10415ddfcb420e33f8597adc2f55091e2323d228
[pandora-kernel.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
30
31 /*
32  * RAID10 provides a combination of RAID0 and RAID1 functionality.
33  * The layout of data is defined by
34  *    chunk_size
35  *    raid_disks
36  *    near_copies (stored in low byte of layout)
37  *    far_copies (stored in second byte of layout)
38  *    far_offset (stored in bit 16 of layout )
39  *
40  * The data to be stored is divided into chunks using chunksize.
41  * Each device is divided into far_copies sections.
42  * In each section, chunks are laid out in a style similar to raid0, but
43  * near_copies copies of each chunk is stored (each on a different drive).
44  * The starting device for each section is offset near_copies from the starting
45  * device of the previous section.
46  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47  * drive.
48  * near_copies and far_copies must be at least one, and their product is at most
49  * raid_disks.
50  *
51  * If far_offset is true, then the far_copies are handled a bit differently.
52  * The copies are still in different stripes, but instead of be very far apart
53  * on disk, there are adjacent stripes.
54  */
55
56 /*
57  * Number of guaranteed r10bios in case of extreme VM load:
58  */
59 #define NR_RAID10_BIOS 256
60
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
63
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
65 {
66         conf_t *conf = data;
67         int size = offsetof(struct r10bio_s, devs[conf->copies]);
68
69         /* allocate a r10bio with room for raid_disks entries in the bios array */
70         return kzalloc(size, gfp_flags);
71 }
72
73 static void r10bio_pool_free(void *r10_bio, void *data)
74 {
75         kfree(r10_bio);
76 }
77
78 /* Maximum size of each resync request */
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
81 /* amount of memory to reserve for resync requests */
82 #define RESYNC_WINDOW (1024*1024)
83 /* maximum number of concurrent requests, memory permitting */
84 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
85
86 /*
87  * When performing a resync, we need to read and compare, so
88  * we need as many pages are there are copies.
89  * When performing a recovery, we need 2 bios, one for read,
90  * one for write (we recover only one drive per r10buf)
91  *
92  */
93 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
94 {
95         conf_t *conf = data;
96         struct page *page;
97         r10bio_t *r10_bio;
98         struct bio *bio;
99         int i, j;
100         int nalloc;
101
102         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103         if (!r10_bio)
104                 return NULL;
105
106         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
107                 nalloc = conf->copies; /* resync */
108         else
109                 nalloc = 2; /* recovery */
110
111         /*
112          * Allocate bios.
113          */
114         for (j = nalloc ; j-- ; ) {
115                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
116                 if (!bio)
117                         goto out_free_bio;
118                 r10_bio->devs[j].bio = bio;
119         }
120         /*
121          * Allocate RESYNC_PAGES data pages and attach them
122          * where needed.
123          */
124         for (j = 0 ; j < nalloc; j++) {
125                 bio = r10_bio->devs[j].bio;
126                 for (i = 0; i < RESYNC_PAGES; i++) {
127                         if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
128                                                 &conf->mddev->recovery)) {
129                                 /* we can share bv_page's during recovery */
130                                 struct bio *rbio = r10_bio->devs[0].bio;
131                                 page = rbio->bi_io_vec[i].bv_page;
132                                 get_page(page);
133                         } else
134                                 page = alloc_page(gfp_flags);
135                         if (unlikely(!page))
136                                 goto out_free_pages;
137
138                         bio->bi_io_vec[i].bv_page = page;
139                 }
140         }
141
142         return r10_bio;
143
144 out_free_pages:
145         for ( ; i > 0 ; i--)
146                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
147         while (j--)
148                 for (i = 0; i < RESYNC_PAGES ; i++)
149                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150         j = -1;
151 out_free_bio:
152         while ( ++j < nalloc )
153                 bio_put(r10_bio->devs[j].bio);
154         r10bio_pool_free(r10_bio, conf);
155         return NULL;
156 }
157
158 static void r10buf_pool_free(void *__r10_bio, void *data)
159 {
160         int i;
161         conf_t *conf = data;
162         r10bio_t *r10bio = __r10_bio;
163         int j;
164
165         for (j=0; j < conf->copies; j++) {
166                 struct bio *bio = r10bio->devs[j].bio;
167                 if (bio) {
168                         for (i = 0; i < RESYNC_PAGES; i++) {
169                                 safe_put_page(bio->bi_io_vec[i].bv_page);
170                                 bio->bi_io_vec[i].bv_page = NULL;
171                         }
172                         bio_put(bio);
173                 }
174         }
175         r10bio_pool_free(r10bio, conf);
176 }
177
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
179 {
180         int i;
181
182         for (i = 0; i < conf->copies; i++) {
183                 struct bio **bio = & r10_bio->devs[i].bio;
184                 if (!BIO_SPECIAL(*bio))
185                         bio_put(*bio);
186                 *bio = NULL;
187         }
188 }
189
190 static void free_r10bio(r10bio_t *r10_bio)
191 {
192         conf_t *conf = r10_bio->mddev->private;
193
194         put_all_bios(conf, r10_bio);
195         mempool_free(r10_bio, conf->r10bio_pool);
196 }
197
198 static void put_buf(r10bio_t *r10_bio)
199 {
200         conf_t *conf = r10_bio->mddev->private;
201
202         mempool_free(r10_bio, conf->r10buf_pool);
203
204         lower_barrier(conf);
205 }
206
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209         unsigned long flags;
210         mddev_t *mddev = r10_bio->mddev;
211         conf_t *conf = mddev->private;
212
213         spin_lock_irqsave(&conf->device_lock, flags);
214         list_add(&r10_bio->retry_list, &conf->retry_list);
215         conf->nr_queued ++;
216         spin_unlock_irqrestore(&conf->device_lock, flags);
217
218         /* wake up frozen array... */
219         wake_up(&conf->wait_barrier);
220
221         md_wakeup_thread(mddev->thread);
222 }
223
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r10bio_t *r10_bio)
230 {
231         struct bio *bio = r10_bio->master_bio;
232         int done;
233         conf_t *conf = r10_bio->mddev->private;
234
235         if (bio->bi_phys_segments) {
236                 unsigned long flags;
237                 spin_lock_irqsave(&conf->device_lock, flags);
238                 bio->bi_phys_segments--;
239                 done = (bio->bi_phys_segments == 0);
240                 spin_unlock_irqrestore(&conf->device_lock, flags);
241         } else
242                 done = 1;
243         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
244                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
245         if (done) {
246                 bio_endio(bio, 0);
247                 /*
248                  * Wake up any possible resync thread that waits for the device
249                  * to go idle.
250                  */
251                 allow_barrier(conf);
252         }
253         free_r10bio(r10_bio);
254 }
255
256 /*
257  * Update disk head position estimator based on IRQ completion info.
258  */
259 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
260 {
261         conf_t *conf = r10_bio->mddev->private;
262
263         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
264                 r10_bio->devs[slot].addr + (r10_bio->sectors);
265 }
266
267 /*
268  * Find the disk number which triggered given bio
269  */
270 static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio,
271                          struct bio *bio, int *slotp)
272 {
273         int slot;
274
275         for (slot = 0; slot < conf->copies; slot++)
276                 if (r10_bio->devs[slot].bio == bio)
277                         break;
278
279         BUG_ON(slot == conf->copies);
280         update_head_pos(slot, r10_bio);
281
282         if (slotp)
283                 *slotp = slot;
284         return r10_bio->devs[slot].devnum;
285 }
286
287 static void raid10_end_read_request(struct bio *bio, int error)
288 {
289         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290         r10bio_t *r10_bio = bio->bi_private;
291         int slot, dev;
292         conf_t *conf = r10_bio->mddev->private;
293
294
295         slot = r10_bio->read_slot;
296         dev = r10_bio->devs[slot].devnum;
297         /*
298          * this branch is our 'one mirror IO has finished' event handler:
299          */
300         update_head_pos(slot, r10_bio);
301
302         if (uptodate) {
303                 /*
304                  * Set R10BIO_Uptodate in our master bio, so that
305                  * we will return a good error code to the higher
306                  * levels even if IO on some other mirrored buffer fails.
307                  *
308                  * The 'master' represents the composite IO operation to
309                  * user-side. So if something waits for IO, then it will
310                  * wait for the 'master' bio.
311                  */
312                 set_bit(R10BIO_Uptodate, &r10_bio->state);
313                 raid_end_bio_io(r10_bio);
314                 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
315         } else {
316                 /*
317                  * oops, read error - keep the refcount on the rdev
318                  */
319                 char b[BDEVNAME_SIZE];
320                 printk_ratelimited(KERN_ERR
321                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
322                                    mdname(conf->mddev),
323                                    bdevname(conf->mirrors[dev].rdev->bdev, b),
324                                    (unsigned long long)r10_bio->sector);
325                 set_bit(R10BIO_ReadError, &r10_bio->state);
326                 reschedule_retry(r10_bio);
327         }
328 }
329
330 static void close_write(r10bio_t *r10_bio)
331 {
332         /* clear the bitmap if all writes complete successfully */
333         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334                         r10_bio->sectors,
335                         !test_bit(R10BIO_Degraded, &r10_bio->state),
336                         0);
337         md_write_end(r10_bio->mddev);
338 }
339
340 static void raid10_end_write_request(struct bio *bio, int error)
341 {
342         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
343         r10bio_t *r10_bio = bio->bi_private;
344         int dev;
345         int dec_rdev = 1;
346         conf_t *conf = r10_bio->mddev->private;
347         int slot;
348
349         dev = find_bio_disk(conf, r10_bio, bio, &slot);
350
351         /*
352          * this branch is our 'one mirror IO has finished' event handler:
353          */
354         if (!uptodate) {
355                 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
356                 set_bit(R10BIO_WriteError, &r10_bio->state);
357                 dec_rdev = 0;
358         } else {
359                 /*
360                  * Set R10BIO_Uptodate in our master bio, so that
361                  * we will return a good error code for to the higher
362                  * levels even if IO on some other mirrored buffer fails.
363                  *
364                  * The 'master' represents the composite IO operation to
365                  * user-side. So if something waits for IO, then it will
366                  * wait for the 'master' bio.
367                  */
368                 sector_t first_bad;
369                 int bad_sectors;
370
371                 set_bit(R10BIO_Uptodate, &r10_bio->state);
372
373                 /* Maybe we can clear some bad blocks. */
374                 if (is_badblock(conf->mirrors[dev].rdev,
375                                 r10_bio->devs[slot].addr,
376                                 r10_bio->sectors,
377                                 &first_bad, &bad_sectors)) {
378                         bio_put(bio);
379                         r10_bio->devs[slot].bio = IO_MADE_GOOD;
380                         dec_rdev = 0;
381                         set_bit(R10BIO_MadeGood, &r10_bio->state);
382                 }
383         }
384
385         /*
386          *
387          * Let's see if all mirrored write operations have finished
388          * already.
