46fd651539fe3966fde758a824d9c9bd3a78417b
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55
56 /*
57  * Stripe cache
58  */
59
60 #define NR_STRIPES              256
61 #define STRIPE_SIZE             PAGE_SIZE
62 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
64 #define IO_THRESHOLD            1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_DEBUG     0
84 #define RAID5_PARANOIA  1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90
91 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
92 #if RAID5_DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
101
102 static inline int raid6_next_disk(int disk, int raid_disks)
103 {
104         disk++;
105         return (disk < raid_disks) ? disk : 0;
106 }
107 static void print_raid5_conf (raid5_conf_t *conf);
108
109 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
110 {
111         if (atomic_dec_and_test(&sh->count)) {
112                 BUG_ON(!list_empty(&sh->lru));
113                 BUG_ON(atomic_read(&conf->active_stripes)==0);
114                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
115                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
116                                 list_add_tail(&sh->lru, &conf->delayed_list);
117                                 blk_plug_device(conf->mddev->queue);
118                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
119                                    sh->bm_seq - conf->seq_write > 0) {
120                                 list_add_tail(&sh->lru, &conf->bitmap_list);
121                                 blk_plug_device(conf->mddev->queue);
122                         } else {
123                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
124                                 list_add_tail(&sh->lru, &conf->handle_list);
125                         }
126                         md_wakeup_thread(conf->mddev->thread);
127                 } else {
128                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
129                                 atomic_dec(&conf->preread_active_stripes);
130                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
131                                         md_wakeup_thread(conf->mddev->thread);
132                         }
133                         atomic_dec(&conf->active_stripes);
134                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
135                                 list_add_tail(&sh->lru, &conf->inactive_list);
136                                 wake_up(&conf->wait_for_stripe);
137                         }
138                 }
139         }
140 }
141 static void release_stripe(struct stripe_head *sh)
142 {
143         raid5_conf_t *conf = sh->raid_conf;
144         unsigned long flags;
145
146         spin_lock_irqsave(&conf->device_lock, flags);
147         __release_stripe(conf, sh);
148         spin_unlock_irqrestore(&conf->device_lock, flags);
149 }
150
151 static inline void remove_hash(struct stripe_head *sh)
152 {
153         PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
154
155         hlist_del_init(&sh->hash);
156 }
157
158 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
159 {
160         struct hlist_head *hp = stripe_hash(conf, sh->sector);
161
162         PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
163
164         CHECK_DEVLOCK();
165         hlist_add_head(&sh->hash, hp);
166 }
167
168
169 /* find an idle stripe, make sure it is unhashed, and return it. */
170 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
171 {
172         struct stripe_head *sh = NULL;
173         struct list_head *first;
174
175         CHECK_DEVLOCK();
176         if (list_empty(&conf->inactive_list))
177                 goto out;
178         first = conf->inactive_list.next;
179         sh = list_entry(first, struct stripe_head, lru);
180         list_del_init(first);
181         remove_hash(sh);
182         atomic_inc(&conf->active_stripes);
183 out:
184         return sh;
185 }
186
187 static void shrink_buffers(struct stripe_head *sh, int num)
188 {
189         struct page *p;
190         int i;
191
192         for (i=0; i<num ; i++) {
193                 p = sh->dev[i].page;
194                 if (!p)
195                         continue;
196                 sh->dev[i].page = NULL;
197                 put_page(p);
198         }
199 }
200
201 static int grow_buffers(struct stripe_head *sh, int num)
202 {
203         int i;
204
205         for (i=0; i<num; i++) {
206                 struct page *page;
207
208                 if (!(page = alloc_page(GFP_KERNEL))) {
209                         return 1;
210                 }
211                 sh->dev[i].page = page;
212         }
213         return 0;
214 }
215
216 static void raid5_build_block (struct stripe_head *sh, int i);
217
218 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
219 {
220         raid5_conf_t *conf = sh->raid_conf;
221         int i;
222
223         BUG_ON(atomic_read(&sh->count) != 0);
224         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
225         
226         CHECK_DEVLOCK();
227         PRINTK("init_stripe called, stripe %llu\n", 
228                 (unsigned long long)sh->sector);
229
230         remove_hash(sh);
231
232         sh->sector = sector;
233         sh->pd_idx = pd_idx;
234         sh->state = 0;
235
236         sh->disks = disks;
237
238         for (i = sh->disks; i--; ) {
239                 struct r5dev *dev = &sh->dev[i];
240
241                 if (dev->toread || dev->towrite || dev->written ||
242                     test_bit(R5_LOCKED, &dev->flags)) {
243                         printk("sector=%llx i=%d %p %p %p %d\n",
244                                (unsigned long long)sh->sector, i, dev->toread,
245                                dev->towrite, dev->written,
246                                test_bit(R5_LOCKED, &dev->flags));
247                         BUG();
248                 }
249                 dev->flags = 0;
250                 raid5_build_block(sh, i);
251         }
252         insert_hash(conf, sh);
253 }
254
255 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
256 {
257         struct stripe_head *sh;
258         struct hlist_node *hn;
259
260         CHECK_DEVLOCK();
261         PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
262         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
263                 if (sh->sector == sector && sh->disks == disks)
264                         return sh;
265         PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
266         return NULL;
267 }
268
269 static void unplug_slaves(mddev_t *mddev);
270 static void raid5_unplug_device(request_queue_t *q);
271
272 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
273                                              int pd_idx, int noblock)
274 {
275         struct stripe_head *sh;
276
277         PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
278
279         spin_lock_irq(&conf->device_lock);
280
281         do {
282                 wait_event_lock_irq(conf->wait_for_stripe,
283                                     conf->quiesce == 0,
284                                     conf->device_lock, /* nothing */);
285                 sh = __find_stripe(conf, sector, disks);
286                 if (!sh) {
287                         if (!conf->inactive_blocked)
288                                 sh = get_free_stripe(conf);
289                         if (noblock && sh == NULL)
290                                 break;
291                         if (!sh) {
292                                 conf->inactive_blocked = 1;
293                                 wait_event_lock_irq(conf->wait_for_stripe,
294                                                     !list_empty(&conf->inactive_list) &&
295                                                     (atomic_read(&conf->active_stripes)
296                                                      < (conf->max_nr_stripes *3/4)
297                                                      || !conf->inactive_blocked),
298                                                     conf->device_lock,
299                                                     raid5_unplug_device(conf->mddev->queue)
300                                         );
301                                 conf->inactive_blocked = 0;
302                         } else
303                                 init_stripe(sh, sector, pd_idx, disks);
304                 } else {
305                         if (atomic_read(&sh->count)) {
306                           BUG_ON(!list_empty(&sh->lru));
307                         } else {
308                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
309                                         atomic_inc(&conf->active_stripes);
310                                 if (list_empty(&sh->lru) &&
311                                     !test_bit(STRIPE_EXPANDING, &sh->state))
312                                         BUG();
313                                 list_del_init(&sh->lru);
314                         }
315                 }
316         } while (sh == NULL);
317
318         if (sh)
319                 atomic_inc(&sh->count);
320
321         spin_unlock_irq(&conf->device_lock);
322         return sh;
323 }
324
325 static int grow_one_stripe(raid5_conf_t *conf)
326 {
327         struct stripe_head *sh;
328         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
329         if (!sh)
330                 return 0;
331         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
332         sh->raid_conf = conf;
333         spin_lock_init(&sh->lock);
334
335         if (grow_buffers(sh, conf->raid_disks)) {
336                 shrink_buffers(sh, conf->raid_disks);
337                 kmem_cache_free(conf->slab_cache, sh);
338                 return 0;
339         }
340         sh->disks = conf->raid_disks;
341         /* we just created an active stripe so... */
342         atomic_set(&sh->count, 1);
343         atomic_inc(&conf->active_stripes);
344         INIT_LIST_HEAD(&sh->lru);
345         release_stripe(sh);
346         return 1;
347 }
348
349 static int grow_stripes(raid5_conf_t *conf, int num)
350 {
351         kmem_cache_t *sc;
352         int devs = conf->raid_disks;
353
354         sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
355         sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
356         conf->active_name = 0;
357         sc = kmem_cache_create(conf->cache_name[conf->active_name],
358                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
359                                0, 0, NULL, NULL);
360         if (!sc)
361                 return 1;
362         conf->slab_cache = sc;
363         conf->pool_size = devs;
364         while (num--)
365                 if (!grow_one_stripe(conf))
366                         return 1;
367         return 0;
368 }
369
370 #ifdef CONFIG_MD_RAID5_RESHAPE
371 static int resize_stripes(raid5_conf_t *conf, int newsize)
372 {
373         /* Make all the stripes able to hold 'newsize' devices.
374          * New slots in each stripe get 'page' set to a new page.
375          *
376          * This happens in stages:
377          * 1/ create a new kmem_cache and allocate the required number of
378          *    stripe_heads.
379          * 2/ gather all the old stripe_heads and tranfer the pages across
380          *    to the new stripe_heads.  This will have the side effect of
381          *    freezing the array as once all stripe_heads have been collected,
382          *    no IO will be possible.  Old stripe heads are freed once their
383          *    pages have been transferred over, and the old kmem_cache is
384          *    freed when all stripes are done.
385          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
386          *    we simple return a failre status - no need to clean anything up.
387          * 4/ allocate new pages for the new slots in the new stripe_heads.
388          *    If this fails, we don't bother trying the shrink the
389          *    stripe_heads down again, we just leave them as they are.
390          *    As each stripe_head is processed the new one is released into
391          *    active service.
392          *
393          * Once step2 is started, we cannot afford to wait for a write,
394          * so we use GFP_NOIO allocations.
395          */
396         struct stripe_head *osh, *nsh;
397         LIST_HEAD(newstripes);
398         struct disk_info *ndisks;
399         int err = 0;
400         kmem_cache_t *sc;
401         int i;
402
403         if (newsize <= conf->pool_size)
404                 return 0; /* never bother to shrink */
405
406         /* Step 1 */
407         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
408                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
409                                0, 0, NULL, NULL);
410         if (!sc)
411                 return -ENOMEM;
412
413         for (i = conf->max_nr_stripes; i; i--) {
414                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
415                 if (!nsh)
416                         break;
417
418                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
419
420                 nsh->raid_conf = conf;
421                 spin_lock_init(&nsh->lock);
422
423                 list_add(&nsh->lru, &newstripes);
424         }
425         if (i) {
426                 /* didn't get enough, give up */
427                 while (!list_empty(&newstripes)) {
428                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
429                         list_del(&nsh->lru);
430                         kmem_cache_free(sc, nsh);
431                 }
432                 kmem_cache_destroy(sc);
433                 return -ENOMEM;
434         }
435         /* Step 2 - Must use GFP_NOIO now.
436          * OK, we have enough stripes, start collecting inactive
437          * stripes and copying them over
438          */
439         list_for_each_entry(nsh, &newstripes, lru) {
440                 spin_lock_irq(&conf->device_lock);
441                 wait_event_lock_irq(conf->wait_for_stripe,
442                                     !list_empty(&conf->inactive_list),
443                                     conf->device_lock,
444                                     unplug_slaves(conf->mddev)
445                         );
446                 osh = get_free_stripe(conf);
447                 spin_unlock_irq(&conf->device_lock);
448                 atomic_set(&nsh->count, 1);
449                 for(i=0; i<conf->pool_size; i++)
450                         nsh->dev[i].page = osh->dev[i].page;
451                 for( ; i<newsize; i++)
452                         nsh->dev[i].page = NULL;
453                 kmem_cache_free(conf->slab_cache, osh);
454         }
455         kmem_cache_destroy(conf->slab_cache);
456
457         /* Step 3.
458          * At this point, we are holding all the stripes so the array
459          * is completely stalled, so now is a good time to resize
460          * conf->disks.
461          */
462         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
463         if (ndisks) {
464                 for (i=0; i<conf->raid_disks; i++)
465                         ndisks[i] = conf->disks[i];
466                 kfree(conf->disks);
467                 conf->disks = ndisks;
468         } else
469                 err = -ENOMEM;
470
471         /* Step 4, return new stripes to service */
472         while(!list_empty(&newstripes)) {
473                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
474                 list_del_init(&nsh->lru);
475                 for (i=conf->raid_disks; i < newsize; i++)
476                         if (nsh->dev[i].page == NULL) {
477                                 struct page *p = alloc_page(GFP_NOIO);
478                                 nsh->dev[i].page = p;
479                                 if (!p)
480                                         err = -ENOMEM;
481                         }
482                 release_stripe(nsh);
483         }
484         /* critical section pass, GFP_NOIO no longer needed */
485
486         conf->slab_cache = sc;
487         conf->active_name = 1-conf->active_name;
488         conf->pool_size = newsize;
489         return err;
490 }
491 #endif
492
493 static int drop_one_stripe(raid5_conf_t *conf)
494 {
495         struct stripe_head *sh;
496
497         spin_lock_irq(&conf->device_lock);
498         sh = get_free_stripe(conf);
499         spin_unlock_irq(&conf->device_lock);
500         if (!sh)
501                 return 0;
502         BUG_ON(atomic_read(&sh->count));
503         shrink_buffers(sh, conf->pool_size);
504         kmem_cache_free(conf->slab_cache, sh);
505         atomic_dec(&conf->active_stripes);
506         return 1;
507 }
508
509 static void shrink_stripes(raid5_conf_t *conf)
510 {
511         while (drop_one_stripe(conf))
512                 ;
513
514         if (conf->slab_cache)
515                 kmem_cache_destroy(conf->slab_cache);
516         conf->slab_cache = NULL;
517 }
518
519 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
520                                    int error)
521 {
522         struct stripe_head *sh = bi->bi_private;
523         raid5_conf_t *conf = sh->raid_conf;
524         int disks = sh->disks, i;
525         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
526         char b[BDEVNAME_SIZE];
527         mdk_rdev_t *rdev;
528
529         if (bi->bi_size)
530                 return 1;
531
532         for (i=0 ; i<disks; i++)
533                 if (bi == &sh->dev[i].req)
534                         break;
535
536         PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n", 
537                 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 
538                 uptodate);
539         if (i == disks) {
540                 BUG();
541                 return 0;
542         }
543
544         if (uptodate) {
545 #if 0
546                 struct bio *bio;
547                 unsigned long flags;
548                 spin_lock_irqsave(&conf->device_lock, flags);
549                 /* we can return a buffer if we bypassed the cache or
550                  * if the top buffer is not in highmem.  If there are
551                  * multiple buffers, leave the extra work to
552                  * handle_stripe
553                  */
554                 buffer = sh->bh_read[i];
555                 if (buffer &&
556                     (!PageHighMem(buffer->b_page)
557                      || buffer->b_page == bh->b_page )
558                         ) {
559                         sh->bh_read[i] = buffer->b_reqnext;
560                         buffer->b_reqnext = NULL;
561                 } else
562                         buffer = NULL;
563                 spin_unlock_irqrestore(&conf->device_lock, flags);
564                 if (sh->bh_page[i]==bh->b_page)
565                         set_buffer_uptodate(bh);
566                 if (buffer) {
567                         if (buffer->b_page != bh->b_page)
568                                 memcpy(buffer->b_data, bh->b_data, bh->b_size);
569                         buffer->b_end_io(buffer, 1);
570                 }
571 #else
572                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
573 #endif
574                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
575                         rdev = conf->disks[i].rdev;
576                         printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
577                                mdname(conf->mddev), STRIPE_SECTORS,
578                                (unsigned long long)sh->sector + rdev->data_offset,
579                                bdevname(rdev->bdev, b));
580                         clear_bit(R5_ReadError, &sh->dev[i].flags);
581                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
582                 }
583                 if (atomic_read(&conf->disks[i].rdev->read_errors))
584                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
585         } else {
586                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
587                 int retry = 0;
588                 rdev = conf->disks[i].rdev;
589
590                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
591                 atomic_inc(&rdev->read_errors);
592                 if (conf->mddev->degraded)
593                         printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
594                                mdname(conf->mddev),
595                                (unsigned long long)sh->sector + rdev->data_offset,
596                                bdn);
597                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
598                         /* Oh, no!!! */
599                         printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
600                                mdname(conf->mddev),
601                                (unsigned long long)sh->sector + rdev->data_offset,
602                                bdn);
603                 else if (atomic_read(&rdev->read_errors)
604                          > conf->max_nr_stripes)
605                         printk(KERN_WARNING
606                                "raid5:%s: Too many read errors, failing device %s.\n",
607                                mdname(conf->mddev), bdn);
608                 else
609                         retry = 1;
610                 if (retry)
611                         set_bit(R5_ReadError, &sh->dev[i].flags);
612                 else {
613                         clear_bit(R5_ReadError, &sh->dev[i].flags);
614                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
615                         md_error(conf->mddev, rdev);
616                 }
617         }
618         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
619 #if 0
620         /* must restore b_page before unlocking buffer... */
621         if (sh->bh_page[i] != bh->b_page) {
622                 bh->b_page = sh->bh_page[i];
623                 bh->b_data = page_address(bh->b_page);
624                 clear_buffer_uptodate(bh);
625         }
626 #endif
627         clear_bit(R5_LOCKED, &sh->dev[i].flags);
628         set_bit(STRIPE_HANDLE, &sh->state);
629         release_stripe(sh);
630         return 0;
631 }
632
633 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
634                                     int error)
635 {
636         struct stripe_head *sh = bi->bi_private;
637         raid5_conf_t *conf = sh->raid_conf;
638         int disks = sh->disks, i;
639         unsigned long flags;
640         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
641
642         if (bi->bi_size)
643                 return 1;
644
645         for (i=0 ; i<disks; i++)
646                 if (bi == &sh->dev[i].req)
647                         break;
648
649         PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n", 
650                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
651                 uptodate);
652         if (i == disks) {
653                 BUG();
654                 return 0;
655         }
656
657         spin_lock_irqsave(&conf->device_lock, flags);
658         if (!uptodate)
659                 md_error(conf->mddev, conf->disks[i].rdev);
660
661         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
662         
663         clear_bit(R5_LOCKED, &sh->dev[i].flags);
664         set_bit(STRIPE_HANDLE, &sh->state);
665         __release_stripe(conf, sh);
666         spin_unlock_irqrestore(&conf->device_lock, flags);
667         return 0;
668 }
669
670
671 static sector_t compute_blocknr(struct stripe_head *sh, int i);
672         
673 static void raid5_build_block (struct stripe_head *sh, int i)
674 {
675         struct r5dev *dev = &sh->dev[i];
676
677         bio_init(&dev->req);
678         dev->req.bi_io_vec = &dev->vec;
679         dev->req.bi_vcnt++;
680         dev->req.bi_max_vecs++;
681         dev->vec.bv_page = dev->page;
682         dev->vec.bv_len = STRIPE_SIZE;
683         dev->vec.bv_offset = 0;
684
685         dev->req.bi_sector = sh->sector;
686         dev->req.bi_private = sh;
687
688         dev->flags = 0;
689         dev->sector = compute_blocknr(sh, i);
690 }
691
692 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
693 {
694         char b[BDEVNAME_SIZE];
695         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
696         PRINTK("raid5: error called\n");
697
698         if (!test_bit(Faulty, &rdev->flags)) {
699                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
700                 if (test_bit(In_sync, &rdev->flags)) {
701                         mddev->degraded++;
702                         clear_bit(In_sync, &rdev->flags);
703                         /*
704                          * if recovery was running, make sure it aborts.
