9722065022fa7734873c518c5dd92cb44347c59f
[pandora-kernel.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include "md.h"
28 #include "raid10.h"
29 #include "raid0.h"
30 #include "bitmap.h"
31
32 /*
33  * RAID10 provides a combination of RAID0 and RAID1 functionality.
34  * The layout of data is defined by
35  *    chunk_size
36  *    raid_disks
37  *    near_copies (stored in low byte of layout)
38  *    far_copies (stored in second byte of layout)
39  *    far_offset (stored in bit 16 of layout )
40  *
41  * The data to be stored is divided into chunks using chunksize.
42  * Each device is divided into far_copies sections.
43  * In each section, chunks are laid out in a style similar to raid0, but
44  * near_copies copies of each chunk is stored (each on a different drive).
45  * The starting device for each section is offset near_copies from the starting
46  * device of the previous section.
47  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48  * drive.
49  * near_copies and far_copies must be at least one, and their product is at most
50  * raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of be very far apart
54  * on disk, there are adjacent stripes.
55  */
56
57 /*
58  * Number of guaranteed r10bios in case of extreme VM load:
59  */
60 #define NR_RAID10_BIOS 256
61
62 /* When there are this many requests queue to be written by
63  * the raid10 thread, we become 'congested' to provide back-pressure
64  * for writeback.
65  */
66 static int max_queued_requests = 1024;
67
68 static void allow_barrier(struct r10conf *conf);
69 static void lower_barrier(struct r10conf *conf);
70
71 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
72 {
73         struct r10conf *conf = data;
74         int size = offsetof(struct r10bio, devs[conf->copies]);
75
76         /* allocate a r10bio with room for raid_disks entries in the
77          * bios array */
78         return kzalloc(size, gfp_flags);
79 }
80
81 static void r10bio_pool_free(void *r10_bio, void *data)
82 {
83         kfree(r10_bio);
84 }
85
86 /* Maximum size of each resync request */
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
89 /* amount of memory to reserve for resync requests */
90 #define RESYNC_WINDOW (1024*1024)
91 /* maximum number of concurrent requests, memory permitting */
92 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
93
94 /*
95  * When performing a resync, we need to read and compare, so
96  * we need as many pages are there are copies.
97  * When performing a recovery, we need 2 bios, one for read,
98  * one for write (we recover only one drive per r10buf)
99  *
100  */
101 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
102 {
103         struct r10conf *conf = data;
104         struct page *page;
105         struct r10bio *r10_bio;
106         struct bio *bio;
107         int i, j;
108         int nalloc;
109
110         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
111         if (!r10_bio)
112                 return NULL;
113
114         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115                 nalloc = conf->copies; /* resync */
116         else
117                 nalloc = 2; /* recovery */
118
119         /*
120          * Allocate bios.
121          */
122         for (j = nalloc ; j-- ; ) {
123                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
124                 if (!bio)
125                         goto out_free_bio;
126                 r10_bio->devs[j].bio = bio;
127                 if (!conf->have_replacement)
128                         continue;
129                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
130                 if (!bio)
131                         goto out_free_bio;
132                 r10_bio->devs[j].repl_bio = bio;
133         }
134         /*
135          * Allocate RESYNC_PAGES data pages and attach them
136          * where needed.
137          */
138         for (j = 0 ; j < nalloc; j++) {
139                 struct bio *rbio = r10_bio->devs[j].repl_bio;
140                 bio = r10_bio->devs[j].bio;
141                 for (i = 0; i < RESYNC_PAGES; i++) {
142                         if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
143                                                 &conf->mddev->recovery)) {
144                                 /* we can share bv_page's during recovery */
145                                 struct bio *rbio = r10_bio->devs[0].bio;
146                                 page = rbio->bi_io_vec[i].bv_page;
147                                 get_page(page);
148                         } else
149                                 page = alloc_page(gfp_flags);
150                         if (unlikely(!page))
151                                 goto out_free_pages;
152
153                         bio->bi_io_vec[i].bv_page = page;
154                         if (rbio)
155                                 rbio->bi_io_vec[i].bv_page = page;
156                 }
157         }
158
159         return r10_bio;
160
161 out_free_pages:
162         for ( ; i > 0 ; i--)
163                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
164         while (j--)
165                 for (i = 0; i < RESYNC_PAGES ; i++)
166                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
167         j = -1;
168 out_free_bio:
169         while (++j < nalloc) {
170                 bio_put(r10_bio->devs[j].bio);
171                 if (r10_bio->devs[j].repl_bio)
172                         bio_put(r10_bio->devs[j].repl_bio);
173         }
174         r10bio_pool_free(r10_bio, conf);
175         return NULL;
176 }
177
178 static void r10buf_pool_free(void *__r10_bio, void *data)
179 {
180         int i;
181         struct r10conf *conf = data;
182         struct r10bio *r10bio = __r10_bio;
183         int j;
184
185         for (j=0; j < conf->copies; j++) {
186                 struct bio *bio = r10bio->devs[j].bio;
187                 if (bio) {
188                         for (i = 0; i < RESYNC_PAGES; i++) {
189                                 safe_put_page(bio->bi_io_vec[i].bv_page);
190                                 bio->bi_io_vec[i].bv_page = NULL;
191                         }
192                         bio_put(bio);
193                 }
194                 bio = r10bio->devs[j].repl_bio;
195                 if (bio)
196                         bio_put(bio);
197         }
198         r10bio_pool_free(r10bio, conf);
199 }
200
201 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
202 {
203         int i;
204
205         for (i = 0; i < conf->copies; i++) {
206                 struct bio **bio = & r10_bio->devs[i].bio;
207                 if (!BIO_SPECIAL(*bio))
208                         bio_put(*bio);
209                 *bio = NULL;
210                 bio = &r10_bio->devs[i].repl_bio;
211                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
212                         bio_put(*bio);
213                 *bio = NULL;
214         }
215 }
216
217 static void free_r10bio(struct r10bio *r10_bio)
218 {
219         struct r10conf *conf = r10_bio->mddev->private;
220
221         put_all_bios(conf, r10_bio);
222         mempool_free(r10_bio, conf->r10bio_pool);
223 }
224
225 static void put_buf(struct r10bio *r10_bio)
226 {
227         struct r10conf *conf = r10_bio->mddev->private;
228
229         mempool_free(r10_bio, conf->r10buf_pool);
230
231         lower_barrier(conf);
232 }
233
234 static void reschedule_retry(struct r10bio *r10_bio)
235 {
236         unsigned long flags;
237         struct mddev *mddev = r10_bio->mddev;
238         struct r10conf *conf = mddev->private;
239
240         spin_lock_irqsave(&conf->device_lock, flags);
241         list_add(&r10_bio->retry_list, &conf->retry_list);
242         conf->nr_queued ++;
243         spin_unlock_irqrestore(&conf->device_lock, flags);
244
245         /* wake up frozen array... */
246         wake_up(&conf->wait_barrier);
247
248         md_wakeup_thread(mddev->thread);
249 }
250
251 /*
252  * raid_end_bio_io() is called when we have finished servicing a mirrored
253  * operation and are ready to return a success/failure code to the buffer
254  * cache layer.
255  */
256 static void raid_end_bio_io(struct r10bio *r10_bio)
257 {
258         struct bio *bio = r10_bio->master_bio;
259         int done;
260         struct r10conf *conf = r10_bio->mddev->private;
261
262         if (bio->bi_phys_segments) {
263                 unsigned long flags;
264                 spin_lock_irqsave(&conf->device_lock, flags);
265                 bio->bi_phys_segments--;
266                 done = (bio->bi_phys_segments == 0);
267                 spin_unlock_irqrestore(&conf->device_lock, flags);
268         } else
269                 done = 1;
270         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
271                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
272         if (done) {
273                 bio_endio(bio, 0);
274                 /*
275                  * Wake up any possible resync thread that waits for the device
276                  * to go idle.
277                  */
278                 allow_barrier(conf);
279         }
280         free_r10bio(r10_bio);
281 }
282
283 /*
284  * Update disk head position estimator based on IRQ completion info.
285  */
286 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
287 {
288         struct r10conf *conf = r10_bio->mddev->private;
289
290         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
291                 r10_bio->devs[slot].addr + (r10_bio->sectors);
292 }
293
294 /*
295  * Find the disk number which triggered given bio
296  */
297 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
298                          struct bio *bio, int *slotp, int *replp)
299 {
300         int slot;
301         int repl = 0;
302
303         for (slot = 0; slot < conf->copies; slot++) {
304                 if (r10_bio->devs[slot].bio == bio)
305                         break;
306                 if (r10_bio->devs[slot].repl_bio == bio) {
307                         repl = 1;
308                         break;
309                 }
310         }
311
312         BUG_ON(slot == conf->copies);
313         update_head_pos(slot, r10_bio);
314
315         if (slotp)
316                 *slotp = slot;
317         if (replp)
318                 *replp = repl;
319         return r10_bio->devs[slot].devnum;
320 }
321
322 static void raid10_end_read_request(struct bio *bio, int error)
323 {
324         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
325         struct r10bio *r10_bio = bio->bi_private;
326         int slot, dev;
327         struct r10conf *conf = r10_bio->mddev->private;
328
329
330         slot = r10_bio->read_slot;
331         dev = r10_bio->devs[slot].devnum;
332         /*
333          * this branch is our 'one mirror IO has finished' event handler:
334          */
335         update_head_pos(slot, r10_bio);
336
337         if (uptodate) {
338                 /*
339                  * Set R10BIO_Uptodate in our master bio, so that
340                  * we will return a good error code to the higher
341                  * levels even if IO on some other mirrored buffer fails.
342                  *
343                  * The 'master' represents the composite IO operation to
344                  * user-side. So if something waits for IO, then it will
345                  * wait for the 'master' bio.
346                  */
347                 set_bit(R10BIO_Uptodate, &r10_bio->state);
348                 raid_end_bio_io(r10_bio);
349                 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
350         } else {
351                 /*
352                  * oops, read error - keep the refcount on the rdev
353                  */
354                 char b[BDEVNAME_SIZE];
355                 printk_ratelimited(KERN_ERR
356                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
357                                    mdname(conf->mddev),
358                                    bdevname(conf->mirrors[dev].rdev->bdev, b),
359                                    (unsigned long long)r10_bio->sector);
360                 set_bit(R10BIO_ReadError, &r10_bio->state);
361                 reschedule_retry(r10_bio);
362         }
363 }
364
365 static void close_write(struct r10bio *r10_bio)
366 {
367         /* clear the bitmap if all writes complete successfully */
368         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
369                         r10_bio->sectors,
370                         !test_bit(R10BIO_Degraded, &r10_bio->state),
371                         0);
372         md_write_end(r10_bio->mddev);
373 }
374
375 static void one_write_done(struct r10bio *r10_bio)
376 {
377         if (atomic_dec_and_test(&r10_bio->remaining)) {
378                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
379                         reschedule_retry(r10_bio);
380                 else {
381                         close_write(r10_bio);
382                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
383                                 reschedule_retry(r10_bio);
384                         else
385                                 raid_end_bio_io(r10_bio);
386                 }
387         }
388 }
389
390 static void raid10_end_write_request(struct bio *bio, int error)
391 {
392         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
393         struct r10bio *r10_bio = bio->bi_private;
394         int dev;
395         int dec_rdev = 1;
396         struct r10conf *conf = r10_bio->mddev->private;
397         int slot;
398
399         dev = find_bio_disk(conf, r10_bio, bio, &slot, NULL);
400
401         /*
402          * this branch is our 'one mirror IO has finished' event handler:
403          */
404         if (!uptodate) {
405                 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
406                 set_bit(R10BIO_WriteError, &r10_bio->state);
407                 dec_rdev = 0;
408         } else {
409                 /*
410                  * Set R10BIO_Uptodate in our master bio, so that
411                  * we will return a good error code for to the higher
412                  * levels even if IO on some other mirrored buffer fails.
413                  *
414                  * The 'master' represents the composite IO operation to
415                  * user-side. So if something waits for IO, then it will
416                  * wait for the 'master' bio.
417                  */
418                 sector_t first_bad;
419                 int bad_sectors;
420
421                 set_bit(R10BIO_Uptodate, &r10_bio->state);
422
423                 /* Maybe we can clear some bad blocks. */
424                 if (is_badblock(conf->mirrors[dev].rdev,
425                                 r10_bio->devs[slot].addr,
426                                 r10_bio->sectors,
427                                 &first_bad, &bad_sectors)) {
428                         bio_put(bio);
429                         r10_bio->devs[slot].bio = IO_MADE_GOOD;
430                         dec_rdev = 0;
431                         set_bit(R10BIO_MadeGood, &r10_bio->state);
432                 }
433         }
434
435         /*
436          *
437          * Let's see if all mirrored write operations have finished
438          * already.
439          */
440         one_write_done(r10_bio);
441         if (dec_rdev)
442                 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
443 }
444
445
446 /*
447  * RAID10 layout manager
448  * As well as the chunksize and raid_disks count, there are two
449  * parameters: near_copies and far_copies.
450  * near_copies * far_copies must be <= raid_disks.
451  * Normally one of these will be 1.
