrome_disks) {
986                         /* We're missing D+P. */
987                         return async_raid6_datap_recov(syndrome_disks+2,
988                                                        STRIPE_SIZE, faila,
989                                                        blocks, &submit);
990                 } else {
991                         /* We're missing D+D. */
992                         return async_raid6_2data_recov(syndrome_disks+2,
993                                                        STRIPE_SIZE, faila, failb,
994                                                        blocks, &submit);
995                 }
996         }
997 }
998
999
1000 static void ops_complete_prexor(void *stripe_head_ref)
1001 {
1002         struct stripe_head *sh = stripe_head_ref;
1003
1004         pr_debug("%s: stripe %llu\n", __func__,
1005                 (unsigned long long)sh->sector);
1006 }
1007
1008 static struct dma_async_tx_descriptor *
1009 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1010                struct dma_async_tx_descriptor *tx)
1011 {
1012         int disks = sh->disks;
1013         struct page **xor_srcs = percpu->scribble;
1014         int count = 0, pd_idx = sh->pd_idx, i;
1015         struct async_submit_ctl submit;
1016
1017         /* existing parity data subtracted */
1018         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1019
1020         pr_debug("%s: stripe %llu\n", __func__,
1021                 (unsigned long long)sh->sector);
1022
1023         for (i = disks; i--; ) {
1024                 struct r5dev *dev = &sh->dev[i];
1025                 /* Only process blocks that are known to be uptodate */
1026                 if (test_bit(R5_Wantdrain, &dev->flags))
1027                         xor_srcs[count++] = dev->page;
1028         }
1029
1030         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1031                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1032         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1033
1034         return tx;
1035 }
1036
1037 static struct dma_async_tx_descriptor *
1038 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1039 {
1040         int disks = sh->disks;
1041         int i;
1042
1043         pr_debug("%s: stripe %llu\n", __func__,
1044                 (unsigned long long)sh->sector);
1045
1046         for (i = disks; i--; ) {
1047                 struct r5dev *dev = &sh->dev[i];
1048                 struct bio *chosen;
1049
1050                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1051                         struct bio *wbi;
1052
1053                         spin_lock_irq(&sh->raid_conf->device_lock);
1054                         chosen = dev->towrite;
1055                         dev->towrite = NULL;
1056                         BUG_ON(dev->written);
1057                         wbi = dev->written = chosen;
1058                         spin_unlock_irq(&sh->raid_conf->device_lock);
1059
1060                         while (wbi && wbi->bi_sector <
1061                                 dev->sector + STRIPE_SECTORS) {
1062                                 if (wbi->bi_rw & REQ_FUA)
1063                                         set_bit(R5_WantFUA, &dev->flags);
1064                                 tx = async_copy_data(1, wbi, dev->page,
1065                                         dev->sector, tx);
1066                                 wbi = r5_next_bio(wbi, dev->sector);
1067                         }
1068                 }
1069         }
1070
1071         return tx;
1072 }
1073
1074 static void ops_complete_reconstruct(void *stripe_head_ref)
1075 {
1076         struct stripe_head *sh = stripe_head_ref;
1077         int disks = sh->disks;
1078         int pd_idx = sh->pd_idx;
1079         int qd_idx = sh->qd_idx;
1080         int i;
1081         bool fua = false;
1082
1083         pr_debug("%s: stripe %llu\n", __func__,
1084                 (unsigned long long)sh->sector);
1085
1086         for (i = disks; i--; )
1087                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1088
1089         for (i = disks; i--; ) {
1090                 struct r5dev *dev = &sh->dev[i];
1091
1092                 if (dev->written || i == pd_idx || i == qd_idx) {
1093                         set_bit(R5_UPTODATE, &dev->flags);
1094                         if (fua)
1095                                 set_bit(R5_WantFUA, &dev->flags);
1096                 }
1097         }
1098
1099         if (sh->reconstruct_state == reconstruct_state_drain_run)
1100                 sh->reconstruct_state = reconstruct_state_drain_result;
1101         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1102                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1103         else {
1104                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1105                 sh->reconstruct_state = reconstruct_state_result;
1106         }
1107
1108         set_bit(STRIPE_HANDLE, &sh->state);
1109         release_stripe(sh);
1110 }
1111
1112 static void
1113 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1114                      struct dma_async_tx_descriptor *tx)
1115 {
1116         int disks = sh->disks;
1117         struct page **xor_srcs = percpu->scribble;
1118         struct async_submit_ctl submit;
1119         int count = 0, pd_idx = sh->pd_idx, i;
1120         struct page *xor_dest;
1121         int prexor = 0;
1122         unsigned long flags;
1123
1124         pr_debug("%s: stripe %llu\n", __func__,
1125                 (unsigned long long)sh->sector);
1126
1127         /* check if prexor is active which means only process blocks
1128          * that are part of a read-modify-write (written)
1129          */
1130         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1131                 prexor = 1;
1132                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1133                 for (i = disks; i--; ) {
1134                         struct r5dev *dev = &sh->dev[i];
1135                         if (dev->written)
1136                                 xor_srcs[count++] = dev->page;
1137                 }
1138         } else {
1139                 xor_dest = sh->dev[pd_idx].page;
1140                 for (i = disks; i--; ) {
1141                         struct r5dev *dev = &sh->dev[i];
1142                         if (i != pd_idx)
1143                                 xor_srcs[count++] = dev->page;
1144                 }
1145         }
1146
1147         /* 1/ if we prexor'd then the dest is reused as a source
1148          * 2/ if we did not prexor then we are redoing the parity
1149          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1150          * for the synchronous xor case
1151          */
1152         flags = ASYNC_TX_ACK |
1153                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1154
1155         atomic_inc(&sh->count);
1156
1157         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1158                           to_addr_conv(sh, percpu));
1159         if (unlikely(count == 1))
1160                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1161         else
1162                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1163 }
1164
1165 static void
1166 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1167                      struct dma_async_tx_descriptor *tx)
1168 {
1169         struct async_submit_ctl submit;
1170         struct page **blocks = percpu->scribble;
1171         int count;
1172
1173         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1174
1175         count = set_syndrome_sources(blocks, sh);
1176
1177         atomic_inc(&sh->count);
1178
1179         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1180                           sh, to_addr_conv(sh, percpu));
1181         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1182 }
1183
1184 static void ops_complete_check(void *stripe_head_ref)
1185 {
1186         struct stripe_head *sh = stripe_head_ref;
1187
1188         pr_debug("%s: stripe %llu\n", __func__,
1189                 (unsigned long long)sh->sector);
1190
1191         sh->check_state = check_state_check_result;
1192         set_bit(STRIPE_HANDLE, &sh->state);
1193         release_stripe(sh);
1194 }
1195
1196 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1197 {
1198         int disks = sh->disks;
1199         int pd_idx = sh->pd_idx;
1200         int qd_idx = sh->qd_idx;
1201         struct page *xor_dest;
1202         struct page **xor_srcs = percpu->scribble;
1203         struct dma_async_tx_descriptor *tx;
1204         struct async_submit_ctl submit;
1205         int count;
1206         int i;
1207
1208         pr_debug("%s: stripe %llu\n", __func__,
1209                 (unsigned long long)sh->sector);
1210
1211         count = 0;
1212         xor_dest = sh->dev[pd_idx].page;
1213         xor_srcs[count++] = xor_dest;
1214         for (i = disks; i--; ) {
1215                 if (i == pd_idx || i == qd_idx)
1216                         continue;
1217                 xor_srcs[count++] = sh->dev[i].page;
1218         }
1219
1220         init_async_submit(&submit, 0, NULL, NULL, NULL,
1221                           to_addr_conv(sh, percpu));
1222         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1223                            &sh->ops.zero_sum_result, &submit);
1224
1225         atomic_inc(&sh->count);
1226         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1227         tx = async_trigger_callback(&submit);
1228 }
1229
1230 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1231 {
1232         struct page **srcs = percpu->scribble;
1233         struct async_submit_ctl submit;
1234         int count;
1235
1236         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1237                 (unsigned long long)sh->sector, checkp);
1238
1239         count = set_syndrome_sources(srcs, sh);
1240         if (!checkp)
1241                 srcs[count] = NULL;
1242
1243         atomic_inc(&sh->count);
1244         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1245                           sh, to_addr_conv(sh, percpu));
1246         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1247                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1248 }
1249
1250 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1251 {
1252         int overlap_clear = 0, i, disks = sh->disks;
1253         struct dma_async_tx_descriptor *tx = NULL;
1254         struct r5conf *conf = sh->raid_conf;
1255         int level = conf->level;
1256         struct raid5_percpu *percpu;
1257         unsigned long cpu;
1258
1259         cpu = get_cpu();
1260         percpu = per_cpu_ptr(conf->percpu, cpu);
1261         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1262                 ops_run_biofill(sh);
1263                 overlap_clear++;
1264         }
1265
1266         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1267                 if (level < 6)
1268                         tx = ops_run_compute5(sh, percpu);
1269                 else {
1270                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1271                                 tx = ops_run_compute6_1(sh, percpu);
1272                         else
1273                                 tx = ops_run_compute6_2(sh, percpu);
1274                 }
1275                 /* terminate the chain if reconstruct is not set to be run */
1276                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1277                         async_tx_ack(tx);
1278         }
1279
1280         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1281                 tx = ops_run_prexor(sh, percpu, tx);
1282
1283         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1284                 tx = ops_run_biodrain(sh, tx);
1285                 overlap_clear++;
1286         }
1287
1288         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1289                 if (level < 6)
1290                         ops_run_reconstruct5(sh, percpu, tx);
1291                 else
1292                         ops_run_reconstruct6(sh, percpu, tx);
1293         }
1294
1295         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1296                 if (sh->check_state == check_state_run)
1297                         ops_run_check_p(sh, percpu);
1298                 else if (sh->check_state == check_state_run_q)
1299                         ops_run_check_pq(sh, percpu, 0);
1300                 else if (sh->check_state == check_state_run_pq)
1301                         ops_run_check_pq(sh, percpu, 1);
1302                 else
1303                         BUG();
1304         }
1305
1306         if (overlap_clear)
1307                 for (i = disks; i--; ) {
1308                         struct r5dev *dev = &sh->dev[i];
1309                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1310                                 wake_up(&sh->raid_conf->wait_for_overlap);
1311                 }
1312         put_cpu();
1313 }
1314
1315 #ifdef CONFIG_MULTICORE_RAID456
1316 static void async_run_ops(void *param, async_cookie_t cookie)
1317 {
1318         struct stripe_head *sh = param;
1319         unsigned long ops_request = sh->ops.request;
1320
1321         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1322         wake_up(&sh->ops.wait_for_ops);
1323
1324         __raid_run_ops(sh, ops_request);
1325         release_stripe(sh);
1326 }
1327
1328 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1329 {
1330         /* since handle_stripe can be called outside of raid5d context
1331          * we need to ensure sh->ops.request is de-staged before another
1332          * request arrives
1333          */
1334         wait_event(sh->ops.wait_for_ops,
1335                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1336         sh->ops.request = ops_request;
1337
1338         atomic_inc(&sh->count);
1339         async_schedule(async_run_ops, sh);
1340 }
1341 #else
1342 #define raid_run_ops __raid_run_ops
1343 #endif
1344
1345 static int grow_one_stripe(struct r5conf *conf)
1346 {
1347         struct stripe_head *sh;
1348         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1349         if (!sh)
1350                 return 0;
1351
1352         sh->raid_conf = conf;
1353         #ifdef CONFIG_MULTICORE_RAID456
1354         init_waitqueue_head(&sh->ops.wait_for_ops);
1355         #endif
1356
1357         if (grow_buffers(sh)) {
1358                 shrink_buffers(sh);
1359                 kmem_cache_free(conf->slab_cache, sh);
1360                 return 0;
1361         }
1362         /* we just created an active stripe so... */
1363         atomic_set(&sh->count, 1);
1364         atomic_inc(&conf->active_stripes);
1365         INIT_LIST_HEAD(&sh->lru);
1366         release_stripe(sh);
1367         return 1;
1368 }
1369
1370 static int grow_stripes(struct r5conf *conf, int num)
1371 {
1372         struct kmem_cache *sc;
1373         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1374
1375         if (conf->mddev->gendisk)
1376                 sprintf(conf->cache_name[0],
1377                         "raid%d-%s", conf->level, mdname(conf->mddev));
1378         else
1379                 sprintf(conf->cache_name[0],
1380                         "raid%d-%p", conf->level, conf->mddev);
1381         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1382
1383         conf->active_name = 0;
1384         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1385                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1386                                0, 0, NULL);
1387         if (!sc)
1388                 return 1;
1389         conf->slab_cache = sc;
1390         conf->pool_size = devs;
1391         while (num--)
1392                 if (!grow_one_stripe(conf))
1393                         return 1;
1394         return 0;
1395 }
1396
1397 /**
1398  * scribble_len - return the required size of the scribble region
1399  * @num - total number of disks in the array
1400  *
1401  * The size must be enough to contain:
1402  * 1/ a struct page pointer for each device in the array +2
1403  * 2/ room to convert each entry in (1) to its corresponding dma
1404  *    (dma_map_page()) or page (page_address()) address.
1405  *
1406  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1407  * calculate over all devices (not just the data blocks), using zeros in place
1408  * of the P and Q blocks.
1409  */
1410 static size_t scribble_len(int num)
1411 {
1412         size_t len;
1413
1414         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1415
1416         return len;
1417 }
1418
1419 static int resize_stripes(struct r5conf *conf, int newsize)
1420 {
1421         /* Make all the stripes able to hold 'newsize' devices.
1422          * New slots in each stripe get 'page' set to a new page.
1423          *
1424          * This happens in stages:
1425          * 1/ create a new kmem_cache and allocate the required number of
1426          *    stripe_heads.
1427          * 2/ gather all the old stripe_heads and tranfer the pages across
1428          *    to the new stripe_heads.  This will have the side effect of
1429          *    freezing the array as once all stripe_heads have been collected,
1430          *    no IO will be possible.  Old stripe heads are freed once their
1431          *    pages have been transferred over, and the old kmem_cache is
1432          *    freed when all stripes are done.
1433          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1434          *    we simple return a failre status - no need to clean anything up.
1435          * 4/ allocate new pages for the new slots in the new stripe_heads.
1436          *    If this fails, we don't bother trying the shrink the
1437          *    stripe_heads down again, we just leave them as they are.
1438          *    As each stripe_head is processed the new one is released into
1439          *    active service.
1440          *
1441          * Once step2 is started, we cannot afford to wait for a write,
1442          * so we use GFP_NOIO allocations.
1443          */
1444         struct stripe_head *osh, *nsh;
1445         LIST_HEAD(newstripes);
1446         struct disk_info *ndisks;
1447         unsigned long cpu;
1448         int err;
1449         struct kmem_cache *sc;
1450         int i;
1451
1452         if (newsize <= conf->pool_size)
1453                 return 0; /* never bother to shrink */
1454
1455         err = md_allow_write(conf->mddev);
1456         if (err)
1457                 return err;
1458
1459         /* Step 1 */
1460         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1461                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1462                                0, 0, NULL);
1463         if (!sc)
1464                 return -ENOMEM;
1465
1466         for (i = conf->max_nr_stripes; i; i--) {
1467                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1468                 if (!nsh)
1469                         break;
1470
1471                 nsh->raid_conf = conf;
1472                 #ifdef CONFIG_MULTICORE_RAID456
1473                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1474                 #endif
1475
1476                 list_add(&nsh->lru, &newstripes);
1477         }
1478         if (i) {
1479                 /* didn't get enough, give up */
1480                 while (!list_empty(&newstripes)) {
1481                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1482                         list_del(&nsh->lru);
1483                         kmem_cache_free(sc, nsh);
1484                 }
1485                 kmem_cache_destroy(sc);
1486                 return -ENOMEM;
1487         }
1488         /* Step 2 - Must use GFP_NOIO now.
1489          * OK, we have enough stripes, start collecting inactive
1490          * stripes and copying them over
1491          */
1492         list_for_each_entry(nsh, &newstripes, lru) {
1493                 spin_lock_irq(&conf->device_lock);
1494                 wait_event_lock_irq(conf->wait_for_stripe,
1495                                     !list_empty(&conf->inactive_list),
1496                                     conf->device_lock,
1497                                     );
1498                 osh = get_free_stripe(conf);
1499                 spin_unlock_irq(&conf->device_lock);
1500                 atomic_set(&nsh->count, 1);
1501                 for(i=0; i<conf->pool_size; i++)
1502                         nsh->dev[i].page = osh->dev[i].page;
1503                 for( ; i<newsize; i++)
1504                         nsh->dev[i].page = NULL;
1505                 kmem_cache_free(conf->slab_cache, osh);
1506         }
1507         kmem_cache_destroy(conf->slab_cache);
1508
1509         /* Step 3.