705                          */
706                         set_bit(MD_RECOVERY_ERR, &mddev->recovery);
707                 }
708                 set_bit(Faulty, &rdev->flags);
709                 printk (KERN_ALERT
710                         "raid5: Disk failure on %s, disabling device."
711                         " Operation continuing on %d devices\n",
712                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
713         }
714 }
715
716 /*
717  * Input: a 'big' sector number,
718  * Output: index of the data and parity disk, and the sector # in them.
719  */
720 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
721                         unsigned int data_disks, unsigned int * dd_idx,
722                         unsigned int * pd_idx, raid5_conf_t *conf)
723 {
724         long stripe;
725         unsigned long chunk_number;
726         unsigned int chunk_offset;
727         sector_t new_sector;
728         int sectors_per_chunk = conf->chunk_size >> 9;
729
730         /* First compute the information on this sector */
731
732         /*
733          * Compute the chunk number and the sector offset inside the chunk
734          */
735         chunk_offset = sector_div(r_sector, sectors_per_chunk);
736         chunk_number = r_sector;
737         BUG_ON(r_sector != chunk_number);
738
739         /*
740          * Compute the stripe number
741          */
742         stripe = chunk_number / data_disks;
743
744         /*
745          * Compute the data disk and parity disk indexes inside the stripe
746          */
747         *dd_idx = chunk_number % data_disks;
748
749         /*
750          * Select the parity disk based on the user selected algorithm.
751          */
752         switch(conf->level) {
753         case 4:
754                 *pd_idx = data_disks;
755                 break;
756         case 5:
757                 switch (conf->algorithm) {
758                 case ALGORITHM_LEFT_ASYMMETRIC:
759                         *pd_idx = data_disks - stripe % raid_disks;
760                         if (*dd_idx >= *pd_idx)
761                                 (*dd_idx)++;
762                         break;
763                 case ALGORITHM_RIGHT_ASYMMETRIC:
764                         *pd_idx = stripe % raid_disks;
765                         if (*dd_idx >= *pd_idx)
766                                 (*dd_idx)++;
767                         break;
768                 case ALGORITHM_LEFT_SYMMETRIC:
769                         *pd_idx = data_disks - stripe % raid_disks;
770                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
771                         break;
772                 case ALGORITHM_RIGHT_SYMMETRIC:
773                         *pd_idx = stripe % raid_disks;
774                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
775                         break;
776                 default:
777                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
778                                 conf->algorithm);
779                 }
780                 break;
781         case 6:
782
783                 /**** FIX THIS ****/
784                 switch (conf->algorithm) {
785                 case ALGORITHM_LEFT_ASYMMETRIC:
786                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
787                         if (*pd_idx == raid_disks-1)
788                                 (*dd_idx)++;    /* Q D D D P */
789                         else if (*dd_idx >= *pd_idx)
790                                 (*dd_idx) += 2; /* D D P Q D */
791                         break;
792                 case ALGORITHM_RIGHT_ASYMMETRIC:
793                         *pd_idx = stripe % raid_disks;
794                         if (*pd_idx == raid_disks-1)
795                                 (*dd_idx)++;    /* Q D D D P */
796                         else if (*dd_idx >= *pd_idx)
797                                 (*dd_idx) += 2; /* D D P Q D */
798                         break;
799                 case ALGORITHM_LEFT_SYMMETRIC:
800                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
801                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
802                         break;
803                 case ALGORITHM_RIGHT_SYMMETRIC:
804                         *pd_idx = stripe % raid_disks;
805                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
806                         break;
807                 default:
808                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
809                                 conf->algorithm);
810                 }
811                 break;
812         }
813
814         /*
815          * Finally, compute the new sector number
816          */
817         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
818         return new_sector;
819 }
820
821
822 static sector_t compute_blocknr(struct stripe_head *sh, int i)
823 {
824         raid5_conf_t *conf = sh->raid_conf;
825         int raid_disks = sh->disks, data_disks = raid_disks - 1;
826         sector_t new_sector = sh->sector, check;
827         int sectors_per_chunk = conf->chunk_size >> 9;
828         sector_t stripe;
829         int chunk_offset;
830         int chunk_number, dummy1, dummy2, dd_idx = i;
831         sector_t r_sector;
832
833
834         chunk_offset = sector_div(new_sector, sectors_per_chunk);
835         stripe = new_sector;
836         BUG_ON(new_sector != stripe);
837
838         if (i == sh->pd_idx)
839                 return 0;
840         switch(conf->level) {
841         case 4: break;
842         case 5:
843                 switch (conf->algorithm) {
844                 case ALGORITHM_LEFT_ASYMMETRIC:
845                 case ALGORITHM_RIGHT_ASYMMETRIC:
846                         if (i > sh->pd_idx)
847                                 i--;
848                         break;
849                 case ALGORITHM_LEFT_SYMMETRIC:
850                 case ALGORITHM_RIGHT_SYMMETRIC:
851                         if (i < sh->pd_idx)
852                                 i += raid_disks;
853                         i -= (sh->pd_idx + 1);
854                         break;
855                 default:
856                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
857                                conf->algorithm);
858                 }
859                 break;
860         case 6:
861                 data_disks = raid_disks - 2;
862                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
863                         return 0; /* It is the Q disk */
864                 switch (conf->algorithm) {
865                 case ALGORITHM_LEFT_ASYMMETRIC:
866                 case ALGORITHM_RIGHT_ASYMMETRIC:
867                         if (sh->pd_idx == raid_disks-1)
868                                 i--;    /* Q D D D P */
869                         else if (i > sh->pd_idx)
870                                 i -= 2; /* D D P Q D */
871                         break;
872                 case ALGORITHM_LEFT_SYMMETRIC:
873                 case ALGORITHM_RIGHT_SYMMETRIC:
874                         if (sh->pd_idx == raid_disks-1)
875                                 i--; /* Q D D D P */
876                         else {
877                                 /* D D P Q D */
878                                 if (i < sh->pd_idx)
879                                         i += raid_disks;
880                                 i -= (sh->pd_idx + 2);
881                         }
882                         break;
883                 default:
884                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
885                                 conf->algorithm);
886                 }
887                 break;
888         }
889
890         chunk_number = stripe * data_disks + i;
891         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
892
893         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
894         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
895                 printk(KERN_ERR "compute_blocknr: map not correct\n");
896                 return 0;
897         }
898         return r_sector;
899 }
900
901
902
903 /*
904  * Copy data between a page in the stripe cache, and one or more bion
905  * The page could align with the middle of the bio, or there could be
906  * several bion, each with several bio_vecs, which cover part of the page
907  * Multiple bion are linked together on bi_next.  There may be extras
908  * at the end of this list.  We ignore them.
909  */
910 static void copy_data(int frombio, struct bio *bio,
911                      struct page *page,
912                      sector_t sector)
913 {
914         char *pa = page_address(page);
915         struct bio_vec *bvl;
916         int i;
917         int page_offset;
918
919         if (bio->bi_sector >= sector)
920                 page_offset = (signed)(bio->bi_sector - sector) * 512;
921         else
922                 page_offset = (signed)(sector - bio->bi_sector) * -512;
923         bio_for_each_segment(bvl, bio, i) {
924                 int len = bio_iovec_idx(bio,i)->bv_len;
925                 int clen;
926                 int b_offset = 0;
927
928                 if (page_offset < 0) {
929                         b_offset = -page_offset;
930                         page_offset += b_offset;
931                         len -= b_offset;
932                 }
933
934                 if (len > 0 && page_offset + len > STRIPE_SIZE)
935                         clen = STRIPE_SIZE - page_offset;
936                 else clen = len;
937
938                 if (clen > 0) {
939                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
940                         if (frombio)
941                                 memcpy(pa+page_offset, ba+b_offset, clen);
942                         else
943                                 memcpy(ba+b_offset, pa+page_offset, clen);
944                         __bio_kunmap_atomic(ba, KM_USER0);
945                 }
946                 if (clen < len) /* hit end of page */
947                         break;
948                 page_offset +=  len;
949         }
950 }
951
952 #define check_xor()     do {                                            \
953                            if (count == MAX_XOR_BLOCKS) {               \
954                                 xor_block(count, STRIPE_SIZE, ptr);     \
955                                 count = 1;                              \
956                            }                                            \
957                         } while(0)
958
959
960 static void compute_block(struct stripe_head *sh, int dd_idx)
961 {
962         int i, count, disks = sh->disks;
963         void *ptr[MAX_XOR_BLOCKS], *p;
964
965         PRINTK("compute_block, stripe %llu, idx %d\n", 
966                 (unsigned long long)sh->sector, dd_idx);
967
968         ptr[0] = page_address(sh->dev[dd_idx].page);
969         memset(ptr[0], 0, STRIPE_SIZE);
970         count = 1;
971         for (i = disks ; i--; ) {
972                 if (i == dd_idx)
973                         continue;
974                 p = page_address(sh->dev[i].page);
975                 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
976                         ptr[count++] = p;
977                 else
978                         printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
979                                 " not present\n", dd_idx,
980                                 (unsigned long long)sh->sector, i);
981
982                 check_xor();
983         }
984         if (count != 1)
985                 xor_block(count, STRIPE_SIZE, ptr);
986         set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
987 }
988
989 static void compute_parity5(struct stripe_head *sh, int method)
990 {
991         raid5_conf_t *conf = sh->raid_conf;
992         int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
993         void *ptr[MAX_XOR_BLOCKS];
994         struct bio *chosen;
995
996         PRINTK("compute_parity5, stripe %llu, method %d\n",
997                 (unsigned long long)sh->sector, method);
998
999         count = 1;
1000         ptr[0] = page_address(sh->dev[pd_idx].page);
1001         switch(method) {
1002         case READ_MODIFY_WRITE:
1003                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
1004                 for (i=disks ; i-- ;) {
1005                         if (i==pd_idx)
1006                                 continue;
1007                         if (sh->dev[i].towrite &&
1008                             test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1009                                 ptr[count++] = page_address(sh->dev[i].page);
1010                                 chosen = sh->dev[i].towrite;
1011                                 sh->dev[i].towrite = NULL;
1012
1013                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1014                                         wake_up(&conf->wait_for_overlap);
1015
1016                                 BUG_ON(sh->dev[i].written);
1017                                 sh->dev[i].written = chosen;
1018                                 check_xor();
1019                         }
1020                 }
1021                 break;
1022         case RECONSTRUCT_WRITE:
1023                 memset(ptr[0], 0, STRIPE_SIZE);
1024                 for (i= disks; i-- ;)
1025                         if (i!=pd_idx && sh->dev[i].towrite) {
1026                                 chosen = sh->dev[i].towrite;
1027                                 sh->dev[i].towrite = NULL;
1028
1029                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1030                                         wake_up(&conf->wait_for_overlap);
1031
1032                                 BUG_ON(sh->dev[i].written);
1033                                 sh->dev[i].written = chosen;
1034                         }
1035                 break;
1036         case CHECK_PARITY:
1037                 break;
1038         }
1039         if (count>1) {
1040                 xor_block(count, STRIPE_SIZE, ptr);
1041                 count = 1;
1042         }
1043         
1044         for (i = disks; i--;)
1045                 if (sh->dev[i].written) {
1046                         sector_t sector = sh->dev[i].sector;
1047                         struct bio *wbi = sh->dev[i].written;
1048                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1049                                 copy_data(1, wbi, sh->dev[i].page, sector);
1050                                 wbi = r5_next_bio(wbi, sector);
1051                         }
1052
1053                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1054                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1055                 }
1056
1057         switch(method) {
1058         case RECONSTRUCT_WRITE:
1059         case CHECK_PARITY:
1060                 for (i=disks; i--;)
1061                         if (i != pd_idx) {
1062                                 ptr[count++] = page_address(sh->dev[i].page);
1063                                 check_xor();
1064                         }
1065                 break;
1066         case READ_MODIFY_WRITE:
1067                 for (i = disks; i--;)
1068                         if (sh->dev[i].written) {
1069                                 ptr[count++] = page_address(sh->dev[i].page);
1070                                 check_xor();
1071                         }
1072         }
1073         if (count != 1)
1074                 xor_block(count, STRIPE_SIZE, ptr);
1075         
1076         if (method != CHECK_PARITY) {
1077                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1078                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1079         } else
1080                 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1081 }
1082
1083 static void compute_parity6(struct stripe_head *sh, int method)
1084 {
1085         raid6_conf_t *conf = sh->raid_conf;
1086         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1087         struct bio *chosen;
1088         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1089         void *ptrs[disks];
1090
1091         qd_idx = raid6_next_disk(pd_idx, disks);
1092         d0_idx = raid6_next_disk(qd_idx, disks);
1093
1094         PRINTK("compute_parity, stripe %llu, method %d\n",
1095                 (unsigned long long)sh->sector, method);
1096
1097         switch(method) {
1098         case READ_MODIFY_WRITE:
1099                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1100         case RECONSTRUCT_WRITE:
1101                 for (i= disks; i-- ;)
1102                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1103                                 chosen = sh->dev[i].towrite;
1104                                 sh->dev[i].towrite = NULL;
1105
1106                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1107                                         wake_up(&conf->wait_for_overlap);
1108
1109                                 if (sh->dev[i].written) BUG();
1110                                 sh->dev[i].written = chosen;
1111                         }
1112                 break;
1113         case CHECK_PARITY:
1114                 BUG();          /* Not implemented yet */
1115         }
1116
1117         for (i = disks; i--;)
1118                 if (sh->dev[i].written) {
1119                         sector_t sector = sh->dev[i].sector;
1120                         struct bio *wbi = sh->dev[i].written;
1121                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1122                                 copy_data(1, wbi, sh->dev[i].page, sector);
1123                                 wbi = r5_next_bio(wbi, sector);
1124                         }
1125
1126                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1127                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1128                 }
1129
1130 //      switch(method) {
1131 //      case RECONSTRUCT_WRITE:
1132 //      case CHECK_PARITY:
1133 //      case UPDATE_PARITY:
1134                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1135                 /* FIX: Is this ordering of drives even remotely optimal? */
1136                 count = 0;
1137                 i = d0_idx;
1138                 do {
1139                         ptrs[count++] = page_address(sh->dev[i].page);
1140                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1141                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1142                         i = raid6_next_disk(i, disks);
1143                 } while ( i != d0_idx );
1144 //              break;
1145 //      }
1146
1147         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1148
1149         switch(method) {
1150         case RECONSTRUCT_WRITE:
1151                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1152                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1153                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1154                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1155                 break;
1156         case UPDATE_PARITY:
1157                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1158                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1159                 break;
1160         }
1161 }
1162
1163
1164 /* Compute one missing block */
1165 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1166 {
1167         raid6_conf_t *conf = sh->raid_conf;
1168         int i, count, disks = conf->raid_disks;
1169         void *ptr[MAX_XOR_BLOCKS], *p;
1170         int pd_idx = sh->pd_idx;
1171         int qd_idx = raid6_next_disk(pd_idx, disks);
1172
1173         PRINTK("compute_block_1, stripe %llu, idx %d\n",
1174                 (unsigned long long)sh->sector, dd_idx);
1175
1176         if ( dd_idx == qd_idx ) {
1177                 /* We're actually computing the Q drive */
1178                 compute_parity6(sh, UPDATE_PARITY);
1179         } else {
1180                 ptr[0] = page_address(sh->dev[dd_idx].page);
1181                 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1182                 count = 1;
1183                 for (i = disks ; i--; ) {
1184                         if (i == dd_idx || i == qd_idx)
1185                                 continue;
1186                         p = page_address(sh->dev[i].page);
1187                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1188                                 ptr[count++] = p;
1189                         else
1190                                 printk("compute_block() %d, stripe %llu, %d"
1191                                        " not present\n", dd_idx,
1192                                        (unsigned long long)sh->sector, i);
1193
1194                         check_xor();
1195                 }
1196                 if (count != 1)
1197                         xor_block(count, STRIPE_SIZE, ptr);
1198                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1199                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1200         }
1201 }
1202
1203 /* Compute two missing blocks */
1204 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1205 {
1206         raid6_conf_t *conf = sh->raid_conf;
1207         int i, count, disks = conf->raid_disks;
1208         int pd_idx = sh->pd_idx;
1209         int qd_idx = raid6_next_disk(pd_idx, disks);
1210         int d0_idx = raid6_next_disk(qd_idx, disks);
1211         int faila, failb;
1212
1213         /* faila and failb are disk numbers relative to d0_idx */
1214         /* pd_idx become disks-2 and qd_idx become disks-1 */
1215         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1216         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1217
1218         BUG_ON(faila == failb);
1219         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1220
1221         PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1222                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1223
1224         if ( failb == disks-1 ) {
1225                 /* Q disk is one of the missing disks */
1226                 if ( faila == disks-2 ) {
1227                         /* Missing P+Q, just recompute */
1228                         compute_parity6(sh, UPDATE_PARITY);
1229                         return;
1230                 } else {
1231                         /* We're missing D+Q; recompute D from P */
1232                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1233                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1234                         return;
1235                 }
1236         }
1237
1238         /* We're missing D+P or D+D; build pointer table */
1239         {
1240                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1241                 void *ptrs[disks];
1242
1243                 count = 0;
1244                 i = d0_idx;
1245                 do {
1246                         ptrs[count++] = page_address(sh->dev[i].page);
1247                         i = raid6_next_disk(i, disks);
1248                         if (i != dd_idx1 && i != dd_idx2 &&
1249                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1250                                 printk("compute_2 with missing block %d/%d\n", count, i);
1251                 } while ( i != d0_idx );
1252
1253                 if ( failb == disks-2 ) {
1254                         /* We're missing D+P. */
1255                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1256                 } else {
1257                         /* We're missing D+D. */
1258                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1259                 }
1260
1261                 /* Both the above update both missing blocks */
1262                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1263                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1264         }
1265 }
1266
1267
1268
1269 /*
1270  * Each stripe/dev can have one or more bion attached.
1271  * toread/towrite point to the first in a chain.
1272  * The bi_next chain must be in order.
1273  */
1274 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1275 {
1276         struct bio **bip;
1277         raid5_conf_t *conf = sh->raid_conf;
1278         int firstwrite=0;
1279
1280         PRINTK("adding bh b#%llu to stripe s#%llu\n",
1281                 (unsigned long long)bi->bi_sector,
1282                 (unsigned long long)sh->sector);
1283
1284
1285         spin_lock(&sh->lock);
1286         spin_lock_irq(&conf->device_lock);
1287         if (forwrite) {
1288                 bip = &sh->dev[dd_idx].towrite;
1289                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1290                         firstwrite = 1;
1291         } else
1292                 bip = &sh->dev[dd_idx].toread;
1293         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1294                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1295                         goto overlap;
1296                 bip = & (*bip)->bi_next;
1297         }
1298         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1299                 goto overlap;
1300
1301         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1302         if (*bip)
1303                 bi->bi_next = *bip;
1304         *bip = bi;
1305         bi->bi_phys_segments ++;
1306         spin_unlock_irq(&conf->device_lock);
1307         spin_unlock(&sh->lock);
1308
1309         PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1310                 (unsigned long long)bi->bi_sector,
1311                 (unsigned long long)sh->sector, dd_idx);
1312
1313         if (conf->mddev->bitmap && firstwrite) {
1314                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1315                                   STRIPE_SECTORS, 0);
1316                 sh->bm_seq = conf->seq_flush+1;
1317                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1318         }
1319
1320         if (forwrite) {
1321                 /* check if page is covered */
1322                 sector_t sector = sh->dev[dd_idx].sector;
1323                 for (bi=sh->dev[dd_idx].towrite;
1324                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1325                              bi && bi->bi_sector <= sector;
1326                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1327                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1328                                 sector = bi->bi_sector + (bi->bi_size>>9);
1329                 }
1330                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1331                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1332         }
1333         return 1;
1334
1335  overlap:
1336         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1337         spin_unlock_irq(&conf->device_lock);
1338         spin_unlock(&sh->lock);
1339         return 0;
1340 }
1341
1342 static void end_reshape(raid5_conf_t *conf);
1343
1344 static int page_is_zero(struct page *p)
1345 {
1346         char *a = page_address(p);
1347         return ((*(u32*)a) == 0 &&
1348                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1349 }
1350
1351 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1352 {
1353         int sectors_per_chunk = conf->chunk_size >> 9;
1354         int pd_idx, dd_idx;
1355         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1356
1357         raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1358                              + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1359         return pd_idx;
1360 }
1361
1362
1363 /*
1364  * handle_stripe - do things to a stripe.
1365  *
1366  * We lock the stripe and then examine the state of various bits
1367  * to see what needs to be done.
1368  * Possible results:
1369  *    return some read request which now have data
1370  *    return some write requests which are safely on disc
1371  *    schedule a read on some buffers
1372  *    schedule a write of some buffers
1373  *    return confirmation of parity correctness
1374  *
1375  * Parity calculations are done inside the stripe lock
1376  * buffers are taken off read_list or write_list, and bh_cache buffers
1377  * get BH_Lock set before the stripe lock is released.
1378  *
1379  */
1380  
1381 static void handle_stripe5(struct stripe_head *sh)
1382 {
1383         raid5_conf_t *conf = sh->raid_conf;
1384         int disks = sh->disks;
1385         struct bio *return_bi= NULL;
1386         struct bio *bi;
1387         int i;
1388         int syncing, expanding, expanded;
1389         int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1390         int non_overwrite = 0;
1391         int failed_num=0;
1392         struct r5dev *dev;
1393
1394         PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1395                 (unsigned long long)sh->sector, atomic_read(&sh->count),
1396                 sh->pd_idx);
1397
1398         spin_lock(&sh->lock);
1399         clear_bit(STRIPE_HANDLE, &sh->state);
1400         clear_bit(STRIPE_DELAYED, &sh->state);
1401
1402         syncing = test_bit(STRIPE_SYNCING, &sh->state);
1403         expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1404         expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1405         /* Now to look around and see what can be done */
1406
1407         rcu_read_lock();
1408         for (i=disks; i--; ) {
1409                 mdk_rdev_t *rdev;
1410                 dev = &sh->dev[i];
1411                 clear_bit(R5_Insync, &dev->flags);
1412
1413                 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1414                         i, dev->flags, dev->toread, dev->towrite, dev->written);
1415                 /* maybe we can reply to a read */
1416                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1417                         struct bio *rbi, *rbi2;
1418                         PRINTK("Return read for disc %d\n", i);
1419                         spin_lock_irq(&conf->device_lock);
1420                         rbi = dev->toread;
1421                         dev->toread = NULL;
1422                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1423                                 wake_up(&conf->wait_for_overlap);
1424                         spin_unlock_irq(&conf->device_lock);
1425                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1426                                 copy_data(0, rbi, dev->page, dev->sector);
1427                                 rbi2 = r5_next_bio(rbi, dev->sector);
1428                                 spin_lock_irq(&conf->device_lock);
1429                                 if (--rbi->bi_phys_segments == 0) {
1430                                         rbi->bi_next = return_bi;
1431                                         return_bi = rbi;
1432                                 }
1433                                 spin_unlock_irq(&conf->device_lock);
1434                                 rbi = rbi2;
1435                         }
1436                 }
1437
1438                 /* now count some things */
1439                 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1440                 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1441
1442                 
1443                 if (dev->toread) to_read++;
1444                 if (dev->towrite) {
1445                         to_write++;
1446                         if (!test_bit(R5_OVERWRITE, &dev->flags))
1447                                 non_overwrite++;
1448                 }
1449                 if (dev->written) written++;
1450                 rdev = rcu_dereference(conf->disks[i].rdev);
1451                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1452                         /* The ReadError flag will just be confusing now */
1453                         clear_bit(R5_ReadError, &dev->flags);
1454                         clear_bit(R5_ReWrite, &dev->flags);
1455                 }
1456                 if (!rdev || !test_bit(In_sync, &rdev->flags)
1457                     || test_bit(R5_ReadError, &dev->flags)) {
1458                         failed++;
1459                         failed_num = i;
1460                 } else
1461                         set_bit(R5_Insync, &dev->flags);
1462         }
1463         rcu_read_unlock();
1464         PRINTK("locked=%d uptodate=%d to_read=%d"
1465                 " to_write=%d failed=%d failed_num=%d\n",
1466                 locked, uptodate, to_read, to_write, failed, failed_num);
1467         /* check if the array has lost two devices and, if so, some requests might
1468          * need to be failed
1469          */
1470         if (failed > 1 && to_read+to_write+written) {
1471                 for (i=disks; i--; ) {
1472                         int bitmap_end = 0;
1473
1474                         if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1475                                 mdk_rdev_t *rdev;
1476                                 rcu_read_lock();
1477                                 rdev = rcu_dereference(conf->disks[i].rdev);
1478                                 if (rdev && test_bit(In_sync, &rdev->flags))
1479                                         /* multiple read failures in one stripe */
1480                                         md_error(conf->mddev, rdev);
1481                                 rcu_read_unlock();
1482                         }
1483
1484                         spin_lock_irq(&conf->device_lock);
1485                         /* fail all writes first */
1486                         bi = sh->dev[i].towrite;
1487                         sh->dev[i].towrite = NULL;
1488                         if (bi) { to_write--; bitmap_end = 1; }
1489
1490                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1491                                 wake_up(&conf->wait_for_overlap);
1492
1493                         while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1494                                 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1495                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1496                                 if (--bi->bi_phys_segments == 0) {
1497                                         md_write_end(conf->mddev);
1498                                         bi->bi_next = return_bi;
1499                                         return_bi = bi;
1500                                 }
1501                                 bi = nextbi;
1502                         }
1503                         /* and fail all 'written' */
1504                         bi = sh->dev[i].written;
1505                         sh->dev[i].written = NULL;
1506                         if (bi) bitmap_end = 1;
1507                         while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1508                                 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1509                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1510                                 if (--bi->bi_phys_segments == 0) {
1511                                         md_write_end(conf->mddev);
1512                                         bi->bi_next = return_bi;
1513                                         return_bi = bi;
1514                                 }
1515                                 bi = bi2;
1516                         }
1517
1518                         /* fail any reads if this device is non-operational */
1519                         if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1520                             test_bit(R5_ReadError, &sh->dev[i].flags)) {
1521                                 bi = sh->dev[i].toread;
1522                                 sh->dev[i].toread = NULL;
1523                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1524                                         wake_up(&conf->wait_for_overlap);
1525                                 if (bi) to_read--;
1526                                 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1527                                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1528                                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1529                                         if (--bi->bi_phys_segments == 0) {
1530                                                 bi->bi_next = return_bi;
1531                                                 return_bi = bi;
1532                                         }
1533                                         bi = nextbi;
1534                                 }
1535                         }
1536                         spin_unlock_irq(&conf->device_lock);
1537                         if (bitmap_end)
1538                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1539                                                 STRIPE_SECTORS, 0, 0);
1540                 }
1541         }
1542         if (failed > 1 && syncing) {
1543                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1544                 clear_bit(STRIPE_SYNCING, &sh->state);
1545                 syncing = 0;
1546         }
1547
1548         /* might be able to return some write requests if the parity block
1549          * is safe, or on a failed drive
1550          */
1551         dev = &sh->dev[sh->pd_idx];
1552         if ( written &&
1553              ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1554                 test_bit(R5_UPTODATE, &dev->flags))
1555                || (failed == 1 && failed_num == sh->pd_idx))
1556             ) {
1557             /* any written block on an uptodate or failed drive can be returned.