452  * If both are 1, we get raid0.
453  * If near_copies == raid_disks, we get raid1.
454  *
455  * Chunks are laid out in raid0 style with near_copies copies of the
456  * first chunk, followed by near_copies copies of the next chunk and
457  * so on.
458  * If far_copies > 1, then after 1/far_copies of the array has been assigned
459  * as described above, we start again with a device offset of near_copies.
460  * So we effectively have another copy of the whole array further down all
461  * the drives, but with blocks on different drives.
462  * With this layout, and block is never stored twice on the one device.
463  *
464  * raid10_find_phys finds the sector offset of a given virtual sector
465  * on each device that it is on.
466  *
467  * raid10_find_virt does the reverse mapping, from a device and a
468  * sector offset to a virtual address
469  */
470
471 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
472 {
473         int n,f;
474         sector_t sector;
475         sector_t chunk;
476         sector_t stripe;
477         int dev;
478
479         int slot = 0;
480
481         /* now calculate first sector/dev */
482         chunk = r10bio->sector >> conf->chunk_shift;
483         sector = r10bio->sector & conf->chunk_mask;
484
485         chunk *= conf->near_copies;
486         stripe = chunk;
487         dev = sector_div(stripe, conf->raid_disks);
488         if (conf->far_offset)
489                 stripe *= conf->far_copies;
490
491         sector += stripe << conf->chunk_shift;
492
493         /* and calculate all the others */
494         for (n=0; n < conf->near_copies; n++) {
495                 int d = dev;
496                 sector_t s = sector;
497                 r10bio->devs[slot].addr = sector;
498                 r10bio->devs[slot].devnum = d;
499                 slot++;
500
501                 for (f = 1; f < conf->far_copies; f++) {
502                         d += conf->near_copies;
503                         if (d >= conf->raid_disks)
504                                 d -= conf->raid_disks;
505                         s += conf->stride;
506                         r10bio->devs[slot].devnum = d;
507                         r10bio->devs[slot].addr = s;
508                         slot++;
509                 }
510                 dev++;
511                 if (dev >= conf->raid_disks) {
512                         dev = 0;
513                         sector += (conf->chunk_mask + 1);
514                 }
515         }
516         BUG_ON(slot != conf->copies);
517 }
518
519 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
520 {
521         sector_t offset, chunk, vchunk;
522
523         offset = sector & conf->chunk_mask;
524         if (conf->far_offset) {
525                 int fc;
526                 chunk = sector >> conf->chunk_shift;
527                 fc = sector_div(chunk, conf->far_copies);
528                 dev -= fc * conf->near_copies;
529                 if (dev < 0)
530                         dev += conf->raid_disks;
531         } else {
532                 while (sector >= conf->stride) {
533                         sector -= conf->stride;
534                         if (dev < conf->near_copies)
535                                 dev += conf->raid_disks - conf->near_copies;
536                         else
537                                 dev -= conf->near_copies;
538                 }
539                 chunk = sector >> conf->chunk_shift;
540         }
541         vchunk = chunk * conf->raid_disks + dev;
542         sector_div(vchunk, conf->near_copies);
543         return (vchunk << conf->chunk_shift) + offset;
544 }
545
546 /**
547  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
548  *      @q: request queue
549  *      @bvm: properties of new bio
550  *      @biovec: the request that could be merged to it.
551  *
552  *      Return amount of bytes we can accept at this offset
553  *      If near_copies == raid_disk, there are no striping issues,
554  *      but in that case, the function isn't called at all.
555  */
556 static int raid10_mergeable_bvec(struct request_queue *q,
557                                  struct bvec_merge_data *bvm,
558                                  struct bio_vec *biovec)
559 {
560         struct mddev *mddev = q->queuedata;
561         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
562         int max;
563         unsigned int chunk_sectors = mddev->chunk_sectors;
564         unsigned int bio_sectors = bvm->bi_size >> 9;
565
566         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
567         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
568         if (max <= biovec->bv_len && bio_sectors == 0)
569                 return biovec->bv_len;
570         else
571                 return max;
572 }
573
574 /*
575  * This routine returns the disk from which the requested read should
576  * be done. There is a per-array 'next expected sequential IO' sector
577  * number - if this matches on the next IO then we use the last disk.
578  * There is also a per-disk 'last know head position' sector that is
579  * maintained from IRQ contexts, both the normal and the resync IO
580  * completion handlers update this position correctly. If there is no
581  * perfect sequential match then we pick the disk whose head is closest.
582  *
583  * If there are 2 mirrors in the same 2 devices, performance degrades
584  * because position is mirror, not device based.
585  *
586  * The rdev for the device selected will have nr_pending incremented.
587  */
588
589 /*
590  * FIXME: possibly should rethink readbalancing and do it differently
591  * depending on near_copies / far_copies geometry.
592  */
593 static int read_balance(struct r10conf *conf, struct r10bio *r10_bio, int *max_sectors)
594 {
595         const sector_t this_sector = r10_bio->sector;
596         int disk, slot;
597         int sectors = r10_bio->sectors;
598         int best_good_sectors;
599         sector_t new_distance, best_dist;
600         struct md_rdev *rdev;
601         int do_balance;
602         int best_slot;
603
604         raid10_find_phys(conf, r10_bio);
605         rcu_read_lock();
606 retry:
607         sectors = r10_bio->sectors;
608         best_slot = -1;
609         best_dist = MaxSector;
610         best_good_sectors = 0;
611         do_balance = 1;
612         /*
613          * Check if we can balance. We can balance on the whole
614          * device if no resync is going on (recovery is ok), or below
615          * the resync window. We take the first readable disk when
616          * above the resync window.
617          */
618         if (conf->mddev->recovery_cp < MaxSector
619             && (this_sector + sectors >= conf->next_resync))
620                 do_balance = 0;
621
622         for (slot = 0; slot < conf->copies ; slot++) {
623                 sector_t first_bad;
624                 int bad_sectors;
625                 sector_t dev_sector;
626
627                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
628                         continue;
629                 disk = r10_bio->devs[slot].devnum;
630                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
631                 if (rdev == NULL)
632                         continue;
633                 if (!test_bit(In_sync, &rdev->flags))
634                         continue;
635
636                 dev_sector = r10_bio->devs[slot].addr;
637                 if (is_badblock(rdev, dev_sector, sectors,
638                                 &first_bad, &bad_sectors)) {
639                         if (best_dist < MaxSector)
640                                 /* Already have a better slot */
641                                 continue;
642                         if (first_bad <= dev_sector) {
643                                 /* Cannot read here.  If this is the
644                                  * 'primary' device, then we must not read
645                                  * beyond 'bad_sectors' from another device.
646                                  */
647                                 bad_sectors -= (dev_sector - first_bad);
648                                 if (!do_balance && sectors > bad_sectors)
649                                         sectors = bad_sectors;
650                                 if (best_good_sectors > sectors)
651                                         best_good_sectors = sectors;
652                         } else {
653                                 sector_t good_sectors =
654                                         first_bad - dev_sector;
655                                 if (good_sectors > best_good_sectors) {
656                                         best_good_sectors = good_sectors;
657                                         best_slot = slot;
658                                 }
659                                 if (!do_balance)
660                                         /* Must read from here */
661                                         break;
662                         }
663                         continue;
664                 } else
665                         best_good_sectors = sectors;
666
667                 if (!do_balance)
668                         break;
669
670                 /* This optimisation is debatable, and completely destroys
671                  * sequential read speed for 'far copies' arrays.  So only
672                  * keep it for 'near' arrays, and review those later.
673                  */
674                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
675                         break;
676
677                 /* for far > 1 always use the lowest address */
678                 if (conf->far_copies > 1)
679                         new_distance = r10_bio->devs[slot].addr;
680                 else
681                         new_distance = abs(r10_bio->devs[slot].addr -
682                                            conf->mirrors[disk].head_position);
683                 if (new_distance < best_dist) {
684                         best_dist = new_distance;
685                         best_slot = slot;
686                 }
687         }
688         if (slot == conf->copies)
689                 slot = best_slot;
690
691         if (slot >= 0) {
692                 disk = r10_bio->devs[slot].devnum;
693                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
694                 if (!rdev)
695                         goto retry;
696                 atomic_inc(&rdev->nr_pending);
697                 if (test_bit(Faulty, &rdev->flags)) {
698                         /* Cannot risk returning a device that failed
699                          * before we inc'ed nr_pending
700                          */
701                         rdev_dec_pending(rdev, conf->mddev);
702                         goto retry;
703                 }
704                 r10_bio->read_slot = slot;
705         } else
706                 disk = -1;
707         rcu_read_unlock();
708         *max_sectors = best_good_sectors;
709
710         return disk;
711 }
712
713 static int raid10_congested(void *data, int bits)
714 {
715         struct mddev *mddev = data;
716         struct r10conf *conf = mddev->private;
717         int i, ret = 0;
718
719         if ((bits & (1 << BDI_async_congested)) &&
720             conf->pending_count >= max_queued_requests)
721                 return 1;
722
723         if (mddev_congested(mddev, bits))
724                 return 1;
725         rcu_read_lock();
726         for (i = 0; i < conf->raid_disks && ret == 0; i++) {
727                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
728                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
729                         struct request_queue *q = bdev_get_queue(rdev->bdev);
730
731                         ret |= bdi_congested(&q->backing_dev_info, bits);
732                 }
733         }
734         rcu_read_unlock();
735         return ret;
736 }
737
738 static void flush_pending_writes(struct r10conf *conf)
739 {
740         /* Any writes that have been queued but are awaiting
741          * bitmap updates get flushed here.
742          */
743         spin_lock_irq(&conf->device_lock);
744
745         if (conf->pending_bio_list.head) {
746                 struct bio *bio;
747                 bio = bio_list_get(&conf->pending_bio_list);
748                 conf->pending_count = 0;
749                 spin_unlock_irq(&conf->device_lock);
750                 /* flush any pending bitmap writes to disk
751                  * before proceeding w/ I/O */
752                 bitmap_unplug(conf->mddev->bitmap);
753                 wake_up(&conf->wait_barrier);
754
755                 while (bio) { /* submit pending writes */
756                         struct bio *next = bio->bi_next;
757                         bio->bi_next = NULL;
758                         generic_make_request(bio);
759                         bio = next;
760                 }
761         } else
762                 spin_unlock_irq(&conf->device_lock);
763 }
764
765 /* Barriers....
766  * Sometimes we need to suspend IO while we do something else,
767  * either some resync/recovery, or reconfigure the array.
768  * To do this we raise a 'barrier'.
769  * The 'barrier' is a counter that can be raised multiple times
770  * to count how many activities are happening which preclude
771  * normal IO.
772  * We can only raise the barrier if there is no pending IO.
773  * i.e. if nr_pending == 0.
774  * We choose only to raise the barrier if no-one is waiting for the
775  * barrier to go down.  This means that as soon as an IO request
776  * is ready, no other operations which require a barrier will start
777  * until the IO request has had a chance.
778  *
779  * So: regular IO calls 'wait_barrier'.  When that returns there
780  *    is no backgroup IO happening,  It must arrange to call
781  *    allow_barrier when it has finished its IO.
782  * backgroup IO calls must call raise_barrier.  Once that returns
783  *    there is no normal IO happeing.  It must arrange to call
784  *    lower_barrier when the particular background IO completes.
785  */
786
787 static void raise_barrier(struct r10conf *conf, int force)
788 {
789         BUG_ON(force && !conf->barrier);
790         spin_lock_irq(&conf->resync_lock);
791
792         /* Wait until no block IO is waiting (unless 'force') */
793         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
794                             conf->resync_lock, );
795
796         /* block any new IO from starting */
797         conf->barrier++;
798
799         /* Now wait for all pending IO to complete */
800         wait_event_lock_irq(conf->wait_barrier,
801                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
802                             conf->resync_lock, );
803
804         spin_unlock_irq(&conf->resync_lock);
805 }
806
807 static void lower_barrier(struct r10conf *conf)
808 {
809         unsigned long flags;
810         spin_lock_irqsave(&conf->resync_lock, flags);
811         conf->barrier--;
812         spin_unlock_irqrestore(&conf->resync_lock, flags);
813         wake_up(&conf->wait_barrier);
814 }
815
816 static void wait_barrier(struct r10conf *conf)
817 {
818         spin_lock_irq(&conf->resync_lock);
819         if (conf->barrier) {
820                 conf->nr_waiting++;
821                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
822                                     conf->resync_lock,
823                                     );
824                 conf->nr_waiting--;
825         }
826         conf->nr_pending++;
827         spin_unlock_irq(&conf->resync_lock);
828 }
829
830 static void allow_barrier(struct r10conf *conf)
831 {
832         unsigned long flags;
833         spin_lock_irqsave(&conf->resync_lock, flags);
834         conf->nr_pending--;
835         spin_unlock_irqrestore(&conf->resync_lock, flags);
836         wake_up(&conf->wait_barrier);
837 }
838
839 static void freeze_array(struct r10conf *conf)
840 {
841         /* stop syncio and normal IO and wait for everything to
842          * go quiet.