1510          * At this point, we are holding all the stripes so the array
1511          * is completely stalled, so now is a good time to resize
1512          * conf->disks and the scribble region
1513          */
1514         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1515         if (ndisks) {
1516                 for (i=0; i<conf->raid_disks; i++)
1517                         ndisks[i] = conf->disks[i];
1518                 kfree(conf->disks);
1519                 conf->disks = ndisks;
1520         } else
1521                 err = -ENOMEM;
1522
1523         get_online_cpus();
1524         conf->scribble_len = scribble_len(newsize);
1525         for_each_present_cpu(cpu) {
1526                 struct raid5_percpu *percpu;
1527                 void *scribble;
1528
1529                 percpu = per_cpu_ptr(conf->percpu, cpu);
1530                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1531
1532                 if (scribble) {
1533                         kfree(percpu->scribble);
1534                         percpu->scribble = scribble;
1535                 } else {
1536                         err = -ENOMEM;
1537                         break;
1538                 }
1539         }
1540         put_online_cpus();
1541
1542         /* Step 4, return new stripes to service */
1543         while(!list_empty(&newstripes)) {
1544                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1545                 list_del_init(&nsh->lru);
1546
1547                 for (i=conf->raid_disks; i < newsize; i++)
1548                         if (nsh->dev[i].page == NULL) {
1549                                 struct page *p = alloc_page(GFP_NOIO);
1550                                 nsh->dev[i].page = p;
1551                                 if (!p)
1552                                         err = -ENOMEM;
1553                         }
1554                 release_stripe(nsh);
1555         }
1556         /* critical section pass, GFP_NOIO no longer needed */
1557
1558         conf->slab_cache = sc;
1559         conf->active_name = 1-conf->active_name;
1560         conf->pool_size = newsize;
1561         return err;
1562 }
1563
1564 static int drop_one_stripe(struct r5conf *conf)
1565 {
1566         struct stripe_head *sh;
1567
1568         spin_lock_irq(&conf->device_lock);
1569         sh = get_free_stripe(conf);
1570         spin_unlock_irq(&conf->device_lock);
1571         if (!sh)
1572                 return 0;
1573         BUG_ON(atomic_read(&sh->count));
1574         shrink_buffers(sh);
1575         kmem_cache_free(conf->slab_cache, sh);
1576         atomic_dec(&conf->active_stripes);
1577         return 1;
1578 }
1579
1580 static void shrink_stripes(struct r5conf *conf)
1581 {
1582         while (drop_one_stripe(conf))
1583                 ;
1584
1585         if (conf->slab_cache)
1586                 kmem_cache_destroy(conf->slab_cache);
1587         conf->slab_cache = NULL;
1588 }
1589
1590 static void raid5_end_read_request(struct bio * bi, int error)
1591 {
1592         struct stripe_head *sh = bi->bi_private;
1593         struct r5conf *conf = sh->raid_conf;
1594         int disks = sh->disks, i;
1595         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1596         char b[BDEVNAME_SIZE];
1597         struct md_rdev *rdev;
1598
1599
1600         for (i=0 ; i<disks; i++)
1601                 if (bi == &sh->dev[i].req)
1602                         break;
1603
1604         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1605                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1606                 uptodate);
1607         if (i == disks) {
1608                 BUG();
1609                 return;
1610         }
1611
1612         if (uptodate) {
1613                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1614                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1615                         rdev = conf->disks[i].rdev;
1616                         printk_ratelimited(
1617                                 KERN_INFO
1618                                 "md/raid:%s: read error corrected"
1619                                 " (%lu sectors at %llu on %s)\n",
1620                                 mdname(conf->mddev), STRIPE_SECTORS,
1621                                 (unsigned long long)(sh->sector
1622                                                      + rdev->data_offset),
1623                                 bdevname(rdev->bdev, b));
1624                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1625                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1626                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1627                 }
1628                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1629                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1630         } else {
1631                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1632                 int retry = 0;
1633                 rdev = conf->disks[i].rdev;
1634
1635                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1636                 atomic_inc(&rdev->read_errors);
1637                 if (conf->mddev->degraded >= conf->max_degraded)
1638                         printk_ratelimited(
1639                                 KERN_WARNING
1640                                 "md/raid:%s: read error not correctable "
1641                                 "(sector %llu on %s).\n",
1642                                 mdname(conf->mddev),
1643                                 (unsigned long long)(sh->sector
1644                                                      + rdev->data_offset),
1645                                 bdn);
1646                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1647                         /* Oh, no!!! */
1648                         printk_ratelimited(
1649                                 KERN_WARNING
1650                                 "md/raid:%s: read error NOT corrected!! "
1651                                 "(sector %llu on %s).\n",
1652                                 mdname(conf->mddev),
1653                                 (unsigned long long)(sh->sector
1654                                                      + rdev->data_offset),
1655                                 bdn);
1656                 else if (atomic_read(&rdev->read_errors)
1657                          > conf->max_nr_stripes)
1658                         printk(KERN_WARNING
1659                                "md/raid:%s: Too many read errors, failing device %s.\n",
1660                                mdname(conf->mddev), bdn);
1661                 else
1662                         retry = 1;
1663                 if (retry)
1664                         set_bit(R5_ReadError, &sh->dev[i].flags);
1665                 else {
1666                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1667                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1668                         md_error(conf->mddev, rdev);
1669                 }
1670         }
1671         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1672         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1673         set_bit(STRIPE_HANDLE, &sh->state);
1674         release_stripe(sh);
1675 }
1676
1677 static void raid5_end_write_request(struct bio *bi, int error)
1678 {
1679         struct stripe_head *sh = bi->bi_private;
1680         struct r5conf *conf = sh->raid_conf;
1681         int disks = sh->disks, i;
1682         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1683         sector_t first_bad;
1684         int bad_sectors;
1685
1686         for (i=0 ; i<disks; i++)
1687                 if (bi == &sh->dev[i].req)
1688                         break;
1689
1690         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1691                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1692                 uptodate);
1693         if (i == disks) {
1694                 BUG();
1695                 return;
1696         }
1697
1698         if (!uptodate) {
1699                 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1700                 set_bit(R5_WriteError, &sh->dev[i].flags);
1701         } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1702                                &first_bad, &bad_sectors))
1703                 set_bit(R5_MadeGood, &sh->dev[i].flags);
1704
1705         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1706         
1707         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1708         set_bit(STRIPE_HANDLE, &sh->state);
1709         release_stripe(sh);
1710 }
1711
1712
1713 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1714         
1715 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1716 {
1717         struct r5dev *dev = &sh->dev[i];
1718
1719         bio_init(&dev->req);
1720         dev->req.bi_io_vec = &dev->vec;
1721         dev->req.bi_vcnt++;
1722         dev->req.bi_max_vecs++;
1723         dev->vec.bv_page = dev->page;
1724         dev->vec.bv_len = STRIPE_SIZE;
1725         dev->vec.bv_offset = 0;
1726
1727         dev->req.bi_sector = sh->sector;
1728         dev->req.bi_private = sh;
1729
1730         dev->flags = 0;
1731         dev->sector = compute_blocknr(sh, i, previous);
1732 }
1733
1734 static void error(struct mddev *mddev, struct md_rdev *rdev)
1735 {
1736         char b[BDEVNAME_SIZE];
1737         struct r5conf *conf = mddev->private;
1738         unsigned long flags;
1739         pr_debug("raid456: error called\n");
1740
1741         spin_lock_irqsave(&conf->device_lock, flags);
1742         clear_bit(In_sync, &rdev->flags);
1743         mddev->degraded = calc_degraded(conf);
1744         spin_unlock_irqrestore(&conf->device_lock, flags);
1745         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1746
1747         set_bit(Blocked, &rdev->flags);
1748         set_bit(Faulty, &rdev->flags);
1749         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1750         printk(KERN_ALERT
1751                "md/raid:%s: Disk failure on %s, disabling device.\n"
1752                "md/raid:%s: Operation continuing on %d devices.\n",
1753                mdname(mddev),
1754                bdevname(rdev->bdev, b),
1755                mdname(mddev),
1756                conf->raid_disks - mddev->degraded);
1757 }
1758
1759 /*
1760  * Input: a 'big' sector number,
1761  * Output: index of the data and parity disk, and the sector # in them.
1762  */
1763 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1764                                      int previous, int *dd_idx,
1765                                      struct stripe_head *sh)
1766 {
1767         sector_t stripe, stripe2;
1768         sector_t chunk_number;
1769         unsigned int chunk_offset;
1770         int pd_idx, qd_idx;
1771         int ddf_layout = 0;
1772         sector_t new_sector;
1773         int algorithm = previous ? conf->prev_algo
1774                                  : conf->algorithm;
1775         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1776                                          : conf->chunk_sectors;
1777         int raid_disks = previous ? conf->previous_raid_disks
1778                                   : conf->raid_disks;
1779         int data_disks = raid_disks - conf->max_degraded;
1780
1781         /* First compute the information on this sector */
1782
1783         /*
1784          * Compute the chunk number and the sector offset inside the chunk
1785          */
1786         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1787         chunk_number = r_sector;
1788
1789         /*
1790          * Compute the stripe number
1791          */
1792         stripe = chunk_number;
1793         *dd_idx = sector_div(stripe, data_disks);
1794         stripe2 = stripe;
1795         /*
1796          * Select the parity disk based on the user selected algorithm.
1797          */
1798         pd_idx = qd_idx = -1;
1799         switch(conf->level) {
1800         case 4:
1801                 pd_idx = data_disks;
1802                 break;
1803         case 5:
1804                 switch (algorithm) {
1805                 case ALGORITHM_LEFT_ASYMMETRIC:
1806                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1807                         if (*dd_idx >= pd_idx)
1808                                 (*dd_idx)++;
1809                         break;
1810                 case ALGORITHM_RIGHT_ASYMMETRIC:
1811                         pd_idx = sector_div(stripe2, raid_disks);
1812                         if (*dd_idx >= pd_idx)
1813                                 (*dd_idx)++;
1814                         break;
1815                 case ALGORITHM_LEFT_SYMMETRIC:
1816                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1817                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1818                         break;
1819                 case ALGORITHM_RIGHT_SYMMETRIC:
1820                         pd_idx = sector_div(stripe2, raid_disks);
1821                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1822                         break;
1823                 case ALGORITHM_PARITY_0:
1824                         pd_idx = 0;
1825                         (*dd_idx)++;
1826                         break;
1827                 case ALGORITHM_PARITY_N:
1828                         pd_idx = data_disks;
1829                         break;
1830                 default:
1831                         BUG();
1832                 }
1833                 break;
1834         case 6:
1835
1836                 switch (algorithm) {
1837                 case ALGORITHM_LEFT_ASYMMETRIC:
1838                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1839                         qd_idx = pd_idx + 1;
1840                         if (pd_idx == raid_disks-1) {
1841                                 (*dd_idx)++;    /* Q D D D P */
1842                                 qd_idx = 0;
1843                         } else if (*dd_idx >= pd_idx)
1844                                 (*dd_idx) += 2; /* D D P Q D */
1845                         break;
1846                 case ALGORITHM_RIGHT_ASYMMETRIC:
1847                         pd_idx = sector_div(stripe2, raid_disks);
1848                         qd_idx = pd_idx + 1;
1849                         if (pd_idx == raid_disks-1) {
1850                                 (*dd_idx)++;    /* Q D D D P */
1851                                 qd_idx = 0;
1852                         } else if (*dd_idx >= pd_idx)
1853                                 (*dd_idx) += 2; /* D D P Q D */
1854                         break;
1855                 case ALGORITHM_LEFT_SYMMETRIC:
1856                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1857                         qd_idx = (pd_idx + 1) % raid_disks;
1858                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1859                         break;
1860                 case ALGORITHM_RIGHT_SYMMETRIC:
1861                         pd_idx = sector_div(stripe2, raid_disks);
1862                         qd_idx = (pd_idx + 1) % raid_disks;
1863                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1864                         break;
1865
1866                 case ALGORITHM_PARITY_0:
1867                         pd_idx = 0;
1868                         qd_idx = 1;
1869                         (*dd_idx) += 2;
1870                         break;
1871                 case ALGORITHM_PARITY_N:
1872                         pd_idx = data_disks;
1873                         qd_idx = data_disks + 1;
1874                         break;
1875
1876                 case ALGORITHM_ROTATING_ZERO_RESTART:
1877                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1878                          * of blocks for computing Q is different.
1879                          */
1880                         pd_idx = sector_div(stripe2, raid_disks);
1881                         qd_idx = pd_idx + 1;
1882                         if (pd_idx == raid_disks-1) {
1883                                 (*dd_idx)++;    /* Q D D D P */
1884                                 qd_idx = 0;
1885                         } else if (*dd_idx >= pd_idx)
1886                                 (*dd_idx) += 2; /* D D P Q D */
1887                         ddf_layout = 1;
1888                         break;
1889
1890                 case ALGORITHM_ROTATING_N_RESTART:
1891                         /* Same a left_asymmetric, by first stripe is
1892                          * D D D P Q  rather than
1893                          * Q D D D P
1894                          */
1895                         stripe2 += 1;
1896                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1897                         qd_idx = pd_idx + 1;
1898                         if (pd_idx == raid_disks-1) {
1899                                 (*dd_idx)++;    /* Q D D D P */
1900                                 qd_idx = 0;
1901                         } else if (*dd_idx >= pd_idx)
1902                                 (*dd_idx) += 2; /* D D P Q D */
1903                         ddf_layout = 1;
1904                         break;
1905
1906                 case ALGORITHM_ROTATING_N_CONTINUE:
1907                         /* Same as left_symmetric but Q is before P */
1908                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1909                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1910                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1911                         ddf_layout = 1;
1912                         break;
1913
1914                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1915                         /* RAID5 left_asymmetric, with Q on last device */
1916                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1917                         if (*dd_idx >= pd_idx)
1918                                 (*dd_idx)++;
1919                         qd_idx = raid_disks - 1;
1920                         break;
1921
1922                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1923                         pd_idx = sector_div(stripe2, raid_disks-1);
1924                         if (*dd_idx >= pd_idx)
1925                                 (*dd_idx)++;
1926                         qd_idx = raid_disks - 1;
1927                         break;
1928
1929                 case ALGORITHM_LEFT_SYMMETRIC_6:
1930                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1931                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1932                         qd_idx = raid_disks - 1;
1933                         break;
1934
1935                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1936                         pd_idx = sector_div(stripe2, raid_disks-1);
1937                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1938                         qd_idx = raid_disks - 1;
1939                         break;
1940
1941                 case ALGORITHM_PARITY_0_6:
1942                         pd_idx = 0;
1943                         (*dd_idx)++;
1944                         qd_idx = raid_disks - 1;
1945                         break;
1946
1947                 default:
1948                         BUG();
1949                 }
1950                 break;
1951         }
1952
1953         if (sh) {
1954                 sh->pd_idx = pd_idx;
1955                 sh->qd_idx = qd_idx;
1956                 sh->ddf_layout = ddf_layout;
1957         }
1958         /*
1959          * Finally, compute the new sector number
1960          */
1961         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1962         return new_sector;
1963 }
1964
1965
1966 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1967 {
1968         struct r5conf *conf = sh->raid_conf;
1969         int raid_disks = sh->disks;
1970         int data_disks = raid_disks - conf->max_degraded;
1971         sector_t new_sector = sh->sector, check;
1972         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1973                                          : conf->chunk_sectors;
1974         int algorithm = previous ? conf->prev_algo
1975                                  : conf->algorithm;
1976         sector_t stripe;
1977         int chunk_offset;
1978         sector_t chunk_number;
1979         int dummy1, dd_idx = i;
1980         sector_t r_sector;
1981         struct stripe_head sh2;
1982
1983
1984         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1985         stripe = new_sector;
1986
1987         if (i == sh->pd_idx)
1988                 return 0;
1989         switch(conf->level) {
1990         case 4: break;
1991         case 5:
1992                 switch (algorithm) {
1993                 case ALGORITHM_LEFT_ASYMMETRIC:
1994                 case ALGORITHM_RIGHT_ASYMMETRIC:
1995                         if (i > sh->pd_idx)
1996                                 i--;
1997                         break;
1998                 case ALGORITHM_LEFT_SYMMETRIC:
1999                 case ALGORITHM_RIGHT_SYMMETRIC:
2000                         if (i < sh->pd_idx)
2001                                 i += raid_disks;
2002                         i -= (sh->pd_idx + 1);
2003                         break;
2004                 case ALGORITHM_PARITY_0:
2005                         i -= 1;
2006                         break;
2007                 case ALGORITHM_PARITY_N:
2008                         break;
2009                 default:
2010                         BUG();
2011                 }
2012                 break;
2013         case 6:
2014                 if (i == sh->qd_idx)
2015                         return 0; /* It is the Q disk */
2016                 switch (algorithm) {
2017                 case ALGORITHM_LEFT_ASYMMETRIC:
2018                 case ALGORITHM_RIGHT_ASYMMETRIC:
2019                 case ALGORITHM_ROTATING_ZERO_RESTART:
2020                 case ALGORITHM_ROTATING_N_RESTART:
2021                         if (sh->pd_idx == raid_disks-1)
2022                                 i--;    /* Q D D D P */
2023                         else if (i > sh->pd_idx)
2024                                 i -= 2; /* D D P Q D */
2025                         break;
2026                 case ALGORITHM_LEFT_SYMMETRIC:
2027                 case ALGORITHM_RIGHT_SYMMETRIC:
2028                         if (sh->pd_idx == raid_disks-1)
2029                                 i--; /* Q D D D P */
2030                         else {
2031                                 /* D D P Q D */
2032                                 if (i < sh->pd_idx)
2033                                         i += raid_disks;
2034                                 i -= (sh->pd_idx + 2);
2035                         }
2036                         break;
2037                 case ALGORITHM_PARITY_0:
2038                         i -= 2;
2039                         break;
2040                 case ALGORITHM_PARITY_N:
2041                         break;
2042                 case ALGORITHM_ROTATING_N_CONTINUE:
2043                         /* Like left_symmetric, but P is before Q */
2044                         if (sh->pd_idx == 0)
2045                                 i--;    /* P D D D Q */
2046                         else {
2047                                 /* D D Q P D */
2048                                 if (i < sh->pd_idx)
2049                                         i += raid_disks;
2050                                 i -= (sh->pd_idx + 1);
2051                         }
2052                         break;
2053                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2054                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2055                         if (i > sh->pd_idx)
2056                                 i--;
2057                         break;
2058                 case ALGORITHM_LEFT_SYMMETRIC_6:
2059                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2060                         if (i < sh->pd_idx)
2061                                 i += data_disks + 1;
2062                         i -= (sh->pd_idx + 1);
2063                         break;
2064                 case ALGORITHM_PARITY_0_6:
2065                         i -= 1;
2066                         break;
2067                 default:
2068                         BUG();
2069                 }
2070                 break;
2071         }
2072
2073         chunk_number = stripe * data_disks + i;
2074         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2075
2076         check = raid5_compute_sector(conf, r_sector,
2077                                      previous, &dummy1, &sh2);
2078         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2079                 || sh2.qd_idx != sh->qd_idx) {
2080                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2081                        mdname(conf->mddev));
2082                 return 0;
2083         }
2084         return r_sector;
2085 }
2086
2087
2088 static void
2089 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2090                          int rcw, int expand)
2091 {
2092         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2093         struct r5conf *conf = sh->raid_conf;
2094         int level = conf->level;
2095
2096         if (rcw) {
2097                 /* if we are not expanding this is a proper write request, and
2098                  * there will be bios with new data to be drained into the
2099                  * stripe cache
2100                  */
2101                 if (!expand) {
2102                         sh->reconstruct_state = reconstruct_state_drain_run;
2103                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2104                 } else
2105                         sh->reconstruct_state = reconstruct_state_run;
2106
2107                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2108
2109                 for (i = disks; i--; ) {
2110                         struct r5dev *dev = &sh->dev[i];
2111
2112                         if (dev->towrite) {
2113                                 set_bit(R5_LOCKED, &dev->flags);
2114                                 set_bit(R5_Wantdrain, &dev->flags);
2115                                 if (!expand)
2116                                         clear_bit(R5_UPTODATE, &dev->flags);
2117                                 s->locked++;
2118                         }
2119                 }
2120                 if (s->locked + conf->max_degraded == disks)
2121                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2122                                 atomic_inc(&conf->pending_full_writes);
2123         } else {
2124                 BUG_ON(level == 6);
2125                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2126                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2127
2128                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2129                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2130                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2131                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2132
2133                 for (i = disks; i--; ) {
2134                         struct r5dev *dev = &sh->dev[i];
2135                         if (i == pd_idx)
2136                                 continue;
2137
2138                         if (dev->towrite &&
2139                             (test_bit(R5_UPTODATE, &dev->flags) ||
2140                              test_bit(R5_Wantcompute, &dev->flags))) {
2141                                 set_bit(R5_Wantdrain, &dev->flags);
2142                                 set_bit(R5_LOCKED, &dev->flags);
2143                                 clear_bit(R5_UPTODATE, &dev->flags);
2144                                 s->locked++;
2145                         }
2146                 }
2147         }
2148
2149         /* keep the parity disk(s) locked while asynchronous operations
2150          * are in flight
2151          */
2152         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2153         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2154         s->locked++;
2155
2156         if (level == 6) {
2157                 int qd_idx = sh->qd_idx;
2158                 struct r5dev *dev = &sh->dev[qd_idx];
2159
2160                 set_bit(R5_LOCKED, &dev->flags);
2161                 clear_bit(R5_UPTODATE, &dev->flags);
2162                 s->locked++;
2163         }
2164
2165         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2166                 __func__, (unsigned long long)sh->sector,
2167                 s->locked, s->ops_request);
2168 }
2169
2170 /*
2171  * Each stripe/dev can have one or more bion attached.
2172  * toread/towrite point to the first in a chain.
2173  * The bi_next chain must be in order.