1558              * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 
1559              * never LOCKED, so we don't need to test 'failed' directly.
1560              */
1561             for (i=disks; i--; )
1562                 if (sh->dev[i].written) {
1563                     dev = &sh->dev[i];
1564                     if (!test_bit(R5_LOCKED, &dev->flags) &&
1565                          test_bit(R5_UPTODATE, &dev->flags) ) {
1566                         /* We can return any write requests */
1567                             struct bio *wbi, *wbi2;
1568                             int bitmap_end = 0;
1569                             PRINTK("Return write for disc %d\n", i);
1570                             spin_lock_irq(&conf->device_lock);
1571                             wbi = dev->written;
1572                             dev->written = NULL;
1573                             while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1574                                     wbi2 = r5_next_bio(wbi, dev->sector);
1575                                     if (--wbi->bi_phys_segments == 0) {
1576                                             md_write_end(conf->mddev);
1577                                             wbi->bi_next = return_bi;
1578                                             return_bi = wbi;
1579                                     }
1580                                     wbi = wbi2;
1581                             }
1582                             if (dev->towrite == NULL)
1583                                     bitmap_end = 1;
1584                             spin_unlock_irq(&conf->device_lock);
1585                             if (bitmap_end)
1586                                     bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1587                                                     STRIPE_SECTORS,
1588                                                     !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1589                     }
1590                 }
1591         }
1592
1593         /* Now we might consider reading some blocks, either to check/generate
1594          * parity, or to satisfy requests
1595          * or to load a block that is being partially written.
1596          */
1597         if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1598                 for (i=disks; i--;) {
1599                         dev = &sh->dev[i];
1600                         if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1601                             (dev->toread ||
1602                              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1603                              syncing ||
1604                              expanding ||
1605                              (failed && (sh->dev[failed_num].toread ||
1606                                          (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1607                                     )
1608                                 ) {
1609                                 /* we would like to get this block, possibly
1610                                  * by computing it, but we might not be able to
1611                                  */
1612                                 if (uptodate == disks-1) {
1613                                         PRINTK("Computing block %d\n", i);
1614                                         compute_block(sh, i);
1615                                         uptodate++;
1616                                 } else if (test_bit(R5_Insync, &dev->flags)) {
1617                                         set_bit(R5_LOCKED, &dev->flags);
1618                                         set_bit(R5_Wantread, &dev->flags);
1619 #if 0
1620                                         /* if I am just reading this block and we don't have
1621                                            a failed drive, or any pending writes then sidestep the cache */
1622                                         if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1623                                             ! syncing && !failed && !to_write) {
1624                                                 sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
1625                                                 sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
1626                                         }
1627 #endif
1628                                         locked++;
1629                                         PRINTK("Reading block %d (sync=%d)\n", 
1630                                                 i, syncing);
1631                                 }
1632                         }
1633                 }
1634                 set_bit(STRIPE_HANDLE, &sh->state);
1635         }
1636
1637         /* now to consider writing and what else, if anything should be read */
1638         if (to_write) {
1639                 int rmw=0, rcw=0;
1640                 for (i=disks ; i--;) {
1641                         /* would I have to read this buffer for read_modify_write */
1642                         dev = &sh->dev[i];
1643                         if ((dev->towrite || i == sh->pd_idx) &&
1644                             (!test_bit(R5_LOCKED, &dev->flags) 
1645 #if 0
1646 || sh->bh_page[i]!=bh->b_page
1647 #endif
1648                                     ) &&
1649                             !test_bit(R5_UPTODATE, &dev->flags)) {
1650                                 if (test_bit(R5_Insync, &dev->flags)
1651 /*                                  && !(!mddev->insync && i == sh->pd_idx) */
1652                                         )
1653                                         rmw++;
1654                                 else rmw += 2*disks;  /* cannot read it */
1655                         }
1656                         /* Would I have to read this buffer for reconstruct_write */
1657                         if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1658                             (!test_bit(R5_LOCKED, &dev->flags) 
1659 #if 0
1660 || sh->bh_page[i] != bh->b_page
1661 #endif
1662                                     ) &&
1663                             !test_bit(R5_UPTODATE, &dev->flags)) {
1664                                 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1665                                 else rcw += 2*disks;
1666                         }
1667                 }
1668                 PRINTK("for sector %llu, rmw=%d rcw=%d\n", 
1669                         (unsigned long long)sh->sector, rmw, rcw);
1670                 set_bit(STRIPE_HANDLE, &sh->state);
1671                 if (rmw < rcw && rmw > 0)
1672                         /* prefer read-modify-write, but need to get some data */
1673                         for (i=disks; i--;) {
1674                                 dev = &sh->dev[i];
1675                                 if ((dev->towrite || i == sh->pd_idx) &&
1676                                     !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1677                                     test_bit(R5_Insync, &dev->flags)) {
1678                                         if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1679                                         {
1680                                                 PRINTK("Read_old block %d for r-m-w\n", i);
1681                                                 set_bit(R5_LOCKED, &dev->flags);
1682                                                 set_bit(R5_Wantread, &dev->flags);
1683                                                 locked++;
1684                                         } else {
1685                                                 set_bit(STRIPE_DELAYED, &sh->state);
1686                                                 set_bit(STRIPE_HANDLE, &sh->state);
1687                                         }
1688                                 }
1689                         }
1690                 if (rcw <= rmw && rcw > 0)
1691                         /* want reconstruct write, but need to get some data */
1692                         for (i=disks; i--;) {
1693                                 dev = &sh->dev[i];
1694                                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1695                                     !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1696                                     test_bit(R5_Insync, &dev->flags)) {
1697                                         if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1698                                         {
1699                                                 PRINTK("Read_old block %d for Reconstruct\n", i);
1700                                                 set_bit(R5_LOCKED, &dev->flags);
1701                                                 set_bit(R5_Wantread, &dev->flags);
1702                                                 locked++;
1703                                         } else {
1704                                                 set_bit(STRIPE_DELAYED, &sh->state);
1705                                                 set_bit(STRIPE_HANDLE, &sh->state);
1706                                         }
1707                                 }
1708                         }
1709                 /* now if nothing is locked, and if we have enough data, we can start a write request */
1710                 if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1711                     !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1712                         PRINTK("Computing parity...\n");
1713                         compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1714                         /* now every locked buffer is ready to be written */
1715                         for (i=disks; i--;)
1716                                 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1717                                         PRINTK("Writing block %d\n", i);
1718                                         locked++;
1719                                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
1720                                         if (!test_bit(R5_Insync, &sh->dev[i].flags)
1721                                             || (i==sh->pd_idx && failed == 0))
1722                                                 set_bit(STRIPE_INSYNC, &sh->state);
1723                                 }
1724                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1725                                 atomic_dec(&conf->preread_active_stripes);
1726                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1727                                         md_wakeup_thread(conf->mddev->thread);
1728                         }
1729                 }
1730         }
1731
1732         /* maybe we need to check and possibly fix the parity for this stripe
1733          * Any reads will already have been scheduled, so we just see if enough data
1734          * is available
1735          */
1736         if (syncing && locked == 0 &&
1737             !test_bit(STRIPE_INSYNC, &sh->state)) {
1738                 set_bit(STRIPE_HANDLE, &sh->state);
1739                 if (failed == 0) {
1740                         BUG_ON(uptodate != disks);
1741                         compute_parity5(sh, CHECK_PARITY);
1742                         uptodate--;
1743                         if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1744                                 /* parity is correct (on disc, not in buffer any more) */
1745                                 set_bit(STRIPE_INSYNC, &sh->state);
1746                         } else {
1747                                 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1748                                 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1749                                         /* don't try to repair!! */
1750                                         set_bit(STRIPE_INSYNC, &sh->state);
1751                                 else {
1752                                         compute_block(sh, sh->pd_idx);
1753                                         uptodate++;
1754                                 }
1755                         }
1756                 }
1757                 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1758                         /* either failed parity check, or recovery is happening */
1759                         if (failed==0)
1760                                 failed_num = sh->pd_idx;
1761                         dev = &sh->dev[failed_num];
1762                         BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1763                         BUG_ON(uptodate != disks);
1764
1765                         set_bit(R5_LOCKED, &dev->flags);
1766                         set_bit(R5_Wantwrite, &dev->flags);
1767                         clear_bit(STRIPE_DEGRADED, &sh->state);
1768                         locked++;
1769                         set_bit(STRIPE_INSYNC, &sh->state);
1770                 }
1771         }
1772         if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1773                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1774                 clear_bit(STRIPE_SYNCING, &sh->state);
1775         }
1776
1777         /* If the failed drive is just a ReadError, then we might need to progress
1778          * the repair/check process
1779          */
1780         if (failed == 1 && ! conf->mddev->ro &&
1781             test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1782             && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1783             && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1784                 ) {
1785                 dev = &sh->dev[failed_num];
1786                 if (!test_bit(R5_ReWrite, &dev->flags)) {
1787                         set_bit(R5_Wantwrite, &dev->flags);
1788                         set_bit(R5_ReWrite, &dev->flags);
1789                         set_bit(R5_LOCKED, &dev->flags);
1790                         locked++;
1791                 } else {
1792                         /* let's read it back */
1793                         set_bit(R5_Wantread, &dev->flags);
1794                         set_bit(R5_LOCKED, &dev->flags);
1795                         locked++;
1796                 }
1797         }
1798
1799         if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1800                 /* Need to write out all blocks after computing parity */
1801                 sh->disks = conf->raid_disks;
1802                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1803                 compute_parity5(sh, RECONSTRUCT_WRITE);
1804                 for (i= conf->raid_disks; i--;) {
1805                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1806                         locked++;
1807                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
1808                 }
1809                 clear_bit(STRIPE_EXPANDING, &sh->state);
1810         } else if (expanded) {
1811                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
1812                 atomic_dec(&conf->reshape_stripes);
1813                 wake_up(&conf->wait_for_overlap);
1814                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1815         }
1816
1817         if (expanding && locked == 0) {
1818                 /* We have read all the blocks in this stripe and now we need to
1819                  * copy some of them into a target stripe for expand.
1820                  */
1821                 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1822                 for (i=0; i< sh->disks; i++)
1823                         if (i != sh->pd_idx) {
1824                                 int dd_idx, pd_idx, j;
1825                                 struct stripe_head *sh2;
1826
1827                                 sector_t bn = compute_blocknr(sh, i);
1828                                 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1829                                                                   conf->raid_disks-1,
1830                                                                   &dd_idx, &pd_idx, conf);
1831                                 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1832                                 if (sh2 == NULL)
1833                                         /* so far only the early blocks of this stripe
1834                                          * have been requested.  When later blocks
1835                                          * get requested, we will try again
1836                                          */
1837                                         continue;
1838                                 if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1839                                    test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1840                                         /* must have already done this block */
1841                                         release_stripe(sh2);
1842                                         continue;
1843                                 }
1844                                 memcpy(page_address(sh2->dev[dd_idx].page),
1845                                        page_address(sh->dev[i].page),
1846                                        STRIPE_SIZE);
1847                                 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1848                                 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1849                                 for (j=0; j<conf->raid_disks; j++)
1850                                         if (j != sh2->pd_idx &&
1851                                             !test_bit(R5_Expanded, &sh2->dev[j].flags))
1852                                                 break;
1853                                 if (j == conf->raid_disks) {
1854                                         set_bit(STRIPE_EXPAND_READY, &sh2->state);
1855                                         set_bit(STRIPE_HANDLE, &sh2->state);
1856                                 }
1857                                 release_stripe(sh2);
1858                         }
1859         }
1860
1861         spin_unlock(&sh->lock);
1862
1863         while ((bi=return_bi)) {
1864                 int bytes = bi->bi_size;
1865
1866                 return_bi = bi->bi_next;
1867                 bi->bi_next = NULL;
1868                 bi->bi_size = 0;
1869                 bi->bi_end_io(bi, bytes, 0);
1870         }
1871         for (i=disks; i-- ;) {
1872                 int rw;
1873                 struct bio *bi;
1874                 mdk_rdev_t *rdev;
1875                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1876                         rw = 1;
1877                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1878                         rw = 0;
1879                 else
1880                         continue;
1881  
1882                 bi = &sh->dev[i].req;
1883  
1884                 bi->bi_rw = rw;
1885                 if (rw)
1886                         bi->bi_end_io = raid5_end_write_request;
1887                 else
1888                         bi->bi_end_io = raid5_end_read_request;
1889  
1890                 rcu_read_lock();
1891                 rdev = rcu_dereference(conf->disks[i].rdev);
1892                 if (rdev && test_bit(Faulty, &rdev->flags))
1893                         rdev = NULL;
1894                 if (rdev)
1895                         atomic_inc(&rdev->nr_pending);
1896                 rcu_read_unlock();
1897  
1898                 if (rdev) {
1899                         if (syncing || expanding || expanded)
1900                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1901
1902                         bi->bi_bdev = rdev->bdev;
1903                         PRINTK("for %llu schedule op %ld on disc %d\n",
1904                                 (unsigned long long)sh->sector, bi->bi_rw, i);
1905                         atomic_inc(&sh->count);
1906                         bi->bi_sector = sh->sector + rdev->data_offset;
1907                         bi->bi_flags = 1 << BIO_UPTODATE;
1908                         bi->bi_vcnt = 1;        
1909                         bi->bi_max_vecs = 1;
1910                         bi->bi_idx = 0;
1911                         bi->bi_io_vec = &sh->dev[i].vec;
1912                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1913                         bi->bi_io_vec[0].bv_offset = 0;
1914                         bi->bi_size = STRIPE_SIZE;
1915                         bi->bi_next = NULL;
1916                         if (rw == WRITE &&
1917                             test_bit(R5_ReWrite, &sh->dev[i].flags))
1918                                 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1919                         generic_make_request(bi);
1920                 } else {
1921                         if (rw == 1)
1922                                 set_bit(STRIPE_DEGRADED, &sh->state);
1923                         PRINTK("skip op %ld on disc %d for sector %llu\n",
1924                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1925                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1926                         set_bit(STRIPE_HANDLE, &sh->state);
1927                 }
1928         }
1929 }
1930
1931 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1932 {
1933         raid6_conf_t *conf = sh->raid_conf;
1934         int disks = conf->raid_disks;
1935         struct bio *return_bi= NULL;
1936         struct bio *bi;
1937         int i;
1938         int syncing;
1939         int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1940         int non_overwrite = 0;
1941         int failed_num[2] = {0, 0};
1942         struct r5dev *dev, *pdev, *qdev;
1943         int pd_idx = sh->pd_idx;
1944         int qd_idx = raid6_next_disk(pd_idx, disks);
1945         int p_failed, q_failed;
1946
1947         PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1948                (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1949                pd_idx, qd_idx);
1950
1951         spin_lock(&sh->lock);