843          * We increment barrier and nr_waiting, and then
844          * wait until nr_pending match nr_queued+1
845          * This is called in the context of one normal IO request
846          * that has failed. Thus any sync request that might be pending
847          * will be blocked by nr_pending, and we need to wait for
848          * pending IO requests to complete or be queued for re-try.
849          * Thus the number queued (nr_queued) plus this request (1)
850          * must match the number of pending IOs (nr_pending) before
851          * we continue.
852          */
853         spin_lock_irq(&conf->resync_lock);
854         conf->barrier++;
855         conf->nr_waiting++;
856         wait_event_lock_irq(conf->wait_barrier,
857                             conf->nr_pending == conf->nr_queued+1,
858                             conf->resync_lock,
859                             flush_pending_writes(conf));
860
861         spin_unlock_irq(&conf->resync_lock);
862 }
863
864 static void unfreeze_array(struct r10conf *conf)
865 {
866         /* reverse the effect of the freeze */
867         spin_lock_irq(&conf->resync_lock);
868         conf->barrier--;
869         conf->nr_waiting--;
870         wake_up(&conf->wait_barrier);
871         spin_unlock_irq(&conf->resync_lock);
872 }
873
874 static void make_request(struct mddev *mddev, struct bio * bio)
875 {
876         struct r10conf *conf = mddev->private;
877         struct mirror_info *mirror;
878         struct r10bio *r10_bio;
879         struct bio *read_bio;
880         int i;
881         int chunk_sects = conf->chunk_mask + 1;
882         const int rw = bio_data_dir(bio);
883         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
884         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
885         unsigned long flags;
886         struct md_rdev *blocked_rdev;
887         int plugged;
888         int sectors_handled;
889         int max_sectors;
890
891         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
892                 md_flush_request(mddev, bio);
893                 return;
894         }
895
896         /* If this request crosses a chunk boundary, we need to
897          * split it.  This will only happen for 1 PAGE (or less) requests.
898          */
899         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
900                       > chunk_sects &&
901                     conf->near_copies < conf->raid_disks)) {
902                 struct bio_pair *bp;
903                 /* Sanity check -- queue functions should prevent this happening */
904                 if (bio->bi_vcnt != 1 ||
905                     bio->bi_idx != 0)
906                         goto bad_map;
907                 /* This is a one page bio that upper layers
908                  * refuse to split for us, so we need to split it.
909                  */
910                 bp = bio_split(bio,
911                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
912
913                 /* Each of these 'make_request' calls will call 'wait_barrier'.
914                  * If the first succeeds but the second blocks due to the resync
915                  * thread raising the barrier, we will deadlock because the
916                  * IO to the underlying device will be queued in generic_make_request
917                  * and will never complete, so will never reduce nr_pending.
918                  * So increment nr_waiting here so no new raise_barriers will
919                  * succeed, and so the second wait_barrier cannot block.
920                  */
921                 spin_lock_irq(&conf->resync_lock);
922                 conf->nr_waiting++;
923                 spin_unlock_irq(&conf->resync_lock);
924
925                 make_request(mddev, &bp->bio1);
926                 make_request(mddev, &bp->bio2);
927
928                 spin_lock_irq(&conf->resync_lock);
929                 conf->nr_waiting--;
930                 wake_up(&conf->wait_barrier);
931                 spin_unlock_irq(&conf->resync_lock);
932
933                 bio_pair_release(bp);
934                 return;
935         bad_map:
936                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
937                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
938                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
939
940                 bio_io_error(bio);
941                 return;
942         }
943
944         md_write_start(mddev, bio);
945
946         /*
947          * Register the new request and wait if the reconstruction
948          * thread has put up a bar for new requests.
949          * Continue immediately if no resync is active currently.
950          */
951         wait_barrier(conf);
952
953         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
954
955         r10_bio->master_bio = bio;
956         r10_bio->sectors = bio->bi_size >> 9;
957
958         r10_bio->mddev = mddev;
959         r10_bio->sector = bio->bi_sector;
960         r10_bio->state = 0;
961
962         /* We might need to issue multiple reads to different
963          * devices if there are bad blocks around, so we keep
964          * track of the number of reads in bio->bi_phys_segments.
965          * If this is 0, there is only one r10_bio and no locking
966          * will be needed when the request completes.  If it is
967          * non-zero, then it is the number of not-completed requests.
968          */
969         bio->bi_phys_segments = 0;
970         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
971
972         if (rw == READ) {
973                 /*
974                  * read balancing logic:
975                  */
976                 int disk;
977                 int slot;
978
979 read_again:
980                 disk = read_balance(conf, r10_bio, &max_sectors);
981                 slot = r10_bio->read_slot;
982                 if (disk < 0) {
983                         raid_end_bio_io(r10_bio);
984                         return;
985                 }
986                 mirror = conf->mirrors + disk;
987
988                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
989                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
990                             max_sectors);
991
992                 r10_bio->devs[slot].bio = read_bio;
993
994                 read_bio->bi_sector = r10_bio->devs[slot].addr +
995                         mirror->rdev->data_offset;
996                 read_bio->bi_bdev = mirror->rdev->bdev;
997                 read_bio->bi_end_io = raid10_end_read_request;
998                 read_bio->bi_rw = READ | do_sync;
999                 read_bio->bi_private = r10_bio;
1000
1001                 if (max_sectors < r10_bio->sectors) {
1002                         /* Could not read all from this device, so we will
1003                          * need another r10_bio.
1004                          */
1005                         sectors_handled = (r10_bio->sectors + max_sectors
1006                                            - bio->bi_sector);
1007                         r10_bio->sectors = max_sectors;
1008                         spin_lock_irq(&conf->device_lock);
1009                         if (bio->bi_phys_segments == 0)
1010                                 bio->bi_phys_segments = 2;
1011                         else
1012                                 bio->bi_phys_segments++;
1013                         spin_unlock(&conf->device_lock);
1014                         /* Cannot call generic_make_request directly
1015                          * as that will be queued in __generic_make_request
1016                          * and subsequent mempool_alloc might block
1017                          * waiting for it.  so hand bio over to raid10d.
1018                          */
1019                         reschedule_retry(r10_bio);
1020
1021                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1022
1023                         r10_bio->master_bio = bio;
1024                         r10_bio->sectors = ((bio->bi_size >> 9)
1025                                             - sectors_handled);
1026                         r10_bio->state = 0;
1027                         r10_bio->mddev = mddev;
1028                         r10_bio->sector = bio->bi_sector + sectors_handled;
1029                         goto read_again;
1030                 } else
1031                         generic_make_request(read_bio);
1032                 return;
1033         }
1034
1035         /*
1036          * WRITE:
1037          */
1038         if (conf->pending_count >= max_queued_requests) {
1039                 md_wakeup_thread(mddev->thread);
1040                 wait_event(conf->wait_barrier,
1041                            conf->pending_count < max_queued_requests);
1042         }
1043         /* first select target devices under rcu_lock and
1044          * inc refcount on their rdev.  Record them by setting
1045          * bios[x] to bio
1046          * If there are known/acknowledged bad blocks on any device
1047          * on which we have seen a write error, we want to avoid
1048          * writing to those blocks.  This potentially requires several
1049          * writes to write around the bad blocks.  Each set of writes
1050          * gets its own r10_bio with a set of bios attached.  The number
1051          * of r10_bios is recored in bio->bi_phys_segments just as with
1052          * the read case.
1053          */
1054         plugged = mddev_check_plugged(mddev);
1055
1056         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1057         raid10_find_phys(conf, r10_bio);
1058 retry_write:
1059         blocked_rdev = NULL;
1060         rcu_read_lock();
1061         max_sectors = r10_bio->sectors;
1062
1063         for (i = 0;  i < conf->copies; i++) {
1064                 int d = r10_bio->devs[i].devnum;
1065                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1066                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1067                         atomic_inc(&rdev->nr_pending);
1068                         blocked_rdev = rdev;
1069                         break;
1070                 }
1071                 r10_bio->devs[i].bio = NULL;
1072                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1073                         set_bit(R10BIO_Degraded, &r10_bio->state);
1074                         continue;
1075                 }
1076                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1077                         sector_t first_bad;
1078                         sector_t dev_sector = r10_bio->devs[i].addr;
1079                         int bad_sectors;
1080                         int is_bad;
1081
1082                         is_bad = is_badblock(rdev, dev_sector,
1083                                              max_sectors,
1084                                              &first_bad, &bad_sectors);
1085                         if (is_bad < 0) {
1086                                 /* Mustn't write here until the bad block
1087                                  * is acknowledged
1088                                  */
1089                                 atomic_inc(&rdev->nr_pending);
1090                                 set_bit(BlockedBadBlocks, &rdev->flags);
1091                                 blocked_rdev = rdev;
1092                                 break;
1093                         }
1094                         if (is_bad && first_bad <= dev_sector) {
1095                                 /* Cannot write here at all */
1096                                 bad_sectors -= (dev_sector - first_bad);
1097                                 if (bad_sectors < max_sectors)
1098                                         /* Mustn't write more than bad_sectors
1099                                          * to other devices yet
1100                                          */
1101                                         max_sectors = bad_sectors;
1102                                 /* We don't set R10BIO_Degraded as that
1103                                  * only applies if the disk is missing,
1104                                  * so it might be re-added, and we want to
1105                                  * know to recover this chunk.
1106                                  * In this case the device is here, and the
1107                                  * fact that this chunk is not in-sync is
1108                                  * recorded in the bad block log.
1109                                  */
1110                                 continue;
1111                         }
1112                         if (is_bad) {
1113                                 int good_sectors = first_bad - dev_sector;
1114                                 if (good_sectors < max_sectors)
1115                                         max_sectors = good_sectors;
1116                         }
1117                 }
1118                 r10_bio->devs[i].bio = bio;
1119                 atomic_inc(&rdev->nr_pending);
1120         }
1121         rcu_read_unlock();
1122
1123         if (unlikely(blocked_rdev)) {
1124                 /* Have to wait for this device to get unblocked, then retry */
1125                 int j;
1126                 int d;
1127
1128                 for (j = 0; j < i; j++)
1129                         if (r10_bio->devs[j].bio) {
1130                                 d = r10_bio->devs[j].devnum;
1131                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1132                         }
1133                 allow_barrier(conf);
1134                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1135                 wait_barrier(conf);
1136                 goto retry_write;
1137         }
1138
1139         if (max_sectors < r10_bio->sectors) {
1140                 /* We are splitting this into multiple parts, so
1141                  * we need to prepare for allocating another r10_bio.
1142                  */
1143                 r10_bio->sectors = max_sectors;
1144                 spin_lock_irq(&conf->device_lock);
1145                 if (bio->bi_phys_segments == 0)
1146                         bio->bi_phys_segments = 2;
1147                 else
1148                         bio->bi_phys_segments++;
1149                 spin_unlock_irq(&conf->device_lock);
1150         }
1151         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1152
1153         atomic_set(&r10_bio->remaining, 1);
1154         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1155
1156         for (i = 0; i < conf->copies; i++) {
1157                 struct bio *mbio;
1158                 int d = r10_bio->devs[i].devnum;
1159                 if (!r10_bio->devs[i].bio)
1160                         continue;
1161
1162                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1163                 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1164                             max_sectors);
1165                 r10_bio->devs[i].bio = mbio;
1166
1167                 mbio->bi_sector = (r10_bio->devs[i].addr+
1168                                    conf->mirrors[d].rdev->data_offset);
1169                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1170                 mbio->bi_end_io = raid10_end_write_request;
1171                 mbio->bi_rw = WRITE | do_sync | do_fua;
1172                 mbio->bi_private = r10_bio;
1173
1174                 atomic_inc(&r10_bio->remaining);
1175                 spin_lock_irqsave(&conf->device_lock, flags);
1176                 bio_list_add(&conf->pending_bio_list, mbio);
1177                 conf->pending_count++;
1178                 spin_unlock_irqrestore(&conf->device_lock, flags);
1179         }
1180
1181         /* Don't remove the bias on 'remaining' (one_write_done) until
1182          * after checking if we need to go around again.
1183          */
1184
1185         if (sectors_handled < (bio->bi_size >> 9)) {
1186                 one_write_done(r10_bio);
1187                 /* We need another r10_bio.  It has already been counted
1188                  * in bio->bi_phys_segments.
1189                  */
1190                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1191
1192                 r10_bio->master_bio = bio;
1193                 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1194
1195                 r10_bio->mddev = mddev;
1196                 r10_bio->sector = bio->bi_sector + sectors_handled;
1197                 r10_bio->state = 0;
1198                 goto retry_write;
1199         }
1200         one_write_done(r10_bio);
1201
1202         /* In case raid10d snuck in to freeze_array */
1203         wake_up(&conf->wait_barrier);
1204
1205         if (do_sync || !mddev->bitmap || !plugged)
1206                 md_wakeup_thread(mddev->thread);
1207 }
1208
1209 static void status(struct seq_file *seq, struct mddev *mddev)
1210 {
1211         struct r10conf *conf = mddev->private;
1212         int i;
1213
1214         if (conf->near_copies < conf->raid_disks)
1215                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1216         if (conf->near_copies > 1)
1217                 seq_printf(seq, " %d near-copies", conf->near_copies);
1218         if (conf->far_copies > 1) {
1219                 if (conf->far_offset)
1220                         seq_printf(seq, " %d offset-copies", conf->far_copies);
1221                 else
1222                         seq_printf(seq, " %d far-copies", conf->far_copies);
1223         }
1224         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1225                                         conf->raid_disks - mddev->degraded);
1226         for (i = 0; i < conf->raid_disks; i++)
1227                 seq_printf(seq, "%s",
1228                               conf->mirrors[i].rdev &&
1229                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1230         seq_printf(seq, "]");
1231 }
1232
1233 /* check if there are enough drives for
1234  * every block to appear on atleast one.