2174  */
2175 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2176 {
2177         struct bio **bip;
2178         struct r5conf *conf = sh->raid_conf;
2179         int firstwrite=0;
2180
2181         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2182                 (unsigned long long)bi->bi_sector,
2183                 (unsigned long long)sh->sector);
2184
2185
2186         spin_lock_irq(&conf->device_lock);
2187         if (forwrite) {
2188                 bip = &sh->dev[dd_idx].towrite;
2189                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2190                         firstwrite = 1;
2191         } else
2192                 bip = &sh->dev[dd_idx].toread;
2193         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2194                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2195                         goto overlap;
2196                 bip = & (*bip)->bi_next;
2197         }
2198         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2199                 goto overlap;
2200
2201         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2202         if (*bip)
2203                 bi->bi_next = *bip;
2204         *bip = bi;
2205         bi->bi_phys_segments++;
2206
2207         if (forwrite) {
2208                 /* check if page is covered */
2209                 sector_t sector = sh->dev[dd_idx].sector;
2210                 for (bi=sh->dev[dd_idx].towrite;
2211                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2212                              bi && bi->bi_sector <= sector;
2213                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2214                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2215                                 sector = bi->bi_sector + (bi->bi_size>>9);
2216                 }
2217                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2218                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2219         }
2220         spin_unlock_irq(&conf->device_lock);
2221
2222         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2223                 (unsigned long long)(*bip)->bi_sector,
2224                 (unsigned long long)sh->sector, dd_idx);
2225
2226         if (conf->mddev->bitmap && firstwrite) {
2227                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2228                                   STRIPE_SECTORS, 0);
2229                 sh->bm_seq = conf->seq_flush+1;
2230                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2231         }
2232         return 1;
2233
2234  overlap:
2235         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2236         spin_unlock_irq(&conf->device_lock);
2237         return 0;
2238 }
2239
2240 static void end_reshape(struct r5conf *conf);
2241
2242 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2243                             struct stripe_head *sh)
2244 {
2245         int sectors_per_chunk =
2246                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2247         int dd_idx;
2248         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2249         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2250
2251         raid5_compute_sector(conf,
2252                              stripe * (disks - conf->max_degraded)
2253                              *sectors_per_chunk + chunk_offset,
2254                              previous,
2255                              &dd_idx, sh);
2256 }
2257
2258 static void
2259 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2260                                 struct stripe_head_state *s, int disks,
2261                                 struct bio **return_bi)
2262 {
2263         int i;
2264         for (i = disks; i--; ) {
2265                 struct bio *bi;
2266                 int bitmap_end = 0;
2267
2268                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2269                         struct md_rdev *rdev;
2270                         rcu_read_lock();
2271                         rdev = rcu_dereference(conf->disks[i].rdev);
2272                         if (rdev && test_bit(In_sync, &rdev->flags))
2273                                 atomic_inc(&rdev->nr_pending);
2274                         else
2275                                 rdev = NULL;
2276                         rcu_read_unlock();
2277                         if (rdev) {
2278                                 if (!rdev_set_badblocks(
2279                                             rdev,
2280                                             sh->sector,
2281                                             STRIPE_SECTORS, 0))
2282                                         md_error(conf->mddev, rdev);
2283                                 rdev_dec_pending(rdev, conf->mddev);
2284                         }
2285                 }
2286                 spin_lock_irq(&conf->device_lock);
2287                 /* fail all writes first */
2288                 bi = sh->dev[i].towrite;
2289                 sh->dev[i].towrite = NULL;
2290                 if (bi) {
2291                         s->to_write--;
2292                         bitmap_end = 1;
2293                 }
2294
2295                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2296                         wake_up(&conf->wait_for_overlap);
2297
2298                 while (bi && bi->bi_sector <
2299                         sh->dev[i].sector + STRIPE_SECTORS) {
2300                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2301                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2302                         if (!raid5_dec_bi_phys_segments(bi)) {
2303                                 md_write_end(conf->mddev);
2304                                 bi->bi_next = *return_bi;
2305                                 *return_bi = bi;
2306                         }
2307                         bi = nextbi;
2308                 }
2309                 /* and fail all 'written' */
2310                 bi = sh->dev[i].written;
2311                 sh->dev[i].written = NULL;
2312                 if (bi) bitmap_end = 1;
2313                 while (bi && bi->bi_sector <
2314                        sh->dev[i].sector + STRIPE_SECTORS) {
2315                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2316                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2317                         if (!raid5_dec_bi_phys_segments(bi)) {
2318                                 md_write_end(conf->mddev);
2319                                 bi->bi_next = *return_bi;
2320                                 *return_bi = bi;
2321                         }
2322                         bi = bi2;
2323                 }
2324
2325                 /* fail any reads if this device is non-operational and
2326                  * the data has not reached the cache yet.
2327                  */
2328                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2329                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2330                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2331                         bi = sh->dev[i].toread;
2332                         sh->dev[i].toread = NULL;
2333                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2334                                 wake_up(&conf->wait_for_overlap);
2335                         if (bi) s->to_read--;
2336                         while (bi && bi->bi_sector <
2337                                sh->dev[i].sector + STRIPE_SECTORS) {
2338                                 struct bio *nextbi =
2339                                         r5_next_bio(bi, sh->dev[i].sector);
2340                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2341                                 if (!raid5_dec_bi_phys_segments(bi)) {
2342                                         bi->bi_next = *return_bi;
2343                                         *return_bi = bi;
2344                                 }
2345                                 bi = nextbi;
2346                         }
2347                 }
2348                 spin_unlock_irq(&conf->device_lock);
2349                 if (bitmap_end)
2350                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2351                                         STRIPE_SECTORS, 0, 0);
2352                 /* If we were in the middle of a write the parity block might
2353                  * still be locked - so just clear all R5_LOCKED flags
2354                  */
2355                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2356         }
2357
2358         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2359                 if (atomic_dec_and_test(&conf->pending_full_writes))
2360                         md_wakeup_thread(conf->mddev->thread);
2361 }
2362
2363 static void
2364 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2365                    struct stripe_head_state *s)
2366 {
2367         int abort = 0;
2368         int i;
2369
2370         md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2371         clear_bit(STRIPE_SYNCING, &sh->state);
2372         s->syncing = 0;
2373         /* There is nothing more to do for sync/check/repair.
2374          * For recover we need to record a bad block on all
2375          * non-sync devices, or abort the recovery
2376          */
2377         if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2378                 return;
2379         /* During recovery devices cannot be removed, so locking and
2380          * refcounting of rdevs is not needed
2381          */
2382         for (i = 0; i < conf->raid_disks; i++) {
2383                 struct md_rdev *rdev = conf->disks[i].rdev;
2384                 if (!rdev
2385                     || test_bit(Faulty, &rdev->flags)
2386                     || test_bit(In_sync, &rdev->flags))
2387                         continue;
2388                 if (!rdev_set_badblocks(rdev, sh->sector,
2389                                         STRIPE_SECTORS, 0))
2390                         abort = 1;
2391         }
2392         if (abort) {
2393                 conf->recovery_disabled = conf->mddev->recovery_disabled;
2394                 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2395         }
2396 }
2397
2398 /* fetch_block - checks the given member device to see if its data needs
2399  * to be read or computed to satisfy a request.
2400  *
2401  * Returns 1 when no more member devices need to be checked, otherwise returns
2402  * 0 to tell the loop in handle_stripe_fill to continue
2403  */
2404 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2405                        int disk_idx, int disks)
2406 {
2407         struct r5dev *dev = &sh->dev[disk_idx];
2408         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2409                                   &sh->dev[s->failed_num[1]] };
2410
2411         /* is the data in this block needed, and can we get it? */
2412         if (!test_bit(R5_LOCKED, &dev->flags) &&
2413             !test_bit(R5_UPTODATE, &dev->flags) &&
2414             (dev->toread ||
2415              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2416              s->syncing || s->expanding ||
2417              (s->failed >= 1 && fdev[0]->toread) ||
2418              (s->failed >= 2 && fdev[1]->toread) ||
2419              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2420               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2421              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2422                 /* we would like to get this block, possibly by computing it,
2423                  * otherwise read it if the backing disk is insync
2424                  */
2425                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2426                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2427                 if ((s->uptodate == disks - 1) &&
2428                     (s->failed && (disk_idx == s->failed_num[0] ||
2429                                    disk_idx == s->failed_num[1]))) {
2430                         /* have disk failed, and we're requested to fetch it;
2431                          * do compute it
2432                          */
2433                         pr_debug("Computing stripe %llu block %d\n",
2434                                (unsigned long long)sh->sector, disk_idx);
2435                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2436                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2437                         set_bit(R5_Wantcompute, &dev->flags);
2438                         sh->ops.target = disk_idx;
2439                         sh->ops.target2 = -1; /* no 2nd target */
2440                         s->req_compute = 1;
2441                         /* Careful: from this point on 'uptodate' is in the eye
2442                          * of raid_run_ops which services 'compute' operations
2443                          * before writes. R5_Wantcompute flags a block that will
2444                          * be R5_UPTODATE by the time it is needed for a
2445                          * subsequent operation.
2446                          */
2447                         s->uptodate++;
2448                         return 1;
2449                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2450                         /* Computing 2-failure is *very* expensive; only
2451                          * do it if failed >= 2
2452                          */
2453                         int other;
2454                         for (other = disks; other--; ) {
2455                                 if (other == disk_idx)
2456                                         continue;
2457                                 if (!test_bit(R5_UPTODATE,
2458                                       &sh->dev[other].flags))
2459                                         break;
2460                         }
2461                         BUG_ON(other < 0);
2462                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2463                                (unsigned long long)sh->sector,
2464                                disk_idx, other);
2465                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2466                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2467                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2468                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2469                         sh->ops.target = disk_idx;
2470                         sh->ops.target2 = other;
2471                         s->uptodate += 2;
2472                         s->req_compute = 1;
2473                         return 1;
2474                 } else if (test_bit(R5_Insync, &dev->flags)) {
2475                         set_bit(R5_LOCKED, &dev->flags);
2476                         set_bit(R5_Wantread, &dev->flags);
2477                         s->locked++;
2478                         pr_debug("Reading block %d (sync=%d)\n",
2479                                 disk_idx, s->syncing);
2480                 }
2481         }
2482
2483         return 0;
2484 }
2485
2486 /**
2487  * handle_stripe_fill - read or compute data to satisfy pending requests.
2488  */
2489 static void handle_stripe_fill(struct stripe_head *sh,
2490                                struct stripe_head_state *s,
2491                                int disks)
2492 {
2493         int i;
2494
2495         /* look for blocks to read/compute, skip this if a compute
2496          * is already in flight, or if the stripe contents are in the
2497          * midst of changing due to a write
2498          */
2499         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2500             !sh->reconstruct_state)
2501                 for (i = disks; i--; )
2502                         if (fetch_block(sh, s, i, disks))
2503                                 break;
2504         set_bit(STRIPE_HANDLE, &sh->state);
2505 }
2506
2507
2508 /* handle_stripe_clean_event
2509  * any written block on an uptodate or failed drive can be returned.
2510  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2511  * never LOCKED, so we don't need to test 'failed' directly.
2512  */
2513 static void handle_stripe_clean_event(struct r5conf *conf,
2514         struct stripe_head *sh, int disks, struct bio **return_bi)
2515 {
2516         int i;
2517         struct r5dev *dev;
2518
2519         for (i = disks; i--; )
2520                 if (sh->dev[i].written) {
2521                         dev = &sh->dev[i];
2522                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2523                                 test_bit(R5_UPTODATE, &dev->flags)) {
2524                                 /* We can return any write requests */
2525                                 struct bio *wbi, *wbi2;
2526                                 int bitmap_end = 0;
2527                                 pr_debug("Return write for disc %d\n", i);
2528                                 spin_lock_irq(&conf->device_lock);
2529                                 wbi = dev->written;
2530                                 dev->written = NULL;
2531                                 while (wbi && wbi->bi_sector <
2532                                         dev->sector + STRIPE_SECTORS) {
2533                                         wbi2 = r5_next_bio(wbi, dev->sector);
2534                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2535                                                 md_write_end(conf->mddev);
2536                                                 wbi->bi_next = *return_bi;
2537                                                 *return_bi = wbi;
2538                                         }
2539                                         wbi = wbi2;
2540                                 }
2541                                 if (dev->towrite == NULL)
2542                                         bitmap_end = 1;
2543                                 spin_unlock_irq(&conf->device_lock);
2544                                 if (bitmap_end)
2545                                         bitmap_endwrite(conf->mddev->bitmap,
2546                                                         sh->sector,
2547                                                         STRIPE_SECTORS,
2548                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2549                                                         0);
2550                         }
2551                 }
2552
2553         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2554                 if (atomic_dec_and_test(&conf->pending_full_writes))
2555                         md_wakeup_thread(conf->mddev->thread);
2556 }
2557
2558 static void handle_stripe_dirtying(struct r5conf *conf,
2559                                    struct stripe_head *sh,
2560                                    struct stripe_head_state *s,
2561                                    int disks)
2562 {
2563         int rmw = 0, rcw = 0, i;
2564         if (conf->max_degraded == 2) {
2565                 /* RAID6 requires 'rcw' in current implementation
2566                  * Calculate the real rcw later - for now fake it
2567                  * look like rcw is cheaper
2568                  */
2569                 rcw = 1; rmw = 2;
2570         } else for (i = disks; i--; ) {
2571                 /* would I have to read this buffer for read_modify_write */
2572                 struct r5dev *dev = &sh->dev[i];
2573                 if ((dev->towrite || i == sh->pd_idx) &&
2574                     !test_bit(R5_LOCKED, &dev->flags) &&
2575                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2576                       test_bit(R5_Wantcompute, &dev->flags))) {
2577                         if (test_bit(R5_Insync, &dev->flags))
2578                                 rmw++;
2579                         else
2580                                 rmw += 2*disks;  /* cannot read it */
2581                 }
2582                 /* Would I have to read this buffer for reconstruct_write */
2583                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2584                     !test_bit(R5_LOCKED, &dev->flags) &&
2585                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2586                     test_bit(R5_Wantcompute, &dev->flags))) {
2587                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2588                         else
2589                                 rcw += 2*disks;
2590                 }
2591         }
2592         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2593                 (unsigned long long)sh->sector, rmw, rcw);
2594         set_bit(STRIPE_HANDLE, &sh->state);
2595         if (rmw < rcw && rmw > 0)
2596                 /* prefer read-modify-write, but need to get some data */
2597                 for (i = disks; i--; ) {
2598                         struct r5dev *dev = &sh->dev[i];
2599                         if ((dev->towrite || i == sh->pd_idx) &&
2600                             !test_bit(R5_LOCKED, &dev->flags) &&
2601                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2602                             test_bit(R5_Wantcompute, &dev->flags)) &&
2603                             test_bit(R5_Insync, &dev->flags)) {
2604                                 if (
2605                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2606                                         pr_debug("Read_old block "
2607                                                 "%d for r-m-w\n", i);
2608                                         set_bit(R5_LOCKED, &dev->flags);
2609                                         set_bit(R5_Wantread, &dev->flags);
2610                                         s->locked++;
2611                                 } else {
2612                                         set_bit(STRIPE_DELAYED, &sh->state);
2613                                         set_bit(STRIPE_HANDLE, &sh->state);
2614                                 }
2615                         }
2616                 }
2617         if (rcw <= rmw && rcw > 0) {
2618                 /* want reconstruct write, but need to get some data */
2619                 rcw = 0;
2620                 for (i = disks; i--; ) {
2621                         struct r5dev *dev = &sh->dev[i];
2622                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2623                             i != sh->pd_idx && i != sh->qd_idx &&
2624                             !test_bit(R5_LOCKED, &dev->flags) &&
2625                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2626                               test_bit(R5_Wantcompute, &dev->flags))) {
2627                                 rcw++;
2628                                 if (!test_bit(R5_Insync, &dev->flags))
2629                                         continue; /* it's a failed drive */
2630                                 if (
2631                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2632                                         pr_debug("Read_old block "
2633                                                 "%d for Reconstruct\n", i);
2634                                         set_bit(R5_LOCKED, &dev->flags);
2635                                         set_bit(R5_Wantread, &dev->flags);
2636                                         s->locked++;
2637                                 } else {
2638                                         set_bit(STRIPE_DELAYED, &sh->state);
2639                                         set_bit(STRIPE_HANDLE, &sh->state);
2640                                 }
2641                         }
2642                 }
2643         }
2644         /* now if nothing is locked, and if we have enough data,
2645          * we can start a write request
2646          */
2647         /* since handle_stripe can be called at any time we need to handle the
2648          * case where a compute block operation has been submitted and then a
2649          * subsequent call wants to start a write request.  raid_run_ops only
2650          * handles the case where compute block and reconstruct are requested
2651          * simultaneously.  If this is not the case then new writes need to be
2652          * held off until the compute completes.
2653          */
2654         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2655             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2656             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2657                 schedule_reconstruction(sh, s, rcw == 0, 0);
2658 }
2659
2660 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2661                                 struct stripe_head_state *s, int disks)
2662 {
2663         struct r5dev *dev = NULL;
2664
2665         set_bit(STRIPE_HANDLE, &sh->state);
2666
2667         switch (sh->check_state) {
2668         case check_state_idle:
2669                 /* start a new check operation if there are no failures */
2670                 if (s->failed == 0) {
2671                         BUG_ON(s->uptodate != disks);
2672                         sh->check_state = check_state_run;
2673                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2674                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2675                         s->uptodate--;
2676                         break;
2677                 }
2678                 dev = &sh->dev[s->failed_num[0]];
2679                 /* fall through */
2680         case check_state_compute_result:
2681                 sh->check_state = check_state_idle;
2682                 if (!dev)
2683                         dev = &sh->dev[sh->pd_idx];
2684
2685                 /* check that a write has not made the stripe insync */
2686                 if (test_bit(STRIPE_INSYNC, &sh->state))
2687                         break;
2688
2689                 /* either failed parity check, or recovery is happening */
2690                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2691                 BUG_ON(s->uptodate != disks);
2692
2693                 set_bit(R5_LOCKED, &dev->flags);
2694                 s->locked++;
2695                 set_bit(R5_Wantwrite, &dev->flags);
2696
2697                 clear_bit(STRIPE_DEGRADED, &sh->state);
2698                 set_bit(STRIPE_INSYNC, &sh->state);
2699                 break;
2700         case check_state_run:
2701                 break; /* we will be called again upon completion */
2702         case check_state_check_result:
2703                 sh->check_state = check_state_idle;
2704
2705                 /* if a failure occurred during the check operation, leave
2706                  * STRIPE_INSYNC not set and let the stripe be handled again
2707                  */
2708                 if (s->failed)
2709                         break;
2710
2711                 /* handle a successful check operation, if parity is correct
2712                  * we are done.  Otherwise update the mismatch count and repair
2713                  * parity if !MD_RECOVERY_CHECK
2714                  */
2715                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2716                         /* parity is correct (on disc,
2717                          * not in buffer any more)
2718                          */
2719                         set_bit(STRIPE_INSYNC, &sh->state);
2720                 else {
2721                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2722                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2723                                 /* don't try to repair!! */
2724                                 set_bit(STRIPE_INSYNC, &sh->state);
2725                         else {
2726                                 sh->check_state = check_state_compute_run;
2727                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2728                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2729                                 set_bit(R5_Wantcompute,
2730                                         &sh->dev[sh->pd_idx].flags);
2731                                 sh->ops.target = sh->pd_idx;
2732                                 sh->ops.target2 = -1;
2733                                 s->uptodate++;
2734                         }
2735                 }
2736                 break;
2737         case check_state_compute_run:
2738                 break;
2739         default:
2740                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2741                        __func__, sh->check_state,
2742                        (unsigned long long) sh->sector);
2743                 BUG();
2744         }
2745 }
2746
2747
2748 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2749                                   struct stripe_head_state *s,
2750                                   int disks)
2751 {
2752         int pd_idx = sh->pd_idx;
2753         int qd_idx = sh->qd_idx;
2754         struct r5dev *dev;
2755
2756         set_bit(STRIPE_HANDLE, &sh->state);
2757
2758         BUG_ON(s->failed > 2);
2759
2760         /* Want to check and possibly repair P and Q.
2761          * However there could be one 'failed' device, in which
2762          * case we can only check one of them, possibly using the
2763          * other to generate missing data
2764          */
2765
2766         switch (sh->check_state) {
2767         case check_state_idle:
2768                 /* start a new check operation if there are < 2 failures */
2769                 if (s->failed == s->q_failed) {
2770                         /* The only possible failed device holds Q, so it
2771                          * makes sense to check P (If anything else were failed,
2772                          * we would have used P to recreate it).