1952         clear_bit(STRIPE_HANDLE, &sh->state);
1953         clear_bit(STRIPE_DELAYED, &sh->state);
1954
1955         syncing = test_bit(STRIPE_SYNCING, &sh->state);
1956         /* Now to look around and see what can be done */
1957
1958         rcu_read_lock();
1959         for (i=disks; i--; ) {
1960                 mdk_rdev_t *rdev;
1961                 dev = &sh->dev[i];
1962                 clear_bit(R5_Insync, &dev->flags);
1963
1964                 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1965                         i, dev->flags, dev->toread, dev->towrite, dev->written);
1966                 /* maybe we can reply to a read */
1967                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1968                         struct bio *rbi, *rbi2;
1969                         PRINTK("Return read for disc %d\n", i);
1970                         spin_lock_irq(&conf->device_lock);
1971                         rbi = dev->toread;
1972                         dev->toread = NULL;
1973                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1974                                 wake_up(&conf->wait_for_overlap);
1975                         spin_unlock_irq(&conf->device_lock);
1976                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1977                                 copy_data(0, rbi, dev->page, dev->sector);
1978                                 rbi2 = r5_next_bio(rbi, dev->sector);
1979                                 spin_lock_irq(&conf->device_lock);
1980                                 if (--rbi->bi_phys_segments == 0) {
1981                                         rbi->bi_next = return_bi;
1982                                         return_bi = rbi;
1983                                 }
1984                                 spin_unlock_irq(&conf->device_lock);
1985                                 rbi = rbi2;
1986                         }
1987                 }
1988
1989                 /* now count some things */
1990                 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1991                 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1992
1993
1994                 if (dev->toread) to_read++;
1995                 if (dev->towrite) {
1996                         to_write++;
1997                         if (!test_bit(R5_OVERWRITE, &dev->flags))
1998                                 non_overwrite++;
1999                 }
2000                 if (dev->written) written++;
2001                 rdev = rcu_dereference(conf->disks[i].rdev);
2002                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2003                         /* The ReadError flag will just be confusing now */
2004                         clear_bit(R5_ReadError, &dev->flags);
2005                         clear_bit(R5_ReWrite, &dev->flags);
2006                 }
2007                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2008                     || test_bit(R5_ReadError, &dev->flags)) {
2009                         if ( failed < 2 )
2010                                 failed_num[failed] = i;
2011                         failed++;
2012                 } else
2013                         set_bit(R5_Insync, &dev->flags);
2014         }
2015         rcu_read_unlock();
2016         PRINTK("locked=%d uptodate=%d to_read=%d"
2017                " to_write=%d failed=%d failed_num=%d,%d\n",
2018                locked, uptodate, to_read, to_write, failed,
2019                failed_num[0], failed_num[1]);
2020         /* check if the array has lost >2 devices and, if so, some requests might
2021          * need to be failed
2022          */
2023         if (failed > 2 && to_read+to_write+written) {
2024                 for (i=disks; i--; ) {
2025                         int bitmap_end = 0;
2026
2027                         if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2028                                 mdk_rdev_t *rdev;
2029                                 rcu_read_lock();
2030                                 rdev = rcu_dereference(conf->disks[i].rdev);
2031                                 if (rdev && test_bit(In_sync, &rdev->flags))
2032                                         /* multiple read failures in one stripe */
2033                                         md_error(conf->mddev, rdev);
2034                                 rcu_read_unlock();
2035                         }
2036
2037                         spin_lock_irq(&conf->device_lock);
2038                         /* fail all writes first */
2039                         bi = sh->dev[i].towrite;
2040                         sh->dev[i].towrite = NULL;
2041                         if (bi) { to_write--; bitmap_end = 1; }
2042
2043                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2044                                 wake_up(&conf->wait_for_overlap);
2045
2046                         while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2047                                 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2048                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2049                                 if (--bi->bi_phys_segments == 0) {
2050                                         md_write_end(conf->mddev);
2051                                         bi->bi_next = return_bi;
2052                                         return_bi = bi;
2053                                 }
2054                                 bi = nextbi;
2055                         }
2056                         /* and fail all 'written' */
2057                         bi = sh->dev[i].written;
2058                         sh->dev[i].written = NULL;
2059                         if (bi) bitmap_end = 1;
2060                         while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2061                                 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2062                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2063                                 if (--bi->bi_phys_segments == 0) {
2064                                         md_write_end(conf->mddev);
2065                                         bi->bi_next = return_bi;
2066                                         return_bi = bi;
2067                                 }
2068                                 bi = bi2;
2069                         }
2070
2071                         /* fail any reads if this device is non-operational */
2072                         if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2073                             test_bit(R5_ReadError, &sh->dev[i].flags)) {
2074                                 bi = sh->dev[i].toread;
2075                                 sh->dev[i].toread = NULL;
2076                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2077                                         wake_up(&conf->wait_for_overlap);
2078                                 if (bi) to_read--;
2079                                 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2080                                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2081                                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2082                                         if (--bi->bi_phys_segments == 0) {
2083                                                 bi->bi_next = return_bi;
2084                                                 return_bi = bi;
2085                                         }
2086                                         bi = nextbi;
2087                                 }
2088                         }
2089                         spin_unlock_irq(&conf->device_lock);
2090                         if (bitmap_end)
2091                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2092                                                 STRIPE_SECTORS, 0, 0);
2093                 }
2094         }
2095         if (failed > 2 && syncing) {
2096                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2097                 clear_bit(STRIPE_SYNCING, &sh->state);
2098                 syncing = 0;
2099         }
2100
2101         /*
2102          * might be able to return some write requests if the parity blocks
2103          * are safe, or on a failed drive
2104          */
2105         pdev = &sh->dev[pd_idx];
2106         p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2107                 || (failed >= 2 && failed_num[1] == pd_idx);
2108         qdev = &sh->dev[qd_idx];
2109         q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2110                 || (failed >= 2 && failed_num[1] == qd_idx);
2111
2112         if ( written &&
2113              ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2114                              && !test_bit(R5_LOCKED, &pdev->flags)
2115                              && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2116              ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2117                              && !test_bit(R5_LOCKED, &qdev->flags)
2118                              && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2119                 /* any written block on an uptodate or failed drive can be
2120                  * returned.  Note that if we 'wrote' to a failed drive,
2121                  * it will be UPTODATE, but never LOCKED, so we don't need
2122                  * to test 'failed' directly.
2123                  */
2124                 for (i=disks; i--; )
2125                         if (sh->dev[i].written) {
2126                                 dev = &sh->dev[i];
2127                                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2128                                     test_bit(R5_UPTODATE, &dev->flags) ) {
2129                                         /* We can return any write requests */
2130                                         int bitmap_end = 0;
2131                                         struct bio *wbi, *wbi2;
2132                                         PRINTK("Return write for stripe %llu disc %d\n",
2133                                                (unsigned long long)sh->sector, i);
2134                                         spin_lock_irq(&conf->device_lock);
2135                                         wbi = dev->written;
2136                                         dev->written = NULL;
2137                                         while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2138                                                 wbi2 = r5_next_bio(wbi, dev->sector);
2139                                                 if (--wbi->bi_phys_segments == 0) {
2140                                                         md_write_end(conf->mddev);
2141                                                         wbi->bi_next = return_bi;
2142                                                         return_bi = wbi;
2143                                                 }
2144                                                 wbi = wbi2;
2145                                         }
2146                                         if (dev->towrite == NULL)
2147                                                 bitmap_end = 1;
2148                                         spin_unlock_irq(&conf->device_lock);
2149                                         if (bitmap_end)
2150                                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2151                                                                 STRIPE_SECTORS,
2152                                                                 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
2153                                 }
2154                         }
2155         }
2156
2157         /* Now we might consider reading some blocks, either to check/generate
2158          * parity, or to satisfy requests
2159          * or to load a block that is being partially written.
2160          */
2161         if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2162                 for (i=disks; i--;) {
2163                         dev = &sh->dev[i];
2164                         if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2165                             (dev->toread ||
2166                              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2167                              syncing ||
2168                              (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2169                              (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2170                                     )
2171                                 ) {
2172                                 /* we would like to get this block, possibly
2173                                  * by computing it, but we might not be able to
2174                                  */
2175                                 if (uptodate == disks-1) {
2176                                         PRINTK("Computing stripe %llu block %d\n",
2177                                                (unsigned long long)sh->sector, i);
2178                                         compute_block_1(sh, i, 0);
2179                                         uptodate++;
2180                                 } else if ( uptodate == disks-2 && failed >= 2 ) {
2181                                         /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2182                                         int other;
2183                                         for (other=disks; other--;) {
2184                                                 if ( other == i )
2185                                                         continue;
2186                                                 if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2187                                                         break;
2188                                         }
2189                                         BUG_ON(other < 0);
2190                                         PRINTK("Computing stripe %llu blocks %d,%d\n",
2191                                                (unsigned long long)sh->sector, i, other);
2192                                         compute_block_2(sh, i, other);
2193                                         uptodate += 2;
2194                                 } else if (test_bit(R5_Insync, &dev->flags)) {
2195                                         set_bit(R5_LOCKED, &dev->flags);
2196                                         set_bit(R5_Wantread, &dev->flags);
2197 #if 0
2198                                         /* if I am just reading this block and we don't have
2199                                            a failed drive, or any pending writes then sidestep the cache */
2200                                         if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
2201                                             ! syncing && !failed && !to_write) {
2202                                                 sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
2203                                                 sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
2204                                         }
2205 #endif
2206                                         locked++;
2207                                         PRINTK("Reading block %d (sync=%d)\n",
2208                                                 i, syncing);
2209                                 }
2210                         }
2211                 }
2212                 set_bit(STRIPE_HANDLE, &sh->state);
2213         }
2214
2215         /* now to consider writing and what else, if anything should be read */
2216         if (to_write) {
2217                 int rcw=0, must_compute=0;
2218                 for (i=disks ; i--;) {
2219                         dev = &sh->dev[i];
2220                         /* Would I have to read this buffer for reconstruct_write */
2221                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2222                             && i != pd_idx && i != qd_idx
2223                             && (!test_bit(R5_LOCKED, &dev->flags)
2224 #if 0
2225                                 || sh->bh_page[i] != bh->b_page
2226 #endif
2227                                     ) &&
2228                             !test_bit(R5_UPTODATE, &dev->flags)) {
2229                                 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2230                                 else {
2231                                         PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2232                                         must_compute++;
2233                                 }
2234                         }
2235                 }
2236                 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2237                        (unsigned long long)sh->sector, rcw, must_compute);
2238                 set_bit(STRIPE_HANDLE, &sh->state);
2239
2240                 if (rcw > 0)
2241                         /* want reconstruct write, but need to get some data */
2242                         for (i=disks; i--;) {
2243                                 dev = &sh->dev[i];
2244                                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2245                                     && !(failed == 0 && (i == pd_idx || i == qd_idx))
2246                                     && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2247                                     test_bit(R5_Insync, &dev->flags)) {
2248                                         if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2249                                         {
2250                                                 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2251                                                        (unsigned long long)sh->sector, i);
2252                                                 set_bit(R5_LOCKED, &dev->flags);
2253                                                 set_bit(R5_Wantread, &dev->flags);
2254                                                 locked++;
2255                                         } else {
2256                                                 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2257                                                        (unsigned long long)sh->sector, i);
2258                                                 set_bit(STRIPE_DELAYED, &sh->state);
2259                                                 set_bit(STRIPE_HANDLE, &sh->state);
2260                                         }
2261                                 }
2262                         }
2263                 /* now if nothing is locked, and if we have enough data, we can start a write request */
2264                 if (locked == 0 && rcw == 0 &&
2265                     !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2266                         if ( must_compute > 0 ) {
2267                                 /* We have failed blocks and need to compute them */
2268                                 switch ( failed ) {
2269                                 case 0: BUG();
2270                                 case 1: compute_block_1(sh, failed_num[0], 0); break;
2271                                 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2272                                 default: BUG(); /* This request should have been failed? */
2273                                 }
2274                         }
2275
2276                         PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2277                         compute_parity6(sh, RECONSTRUCT_WRITE);
2278                         /* now every locked buffer is ready to be written */
2279                         for (i=disks; i--;)
2280                                 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2281                                         PRINTK("Writing stripe %llu block %d\n",
2282                                                (unsigned long long)sh->sector, i);
2283                                         locked++;
2284                                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2285                                 }
2286                         /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2287                         set_bit(STRIPE_INSYNC, &sh->state);
2288
2289                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2290                                 atomic_dec(&conf->preread_active_stripes);
2291                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2292                                         md_wakeup_thread(conf->mddev->thread);
2293                         }
2294                 }
2295         }
2296
2297         /* maybe we need to check and possibly fix the parity for this stripe
2298          * Any reads will already have been scheduled, so we just see if enough data
2299          * is available
2300          */
2301         if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2302                 int update_p = 0, update_q = 0;
2303                 struct r5dev *dev;
2304
2305                 set_bit(STRIPE_HANDLE, &sh->state);
2306
2307                 BUG_ON(failed>2);
2308                 BUG_ON(uptodate < disks);
2309                 /* Want to check and possibly repair P and Q.
2310                  * However there could be one 'failed' device, in which
2311                  * case we can only check one of them, possibly using the
2312                  * other to generate missing data
2313                  */
2314
2315                 /* If !tmp_page, we cannot do the calculations,
2316                  * but as we have set STRIPE_HANDLE, we will soon be called
2317                  * by stripe_handle with a tmp_page - just wait until then.
2318                  */
2319                 if (tmp_page) {
2320                         if (failed == q_failed) {
2321                                 /* The only possible failed device holds 'Q', so it makes
2322                                  * sense to check P (If anything else were failed, we would
2323                                  * have used P to recreate it).