389          */
390         if (atomic_dec_and_test(&r10_bio->remaining)) {
391                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
392                         reschedule_retry(r10_bio);
393                 else {
394                         close_write(r10_bio);
395                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
396                                 reschedule_retry(r10_bio);
397                         else
398                                 raid_end_bio_io(r10_bio);
399                 }
400         }
401         if (dec_rdev)
402                 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
403 }
404
405
406 /*
407  * RAID10 layout manager
408  * As well as the chunksize and raid_disks count, there are two
409  * parameters: near_copies and far_copies.
410  * near_copies * far_copies must be <= raid_disks.
411  * Normally one of these will be 1.
412  * If both are 1, we get raid0.
413  * If near_copies == raid_disks, we get raid1.
414  *
415  * Chunks are laid out in raid0 style with near_copies copies of the
416  * first chunk, followed by near_copies copies of the next chunk and
417  * so on.
418  * If far_copies > 1, then after 1/far_copies of the array has been assigned
419  * as described above, we start again with a device offset of near_copies.
420  * So we effectively have another copy of the whole array further down all
421  * the drives, but with blocks on different drives.
422  * With this layout, and block is never stored twice on the one device.
423  *
424  * raid10_find_phys finds the sector offset of a given virtual sector
425  * on each device that it is on.
426  *
427  * raid10_find_virt does the reverse mapping, from a device and a
428  * sector offset to a virtual address
429  */
430
431 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
432 {
433         int n,f;
434         sector_t sector;
435         sector_t chunk;
436         sector_t stripe;
437         int dev;
438
439         int slot = 0;
440
441         /* now calculate first sector/dev */
442         chunk = r10bio->sector >> conf->chunk_shift;
443         sector = r10bio->sector & conf->chunk_mask;
444
445         chunk *= conf->near_copies;
446         stripe = chunk;
447         dev = sector_div(stripe, conf->raid_disks);
448         if (conf->far_offset)
449                 stripe *= conf->far_copies;
450
451         sector += stripe << conf->chunk_shift;
452
453         /* and calculate all the others */
454         for (n=0; n < conf->near_copies; n++) {
455                 int d = dev;
456                 sector_t s = sector;
457                 r10bio->devs[slot].addr = sector;
458                 r10bio->devs[slot].devnum = d;
459                 slot++;
460
461                 for (f = 1; f < conf->far_copies; f++) {
462                         d += conf->near_copies;
463                         if (d >= conf->raid_disks)
464                                 d -= conf->raid_disks;
465                         s += conf->stride;
466                         r10bio->devs[slot].devnum = d;
467                         r10bio->devs[slot].addr = s;
468                         slot++;
469                 }
470                 dev++;
471                 if (dev >= conf->raid_disks) {
472                         dev = 0;
473                         sector += (conf->chunk_mask + 1);
474                 }
475         }
476         BUG_ON(slot != conf->copies);
477 }
478
479 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
480 {
481         sector_t offset, chunk, vchunk;
482
483         offset = sector & conf->chunk_mask;
484         if (conf->far_offset) {
485                 int fc;
486                 chunk = sector >> conf->chunk_shift;
487                 fc = sector_div(chunk, conf->far_copies);
488                 dev -= fc * conf->near_copies;
489                 if (dev < 0)
490                         dev += conf->raid_disks;
491         } else {
492                 while (sector >= conf->stride) {
493                         sector -= conf->stride;
494                         if (dev < conf->near_copies)
495                                 dev += conf->raid_disks - conf->near_copies;
496                         else
497                                 dev -= conf->near_copies;
498                 }
499                 chunk = sector >> conf->chunk_shift;
500         }
501         vchunk = chunk * conf->raid_disks + dev;
502         sector_div(vchunk, conf->near_copies);
503         return (vchunk << conf->chunk_shift) + offset;
504 }
505
506 /**
507  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
508  *      @q: request queue
509  *      @bvm: properties of new bio
510  *      @biovec: the request that could be merged to it.
511  *
512  *      Return amount of bytes we can accept at this offset
513  *      If near_copies == raid_disk, there are no striping issues,
514  *      but in that case, the function isn't called at all.
515  */
516 static int raid10_mergeable_bvec(struct request_queue *q,
517                                  struct bvec_merge_data *bvm,
518                                  struct bio_vec *biovec)
519 {
520         mddev_t *mddev = q->queuedata;
521         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
522         int max;
523         unsigned int chunk_sectors = mddev->chunk_sectors;
524         unsigned int bio_sectors = bvm->bi_size >> 9;
525
526         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
527         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
528         if (max <= biovec->bv_len && bio_sectors == 0)
529                 return biovec->bv_len;
530         else
531                 return max;
532 }
533
534 /*
535  * This routine returns the disk from which the requested read should
536  * be done. There is a per-array 'next expected sequential IO' sector
537  * number - if this matches on the next IO then we use the last disk.
538  * There is also a per-disk 'last know head position' sector that is
539  * maintained from IRQ contexts, both the normal and the resync IO
540  * completion handlers update this position correctly. If there is no
541  * perfect sequential match then we pick the disk whose head is closest.
542  *
543  * If there are 2 mirrors in the same 2 devices, performance degrades
544  * because position is mirror, not device based.
545  *
546  * The rdev for the device selected will have nr_pending incremented.
547  */
548
549 /*
550  * FIXME: possibly should rethink readbalancing and do it differently
551  * depending on near_copies / far_copies geometry.
552  */
553 static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
554 {
555         const sector_t this_sector = r10_bio->sector;
556         int disk, slot;
557         int sectors = r10_bio->sectors;
558         int best_good_sectors;
559         sector_t new_distance, best_dist;
560         mdk_rdev_t *rdev;
561         int do_balance;
562         int best_slot;
563
564         raid10_find_phys(conf, r10_bio);
565         rcu_read_lock();
566 retry:
567         sectors = r10_bio->sectors;
568         best_slot = -1;
569         best_dist = MaxSector;
570         best_good_sectors = 0;
571         do_balance = 1;
572         /*
573          * Check if we can balance. We can balance on the whole
574          * device if no resync is going on (recovery is ok), or below
575          * the resync window. We take the first readable disk when
576          * above the resync window.
577          */
578         if (conf->mddev->recovery_cp < MaxSector
579             && (this_sector + sectors >= conf->next_resync))
580                 do_balance = 0;
581
582         for (slot = 0; slot < conf->copies ; slot++) {
583                 sector_t first_bad;
584                 int bad_sectors;
585                 sector_t dev_sector;
586
587                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
588                         continue;
589                 disk = r10_bio->devs[slot].devnum;
590                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
591                 if (rdev == NULL)
592                         continue;
593                 if (!test_bit(In_sync, &rdev->flags))
594                         continue;
595
596                 dev_sector = r10_bio->devs[slot].addr;
597                 if (is_badblock(rdev, dev_sector, sectors,
598                                 &first_bad, &bad_sectors)) {
599                         if (best_dist < MaxSector)
600                                 /* Already have a better slot */
601                                 continue;
602                         if (first_bad <= dev_sector) {
603                                 /* Cannot read here.  If this is the
604                                  * 'primary' device, then we must not read
605                                  * beyond 'bad_sectors' from another device.
606                                  */
607                                 bad_sectors -= (dev_sector - first_bad);
608                                 if (!do_balance && sectors > bad_sectors)
609                                         sectors = bad_sectors;
610                                 if (best_good_sectors > sectors)
611                                         best_good_sectors = sectors;
612                         } else {
613                                 sector_t good_sectors =
614                                         first_bad - dev_sector;
615                                 if (good_sectors > best_good_sectors) {
616                                         best_good_sectors = good_sectors;
617                                         best_slot = slot;
618                                 }
619                                 if (!do_balance)
620                                         /* Must read from here */
621                                         break;
622                         }
623                         continue;
624                 } else
625                         best_good_sectors = sectors;
626
627                 if (!do_balance)
628                         break;
629
630                 /* This optimisation is debatable, and completely destroys
631                  * sequential read speed for 'far copies' arrays.  So only
632                  * keep it for 'near' arrays, and review those later.
633                  */
634                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
635                         break;
636
637                 /* for far > 1 always use the lowest address */
638                 if (conf->far_copies > 1)
639                         new_distance = r10_bio->devs[slot].addr;
640                 else
641                         new_distance = abs(r10_bio->devs[slot].addr -
642                                            conf->mirrors[disk].head_position);
643                 if (new_distance < best_dist) {
644                         best_dist = new_distance;
645                         best_slot = slot;
646                 }
647         }
648         if (slot == conf->copies)
649                 slot = best_slot;
650
651         if (slot >= 0) {
652                 disk = r10_bio->devs[slot].devnum;
653                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
654                 if (!rdev)
655                         goto retry;
656                 atomic_inc(&rdev->nr_pending);
657                 if (test_bit(Faulty, &rdev->flags)) {
658                         /* Cannot risk returning a device that failed
659                          * before we inc'ed nr_pending
660                          */
661                         rdev_dec_pending(rdev, conf->mddev);
662                         goto retry;
663                 }
664                 r10_bio->read_slot = slot;
665         } else
666                 disk = -1;
667         rcu_read_unlock();
668         *max_sectors = best_good_sectors;
669
670         return disk;
671 }
672
673 static int raid10_congested(void *data, int bits)
674 {
675         mddev_t *mddev = data;
676         conf_t *conf = mddev->private;
677         int i, ret = 0;
678
679         if (mddev_congested(mddev, bits))
680                 return 1;
681         rcu_read_lock();
682         for (i = 0; i < conf->raid_disks && ret == 0; i++) {
683                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
684                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
685                         struct request_queue *q = bdev_get_queue(rdev->bdev);
686
687                         ret |= bdi_congested(&q->backing_dev_info, bits);
688                 }
689         }
690         rcu_read_unlock();
691         return ret;
692 }
693
694 static void flush_pending_writes(conf_t *conf)
695 {
696         /* Any writes that have been queued but are awaiting
697          * bitmap updates get flushed here.