2773                          */
2774                         sh->check_state = check_state_run;
2775                 }
2776                 if (!s->q_failed && s->failed < 2) {
2777                         /* Q is not failed, and we didn't use it to generate
2778                          * anything, so it makes sense to check it
2779                          */
2780                         if (sh->check_state == check_state_run)
2781                                 sh->check_state = check_state_run_pq;
2782                         else
2783                                 sh->check_state = check_state_run_q;
2784                 }
2785
2786                 /* discard potentially stale zero_sum_result */
2787                 sh->ops.zero_sum_result = 0;
2788
2789                 if (sh->check_state == check_state_run) {
2790                         /* async_xor_zero_sum destroys the contents of P */
2791                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2792                         s->uptodate--;
2793                 }
2794                 if (sh->check_state >= check_state_run &&
2795                     sh->check_state <= check_state_run_pq) {
2796                         /* async_syndrome_zero_sum preserves P and Q, so
2797                          * no need to mark them !uptodate here
2798                          */
2799                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2800                         break;
2801                 }
2802
2803                 /* we have 2-disk failure */
2804                 BUG_ON(s->failed != 2);
2805                 /* fall through */
2806         case check_state_compute_result:
2807                 sh->check_state = check_state_idle;
2808
2809                 /* check that a write has not made the stripe insync */
2810                 if (test_bit(STRIPE_INSYNC, &sh->state))
2811                         break;
2812
2813                 /* now write out any block on a failed drive,
2814                  * or P or Q if they were recomputed
2815                  */
2816                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2817                 if (s->failed == 2) {
2818                         dev = &sh->dev[s->failed_num[1]];
2819                         s->locked++;
2820                         set_bit(R5_LOCKED, &dev->flags);
2821                         set_bit(R5_Wantwrite, &dev->flags);
2822                 }
2823                 if (s->failed >= 1) {
2824                         dev = &sh->dev[s->failed_num[0]];
2825                         s->locked++;
2826                         set_bit(R5_LOCKED, &dev->flags);
2827                         set_bit(R5_Wantwrite, &dev->flags);
2828                 }
2829                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2830                         dev = &sh->dev[pd_idx];
2831                         s->locked++;
2832                         set_bit(R5_LOCKED, &dev->flags);
2833                         set_bit(R5_Wantwrite, &dev->flags);
2834                 }
2835                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2836                         dev = &sh->dev[qd_idx];
2837                         s->locked++;
2838                         set_bit(R5_LOCKED, &dev->flags);
2839                         set_bit(R5_Wantwrite, &dev->flags);
2840                 }
2841                 clear_bit(STRIPE_DEGRADED, &sh->state);
2842
2843                 set_bit(STRIPE_INSYNC, &sh->state);
2844                 break;
2845         case check_state_run:
2846         case check_state_run_q:
2847         case check_state_run_pq:
2848                 break; /* we will be called again upon completion */
2849         case check_state_check_result:
2850                 sh->check_state = check_state_idle;
2851
2852                 /* handle a successful check operation, if parity is correct
2853                  * we are done.  Otherwise update the mismatch count and repair
2854                  * parity if !MD_RECOVERY_CHECK
2855                  */
2856                 if (sh->ops.zero_sum_result == 0) {
2857                         /* both parities are correct */
2858                         if (!s->failed)
2859                                 set_bit(STRIPE_INSYNC, &sh->state);
2860                         else {
2861                                 /* in contrast to the raid5 case we can validate
2862                                  * parity, but still have a failure to write
2863                                  * back
2864                                  */
2865                                 sh->check_state = check_state_compute_result;
2866                                 /* Returning at this point means that we may go
2867                                  * off and bring p and/or q uptodate again so
2868                                  * we make sure to check zero_sum_result again
2869                                  * to verify if p or q need writeback
2870                                  */
2871                         }
2872                 } else {
2873                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2874                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2875                                 /* don't try to repair!! */
2876                                 set_bit(STRIPE_INSYNC, &sh->state);
2877                         else {
2878                                 int *target = &sh->ops.target;
2879
2880                                 sh->ops.target = -1;
2881                                 sh->ops.target2 = -1;
2882                                 sh->check_state = check_state_compute_run;
2883                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2884                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2885                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2886                                         set_bit(R5_Wantcompute,
2887                                                 &sh->dev[pd_idx].flags);
2888                                         *target = pd_idx;
2889                                         target = &sh->ops.target2;
2890                                         s->uptodate++;
2891                                 }
2892                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2893                                         set_bit(R5_Wantcompute,
2894                                                 &sh->dev[qd_idx].flags);
2895                                         *target = qd_idx;
2896                                         s->uptodate++;
2897                                 }
2898                         }
2899                 }
2900                 break;
2901         case check_state_compute_run:
2902                 break;
2903         default:
2904                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2905                        __func__, sh->check_state,
2906                        (unsigned long long) sh->sector);
2907                 BUG();
2908         }
2909 }
2910
2911 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
2912 {
2913         int i;
2914
2915         /* We have read all the blocks in this stripe and now we need to
2916          * copy some of them into a target stripe for expand.
2917          */
2918         struct dma_async_tx_descriptor *tx = NULL;
2919         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2920         for (i = 0; i < sh->disks; i++)
2921                 if (i != sh->pd_idx && i != sh->qd_idx) {
2922                         int dd_idx, j;
2923                         struct stripe_head *sh2;
2924                         struct async_submit_ctl submit;
2925
2926                         sector_t bn = compute_blocknr(sh, i, 1);
2927                         sector_t s = raid5_compute_sector(conf, bn, 0,
2928                                                           &dd_idx, NULL);
2929                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2930                         if (sh2 == NULL)
2931                                 /* so far only the early blocks of this stripe
2932                                  * have been requested.  When later blocks
2933                                  * get requested, we will try again
2934                                  */
2935                                 continue;
2936                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2937                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2938                                 /* must have already done this block */
2939                                 release_stripe(sh2);
2940                                 continue;
2941                         }
2942
2943                         /* place all the copies on one channel */
2944                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2945                         tx = async_memcpy(sh2->dev[dd_idx].page,
2946                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2947                                           &submit);
2948
2949                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2950                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2951                         for (j = 0; j < conf->raid_disks; j++)
2952                                 if (j != sh2->pd_idx &&
2953                                     j != sh2->qd_idx &&
2954                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2955                                         break;
2956                         if (j == conf->raid_disks) {
2957                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2958                                 set_bit(STRIPE_HANDLE, &sh2->state);
2959                         }
2960                         release_stripe(sh2);
2961
2962                 }
2963         /* done submitting copies, wait for them to complete */
2964         if (tx) {
2965                 async_tx_ack(tx);
2966                 dma_wait_for_async_tx(tx);
2967         }
2968 }
2969
2970
2971 /*
2972  * handle_stripe - do things to a stripe.
2973  *
2974  * We lock the stripe and then examine the state of various bits
2975  * to see what needs to be done.
2976  * Possible results:
2977  *    return some read request which now have data
2978  *    return some write requests which are safely on disc
2979  *    schedule a read on some buffers
2980  *    schedule a write of some buffers
2981  *    return confirmation of parity correctness
2982  *
2983  * buffers are taken off read_list or write_list, and bh_cache buffers
2984  * get BH_Lock set before the stripe lock is released.
2985  *
2986  */
2987
2988 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2989 {
2990         struct r5conf *conf = sh->raid_conf;
2991         int disks = sh->disks;
2992         struct r5dev *dev;
2993         int i;
2994
2995         memset(s, 0, sizeof(*s));
2996
2997         s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2998         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2999         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3000         s->failed_num[0] = -1;
3001         s->failed_num[1] = -1;
3002
3003         /* Now to look around and see what can be done */
3004         rcu_read_lock();
3005         spin_lock_irq(&conf->device_lock);
3006         for (i=disks; i--; ) {
3007                 struct md_rdev *rdev;
3008                 sector_t first_bad;
3009                 int bad_sectors;
3010                 int is_bad = 0;
3011
3012                 dev = &sh->dev[i];
3013
3014                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3015                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3016                 /* maybe we can reply to a read
3017                  *
3018                  * new wantfill requests are only permitted while
3019                  * ops_complete_biofill is guaranteed to be inactive
3020                  */
3021                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3022                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3023                         set_bit(R5_Wantfill, &dev->flags);
3024
3025                 /* now count some things */
3026                 if (test_bit(R5_LOCKED, &dev->flags))
3027                         s->locked++;
3028                 if (test_bit(R5_UPTODATE, &dev->flags))
3029                         s->uptodate++;
3030                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3031                         s->compute++;
3032                         BUG_ON(s->compute > 2);
3033                 }
3034
3035                 if (test_bit(R5_Wantfill, &dev->flags))
3036                         s->to_fill++;
3037                 else if (dev->toread)
3038                         s->to_read++;
3039                 if (dev->towrite) {
3040                         s->to_write++;
3041                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3042                                 s->non_overwrite++;
3043                 }
3044                 if (dev->written)
3045                         s->written++;
3046                 rdev = rcu_dereference(conf->disks[i].rdev);
3047                 if (rdev && test_bit(Faulty, &rdev->flags))
3048                         rdev = NULL;
3049                 if (rdev) {
3050                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3051                                              &first_bad, &bad_sectors);
3052                         if (s->blocked_rdev == NULL
3053                             && (test_bit(Blocked, &rdev->flags)
3054                                 || is_bad < 0)) {
3055                                 if (is_bad < 0)
3056                                         set_bit(BlockedBadBlocks,
3057                                                 &rdev->flags);
3058                                 s->blocked_rdev = rdev;
3059                                 atomic_inc(&rdev->nr_pending);
3060                         }
3061                 }
3062                 clear_bit(R5_Insync, &dev->flags);
3063                 if (!rdev)
3064                         /* Not in-sync */;
3065                 else if (is_bad) {
3066                         /* also not in-sync */
3067                         if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3068                                 /* treat as in-sync, but with a read error
3069                                  * which we can now try to correct
3070                                  */
3071                                 set_bit(R5_Insync, &dev->flags);
3072                                 set_bit(R5_ReadError, &dev->flags);
3073                         }
3074                 } else if (test_bit(In_sync, &rdev->flags))
3075                         set_bit(R5_Insync, &dev->flags);
3076                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3077                         /* in sync if before recovery_offset */
3078                         set_bit(R5_Insync, &dev->flags);
3079                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3080                          test_bit(R5_Expanded, &dev->flags))
3081                         /* If we've reshaped into here, we assume it is Insync.
3082                          * We will shortly update recovery_offset to make
3083                          * it official.
3084                          */
3085                         set_bit(R5_Insync, &dev->flags);
3086
3087                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3088                         clear_bit(R5_Insync, &dev->flags);
3089                         if (!test_bit(Faulty, &rdev->flags)) {
3090                                 s->handle_bad_blocks = 1;
3091                                 atomic_inc(&rdev->nr_pending);
3092                         } else
3093                                 clear_bit(R5_WriteError, &dev->flags);
3094                 }
3095                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3096                         if (!test_bit(Faulty, &rdev->flags)) {
3097                                 s->handle_bad_blocks = 1;
3098                                 atomic_inc(&rdev->nr_pending);
3099                         } else
3100                                 clear_bit(R5_MadeGood, &dev->flags);
3101                 }
3102                 if (!test_bit(R5_Insync, &dev->flags)) {
3103                         /* The ReadError flag will just be confusing now */
3104                         clear_bit(R5_ReadError, &dev->flags);
3105                         clear_bit(R5_ReWrite, &dev->flags);
3106                 }
3107                 if (test_bit(R5_ReadError, &dev->flags))
3108                         clear_bit(R5_Insync, &dev->flags);
3109                 if (!test_bit(R5_Insync, &dev->flags)) {
3110                         if (s->failed < 2)
3111                                 s->failed_num[s->failed] = i;
3112                         s->failed++;
3113                 }
3114         }
3115         spin_unlock_irq(&conf->device_lock);
3116         rcu_read_unlock();
3117 }
3118
3119 static void handle_stripe(struct stripe_head *sh)
3120 {
3121         struct stripe_head_state s;
3122         struct r5conf *conf = sh->raid_conf;
3123         int i;
3124         int prexor;
3125         int disks = sh->disks;
3126         struct r5dev *pdev, *qdev;
3127
3128         clear_bit(STRIPE_HANDLE, &sh->state);
3129         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3130                 /* already being handled, ensure it gets handled
3131                  * again when current action finishes */
3132                 set_bit(STRIPE_HANDLE, &sh->state);
3133                 return;
3134         }
3135
3136         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3137                 set_bit(STRIPE_SYNCING, &sh->state);
3138                 clear_bit(STRIPE_INSYNC, &sh->state);
3139         }
3140         clear_bit(STRIPE_DELAYED, &sh->state);
3141
3142         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3143                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3144                (unsigned long long)sh->sector, sh->state,
3145                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3146                sh->check_state, sh->reconstruct_state);
3147
3148         analyse_stripe(sh, &s);
3149
3150         if (s.handle_bad_blocks) {
3151                 set_bit(STRIPE_HANDLE, &sh->state);
3152                 goto finish;
3153         }
3154
3155         if (unlikely(s.blocked_rdev)) {
3156                 if (s.syncing || s.expanding || s.expanded ||
3157                     s.to_write || s.written) {
3158                         set_bit(STRIPE_HANDLE, &sh->state);
3159                         goto finish;
3160                 }
3161                 /* There is nothing for the blocked_rdev to block */
3162                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3163                 s.blocked_rdev = NULL;
3164         }
3165
3166         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3167                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3168                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3169         }
3170
3171         pr_debug("locked=%d uptodate=%d to_read=%d"
3172                " to_write=%d failed=%d failed_num=%d,%d\n",
3173                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3174                s.failed_num[0], s.failed_num[1]);
3175         /* check if the array has lost more than max_degraded devices and,
3176          * if so, some requests might need to be failed.
3177          */
3178         if (s.failed > conf->max_degraded) {
3179                 sh->check_state = 0;
3180                 sh->reconstruct_state = 0;
3181                 if (s.to_read+s.to_write+s.written)
3182                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3183                 if (s.syncing)
3184                         handle_failed_sync(conf, sh, &s);
3185         }
3186
3187         /*
3188          * might be able to return some write requests if the parity blocks
3189          * are safe, or on a failed drive
3190          */
3191         pdev = &sh->dev[sh->pd_idx];
3192         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3193                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3194         qdev = &sh->dev[sh->qd_idx];
3195         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3196                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3197                 || conf->level < 6;
3198
3199         if (s.written &&
3200             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3201                              && !test_bit(R5_LOCKED, &pdev->flags)
3202                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3203             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3204                              && !test_bit(R5_LOCKED, &qdev->flags)
3205                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3206                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3207
3208         /* Now we might consider reading some blocks, either to check/generate
3209          * parity, or to satisfy requests
3210          * or to load a block that is being partially written.
3211          */
3212         if (s.to_read || s.non_overwrite
3213             || (conf->level == 6 && s.to_write && s.failed)
3214             || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3215                 handle_stripe_fill(sh, &s, disks);
3216
3217         /* Now we check to see if any write operations have recently
3218          * completed
3219          */
3220         prexor = 0;
3221         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3222                 prexor = 1;
3223         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3224             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3225                 sh->reconstruct_state = reconstruct_state_idle;
3226
3227                 /* All the 'written' buffers and the parity block are ready to
3228                  * be written back to disk
3229                  */
3230                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3231                 BUG_ON(sh->qd_idx >= 0 &&
3232                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3233                 for (i = disks; i--; ) {
3234                         struct r5dev *dev = &sh->dev[i];
3235                         if (test_bit(R5_LOCKED, &dev->flags) &&
3236                                 (i == sh->pd_idx || i == sh->qd_idx ||
3237                                  dev->written)) {
3238                                 pr_debug("Writing block %d\n", i);
3239                                 set_bit(R5_Wantwrite, &dev->flags);
3240                                 if (prexor)
3241                                         continue;
3242                                 if (!test_bit(R5_Insync, &dev->flags) ||
3243                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3244                                      s.failed == 0))
3245                                         set_bit(STRIPE_INSYNC, &sh->state);
3246                         }
3247                 }
3248                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3249                         s.dec_preread_active = 1;
3250         }
3251
3252         /* Now to consider new write requests and what else, if anything
3253          * should be read.  We do not handle new writes when:
3254          * 1/ A 'write' operation (copy+xor) is already in flight.
3255          * 2/ A 'check' operation is in flight, as it may clobber the parity
3256          *    block.
3257          */
3258         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3259                 handle_stripe_dirtying(conf, sh, &s, disks);
3260
3261         /* maybe we need to check and possibly fix the parity for this stripe
3262          * Any reads will already have been scheduled, so we just see if enough
3263          * data is available.  The parity check is held off while parity
3264          * dependent operations are in flight.
3265          */
3266         if (sh->check_state ||
3267             (s.syncing && s.locked == 0 &&
3268              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3269              !test_bit(STRIPE_INSYNC, &sh->state))) {
3270                 if (conf->level == 6)
3271                         handle_parity_checks6(conf, sh, &s, disks);
3272                 else
3273                         handle_parity_checks5(conf, sh, &s, disks);
3274         }
3275
3276         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3277                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3278                 clear_bit(STRIPE_SYNCING, &sh->state);
3279         }
3280
3281         /* If the failed drives are just a ReadError, then we might need
3282          * to progress the repair/check process
3283          */
3284         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3285                 for (i = 0; i < s.failed; i++) {
3286                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3287                         if (test_bit(R5_ReadError, &dev->flags)
3288                             && !test_bit(R5_LOCKED, &dev->flags)
3289                             && test_bit(R5_UPTODATE, &dev->flags)
3290                                 ) {
3291                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3292                                         set_bit(R5_Wantwrite, &dev->flags);
3293                                         set_bit(R5_ReWrite, &dev->flags);
3294                                         set_bit(R5_LOCKED, &dev->flags);
3295                                         s.locked++;
3296                                 } else {
3297                                         /* let's read it back */
3298                                         set_bit(R5_Wantread, &dev->flags);
3299                                         set_bit(R5_LOCKED, &dev->flags);
3300                                         s.locked++;
3301                                 }
3302                         }
3303                 }
3304
3305
3306         /* Finish reconstruct operations initiated by the expansion process */
3307         if (sh->reconstruct_state == reconstruct_state_result) {
3308                 struct stripe_head *sh_src
3309                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3310                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3311                         /* sh cannot be written until sh_src has been read.
3312                          * so arrange for sh to be delayed a little
3313                          */
3314                         set_bit(STRIPE_DELAYED, &sh->state);
3315                         set_bit(STRIPE_HANDLE, &sh->state);
3316                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3317                                               &sh_src->state))
3318                                 atomic_inc(&conf->preread_active_stripes);
3319                         release_stripe(sh_src);
3320                         goto finish;
3321                 }
3322                 if (sh_src)
3323                         release_stripe(sh_src);
3324
3325                 sh->reconstruct_state = reconstruct_state_idle;
3326                 clear_bit(STRIPE_EXPANDING, &sh->state);
3327                 for (i = conf->raid_disks; i--; ) {
3328                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3329                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3330                         s.locked++;
3331                 }
3332         }
3333
3334         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3335             !sh->reconstruct_state) {
3336                 /* Need to write out all blocks after computing parity */
3337                 sh->disks = conf->raid_disks;
3338                 stripe_set_idx(sh->sector, conf, 0, sh);
3339                 schedule_reconstruction(sh, &s, 1, 1);
3340         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3341                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3342                 atomic_dec(&conf->reshape_stripes);
3343                 wake_up(&conf->wait_for_overlap);
3344                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3345         }
3346
3347         if (s.expanding && s.locked == 0 &&
3348             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3349                 handle_stripe_expansion(conf, sh);
3350
3351 finish:
3352         /* wait for this device to become unblocked */
3353         if (conf->mddev->external && unlikely(s.blocked_rdev))
3354                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3355
3356         if (s.handle_bad_blocks)
3357                 for (i = disks; i--; ) {
3358                         struct md_rdev *rdev;
3359                         struct r5dev *dev = &sh->dev[i];
3360                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3361                                 /* We own a safe reference to the rdev */
3362                                 rdev = conf->disks[i].rdev;
3363                                 if (!rdev_set_badblocks(rdev, sh->sector,
3364                                                         STRIPE_SECTORS, 0))
3365                                         md_error(conf->mddev, rdev);
3366                                 rdev_dec_pending(rdev, conf->mddev);
3367                         }
3368                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3369                                 rdev = conf->disks[i].rdev;
3370                                 rdev_clear_badblocks(rdev, sh->sector,
3371                                                      STRIPE_SECTORS);
3372                                 rdev_dec_pending(rdev, conf->mddev);
3373                         }
3374                 }
3375
3376         if (s.ops_request)
3377                 raid_run_ops(sh, s.ops_request);
3378
3379         ops_run_io(sh, &s);
3380
3381         if (s.dec_preread_active) {
3382                 /* We delay this until after ops_run_io so that if make_request
3383                  * is waiting on a flush, it won't continue until the writes
3384                  * have actually been submitted.