2324                                  */
2325                                 compute_block_1(sh, pd_idx, 1);
2326                                 if (!page_is_zero(sh->dev[pd_idx].page)) {
2327                                         compute_block_1(sh,pd_idx,0);
2328                                         update_p = 1;
2329                                 }
2330                         }
2331                         if (!q_failed && failed < 2) {
2332                                 /* q is not failed, and we didn't use it to generate
2333                                  * anything, so it makes sense to check it
2334                                  */
2335                                 memcpy(page_address(tmp_page),
2336                                        page_address(sh->dev[qd_idx].page),
2337                                        STRIPE_SIZE);
2338                                 compute_parity6(sh, UPDATE_PARITY);
2339                                 if (memcmp(page_address(tmp_page),
2340                                            page_address(sh->dev[qd_idx].page),
2341                                            STRIPE_SIZE)!= 0) {
2342                                         clear_bit(STRIPE_INSYNC, &sh->state);
2343                                         update_q = 1;
2344                                 }
2345                         }
2346                         if (update_p || update_q) {
2347                                 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2348                                 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2349                                         /* don't try to repair!! */
2350                                         update_p = update_q = 0;
2351                         }
2352
2353                         /* now write out any block on a failed drive,
2354                          * or P or Q if they need it
2355                          */
2356
2357                         if (failed == 2) {
2358                                 dev = &sh->dev[failed_num[1]];
2359                                 locked++;
2360                                 set_bit(R5_LOCKED, &dev->flags);
2361                                 set_bit(R5_Wantwrite, &dev->flags);
2362                         }
2363                         if (failed >= 1) {
2364                                 dev = &sh->dev[failed_num[0]];
2365                                 locked++;
2366                                 set_bit(R5_LOCKED, &dev->flags);
2367                                 set_bit(R5_Wantwrite, &dev->flags);
2368                         }
2369
2370                         if (update_p) {
2371                                 dev = &sh->dev[pd_idx];
2372                                 locked ++;
2373                                 set_bit(R5_LOCKED, &dev->flags);
2374                                 set_bit(R5_Wantwrite, &dev->flags);
2375                         }
2376                         if (update_q) {
2377                                 dev = &sh->dev[qd_idx];
2378                                 locked++;
2379                                 set_bit(R5_LOCKED, &dev->flags);
2380                                 set_bit(R5_Wantwrite, &dev->flags);
2381                         }
2382                         clear_bit(STRIPE_DEGRADED, &sh->state);
2383
2384                         set_bit(STRIPE_INSYNC, &sh->state);
2385                 }
2386         }
2387
2388         if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2389                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2390                 clear_bit(STRIPE_SYNCING, &sh->state);
2391         }
2392
2393         /* If the failed drives are just a ReadError, then we might need
2394          * to progress the repair/check process
2395          */
2396         if (failed <= 2 && ! conf->mddev->ro)
2397                 for (i=0; i<failed;i++) {
2398                         dev = &sh->dev[failed_num[i]];
2399                         if (test_bit(R5_ReadError, &dev->flags)
2400                             && !test_bit(R5_LOCKED, &dev->flags)
2401                             && test_bit(R5_UPTODATE, &dev->flags)
2402                                 ) {
2403                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2404                                         set_bit(R5_Wantwrite, &dev->flags);
2405                                         set_bit(R5_ReWrite, &dev->flags);
2406                                         set_bit(R5_LOCKED, &dev->flags);
2407                                 } else {
2408                                         /* let's read it back */
2409                                         set_bit(R5_Wantread, &dev->flags);
2410                                         set_bit(R5_LOCKED, &dev->flags);
2411                                 }
2412                         }
2413                 }
2414         spin_unlock(&sh->lock);
2415
2416         while ((bi=return_bi)) {
2417                 int bytes = bi->bi_size;
2418
2419                 return_bi = bi->bi_next;
2420                 bi->bi_next = NULL;
2421                 bi->bi_size = 0;
2422                 bi->bi_end_io(bi, bytes, 0);
2423         }
2424         for (i=disks; i-- ;) {
2425                 int rw;
2426                 struct bio *bi;
2427                 mdk_rdev_t *rdev;
2428                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2429                         rw = 1;
2430                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2431                         rw = 0;
2432                 else
2433                         continue;
2434
2435                 bi = &sh->dev[i].req;
2436
2437                 bi->bi_rw = rw;
2438                 if (rw)
2439                         bi->bi_end_io = raid5_end_write_request;
2440                 else
2441                         bi->bi_end_io = raid5_end_read_request;
2442
2443                 rcu_read_lock();
2444                 rdev = rcu_dereference(conf->disks[i].rdev);
2445                 if (rdev && test_bit(Faulty, &rdev->flags))
2446                         rdev = NULL;
2447                 if (rdev)
2448                         atomic_inc(&rdev->nr_pending);
2449                 rcu_read_unlock();
2450
2451                 if (rdev) {
2452                         if (syncing)
2453                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2454
2455                         bi->bi_bdev = rdev->bdev;
2456                         PRINTK("for %llu schedule op %ld on disc %d\n",
2457                                 (unsigned long long)sh->sector, bi->bi_rw, i);
2458                         atomic_inc(&sh->count);
2459                         bi->bi_sector = sh->sector + rdev->data_offset;
2460                         bi->bi_flags = 1 << BIO_UPTODATE;
2461                         bi->bi_vcnt = 1;
2462                         bi->bi_max_vecs = 1;
2463                         bi->bi_idx = 0;
2464                         bi->bi_io_vec = &sh->dev[i].vec;
2465                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2466                         bi->bi_io_vec[0].bv_offset = 0;
2467                         bi->bi_size = STRIPE_SIZE;
2468                         bi->bi_next = NULL;
2469                         if (rw == WRITE &&
2470                             test_bit(R5_ReWrite, &sh->dev[i].flags))
2471                                 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2472                         generic_make_request(bi);
2473                 } else {
2474                         if (rw == 1)
2475                                 set_bit(STRIPE_DEGRADED, &sh->state);
2476                         PRINTK("skip op %ld on disc %d for sector %llu\n",
2477                                 bi->bi_rw, i, (unsigned long long)sh->sector);
2478                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2479                         set_bit(STRIPE_HANDLE, &sh->state);
2480                 }
2481         }
2482 }
2483
2484 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2485 {
2486         if (sh->raid_conf->level == 6)
2487                 handle_stripe6(sh, tmp_page);
2488         else
2489                 handle_stripe5(sh);
2490 }
2491
2492
2493
2494 static void raid5_activate_delayed(raid5_conf_t *conf)
2495 {
2496         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2497                 while (!list_empty(&conf->delayed_list)) {
2498                         struct list_head *l = conf->delayed_list.next;
2499                         struct stripe_head *sh;
2500                         sh = list_entry(l, struct stripe_head, lru);
2501                         list_del_init(l);
2502                         clear_bit(STRIPE_DELAYED, &sh->state);
2503                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2504                                 atomic_inc(&conf->preread_active_stripes);
2505                         list_add_tail(&sh->lru, &conf->handle_list);
2506                 }
2507         }
2508 }
2509
2510 static void activate_bit_delay(raid5_conf_t *conf)
2511 {
2512         /* device_lock is held */
2513         struct list_head head;
2514         list_add(&head, &conf->bitmap_list);
2515         list_del_init(&conf->bitmap_list);
2516         while (!list_empty(&head)) {
2517                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2518                 list_del_init(&sh->lru);
2519                 atomic_inc(&sh->count);
2520                 __release_stripe(conf, sh);
2521         }
2522 }
2523
2524 static void unplug_slaves(mddev_t *mddev)
2525 {
2526         raid5_conf_t *conf = mddev_to_conf(mddev);
2527         int i;
2528
2529         rcu_read_lock();
2530         for (i=0; i<mddev->raid_disks; i++) {
2531                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2532                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2533                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2534
2535                         atomic_inc(&rdev->nr_pending);
2536                         rcu_read_unlock();
2537
2538                         if (r_queue->unplug_fn)
2539                                 r_queue->unplug_fn(r_queue);
2540
2541                         rdev_dec_pending(rdev, mddev);
2542                         rcu_read_lock();
2543                 }
2544         }
2545         rcu_read_unlock();
2546 }
2547
2548 static void raid5_unplug_device(request_queue_t *q)
2549 {
2550         mddev_t *mddev = q->queuedata;
2551         raid5_conf_t *conf = mddev_to_conf(mddev);
2552         unsigned long flags;
2553
2554         spin_lock_irqsave(&conf->device_lock, flags);
2555
2556         if (blk_remove_plug(q)) {
2557                 conf->seq_flush++;
2558                 raid5_activate_delayed(conf);
2559         }
2560         md_wakeup_thread(mddev->thread);
2561
2562         spin_unlock_irqrestore(&conf->device_lock, flags);
2563
2564         unplug_slaves(mddev);
2565 }
2566
2567 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2568                              sector_t *error_sector)
2569 {
2570         mddev_t *mddev = q->queuedata;
2571         raid5_conf_t *conf = mddev_to_conf(mddev);
2572         int i, ret = 0;
2573
2574         rcu_read_lock();
2575         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
2576                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2577                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
2578                         struct block_device *bdev = rdev->bdev;
2579                         request_queue_t *r_queue = bdev_get_queue(bdev);
2580
2581                         if (!r_queue->issue_flush_fn)
2582                                 ret = -EOPNOTSUPP;
2583                         else {
2584                                 atomic_inc(&rdev->nr_pending);
2585                                 rcu_read_unlock();
2586                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2587                                                               error_sector);
2588                                 rdev_dec_pending(rdev, mddev);
2589                                 rcu_read_lock();
2590                         }
2591                 }
2592         }
2593         rcu_read_unlock();
2594         return ret;
2595 }
2596
2597 static int make_request(request_queue_t *q, struct bio * bi)
2598 {
2599         mddev_t *mddev = q->queuedata;
2600         raid5_conf_t *conf = mddev_to_conf(mddev);
2601         unsigned int dd_idx, pd_idx;
2602         sector_t new_sector;
2603         sector_t logical_sector, last_sector;
2604         struct stripe_head *sh;
2605         const int rw = bio_data_dir(bi);
2606         int remaining;
2607
2608         if (unlikely(bio_barrier(bi))) {
2609                 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2610                 return 0;
2611         }
2612
2613         md_write_start(mddev, bi);
2614
2615         disk_stat_inc(mddev->gendisk, ios[rw]);
2616         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
2617
2618         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2619         last_sector = bi->bi_sector + (bi->bi_size>>9);
2620         bi->bi_next = NULL;
2621         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
2622
2623         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2624                 DEFINE_WAIT(w);
2625                 int disks, data_disks;
2626
2627         retry:
2628                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
2629                 if (likely(conf->expand_progress == MaxSector))
2630                         disks = conf->raid_disks;
2631                 else {
2632                         /* spinlock is needed as expand_progress may be
2633                          * 64bit on a 32bit platform, and so it might be
2634                          * possible to see a half-updated value
2635                          * Ofcourse expand_progress could change after
2636                          * the lock is dropped, so once we get a reference
2637                          * to the stripe that we think it is, we will have
2638                          * to check again.
2639                          */
2640                         spin_lock_irq(&conf->device_lock);
2641                         disks = conf->raid_disks;
2642                         if (logical_sector >= conf->expand_progress)
2643                                 disks = conf->previous_raid_disks;
2644                         else {
2645                                 if (logical_sector >= conf->expand_lo) {
2646                                         spin_unlock_irq(&conf->device_lock);
2647                                         schedule();
2648                                         goto retry;
2649                                 }
2650                         }
2651                         spin_unlock_irq(&conf->device_lock);
2652                 }
2653                 data_disks = disks - conf->max_degraded;
2654
2655                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
2656                                                   &dd_idx, &pd_idx, conf);
2657                 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2658                         (unsigned long long)new_sector, 
2659                         (unsigned long long)logical_sector);
2660
2661                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
2662                 if (sh) {
2663                         if (unlikely(conf->expand_progress != MaxSector)) {
2664                                 /* expansion might have moved on while waiting for a
2665                                  * stripe, so we must do the range check again.
2666                                  * Expansion could still move past after this
2667                                  * test, but as we are holding a reference to
2668                                  * 'sh', we know that if that happens,
2669                                  *  STRIPE_EXPANDING will get set and the expansion
2670                                  * won't proceed until we finish with the stripe.
2671                                  */
2672                                 int must_retry = 0;
2673                                 spin_lock_irq(&conf->device_lock);
2674                                 if (logical_sector <  conf->expand_progress &&
2675                                     disks == conf->previous_raid_disks)
2676                                         /* mismatch, need to try again */
2677                                         must_retry = 1;
2678                                 spin_unlock_irq(&conf->device_lock);
2679                                 if (must_retry) {
2680                                         release_stripe(sh);
2681                                         goto retry;
2682                                 }
2683                         }
2684                         /* FIXME what if we get a false positive because these
2685                          * are being updated.
2686                          */
2687                         if (logical_sector >= mddev->suspend_lo &&
2688                             logical_sector < mddev->suspend_hi) {
2689                                 release_stripe(sh);
2690                                 schedule();
2691                                 goto retry;
2692                         }
2693
2694                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2695                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2696                                 /* Stripe is busy expanding or
2697                                  * add failed due to overlap.  Flush everything
2698                                  * and wait a while
2699                                  */
2700                                 raid5_unplug_device(mddev->queue);
2701                                 release_stripe(sh);
2702                                 schedule();
2703                                 goto retry;
2704                         }
2705                         finish_wait(&conf->wait_for_overlap, &w);
2706                         handle_stripe(sh, NULL);
2707                         release_stripe(sh);
2708                 } else {
2709                         /* cannot get stripe for read-ahead, just give-up */
2710                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2711                         finish_wait(&conf->wait_for_overlap, &w);
2712                         break;
2713                 }
2714                         
2715         }
2716         spin_lock_irq(&conf->device_lock);
2717         remaining = --bi->bi_phys_segments;
2718         spin_unlock_irq(&conf->device_lock);
2719         if (remaining == 0) {
2720                 int bytes = bi->bi_size;
2721
2722                 if ( rw == WRITE )
2723                         md_write_end(mddev);
2724                 bi->bi_size = 0;
2725                 bi->bi_end_io(bi, bytes, 0);
2726         }
2727         return 0;
2728 }
2729
2730 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
2731 {
2732         /* reshaping is quite different to recovery/resync so it is
2733          * handled quite separately ... here.
2734          *
2735          * On each call to sync_request, we gather one chunk worth of
2736          * destination stripes and flag them as expanding.
2737          * Then we find all the source stripes and request reads.
2738          * As the reads complete, handle_stripe will copy the data
2739          * into the destination stripe and release that stripe.
2740          */
2741         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2742         struct stripe_head *sh;
2743         int pd_idx;
2744         sector_t first_sector, last_sector;
2745         int raid_disks;
2746         int data_disks;
2747         int i;
2748         int dd_idx;
2749         sector_t writepos, safepos, gap;
2750
2751         if (sector_nr == 0 &&
2752             conf->expand_progress != 0) {
2753                 /* restarting in the middle, skip the initial sectors */
2754                 sector_nr = conf->expand_progress;
2755                 sector_div(sector_nr, conf->raid_disks-1);
2756                 *skipped = 1;
2757                 return sector_nr;
2758         }
2759
2760         /* we update the metadata when there is more than 3Meg
2761          * in the block range (that is rather arbitrary, should
2762          * probably be time based) or when the data about to be
2763          * copied would over-write the source of the data at
2764          * the front of the range.
2765          * i.e. one new_stripe forward from expand_progress new_maps
2766          * to after where expand_lo old_maps to
2767          */
2768         writepos = conf->expand_progress +
2769                 conf->chunk_size/512*(conf->raid_disks-1);
2770         sector_div(writepos, conf->raid_disks-1);
2771         safepos = conf->expand_lo;
2772         sector_div(safepos, conf->previous_raid_disks-1);
2773         gap = conf->expand_progress - conf->expand_lo;
2774
2775         if (writepos >= safepos ||
2776             gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2777                 /* Cannot proceed until we've updated the superblock... */
2778                 wait_event(conf->wait_for_overlap,
2779                            atomic_read(&conf->reshape_stripes)==0);
2780                 mddev->reshape_position = conf->expand_progress;
2781                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2782                 md_wakeup_thread(mddev->thread);
2783                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
2784                            kthread_should_stop());
2785                 spin_lock_irq(&conf->device_lock);
2786                 conf->expand_lo = mddev->reshape_position;
2787                 spin_unlock_irq(&conf->device_lock);
2788                 wake_up(&conf->wait_for_overlap);
2789         }
2790
2791         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2792                 int j;
2793                 int skipped = 0;
2794                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2795                 sh = get_active_stripe(conf, sector_nr+i,
2796                                        conf->raid_disks, pd_idx, 0);
2797                 set_bit(STRIPE_EXPANDING, &sh->state);
2798                 atomic_inc(&conf->reshape_stripes);
2799                 /* If any of this stripe is beyond the end of the old
2800                  * array, then we need to zero those blocks
2801                  */
2802                 for (j=sh->disks; j--;) {
2803                         sector_t s;
2804                         if (j == sh->pd_idx)
2805                                 continue;
2806                         s = compute_blocknr(sh, j);
2807                         if (s < (mddev->array_size<<1)) {
2808                                 skipped = 1;
2809                                 continue;
2810                         }
2811                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2812                         set_bit(R5_Expanded, &sh->dev[j].flags);
2813                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
2814                 }
2815                 if (!skipped) {
2816                         set_bit(STRIPE_EXPAND_READY, &sh->state);
2817                         set_bit(STRIPE_HANDLE, &sh->state);
2818                 }
2819                 release_stripe(sh);
2820         }
2821         spin_lock_irq(&conf->device_lock);
2822         conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2823         spin_unlock_irq(&conf->device_lock);
2824         /* Ok, those stripe are ready. We can start scheduling
2825          * reads on the source stripes.
2826          * The source stripes are determined by mapping the first and last
2827          * block on the destination stripes.