698          */
699         spin_lock_irq(&conf->device_lock);
700
701         if (conf->pending_bio_list.head) {
702                 struct bio *bio;
703                 bio = bio_list_get(&conf->pending_bio_list);
704                 spin_unlock_irq(&conf->device_lock);
705                 /* flush any pending bitmap writes to disk
706                  * before proceeding w/ I/O */
707                 bitmap_unplug(conf->mddev->bitmap);
708
709                 while (bio) { /* submit pending writes */
710                         struct bio *next = bio->bi_next;
711                         bio->bi_next = NULL;
712                         generic_make_request(bio);
713                         bio = next;
714                 }
715         } else
716                 spin_unlock_irq(&conf->device_lock);
717 }
718
719 /* Barriers....
720  * Sometimes we need to suspend IO while we do something else,
721  * either some resync/recovery, or reconfigure the array.
722  * To do this we raise a 'barrier'.
723  * The 'barrier' is a counter that can be raised multiple times
724  * to count how many activities are happening which preclude
725  * normal IO.
726  * We can only raise the barrier if there is no pending IO.
727  * i.e. if nr_pending == 0.
728  * We choose only to raise the barrier if no-one is waiting for the
729  * barrier to go down.  This means that as soon as an IO request
730  * is ready, no other operations which require a barrier will start
731  * until the IO request has had a chance.
732  *
733  * So: regular IO calls 'wait_barrier'.  When that returns there
734  *    is no backgroup IO happening,  It must arrange to call
735  *    allow_barrier when it has finished its IO.
736  * backgroup IO calls must call raise_barrier.  Once that returns
737  *    there is no normal IO happeing.  It must arrange to call
738  *    lower_barrier when the particular background IO completes.
739  */
740
741 static void raise_barrier(conf_t *conf, int force)
742 {
743         BUG_ON(force && !conf->barrier);
744         spin_lock_irq(&conf->resync_lock);
745
746         /* Wait until no block IO is waiting (unless 'force') */
747         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
748                             conf->resync_lock, );
749
750         /* block any new IO from starting */
751         conf->barrier++;
752
753         /* Now wait for all pending IO to complete */
754         wait_event_lock_irq(conf->wait_barrier,
755                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
756                             conf->resync_lock, );
757
758         spin_unlock_irq(&conf->resync_lock);
759 }
760
761 static void lower_barrier(conf_t *conf)
762 {
763         unsigned long flags;
764         spin_lock_irqsave(&conf->resync_lock, flags);
765         conf->barrier--;
766         spin_unlock_irqrestore(&conf->resync_lock, flags);
767         wake_up(&conf->wait_barrier);
768 }
769
770 static void wait_barrier(conf_t *conf)
771 {
772         spin_lock_irq(&conf->resync_lock);
773         if (conf->barrier) {
774                 conf->nr_waiting++;
775                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
776                                     conf->resync_lock,
777                                     );
778                 conf->nr_waiting--;
779         }
780         conf->nr_pending++;
781         spin_unlock_irq(&conf->resync_lock);
782 }
783
784 static void allow_barrier(conf_t *conf)
785 {
786         unsigned long flags;
787         spin_lock_irqsave(&conf->resync_lock, flags);
788         conf->nr_pending--;
789         spin_unlock_irqrestore(&conf->resync_lock, flags);
790         wake_up(&conf->wait_barrier);
791 }
792
793 static void freeze_array(conf_t *conf)
794 {
795         /* stop syncio and normal IO and wait for everything to
796          * go quiet.
797          * We increment barrier and nr_waiting, and then
798          * wait until nr_pending match nr_queued+1
799          * This is called in the context of one normal IO request
800          * that has failed. Thus any sync request that might be pending
801          * will be blocked by nr_pending, and we need to wait for
802          * pending IO requests to complete or be queued for re-try.
803          * Thus the number queued (nr_queued) plus this request (1)
804          * must match the number of pending IOs (nr_pending) before
805          * we continue.
806          */
807         spin_lock_irq(&conf->resync_lock);
808         conf->barrier++;
809         conf->nr_waiting++;
810         wait_event_lock_irq(conf->wait_barrier,
811                             conf->nr_pending == conf->nr_queued+1,
812                             conf->resync_lock,
813                             flush_pending_writes(conf));
814
815         spin_unlock_irq(&conf->resync_lock);
816 }
817
818 static void unfreeze_array(conf_t *conf)
819 {
820         /* reverse the effect of the freeze */
821         spin_lock_irq(&conf->resync_lock);
822         conf->barrier--;
823         conf->nr_waiting--;
824         wake_up(&conf->wait_barrier);
825         spin_unlock_irq(&conf->resync_lock);
826 }
827
828 static int make_request(mddev_t *mddev, struct bio * bio)
829 {
830         conf_t *conf = mddev->private;
831         mirror_info_t *mirror;
832         r10bio_t *r10_bio;
833         struct bio *read_bio;
834         int i;
835         int chunk_sects = conf->chunk_mask + 1;
836         const int rw = bio_data_dir(bio);
837         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
838         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
839         unsigned long flags;
840         mdk_rdev_t *blocked_rdev;
841         int plugged;
842         int sectors_handled;
843         int max_sectors;
844
845         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
846                 md_flush_request(mddev, bio);
847                 return 0;
848         }
849
850         /* If this request crosses a chunk boundary, we need to
851          * split it.  This will only happen for 1 PAGE (or less) requests.
852          */
853         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
854                       > chunk_sects &&
855                     conf->near_copies < conf->raid_disks)) {
856                 struct bio_pair *bp;
857                 /* Sanity check -- queue functions should prevent this happening */
858                 if (bio->bi_vcnt != 1 ||
859                     bio->bi_idx != 0)
860                         goto bad_map;
861                 /* This is a one page bio that upper layers
862                  * refuse to split for us, so we need to split it.
863                  */
864                 bp = bio_split(bio,
865                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
866
867                 /* Each of these 'make_request' calls will call 'wait_barrier'.
868                  * If the first succeeds but the second blocks due to the resync
869                  * thread raising the barrier, we will deadlock because the
870                  * IO to the underlying device will be queued in generic_make_request
871                  * and will never complete, so will never reduce nr_pending.
872                  * So increment nr_waiting here so no new raise_barriers will
873                  * succeed, and so the second wait_barrier cannot block.
874                  */
875                 spin_lock_irq(&conf->resync_lock);
876                 conf->nr_waiting++;
877                 spin_unlock_irq(&conf->resync_lock);
878
879                 if (make_request(mddev, &bp->bio1))
880                         generic_make_request(&bp->bio1);
881                 if (make_request(mddev, &bp->bio2))
882                         generic_make_request(&bp->bio2);
883
884                 spin_lock_irq(&conf->resync_lock);
885                 conf->nr_waiting--;
886                 wake_up(&conf->wait_barrier);
887                 spin_unlock_irq(&conf->resync_lock);
888
889                 bio_pair_release(bp);
890                 return 0;
891         bad_map:
892                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
893                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
894                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
895
896                 bio_io_error(bio);
897                 return 0;
898         }
899
900         md_write_start(mddev, bio);
901
902         /*
903          * Register the new request and wait if the reconstruction
904          * thread has put up a bar for new requests.
905          * Continue immediately if no resync is active currently.
906          */
907         wait_barrier(conf);
908
909         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
910
911         r10_bio->master_bio = bio;
912         r10_bio->sectors = bio->bi_size >> 9;
913
914         r10_bio->mddev = mddev;
915         r10_bio->sector = bio->bi_sector;
916         r10_bio->state = 0;
917
918         /* We might need to issue multiple reads to different
919          * devices if there are bad blocks around, so we keep
920          * track of the number of reads in bio->bi_phys_segments.
921          * If this is 0, there is only one r10_bio and no locking
922          * will be needed when the request completes.  If it is
923          * non-zero, then it is the number of not-completed requests.
924          */
925         bio->bi_phys_segments = 0;
926         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
927
928         if (rw == READ) {
929                 /*
930                  * read balancing logic:
931                  */
932                 int disk;
933                 int slot;
934
935 read_again:
936                 disk = read_balance(conf, r10_bio, &max_sectors);
937                 slot = r10_bio->read_slot;
938                 if (disk < 0) {
939                         raid_end_bio_io(r10_bio);
940                         return 0;
941                 }
942                 mirror = conf->mirrors + disk;
943
944                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
945                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
946                             max_sectors);
947
948                 r10_bio->devs[slot].bio = read_bio;
949
950                 read_bio->bi_sector = r10_bio->devs[slot].addr +
951                         mirror->rdev->data_offset;
952                 read_bio->bi_bdev = mirror->rdev->bdev;
953                 read_bio->bi_end_io = raid10_end_read_request;
954                 read_bio->bi_rw = READ | do_sync;
955                 read_bio->bi_private = r10_bio;
956
957                 if (max_sectors < r10_bio->sectors) {
958                         /* Could not read all from this device, so we will
959                          * need another r10_bio.
960                          */
961                         sectors_handled = (r10_bio->sectors + max_sectors
962                                            - bio->bi_sector);
963                         r10_bio->sectors = max_sectors;
964                         spin_lock_irq(&conf->device_lock);
965                         if (bio->bi_phys_segments == 0)
966                                 bio->bi_phys_segments = 2;
967                         else
968                                 bio->bi_phys_segments++;
969                         spin_unlock(&conf->device_lock);
970                         /* Cannot call generic_make_request directly
971                          * as that will be queued in __generic_make_request
972                          * and subsequent mempool_alloc might block
973                          * waiting for it.  so hand bio over to raid10d.
974                          */
975                         reschedule_retry(r10_bio);
976
977                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
978
979                         r10_bio->master_bio = bio;
980                         r10_bio->sectors = ((bio->bi_size >> 9)
981                                             - sectors_handled);
982                         r10_bio->state = 0;
983                         r10_bio->mddev = mddev;
984                         r10_bio->sector = bio->bi_sector + sectors_handled;
985                         goto read_again;
986                 } else
987                         generic_make_request(read_bio);
988                 return 0;
989         }
990
991         /*
992          * WRITE:
993          */
994         /* first select target devices under rcu_lock and
995          * inc refcount on their rdev.  Record them by setting
996          * bios[x] to bio
997          * If there are known/acknowledged bad blocks on any device
998          * on which we have seen a write error, we want to avoid
999          * writing to those blocks.  This potentially requires several
1000          * writes to write around the bad blocks.  Each set of writes
1001          * gets its own r10_bio with a set of bios attached.  The number
1002          * of r10_bios is recored in bio->bi_phys_segments just as with
1003          * the read case.