3385                  */
3386                 atomic_dec(&conf->preread_active_stripes);
3387                 if (atomic_read(&conf->preread_active_stripes) <
3388                     IO_THRESHOLD)
3389                         md_wakeup_thread(conf->mddev->thread);
3390         }
3391
3392         return_io(s.return_bi);
3393
3394         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3395 }
3396
3397 static void raid5_activate_delayed(struct r5conf *conf)
3398 {
3399         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3400                 while (!list_empty(&conf->delayed_list)) {
3401                         struct list_head *l = conf->delayed_list.next;
3402                         struct stripe_head *sh;
3403                         sh = list_entry(l, struct stripe_head, lru);
3404                         list_del_init(l);
3405                         clear_bit(STRIPE_DELAYED, &sh->state);
3406                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3407                                 atomic_inc(&conf->preread_active_stripes);
3408                         list_add_tail(&sh->lru, &conf->hold_list);
3409                 }
3410         }
3411 }
3412
3413 static void activate_bit_delay(struct r5conf *conf)
3414 {
3415         /* device_lock is held */
3416         struct list_head head;
3417         list_add(&head, &conf->bitmap_list);
3418         list_del_init(&conf->bitmap_list);
3419         while (!list_empty(&head)) {
3420                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3421                 list_del_init(&sh->lru);
3422                 atomic_inc(&sh->count);
3423                 __release_stripe(conf, sh);
3424         }
3425 }
3426
3427 int md_raid5_congested(struct mddev *mddev, int bits)
3428 {
3429         struct r5conf *conf = mddev->private;
3430
3431         /* No difference between reads and writes.  Just check
3432          * how busy the stripe_cache is
3433          */
3434
3435         if (conf->inactive_blocked)
3436                 return 1;
3437         if (conf->quiesce)
3438                 return 1;
3439         if (list_empty_careful(&conf->inactive_list))
3440                 return 1;
3441
3442         return 0;
3443 }
3444 EXPORT_SYMBOL_GPL(md_raid5_congested);
3445
3446 static int raid5_congested(void *data, int bits)
3447 {
3448         struct mddev *mddev = data;
3449
3450         return mddev_congested(mddev, bits) ||
3451                 md_raid5_congested(mddev, bits);
3452 }
3453
3454 /* We want read requests to align with chunks where possible,
3455  * but write requests don't need to.
3456  */
3457 static int raid5_mergeable_bvec(struct request_queue *q,
3458                                 struct bvec_merge_data *bvm,
3459                                 struct bio_vec *biovec)
3460 {
3461         struct mddev *mddev = q->queuedata;
3462         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3463         int max;
3464         unsigned int chunk_sectors = mddev->chunk_sectors;
3465         unsigned int bio_sectors = bvm->bi_size >> 9;
3466
3467         if ((bvm->bi_rw & 1) == WRITE)
3468                 return biovec->bv_len; /* always allow writes to be mergeable */
3469
3470         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3471                 chunk_sectors = mddev->new_chunk_sectors;
3472         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3473         if (max < 0) max = 0;
3474         if (max <= biovec->bv_len && bio_sectors == 0)
3475                 return biovec->bv_len;
3476         else
3477                 return max;
3478 }
3479
3480
3481 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3482 {
3483         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3484         unsigned int chunk_sectors = mddev->chunk_sectors;
3485         unsigned int bio_sectors = bio->bi_size >> 9;
3486
3487         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3488                 chunk_sectors = mddev->new_chunk_sectors;
3489         return  chunk_sectors >=
3490                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3491 }
3492
3493 /*
3494  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3495  *  later sampled by raid5d.
3496  */
3497 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3498 {
3499         unsigned long flags;
3500
3501         spin_lock_irqsave(&conf->device_lock, flags);
3502
3503         bi->bi_next = conf->retry_read_aligned_list;
3504         conf->retry_read_aligned_list = bi;
3505
3506         spin_unlock_irqrestore(&conf->device_lock, flags);
3507         md_wakeup_thread(conf->mddev->thread);
3508 }
3509
3510
3511 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3512 {
3513         struct bio *bi;
3514
3515         bi = conf->retry_read_aligned;
3516         if (bi) {
3517                 conf->retry_read_aligned = NULL;
3518                 return bi;
3519         }
3520         bi = conf->retry_read_aligned_list;
3521         if(bi) {
3522                 conf->retry_read_aligned_list = bi->bi_next;
3523                 bi->bi_next = NULL;
3524                 /*
3525                  * this sets the active strip count to 1 and the processed
3526                  * strip count to zero (upper 8 bits)
3527                  */
3528                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3529         }
3530
3531         return bi;
3532 }
3533
3534
3535 /*
3536  *  The "raid5_align_endio" should check if the read succeeded and if it
3537  *  did, call bio_endio on the original bio (having bio_put the new bio
3538  *  first).
3539  *  If the read failed..
3540  */
3541 static void raid5_align_endio(struct bio *bi, int error)
3542 {
3543         struct bio* raid_bi  = bi->bi_private;
3544         struct mddev *mddev;
3545         struct r5conf *conf;
3546         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3547         struct md_rdev *rdev;
3548
3549         bio_put(bi);
3550
3551         rdev = (void*)raid_bi->bi_next;
3552         raid_bi->bi_next = NULL;
3553         mddev = rdev->mddev;
3554         conf = mddev->private;
3555
3556         rdev_dec_pending(rdev, conf->mddev);
3557
3558         if (!error && uptodate) {
3559                 bio_endio(raid_bi, 0);
3560                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3561                         wake_up(&conf->wait_for_stripe);
3562                 return;
3563         }
3564
3565
3566         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3567
3568         add_bio_to_retry(raid_bi, conf);
3569 }
3570
3571 static int bio_fits_rdev(struct bio *bi)
3572 {
3573         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3574
3575         if ((bi->bi_size>>9) > queue_max_sectors(q))
3576                 return 0;
3577         blk_recount_segments(q, bi);
3578         if (bi->bi_phys_segments > queue_max_segments(q))
3579                 return 0;
3580
3581         if (q->merge_bvec_fn)
3582                 /* it's too hard to apply the merge_bvec_fn at this stage,
3583                  * just just give up
3584                  */
3585                 return 0;
3586
3587         return 1;
3588 }
3589
3590
3591 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3592 {
3593         struct r5conf *conf = mddev->private;
3594         int dd_idx;
3595         struct bio* align_bi;
3596         struct md_rdev *rdev;
3597
3598         if (!in_chunk_boundary(mddev, raid_bio)) {
3599                 pr_debug("chunk_aligned_read : non aligned\n");
3600                 return 0;
3601         }
3602         /*
3603          * use bio_clone_mddev to make a copy of the bio
3604          */
3605         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3606         if (!align_bi)
3607                 return 0;
3608         /*
3609          *   set bi_end_io to a new function, and set bi_private to the
3610          *     original bio.
3611          */
3612         align_bi->bi_end_io  = raid5_align_endio;
3613         align_bi->bi_private = raid_bio;
3614         /*
3615          *      compute position
3616          */
3617         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3618                                                     0,
3619                                                     &dd_idx, NULL);
3620
3621         rcu_read_lock();
3622         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3623         if (rdev && test_bit(In_sync, &rdev->flags)) {
3624                 sector_t first_bad;
3625                 int bad_sectors;
3626
3627                 atomic_inc(&rdev->nr_pending);
3628                 rcu_read_unlock();
3629                 raid_bio->bi_next = (void*)rdev;
3630                 align_bi->bi_bdev =  rdev->bdev;
3631                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3632                 align_bi->bi_sector += rdev->data_offset;
3633
3634                 if (!bio_fits_rdev(align_bi) ||
3635                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3636                                 &first_bad, &bad_sectors)) {
3637                         /* too big in some way, or has a known bad block */
3638                         bio_put(align_bi);
3639                         rdev_dec_pending(rdev, mddev);
3640                         return 0;
3641                 }
3642
3643                 spin_lock_irq(&conf->device_lock);
3644                 wait_event_lock_irq(conf->wait_for_stripe,
3645                                     conf->quiesce == 0,
3646                                     conf->device_lock, /* nothing */);
3647                 atomic_inc(&conf->active_aligned_reads);
3648                 spin_unlock_irq(&conf->device_lock);
3649
3650                 generic_make_request(align_bi);
3651                 return 1;
3652         } else {
3653                 rcu_read_unlock();
3654                 bio_put(align_bi);
3655                 return 0;
3656         }
3657 }
3658
3659 /* __get_priority_stripe - get the next stripe to process
3660  *
3661  * Full stripe writes are allowed to pass preread active stripes up until
3662  * the bypass_threshold is exceeded.  In general the bypass_count
3663  * increments when the handle_list is handled before the hold_list; however, it
3664  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3665  * stripe with in flight i/o.  The bypass_count will be reset when the
3666  * head of the hold_list has changed, i.e. the head was promoted to the
3667  * handle_list.
3668  */
3669 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3670 {
3671         struct stripe_head *sh;
3672
3673         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3674                   __func__,
3675                   list_empty(&conf->handle_list) ? "empty" : "busy",
3676                   list_empty(&conf->hold_list) ? "empty" : "busy",
3677                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3678
3679         if (!list_empty(&conf->handle_list)) {
3680                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3681
3682                 if (list_empty(&conf->hold_list))
3683                         conf->bypass_count = 0;
3684                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3685                         if (conf->hold_list.next == conf->last_hold)
3686                                 conf->bypass_count++;
3687                         else {
3688                                 conf->last_hold = conf->hold_list.next;
3689                                 conf->bypass_count -= conf->bypass_threshold;
3690                                 if (conf->bypass_count < 0)
3691                                         conf->bypass_count = 0;
3692                         }
3693                 }
3694         } else if (!list_empty(&conf->hold_list) &&
3695                    ((conf->bypass_threshold &&
3696                      conf->bypass_count > conf->bypass_threshold) ||
3697                     atomic_read(&conf->pending_full_writes) == 0)) {
3698                 sh = list_entry(conf->hold_list.next,
3699                                 typeof(*sh), lru);
3700                 conf->bypass_count -= conf->bypass_threshold;
3701                 if (conf->bypass_count < 0)
3702                         conf->bypass_count = 0;
3703         } else
3704                 return NULL;
3705
3706         list_del_init(&sh->lru);
3707         atomic_inc(&sh->count);
3708         BUG_ON(atomic_read(&sh->count) != 1);
3709         return sh;
3710 }
3711
3712 static void make_request(struct mddev *mddev, struct bio * bi)
3713 {
3714         struct r5conf *conf = mddev->private;
3715         int dd_idx;
3716         sector_t new_sector;
3717         sector_t logical_sector, last_sector;
3718         struct stripe_head *sh;
3719         const int rw = bio_data_dir(bi);
3720         int remaining;
3721         int plugged;
3722
3723         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3724                 md_flush_request(mddev, bi);
3725                 return;
3726         }
3727
3728         md_write_start(mddev, bi);
3729
3730         if (rw == READ &&
3731              mddev->reshape_position == MaxSector &&
3732              chunk_aligned_read(mddev,bi))
3733                 return;
3734
3735         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3736         last_sector = bi->bi_sector + (bi->bi_size>>9);
3737         bi->bi_next = NULL;
3738         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3739
3740         plugged = mddev_check_plugged(mddev);
3741         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3742                 DEFINE_WAIT(w);
3743                 int disks, data_disks;
3744                 int previous;
3745
3746         retry:
3747                 previous = 0;
3748                 disks = conf->raid_disks;
3749                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3750                 if (unlikely(conf->reshape_progress != MaxSector)) {
3751                         /* spinlock is needed as reshape_progress may be
3752                          * 64bit on a 32bit platform, and so it might be
3753                          * possible to see a half-updated value
3754                          * Of course reshape_progress could change after
3755                          * the lock is dropped, so once we get a reference
3756                          * to the stripe that we think it is, we will have
3757                          * to check again.
3758                          */
3759                         spin_lock_irq(&conf->device_lock);
3760                         if (mddev->delta_disks < 0
3761                             ? logical_sector < conf->reshape_progress
3762                             : logical_sector >= conf->reshape_progress) {
3763                                 disks = conf->previous_raid_disks;
3764                                 previous = 1;
3765                         } else {
3766                                 if (mddev->delta_disks < 0
3767                                     ? logical_sector < conf->reshape_safe
3768                                     : logical_sector >= conf->reshape_safe) {
3769                                         spin_unlock_irq(&conf->device_lock);
3770                                         schedule();
3771                                         goto retry;
3772                                 }
3773                         }
3774                         spin_unlock_irq(&conf->device_lock);
3775                 }
3776                 data_disks = disks - conf->max_degraded;
3777
3778                 new_sector = raid5_compute_sector(conf, logical_sector,
3779                                                   previous,
3780                                                   &dd_idx, NULL);
3781                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3782                         (unsigned long long)new_sector, 
3783                         (unsigned long long)logical_sector);
3784
3785                 sh = get_active_stripe(conf, new_sector, previous,
3786                                        (bi->bi_rw&RWA_MASK), 0);
3787                 if (sh) {
3788                         if (unlikely(previous)) {
3789                                 /* expansion might have moved on while waiting for a
3790                                  * stripe, so we must do the range check again.
3791                                  * Expansion could still move past after this
3792                                  * test, but as we are holding a reference to
3793                                  * 'sh', we know that if that happens,
3794                                  *  STRIPE_EXPANDING will get set and the expansion
3795                                  * won't proceed until we finish with the stripe.
3796                                  */
3797                                 int must_retry = 0;
3798                                 spin_lock_irq(&conf->device_lock);
3799                                 if (mddev->delta_disks < 0
3800                                     ? logical_sector >= conf->reshape_progress
3801                                     : logical_sector < conf->reshape_progress)
3802                                         /* mismatch, need to try again */
3803                                         must_retry = 1;
3804                                 spin_unlock_irq(&conf->device_lock);
3805                                 if (must_retry) {
3806                                         release_stripe(sh);
3807                                         schedule();
3808                                         goto retry;
3809                                 }
3810                         }
3811
3812                         if (rw == WRITE &&
3813                             logical_sector >= mddev->suspend_lo &&
3814                             logical_sector < mddev->suspend_hi) {
3815                                 release_stripe(sh);
3816                                 /* As the suspend_* range is controlled by
3817                                  * userspace, we want an interruptible
3818                                  * wait.
3819                                  */
3820                                 flush_signals(current);
3821                                 prepare_to_wait(&conf->wait_for_overlap,
3822                                                 &w, TASK_INTERRUPTIBLE);
3823                                 if (logical_sector >= mddev->suspend_lo &&
3824                                     logical_sector < mddev->suspend_hi)
3825                                         schedule();
3826                                 goto retry;
3827                         }
3828
3829                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3830                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3831                                 /* Stripe is busy expanding or
3832                                  * add failed due to overlap.  Flush everything
3833                                  * and wait a while
3834                                  */
3835                                 md_wakeup_thread(mddev->thread);
3836                                 release_stripe(sh);
3837                                 schedule();
3838                                 goto retry;
3839                         }
3840                         finish_wait(&conf->wait_for_overlap, &w);
3841                         set_bit(STRIPE_HANDLE, &sh->state);
3842                         clear_bit(STRIPE_DELAYED, &sh->state);
3843                         if ((bi->bi_rw & REQ_SYNC) &&
3844                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3845                                 atomic_inc(&conf->preread_active_stripes);
3846                         release_stripe(sh);
3847                 } else {
3848                         /* cannot get stripe for read-ahead, just give-up */
3849                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3850                         finish_wait(&conf->wait_for_overlap, &w);
3851                         break;
3852                 }
3853                         
3854         }
3855         if (!plugged)
3856                 md_wakeup_thread(mddev->thread);
3857
3858         spin_lock_irq(&conf->device_lock);
3859         remaining = raid5_dec_bi_phys_segments(bi);
3860         spin_unlock_irq(&conf->device_lock);
3861         if (remaining == 0) {
3862
3863                 if ( rw == WRITE )
3864                         md_write_end(mddev);
3865
3866                 bio_endio(bi, 0);
3867         }
3868 }
3869
3870 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
3871
3872 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
3873 {
3874         /* reshaping is quite different to recovery/resync so it is
3875          * handled quite separately ... here.
3876          *
3877          * On each call to sync_request, we gather one chunk worth of
3878          * destination stripes and flag them as expanding.
3879          * Then we find all the source stripes and request reads.
3880          * As the reads complete, handle_stripe will copy the data
3881          * into the destination stripe and release that stripe.
3882          */
3883         struct r5conf *conf = mddev->private;
3884         struct stripe_head *sh;
3885         sector_t first_sector, last_sector;
3886         int raid_disks = conf->previous_raid_disks;
3887         int data_disks = raid_disks - conf->max_degraded;
3888         int new_data_disks = conf->raid_disks - conf->max_degraded;
3889         int i;
3890         int dd_idx;
3891         sector_t writepos, readpos, safepos;
3892         sector_t stripe_addr;
3893         int reshape_sectors;
3894         struct list_head stripes;
3895
3896         if (sector_nr == 0) {
3897                 /* If restarting in the middle, skip the initial sectors */
3898                 if (mddev->delta_disks < 0 &&
3899                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3900                         sector_nr = raid5_size(mddev, 0, 0)
3901                                 - conf->reshape_progress;
3902                 } else if (mddev->delta_disks >= 0 &&
3903                            conf->reshape_progress > 0)
3904                         sector_nr = conf->reshape_progress;
3905                 sector_div(sector_nr, new_data_disks);
3906                 if (sector_nr) {
3907                         mddev->curr_resync_completed = sector_nr;
3908                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3909                         *skipped = 1;
3910                         return sector_nr;
3911                 }
3912         }
3913
3914         /* We need to process a full chunk at a time.
3915          * If old and new chunk sizes differ, we need to process the
3916          * largest of these
3917          */
3918         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3919                 reshape_sectors = mddev->new_chunk_sectors;
3920         else
3921                 reshape_sectors = mddev->chunk_sectors;
3922
3923         /* we update the metadata when there is more than 3Meg
3924          * in the block range (that is rather arbitrary, should
3925          * probably be time based) or when the data about to be
3926          * copied would over-write the source of the data at
3927          * the front of the range.
3928          * i.e. one new_stripe along from reshape_progress new_maps
3929          * to after where reshape_safe old_maps to
3930          */
3931         writepos = conf->reshape_progress;
3932         sector_div(writepos, new_data_disks);
3933         readpos = conf->reshape_progress;
3934         sector_div(readpos, data_disks);
3935         safepos = conf->reshape_safe;
3936         sector_div(safepos, data_disks);
3937         if (mddev->delta_disks < 0) {
3938                 writepos -= min_t(sector_t, reshape_sectors, writepos);
3939                 readpos += reshape_sectors;
3940                 safepos += reshape_sectors;
3941         } else {
3942                 writepos += reshape_sectors;
3943                 readpos -= min_t(sector_t, reshape_sectors, readpos);
3944                 safepos -= min_t(sector_t, reshape_sectors, safepos);
3945         }
3946
3947         /* 'writepos' is the most advanced device address we might write.
3948          * 'readpos' is the least advanced device address we might read.
3949          * 'safepos' is the least address recorded in the metadata as having
3950          *     been reshaped.
3951          * If 'readpos' is behind 'writepos', then there is no way that we can
3952          * ensure safety in the face of a crash - that must be done by userspace
3953          * making a backup of the data.  So in that case there is no particular
3954          * rush to update metadata.
3955          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3956          * update the metadata to advance 'safepos' to match 'readpos' so that
3957          * we can be safe in the event of a crash.
3958          * So we insist on updating metadata if safepos is behind writepos and
3959          * readpos is beyond writepos.
3960          * In any case, update the metadata every 10 seconds.
3961          * Maybe that number should be configurable, but I'm not sure it is
3962          * worth it.... maybe it could be a multiple of safemode_delay???