1235  * Don't consider the device numbered 'ignore'
1236  * as we might be about to remove it.
1237  */
1238 static int enough(struct r10conf *conf, int ignore)
1239 {
1240         int first = 0;
1241
1242         do {
1243                 int n = conf->copies;
1244                 int cnt = 0;
1245                 while (n--) {
1246                         if (conf->mirrors[first].rdev &&
1247                             first != ignore)
1248                                 cnt++;
1249                         first = (first+1) % conf->raid_disks;
1250                 }
1251                 if (cnt == 0)
1252                         return 0;
1253         } while (first != 0);
1254         return 1;
1255 }
1256
1257 static void error(struct mddev *mddev, struct md_rdev *rdev)
1258 {
1259         char b[BDEVNAME_SIZE];
1260         struct r10conf *conf = mddev->private;
1261
1262         /*
1263          * If it is not operational, then we have already marked it as dead
1264          * else if it is the last working disks, ignore the error, let the
1265          * next level up know.
1266          * else mark the drive as failed
1267          */
1268         if (test_bit(In_sync, &rdev->flags)
1269             && !enough(conf, rdev->raid_disk))
1270                 /*
1271                  * Don't fail the drive, just return an IO error.
1272                  */
1273                 return;
1274         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1275                 unsigned long flags;
1276                 spin_lock_irqsave(&conf->device_lock, flags);
1277                 mddev->degraded++;
1278                 spin_unlock_irqrestore(&conf->device_lock, flags);
1279                 /*
1280                  * if recovery is running, make sure it aborts.
1281                  */
1282                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1283         }
1284         set_bit(Blocked, &rdev->flags);
1285         set_bit(Faulty, &rdev->flags);
1286         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1287         printk(KERN_ALERT
1288                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1289                "md/raid10:%s: Operation continuing on %d devices.\n",
1290                mdname(mddev), bdevname(rdev->bdev, b),
1291                mdname(mddev), conf->raid_disks - mddev->degraded);
1292 }
1293
1294 static void print_conf(struct r10conf *conf)
1295 {
1296         int i;
1297         struct mirror_info *tmp;
1298
1299         printk(KERN_DEBUG "RAID10 conf printout:\n");
1300         if (!conf) {
1301                 printk(KERN_DEBUG "(!conf)\n");
1302                 return;
1303         }
1304         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1305                 conf->raid_disks);
1306
1307         for (i = 0; i < conf->raid_disks; i++) {
1308                 char b[BDEVNAME_SIZE];
1309                 tmp = conf->mirrors + i;
1310                 if (tmp->rdev)
1311                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1312                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1313                                 !test_bit(Faulty, &tmp->rdev->flags),
1314                                 bdevname(tmp->rdev->bdev,b));
1315         }
1316 }
1317
1318 static void close_sync(struct r10conf *conf)
1319 {
1320         wait_barrier(conf);
1321         allow_barrier(conf);
1322
1323         mempool_destroy(conf->r10buf_pool);
1324         conf->r10buf_pool = NULL;
1325 }
1326
1327 static int raid10_spare_active(struct mddev *mddev)
1328 {
1329         int i;
1330         struct r10conf *conf = mddev->private;
1331         struct mirror_info *tmp;
1332         int count = 0;
1333         unsigned long flags;
1334
1335         /*
1336          * Find all non-in_sync disks within the RAID10 configuration
1337          * and mark them in_sync
1338          */
1339         for (i = 0; i < conf->raid_disks; i++) {
1340                 tmp = conf->mirrors + i;
1341                 if (tmp->rdev
1342                     && !test_bit(Faulty, &tmp->rdev->flags)
1343                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1344                         count++;
1345                         sysfs_notify_dirent(tmp->rdev->sysfs_state);
1346                 }
1347         }
1348         spin_lock_irqsave(&conf->device_lock, flags);
1349         mddev->degraded -= count;
1350         spin_unlock_irqrestore(&conf->device_lock, flags);
1351
1352         print_conf(conf);
1353         return count;
1354 }
1355
1356
1357 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1358 {
1359         struct r10conf *conf = mddev->private;
1360         int err = -EEXIST;
1361         int mirror;
1362         int first = 0;
1363         int last = conf->raid_disks - 1;
1364
1365         if (mddev->recovery_cp < MaxSector)
1366                 /* only hot-add to in-sync arrays, as recovery is
1367                  * very different from resync
1368                  */
1369                 return -EBUSY;
1370         if (!enough(conf, -1))
1371                 return -EINVAL;
1372
1373         if (rdev->raid_disk >= 0)
1374                 first = last = rdev->raid_disk;
1375
1376         if (rdev->saved_raid_disk >= first &&
1377             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1378                 mirror = rdev->saved_raid_disk;
1379         else
1380                 mirror = first;
1381         for ( ; mirror <= last ; mirror++) {
1382                 struct mirror_info *p = &conf->mirrors[mirror];
1383                 if (p->recovery_disabled == mddev->recovery_disabled)
1384                         continue;
1385                 if (p->rdev)
1386                         continue;
1387
1388                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1389                                   rdev->data_offset << 9);
1390                 /* as we don't honour merge_bvec_fn, we must
1391                  * never risk violating it, so limit
1392                  * ->max_segments to one lying with a single
1393                  * page, as a one page request is never in
1394                  * violation.
1395                  */
1396                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1397                         blk_queue_max_segments(mddev->queue, 1);
1398                         blk_queue_segment_boundary(mddev->queue,
1399                                                    PAGE_CACHE_SIZE - 1);
1400                 }
1401
1402                 p->head_position = 0;
1403                 p->recovery_disabled = mddev->recovery_disabled - 1;
1404                 rdev->raid_disk = mirror;
1405                 err = 0;
1406                 if (rdev->saved_raid_disk != mirror)
1407                         conf->fullsync = 1;
1408                 rcu_assign_pointer(p->rdev, rdev);
1409                 break;
1410         }
1411
1412         md_integrity_add_rdev(rdev, mddev);
1413         print_conf(conf);
1414         return err;
1415 }
1416
1417 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1418 {
1419         struct r10conf *conf = mddev->private;
1420         int err = 0;
1421         int number = rdev->raid_disk;
1422         struct mirror_info *p = conf->mirrors+ number;
1423
1424         print_conf(conf);
1425         if (rdev == p->rdev) {
1426                 if (test_bit(In_sync, &rdev->flags) ||
1427                     atomic_read(&rdev->nr_pending)) {
1428                         err = -EBUSY;
1429                         goto abort;
1430                 }
1431                 /* Only remove faulty devices in recovery
1432                  * is not possible.
1433                  */
1434                 if (!test_bit(Faulty, &rdev->flags) &&
1435                     mddev->recovery_disabled != p->recovery_disabled &&
1436                     enough(conf, -1)) {
1437                         err = -EBUSY;
1438                         goto abort;
1439                 }
1440                 p->rdev = NULL;
1441                 synchronize_rcu();
1442                 if (atomic_read(&rdev->nr_pending)) {
1443                         /* lost the race, try later */
1444                         err = -EBUSY;
1445                         p->rdev = rdev;
1446                         goto abort;
1447                 }
1448                 err = md_integrity_register(mddev);
1449         }
1450 abort:
1451
1452         print_conf(conf);
1453         return err;
1454 }
1455
1456
1457 static void end_sync_read(struct bio *bio, int error)
1458 {
1459         struct r10bio *r10_bio = bio->bi_private;
1460         struct r10conf *conf = r10_bio->mddev->private;
1461         int d;
1462
1463         d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1464
1465         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1466                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1467         else
1468                 /* The write handler will notice the lack of
1469                  * R10BIO_Uptodate and record any errors etc
1470                  */
1471                 atomic_add(r10_bio->sectors,
1472                            &conf->mirrors[d].rdev->corrected_errors);
1473
1474         /* for reconstruct, we always reschedule after a read.
1475          * for resync, only after all reads
1476          */
1477         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1478         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1479             atomic_dec_and_test(&r10_bio->remaining)) {
1480                 /* we have read all the blocks,
1481                  * do the comparison in process context in raid10d
1482                  */
1483                 reschedule_retry(r10_bio);
1484         }
1485 }
1486
1487 static void end_sync_request(struct r10bio *r10_bio)
1488 {
1489         struct mddev *mddev = r10_bio->mddev;
1490
1491         while (atomic_dec_and_test(&r10_bio->remaining)) {
1492                 if (r10_bio->master_bio == NULL) {
1493                         /* the primary of several recovery bios */
1494                         sector_t s = r10_bio->sectors;
1495                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1496                             test_bit(R10BIO_WriteError, &r10_bio->state))
1497                                 reschedule_retry(r10_bio);
1498                         else
1499                                 put_buf(r10_bio);
1500                         md_done_sync(mddev, s, 1);
1501                         break;
1502                 } else {
1503                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1504                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1505                             test_bit(R10BIO_WriteError, &r10_bio->state))
1506                                 reschedule_retry(r10_bio);
1507                         else
1508                                 put_buf(r10_bio);
1509                         r10_bio = r10_bio2;
1510                 }
1511         }
1512 }
1513
1514 static void end_sync_write(struct bio *bio, int error)
1515 {
1516         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1517         struct r10bio *r10_bio = bio->bi_private;
1518         struct mddev *mddev = r10_bio->mddev;
1519         struct r10conf *conf = mddev->private;
1520         int d;
1521         sector_t first_bad;
1522         int bad_sectors;
1523         int slot;
1524
1525         d = find_bio_disk(conf, r10_bio, bio, &slot, NULL);
1526
1527         if (!uptodate) {
1528                 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1529                 set_bit(R10BIO_WriteError, &r10_bio->state);
1530         } else if (is_badblock(conf->mirrors[d].rdev,
1531                              r10_bio->devs[slot].addr,
1532                              r10_bio->sectors,
1533                              &first_bad, &bad_sectors))
1534                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1535
1536         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1537
1538         end_sync_request(r10_bio);
1539 }
1540
1541 /*
1542  * Note: sync and recover and handled very differently for raid10
1543  * This code is for resync.
1544  * For resync, we read through virtual addresses and read all blocks.
1545  * If there is any error, we schedule a write.  The lowest numbered
1546  * drive is authoritative.
1547  * However requests come for physical address, so we need to map.
1548  * For every physical address there are raid_disks/copies virtual addresses,
1549  * which is always are least one, but is not necessarly an integer.
1550  * This means that a physical address can span multiple chunks, so we may
1551  * have to submit multiple io requests for a single sync request.
1552  */
1553 /*
1554  * We check if all blocks are in-sync and only write to blocks that
1555  * aren't in sync
1556  */
1557 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1558 {
1559         struct r10conf *conf = mddev->private;
1560         int i, first;
1561         struct bio *tbio, *fbio;
1562
1563         atomic_set(&r10_bio->remaining, 1);
1564
1565         /* find the first device with a block */
1566         for (i=0; i<conf->copies; i++)
1567                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1568                         break;
1569
1570         if (i == conf->copies)
1571                 goto done;
1572
1573         first = i;
1574         fbio = r10_bio->devs[i].bio;
1575
1576         /* now find blocks with errors */
1577         for (i=0 ; i < conf->copies ; i++) {
1578                 int  j, d;
1579                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1580
1581                 tbio = r10_bio->devs[i].bio;
1582
1583                 if (tbio->bi_end_io != end_sync_read)
1584                         continue;
1585                 if (i == first)
1586                         continue;
1587                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1588                         /* We know that the bi_io_vec layout is the same for
1589                          * both 'first' and 'i', so we just compare them.
1590                          * All vec entries are PAGE_SIZE;
1591                          */
1592                         for (j = 0; j < vcnt; j++)
1593                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1594                                            page_address(tbio->bi_io_vec[j].bv_page),
1595                                            PAGE_SIZE))
1596                                         break;
1597                         if (j == vcnt)
1598                                 continue;
1599                         mddev->resync_mismatches += r10_bio->sectors;
1600                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1601                                 /* Don't fix anything. */
1602                                 continue;
1603                 }
1604                 /* Ok, we need to write this bio, either to correct an
1605                  * inconsistency or to correct an unreadable block.