1004          */
1005         plugged = mddev_check_plugged(mddev);
1006
1007         raid10_find_phys(conf, r10_bio);
1008 retry_write:
1009         blocked_rdev = NULL;
1010         rcu_read_lock();
1011         max_sectors = r10_bio->sectors;
1012
1013         for (i = 0;  i < conf->copies; i++) {
1014                 int d = r10_bio->devs[i].devnum;
1015                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
1016                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1017                         atomic_inc(&rdev->nr_pending);
1018                         blocked_rdev = rdev;
1019                         break;
1020                 }
1021                 r10_bio->devs[i].bio = NULL;
1022                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1023                         set_bit(R10BIO_Degraded, &r10_bio->state);
1024                         continue;
1025                 }
1026                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1027                         sector_t first_bad;
1028                         sector_t dev_sector = r10_bio->devs[i].addr;
1029                         int bad_sectors;
1030                         int is_bad;
1031
1032                         is_bad = is_badblock(rdev, dev_sector,
1033                                              max_sectors,
1034                                              &first_bad, &bad_sectors);
1035                         if (is_bad < 0) {
1036                                 /* Mustn't write here until the bad block
1037                                  * is acknowledged
1038                                  */
1039                                 atomic_inc(&rdev->nr_pending);
1040                                 set_bit(BlockedBadBlocks, &rdev->flags);
1041                                 blocked_rdev = rdev;
1042                                 break;
1043                         }
1044                         if (is_bad && first_bad <= dev_sector) {
1045                                 /* Cannot write here at all */
1046                                 bad_sectors -= (dev_sector - first_bad);
1047                                 if (bad_sectors < max_sectors)
1048                                         /* Mustn't write more than bad_sectors
1049                                          * to other devices yet
1050                                          */
1051                                         max_sectors = bad_sectors;
1052                                 /* We don't set R10BIO_Degraded as that
1053                                  * only applies if the disk is missing,
1054                                  * so it might be re-added, and we want to
1055                                  * know to recover this chunk.
1056                                  * In this case the device is here, and the
1057                                  * fact that this chunk is not in-sync is
1058                                  * recorded in the bad block log.
1059                                  */
1060                                 continue;
1061                         }
1062                         if (is_bad) {
1063                                 int good_sectors = first_bad - dev_sector;
1064                                 if (good_sectors < max_sectors)
1065                                         max_sectors = good_sectors;
1066                         }
1067                 }
1068                 r10_bio->devs[i].bio = bio;
1069                 atomic_inc(&rdev->nr_pending);
1070         }
1071         rcu_read_unlock();
1072
1073         if (unlikely(blocked_rdev)) {
1074                 /* Have to wait for this device to get unblocked, then retry */
1075                 int j;
1076                 int d;
1077
1078                 for (j = 0; j < i; j++)
1079                         if (r10_bio->devs[j].bio) {
1080                                 d = r10_bio->devs[j].devnum;
1081                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1082                         }
1083                 allow_barrier(conf);
1084                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1085                 wait_barrier(conf);
1086                 goto retry_write;
1087         }
1088
1089         if (max_sectors < r10_bio->sectors) {
1090                 /* We are splitting this into multiple parts, so
1091                  * we need to prepare for allocating another r10_bio.
1092                  */
1093                 r10_bio->sectors = max_sectors;
1094                 spin_lock_irq(&conf->device_lock);
1095                 if (bio->bi_phys_segments == 0)
1096                         bio->bi_phys_segments = 2;
1097                 else
1098                         bio->bi_phys_segments++;
1099                 spin_unlock_irq(&conf->device_lock);
1100         }
1101         sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1102
1103         atomic_set(&r10_bio->remaining, 1);
1104         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1105
1106         for (i = 0; i < conf->copies; i++) {
1107                 struct bio *mbio;
1108                 int d = r10_bio->devs[i].devnum;
1109                 if (!r10_bio->devs[i].bio)
1110                         continue;
1111
1112                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1113                 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1114                             max_sectors);
1115                 r10_bio->devs[i].bio = mbio;
1116
1117                 mbio->bi_sector = (r10_bio->devs[i].addr+
1118                                    conf->mirrors[d].rdev->data_offset);
1119                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1120                 mbio->bi_end_io = raid10_end_write_request;
1121                 mbio->bi_rw = WRITE | do_sync | do_fua;
1122                 mbio->bi_private = r10_bio;
1123
1124                 atomic_inc(&r10_bio->remaining);
1125                 spin_lock_irqsave(&conf->device_lock, flags);
1126                 bio_list_add(&conf->pending_bio_list, mbio);
1127                 spin_unlock_irqrestore(&conf->device_lock, flags);
1128         }
1129
1130         if (atomic_dec_and_test(&r10_bio->remaining)) {
1131                 /* This matches the end of raid10_end_write_request() */
1132                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
1133                                 r10_bio->sectors,
1134                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
1135                                 0);
1136                 md_write_end(mddev);
1137                 raid_end_bio_io(r10_bio);
1138         }
1139
1140         /* In case raid10d snuck in to freeze_array */
1141         wake_up(&conf->wait_barrier);
1142
1143         if (sectors_handled < (bio->bi_size >> 9)) {
1144                 /* We need another r1_bio.  It has already been counted
1145                  * in bio->bi_phys_segments.
1146                  */
1147                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1148
1149                 r10_bio->master_bio = bio;
1150                 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1151
1152                 r10_bio->mddev = mddev;
1153                 r10_bio->sector = bio->bi_sector + sectors_handled;
1154                 r10_bio->state = 0;
1155                 goto retry_write;
1156         }
1157
1158         if (do_sync || !mddev->bitmap || !plugged)
1159                 md_wakeup_thread(mddev->thread);
1160         return 0;
1161 }
1162
1163 static void status(struct seq_file *seq, mddev_t *mddev)
1164 {
1165         conf_t *conf = mddev->private;
1166         int i;
1167
1168         if (conf->near_copies < conf->raid_disks)
1169                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1170         if (conf->near_copies > 1)
1171                 seq_printf(seq, " %d near-copies", conf->near_copies);
1172         if (conf->far_copies > 1) {
1173                 if (conf->far_offset)
1174                         seq_printf(seq, " %d offset-copies", conf->far_copies);
1175                 else
1176                         seq_printf(seq, " %d far-copies", conf->far_copies);
1177         }
1178         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1179                                         conf->raid_disks - mddev->degraded);
1180         for (i = 0; i < conf->raid_disks; i++)
1181                 seq_printf(seq, "%s",
1182                               conf->mirrors[i].rdev &&
1183                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1184         seq_printf(seq, "]");
1185 }
1186
1187 /* check if there are enough drives for
1188  * every block to appear on atleast one.
1189  * Don't consider the device numbered 'ignore'
1190  * as we might be about to remove it.
1191  */
1192 static int enough(conf_t *conf, int ignore)
1193 {
1194         int first = 0;
1195
1196         do {
1197                 int n = conf->copies;
1198                 int cnt = 0;
1199                 while (n--) {
1200                         if (conf->mirrors[first].rdev &&
1201                             first != ignore)
1202                                 cnt++;
1203                         first = (first+1) % conf->raid_disks;
1204                 }
1205                 if (cnt == 0)
1206                         return 0;
1207         } while (first != 0);
1208         return 1;
1209 }
1210
1211 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1212 {
1213         char b[BDEVNAME_SIZE];
1214         conf_t *conf = mddev->private;
1215
1216         /*
1217          * If it is not operational, then we have already marked it as dead
1218          * else if it is the last working disks, ignore the error, let the
1219          * next level up know.
1220          * else mark the drive as failed
1221          */
1222         if (test_bit(In_sync, &rdev->flags)
1223             && !enough(conf, rdev->raid_disk))
1224                 /*
1225                  * Don't fail the drive, just return an IO error.
1226                  */
1227                 return;
1228         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1229                 unsigned long flags;
1230                 spin_lock_irqsave(&conf->device_lock, flags);
1231                 mddev->degraded++;
1232                 spin_unlock_irqrestore(&conf->device_lock, flags);
1233                 /*
1234                  * if recovery is running, make sure it aborts.
1235                  */
1236                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1237         }
1238         set_bit(Blocked, &rdev->flags);
1239         set_bit(Faulty, &rdev->flags);
1240         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1241         printk(KERN_ALERT
1242                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1243                "md/raid10:%s: Operation continuing on %d devices.\n",
1244                mdname(mddev), bdevname(rdev->bdev, b),
1245                mdname(mddev), conf->raid_disks - mddev->degraded);
1246 }
1247
1248 static void print_conf(conf_t *conf)
1249 {
1250         int i;
1251         mirror_info_t *tmp;
1252
1253         printk(KERN_DEBUG "RAID10 conf printout:\n");
1254         if (!conf) {
1255                 printk(KERN_DEBUG "(!conf)\n");
1256                 return;
1257         }
1258         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1259                 conf->raid_disks);
1260
1261         for (i = 0; i < conf->raid_disks; i++) {
1262                 char b[BDEVNAME_SIZE];
1263                 tmp = conf->mirrors + i;
1264                 if (tmp->rdev)
1265                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1266                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1267                                 !test_bit(Faulty, &tmp->rdev->flags),
1268                                 bdevname(tmp->rdev->bdev,b));
1269         }
1270 }
1271
1272 static void close_sync(conf_t *conf)
1273 {
1274         wait_barrier(conf);
1275         allow_barrier(conf);
1276
1277         mempool_destroy(conf->r10buf_pool);
1278         conf->r10buf_pool = NULL;
1279 }
1280
1281 static int raid10_spare_active(mddev_t *mddev)
1282 {
1283         int i;
1284         conf_t *conf = mddev->private;
1285         mirror_info_t *tmp;
1286         int count = 0;
1287         unsigned long flags;
1288
1289         /*
1290          * Find all non-in_sync disks within the RAID10 configuration
1291          * and mark them in_sync
1292          */
1293         for (i = 0; i < conf->raid_disks; i++) {
1294                 tmp = conf->mirrors + i;
1295                 if (tmp->rdev
1296                     && !test_bit(Faulty, &tmp->rdev->flags)
1297                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1298                         count++;
1299                         sysfs_notify_dirent(tmp->rdev->sysfs_state);
1300                 }
1301         }
1302         spin_lock_irqsave(&conf->device_lock, flags);
1303         mddev->degraded -= count;
1304         spin_unlock_irqrestore(&conf->device_lock, flags);
1305
1306         print_conf(conf);
1307         return count;
1308 }
1309
1310
1311 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1312 {
1313         conf_t *conf = mddev->private;
1314         int err = -EEXIST;
1315         int mirror;
1316         int first = 0;
1317         int last = conf->raid_disks - 1;
1318
1319         if (mddev->recovery_cp < MaxSector)
1320                 /* only hot-add to in-sync arrays, as recovery is
1321                  * very different from resync
1322                  */
1323                 return -EBUSY;
1324         if (!enough(conf, -1))
1325                 return -EINVAL;
1326
1327         if (rdev->raid_disk >= 0)
1328                 first = last = rdev->raid_disk;
1329
1330         if (rdev->saved_raid_disk >= first &&
1331             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1332                 mirror = rdev->saved_raid_disk;
1333         else
1334                 mirror = first;
1335         for ( ; mirror <= last ; mirror++) {
1336                 mirror_info_t *p = &conf->mirrors[mirror];
1337                 if (p->recovery_disabled == mddev->recovery_disabled)
1338                         continue;
1339                 if (!p->rdev)
1340                         continue;
1341
1342                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1343                                   rdev->data_offset << 9);
1344                 /* as we don't honour merge_bvec_fn, we must
1345                  * never risk violating it, so limit
1346                  * ->max_segments to one lying with a single
1347                  * page, as a one page request is never in
1348                  * violation.