3963          */
3964         if ((mddev->delta_disks < 0
3965              ? (safepos > writepos && readpos < writepos)
3966              : (safepos < writepos && readpos > writepos)) ||
3967             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3968                 /* Cannot proceed until we've updated the superblock... */
3969                 wait_event(conf->wait_for_overlap,
3970                            atomic_read(&conf->reshape_stripes)==0);
3971                 mddev->reshape_position = conf->reshape_progress;
3972                 mddev->curr_resync_completed = sector_nr;
3973                 conf->reshape_checkpoint = jiffies;
3974                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3975                 md_wakeup_thread(mddev->thread);
3976                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3977                            kthread_should_stop());
3978                 spin_lock_irq(&conf->device_lock);
3979                 conf->reshape_safe = mddev->reshape_position;
3980                 spin_unlock_irq(&conf->device_lock);
3981                 wake_up(&conf->wait_for_overlap);
3982                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3983         }
3984
3985         if (mddev->delta_disks < 0) {
3986                 BUG_ON(conf->reshape_progress == 0);
3987                 stripe_addr = writepos;
3988                 BUG_ON((mddev->dev_sectors &
3989                         ~((sector_t)reshape_sectors - 1))
3990                        - reshape_sectors - stripe_addr
3991                        != sector_nr);
3992         } else {
3993                 BUG_ON(writepos != sector_nr + reshape_sectors);
3994                 stripe_addr = sector_nr;
3995         }
3996         INIT_LIST_HEAD(&stripes);
3997         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3998                 int j;
3999                 int skipped_disk = 0;
4000                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4001                 set_bit(STRIPE_EXPANDING, &sh->state);
4002                 atomic_inc(&conf->reshape_stripes);
4003                 /* If any of this stripe is beyond the end of the old
4004                  * array, then we need to zero those blocks
4005                  */
4006                 for (j=sh->disks; j--;) {
4007                         sector_t s;
4008                         if (j == sh->pd_idx)
4009                                 continue;
4010                         if (conf->level == 6 &&
4011                             j == sh->qd_idx)
4012                                 continue;
4013                         s = compute_blocknr(sh, j, 0);
4014                         if (s < raid5_size(mddev, 0, 0)) {
4015                                 skipped_disk = 1;
4016                                 continue;
4017                         }
4018                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4019                         set_bit(R5_Expanded, &sh->dev[j].flags);
4020                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4021                 }
4022                 if (!skipped_disk) {
4023                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4024                         set_bit(STRIPE_HANDLE, &sh->state);
4025                 }
4026                 list_add(&sh->lru, &stripes);
4027         }
4028         spin_lock_irq(&conf->device_lock);
4029         if (mddev->delta_disks < 0)
4030                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4031         else
4032                 conf->reshape_progress += reshape_sectors * new_data_disks;
4033         spin_unlock_irq(&conf->device_lock);
4034         /* Ok, those stripe are ready. We can start scheduling
4035          * reads on the source stripes.
4036          * The source stripes are determined by mapping the first and last
4037          * block on the destination stripes.
4038          */
4039         first_sector =
4040                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4041                                      1, &dd_idx, NULL);
4042         last_sector =
4043                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4044                                             * new_data_disks - 1),
4045                                      1, &dd_idx, NULL);
4046         if (last_sector >= mddev->dev_sectors)
4047                 last_sector = mddev->dev_sectors - 1;
4048         while (first_sector <= last_sector) {
4049                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4050                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4051                 set_bit(STRIPE_HANDLE, &sh->state);
4052                 release_stripe(sh);
4053                 first_sector += STRIPE_SECTORS;
4054         }
4055         /* Now that the sources are clearly marked, we can release
4056          * the destination stripes
4057          */
4058         while (!list_empty(&stripes)) {
4059                 sh = list_entry(stripes.next, struct stripe_head, lru);
4060                 list_del_init(&sh->lru);
4061                 release_stripe(sh);
4062         }
4063         /* If this takes us to the resync_max point where we have to pause,
4064          * then we need to write out the superblock.
4065          */
4066         sector_nr += reshape_sectors;
4067         if ((sector_nr - mddev->curr_resync_completed) * 2
4068             >= mddev->resync_max - mddev->curr_resync_completed) {
4069                 /* Cannot proceed until we've updated the superblock... */
4070                 wait_event(conf->wait_for_overlap,
4071                            atomic_read(&conf->reshape_stripes) == 0);
4072                 mddev->reshape_position = conf->reshape_progress;
4073                 mddev->curr_resync_completed = sector_nr;
4074                 conf->reshape_checkpoint = jiffies;
4075                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4076                 md_wakeup_thread(mddev->thread);
4077                 wait_event(mddev->sb_wait,
4078                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4079                            || kthread_should_stop());
4080                 spin_lock_irq(&conf->device_lock);
4081                 conf->reshape_safe = mddev->reshape_position;
4082                 spin_unlock_irq(&conf->device_lock);
4083                 wake_up(&conf->wait_for_overlap);
4084                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4085         }
4086         return reshape_sectors;
4087 }
4088
4089 /* FIXME go_faster isn't used */
4090 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4091 {
4092         struct r5conf *conf = mddev->private;
4093         struct stripe_head *sh;
4094         sector_t max_sector = mddev->dev_sectors;
4095         sector_t sync_blocks;
4096         int still_degraded = 0;
4097         int i;
4098
4099         if (sector_nr >= max_sector) {
4100                 /* just being told to finish up .. nothing much to do */
4101
4102                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4103                         end_reshape(conf);
4104                         return 0;
4105                 }
4106
4107                 if (mddev->curr_resync < max_sector) /* aborted */
4108                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4109                                         &sync_blocks, 1);
4110                 else /* completed sync */
4111                         conf->fullsync = 0;
4112                 bitmap_close_sync(mddev->bitmap);
4113
4114                 return 0;
4115         }
4116
4117         /* Allow raid5_quiesce to complete */
4118         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4119
4120         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4121                 return reshape_request(mddev, sector_nr, skipped);
4122
4123         /* No need to check resync_max as we never do more than one
4124          * stripe, and as resync_max will always be on a chunk boundary,
4125          * if the check in md_do_sync didn't fire, there is no chance
4126          * of overstepping resync_max here
4127          */
4128
4129         /* if there is too many failed drives and we are trying
4130          * to resync, then assert that we are finished, because there is
4131          * nothing we can do.
4132          */
4133         if (mddev->degraded >= conf->max_degraded &&
4134             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4135                 sector_t rv = mddev->dev_sectors - sector_nr;
4136                 *skipped = 1;
4137                 return rv;
4138         }
4139         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4140             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4141             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4142                 /* we can skip this block, and probably more */
4143                 sync_blocks /= STRIPE_SECTORS;
4144                 *skipped = 1;
4145                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4146         }
4147
4148
4149         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4150
4151         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4152         if (sh == NULL) {
4153                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4154                 /* make sure we don't swamp the stripe cache if someone else
4155                  * is trying to get access
4156                  */
4157                 schedule_timeout_uninterruptible(1);
4158         }
4159         /* Need to check if array will still be degraded after recovery/resync
4160          * We don't need to check the 'failed' flag as when that gets set,
4161          * recovery aborts.
4162          */
4163         for (i = 0; i < conf->raid_disks; i++)
4164                 if (conf->disks[i].rdev == NULL)
4165                         still_degraded = 1;
4166
4167         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4168
4169         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4170
4171         handle_stripe(sh);
4172         release_stripe(sh);
4173
4174         return STRIPE_SECTORS;
4175 }
4176
4177 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4178 {
4179         /* We may not be able to submit a whole bio at once as there
4180          * may not be enough stripe_heads available.
4181          * We cannot pre-allocate enough stripe_heads as we may need
4182          * more than exist in the cache (if we allow ever large chunks).
4183          * So we do one stripe head at a time and record in
4184          * ->bi_hw_segments how many have been done.
4185          *
4186          * We *know* that this entire raid_bio is in one chunk, so
4187          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4188          */
4189         struct stripe_head *sh;
4190         int dd_idx;
4191         sector_t sector, logical_sector, last_sector;
4192         int scnt = 0;
4193         int remaining;
4194         int handled = 0;
4195
4196         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4197         sector = raid5_compute_sector(conf, logical_sector,
4198                                       0, &dd_idx, NULL);
4199         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4200
4201         for (; logical_sector < last_sector;
4202              logical_sector += STRIPE_SECTORS,
4203                      sector += STRIPE_SECTORS,
4204                      scnt++) {
4205
4206                 if (scnt < raid5_bi_hw_segments(raid_bio))
4207                         /* already done this stripe */
4208                         continue;
4209
4210                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4211
4212                 if (!sh) {
4213                         /* failed to get a stripe - must wait */
4214                         raid5_set_bi_hw_segments(raid_bio, scnt);
4215                         conf->retry_read_aligned = raid_bio;
4216                         return handled;
4217                 }
4218
4219                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4220                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4221                         release_stripe(sh);
4222                         raid5_set_bi_hw_segments(raid_bio, scnt);
4223                         conf->retry_read_aligned = raid_bio;
4224                         return handled;
4225                 }
4226
4227                 handle_stripe(sh);
4228                 release_stripe(sh);
4229                 handled++;
4230         }
4231         spin_lock_irq(&conf->device_lock);
4232         remaining = raid5_dec_bi_phys_segments(raid_bio);
4233         spin_unlock_irq(&conf->device_lock);
4234         if (remaining == 0)
4235                 bio_endio(raid_bio, 0);
4236         if (atomic_dec_and_test(&conf->active_aligned_reads))
4237                 wake_up(&conf->wait_for_stripe);
4238         return handled;
4239 }
4240
4241
4242 /*
4243  * This is our raid5 kernel thread.
4244  *
4245  * We scan the hash table for stripes which can be handled now.
4246  * During the scan, completed stripes are saved for us by the interrupt
4247  * handler, so that they will not have to wait for our next wakeup.
4248  */
4249 static void raid5d(struct mddev *mddev)
4250 {
4251         struct stripe_head *sh;
4252         struct r5conf *conf = mddev->private;
4253         int handled;
4254         struct blk_plug plug;
4255
4256         pr_debug("+++ raid5d active\n");
4257
4258         md_check_recovery(mddev);
4259
4260         blk_start_plug(&plug);
4261         handled = 0;
4262         spin_lock_irq(&conf->device_lock);
4263         while (1) {
4264                 struct bio *bio;
4265
4266                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4267                     !list_empty(&conf->bitmap_list)) {
4268                         /* Now is a good time to flush some bitmap updates */
4269                         conf->seq_flush++;
4270                         spin_unlock_irq(&conf->device_lock);
4271                         bitmap_unplug(mddev->bitmap);
4272                         spin_lock_irq(&conf->device_lock);
4273                         conf->seq_write = conf->seq_flush;
4274                         activate_bit_delay(conf);
4275                 }
4276                 if (atomic_read(&mddev->plug_cnt) == 0)
4277                         raid5_activate_delayed(conf);
4278
4279                 while ((bio = remove_bio_from_retry(conf))) {
4280                         int ok;
4281                         spin_unlock_irq(&conf->device_lock);
4282                         ok = retry_aligned_read(conf, bio);
4283                         spin_lock_irq(&conf->device_lock);
4284                         if (!ok)
4285                                 break;
4286                         handled++;
4287                 }
4288
4289                 sh = __get_priority_stripe(conf);
4290
4291                 if (!sh)
4292                         break;
4293                 spin_unlock_irq(&conf->device_lock);
4294                 
4295                 handled++;
4296                 handle_stripe(sh);
4297                 release_stripe(sh);
4298                 cond_resched();
4299
4300                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4301                         md_check_recovery(mddev);
4302
4303                 spin_lock_irq(&conf->device_lock);
4304         }
4305         pr_debug("%d stripes handled\n", handled);
4306
4307         spin_unlock_irq(&conf->device_lock);
4308
4309         async_tx_issue_pending_all();
4310         blk_finish_plug(&plug);
4311
4312         pr_debug("--- raid5d inactive\n");
4313 }
4314
4315 static ssize_t
4316 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4317 {
4318         struct r5conf *conf = mddev->private;
4319         if (conf)
4320                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4321         else
4322                 return 0;
4323 }
4324
4325 int
4326 raid5_set_cache_size(struct mddev *mddev, int size)
4327 {
4328         struct r5conf *conf = mddev->private;
4329         int err;
4330
4331         if (size <= 16 || size > 32768)
4332                 return -EINVAL;
4333         while (size < conf->max_nr_stripes) {
4334                 if (drop_one_stripe(conf))
4335                         conf->max_nr_stripes--;
4336                 else
4337                         break;
4338         }
4339         err = md_allow_write(mddev);
4340         if (err)
4341                 return err;
4342         while (size > conf->max_nr_stripes) {
4343                 if (grow_one_stripe(conf))
4344                         conf->max_nr_stripes++;
4345                 else break;
4346         }
4347         return 0;
4348 }
4349 EXPORT_SYMBOL(raid5_set_cache_size);
4350
4351 static ssize_t
4352 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4353 {
4354         struct r5conf *conf = mddev->private;
4355         unsigned long new;
4356         int err;
4357
4358         if (len >= PAGE_SIZE)
4359                 return -EINVAL;
4360         if (!conf)
4361                 return -ENODEV;
4362
4363         if (strict_strtoul(page, 10, &new))
4364                 return -EINVAL;
4365         err = raid5_set_cache_size(mddev, new);
4366         if (err)
4367                 return err;
4368         return len;
4369 }
4370
4371 static struct md_sysfs_entry
4372 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4373                                 raid5_show_stripe_cache_size,
4374                                 raid5_store_stripe_cache_size);
4375
4376 static ssize_t
4377 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4378 {
4379         struct r5conf *conf = mddev->private;
4380         if (conf)
4381                 return sprintf(page, "%d\n", conf->bypass_threshold);
4382         else
4383                 return 0;
4384 }
4385
4386 static ssize_t
4387 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4388 {
4389         struct r5conf *conf = mddev->private;
4390         unsigned long new;
4391         if (len >= PAGE_SIZE)
4392                 return -EINVAL;
4393         if (!conf)
4394                 return -ENODEV;
4395
4396         if (strict_strtoul(page, 10, &new))
4397                 return -EINVAL;
4398         if (new > conf->max_nr_stripes)
4399                 return -EINVAL;
4400         conf->bypass_threshold = new;
4401         return len;
4402 }
4403
4404 static struct md_sysfs_entry
4405 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4406                                         S_IRUGO | S_IWUSR,
4407                                         raid5_show_preread_threshold,
4408                                         raid5_store_preread_threshold);
4409
4410 static ssize_t
4411 stripe_cache_active_show(struct mddev *mddev, char *page)
4412 {
4413         struct r5conf *conf = mddev->private;
4414         if (conf)
4415                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4416         else
4417                 return 0;
4418 }
4419
4420 static struct md_sysfs_entry
4421 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4422
4423 static struct attribute *raid5_attrs[] =  {
4424         &raid5_stripecache_size.attr,
4425         &raid5_stripecache_active.attr,
4426         &raid5_preread_bypass_threshold.attr,
4427         NULL,
4428 };
4429 static struct attribute_group raid5_attrs_group = {
4430         .name = NULL,
4431         .attrs = raid5_attrs,
4432 };
4433
4434 static sector_t
4435 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4436 {
4437         struct r5conf *conf = mddev->private;
4438
4439         if (!sectors)
4440                 sectors = mddev->dev_sectors;
4441         if (!raid_disks)
4442                 /* size is defined by the smallest of previous and new size */
4443                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4444
4445         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4446         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4447         return sectors * (raid_disks - conf->max_degraded);
4448 }
4449
4450 static void raid5_free_percpu(struct r5conf *conf)
4451 {
4452         struct raid5_percpu *percpu;
4453         unsigned long cpu;
4454
4455         if (!conf->percpu)
4456                 return;
4457
4458         get_online_cpus();
4459         for_each_possible_cpu(cpu) {
4460                 percpu = per_cpu_ptr(conf->percpu, cpu);
4461                 safe_put_page(percpu->spare_page);
4462                 kfree(percpu->scribble);
4463         }
4464 #ifdef CONFIG_HOTPLUG_CPU
4465         unregister_cpu_notifier(&conf->cpu_notify);
4466 #endif
4467         put_online_cpus();
4468
4469         free_percpu(conf->percpu);
4470 }
4471
4472 static void free_conf(struct r5conf *conf)
4473 {
4474         shrink_stripes(conf);
4475         raid5_free_percpu(conf);
4476         kfree(conf->disks);
4477         kfree(conf->stripe_hashtbl);
4478         kfree(conf);
4479 }
4480
4481 #ifdef CONFIG_HOTPLUG_CPU
4482 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4483                               void *hcpu)
4484 {
4485         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4486         long cpu = (long)hcpu;
4487         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4488
4489         switch (action) {
4490         case CPU_UP_PREPARE:
4491         case CPU_UP_PREPARE_FROZEN:
4492                 if (conf->level == 6 && !percpu->spare_page)
4493                         percpu->spare_page = alloc_page(GFP_KERNEL);
4494                 if (!percpu->scribble)
4495                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4496
4497                 if (!percpu->scribble ||
4498                     (conf->level == 6 && !percpu->spare_page)) {
4499                         safe_put_page(percpu->spare_page);
4500                         kfree(percpu->scribble);
4501                         pr_err("%s: failed memory allocation for cpu%ld\n",
4502                                __func__, cpu);
4503                         return notifier_from_errno(-ENOMEM);
4504                 }
4505                 break;
4506         case CPU_DEAD:
4507         case CPU_DEAD_FROZEN:
4508                 safe_put_page(percpu->spare_page);
4509                 kfree(percpu->scribble);
4510                 percpu->spare_page = NULL;
4511                 percpu->scribble = NULL;
4512                 break;
4513         default:
4514                 break;
4515         }
4516         return NOTIFY_OK;
4517 }
4518 #endif
4519
4520 static int raid5_alloc_percpu(struct r5conf *conf)
4521 {
4522         unsigned long cpu;
4523         struct page *spare_page;
4524         struct raid5_percpu __percpu *allcpus;
4525         void *scribble;
4526         int err;
4527
4528         allcpus = alloc_percpu(struct raid5_percpu);
4529         if (!allcpus)
4530                 return -ENOMEM;
4531         conf->percpu = allcpus;
4532
4533         get_online_cpus();
4534         err = 0;
4535         for_each_present_cpu(cpu) {
4536                 if (conf->level == 6) {
4537                         spare_page = alloc_page(GFP_KERNEL);
4538                         if (!spare_page) {
4539                                 err = -ENOMEM;
4540                                 break;
4541                         }
4542                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4543                 }
4544                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4545                 if (!scribble) {
4546                         err = -ENOMEM;
4547                         break;
4548                 }
4549                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4550         }
4551 #ifdef CONFIG_HOTPLUG_CPU
4552         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4553         conf->cpu_notify.priority = 0;
4554         if (err == 0)
4555                 err = register_cpu_notifier(&conf->cpu_notify);
4556 #endif
4557         put_online_cpus();
4558
4559         return err;
4560 }
4561
4562 static struct r5conf *setup_conf(struct mddev *mddev)
4563 {
4564         struct r5conf *conf;
4565         int raid_disk, memory, max_disks;
4566         struct md_rdev *rdev;
4567         struct disk_info *disk;
4568
4569         if (mddev->new_level != 5
4570             && mddev->new_level != 4
4571             && mddev->new_level != 6) {
4572                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4573                        mdname(mddev), mddev->new_level);
4574                 return ERR_PTR(-EIO);
4575         }
4576         if ((mddev->new_level == 5
4577              && !algorithm_valid_raid5(mddev->new_layout)) ||
4578             (mddev->new_level == 6
4579              && !algorithm_valid_raid6(mddev->new_layout))) {
4580                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4581                        mdname(mddev), mddev->new_layout);
4582                 return ERR_PTR(-EIO);
4583         }
4584         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4585                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4586                        mdname(mddev), mddev->raid_disks);
4587                 return ERR_PTR(-EINVAL);
4588         }
4589
4590         if (!mddev->new_chunk_sectors ||
4591             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4592             !is_power_of_2(mddev->new_chunk_sectors)) {
4593                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4594                        mdname(mddev), mddev->new_chunk_sectors << 9);
4595                 return ERR_PTR(-EINVAL);
4596         }
4597
4598         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4599         if (conf == NULL)
4600                 goto abort;
4601         spin_lock_init(&conf->device_lock);
4602         init_waitqueue_head(&conf->wait_for_stripe);
4603         init_waitqueue_head(&conf->wait_for_overlap);
4604         INIT_LIST_HEAD(&conf->handle_list);
4605         INIT_LIST_HEAD(&conf->hold_list);
4606         INIT_LIST_HEAD(&conf->delayed_list);
4607         INIT_LIST_HEAD(&conf->bitmap_list);
4608         INIT_LIST_HEAD(&conf->inactive_list);
4609         atomic_set(&conf->active_stripes, 0);
4610         atomic_set(&conf->preread_active_stripes, 0);
4611         atomic_set(&conf->active_aligned_reads, 0);
4612         conf->bypass_threshold = BYPASS_THRESHOLD;
4613         conf->recovery_disabled = mddev->recovery_disabled - 1;
4614
4615         conf->raid_disks = mddev->raid_disks;
4616         if (mddev->reshape_position == MaxSector)
4617                 conf->previous_raid_disks = mddev->raid_disks;
4618         else
4619                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4620         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4621         conf->scribble_len = scribble_len(max_disks);
4622
4623         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4624                               GFP_KERNEL);
4625         if (!conf->disks)
4626                 goto abort;
4627
4628         conf->mddev = mddev;
4629
4630         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4631                 goto abort;
4632
4633         conf->level = mddev->new_level;
4634         if (raid5_alloc_percpu(conf) != 0)
4635                 goto abort;
4636
4637         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4638
4639         list_for_each_entry(rdev, &mddev->disks, same_set) {
4640                 raid_disk = rdev->raid_disk;
4641                 if (raid_disk >= max_disks
4642                     || raid_disk < 0)
4643                         continue;
4644                 disk = conf->disks + raid_disk;
4645
4646                 disk->rdev = rdev;
4647
4648                 if (test_bit(In_sync, &rdev->flags)) {
4649                         char b[BDEVNAME_SIZE];
4650                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4651                                " disk %d\n",
4652                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4653                 } else if (rdev->saved_raid_disk != raid_disk)
4654                         /* Cannot rely on bitmap to complete recovery */
4655                         conf->fullsync = 1;
4656         }
4657
4658         conf->chunk_sectors = mddev->new_chunk_sectors;
4659         conf->level = mddev->new_level;
4660         if (conf->level == 6)
4661                 conf->max_degraded = 2;
4662         else
4663                 conf->max_degraded = 1;
4664         conf->algorithm = mddev->new_layout;
4665         conf->max_nr_stripes = NR_STRIPES;
4666         conf->reshape_progress = mddev->reshape_position;
4667         if (conf->reshape_progress != MaxSector) {
4668                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4669                 conf->prev_algo = mddev->layout;
4670         }
4671
4672         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4673                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4674         if (grow_stripes(conf, conf->max_nr_stripes)) {
4675                 printk(KERN_ERR
4676                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4677                        mdname(mddev), memory);
4678                 goto abort;
4679         } else
4680                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4681                        mdname(mddev), memory);
4682
4683         conf->thread = md_register_thread(raid5d, mddev, NULL);
4684         if (!conf->thread) {
4685                 printk(KERN_ERR
4686                        "md/raid:%s: couldn't allocate thread.\n",
4687                        mdname(mddev));
4688                 goto abort;
4689         }
4690
4691         return conf;
4692
4693  abort:
4694         if (conf) {
4695                 free_conf(conf);
4696                 return ERR_PTR(-EIO);
4697         } else
4698                 return ERR_PTR(-ENOMEM);
4699 }
4700
4701
4702 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4703 {
4704         switch (algo) {
4705         case ALGORITHM_PARITY_0:
4706                 if (raid_disk < max_degraded)
4707                         return 1;
4708                 break;
4709         case ALGORITHM_PARITY_N:
4710                 if (raid_disk >= raid_disks - max_degraded)
4711                         return 1;
4712                 break;
4713         case ALGORITHM_PARITY_0_6:
4714                 if (raid_disk == 0 || 
4715                     raid_disk == raid_disks - 1)
4716                         return 1;
4717                 break;
4718         case ALGORITHM_LEFT_ASYMMETRIC_6:
4719         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4720         case ALGORITHM_LEFT_SYMMETRIC_6:
4721         case ALGORITHM_RIGHT_SYMMETRIC_6:
4722                 if (raid_disk == raid_disks - 1)
4723                         return 1;
4724         }
4725         return 0;
4726 }
4727
4728 static int run(struct mddev *mddev)
4729 {
4730         struct r5conf *conf;
4731         int working_disks = 0;
4732         int dirty_parity_disks = 0;
4733         struct md_rdev *rdev;
4734         sector_t reshape_offset = 0;
4735
4736         if (mddev->recovery_cp != MaxSector)
4737                 printk(KERN_NOTICE "md/raid:%s: not clean"
4738                        " -- starting background reconstruction\n",
4739                        mdname(mddev));
4740         if (mddev->reshape_position != MaxSector) {
4741                 /* Check that we can continue the reshape.