1606                  * First we need to fixup bv_offset, bv_len and
1607                  * bi_vecs, as the read request might have corrupted these
1608                  */
1609                 tbio->bi_vcnt = vcnt;
1610                 tbio->bi_size = r10_bio->sectors << 9;
1611                 tbio->bi_idx = 0;
1612                 tbio->bi_phys_segments = 0;
1613                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1614                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1615                 tbio->bi_next = NULL;
1616                 tbio->bi_rw = WRITE;
1617                 tbio->bi_private = r10_bio;
1618                 tbio->bi_sector = r10_bio->devs[i].addr;
1619
1620                 for (j=0; j < vcnt ; j++) {
1621                         tbio->bi_io_vec[j].bv_offset = 0;
1622                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1623
1624                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1625                                page_address(fbio->bi_io_vec[j].bv_page),
1626                                PAGE_SIZE);
1627                 }
1628                 tbio->bi_end_io = end_sync_write;
1629
1630                 d = r10_bio->devs[i].devnum;
1631                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1632                 atomic_inc(&r10_bio->remaining);
1633                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1634
1635                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1636                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1637                 generic_make_request(tbio);
1638         }
1639
1640 done:
1641         if (atomic_dec_and_test(&r10_bio->remaining)) {
1642                 md_done_sync(mddev, r10_bio->sectors, 1);
1643                 put_buf(r10_bio);
1644         }
1645 }
1646
1647 /*
1648  * Now for the recovery code.
1649  * Recovery happens across physical sectors.
1650  * We recover all non-is_sync drives by finding the virtual address of
1651  * each, and then choose a working drive that also has that virt address.
1652  * There is a separate r10_bio for each non-in_sync drive.
1653  * Only the first two slots are in use. The first for reading,
1654  * The second for writing.
1655  *
1656  */
1657 static void fix_recovery_read_error(struct r10bio *r10_bio)
1658 {
1659         /* We got a read error during recovery.
1660          * We repeat the read in smaller page-sized sections.
1661          * If a read succeeds, write it to the new device or record
1662          * a bad block if we cannot.
1663          * If a read fails, record a bad block on both old and
1664          * new devices.
1665          */
1666         struct mddev *mddev = r10_bio->mddev;
1667         struct r10conf *conf = mddev->private;
1668         struct bio *bio = r10_bio->devs[0].bio;
1669         sector_t sect = 0;
1670         int sectors = r10_bio->sectors;
1671         int idx = 0;
1672         int dr = r10_bio->devs[0].devnum;
1673         int dw = r10_bio->devs[1].devnum;
1674
1675         while (sectors) {
1676                 int s = sectors;
1677                 struct md_rdev *rdev;
1678                 sector_t addr;
1679                 int ok;
1680
1681                 if (s > (PAGE_SIZE>>9))
1682                         s = PAGE_SIZE >> 9;
1683
1684                 rdev = conf->mirrors[dr].rdev;
1685                 addr = r10_bio->devs[0].addr + sect,
1686                 ok = sync_page_io(rdev,
1687                                   addr,
1688                                   s << 9,
1689                                   bio->bi_io_vec[idx].bv_page,
1690                                   READ, false);
1691                 if (ok) {
1692                         rdev = conf->mirrors[dw].rdev;
1693                         addr = r10_bio->devs[1].addr + sect;
1694                         ok = sync_page_io(rdev,
1695                                           addr,
1696                                           s << 9,
1697                                           bio->bi_io_vec[idx].bv_page,
1698                                           WRITE, false);
1699                         if (!ok)
1700                                 set_bit(WriteErrorSeen, &rdev->flags);
1701                 }
1702                 if (!ok) {
1703                         /* We don't worry if we cannot set a bad block -
1704                          * it really is bad so there is no loss in not
1705                          * recording it yet
1706                          */
1707                         rdev_set_badblocks(rdev, addr, s, 0);
1708
1709                         if (rdev != conf->mirrors[dw].rdev) {
1710                                 /* need bad block on destination too */
1711                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1712                                 addr = r10_bio->devs[1].addr + sect;
1713                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1714                                 if (!ok) {
1715                                         /* just abort the recovery */
1716                                         printk(KERN_NOTICE
1717                                                "md/raid10:%s: recovery aborted"
1718                                                " due to read error\n",
1719                                                mdname(mddev));
1720
1721                                         conf->mirrors[dw].recovery_disabled
1722                                                 = mddev->recovery_disabled;
1723                                         set_bit(MD_RECOVERY_INTR,
1724                                                 &mddev->recovery);
1725                                         break;
1726                                 }
1727                         }
1728                 }
1729
1730                 sectors -= s;
1731                 sect += s;
1732                 idx++;
1733         }
1734 }
1735
1736 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1737 {
1738         struct r10conf *conf = mddev->private;
1739         int d;
1740         struct bio *wbio;
1741
1742         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1743                 fix_recovery_read_error(r10_bio);
1744                 end_sync_request(r10_bio);
1745                 return;
1746         }
1747
1748         /*
1749          * share the pages with the first bio
1750          * and submit the write request
1751          */
1752         wbio = r10_bio->devs[1].bio;
1753         d = r10_bio->devs[1].devnum;
1754
1755         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1756         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1757         generic_make_request(wbio);
1758 }
1759
1760
1761 /*
1762  * Used by fix_read_error() to decay the per rdev read_errors.
1763  * We halve the read error count for every hour that has elapsed
1764  * since the last recorded read error.
1765  *
1766  */
1767 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1768 {
1769         struct timespec cur_time_mon;
1770         unsigned long hours_since_last;
1771         unsigned int read_errors = atomic_read(&rdev->read_errors);
1772
1773         ktime_get_ts(&cur_time_mon);
1774
1775         if (rdev->last_read_error.tv_sec == 0 &&
1776             rdev->last_read_error.tv_nsec == 0) {
1777                 /* first time we've seen a read error */
1778                 rdev->last_read_error = cur_time_mon;
1779                 return;
1780         }
1781
1782         hours_since_last = (cur_time_mon.tv_sec -
1783                             rdev->last_read_error.tv_sec) / 3600;
1784
1785         rdev->last_read_error = cur_time_mon;
1786
1787         /*
1788          * if hours_since_last is > the number of bits in read_errors
1789          * just set read errors to 0. We do this to avoid
1790          * overflowing the shift of read_errors by hours_since_last.
1791          */
1792         if (hours_since_last >= 8 * sizeof(read_errors))
1793                 atomic_set(&rdev->read_errors, 0);
1794         else
1795                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1796 }
1797
1798 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
1799                             int sectors, struct page *page, int rw)
1800 {
1801         sector_t first_bad;
1802         int bad_sectors;
1803
1804         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1805             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1806                 return -1;
1807         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1808                 /* success */
1809                 return 1;
1810         if (rw == WRITE)
1811                 set_bit(WriteErrorSeen, &rdev->flags);
1812         /* need to record an error - either for the block or the device */
1813         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1814                 md_error(rdev->mddev, rdev);
1815         return 0;
1816 }
1817
1818 /*
1819  * This is a kernel thread which:
1820  *
1821  *      1.      Retries failed read operations on working mirrors.
1822  *      2.      Updates the raid superblock when problems encounter.
1823  *      3.      Performs writes following reads for array synchronising.
1824  */
1825
1826 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
1827 {
1828         int sect = 0; /* Offset from r10_bio->sector */
1829         int sectors = r10_bio->sectors;
1830         struct md_rdev*rdev;
1831         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1832         int d = r10_bio->devs[r10_bio->read_slot].devnum;
1833
1834         /* still own a reference to this rdev, so it cannot
1835          * have been cleared recently.
1836          */
1837         rdev = conf->mirrors[d].rdev;
1838
1839         if (test_bit(Faulty, &rdev->flags))
1840                 /* drive has already been failed, just ignore any
1841                    more fix_read_error() attempts */
1842                 return;
1843
1844         check_decay_read_errors(mddev, rdev);
1845         atomic_inc(&rdev->read_errors);
1846         if (atomic_read(&rdev->read_errors) > max_read_errors) {
1847                 char b[BDEVNAME_SIZE];
1848                 bdevname(rdev->bdev, b);
1849
1850                 printk(KERN_NOTICE
1851                        "md/raid10:%s: %s: Raid device exceeded "
1852                        "read_error threshold [cur %d:max %d]\n",
1853                        mdname(mddev), b,
1854                        atomic_read(&rdev->read_errors), max_read_errors);
1855                 printk(KERN_NOTICE
1856                        "md/raid10:%s: %s: Failing raid device\n",
1857                        mdname(mddev), b);
1858                 md_error(mddev, conf->mirrors[d].rdev);
1859                 return;
1860         }
1861
1862         while(sectors) {
1863                 int s = sectors;
1864                 int sl = r10_bio->read_slot;
1865                 int success = 0;
1866                 int start;
1867
1868                 if (s > (PAGE_SIZE>>9))
1869                         s = PAGE_SIZE >> 9;
1870
1871                 rcu_read_lock();
1872                 do {
1873                         sector_t first_bad;
1874                         int bad_sectors;
1875
1876                         d = r10_bio->devs[sl].devnum;
1877                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1878                         if (rdev &&
1879                             test_bit(In_sync, &rdev->flags) &&
1880                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1881                                         &first_bad, &bad_sectors) == 0) {
1882                                 atomic_inc(&rdev->nr_pending);
1883                                 rcu_read_unlock();
1884                                 success = sync_page_io(rdev,
1885                                                        r10_bio->devs[sl].addr +
1886                                                        sect,
1887                                                        s<<9,
1888                                                        conf->tmppage, READ, false);
1889                                 rdev_dec_pending(rdev, mddev);
1890                                 rcu_read_lock();
1891                                 if (success)
1892                                         break;
1893                         }
1894                         sl++;
1895                         if (sl == conf->copies)
1896                                 sl = 0;
1897                 } while (!success && sl != r10_bio->read_slot);
1898                 rcu_read_unlock();
1899
1900                 if (!success) {
1901                         /* Cannot read from anywhere, just mark the block
1902                          * as bad on the first device to discourage future
1903                          * reads.
1904                          */
1905                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1906                         rdev = conf->mirrors[dn].rdev;
1907
1908                         if (!rdev_set_badblocks(
1909                                     rdev,
1910                                     r10_bio->devs[r10_bio->read_slot].addr
1911                                     + sect,
1912                                     s, 0))
1913                                 md_error(mddev, rdev);
1914                         break;
1915                 }
1916
1917                 start = sl;
1918                 /* write it back and re-read */
1919                 rcu_read_lock();
1920                 while (sl != r10_bio->read_slot) {
1921                         char b[BDEVNAME_SIZE];
1922
1923                         if (sl==0)
1924                                 sl = conf->copies;
1925                         sl--;
1926                         d = r10_bio->devs[sl].devnum;
1927                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1928                         if (!rdev ||
1929                             !test_bit(In_sync, &rdev->flags))
1930                                 continue;
1931
1932                         atomic_inc(&rdev->nr_pending);
1933                         rcu_read_unlock();
1934                         if (r10_sync_page_io(rdev,
1935                                              r10_bio->devs[sl].addr +
1936                                              sect,
1937                                              s<<9, conf->tmppage, WRITE)
1938                             == 0) {
1939                                 /* Well, this device is dead */
1940                                 printk(KERN_NOTICE
1941                                        "md/raid10:%s: read correction "
1942                                        "write failed"
1943                                        " (%d sectors at %llu on %s)\n",
1944                                        mdname(mddev), s,
1945                                        (unsigned long long)(
1946                                                sect + rdev->data_offset),
1947                                        bdevname(rdev->bdev, b));
1948                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1949                                        "drive\n",
1950                                        mdname(mddev),
1951                                        bdevname(rdev->bdev, b));
1952                         }
1953                         rdev_dec_pending(rdev, mddev);
1954                         rcu_read_lock();
1955                 }
1956                 sl = start;
1957                 while (sl != r10_bio->read_slot) {
1958                         char b[BDEVNAME_SIZE];
1959
1960                         if (sl==0)
1961                                 sl = conf->copies;
1962                         sl--;
1963                         d = r10_bio->devs[sl].devnum;
1964                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1965                         if (!rdev ||
1966                             !test_bit(In_sync, &rdev->flags))
1967                                 continue;
1968
1969                         atomic_inc(&rdev->nr_pending);
1970                         rcu_read_unlock();
1971                         switch (r10_sync_page_io(rdev,
1972                                              r10_bio->devs[sl].addr +
1973                                              sect,
1974                                              s<<9, conf->tmppage,
1975                                                  READ)) {
1976                         case 0:
1977                                 /* Well, this device is dead */
1978                                 printk(KERN_NOTICE
1979                                        "md/raid10:%s: unable to read back "
1980                                        "corrected sectors"
1981                                        " (%d sectors at %llu on %s)\n",
1982                                        mdname(mddev), s,
1983                                        (unsigned long long)(
1984                                                sect + rdev->data_offset),
1985                                        bdevname(rdev->bdev, b));
1986                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1987                                        "drive\n",
1988                                        mdname(mddev),
1989                                        bdevname(rdev->bdev, b));
1990                                 break;
1991                         case 1:
1992                                 printk(KERN_INFO
1993                                        "md/raid10:%s: read error corrected"
1994                                        " (%d sectors at %llu on %s)\n",
1995                                        mdname(mddev), s,
1996                                        (unsigned long long)(
1997                                                sect + rdev->data_offset),
1998                                        bdevname(rdev->bdev, b));
1999                                 atomic_add(s, &rdev->corrected_errors);
2000                         }
2001
2002                         rdev_dec_pending(rdev, mddev);
2003                         rcu_read_lock();
2004                 }
2005                 rcu_read_unlock();
2006
2007                 sectors -= s;
2008                 sect += s;
2009         }
2010 }
2011
2012 static void bi_complete(struct bio *bio, int error)
2013 {
2014         complete((struct completion *)bio->bi_private);
2015 }
2016
2017 static int submit_bio_wait(int rw, struct bio *bio)
2018 {
2019         struct completion event;
2020         rw |= REQ_SYNC;
2021
2022         init_completion(&event);
2023         bio->bi_private = &event;
2024         bio->bi_end_io = bi_complete;
2025         submit_bio(rw, bio);
2026         wait_for_completion(&event);
2027
2028         return test_bit(BIO_UPTODATE, &bio->bi_flags);
2029 }
2030
2031 static int narrow_write_error(struct r10bio *r10_bio, int i)
2032 {
2033         struct bio *bio = r10_bio->master_bio;
2034         struct mddev *mddev = r10_bio->mddev;
2035         struct r10conf *conf = mddev->private;
2036         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2037         /* bio has the data to be written to slot 'i' where
2038          * we just recently had a write error.