1349                  */
1350                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1351                         blk_queue_max_segments(mddev->queue, 1);
1352                         blk_queue_segment_boundary(mddev->queue,
1353                                                    PAGE_CACHE_SIZE - 1);
1354                 }
1355
1356                 p->head_position = 0;
1357                 rdev->raid_disk = mirror;
1358                 err = 0;
1359                 if (rdev->saved_raid_disk != mirror)
1360                         conf->fullsync = 1;
1361                 rcu_assign_pointer(p->rdev, rdev);
1362                 break;
1363         }
1364
1365         md_integrity_add_rdev(rdev, mddev);
1366         print_conf(conf);
1367         return err;
1368 }
1369
1370 static int raid10_remove_disk(mddev_t *mddev, int number)
1371 {
1372         conf_t *conf = mddev->private;
1373         int err = 0;
1374         mdk_rdev_t *rdev;
1375         mirror_info_t *p = conf->mirrors+ number;
1376
1377         print_conf(conf);
1378         rdev = p->rdev;
1379         if (rdev) {
1380                 if (test_bit(In_sync, &rdev->flags) ||
1381                     atomic_read(&rdev->nr_pending)) {
1382                         err = -EBUSY;
1383                         goto abort;
1384                 }
1385                 /* Only remove faulty devices in recovery
1386                  * is not possible.
1387                  */
1388                 if (!test_bit(Faulty, &rdev->flags) &&
1389                     mddev->recovery_disabled != p->recovery_disabled &&
1390                     enough(conf, -1)) {
1391                         err = -EBUSY;
1392                         goto abort;
1393                 }
1394                 p->rdev = NULL;
1395                 synchronize_rcu();
1396                 if (atomic_read(&rdev->nr_pending)) {
1397                         /* lost the race, try later */
1398                         err = -EBUSY;
1399                         p->rdev = rdev;
1400                         goto abort;
1401                 }
1402                 err = md_integrity_register(mddev);
1403         }
1404 abort:
1405
1406         print_conf(conf);
1407         return err;
1408 }
1409
1410
1411 static void end_sync_read(struct bio *bio, int error)
1412 {
1413         r10bio_t *r10_bio = bio->bi_private;
1414         conf_t *conf = r10_bio->mddev->private;
1415         int d;
1416
1417         d = find_bio_disk(conf, r10_bio, bio, NULL);
1418
1419         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1420                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1421         else {
1422                 atomic_add(r10_bio->sectors,
1423                            &conf->mirrors[d].rdev->corrected_errors);
1424                 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1425                         md_error(r10_bio->mddev,
1426                                  conf->mirrors[d].rdev);
1427         }
1428
1429         /* for reconstruct, we always reschedule after a read.
1430          * for resync, only after all reads
1431          */
1432         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1433         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1434             atomic_dec_and_test(&r10_bio->remaining)) {
1435                 /* we have read all the blocks,
1436                  * do the comparison in process context in raid10d
1437                  */
1438                 reschedule_retry(r10_bio);
1439         }
1440 }
1441
1442 static void end_sync_write(struct bio *bio, int error)
1443 {
1444         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1445         r10bio_t *r10_bio = bio->bi_private;
1446         mddev_t *mddev = r10_bio->mddev;
1447         conf_t *conf = mddev->private;
1448         int d;
1449         sector_t first_bad;
1450         int bad_sectors;
1451         int slot;
1452
1453         d = find_bio_disk(conf, r10_bio, bio, &slot);
1454
1455         if (!uptodate)
1456                 md_error(mddev, conf->mirrors[d].rdev);
1457         else if (is_badblock(conf->mirrors[d].rdev,
1458                              r10_bio->devs[slot].addr,
1459                              r10_bio->sectors,
1460                              &first_bad, &bad_sectors))
1461                 set_bit(R10BIO_MadeGood, &r10_bio->state);
1462
1463         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1464         while (atomic_dec_and_test(&r10_bio->remaining)) {
1465                 if (r10_bio->master_bio == NULL) {
1466                         /* the primary of several recovery bios */
1467                         sector_t s = r10_bio->sectors;
1468                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
1469                                 reschedule_retry(r10_bio);
1470                         else
1471                                 put_buf(r10_bio);
1472                         md_done_sync(mddev, s, 1);
1473                         break;
1474                 } else {
1475                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1476                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
1477                                 reschedule_retry(r10_bio);
1478                         else
1479                                 put_buf(r10_bio);
1480                         r10_bio = r10_bio2;
1481                 }
1482         }
1483 }
1484
1485 /*
1486  * Note: sync and recover and handled very differently for raid10
1487  * This code is for resync.
1488  * For resync, we read through virtual addresses and read all blocks.
1489  * If there is any error, we schedule a write.  The lowest numbered
1490  * drive is authoritative.
1491  * However requests come for physical address, so we need to map.
1492  * For every physical address there are raid_disks/copies virtual addresses,
1493  * which is always are least one, but is not necessarly an integer.
1494  * This means that a physical address can span multiple chunks, so we may
1495  * have to submit multiple io requests for a single sync request.
1496  */
1497 /*
1498  * We check if all blocks are in-sync and only write to blocks that
1499  * aren't in sync
1500  */
1501 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1502 {
1503         conf_t *conf = mddev->private;
1504         int i, first;
1505         struct bio *tbio, *fbio;
1506
1507         atomic_set(&r10_bio->remaining, 1);
1508
1509         /* find the first device with a block */
1510         for (i=0; i<conf->copies; i++)
1511                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1512                         break;
1513
1514         if (i == conf->copies)
1515                 goto done;
1516
1517         first = i;
1518         fbio = r10_bio->devs[i].bio;
1519
1520         /* now find blocks with errors */
1521         for (i=0 ; i < conf->copies ; i++) {
1522                 int  j, d;
1523                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1524
1525                 tbio = r10_bio->devs[i].bio;
1526
1527                 if (tbio->bi_end_io != end_sync_read)
1528                         continue;
1529                 if (i == first)
1530                         continue;
1531                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1532                         /* We know that the bi_io_vec layout is the same for
1533                          * both 'first' and 'i', so we just compare them.
1534                          * All vec entries are PAGE_SIZE;
1535                          */
1536                         for (j = 0; j < vcnt; j++)
1537                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1538                                            page_address(tbio->bi_io_vec[j].bv_page),
1539                                            PAGE_SIZE))
1540                                         break;
1541                         if (j == vcnt)
1542                                 continue;
1543                         mddev->resync_mismatches += r10_bio->sectors;
1544                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1545                                 /* Don't fix anything. */
1546                                 continue;
1547                 }
1548                 /* Ok, we need to write this bio, either to correct an
1549                  * inconsistency or to correct an unreadable block.
1550                  * First we need to fixup bv_offset, bv_len and
1551                  * bi_vecs, as the read request might have corrupted these
1552                  */
1553                 tbio->bi_vcnt = vcnt;
1554                 tbio->bi_size = r10_bio->sectors << 9;
1555                 tbio->bi_idx = 0;
1556                 tbio->bi_phys_segments = 0;
1557                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1558                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1559                 tbio->bi_next = NULL;
1560                 tbio->bi_rw = WRITE;
1561                 tbio->bi_private = r10_bio;
1562                 tbio->bi_sector = r10_bio->devs[i].addr;
1563
1564                 for (j=0; j < vcnt ; j++) {
1565                         tbio->bi_io_vec[j].bv_offset = 0;
1566                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1567
1568                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1569                                page_address(fbio->bi_io_vec[j].bv_page),
1570                                PAGE_SIZE);
1571                 }
1572                 tbio->bi_end_io = end_sync_write;
1573
1574                 d = r10_bio->devs[i].devnum;
1575                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1576                 atomic_inc(&r10_bio->remaining);
1577                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1578
1579                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1580                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1581                 generic_make_request(tbio);
1582         }
1583
1584 done:
1585         if (atomic_dec_and_test(&r10_bio->remaining)) {
1586                 md_done_sync(mddev, r10_bio->sectors, 1);
1587                 put_buf(r10_bio);
1588         }
1589 }
1590
1591 /*
1592  * Now for the recovery code.
1593  * Recovery happens across physical sectors.
1594  * We recover all non-is_sync drives by finding the virtual address of
1595  * each, and then choose a working drive that also has that virt address.
1596  * There is a separate r10_bio for each non-in_sync drive.
1597  * Only the first two slots are in use. The first for reading,
1598  * The second for writing.
1599  *
1600  */
1601
1602 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1603 {
1604         conf_t *conf = mddev->private;
1605         int d;
1606         struct bio *wbio;
1607
1608         /*
1609          * share the pages with the first bio
1610          * and submit the write request
1611          */
1612         wbio = r10_bio->devs[1].bio;
1613         d = r10_bio->devs[1].devnum;
1614
1615         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1616         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1617         if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1618                 generic_make_request(wbio);
1619         else {
1620                 printk(KERN_NOTICE
1621                        "md/raid10:%s: recovery aborted due to read error\n",
1622                        mdname(mddev));
1623                 conf->mirrors[d].recovery_disabled = mddev->recovery_disabled;
1624                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1625                 bio_endio(wbio, 0);
1626         }
1627 }
1628
1629
1630 /*
1631  * Used by fix_read_error() to decay the per rdev read_errors.
1632  * We halve the read error count for every hour that has elapsed
1633  * since the last recorded read error.