2828          */
2829         raid_disks = conf->previous_raid_disks;
2830         data_disks = raid_disks - 1;
2831         first_sector =
2832                 raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2833                                      raid_disks, data_disks,
2834                                      &dd_idx, &pd_idx, conf);
2835         last_sector =
2836                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
2837                                      *(conf->raid_disks-1) -1,
2838                                      raid_disks, data_disks,
2839                                      &dd_idx, &pd_idx, conf);
2840         if (last_sector >= (mddev->size<<1))
2841                 last_sector = (mddev->size<<1)-1;
2842         while (first_sector <= last_sector) {
2843                 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2844                 sh = get_active_stripe(conf, first_sector,
2845                                        conf->previous_raid_disks, pd_idx, 0);
2846                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2847                 set_bit(STRIPE_HANDLE, &sh->state);
2848                 release_stripe(sh);
2849                 first_sector += STRIPE_SECTORS;
2850         }
2851         return conf->chunk_size>>9;
2852 }
2853
2854 /* FIXME go_faster isn't used */
2855 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2856 {
2857         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2858         struct stripe_head *sh;
2859         int pd_idx;
2860         int raid_disks = conf->raid_disks;
2861         sector_t max_sector = mddev->size << 1;
2862         int sync_blocks;
2863         int still_degraded = 0;
2864         int i;
2865
2866         if (sector_nr >= max_sector) {
2867                 /* just being told to finish up .. nothing much to do */
2868                 unplug_slaves(mddev);
2869                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2870                         end_reshape(conf);
2871                         return 0;
2872                 }
2873
2874                 if (mddev->curr_resync < max_sector) /* aborted */
2875                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2876                                         &sync_blocks, 1);
2877                 else /* completed sync */
2878                         conf->fullsync = 0;
2879                 bitmap_close_sync(mddev->bitmap);
2880
2881                 return 0;
2882         }
2883
2884         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2885                 return reshape_request(mddev, sector_nr, skipped);
2886
2887         /* if there is too many failed drives and we are trying
2888          * to resync, then assert that we are finished, because there is
2889          * nothing we can do.
2890          */
2891         if (mddev->degraded >= conf->max_degraded &&
2892             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2893                 sector_t rv = (mddev->size << 1) - sector_nr;
2894                 *skipped = 1;
2895                 return rv;
2896         }
2897         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2898             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2899             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2900                 /* we can skip this block, and probably more */
2901                 sync_blocks /= STRIPE_SECTORS;
2902                 *skipped = 1;
2903                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2904         }
2905
2906         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
2907         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
2908         if (sh == NULL) {
2909                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
2910                 /* make sure we don't swamp the stripe cache if someone else
2911                  * is trying to get access
2912                  */
2913                 schedule_timeout_uninterruptible(1);
2914         }
2915         /* Need to check if array will still be degraded after recovery/resync
2916          * We don't need to check the 'failed' flag as when that gets set,
2917          * recovery aborts.
2918          */
2919         for (i=0; i<mddev->raid_disks; i++)
2920                 if (conf->disks[i].rdev == NULL)
2921                         still_degraded = 1;
2922
2923         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
2924
2925         spin_lock(&sh->lock);
2926         set_bit(STRIPE_SYNCING, &sh->state);
2927         clear_bit(STRIPE_INSYNC, &sh->state);
2928         spin_unlock(&sh->lock);
2929
2930         handle_stripe(sh, NULL);
2931         release_stripe(sh);
2932
2933         return STRIPE_SECTORS;
2934 }
2935
2936 /*
2937  * This is our raid5 kernel thread.
2938  *
2939  * We scan the hash table for stripes which can be handled now.
2940  * During the scan, completed stripes are saved for us by the interrupt
2941  * handler, so that they will not have to wait for our next wakeup.
2942  */
2943 static void raid5d (mddev_t *mddev)
2944 {
2945         struct stripe_head *sh;
2946         raid5_conf_t *conf = mddev_to_conf(mddev);
2947         int handled;
2948
2949         PRINTK("+++ raid5d active\n");
2950
2951         md_check_recovery(mddev);
2952
2953         handled = 0;
2954         spin_lock_irq(&conf->device_lock);
2955         while (1) {
2956                 struct list_head *first;
2957
2958                 if (conf->seq_flush != conf->seq_write) {
2959                         int seq = conf->seq_flush;
2960                         spin_unlock_irq(&conf->device_lock);
2961                         bitmap_unplug(mddev->bitmap);
2962                         spin_lock_irq(&conf->device_lock);
2963                         conf->seq_write = seq;
2964                         activate_bit_delay(conf);
2965                 }
2966
2967                 if (list_empty(&conf->handle_list) &&
2968                     atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2969                     !blk_queue_plugged(mddev->queue) &&
2970                     !list_empty(&conf->delayed_list))
2971                         raid5_activate_delayed(conf);
2972
2973                 if (list_empty(&conf->handle_list))
2974                         break;
2975
2976                 first = conf->handle_list.next;
2977                 sh = list_entry(first, struct stripe_head, lru);
2978
2979                 list_del_init(first);
2980                 atomic_inc(&sh->count);
2981                 BUG_ON(atomic_read(&sh->count)!= 1);
2982                 spin_unlock_irq(&conf->device_lock);
2983                 
2984                 handled++;
2985                 handle_stripe(sh, conf->spare_page);
2986                 release_stripe(sh);
2987
2988                 spin_lock_irq(&conf->device_lock);
2989         }
2990         PRINTK("%d stripes handled\n", handled);
2991
2992         spin_unlock_irq(&conf->device_lock);
2993
2994         unplug_slaves(mddev);
2995
2996         PRINTK("--- raid5d inactive\n");
2997 }
2998
2999 static ssize_t
3000 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3001 {
3002         raid5_conf_t *conf = mddev_to_conf(mddev);
3003         if (conf)
3004                 return sprintf(page, "%d\n", conf->max_nr_stripes);
3005         else
3006                 return 0;
3007 }
3008
3009 static ssize_t
3010 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3011 {
3012         raid5_conf_t *conf = mddev_to_conf(mddev);
3013         char *end;
3014         int new;
3015         if (len >= PAGE_SIZE)
3016                 return -EINVAL;
3017         if (!conf)
3018                 return -ENODEV;
3019
3020         new = simple_strtoul(page, &end, 10);
3021         if (!*page || (*end && *end != '\n') )
3022                 return -EINVAL;
3023         if (new <= 16 || new > 32768)
3024                 return -EINVAL;
3025         while (new < conf->max_nr_stripes) {
3026                 if (drop_one_stripe(conf))
3027                         conf->max_nr_stripes--;
3028                 else
3029                         break;
3030         }
3031         while (new > conf->max_nr_stripes) {
3032                 if (grow_one_stripe(conf))
3033                         conf->max_nr_stripes++;
3034                 else break;
3035         }
3036         return len;
3037 }
3038
3039 static struct md_sysfs_entry
3040 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3041                                 raid5_show_stripe_cache_size,
3042                                 raid5_store_stripe_cache_size);
3043
3044 static ssize_t
3045 stripe_cache_active_show(mddev_t *mddev, char *page)
3046 {
3047         raid5_conf_t *conf = mddev_to_conf(mddev);
3048         if (conf)
3049                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3050         else
3051                 return 0;
3052 }
3053
3054 static struct md_sysfs_entry
3055 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3056
3057 static struct attribute *raid5_attrs[] =  {
3058         &raid5_stripecache_size.attr,
3059         &raid5_stripecache_active.attr,
3060         NULL,
3061 };
3062 static struct attribute_group raid5_attrs_group = {
3063         .name = NULL,
3064         .attrs = raid5_attrs,
3065 };
3066
3067 static int run(mddev_t *mddev)
3068 {
3069         raid5_conf_t *conf;
3070         int raid_disk, memory;
3071         mdk_rdev_t *rdev;
3072         struct disk_info *disk;
3073         struct list_head *tmp;
3074         int working_disks = 0;
3075
3076         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3077                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3078                        mdname(mddev), mddev->level);
3079                 return -EIO;
3080         }
3081
3082         if (mddev->reshape_position != MaxSector) {
3083                 /* Check that we can continue the reshape.
3084                  * Currently only disks can change, it must
3085                  * increase, and we must be past the point where
3086                  * a stripe over-writes itself
3087                  */
3088                 sector_t here_new, here_old;
3089                 int old_disks;
3090
3091                 if (mddev->new_level != mddev->level ||
3092                     mddev->new_layout != mddev->layout ||
3093                     mddev->new_chunk != mddev->chunk_size) {
3094                         printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3095                                mdname(mddev));
3096                         return -EINVAL;
3097                 }
3098                 if (mddev->delta_disks <= 0) {
3099                         printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3100                                mdname(mddev));
3101                         return -EINVAL;
3102                 }
3103                 old_disks = mddev->raid_disks - mddev->delta_disks;
3104                 /* reshape_position must be on a new-stripe boundary, and one
3105                  * further up in new geometry must map after here in old geometry.
3106                  */
3107                 here_new = mddev->reshape_position;
3108                 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3109                         printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3110                         return -EINVAL;
3111                 }
3112                 /* here_new is the stripe we will write to */
3113                 here_old = mddev->reshape_position;
3114                 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3115                 /* here_old is the first stripe that we might need to read from */
3116                 if (here_new >= here_old) {
3117                         /* Reading from the same stripe as writing to - bad */
3118                         printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3119                         return -EINVAL;
3120                 }
3121                 printk(KERN_INFO "raid5: reshape will continue\n");
3122                 /* OK, we should be able to continue; */
3123         }
3124
3125
3126         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
3127         if ((conf = mddev->private) == NULL)
3128                 goto abort;
3129         if (mddev->reshape_position == MaxSector) {
3130                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3131         } else {
3132                 conf->raid_disks = mddev->raid_disks;
3133                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3134         }
3135
3136         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
3137                               GFP_KERNEL);
3138         if (!conf->disks)
3139                 goto abort;
3140
3141         conf->mddev = mddev;
3142
3143         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
3144                 goto abort;
3145
3146         if (mddev->level == 6) {
3147                 conf->spare_page = alloc_page(GFP_KERNEL);
3148                 if (!conf->spare_page)
3149                         goto abort;
3150         }
3151         spin_lock_init(&conf->device_lock);
3152         init_waitqueue_head(&conf->wait_for_stripe);
3153         init_waitqueue_head(&conf->wait_for_overlap);
3154         INIT_LIST_HEAD(&conf->handle_list);
3155         INIT_LIST_HEAD(&conf->delayed_list);
3156         INIT_LIST_HEAD(&conf->bitmap_list);
3157         INIT_LIST_HEAD(&conf->inactive_list);
3158         atomic_set(&conf->active_stripes, 0);
3159         atomic_set(&conf->preread_active_stripes, 0);
3160
3161         PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3162
3163         ITERATE_RDEV(mddev,rdev,tmp) {
3164                 raid_disk = rdev->raid_disk;
3165                 if (raid_disk >= conf->raid_disks
3166                     || raid_disk < 0)
3167                         continue;
3168                 disk = conf->disks + raid_disk;
3169
3170                 disk->rdev = rdev;
3171
3172                 if (test_bit(In_sync, &rdev->flags)) {
3173                         char b[BDEVNAME_SIZE];
3174                         printk(KERN_INFO "raid5: device %s operational as raid"
3175                                 " disk %d\n", bdevname(rdev->bdev,b),
3176                                 raid_disk);
3177                         working_disks++;
3178                 }
3179         }
3180
3181         /*
3182          * 0 for a fully functional array, 1 or 2 for a degraded array.