2039          * We repeatedly clone the bio and trim down to one block,
2040          * then try the write.  Where the write fails we record
2041          * a bad block.
2042          * It is conceivable that the bio doesn't exactly align with
2043          * blocks.  We must handle this.
2044          *
2045          * We currently own a reference to the rdev.
2046          */
2047
2048         int block_sectors;
2049         sector_t sector;
2050         int sectors;
2051         int sect_to_write = r10_bio->sectors;
2052         int ok = 1;
2053
2054         if (rdev->badblocks.shift < 0)
2055                 return 0;
2056
2057         block_sectors = 1 << rdev->badblocks.shift;
2058         sector = r10_bio->sector;
2059         sectors = ((r10_bio->sector + block_sectors)
2060                    & ~(sector_t)(block_sectors - 1))
2061                 - sector;
2062
2063         while (sect_to_write) {
2064                 struct bio *wbio;
2065                 if (sectors > sect_to_write)
2066                         sectors = sect_to_write;
2067                 /* Write at 'sector' for 'sectors' */
2068                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2069                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2070                 wbio->bi_sector = (r10_bio->devs[i].addr+
2071                                    rdev->data_offset+
2072                                    (sector - r10_bio->sector));
2073                 wbio->bi_bdev = rdev->bdev;
2074                 if (submit_bio_wait(WRITE, wbio) == 0)
2075                         /* Failure! */
2076                         ok = rdev_set_badblocks(rdev, sector,
2077                                                 sectors, 0)
2078                                 && ok;
2079
2080                 bio_put(wbio);
2081                 sect_to_write -= sectors;
2082                 sector += sectors;
2083                 sectors = block_sectors;
2084         }
2085         return ok;
2086 }
2087
2088 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2089 {
2090         int slot = r10_bio->read_slot;
2091         int mirror = r10_bio->devs[slot].devnum;
2092         struct bio *bio;
2093         struct r10conf *conf = mddev->private;
2094         struct md_rdev *rdev;
2095         char b[BDEVNAME_SIZE];
2096         unsigned long do_sync;
2097         int max_sectors;
2098
2099         /* we got a read error. Maybe the drive is bad.  Maybe just
2100          * the block and we can fix it.
2101          * We freeze all other IO, and try reading the block from
2102          * other devices.  When we find one, we re-write
2103          * and check it that fixes the read error.
2104          * This is all done synchronously while the array is
2105          * frozen.
2106          */
2107         if (mddev->ro == 0) {
2108                 freeze_array(conf);
2109                 fix_read_error(conf, mddev, r10_bio);
2110                 unfreeze_array(conf);
2111         }
2112         rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2113
2114         bio = r10_bio->devs[slot].bio;
2115         bdevname(bio->bi_bdev, b);
2116         r10_bio->devs[slot].bio =
2117                 mddev->ro ? IO_BLOCKED : NULL;
2118 read_more:
2119         mirror = read_balance(conf, r10_bio, &max_sectors);
2120         if (mirror == -1) {
2121                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2122                        " read error for block %llu\n",
2123                        mdname(mddev), b,
2124                        (unsigned long long)r10_bio->sector);
2125                 raid_end_bio_io(r10_bio);
2126                 bio_put(bio);
2127                 return;
2128         }
2129
2130         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2131         if (bio)
2132                 bio_put(bio);
2133         slot = r10_bio->read_slot;
2134         rdev = conf->mirrors[mirror].rdev;
2135         printk_ratelimited(
2136                 KERN_ERR
2137                 "md/raid10:%s: %s: redirecting"
2138                 "sector %llu to another mirror\n",
2139                 mdname(mddev),
2140                 bdevname(rdev->bdev, b),
2141                 (unsigned long long)r10_bio->sector);
2142         bio = bio_clone_mddev(r10_bio->master_bio,
2143                               GFP_NOIO, mddev);
2144         md_trim_bio(bio,
2145                     r10_bio->sector - bio->bi_sector,
2146                     max_sectors);
2147         r10_bio->devs[slot].bio = bio;
2148         bio->bi_sector = r10_bio->devs[slot].addr
2149                 + rdev->data_offset;
2150         bio->bi_bdev = rdev->bdev;
2151         bio->bi_rw = READ | do_sync;
2152         bio->bi_private = r10_bio;
2153         bio->bi_end_io = raid10_end_read_request;
2154         if (max_sectors < r10_bio->sectors) {
2155                 /* Drat - have to split this up more */
2156                 struct bio *mbio = r10_bio->master_bio;
2157                 int sectors_handled =
2158                         r10_bio->sector + max_sectors
2159                         - mbio->bi_sector;
2160                 r10_bio->sectors = max_sectors;
2161                 spin_lock_irq(&conf->device_lock);
2162                 if (mbio->bi_phys_segments == 0)
2163                         mbio->bi_phys_segments = 2;
2164                 else
2165                         mbio->bi_phys_segments++;
2166                 spin_unlock_irq(&conf->device_lock);
2167                 generic_make_request(bio);
2168                 bio = NULL;
2169
2170                 r10_bio = mempool_alloc(conf->r10bio_pool,
2171                                         GFP_NOIO);
2172                 r10_bio->master_bio = mbio;
2173                 r10_bio->sectors = (mbio->bi_size >> 9)
2174                         - sectors_handled;
2175                 r10_bio->state = 0;
2176                 set_bit(R10BIO_ReadError,
2177                         &r10_bio->state);
2178                 r10_bio->mddev = mddev;
2179                 r10_bio->sector = mbio->bi_sector
2180                         + sectors_handled;
2181
2182                 goto read_more;
2183         } else
2184                 generic_make_request(bio);
2185 }
2186
2187 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2188 {
2189         /* Some sort of write request has finished and it
2190          * succeeded in writing where we thought there was a
2191          * bad block.  So forget the bad block.
2192          * Or possibly if failed and we need to record
2193          * a bad block.
2194          */
2195         int m;
2196         struct md_rdev *rdev;
2197
2198         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2199             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2200                 for (m = 0; m < conf->copies; m++) {
2201                         int dev = r10_bio->devs[m].devnum;
2202                         rdev = conf->mirrors[dev].rdev;
2203                         if (r10_bio->devs[m].bio == NULL)
2204                                 continue;
2205                         if (test_bit(BIO_UPTODATE,
2206                                      &r10_bio->devs[m].bio->bi_flags)) {
2207                                 rdev_clear_badblocks(
2208                                         rdev,
2209                                         r10_bio->devs[m].addr,
2210                                         r10_bio->sectors);
2211                         } else {
2212                                 if (!rdev_set_badblocks(
2213                                             rdev,
2214                                             r10_bio->devs[m].addr,
2215                                             r10_bio->sectors, 0))
2216                                         md_error(conf->mddev, rdev);
2217                         }
2218                 }
2219                 put_buf(r10_bio);
2220         } else {
2221                 for (m = 0; m < conf->copies; m++) {
2222                         int dev = r10_bio->devs[m].devnum;
2223                         struct bio *bio = r10_bio->devs[m].bio;
2224                         rdev = conf->mirrors[dev].rdev;
2225                         if (bio == IO_MADE_GOOD) {
2226                                 rdev_clear_badblocks(
2227                                         rdev,
2228                                         r10_bio->devs[m].addr,
2229                                         r10_bio->sectors);
2230                                 rdev_dec_pending(rdev, conf->mddev);
2231                         } else if (bio != NULL &&
2232                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2233                                 if (!narrow_write_error(r10_bio, m)) {
2234                                         md_error(conf->mddev, rdev);
2235                                         set_bit(R10BIO_Degraded,
2236                                                 &r10_bio->state);
2237                                 }
2238                                 rdev_dec_pending(rdev, conf->mddev);
2239                         }
2240                 }
2241                 if (test_bit(R10BIO_WriteError,
2242                              &r10_bio->state))
2243                         close_write(r10_bio);
2244                 raid_end_bio_io(r10_bio);
2245         }
2246 }
2247
2248 static void raid10d(struct mddev *mddev)
2249 {
2250         struct r10bio *r10_bio;
2251         unsigned long flags;
2252         struct r10conf *conf = mddev->private;
2253         struct list_head *head = &conf->retry_list;
2254         struct blk_plug plug;
2255
2256         md_check_recovery(mddev);
2257
2258         blk_start_plug(&plug);
2259         for (;;) {
2260
2261                 flush_pending_writes(conf);
2262
2263                 spin_lock_irqsave(&conf->device_lock, flags);
2264                 if (list_empty(head)) {
2265                         spin_unlock_irqrestore(&conf->device_lock, flags);
2266                         break;
2267                 }
2268                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2269                 list_del(head->prev);
2270                 conf->nr_queued--;
2271                 spin_unlock_irqrestore(&conf->device_lock, flags);
2272
2273                 mddev = r10_bio->mddev;
2274                 conf = mddev->private;
2275                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2276                     test_bit(R10BIO_WriteError, &r10_bio->state))
2277                         handle_write_completed(conf, r10_bio);
2278                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2279                         sync_request_write(mddev, r10_bio);
2280                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2281                         recovery_request_write(mddev, r10_bio);
2282                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2283                         handle_read_error(mddev, r10_bio);
2284                 else {
2285                         /* just a partial read to be scheduled from a
2286                          * separate context
2287                          */
2288                         int slot = r10_bio->read_slot;
2289                         generic_make_request(r10_bio->devs[slot].bio);
2290                 }
2291
2292                 cond_resched();
2293                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2294                         md_check_recovery(mddev);
2295         }
2296         blk_finish_plug(&plug);
2297 }
2298
2299
2300 static int init_resync(struct r10conf *conf)
2301 {
2302         int buffs;
2303         int i;
2304
2305         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2306         BUG_ON(conf->r10buf_pool);
2307         conf->have_replacement = 0;
2308         for (i = 0; i < conf->raid_disks; i++)
2309                 if (conf->mirrors[i].replacement)
2310                         conf->have_replacement = 1;
2311         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2312         if (!conf->r10buf_pool)
2313                 return -ENOMEM;
2314         conf->next_resync = 0;
2315         return 0;
2316 }
2317
2318 /*
2319  * perform a "sync" on one "block"
2320  *
2321  * We need to make sure that no normal I/O request - particularly write
2322  * requests - conflict with active sync requests.
2323  *
2324  * This is achieved by tracking pending requests and a 'barrier' concept
2325  * that can be installed to exclude normal IO requests.
2326  *
2327  * Resync and recovery are handled very differently.
2328  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2329  *
2330  * For resync, we iterate over virtual addresses, read all copies,
2331  * and update if there are differences.  If only one copy is live,
2332  * skip it.
2333  * For recovery, we iterate over physical addresses, read a good
2334  * value for each non-in_sync drive, and over-write.
2335  *
2336  * So, for recovery we may have several outstanding complex requests for a
2337  * given address, one for each out-of-sync device.  We model this by allocating
2338  * a number of r10_bio structures, one for each out-of-sync device.
2339  * As we setup these structures, we collect all bio's together into a list
2340  * which we then process collectively to add pages, and then process again
2341  * to pass to generic_make_request.
2342  *
2343  * The r10_bio structures are linked using a borrowed master_bio pointer.
2344  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2345  * has its remaining count decremented to 0, the whole complex operation
2346  * is complete.
2347  *
2348  */
2349
2350 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2351                              int *skipped, int go_faster)
2352 {
2353         struct r10conf *conf = mddev->private;
2354         struct r10bio *r10_bio;
2355         struct bio *biolist = NULL, *bio;
2356         sector_t max_sector, nr_sectors;
2357         int i;
2358         int max_sync;
2359         sector_t sync_blocks;
2360         sector_t sectors_skipped = 0;
2361         int chunks_skipped = 0;
2362
2363         if (!conf->r10buf_pool)
2364                 if (init_resync(conf))
2365                         return 0;
2366
2367  skipped:
2368         max_sector = mddev->dev_sectors;
2369         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2370                 max_sector = mddev->resync_max_sectors;
2371         if (sector_nr >= max_sector) {
2372                 /* If we aborted, we need to abort the
2373                  * sync on the 'current' bitmap chucks (there can
2374                  * be several when recovering multiple devices).