1634  *
1635  */
1636 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1637 {
1638         struct timespec cur_time_mon;
1639         unsigned long hours_since_last;
1640         unsigned int read_errors = atomic_read(&rdev->read_errors);
1641
1642         ktime_get_ts(&cur_time_mon);
1643
1644         if (rdev->last_read_error.tv_sec == 0 &&
1645             rdev->last_read_error.tv_nsec == 0) {
1646                 /* first time we've seen a read error */
1647                 rdev->last_read_error = cur_time_mon;
1648                 return;
1649         }
1650
1651         hours_since_last = (cur_time_mon.tv_sec -
1652                             rdev->last_read_error.tv_sec) / 3600;
1653
1654         rdev->last_read_error = cur_time_mon;
1655
1656         /*
1657          * if hours_since_last is > the number of bits in read_errors
1658          * just set read errors to 0. We do this to avoid
1659          * overflowing the shift of read_errors by hours_since_last.
1660          */
1661         if (hours_since_last >= 8 * sizeof(read_errors))
1662                 atomic_set(&rdev->read_errors, 0);
1663         else
1664                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1665 }
1666
1667 /*
1668  * This is a kernel thread which:
1669  *
1670  *      1.      Retries failed read operations on working mirrors.
1671  *      2.      Updates the raid superblock when problems encounter.
1672  *      3.      Performs writes following reads for array synchronising.
1673  */
1674
1675 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1676 {
1677         int sect = 0; /* Offset from r10_bio->sector */
1678         int sectors = r10_bio->sectors;
1679         mdk_rdev_t*rdev;
1680         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1681         int d = r10_bio->devs[r10_bio->read_slot].devnum;
1682
1683         /* still own a reference to this rdev, so it cannot
1684          * have been cleared recently.
1685          */
1686         rdev = conf->mirrors[d].rdev;
1687
1688         if (test_bit(Faulty, &rdev->flags))
1689                 /* drive has already been failed, just ignore any
1690                    more fix_read_error() attempts */
1691                 return;
1692
1693         check_decay_read_errors(mddev, rdev);
1694         atomic_inc(&rdev->read_errors);
1695         if (atomic_read(&rdev->read_errors) > max_read_errors) {
1696                 char b[BDEVNAME_SIZE];
1697                 bdevname(rdev->bdev, b);
1698
1699                 printk(KERN_NOTICE
1700                        "md/raid10:%s: %s: Raid device exceeded "
1701                        "read_error threshold [cur %d:max %d]\n",
1702                        mdname(mddev), b,
1703                        atomic_read(&rdev->read_errors), max_read_errors);
1704                 printk(KERN_NOTICE
1705                        "md/raid10:%s: %s: Failing raid device\n",
1706                        mdname(mddev), b);
1707                 md_error(mddev, conf->mirrors[d].rdev);
1708                 return;
1709         }
1710
1711         while(sectors) {
1712                 int s = sectors;
1713                 int sl = r10_bio->read_slot;
1714                 int success = 0;
1715                 int start;
1716
1717                 if (s > (PAGE_SIZE>>9))
1718                         s = PAGE_SIZE >> 9;
1719
1720                 rcu_read_lock();
1721                 do {
1722                         sector_t first_bad;
1723                         int bad_sectors;
1724
1725                         d = r10_bio->devs[sl].devnum;
1726                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1727                         if (rdev &&
1728                             test_bit(In_sync, &rdev->flags) &&
1729                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1730                                         &first_bad, &bad_sectors) == 0) {
1731                                 atomic_inc(&rdev->nr_pending);
1732                                 rcu_read_unlock();
1733                                 success = sync_page_io(rdev,
1734                                                        r10_bio->devs[sl].addr +
1735                                                        sect,
1736                                                        s<<9,
1737                                                        conf->tmppage, READ, false);
1738                                 rdev_dec_pending(rdev, mddev);
1739                                 rcu_read_lock();
1740                                 if (success)
1741                                         break;
1742                         }
1743                         sl++;
1744                         if (sl == conf->copies)
1745                                 sl = 0;
1746                 } while (!success && sl != r10_bio->read_slot);
1747                 rcu_read_unlock();
1748
1749                 if (!success) {
1750                         /* Cannot read from anywhere -- bye bye array */
1751                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1752                         md_error(mddev, conf->mirrors[dn].rdev);
1753                         break;
1754                 }
1755
1756                 start = sl;
1757                 /* write it back and re-read */
1758                 rcu_read_lock();
1759                 while (sl != r10_bio->read_slot) {
1760                         char b[BDEVNAME_SIZE];
1761
1762                         if (sl==0)
1763                                 sl = conf->copies;
1764                         sl--;
1765                         d = r10_bio->devs[sl].devnum;
1766                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1767                         if (!rdev ||
1768                             !test_bit(In_sync, &rdev->flags))
1769                                 continue;
1770
1771                         atomic_inc(&rdev->nr_pending);
1772                         rcu_read_unlock();
1773                         if (sync_page_io(rdev,
1774                                          r10_bio->devs[sl].addr +
1775                                          sect,
1776                                          s<<9, conf->tmppage, WRITE, false)
1777                             == 0) {
1778                                 /* Well, this device is dead */
1779                                 printk(KERN_NOTICE
1780                                        "md/raid10:%s: read correction "
1781                                        "write failed"
1782                                        " (%d sectors at %llu on %s)\n",
1783                                        mdname(mddev), s,
1784                                        (unsigned long long)(
1785                                                sect + rdev->data_offset),
1786                                        bdevname(rdev->bdev, b));
1787                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1788                                        "drive\n",
1789                                        mdname(mddev),
1790                                        bdevname(rdev->bdev, b));
1791                                 md_error(mddev, rdev);
1792                         }
1793                         rdev_dec_pending(rdev, mddev);
1794                         rcu_read_lock();
1795                 }
1796                 sl = start;
1797                 while (sl != r10_bio->read_slot) {
1798                         char b[BDEVNAME_SIZE];
1799
1800                         if (sl==0)
1801                                 sl = conf->copies;
1802                         sl--;
1803                         d = r10_bio->devs[sl].devnum;
1804                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1805                         if (!rdev ||
1806                             !test_bit(In_sync, &rdev->flags))
1807                                 continue;
1808
1809                         atomic_inc(&rdev->nr_pending);
1810                         rcu_read_unlock();
1811                         if (sync_page_io(rdev,
1812                                          r10_bio->devs[sl].addr +
1813                                          sect,
1814                                          s<<9, conf->tmppage,
1815                                          READ, false) == 0) {
1816                                 /* Well, this device is dead */
1817                                 printk(KERN_NOTICE
1818                                        "md/raid10:%s: unable to read back "
1819                                        "corrected sectors"
1820                                        " (%d sectors at %llu on %s)\n",
1821                                        mdname(mddev), s,
1822                                        (unsigned long long)(
1823                                                sect + rdev->data_offset),
1824                                        bdevname(rdev->bdev, b));
1825                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1826                                        "drive\n",
1827                                        mdname(mddev),
1828                                        bdevname(rdev->bdev, b));
1829
1830                                 md_error(mddev, rdev);
1831                         } else {
1832                                 printk(KERN_INFO
1833                                        "md/raid10:%s: read error corrected"
1834                                        " (%d sectors at %llu on %s)\n",
1835                                        mdname(mddev), s,
1836                                        (unsigned long long)(
1837                                                sect + rdev->data_offset),
1838                                        bdevname(rdev->bdev, b));
1839                                 atomic_add(s, &rdev->corrected_errors);
1840                         }
1841
1842                         rdev_dec_pending(rdev, mddev);
1843                         rcu_read_lock();
1844                 }
1845                 rcu_read_unlock();
1846
1847                 sectors -= s;
1848                 sect += s;
1849         }
1850 }
1851
1852 static void bi_complete(struct bio *bio, int error)
1853 {
1854         complete((struct completion *)bio->bi_private);
1855 }
1856
1857 static int submit_bio_wait(int rw, struct bio *bio)
1858 {
1859         struct completion event;
1860         rw |= REQ_SYNC;
1861
1862         init_completion(&event);
1863         bio->bi_private = &event;
1864         bio->bi_end_io = bi_complete;
1865         submit_bio(rw, bio);
1866         wait_for_completion(&event);
1867
1868         return test_bit(BIO_UPTODATE, &bio->bi_flags);
1869 }
1870
1871 static int narrow_write_error(r10bio_t *r10_bio, int i)
1872 {
1873         struct bio *bio = r10_bio->master_bio;
1874         mddev_t *mddev = r10_bio->mddev;
1875         conf_t *conf = mddev->private;
1876         mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
1877         /* bio has the data to be written to slot 'i' where
1878          * we just recently had a write error.
1879          * We repeatedly clone the bio and trim down to one block,
1880          * then try the write.  Where the write fails we record
1881          * a bad block.
1882          * It is conceivable that the bio doesn't exactly align with
1883          * blocks.  We must handle this.
1884          *
1885          * We currently own a reference to the rdev.
1886          */
1887
1888         int block_sectors;
1889         sector_t sector;
1890         int sectors;
1891         int sect_to_write = r10_bio->sectors;
1892         int ok = 1;
1893
1894         if (rdev->badblocks.shift < 0)
1895                 return 0;
1896
1897         block_sectors = 1 << rdev->badblocks.shift;
1898         sector = r10_bio->sector;
1899         sectors = ((r10_bio->sector + block_sectors)
1900                    & ~(sector_t)(block_sectors - 1))
1901                 - sector;
1902
1903         while (sect_to_write) {
1904                 struct bio *wbio;
1905                 if (sectors > sect_to_write)
1906                         sectors = sect_to_write;
1907                 /* Write at 'sector' for 'sectors' */
1908                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1909                 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
1910                 wbio->bi_sector = (r10_bio->devs[i].addr+
1911                                    rdev->data_offset+
1912                                    (sector - r10_bio->sector));
1913                 wbio->bi_bdev = rdev->bdev;
1914                 if (submit_bio_wait(WRITE, wbio) == 0)
1915                         /* Failure! */
1916                         ok = rdev_set_badblocks(rdev, sector,
1917                                                 sectors, 0)
1918                                 && ok;
1919
1920                 bio_put(wbio);
1921                 sect_to_write -= sectors;
1922                 sector += sectors;
1923                 sectors = block_sectors;
1924         }
1925         return ok;
1926 }
1927
1928 static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
1929 {
1930         int slot = r10_bio->read_slot;
1931         int mirror = r10_bio->devs[slot].devnum;
1932         struct bio *bio;
1933         conf_t *conf = mddev->private;
1934         mdk_rdev_t *rdev;
1935         char b[BDEVNAME_SIZE];
1936         unsigned long do_sync;
1937         int max_sectors;
1938
1939         /* we got a read error. Maybe the drive is bad.  Maybe just
1940          * the block and we can fix it.