4742                  * Currently only disks can change, it must
4743                  * increase, and we must be past the point where
4744                  * a stripe over-writes itself
4745                  */
4746                 sector_t here_new, here_old;
4747                 int old_disks;
4748                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4749
4750                 if (mddev->new_level != mddev->level) {
4751                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4752                                "required - aborting.\n",
4753                                mdname(mddev));
4754                         return -EINVAL;
4755                 }
4756                 old_disks = mddev->raid_disks - mddev->delta_disks;
4757                 /* reshape_position must be on a new-stripe boundary, and one
4758                  * further up in new geometry must map after here in old
4759                  * geometry.
4760                  */
4761                 here_new = mddev->reshape_position;
4762                 if (sector_div(here_new, mddev->new_chunk_sectors *
4763                                (mddev->raid_disks - max_degraded))) {
4764                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4765                                "on a stripe boundary\n", mdname(mddev));
4766                         return -EINVAL;
4767                 }
4768                 reshape_offset = here_new * mddev->new_chunk_sectors;
4769                 /* here_new is the stripe we will write to */
4770                 here_old = mddev->reshape_position;
4771                 sector_div(here_old, mddev->chunk_sectors *
4772                            (old_disks-max_degraded));
4773                 /* here_old is the first stripe that we might need to read
4774                  * from */
4775                 if (mddev->delta_disks == 0) {
4776                         /* We cannot be sure it is safe to start an in-place
4777                          * reshape.  It is only safe if user-space if monitoring
4778                          * and taking constant backups.
4779                          * mdadm always starts a situation like this in
4780                          * readonly mode so it can take control before
4781                          * allowing any writes.  So just check for that.
4782                          */
4783                         if ((here_new * mddev->new_chunk_sectors != 
4784                              here_old * mddev->chunk_sectors) ||
4785                             mddev->ro == 0) {
4786                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4787                                        " in read-only mode - aborting\n",
4788                                        mdname(mddev));
4789                                 return -EINVAL;
4790                         }
4791                 } else if (mddev->delta_disks < 0
4792                     ? (here_new * mddev->new_chunk_sectors <=
4793                        here_old * mddev->chunk_sectors)
4794                     : (here_new * mddev->new_chunk_sectors >=
4795                        here_old * mddev->chunk_sectors)) {
4796                         /* Reading from the same stripe as writing to - bad */
4797                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4798                                "auto-recovery - aborting.\n",
4799                                mdname(mddev));
4800                         return -EINVAL;
4801                 }
4802                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4803                        mdname(mddev));
4804                 /* OK, we should be able to continue; */
4805         } else {
4806                 BUG_ON(mddev->level != mddev->new_level);
4807                 BUG_ON(mddev->layout != mddev->new_layout);
4808                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4809                 BUG_ON(mddev->delta_disks != 0);
4810         }
4811
4812         if (mddev->private == NULL)
4813                 conf = setup_conf(mddev);
4814         else
4815                 conf = mddev->private;
4816
4817         if (IS_ERR(conf))
4818                 return PTR_ERR(conf);
4819
4820         mddev->thread = conf->thread;
4821         conf->thread = NULL;
4822         mddev->private = conf;
4823
4824         /*
4825          * 0 for a fully functional array, 1 or 2 for a degraded array.
4826          */
4827         list_for_each_entry(rdev, &mddev->disks, same_set) {
4828                 if (rdev->raid_disk < 0)
4829                         continue;
4830                 if (test_bit(In_sync, &rdev->flags)) {
4831                         working_disks++;
4832                         continue;
4833                 }
4834                 /* This disc is not fully in-sync.  However if it
4835                  * just stored parity (beyond the recovery_offset),
4836                  * when we don't need to be concerned about the
4837                  * array being dirty.
4838                  * When reshape goes 'backwards', we never have
4839                  * partially completed devices, so we only need
4840                  * to worry about reshape going forwards.
4841                  */
4842                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4843                 if (mddev->major_version == 0 &&
4844                     mddev->minor_version > 90)
4845                         rdev->recovery_offset = reshape_offset;
4846                         
4847                 if (rdev->recovery_offset < reshape_offset) {
4848                         /* We need to check old and new layout */
4849                         if (!only_parity(rdev->raid_disk,
4850                                          conf->algorithm,
4851                                          conf->raid_disks,
4852                                          conf->max_degraded))
4853                                 continue;
4854                 }
4855                 if (!only_parity(rdev->raid_disk,
4856                                  conf->prev_algo,
4857                                  conf->previous_raid_disks,
4858                                  conf->max_degraded))
4859                         continue;
4860                 dirty_parity_disks++;
4861         }
4862
4863         mddev->degraded = calc_degraded(conf);
4864
4865         if (has_failed(conf)) {
4866                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4867                         " (%d/%d failed)\n",
4868                         mdname(mddev), mddev->degraded, conf->raid_disks);
4869                 goto abort;
4870         }
4871
4872         /* device size must be a multiple of chunk size */
4873         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4874         mddev->resync_max_sectors = mddev->dev_sectors;
4875
4876         if (mddev->degraded > dirty_parity_disks &&
4877             mddev->recovery_cp != MaxSector) {
4878                 if (mddev->ok_start_degraded)
4879                         printk(KERN_WARNING
4880                                "md/raid:%s: starting dirty degraded array"
4881                                " - data corruption possible.\n",
4882                                mdname(mddev));
4883                 else {
4884                         printk(KERN_ERR
4885                                "md/raid:%s: cannot start dirty degraded array.\n",
4886                                mdname(mddev));
4887                         goto abort;
4888                 }
4889         }
4890
4891         if (mddev->degraded == 0)
4892                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4893                        " devices, algorithm %d\n", mdname(mddev), conf->level,
4894                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4895                        mddev->new_layout);
4896         else
4897                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4898                        " out of %d devices, algorithm %d\n",
4899                        mdname(mddev), conf->level,
4900                        mddev->raid_disks - mddev->degraded,
4901                        mddev->raid_disks, mddev->new_layout);
4902
4903         print_raid5_conf(conf);
4904
4905         if (conf->reshape_progress != MaxSector) {
4906                 conf->reshape_safe = conf->reshape_progress;
4907                 atomic_set(&conf->reshape_stripes, 0);
4908                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4909                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4910                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4911                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4912                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4913                                                         "reshape");
4914         }
4915
4916
4917         /* Ok, everything is just fine now */
4918         if (mddev->to_remove == &raid5_attrs_group)
4919                 mddev->to_remove = NULL;
4920         else if (mddev->kobj.sd &&
4921             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4922                 printk(KERN_WARNING
4923                        "raid5: failed to create sysfs attributes for %s\n",
4924                        mdname(mddev));
4925         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4926
4927         if (mddev->queue) {
4928                 int chunk_size;
4929                 /* read-ahead size must cover two whole stripes, which
4930                  * is 2 * (datadisks) * chunksize where 'n' is the
4931                  * number of raid devices
4932                  */
4933                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4934                 int stripe = data_disks *
4935                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4936                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4937                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4938
4939                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4940
4941                 mddev->queue->backing_dev_info.congested_data = mddev;
4942                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4943
4944                 chunk_size = mddev->chunk_sectors << 9;
4945                 blk_queue_io_min(mddev->queue, chunk_size);
4946                 blk_queue_io_opt(mddev->queue, chunk_size *
4947                                  (conf->raid_disks - conf->max_degraded));
4948
4949                 list_for_each_entry(rdev, &mddev->disks, same_set)
4950                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4951                                           rdev->data_offset << 9);
4952         }
4953
4954         return 0;
4955 abort:
4956         md_unregister_thread(&mddev->thread);
4957         print_raid5_conf(conf);
4958         free_conf(conf);
4959         mddev->private = NULL;
4960         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4961         return -EIO;
4962 }
4963
4964 static int stop(struct mddev *mddev)
4965 {
4966         struct r5conf *conf = mddev->private;
4967
4968         md_unregister_thread(&mddev->thread);
4969         if (mddev->queue)
4970                 mddev->queue->backing_dev_info.congested_fn = NULL;
4971         free_conf(conf);
4972         mddev->private = NULL;
4973         mddev->to_remove = &raid5_attrs_group;
4974         return 0;
4975 }
4976
4977 static void status(struct seq_file *seq, struct mddev *mddev)
4978 {
4979         struct r5conf *conf = mddev->private;
4980         int i;
4981
4982         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
4983                 mddev->chunk_sectors / 2, mddev->layout);
4984         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4985         for (i = 0; i < conf->raid_disks; i++)
4986                 seq_printf (seq, "%s",
4987                                conf->disks[i].rdev &&
4988                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4989         seq_printf (seq, "]");
4990 }
4991
4992 static void print_raid5_conf (struct r5conf *conf)
4993 {
4994         int i;
4995         struct disk_info *tmp;
4996
4997         printk(KERN_DEBUG "RAID conf printout:\n");
4998         if (!conf) {
4999                 printk("(conf==NULL)\n");
5000                 return;
5001         }
5002         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5003                conf->raid_disks,
5004                conf->raid_disks - conf->mddev->degraded);
5005
5006         for (i = 0; i < conf->raid_disks; i++) {
5007                 char b[BDEVNAME_SIZE];
5008                 tmp = conf->disks + i;
5009                 if (tmp->rdev)
5010                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5011                                i, !test_bit(Faulty, &tmp->rdev->flags),
5012                                bdevname(tmp->rdev->bdev, b));
5013         }
5014 }
5015
5016 static int raid5_spare_active(struct mddev *mddev)
5017 {
5018         int i;
5019         struct r5conf *conf = mddev->private;
5020         struct disk_info *tmp;
5021         int count = 0;
5022         unsigned long flags;
5023
5024         for (i = 0; i < conf->raid_disks; i++) {
5025                 tmp = conf->disks + i;
5026                 if (tmp->rdev
5027                     && tmp->rdev->recovery_offset == MaxSector
5028                     && !test_bit(Faulty, &tmp->rdev->flags)
5029                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5030                         count++;
5031                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5032                 }
5033         }
5034         spin_lock_irqsave(&conf->device_lock, flags);
5035         mddev->degraded = calc_degraded(conf);
5036         spin_unlock_irqrestore(&conf->device_lock, flags);
5037         print_raid5_conf(conf);
5038         return count;
5039 }
5040
5041 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5042 {
5043         struct r5conf *conf = mddev->private;
5044         int err = 0;
5045         int number = rdev->raid_disk;
5046         struct disk_info *p = conf->disks + number;
5047
5048         print_raid5_conf(conf);
5049         if (rdev == p->rdev) {
5050                 if (number >= conf->raid_disks &&
5051                     conf->reshape_progress == MaxSector)
5052                         clear_bit(In_sync, &rdev->flags);
5053
5054                 if (test_bit(In_sync, &rdev->flags) ||
5055                     atomic_read(&rdev->nr_pending)) {
5056                         err = -EBUSY;
5057                         goto abort;
5058                 }
5059                 /* Only remove non-faulty devices if recovery
5060                  * isn't possible.
5061                  */
5062                 if (!test_bit(Faulty, &rdev->flags) &&
5063                     mddev->recovery_disabled != conf->recovery_disabled &&
5064                     !has_failed(conf) &&
5065                     number < conf->raid_disks) {
5066                         err = -EBUSY;
5067                         goto abort;
5068                 }
5069                 p->rdev = NULL;
5070                 synchronize_rcu();
5071                 if (atomic_read(&rdev->nr_pending)) {
5072                         /* lost the race, try later */
5073                         err = -EBUSY;
5074                         p->rdev = rdev;
5075                 }
5076         }
5077 abort:
5078
5079         print_raid5_conf(conf);
5080         return err;
5081 }
5082
5083 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5084 {
5085         struct r5conf *conf = mddev->private;
5086         int err = -EEXIST;
5087         int disk;
5088         struct disk_info *p;
5089         int first = 0;
5090         int last = conf->raid_disks - 1;
5091
5092         if (mddev->recovery_disabled == conf->recovery_disabled)
5093                 return -EBUSY;
5094
5095         if (has_failed(conf))
5096                 /* no point adding a device */
5097                 return -EINVAL;
5098
5099         if (rdev->raid_disk >= 0)
5100                 first = last = rdev->raid_disk;
5101
5102         /*
5103          * find the disk ... but prefer rdev->saved_raid_disk
5104          * if possible.
5105          */
5106         if (rdev->saved_raid_disk >= 0 &&
5107             rdev->saved_raid_disk >= first &&
5108             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5109                 disk = rdev->saved_raid_disk;
5110         else
5111                 disk = first;
5112         for ( ; disk <= last ; disk++)
5113                 if ((p=conf->disks + disk)->rdev == NULL) {
5114                         clear_bit(In_sync, &rdev->flags);
5115                         rdev->raid_disk = disk;
5116                         err = 0;
5117                         if (rdev->saved_raid_disk != disk)
5118                                 conf->fullsync = 1;
5119                         rcu_assign_pointer(p->rdev, rdev);
5120                         break;
5121                 }
5122         print_raid5_conf(conf);
5123         return err;
5124 }
5125
5126 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5127 {
5128         /* no resync is happening, and there is enough space
5129          * on all devices, so we can resize.
5130          * We need to make sure resync covers any new space.
5131          * If the array is shrinking we should possibly wait until
5132          * any io in the removed space completes, but it hardly seems
5133          * worth it.
5134          */
5135         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5136         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5137                                                mddev->raid_disks));
5138         if (mddev->array_sectors >
5139             raid5_size(mddev, sectors, mddev->raid_disks))
5140                 return -EINVAL;
5141         set_capacity(mddev->gendisk, mddev->array_sectors);
5142         revalidate_disk(mddev->gendisk);
5143         if (sectors > mddev->dev_sectors &&
5144             mddev->recovery_cp > mddev->dev_sectors) {
5145                 mddev->recovery_cp = mddev->dev_sectors;
5146                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5147         }
5148         mddev->dev_sectors = sectors;
5149         mddev->resync_max_sectors = sectors;
5150         return 0;
5151 }
5152
5153 static int check_stripe_cache(struct mddev *mddev)
5154 {
5155         /* Can only proceed if there are plenty of stripe_heads.
5156          * We need a minimum of one full stripe,, and for sensible progress
5157          * it is best to have about 4 times that.
5158          * If we require 4 times, then the default 256 4K stripe_heads will
5159          * allow for chunk sizes up to 256K, which is probably OK.
5160          * If the chunk size is greater, user-space should request more
5161          * stripe_heads first.
5162          */
5163         struct r5conf *conf = mddev->private;
5164         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5165             > conf->max_nr_stripes ||
5166             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5167             > conf->max_nr_stripes) {
5168                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5169                        mdname(mddev),
5170                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5171                         / STRIPE_SIZE)*4);
5172                 return 0;
5173         }
5174         return 1;
5175 }
5176
5177 static int check_reshape(struct mddev *mddev)
5178 {
5179         struct r5conf *conf = mddev->private;
5180
5181         if (mddev->delta_disks == 0 &&
5182             mddev->new_layout == mddev->layout &&
5183             mddev->new_chunk_sectors == mddev->chunk_sectors)
5184                 return 0; /* nothing to do */
5185         if (mddev->bitmap)
5186                 /* Cannot grow a bitmap yet */
5187                 return -EBUSY;
5188         if (has_failed(conf))
5189                 return -EINVAL;
5190         if (mddev->delta_disks < 0) {
5191                 /* We might be able to shrink, but the devices must
5192                  * be made bigger first.