2375                  * as we may have started syncing it but not finished.
2376                  * We can find the current address in
2377                  * mddev->curr_resync, but for recovery,
2378                  * we need to convert that to several
2379                  * virtual addresses.
2380                  */
2381                 if (mddev->curr_resync < max_sector) { /* aborted */
2382                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2383                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2384                                                 &sync_blocks, 1);
2385                         else for (i=0; i<conf->raid_disks; i++) {
2386                                 sector_t sect =
2387                                         raid10_find_virt(conf, mddev->curr_resync, i);
2388                                 bitmap_end_sync(mddev->bitmap, sect,
2389                                                 &sync_blocks, 1);
2390                         }
2391                 } else /* completed sync */
2392                         conf->fullsync = 0;
2393
2394                 bitmap_close_sync(mddev->bitmap);
2395                 close_sync(conf);
2396                 *skipped = 1;
2397                 return sectors_skipped;
2398         }
2399         if (chunks_skipped >= conf->raid_disks) {
2400                 /* if there has been nothing to do on any drive,
2401                  * then there is nothing to do at all..
2402                  */
2403                 *skipped = 1;
2404                 return (max_sector - sector_nr) + sectors_skipped;
2405         }
2406
2407         if (max_sector > mddev->resync_max)
2408                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2409
2410         /* make sure whole request will fit in a chunk - if chunks
2411          * are meaningful
2412          */
2413         if (conf->near_copies < conf->raid_disks &&
2414             max_sector > (sector_nr | conf->chunk_mask))
2415                 max_sector = (sector_nr | conf->chunk_mask) + 1;
2416         /*
2417          * If there is non-resync activity waiting for us then
2418          * put in a delay to throttle resync.
2419          */
2420         if (!go_faster && conf->nr_waiting)
2421                 msleep_interruptible(1000);
2422
2423         /* Again, very different code for resync and recovery.
2424          * Both must result in an r10bio with a list of bios that
2425          * have bi_end_io, bi_sector, bi_bdev set,
2426          * and bi_private set to the r10bio.
2427          * For recovery, we may actually create several r10bios
2428          * with 2 bios in each, that correspond to the bios in the main one.
2429          * In this case, the subordinate r10bios link back through a
2430          * borrowed master_bio pointer, and the counter in the master
2431          * includes a ref from each subordinate.
2432          */
2433         /* First, we decide what to do and set ->bi_end_io
2434          * To end_sync_read if we want to read, and
2435          * end_sync_write if we will want to write.
2436          */
2437
2438         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2439         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2440                 /* recovery... the complicated one */
2441                 int j;
2442                 r10_bio = NULL;
2443
2444                 for (i=0 ; i<conf->raid_disks; i++) {
2445                         int still_degraded;
2446                         struct r10bio *rb2;
2447                         sector_t sect;
2448                         int must_sync;
2449                         int any_working;
2450
2451                         if (conf->mirrors[i].rdev == NULL ||
2452                             test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 
2453                                 continue;
2454
2455                         still_degraded = 0;
2456                         /* want to reconstruct this device */
2457                         rb2 = r10_bio;
2458                         sect = raid10_find_virt(conf, sector_nr, i);
2459                         /* Unless we are doing a full sync, we only need
2460                          * to recover the block if it is set in the bitmap
2461                          */
2462                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2463                                                       &sync_blocks, 1);
2464                         if (sync_blocks < max_sync)
2465                                 max_sync = sync_blocks;
2466                         if (!must_sync &&
2467                             !conf->fullsync) {
2468                                 /* yep, skip the sync_blocks here, but don't assume
2469                                  * that there will never be anything to do here
2470                                  */
2471                                 chunks_skipped = -1;
2472                                 continue;
2473                         }
2474
2475                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2476                         raise_barrier(conf, rb2 != NULL);
2477                         atomic_set(&r10_bio->remaining, 0);
2478
2479                         r10_bio->master_bio = (struct bio*)rb2;
2480                         if (rb2)
2481                                 atomic_inc(&rb2->remaining);
2482                         r10_bio->mddev = mddev;
2483                         set_bit(R10BIO_IsRecover, &r10_bio->state);
2484                         r10_bio->sector = sect;
2485
2486                         raid10_find_phys(conf, r10_bio);
2487
2488                         /* Need to check if the array will still be
2489                          * degraded
2490                          */
2491                         for (j=0; j<conf->raid_disks; j++)
2492                                 if (conf->mirrors[j].rdev == NULL ||
2493                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2494                                         still_degraded = 1;
2495                                         break;
2496                                 }
2497
2498                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2499                                                       &sync_blocks, still_degraded);
2500
2501                         any_working = 0;
2502                         for (j=0; j<conf->copies;j++) {
2503                                 int k;
2504                                 int d = r10_bio->devs[j].devnum;
2505                                 sector_t from_addr, to_addr;
2506                                 struct md_rdev *rdev;
2507                                 sector_t sector, first_bad;
2508                                 int bad_sectors;
2509                                 if (!conf->mirrors[d].rdev ||
2510                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2511                                         continue;
2512                                 /* This is where we read from */
2513                                 any_working = 1;
2514                                 rdev = conf->mirrors[d].rdev;
2515                                 sector = r10_bio->devs[j].addr;
2516
2517                                 if (is_badblock(rdev, sector, max_sync,
2518                                                 &first_bad, &bad_sectors)) {
2519                                         if (first_bad > sector)
2520                                                 max_sync = first_bad - sector;
2521                                         else {
2522                                                 bad_sectors -= (sector
2523                                                                 - first_bad);
2524                                                 if (max_sync > bad_sectors)
2525                                                         max_sync = bad_sectors;
2526                                                 continue;
2527                                         }
2528                                 }
2529                                 bio = r10_bio->devs[0].bio;
2530                                 bio->bi_next = biolist;
2531                                 biolist = bio;
2532                                 bio->bi_private = r10_bio;
2533                                 bio->bi_end_io = end_sync_read;
2534                                 bio->bi_rw = READ;
2535                                 from_addr = r10_bio->devs[j].addr;
2536                                 bio->bi_sector = from_addr +
2537                                         conf->mirrors[d].rdev->data_offset;
2538                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2539                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2540                                 atomic_inc(&r10_bio->remaining);
2541                                 /* and we write to 'i' */
2542
2543                                 for (k=0; k<conf->copies; k++)
2544                                         if (r10_bio->devs[k].devnum == i)
2545                                                 break;
2546                                 BUG_ON(k == conf->copies);
2547                                 bio = r10_bio->devs[1].bio;
2548                                 bio->bi_next = biolist;
2549                                 biolist = bio;
2550                                 bio->bi_private = r10_bio;
2551                                 bio->bi_end_io = end_sync_write;
2552                                 bio->bi_rw = WRITE;
2553                                 to_addr = r10_bio->devs[k].addr;
2554                                 bio->bi_sector = to_addr +
2555                                         conf->mirrors[i].rdev->data_offset;
2556                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2557
2558                                 r10_bio->devs[0].devnum = d;
2559                                 r10_bio->devs[0].addr = from_addr;
2560                                 r10_bio->devs[1].devnum = i;
2561                                 r10_bio->devs[1].addr = to_addr;
2562
2563                                 break;
2564                         }
2565                         if (j == conf->copies) {
2566                                 /* Cannot recover, so abort the recovery or
2567                                  * record a bad block */
2568                                 put_buf(r10_bio);
2569                                 if (rb2)
2570                                         atomic_dec(&rb2->remaining);
2571                                 r10_bio = rb2;
2572                                 if (any_working) {
2573                                         /* problem is that there are bad blocks
2574                                          * on other device(s)
2575                                          */
2576                                         int k;
2577                                         for (k = 0; k < conf->copies; k++)
2578                                                 if (r10_bio->devs[k].devnum == i)
2579                                                         break;
2580                                         if (!rdev_set_badblocks(
2581                                                     conf->mirrors[i].rdev,
2582                                                     r10_bio->devs[k].addr,
2583                                                     max_sync, 0))
2584                                                 any_working = 0;
2585                                 }
2586                                 if (!any_working)  {
2587                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
2588                                                               &mddev->recovery))
2589                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
2590                                                        "working devices for recovery.\n",
2591                                                        mdname(mddev));
2592                                         conf->mirrors[i].recovery_disabled
2593                                                 = mddev->recovery_disabled;
2594                                 }
2595                                 break;
2596                         }
2597                 }
2598                 if (biolist == NULL) {
2599                         while (r10_bio) {
2600                                 struct r10bio *rb2 = r10_bio;
2601                                 r10_bio = (struct r10bio*) rb2->master_bio;
2602                                 rb2->master_bio = NULL;
2603                                 put_buf(rb2);
2604                         }
2605                         goto giveup;
2606                 }
2607         } else {
2608                 /* resync. Schedule a read for every block at this virt offset */
2609                 int count = 0;
2610
2611                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2612
2613                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2614                                        &sync_blocks, mddev->degraded) &&
2615                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2616                                                  &mddev->recovery)) {
2617                         /* We can skip this block */
2618                         *skipped = 1;
2619                         return sync_blocks + sectors_skipped;
2620                 }
2621                 if (sync_blocks < max_sync)
2622                         max_sync = sync_blocks;
2623                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2624
2625                 r10_bio->mddev = mddev;
2626                 atomic_set(&r10_bio->remaining, 0);
2627                 raise_barrier(conf, 0);
2628                 conf->next_resync = sector_nr;
2629
2630                 r10_bio->master_bio = NULL;
2631                 r10_bio->sector = sector_nr;
2632                 set_bit(R10BIO_IsSync, &r10_bio->state);
2633                 raid10_find_phys(conf, r10_bio);
2634                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2635
2636                 for (i=0; i<conf->copies; i++) {
2637                         int d = r10_bio->devs[i].devnum;
2638                         sector_t first_bad, sector;
2639                         int bad_sectors;
2640
2641                         bio = r10_bio->devs[i].bio;
2642                         bio->bi_end_io = NULL;
2643                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
2644                         if (conf->mirrors[d].rdev == NULL ||
2645                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2646                                 continue;
2647                         sector = r10_bio->devs[i].addr;
2648                         if (is_badblock(conf->mirrors[d].rdev,
2649                                         sector, max_sync,
2650                                         &first_bad, &bad_sectors)) {
2651                                 if (first_bad > sector)
2652                                         max_sync = first_bad - sector;
2653                                 else {
2654                                         bad_sectors -= (sector - first_bad);
2655                                         if (max_sync > bad_sectors)
2656                                                 max_sync = max_sync;
2657                                         continue;
2658                                 }
2659                         }
2660                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2661                         atomic_inc(&r10_bio->remaining);
2662                         bio->bi_next = biolist;
2663                         biolist = bio;
2664                         bio->bi_private = r10_bio;
2665                         bio->bi_end_io = end_sync_read;
2666                         bio->bi_rw = READ;
2667                         bio->bi_sector = sector +
2668                                 conf->mirrors[d].rdev->data_offset;
2669                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2670                         count++;
2671                 }
2672
2673                 if (count < 2) {
2674                         for (i=0; i<conf->copies; i++) {
2675                                 int d = r10_bio->devs[i].devnum;
2676                                 if (r10_bio->devs[i].bio->bi_end_io)
2677                                         rdev_dec_pending(conf->mirrors[d].rdev,
2678                                                          mddev);
2679                         }
2680                         put_buf(r10_bio);
2681                         biolist = NULL;
2682                         goto giveup;
2683                 }
2684         }
2685
2686         for (bio = biolist; bio ; bio=bio->bi_next) {
2687
2688                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2689                 if (bio->bi_end_io)
2690                         bio->bi_flags |= 1 << BIO_UPTODATE;
2691                 bio->bi_vcnt = 0;
2692                 bio->bi_idx = 0;
2693                 bio->bi_phys_segments = 0;
2694                 bio->bi_size = 0;
2695         }
2696
2697         nr_sectors = 0;
2698         if (sector_nr + max_sync < max_sector)
2699                 max_sector = sector_nr + max_sync;
2700         do {
2701                 struct page *page;
2702                 int len = PAGE_SIZE;
2703                 if (sector_nr + (len>>9) > max_sector)
2704                         len = (max_sector - sector_nr) << 9;
2705                 if (len == 0)
2706                         break;
2707                 for (bio= biolist ; bio ; bio=bio->bi_next) {
2708                         struct bio *bio2;
2709                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2710                         if (bio_add_page(bio, page, len, 0))
2711                                 continue;
2712
2713                         /* stop here */
2714                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2715                         for (bio2 = biolist;
2716                              bio2 && bio2 != bio;
2717                              bio2 = bio2->bi_next) {
2718                                 /* remove last page from this bio */
2719                                 bio2->bi_vcnt--;
2720                                 bio2->bi_size -= len;
2721                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2722                         }
2723                         goto bio_full;
2724                 }
2725                 nr_sectors += len>>9;
2726                 sector_nr += len>>9;
2727         } while (biolist->bi_vcnt < RESYNC_PAGES);
2728  bio_full:
2729         r10_bio->sectors = nr_sectors;
2730
2731         while (biolist) {
2732                 bio = biolist;
2733                 biolist = biolist->bi_next;
2734
2735                 bio->bi_next = NULL;
2736                 r10_bio = bio->bi_private;
2737                 r10_bio->sectors = nr_sectors;
2738
2739                 if (bio->bi_end_io == end_sync_read) {
2740                         md_sync_acct(bio->bi_bdev, nr_sectors);
2741                         generic_make_request(bio);
2742                 }
2743         }
2744
2745         if (sectors_skipped)
2746                 /* pretend they weren't skipped, it makes
2747                  * no important difference in this case
2748                  */
2749                 md_done_sync(mddev, sectors_skipped, 1);
2750
2751         return sectors_skipped + nr_sectors;
2752  giveup:
2753         /* There is nowhere to write, so all non-sync
2754          * drives must be failed or in resync, all drives
2755          * have a bad block, so try the next chunk...