1941          * We freeze all other IO, and try reading the block from
1942          * other devices.  When we find one, we re-write
1943          * and check it that fixes the read error.
1944          * This is all done synchronously while the array is
1945          * frozen.
1946          */
1947         if (mddev->ro == 0) {
1948                 freeze_array(conf);
1949                 fix_read_error(conf, mddev, r10_bio);
1950                 unfreeze_array(conf);
1951         }
1952         rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1953
1954         bio = r10_bio->devs[slot].bio;
1955         bdevname(bio->bi_bdev, b);
1956         r10_bio->devs[slot].bio =
1957                 mddev->ro ? IO_BLOCKED : NULL;
1958 read_more:
1959         mirror = read_balance(conf, r10_bio, &max_sectors);
1960         if (mirror == -1) {
1961                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1962                        " read error for block %llu\n",
1963                        mdname(mddev), b,
1964                        (unsigned long long)r10_bio->sector);
1965                 raid_end_bio_io(r10_bio);
1966                 bio_put(bio);
1967                 return;
1968         }
1969
1970         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1971         if (bio)
1972                 bio_put(bio);
1973         slot = r10_bio->read_slot;
1974         rdev = conf->mirrors[mirror].rdev;
1975         printk_ratelimited(
1976                 KERN_ERR
1977                 "md/raid10:%s: %s: redirecting"
1978                 "sector %llu to another mirror\n",
1979                 mdname(mddev),
1980                 bdevname(rdev->bdev, b),
1981                 (unsigned long long)r10_bio->sector);
1982         bio = bio_clone_mddev(r10_bio->master_bio,
1983                               GFP_NOIO, mddev);
1984         md_trim_bio(bio,
1985                     r10_bio->sector - bio->bi_sector,
1986                     max_sectors);
1987         r10_bio->devs[slot].bio = bio;
1988         bio->bi_sector = r10_bio->devs[slot].addr
1989                 + rdev->data_offset;
1990         bio->bi_bdev = rdev->bdev;
1991         bio->bi_rw = READ | do_sync;
1992         bio->bi_private = r10_bio;
1993         bio->bi_end_io = raid10_end_read_request;
1994         if (max_sectors < r10_bio->sectors) {
1995                 /* Drat - have to split this up more */
1996                 struct bio *mbio = r10_bio->master_bio;
1997                 int sectors_handled =
1998                         r10_bio->sector + max_sectors
1999                         - mbio->bi_sector;
2000                 r10_bio->sectors = max_sectors;
2001                 spin_lock_irq(&conf->device_lock);
2002                 if (mbio->bi_phys_segments == 0)
2003                         mbio->bi_phys_segments = 2;
2004                 else
2005                         mbio->bi_phys_segments++;
2006                 spin_unlock_irq(&conf->device_lock);
2007                 generic_make_request(bio);
2008                 bio = NULL;
2009
2010                 r10_bio = mempool_alloc(conf->r10bio_pool,
2011                                         GFP_NOIO);
2012                 r10_bio->master_bio = mbio;
2013                 r10_bio->sectors = (mbio->bi_size >> 9)
2014                         - sectors_handled;
2015                 r10_bio->state = 0;
2016                 set_bit(R10BIO_ReadError,
2017                         &r10_bio->state);
2018                 r10_bio->mddev = mddev;
2019                 r10_bio->sector = mbio->bi_sector
2020                         + sectors_handled;
2021
2022                 goto read_more;
2023         } else
2024                 generic_make_request(bio);
2025 }
2026
2027 static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio)
2028 {
2029         /* Some sort of write request has finished and it
2030          * succeeded in writing where we thought there was a
2031          * bad block.  So forget the bad block.
2032          */
2033         int m;
2034         mdk_rdev_t *rdev;
2035
2036         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2037             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2038                 for (m = 0; m < conf->copies; m++)
2039                         if (r10_bio->devs[m].bio &&
2040                             test_bit(BIO_UPTODATE,
2041                                      &r10_bio->devs[m].bio->bi_flags)) {
2042                                 int dev = r10_bio->devs[m].devnum;
2043                                 rdev = conf->mirrors[dev].rdev;
2044                                 rdev_clear_badblocks(
2045                                         rdev,
2046                                         r10_bio->devs[m].addr,
2047                                         r10_bio->sectors);
2048                         }
2049                 put_buf(r10_bio);
2050         } else {
2051                 for (m = 0; m < conf->copies; m++) {
2052                         int dev = r10_bio->devs[m].devnum;
2053                         struct bio *bio = r10_bio->devs[m].bio;
2054                         rdev = conf->mirrors[dev].rdev;
2055                         if (bio == IO_MADE_GOOD) {
2056                                 rdev_clear_badblocks(
2057                                         rdev,
2058                                         r10_bio->devs[m].addr,
2059                                         r10_bio->sectors);
2060                                 rdev_dec_pending(rdev, conf->mddev);
2061                         } else if (bio != NULL &&
2062                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2063                                 if (!narrow_write_error(r10_bio, m)) {
2064                                         md_error(conf->mddev, rdev);
2065                                         set_bit(R10BIO_Degraded,
2066                                                 &r10_bio->state);
2067                                 }
2068                                 rdev_dec_pending(rdev, conf->mddev);
2069                         }
2070                 }
2071                 if (test_bit(R10BIO_WriteError,
2072                              &r10_bio->state))
2073                         close_write(r10_bio);
2074                 raid_end_bio_io(r10_bio);
2075         }
2076 }
2077
2078 static void raid10d(mddev_t *mddev)
2079 {
2080         r10bio_t *r10_bio;
2081         unsigned long flags;
2082         conf_t *conf = mddev->private;
2083         struct list_head *head = &conf->retry_list;
2084         struct blk_plug plug;
2085
2086         md_check_recovery(mddev);
2087
2088         blk_start_plug(&plug);
2089         for (;;) {
2090
2091                 flush_pending_writes(conf);
2092
2093                 spin_lock_irqsave(&conf->device_lock, flags);
2094                 if (list_empty(head)) {
2095                         spin_unlock_irqrestore(&conf->device_lock, flags);
2096                         break;
2097                 }
2098                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
2099                 list_del(head->prev);
2100                 conf->nr_queued--;
2101                 spin_unlock_irqrestore(&conf->device_lock, flags);
2102
2103                 mddev = r10_bio->mddev;
2104                 conf = mddev->private;
2105                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2106                     test_bit(R10BIO_WriteError, &r10_bio->state))
2107                         handle_write_completed(conf, r10_bio);
2108                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2109                         sync_request_write(mddev, r10_bio);
2110                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2111                         recovery_request_write(mddev, r10_bio);
2112                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2113                         handle_read_error(mddev, r10_bio);
2114                 else {
2115                         /* just a partial read to be scheduled from a
2116                          * separate context
2117                          */
2118                         int slot = r10_bio->read_slot;
2119                         generic_make_request(r10_bio->devs[slot].bio);
2120                 }
2121
2122                 cond_resched();
2123                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2124                         md_check_recovery(mddev);
2125         }
2126         blk_finish_plug(&plug);
2127 }
2128
2129
2130 static int init_resync(conf_t *conf)
2131 {
2132         int buffs;
2133
2134         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2135         BUG_ON(conf->r10buf_pool);
2136         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2137         if (!conf->r10buf_pool)
2138                 return -ENOMEM;
2139         conf->next_resync = 0;
2140         return 0;
2141 }
2142
2143 /*
2144  * perform a "sync" on one "block"
2145  *
2146  * We need to make sure that no normal I/O request - particularly write
2147  * requests - conflict with active sync requests.
2148  *
2149  * This is achieved by tracking pending requests and a 'barrier' concept
2150  * that can be installed to exclude normal IO requests.
2151  *
2152  * Resync and recovery are handled very differently.
2153  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2154  *
2155  * For resync, we iterate over virtual addresses, read all copies,
2156  * and update if there are differences.  If only one copy is live,
2157  * skip it.
2158  * For recovery, we iterate over physical addresses, read a good
2159  * value for each non-in_sync drive, and over-write.
2160  *
2161  * So, for recovery we may have several outstanding complex requests for a
2162  * given address, one for each out-of-sync device.  We model this by allocating
2163  * a number of r10_bio structures, one for each out-of-sync device.
2164  * As we setup these structures, we collect all bio's together into a list
2165  * which we then process collectively to add pages, and then process again
2166  * to pass to generic_make_request.
2167  *
2168  * The r10_bio structures are linked using a borrowed master_bio pointer.
2169  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2170  * has its remaining count decremented to 0, the whole complex operation
2171  * is complete.
2172  *
2173  */
2174
2175 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
2176                              int *skipped, int go_faster)
2177 {
2178         conf_t *conf = mddev->private;
2179         r10bio_t *r10_bio;
2180         struct bio *biolist = NULL, *bio;
2181         sector_t max_sector, nr_sectors;
2182         int i;
2183         int max_sync;
2184         sector_t sync_blocks;
2185         sector_t sectors_skipped = 0;
2186         int chunks_skipped = 0;
2187
2188         if (!conf->r10buf_pool)
2189                 if (init_resync(conf))
2190                         return 0;
2191
2192  skipped:
2193         max_sector = mddev->dev_sectors;
2194         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2195                 max_sector = mddev->resync_max_sectors;
2196         if (sector_nr >= max_sector) {
2197                 /* If we aborted, we need to abort the
2198                  * sync on the 'current' bitmap chucks (there can
2199                  * be several when recovering multiple devices).
2200                  * as we may have started syncing it but not finished.
2201                  * We can find the current address in
2202                  * mddev->curr_resync, but for recovery,
2203                  * we need to convert that to several
2204                  * virtual addresses.
2205                  */
2206                 if (mddev->curr_resync < max_sector) { /* aborted */
2207                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2208                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2209                                                 &sync_blocks, 1);
2210                         else for (i=0; i<conf->raid_disks; i++) {
2211                                 sector_t sect =
2212                                         raid10_find_virt(conf, mddev->curr_resync, i);
2213                                 bitmap_end_sync(mddev->bitmap, sect,
2214                                                 &sync_blocks, 1);
2215                         }
2216                 } else /* completed sync */
2217                         conf->fullsync = 0;
2218
2219                 bitmap_close_sync(mddev->bitmap);
2220                 close_sync(conf);
2221                 *skipped = 1;
2222                 return sectors_skipped;
2223         }
2224         if (chunks_skipped >= conf->raid_disks) {
2225                 /* if there has been nothing to do on any drive,
2226                  * then there is nothing to do at all..