3183          */
3184         mddev->degraded = conf->raid_disks - working_disks;
3185         conf->mddev = mddev;
3186         conf->chunk_size = mddev->chunk_size;
3187         conf->level = mddev->level;
3188         if (conf->level == 6)
3189                 conf->max_degraded = 2;
3190         else
3191                 conf->max_degraded = 1;
3192         conf->algorithm = mddev->layout;
3193         conf->max_nr_stripes = NR_STRIPES;
3194         conf->expand_progress = mddev->reshape_position;
3195
3196         /* device size must be a multiple of chunk size */
3197         mddev->size &= ~(mddev->chunk_size/1024 -1);
3198         mddev->resync_max_sectors = mddev->size << 1;
3199
3200         if (conf->level == 6 && conf->raid_disks < 4) {
3201                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3202                        mdname(mddev), conf->raid_disks);
3203                 goto abort;
3204         }
3205         if (!conf->chunk_size || conf->chunk_size % 4) {
3206                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3207                         conf->chunk_size, mdname(mddev));
3208                 goto abort;
3209         }
3210         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3211                 printk(KERN_ERR 
3212                         "raid5: unsupported parity algorithm %d for %s\n",
3213                         conf->algorithm, mdname(mddev));
3214                 goto abort;
3215         }
3216         if (mddev->degraded > conf->max_degraded) {
3217                 printk(KERN_ERR "raid5: not enough operational devices for %s"
3218                         " (%d/%d failed)\n",
3219                         mdname(mddev), mddev->degraded, conf->raid_disks);
3220                 goto abort;
3221         }
3222
3223         if (mddev->degraded > 0 &&
3224             mddev->recovery_cp != MaxSector) {
3225                 if (mddev->ok_start_degraded)
3226                         printk(KERN_WARNING
3227                                "raid5: starting dirty degraded array: %s"
3228                                "- data corruption possible.\n",
3229                                mdname(mddev));
3230                 else {
3231                         printk(KERN_ERR
3232                                "raid5: cannot start dirty degraded array for %s\n",
3233                                mdname(mddev));
3234                         goto abort;
3235                 }
3236         }
3237
3238         {
3239                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3240                 if (!mddev->thread) {
3241                         printk(KERN_ERR 
3242                                 "raid5: couldn't allocate thread for %s\n",
3243                                 mdname(mddev));
3244                         goto abort;
3245                 }
3246         }
3247         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
3248                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3249         if (grow_stripes(conf, conf->max_nr_stripes)) {
3250                 printk(KERN_ERR 
3251                         "raid5: couldn't allocate %dkB for buffers\n", memory);
3252                 shrink_stripes(conf);
3253                 md_unregister_thread(mddev->thread);
3254                 goto abort;
3255         } else
3256                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3257                         memory, mdname(mddev));
3258
3259         if (mddev->degraded == 0)
3260                 printk("raid5: raid level %d set %s active with %d out of %d"
3261                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
3262                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3263                         conf->algorithm);
3264         else
3265                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3266                         " out of %d devices, algorithm %d\n", conf->level,
3267                         mdname(mddev), mddev->raid_disks - mddev->degraded,
3268                         mddev->raid_disks, conf->algorithm);
3269
3270         print_raid5_conf(conf);
3271
3272         if (conf->expand_progress != MaxSector) {
3273                 printk("...ok start reshape thread\n");
3274                 conf->expand_lo = conf->expand_progress;
3275                 atomic_set(&conf->reshape_stripes, 0);
3276                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3277                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3278                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3279                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3280                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3281                                                         "%s_reshape");
3282         }
3283
3284         /* read-ahead size must cover two whole stripes, which is
3285          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3286          */
3287         {
3288                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3289                 int stripe = data_disks *
3290                         (mddev->chunk_size / PAGE_SIZE);
3291                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3292                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3293         }
3294
3295         /* Ok, everything is just fine now */
3296         sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
3297
3298         mddev->queue->unplug_fn = raid5_unplug_device;
3299         mddev->queue->issue_flush_fn = raid5_issue_flush;
3300         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
3301                                             conf->max_degraded);
3302
3303         return 0;
3304 abort:
3305         if (conf) {
3306                 print_raid5_conf(conf);
3307                 safe_put_page(conf->spare_page);
3308                 kfree(conf->disks);
3309                 kfree(conf->stripe_hashtbl);
3310                 kfree(conf);
3311         }
3312         mddev->private = NULL;
3313         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3314         return -EIO;
3315 }
3316
3317
3318
3319 static int stop(mddev_t *mddev)
3320 {
3321         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3322
3323         md_unregister_thread(mddev->thread);
3324         mddev->thread = NULL;
3325         shrink_stripes(conf);
3326         kfree(conf->stripe_hashtbl);
3327         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3328         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
3329         kfree(conf->disks);
3330         kfree(conf);
3331         mddev->private = NULL;
3332         return 0;
3333 }
3334
3335 #if RAID5_DEBUG
3336 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
3337 {
3338         int i;
3339
3340         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3341                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3342         seq_printf(seq, "sh %llu,  count %d.\n",
3343                    (unsigned long long)sh->sector, atomic_read(&sh->count));
3344         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
3345         for (i = 0; i < sh->disks; i++) {
3346                 seq_printf(seq, "(cache%d: %p %ld) ",
3347                            i, sh->dev[i].page, sh->dev[i].flags);
3348         }
3349         seq_printf(seq, "\n");
3350 }
3351
3352 static void printall (struct seq_file *seq, raid5_conf_t *conf)
3353 {
3354         struct stripe_head *sh;
3355         struct hlist_node *hn;
3356         int i;
3357
3358         spin_lock_irq(&conf->device_lock);
3359         for (i = 0; i < NR_HASH; i++) {
3360                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
3361                         if (sh->raid_conf != conf)
3362                                 continue;
3363                         print_sh(seq, sh);
3364                 }
3365         }
3366         spin_unlock_irq(&conf->device_lock);
3367 }
3368 #endif
3369
3370 static void status (struct seq_file *seq, mddev_t *mddev)
3371 {
3372         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3373         int i;
3374
3375         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3376         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
3377         for (i = 0; i < conf->raid_disks; i++)
3378                 seq_printf (seq, "%s",
3379                                conf->disks[i].rdev &&
3380                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
3381         seq_printf (seq, "]");
3382 #if RAID5_DEBUG
3383         seq_printf (seq, "\n");
3384         printall(seq, conf);
3385 #endif
3386 }
3387
3388 static void print_raid5_conf (raid5_conf_t *conf)
3389 {
3390         int i;
3391         struct disk_info *tmp;
3392
3393         printk("RAID5 conf printout:\n");
3394         if (!conf) {
3395                 printk("(conf==NULL)\n");
3396                 return;
3397         }
3398         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
3399                  conf->raid_disks - conf->mddev->degraded);
3400
3401         for (i = 0; i < conf->raid_disks; i++) {
3402                 char b[BDEVNAME_SIZE];
3403                 tmp = conf->disks + i;
3404                 if (tmp->rdev)
3405                 printk(" disk %d, o:%d, dev:%s\n",
3406                         i, !test_bit(Faulty, &tmp->rdev->flags),
3407                         bdevname(tmp->rdev->bdev,b));
3408         }
3409 }
3410
3411 static int raid5_spare_active(mddev_t *mddev)
3412 {
3413         int i;
3414         raid5_conf_t *conf = mddev->private;
3415         struct disk_info *tmp;
3416
3417         for (i = 0; i < conf->raid_disks; i++) {
3418                 tmp = conf->disks + i;
3419                 if (tmp->rdev
3420                     && !test_bit(Faulty, &tmp->rdev->flags)
3421                     && !test_bit(In_sync, &tmp->rdev->flags)) {
3422                         mddev->degraded--;
3423                         set_bit(In_sync, &tmp->rdev->flags);
3424                 }
3425         }
3426         print_raid5_conf(conf);
3427         return 0;
3428 }
3429
3430 static int raid5_remove_disk(mddev_t *mddev, int number)
3431 {
3432         raid5_conf_t *conf = mddev->private;
3433         int err = 0;
3434         mdk_rdev_t *rdev;
3435         struct disk_info *p = conf->disks + number;
3436
3437         print_raid5_conf(conf);
3438         rdev = p->rdev;
3439         if (rdev) {
3440                 if (test_bit(In_sync, &rdev->flags) ||
3441                     atomic_read(&rdev->nr_pending)) {
3442                         err = -EBUSY;
3443                         goto abort;
3444                 }
3445                 p->rdev = NULL;
3446                 synchronize_rcu();
3447                 if (atomic_read(&rdev->nr_pending)) {
3448                         /* lost the race, try later */
3449                         err = -EBUSY;
3450                         p->rdev = rdev;
3451                 }
3452         }
3453 abort:
3454
3455         print_raid5_conf(conf);
3456         return err;
3457 }
3458
3459 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3460 {
3461         raid5_conf_t *conf = mddev->private;
3462         int found = 0;
3463         int disk;
3464         struct disk_info *p;
3465
3466         if (mddev->degraded > conf->max_degraded)
3467                 /* no point adding a device */
3468                 return 0;
3469
3470         /*
3471          * find the disk ... but prefer rdev->saved_raid_disk
3472          * if possible.
3473          */
3474         if (rdev->saved_raid_disk >= 0 &&
3475             conf->disks[rdev->saved_raid_disk].rdev == NULL)
3476                 disk = rdev->saved_raid_disk;
3477         else
3478                 disk = 0;
3479         for ( ; disk < conf->raid_disks; disk++)
3480                 if ((p=conf->disks + disk)->rdev == NULL) {
3481                         clear_bit(In_sync, &rdev->flags);
3482                         rdev->raid_disk = disk;
3483                         found = 1;
3484                         if (rdev->saved_raid_disk != disk)
3485                                 conf->fullsync = 1;
3486                         rcu_assign_pointer(p->rdev, rdev);
3487                         break;
3488                 }
3489         print_raid5_conf(conf);
3490         return found;
3491 }
3492
3493 static int raid5_resize(mddev_t *mddev, sector_t sectors)
3494 {
3495         /* no resync is happening, and there is enough space
3496          * on all devices, so we can resize.
3497          * We need to make sure resync covers any new space.
3498          * If the array is shrinking we should possibly wait until
3499          * any io in the removed space completes, but it hardly seems
3500          * worth it.
3501          */
3502         raid5_conf_t *conf = mddev_to_conf(mddev);
3503
3504         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
3505         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
3506         set_capacity(mddev->gendisk, mddev->array_size << 1);
3507         mddev->changed = 1;
3508         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
3509                 mddev->recovery_cp = mddev->size << 1;
3510                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3511         }
3512         mddev->size = sectors /2;
3513         mddev->resync_max_sectors = sectors;
3514         return 0;
3515 }
3516
3517 #ifdef CONFIG_MD_RAID5_RESHAPE
3518 static int raid5_check_reshape(mddev_t *mddev)
3519 {
3520         raid5_conf_t *conf = mddev_to_conf(mddev);
3521         int err;
3522
3523         if (mddev->delta_disks < 0 ||
3524             mddev->new_level != mddev->level)
3525                 return -EINVAL; /* Cannot shrink array or change level yet */
3526         if (mddev->delta_disks == 0)
3527                 return 0; /* nothing to do */
3528
3529         /* Can only proceed if there are plenty of stripe_heads.
3530          * We need a minimum of one full stripe,, and for sensible progress
3531          * it is best to have about 4 times that.
3532          * If we require 4 times, then the default 256 4K stripe_heads will
3533          * allow for chunk sizes up to 256K, which is probably OK.
3534          * If the chunk size is greater, user-space should request more
3535          * stripe_heads first.
3536          */
3537         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3538             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
3539                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
3540                        (mddev->chunk_size / STRIPE_SIZE)*4);
3541                 return -ENOSPC;
3542         }
3543
3544         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3545         if (err)
3546                 return err;
3547
3548         /* looks like we might be able to manage this */
3549         return 0;
3550 }
3551
3552 static int raid5_start_reshape(mddev_t *mddev)
3553 {
3554         raid5_conf_t *conf = mddev_to_conf(mddev);
3555         mdk_rdev_t *rdev;
3556         struct list_head *rtmp;
3557         int spares = 0;
3558         int added_devices = 0;
3559
3560         if (mddev->degraded ||
3561             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3562                 return -EBUSY;
3563
3564         ITERATE_RDEV(mddev, rdev, rtmp)
3565                 if (rdev->raid_disk < 0 &&
3566                     !test_bit(Faulty, &rdev->flags))
3567                         spares++;
3568
3569         if (spares < mddev->delta_disks-1)
3570                 /* Not enough devices even to make a degraded array
3571                  * of that size
3572                  */
3573                 return -EINVAL;
3574
3575         atomic_set(&conf->reshape_stripes, 0);
3576         spin_lock_irq(&conf->device_lock);
3577         conf->previous_raid_disks = conf->raid_disks;
3578         conf->raid_disks += mddev->delta_disks;
3579         conf->expand_progress = 0;
3580         conf->expand_lo = 0;
3581         spin_unlock_irq(&conf->device_lock);
3582
3583         /* Add some new drives, as many as will fit.
3584          * We know there are enough to make the newly sized array work.
3585          */
3586         ITERATE_RDEV(mddev, rdev, rtmp)
3587                 if (rdev->raid_disk < 0 &&
3588                     !test_bit(Faulty, &rdev->flags)) {
3589                         if (raid5_add_disk(mddev, rdev)) {
3590                                 char nm[20];
3591                                 set_bit(In_sync, &rdev->flags);
3592                                 added_devices++;
3593                                 rdev->recovery_offset = 0;
3594                                 sprintf(nm, "rd%d", rdev->raid_disk);
3595                                 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3596                         } else
3597                                 break;
3598                 }
3599
3600         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3601         mddev->raid_disks = conf->raid_disks;
3602         mddev->reshape_position = 0;
3603         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3604
3605         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3606         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3607         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3608         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3609         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3610                                                 "%s_reshape");
3611         if (!mddev->sync_thread) {
3612                 mddev->recovery = 0;
3613                 spin_lock_irq(&conf->device_lock);
3614                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3615                 conf->expand_progress = MaxSector;
3616                 spin_unlock_irq(&conf->device_lock);
3617                 return -EAGAIN;
3618         }
3619         md_wakeup_thread(mddev->sync_thread);
3620         md_new_event(mddev);
3621         return 0;
3622 }
3623 #endif
3624
3625 static void end_reshape(raid5_conf_t *conf)
3626 {
3627         struct block_device *bdev;
3628
3629         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3630                 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3631                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3632                 conf->mddev->changed = 1;
3633
3634                 bdev = bdget_disk(conf->mddev->gendisk, 0);
3635                 if (bdev) {
3636                         mutex_lock(&bdev->bd_inode->i_mutex);
3637                         i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
3638                         mutex_unlock(&bdev->bd_inode->i_mutex);
3639                         bdput(bdev);
3640                 }
3641                 spin_lock_irq(&conf->device_lock);
3642                 conf->expand_progress = MaxSector;
3643                 spin_unlock_irq(&conf->device_lock);
3644                 conf->mddev->reshape_position = MaxSector;
3645
3646                 /* read-ahead size must cover two whole stripes, which is
3647                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3648                  */
3649                 {
3650                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
3651                         int stripe = data_disks *
3652                                 (conf->mddev->chunk_size / PAGE_SIZE);
3653                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3654                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3655                 }
3656         }
3657 }
3658
3659 static void raid5_quiesce(mddev_t *mddev, int state)
3660 {
3661         raid5_conf_t *conf = mddev_to_conf(mddev);
3662
3663         switch(state) {
3664         case 2: /* resume for a suspend */
3665                 wake_up(&conf->wait_for_overlap);
3666                 break;
3667
3668         case 1: /* stop all writes */
3669                 spin_lock_irq(&conf->device_lock);
3670                 conf->quiesce = 1;
3671                 wait_event_lock_irq(conf->wait_for_stripe,
3672                                     atomic_read(&conf->active_stripes) == 0,
3673                                     conf->device_lock, /* nothing */);
3674                 spin_unlock_irq(&conf->device_lock);
3675                 break;
3676
3677         case 0: /* re-enable writes */
3678                 spin_lock_irq(&conf->device_lock);
3679                 conf->quiesce = 0;
3680                 wake_up(&conf->wait_for_stripe);
3681                 wake_up(&conf->wait_for_overlap);
3682                 spin_unlock_irq(&conf->device_lock);
3683                 break;
3684         }
3685 }
3686
3687 static struct mdk_personality raid6_personality =
3688 {
3689         .name           = "raid6",
3690         .level          = 6,
3691         .owner          = THIS_MODULE,
3692         .make_request   = make_request,
3693         .run            = run,
3694         .stop           = stop,
3695         .status         = status,
3696         .error_handler  = error,
3697         .hot_add_disk   = raid5_add_disk,
3698         .hot_remove_disk= raid5_remove_disk,
3699         .spare_active   = raid5_spare_active,
3700         .sync_request   = sync_request,
3701         .resize         = raid5_resize,
3702         .quiesce        = raid5_quiesce,
3703 };
3704 static struct mdk_personality raid5_personality =
3705 {
3706         .name           = "raid5",
3707         .level          = 5,
3708         .owner          = THIS_MODULE,
3709         .make_request   = make_request,
3710         .run            = run,
3711         .stop           = stop,
3712         .status         = status,
3713         .error_handler  = error,
3714         .hot_add_disk   = raid5_add_disk,
3715         .hot_remove_disk= raid5_remove_disk,
3716         .spare_active   = raid5_spare_active,
3717         .sync_request   = sync_request,
3718         .resize         = raid5_resize,
3719 #ifdef CONFIG_MD_RAID5_RESHAPE
3720         .check_reshape  = raid5_check_reshape,
3721         .start_reshape  = raid5_start_reshape,
3722 #endif
3723         .quiesce        = raid5_quiesce,
3724 };
3725
3726 static struct mdk_personality raid4_personality =
3727 {
3728         .name           = "raid4",
3729         .level          = 4,
3730         .owner          = THIS_MODULE,
3731         .make_request   = make_request,
3732         .run            = run,
3733         .stop           = stop,
3734         .status         = status,
3735         .error_handler  = error,
3736         .hot_add_disk   = raid5_add_disk,
3737         .hot_remove_disk= raid5_remove_disk,
3738         .spare_active   = raid5_spare_active,
3739         .sync_request   = sync_request,
3740         .resize         = raid5_resize,
3741         .quiesce        = raid5_quiesce,
3742 };
3743
3744 static int __init raid5_init(void)
3745 {
3746         int e;
3747
3748         e = raid6_select_algo();
3749         if ( e )
3750                 return e;
3751         register_md_personality(&raid6_personality);
3752         register_md_personality(&raid5_personality);
3753         register_md_personality(&raid4_personality);
3754         return 0;
3755 }
3756
3757 static void raid5_exit(void)
3758 {
3759         unregister_md_personality(&raid6_personality);
3760         unregister_md_personality(&raid5_personality);
3761         unregister_md_personality(&raid4_personality);
3762 }
3763
3764 module_init(raid5_init);
3765 module_exit(raid5_exit);
3766 MODULE_LICENSE("GPL");
3767 MODULE_ALIAS("md-personality-4"); /* RAID5 */
3768 MODULE_ALIAS("md-raid5");
3769 MODULE_ALIAS("md-raid4");
3770 MODULE_ALIAS("md-level-5");
3771 MODULE_ALIAS("md-level-4");
3772 MODULE_ALIAS("md-personality-8"); /* RAID6 */
3773 MODULE_ALIAS("md-raid6");
3774 MODULE_ALIAS("md-level-6");
3775
3776 /* This used to be two separate modules, they were: */
3777 MODULE_ALIAS("raid5");
3778 MODULE_ALIAS("raid6");