2756          */
2757         if (sector_nr + max_sync < max_sector)
2758                 max_sector = sector_nr + max_sync;
2759
2760         sectors_skipped += (max_sector - sector_nr);
2761         chunks_skipped ++;
2762         sector_nr = max_sector;
2763         goto skipped;
2764 }
2765
2766 static sector_t
2767 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2768 {
2769         sector_t size;
2770         struct r10conf *conf = mddev->private;
2771
2772         if (!raid_disks)
2773                 raid_disks = conf->raid_disks;
2774         if (!sectors)
2775                 sectors = conf->dev_sectors;
2776
2777         size = sectors >> conf->chunk_shift;
2778         sector_div(size, conf->far_copies);
2779         size = size * raid_disks;
2780         sector_div(size, conf->near_copies);
2781
2782         return size << conf->chunk_shift;
2783 }
2784
2785
2786 static struct r10conf *setup_conf(struct mddev *mddev)
2787 {
2788         struct r10conf *conf = NULL;
2789         int nc, fc, fo;
2790         sector_t stride, size;
2791         int err = -EINVAL;
2792
2793         if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2794             !is_power_of_2(mddev->new_chunk_sectors)) {
2795                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2796                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2797                        mdname(mddev), PAGE_SIZE);
2798                 goto out;
2799         }
2800
2801         nc = mddev->new_layout & 255;
2802         fc = (mddev->new_layout >> 8) & 255;
2803         fo = mddev->new_layout & (1<<16);
2804
2805         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2806             (mddev->new_layout >> 17)) {
2807                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2808                        mdname(mddev), mddev->new_layout);
2809                 goto out;
2810         }
2811
2812         err = -ENOMEM;
2813         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
2814         if (!conf)
2815                 goto out;
2816
2817         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2818                                 GFP_KERNEL);
2819         if (!conf->mirrors)
2820                 goto out;
2821
2822         conf->tmppage = alloc_page(GFP_KERNEL);
2823         if (!conf->tmppage)
2824                 goto out;
2825
2826
2827         conf->raid_disks = mddev->raid_disks;
2828         conf->near_copies = nc;
2829         conf->far_copies = fc;
2830         conf->copies = nc*fc;
2831         conf->far_offset = fo;
2832         conf->chunk_mask = mddev->new_chunk_sectors - 1;
2833         conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2834
2835         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2836                                            r10bio_pool_free, conf);
2837         if (!conf->r10bio_pool)
2838                 goto out;
2839
2840         size = mddev->dev_sectors >> conf->chunk_shift;
2841         sector_div(size, fc);
2842         size = size * conf->raid_disks;
2843         sector_div(size, nc);
2844         /* 'size' is now the number of chunks in the array */
2845         /* calculate "used chunks per device" in 'stride' */
2846         stride = size * conf->copies;
2847
2848         /* We need to round up when dividing by raid_disks to
2849          * get the stride size.
2850          */
2851         stride += conf->raid_disks - 1;
2852         sector_div(stride, conf->raid_disks);
2853
2854         conf->dev_sectors = stride << conf->chunk_shift;
2855
2856         if (fo)
2857                 stride = 1;
2858         else
2859                 sector_div(stride, fc);
2860         conf->stride = stride << conf->chunk_shift;
2861
2862
2863         spin_lock_init(&conf->device_lock);
2864         INIT_LIST_HEAD(&conf->retry_list);
2865
2866         spin_lock_init(&conf->resync_lock);
2867         init_waitqueue_head(&conf->wait_barrier);
2868
2869         conf->thread = md_register_thread(raid10d, mddev, NULL);
2870         if (!conf->thread)
2871                 goto out;
2872
2873         conf->mddev = mddev;
2874         return conf;
2875
2876  out:
2877         printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2878                mdname(mddev));
2879         if (conf) {
2880                 if (conf->r10bio_pool)
2881                         mempool_destroy(conf->r10bio_pool);
2882                 kfree(conf->mirrors);
2883                 safe_put_page(conf->tmppage);
2884                 kfree(conf);
2885         }
2886         return ERR_PTR(err);
2887 }
2888
2889 static int run(struct mddev *mddev)
2890 {
2891         struct r10conf *conf;
2892         int i, disk_idx, chunk_size;
2893         struct mirror_info *disk;
2894         struct md_rdev *rdev;
2895         sector_t size;
2896
2897         /*
2898          * copy the already verified devices into our private RAID10
2899          * bookkeeping area. [whatever we allocate in run(),
2900          * should be freed in stop()]
2901          */
2902
2903         if (mddev->private == NULL) {
2904                 conf = setup_conf(mddev);
2905                 if (IS_ERR(conf))
2906                         return PTR_ERR(conf);
2907                 mddev->private = conf;
2908         }
2909         conf = mddev->private;
2910         if (!conf)
2911                 goto out;
2912
2913         mddev->thread = conf->thread;
2914         conf->thread = NULL;
2915
2916         chunk_size = mddev->chunk_sectors << 9;
2917         blk_queue_io_min(mddev->queue, chunk_size);
2918         if (conf->raid_disks % conf->near_copies)
2919                 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2920         else
2921                 blk_queue_io_opt(mddev->queue, chunk_size *
2922                                  (conf->raid_disks / conf->near_copies));
2923
2924         list_for_each_entry(rdev, &mddev->disks, same_set) {
2925
2926                 disk_idx = rdev->raid_disk;
2927                 if (disk_idx >= conf->raid_disks
2928                     || disk_idx < 0)
2929                         continue;
2930                 disk = conf->mirrors + disk_idx;
2931
2932                 disk->rdev = rdev;
2933                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2934                                   rdev->data_offset << 9);
2935                 /* as we don't honour merge_bvec_fn, we must never risk
2936                  * violating it, so limit max_segments to 1 lying
2937                  * within a single page.
2938                  */
2939                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2940                         blk_queue_max_segments(mddev->queue, 1);
2941                         blk_queue_segment_boundary(mddev->queue,
2942                                                    PAGE_CACHE_SIZE - 1);
2943                 }
2944
2945                 disk->head_position = 0;
2946         }
2947         /* need to check that every block has at least one working mirror */
2948         if (!enough(conf, -1)) {
2949                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2950                        mdname(mddev));
2951                 goto out_free_conf;
2952         }
2953
2954         mddev->degraded = 0;
2955         for (i = 0; i < conf->raid_disks; i++) {
2956
2957                 disk = conf->mirrors + i;
2958
2959                 if (!disk->rdev ||
2960                     !test_bit(In_sync, &disk->rdev->flags)) {
2961                         disk->head_position = 0;
2962                         mddev->degraded++;
2963                         if (disk->rdev)
2964                                 conf->fullsync = 1;
2965                 }
2966                 disk->recovery_disabled = mddev->recovery_disabled - 1;
2967         }
2968
2969         if (mddev->recovery_cp != MaxSector)
2970                 printk(KERN_NOTICE "md/raid10:%s: not clean"
2971                        " -- starting background reconstruction\n",
2972                        mdname(mddev));
2973         printk(KERN_INFO
2974                 "md/raid10:%s: active with %d out of %d devices\n",
2975                 mdname(mddev), conf->raid_disks - mddev->degraded,
2976                 conf->raid_disks);
2977         /*
2978          * Ok, everything is just fine now
2979          */
2980         mddev->dev_sectors = conf->dev_sectors;
2981         size = raid10_size(mddev, 0, 0);
2982         md_set_array_sectors(mddev, size);
2983         mddev->resync_max_sectors = size;
2984
2985         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2986         mddev->queue->backing_dev_info.congested_data = mddev;
2987
2988         /* Calculate max read-ahead size.
2989          * We need to readahead at least twice a whole stripe....
2990          * maybe...
2991          */
2992         {
2993                 int stripe = conf->raid_disks *
2994                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2995                 stripe /= conf->near_copies;
2996                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2997                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2998         }
2999
3000         if (conf->near_copies < conf->raid_disks)
3001                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3002
3003         if (md_integrity_register(mddev))
3004                 goto out_free_conf;
3005
3006         return 0;
3007
3008 out_free_conf:
3009         md_unregister_thread(&mddev->thread);
3010         if (conf->r10bio_pool)
3011                 mempool_destroy(conf->r10bio_pool);
3012         safe_put_page(conf->tmppage);
3013         kfree(conf->mirrors);
3014         kfree(conf);
3015         mddev->private = NULL;
3016 out:
3017         return -EIO;
3018 }
3019
3020 static int stop(struct mddev *mddev)
3021 {
3022         struct r10conf *conf = mddev->private;
3023
3024         raise_barrier(conf, 0);
3025         lower_barrier(conf);
3026
3027         md_unregister_thread(&mddev->thread);
3028         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3029         if (conf->r10bio_pool)
3030                 mempool_destroy(conf->r10bio_pool);
3031         kfree(conf->mirrors);
3032         kfree(conf);
3033         mddev->private = NULL;
3034         return 0;
3035 }
3036
3037 static void raid10_quiesce(struct mddev *mddev, int state)
3038 {
3039         struct r10conf *conf = mddev->private;
3040
3041         switch(state) {
3042         case 1:
3043                 raise_barrier(conf, 0);
3044                 break;
3045         case 0:
3046                 lower_barrier(conf);
3047                 break;
3048         }
3049 }
3050
3051 static void *raid10_takeover_raid0(struct mddev *mddev)
3052 {
3053         struct md_rdev *rdev;
3054         struct r10conf *conf;
3055
3056         if (mddev->degraded > 0) {
3057                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3058                        mdname(mddev));
3059                 return ERR_PTR(-EINVAL);
3060         }
3061
3062         /* Set new parameters */
3063         mddev->new_level = 10;
3064         /* new layout: far_copies = 1, near_copies = 2 */
3065         mddev->new_layout = (1<<8) + 2;
3066         mddev->new_chunk_sectors = mddev->chunk_sectors;
3067         mddev->delta_disks = mddev->raid_disks;
3068         mddev->raid_disks *= 2;
3069         /* make sure it will be not marked as dirty */
3070         mddev->recovery_cp = MaxSector;
3071
3072         conf = setup_conf(mddev);
3073         if (!IS_ERR(conf)) {
3074                 list_for_each_entry(rdev, &mddev->disks, same_set)
3075                         if (rdev->raid_disk >= 0)
3076                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3077                 conf->barrier = 1;
3078         }
3079
3080         return conf;
3081 }
3082
3083 static void *raid10_takeover(struct mddev *mddev)
3084 {
3085         struct r0conf *raid0_conf;
3086
3087         /* raid10 can take over:
3088          *  raid0 - providing it has only two drives
3089          */
3090         if (mddev->level == 0) {
3091                 /* for raid0 takeover only one zone is supported */
3092                 raid0_conf = mddev->private;
3093                 if (raid0_conf->nr_strip_zones > 1) {
3094                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3095                                " with more than one zone.\n",
3096                                mdname(mddev));
3097                         return ERR_PTR(-EINVAL);
3098                 }
3099                 return raid10_takeover_raid0(mddev);
3100         }
3101         return ERR_PTR(-EINVAL);
3102 }
3103
3104 static struct md_personality raid10_personality =
3105 {
3106         .name           = "raid10",
3107         .level          = 10,
3108         .owner          = THIS_MODULE,
3109         .make_request   = make_request,
3110         .run            = run,
3111         .stop           = stop,
3112         .status         = status,
3113         .error_handler  = error,
3114         .hot_add_disk   = raid10_add_disk,
3115         .hot_remove_disk= raid10_remove_disk,
3116         .spare_active   = raid10_spare_active,
3117         .sync_request   = sync_request,
3118         .quiesce        = raid10_quiesce,
3119         .size           = raid10_size,
3120         .takeover       = raid10_takeover,
3121 };
3122
3123 static int __init raid_init(void)
3124 {
3125         return register_md_personality(&raid10_personality);
3126 }
3127
3128 static void raid_exit(void)
3129 {
3130         unregister_md_personality(&raid10_personality);
3131 }
3132
3133 module_init(raid_init);
3134 module_exit(raid_exit);
3135 MODULE_LICENSE("GPL");
3136 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3137 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3138 MODULE_ALIAS("md-raid10");
3139 MODULE_ALIAS("md-level-10");
3140
3141 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);