5193                  * For raid6, 4 is the minimum size.
5194                  * Otherwise 2 is the minimum
5195                  */
5196                 int min = 2;
5197                 if (mddev->level == 6)
5198                         min = 4;
5199                 if (mddev->raid_disks + mddev->delta_disks < min)
5200                         return -EINVAL;
5201         }
5202
5203         if (!check_stripe_cache(mddev))
5204                 return -ENOSPC;
5205
5206         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5207 }
5208
5209 static int raid5_start_reshape(struct mddev *mddev)
5210 {
5211         struct r5conf *conf = mddev->private;
5212         struct md_rdev *rdev;
5213         int spares = 0;
5214         unsigned long flags;
5215
5216         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5217                 return -EBUSY;
5218
5219         if (!check_stripe_cache(mddev))
5220                 return -ENOSPC;
5221
5222         list_for_each_entry(rdev, &mddev->disks, same_set)
5223                 if (!test_bit(In_sync, &rdev->flags)
5224                     && !test_bit(Faulty, &rdev->flags))
5225                         spares++;
5226
5227         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5228                 /* Not enough devices even to make a degraded array
5229                  * of that size
5230                  */
5231                 return -EINVAL;
5232
5233         /* Refuse to reduce size of the array.  Any reductions in
5234          * array size must be through explicit setting of array_size
5235          * attribute.
5236          */
5237         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5238             < mddev->array_sectors) {
5239                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5240                        "before number of disks\n", mdname(mddev));
5241                 return -EINVAL;
5242         }
5243
5244         atomic_set(&conf->reshape_stripes, 0);
5245         spin_lock_irq(&conf->device_lock);
5246         conf->previous_raid_disks = conf->raid_disks;
5247         conf->raid_disks += mddev->delta_disks;
5248         conf->prev_chunk_sectors = conf->chunk_sectors;
5249         conf->chunk_sectors = mddev->new_chunk_sectors;
5250         conf->prev_algo = conf->algorithm;
5251         conf->algorithm = mddev->new_layout;
5252         if (mddev->delta_disks < 0)
5253                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5254         else
5255                 conf->reshape_progress = 0;
5256         conf->reshape_safe = conf->reshape_progress;
5257         conf->generation++;
5258         spin_unlock_irq(&conf->device_lock);
5259
5260         /* Add some new drives, as many as will fit.
5261          * We know there are enough to make the newly sized array work.
5262          * Don't add devices if we are reducing the number of
5263          * devices in the array.  This is because it is not possible
5264          * to correctly record the "partially reconstructed" state of
5265          * such devices during the reshape and confusion could result.
5266          */
5267         if (mddev->delta_disks >= 0) {
5268                 int added_devices = 0;
5269                 list_for_each_entry(rdev, &mddev->disks, same_set)
5270                         if (rdev->raid_disk < 0 &&
5271                             !test_bit(Faulty, &rdev->flags)) {
5272                                 if (raid5_add_disk(mddev, rdev) == 0) {
5273                                         if (rdev->raid_disk
5274                                             >= conf->previous_raid_disks) {
5275                                                 set_bit(In_sync, &rdev->flags);
5276                                                 added_devices++;
5277                                         } else
5278                                                 rdev->recovery_offset = 0;
5279
5280                                         if (sysfs_link_rdev(mddev, rdev))
5281                                                 /* Failure here is OK */;
5282                                 }
5283                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5284                                    && !test_bit(Faulty, &rdev->flags)) {
5285                                 /* This is a spare that was manually added */
5286                                 set_bit(In_sync, &rdev->flags);
5287                                 added_devices++;
5288                         }
5289
5290                 /* When a reshape changes the number of devices,
5291                  * ->degraded is measured against the larger of the
5292                  * pre and post number of devices.
5293                  */
5294                 spin_lock_irqsave(&conf->device_lock, flags);
5295                 mddev->degraded = calc_degraded(conf);
5296                 spin_unlock_irqrestore(&conf->device_lock, flags);
5297         }
5298         mddev->raid_disks = conf->raid_disks;
5299         mddev->reshape_position = conf->reshape_progress;
5300         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5301
5302         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5303         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5304         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5305         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5306         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5307                                                 "reshape");
5308         if (!mddev->sync_thread) {
5309                 mddev->recovery = 0;
5310                 spin_lock_irq(&conf->device_lock);
5311                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5312                 conf->reshape_progress = MaxSector;
5313                 spin_unlock_irq(&conf->device_lock);
5314                 return -EAGAIN;
5315         }
5316         conf->reshape_checkpoint = jiffies;
5317         md_wakeup_thread(mddev->sync_thread);
5318         md_new_event(mddev);
5319         return 0;
5320 }
5321
5322 /* This is called from the reshape thread and should make any
5323  * changes needed in 'conf'
5324  */
5325 static void end_reshape(struct r5conf *conf)
5326 {
5327
5328         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5329
5330                 spin_lock_irq(&conf->device_lock);
5331                 conf->previous_raid_disks = conf->raid_disks;
5332                 conf->reshape_progress = MaxSector;
5333                 spin_unlock_irq(&conf->device_lock);
5334                 wake_up(&conf->wait_for_overlap);
5335
5336                 /* read-ahead size must cover two whole stripes, which is
5337                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5338                  */
5339                 if (conf->mddev->queue) {
5340                         int data_disks = conf->raid_disks - conf->max_degraded;
5341                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5342                                                    / PAGE_SIZE);
5343                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5344                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5345                 }
5346         }
5347 }
5348
5349 /* This is called from the raid5d thread with mddev_lock held.
5350  * It makes config changes to the device.
5351  */
5352 static void raid5_finish_reshape(struct mddev *mddev)
5353 {
5354         struct r5conf *conf = mddev->private;
5355
5356         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5357
5358                 if (mddev->delta_disks > 0) {
5359                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5360                         set_capacity(mddev->gendisk, mddev->array_sectors);
5361                         revalidate_disk(mddev->gendisk);
5362                 } else {
5363                         int d;
5364                         spin_lock_irq(&conf->device_lock);
5365                         mddev->degraded = calc_degraded(conf);
5366                         spin_unlock_irq(&conf->device_lock);
5367                         for (d = conf->raid_disks ;
5368                              d < conf->raid_disks - mddev->delta_disks;
5369                              d++) {
5370                                 struct md_rdev *rdev = conf->disks[d].rdev;
5371                                 if (rdev &&
5372                                     raid5_remove_disk(mddev, rdev) == 0) {
5373                                         sysfs_unlink_rdev(mddev, rdev);
5374                                         rdev->raid_disk = -1;
5375                                 }
5376                         }
5377                 }
5378                 mddev->layout = conf->algorithm;
5379                 mddev->chunk_sectors = conf->chunk_sectors;
5380                 mddev->reshape_position = MaxSector;
5381                 mddev->delta_disks = 0;
5382         }
5383 }
5384
5385 static void raid5_quiesce(struct mddev *mddev, int state)
5386 {
5387         struct r5conf *conf = mddev->private;
5388
5389         switch(state) {
5390         case 2: /* resume for a suspend */
5391                 wake_up(&conf->wait_for_overlap);
5392                 break;
5393
5394         case 1: /* stop all writes */
5395                 spin_lock_irq(&conf->device_lock);
5396                 /* '2' tells resync/reshape to pause so that all
5397                  * active stripes can drain
5398                  */
5399                 conf->quiesce = 2;
5400                 wait_event_lock_irq(conf->wait_for_stripe,
5401                                     atomic_read(&conf->active_stripes) == 0 &&
5402                                     atomic_read(&conf->active_aligned_reads) == 0,
5403                                     conf->device_lock, /* nothing */);
5404                 conf->quiesce = 1;
5405                 spin_unlock_irq(&conf->device_lock);
5406                 /* allow reshape to continue */
5407                 wake_up(&conf->wait_for_overlap);
5408                 break;
5409
5410         case 0: /* re-enable writes */
5411                 spin_lock_irq(&conf->device_lock);
5412                 conf->quiesce = 0;
5413                 wake_up(&conf->wait_for_stripe);
5414                 wake_up(&conf->wait_for_overlap);
5415                 spin_unlock_irq(&conf->device_lock);
5416                 break;
5417         }
5418 }
5419
5420
5421 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5422 {
5423         struct r0conf *raid0_conf = mddev->private;
5424         sector_t sectors;
5425
5426         /* for raid0 takeover only one zone is supported */
5427         if (raid0_conf->nr_strip_zones > 1) {
5428                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5429                        mdname(mddev));
5430                 return ERR_PTR(-EINVAL);
5431         }
5432
5433         sectors = raid0_conf->strip_zone[0].zone_end;
5434         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5435         mddev->dev_sectors = sectors;
5436         mddev->new_level = level;
5437         mddev->new_layout = ALGORITHM_PARITY_N;
5438         mddev->new_chunk_sectors = mddev->chunk_sectors;
5439         mddev->raid_disks += 1;
5440         mddev->delta_disks = 1;
5441         /* make sure it will be not marked as dirty */
5442         mddev->recovery_cp = MaxSector;
5443
5444         return setup_conf(mddev);
5445 }
5446
5447
5448 static void *raid5_takeover_raid1(struct mddev *mddev)
5449 {
5450         int chunksect;
5451
5452         if (mddev->raid_disks != 2 ||
5453             mddev->degraded > 1)
5454                 return ERR_PTR(-EINVAL);
5455
5456         /* Should check if there are write-behind devices? */
5457
5458         chunksect = 64*2; /* 64K by default */
5459
5460         /* The array must be an exact multiple of chunksize */
5461         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5462                 chunksect >>= 1;
5463
5464         if ((chunksect<<9) < STRIPE_SIZE)
5465                 /* array size does not allow a suitable chunk size */
5466                 return ERR_PTR(-EINVAL);
5467
5468         mddev->new_level = 5;
5469         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5470         mddev->new_chunk_sectors = chunksect;
5471
5472         return setup_conf(mddev);
5473 }
5474
5475 static void *raid5_takeover_raid6(struct mddev *mddev)
5476 {
5477         int new_layout;
5478
5479         switch (mddev->layout) {
5480         case ALGORITHM_LEFT_ASYMMETRIC_6:
5481                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5482                 break;
5483         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5484                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5485                 break;
5486         case ALGORITHM_LEFT_SYMMETRIC_6:
5487                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5488                 break;
5489         case ALGORITHM_RIGHT_SYMMETRIC_6:
5490                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5491                 break;
5492         case ALGORITHM_PARITY_0_6:
5493                 new_layout = ALGORITHM_PARITY_0;
5494                 break;
5495         case ALGORITHM_PARITY_N:
5496                 new_layout = ALGORITHM_PARITY_N;
5497                 break;
5498         default:
5499                 return ERR_PTR(-EINVAL);
5500         }
5501         mddev->new_level = 5;
5502         mddev->new_layout = new_layout;
5503         mddev->delta_disks = -1;
5504         mddev->raid_disks -= 1;
5505         return setup_conf(mddev);
5506 }
5507
5508
5509 static int raid5_check_reshape(struct mddev *mddev)
5510 {
5511         /* For a 2-drive array, the layout and chunk size can be changed
5512          * immediately as not restriping is needed.
5513          * For larger arrays we record the new value - after validation
5514          * to be used by a reshape pass.
5515          */
5516         struct r5conf *conf = mddev->private;
5517         int new_chunk = mddev->new_chunk_sectors;
5518
5519         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5520                 return -EINVAL;
5521         if (new_chunk > 0) {
5522                 if (!is_power_of_2(new_chunk))
5523                         return -EINVAL;
5524                 if (new_chunk < (PAGE_SIZE>>9))
5525                         return -EINVAL;
5526                 if (mddev->array_sectors & (new_chunk-1))
5527                         /* not factor of array size */
5528                         return -EINVAL;
5529         }
5530
5531         /* They look valid */
5532
5533         if (mddev->raid_disks == 2) {
5534                 /* can make the change immediately */
5535                 if (mddev->new_layout >= 0) {
5536                         conf->algorithm = mddev->new_layout;
5537                         mddev->layout = mddev->new_layout;
5538                 }
5539                 if (new_chunk > 0) {
5540                         conf->chunk_sectors = new_chunk ;
5541                         mddev->chunk_sectors = new_chunk;
5542                 }
5543                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5544                 md_wakeup_thread(mddev->thread);
5545         }
5546         return check_reshape(mddev);
5547 }
5548
5549 static int raid6_check_reshape(struct mddev *mddev)
5550 {
5551         int new_chunk = mddev->new_chunk_sectors;
5552
5553         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5554                 return -EINVAL;
5555         if (new_chunk > 0) {
5556                 if (!is_power_of_2(new_chunk))
5557                         return -EINVAL;
5558                 if (new_chunk < (PAGE_SIZE >> 9))
5559                         return -EINVAL;
5560                 if (mddev->array_sectors & (new_chunk-1))
5561                         /* not factor of array size */
5562                         return -EINVAL;
5563         }
5564
5565         /* They look valid */
5566         return check_reshape(mddev);
5567 }
5568
5569 static void *raid5_takeover(struct mddev *mddev)
5570 {
5571         /* raid5 can take over:
5572          *  raid0 - if there is only one strip zone - make it a raid4 layout
5573          *  raid1 - if there are two drives.  We need to know the chunk size
5574          *  raid4 - trivial - just use a raid4 layout.
5575          *  raid6 - Providing it is a *_6 layout
5576          */
5577         if (mddev->level == 0)
5578                 return raid45_takeover_raid0(mddev, 5);
5579         if (mddev->level == 1)
5580                 return raid5_takeover_raid1(mddev);
5581         if (mddev->level == 4) {
5582                 mddev->new_layout = ALGORITHM_PARITY_N;
5583                 mddev->new_level = 5;
5584                 return setup_conf(mddev);
5585         }
5586         if (mddev->level == 6)
5587                 return raid5_takeover_raid6(mddev);
5588
5589         return ERR_PTR(-EINVAL);
5590 }
5591
5592 static void *raid4_takeover(struct mddev *mddev)
5593 {
5594         /* raid4 can take over:
5595          *  raid0 - if there is only one strip zone
5596          *  raid5 - if layout is right
5597          */
5598         if (mddev->level == 0)
5599                 return raid45_takeover_raid0(mddev, 4);
5600         if (mddev->level == 5 &&
5601             mddev->layout == ALGORITHM_PARITY_N) {
5602                 mddev->new_layout = 0;
5603                 mddev->new_level = 4;
5604                 return setup_conf(mddev);
5605         }
5606         return ERR_PTR(-EINVAL);
5607 }
5608
5609 static struct md_personality raid5_personality;
5610
5611 static void *raid6_takeover(struct mddev *mddev)
5612 {
5613         /* Currently can only take over a raid5.  We map the
5614          * personality to an equivalent raid6 personality
5615          * with the Q block at the end.
5616          */
5617         int new_layout;
5618
5619         if (mddev->pers != &raid5_personality)
5620                 return ERR_PTR(-EINVAL);
5621         if (mddev->degraded > 1)
5622                 return ERR_PTR(-EINVAL);
5623         if (mddev->raid_disks > 253)
5624                 return ERR_PTR(-EINVAL);
5625         if (mddev->raid_disks < 3)
5626                 return ERR_PTR(-EINVAL);
5627
5628         switch (mddev->layout) {
5629         case ALGORITHM_LEFT_ASYMMETRIC:
5630                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5631                 break;
5632         case ALGORITHM_RIGHT_ASYMMETRIC:
5633                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5634                 break;
5635         case ALGORITHM_LEFT_SYMMETRIC:
5636                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5637                 break;
5638         case ALGORITHM_RIGHT_SYMMETRIC:
5639                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5640                 break;
5641         case ALGORITHM_PARITY_0:
5642                 new_layout = ALGORITHM_PARITY_0_6;
5643                 break;
5644         case ALGORITHM_PARITY_N:
5645                 new_layout = ALGORITHM_PARITY_N;
5646                 break;
5647         default:
5648                 return ERR_PTR(-EINVAL);
5649         }
5650         mddev->new_level = 6;
5651         mddev->new_layout = new_layout;
5652         mddev->delta_disks = 1;
5653         mddev->raid_disks += 1;
5654         return setup_conf(mddev);
5655 }
5656
5657
5658 static struct md_personality raid6_personality =
5659 {
5660         .name           = "raid6",
5661         .level          = 6,
5662         .owner          = THIS_MODULE,
5663         .make_request   = make_request,
5664         .run            = run,
5665         .stop           = stop,
5666         .status         = status,
5667         .error_handler  = error,
5668         .hot_add_disk   = raid5_add_disk,
5669         .hot_remove_disk= raid5_remove_disk,
5670         .spare_active   = raid5_spare_active,
5671         .sync_request   = sync_request,
5672         .resize         = raid5_resize,
5673         .size           = raid5_size,
5674         .check_reshape  = raid6_check_reshape,
5675         .start_reshape  = raid5_start_reshape,
5676         .finish_reshape = raid5_finish_reshape,
5677         .quiesce        = raid5_quiesce,
5678         .takeover       = raid6_takeover,
5679 };
5680 static struct md_personality raid5_personality =
5681 {
5682         .name           = "raid5",
5683         .level          = 5,
5684         .owner          = THIS_MODULE,
5685         .make_request   = make_request,
5686         .run            = run,
5687         .stop           = stop,
5688         .status         = status,
5689         .error_handler  = error,
5690         .hot_add_disk   = raid5_add_disk,
5691         .hot_remove_disk= raid5_remove_disk,
5692         .spare_active   = raid5_spare_active,
5693         .sync_request   = sync_request,
5694         .resize         = raid5_resize,
5695         .size           = raid5_size,
5696         .check_reshape  = raid5_check_reshape,
5697         .start_reshape  = raid5_start_reshape,
5698         .finish_reshape = raid5_finish_reshape,
5699         .quiesce        = raid5_quiesce,
5700         .takeover       = raid5_takeover,
5701 };
5702
5703 static struct md_personality raid4_personality =
5704 {
5705         .name           = "raid4",
5706         .level          = 4,
5707         .owner          = THIS_MODULE,
5708         .make_request   = make_request,
5709         .run            = run,
5710         .stop           = stop,
5711         .status         = status,
5712         .error_handler  = error,
5713         .hot_add_disk   = raid5_add_disk,
5714         .hot_remove_disk= raid5_remove_disk,
5715         .spare_active   = raid5_spare_active,
5716         .sync_request   = sync_request,
5717         .resize         = raid5_resize,
5718         .size           = raid5_size,
5719         .check_reshape  = raid5_check_reshape,
5720         .start_reshape  = raid5_start_reshape,
5721         .finish_reshape = raid5_finish_reshape,
5722         .quiesce        = raid5_quiesce,
5723         .takeover       = raid4_takeover,
5724 };
5725
5726 static int __init raid5_init(void)
5727 {
5728         register_md_personality(&raid6_personality);
5729         register_md_personality(&raid5_personality);
5730         register_md_personality(&raid4_personality);
5731         return 0;
5732 }
5733
5734 static void raid5_exit(void)
5735 {
5736         unregister_md_personality(&raid6_personality);
5737         unregister_md_personality(&raid5_personality);
5738         unregister_md_personality(&raid4_personality);
5739 }
5740
5741 module_init(raid5_init);
5742 module_exit(raid5_exit);
5743 MODULE_LICENSE("GPL");
5744 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5745 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5746 MODULE_ALIAS("md-raid5");
5747 MODULE_ALIAS("md-raid4");
5748 MODULE_ALIAS("md-level-5");
5749 MODULE_ALIAS("md-level-4");
5750 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5751 MODULE_ALIAS("md-raid6");
5752 MODULE_ALIAS("md-level-6");
5753
5754 /* This used to be two separate modules, they were: */
5755 MODULE_ALIAS("raid5");
5756 MODULE_ALIAS("raid6");