2227                  */
2228                 *skipped = 1;
2229                 return (max_sector - sector_nr) + sectors_skipped;
2230         }
2231
2232         if (max_sector > mddev->resync_max)
2233                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2234
2235         /* make sure whole request will fit in a chunk - if chunks
2236          * are meaningful
2237          */
2238         if (conf->near_copies < conf->raid_disks &&
2239             max_sector > (sector_nr | conf->chunk_mask))
2240                 max_sector = (sector_nr | conf->chunk_mask) + 1;
2241         /*
2242          * If there is non-resync activity waiting for us then
2243          * put in a delay to throttle resync.
2244          */
2245         if (!go_faster && conf->nr_waiting)
2246                 msleep_interruptible(1000);
2247
2248         /* Again, very different code for resync and recovery.
2249          * Both must result in an r10bio with a list of bios that
2250          * have bi_end_io, bi_sector, bi_bdev set,
2251          * and bi_private set to the r10bio.
2252          * For recovery, we may actually create several r10bios
2253          * with 2 bios in each, that correspond to the bios in the main one.
2254          * In this case, the subordinate r10bios link back through a
2255          * borrowed master_bio pointer, and the counter in the master
2256          * includes a ref from each subordinate.
2257          */
2258         /* First, we decide what to do and set ->bi_end_io
2259          * To end_sync_read if we want to read, and
2260          * end_sync_write if we will want to write.
2261          */
2262
2263         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2264         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2265                 /* recovery... the complicated one */
2266                 int j;
2267                 r10_bio = NULL;
2268
2269                 for (i=0 ; i<conf->raid_disks; i++) {
2270                         int still_degraded;
2271                         r10bio_t *rb2;
2272                         sector_t sect;
2273                         int must_sync;
2274                         int any_working;
2275
2276                         if (conf->mirrors[i].rdev == NULL ||
2277                             test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 
2278                                 continue;
2279
2280                         still_degraded = 0;
2281                         /* want to reconstruct this device */
2282                         rb2 = r10_bio;
2283                         sect = raid10_find_virt(conf, sector_nr, i);
2284                         /* Unless we are doing a full sync, we only need
2285                          * to recover the block if it is set in the bitmap
2286                          */
2287                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2288                                                       &sync_blocks, 1);
2289                         if (sync_blocks < max_sync)
2290                                 max_sync = sync_blocks;
2291                         if (!must_sync &&
2292                             !conf->fullsync) {
2293                                 /* yep, skip the sync_blocks here, but don't assume
2294                                  * that there will never be anything to do here
2295                                  */
2296                                 chunks_skipped = -1;
2297                                 continue;
2298                         }
2299
2300                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2301                         raise_barrier(conf, rb2 != NULL);
2302                         atomic_set(&r10_bio->remaining, 0);
2303
2304                         r10_bio->master_bio = (struct bio*)rb2;
2305                         if (rb2)
2306                                 atomic_inc(&rb2->remaining);
2307                         r10_bio->mddev = mddev;
2308                         set_bit(R10BIO_IsRecover, &r10_bio->state);
2309                         r10_bio->sector = sect;
2310
2311                         raid10_find_phys(conf, r10_bio);
2312
2313                         /* Need to check if the array will still be
2314                          * degraded
2315                          */
2316                         for (j=0; j<conf->raid_disks; j++)
2317                                 if (conf->mirrors[j].rdev == NULL ||
2318                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2319                                         still_degraded = 1;
2320                                         break;
2321                                 }
2322
2323                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2324                                                       &sync_blocks, still_degraded);
2325
2326                         any_working = 0;
2327                         for (j=0; j<conf->copies;j++) {
2328                                 int k;
2329                                 int d = r10_bio->devs[j].devnum;
2330                                 mdk_rdev_t *rdev;
2331                                 sector_t sector, first_bad;
2332                                 int bad_sectors;
2333                                 if (!conf->mirrors[d].rdev ||
2334                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2335                                         continue;
2336                                 /* This is where we read from */
2337                                 any_working = 1;
2338                                 rdev = conf->mirrors[d].rdev;
2339                                 sector = r10_bio->devs[j].addr;
2340
2341                                 if (is_badblock(rdev, sector, max_sync,
2342                                                 &first_bad, &bad_sectors)) {
2343                                         if (first_bad > sector)
2344                                                 max_sync = first_bad - sector;
2345                                         else {
2346                                                 bad_sectors -= (sector
2347                                                                 - first_bad);
2348                                                 if (max_sync > bad_sectors)
2349                                                         max_sync = bad_sectors;
2350                                                 continue;
2351                                         }
2352                                 }
2353                                 bio = r10_bio->devs[0].bio;
2354                                 bio->bi_next = biolist;
2355                                 biolist = bio;
2356                                 bio->bi_private = r10_bio;
2357                                 bio->bi_end_io = end_sync_read;
2358                                 bio->bi_rw = READ;
2359                                 bio->bi_sector = r10_bio->devs[j].addr +
2360                                         conf->mirrors[d].rdev->data_offset;
2361                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2362                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2363                                 atomic_inc(&r10_bio->remaining);
2364                                 /* and we write to 'i' */
2365
2366                                 for (k=0; k<conf->copies; k++)
2367                                         if (r10_bio->devs[k].devnum == i)
2368                                                 break;
2369                                 BUG_ON(k == conf->copies);
2370                                 bio = r10_bio->devs[1].bio;
2371                                 bio->bi_next = biolist;
2372                                 biolist = bio;
2373                                 bio->bi_private = r10_bio;
2374                                 bio->bi_end_io = end_sync_write;
2375                                 bio->bi_rw = WRITE;
2376                                 bio->bi_sector = r10_bio->devs[k].addr +
2377                                         conf->mirrors[i].rdev->data_offset;
2378                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2379
2380                                 r10_bio->devs[0].devnum = d;
2381                                 r10_bio->devs[1].devnum = i;
2382
2383                                 break;
2384                         }
2385                         if (j == conf->copies) {
2386                                 /* Cannot recover, so abort the recovery or
2387                                  * record a bad block */
2388                                 put_buf(r10_bio);
2389                                 if (rb2)
2390                                         atomic_dec(&rb2->remaining);
2391                                 r10_bio = rb2;
2392                                 if (any_working) {
2393                                         /* problem is that there are bad blocks
2394                                          * on other device(s)
2395                                          */
2396                                         int k;
2397                                         for (k = 0; k < conf->copies; k++)
2398                                                 if (r10_bio->devs[k].devnum == i)
2399                                                         break;
2400                                         if (!rdev_set_badblocks(
2401                                                     conf->mirrors[i].rdev,
2402                                                     r10_bio->devs[k].addr,
2403                                                     max_sync, 0))
2404                                                 any_working = 0;
2405                                 }
2406                                 if (!any_working)  {
2407                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
2408                                                               &mddev->recovery))
2409                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
2410                                                        "working devices for recovery.\n",
2411                                                        mdname(mddev));
2412                                         conf->mirrors[i].recovery_disabled
2413                                                 = mddev->recovery_disabled;
2414                                 }
2415                                 break;
2416                         }
2417                 }
2418                 if (biolist == NULL) {
2419                         while (r10_bio) {
2420                                 r10bio_t *rb2 = r10_bio;
2421                                 r10_bio = (r10bio_t*) rb2->master_bio;
2422                                 rb2->master_bio = NULL;
2423                                 put_buf(rb2);
2424                         }
2425                         goto giveup;
2426                 }
2427         } else {
2428                 /* resync. Schedule a read for every block at this virt offset */
2429                 int count = 0;
2430
2431                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2432
2433                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2434                                        &sync_blocks, mddev->degraded) &&
2435                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2436                                                  &mddev->recovery)) {
2437                         /* We can skip this block */
2438                         *skipped = 1;
2439                         return sync_blocks + sectors_skipped;
2440                 }
2441                 if (sync_blocks < max_sync)
2442                         max_sync = sync_blocks;
2443                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2444
2445                 r10_bio->mddev = mddev;
2446                 atomic_set(&r10_bio->remaining, 0);
2447                 raise_barrier(conf, 0);
2448                 conf->next_resync = sector_nr;
2449
2450                 r10_bio->master_bio = NULL;
2451                 r10_bio->sector = sector_nr;
2452                 set_bit(R10BIO_IsSync, &r10_bio->state);
2453                 raid10_find_phys(conf, r10_bio);
2454                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2455
2456                 for (i=0; i<conf->copies; i++) {
2457                         int d = r10_bio->devs[i].devnum;
2458                         sector_t first_bad, sector;
2459                         int bad_sectors;
2460
2461                         bio = r10_bio->devs[i].bio;
2462                         bio->bi_end_io = NULL;
2463                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
2464                         if (conf->mirrors[d].rdev == NULL ||
2465                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2466                                 continue;
2467                         sector = r10_bio->devs[i].addr;
2468                         if (is_badblock(conf->mirrors[d].rdev,
2469                                         sector, max_sync,
2470                                         &first_bad, &bad_sectors)) {
2471                                 if (first_bad > sector)
2472                                         max_sync = first_bad - sector;
2473                                 else {
2474                                         bad_sectors -= (sector - first_bad);
2475                                         if (max_sync > bad_sectors)
2476                                                 max_sync = max_sync;
2477                                         continue;
2478                                 }
2479                         }
2480                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2481                         atomic_inc(&r10_bio->remaining);
2482                         bio->bi_next = biolist;
2483                         biolist = bio;
2484                         bio->bi_private = r10_bio;
2485                         bio->bi_end_io = end_sync_read;
2486                         bio->bi_rw = READ;
2487                         bio->bi_sector = sector +
2488                                 conf->mirrors[d].rdev->data_offset;
2489                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2490                         count++;
2491                 }
2492
2493                 if (count < 2) {
2494                         for (i=0; i<conf->copies; i++) {
2495                                 int d = r10_bio->devs[i].devnum;
2496                                 if (r10_bio->devs[i].bio->bi_end_io)
2497                                         rdev_dec_pending(conf->mirrors[d].rdev,
2498                                                          mddev);
2499                         }
2500                         put_buf(r10_bio);
2501                         biolist = NULL;
2502                         goto giveup;
2503                 }
2504         }
2505
2506         for (bio = biolist; bio ; bio=bio->bi_next) {
2507
2508                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2509                 if (bio->bi_end_io)
2510                         bio->bi_flags |= 1 << BIO_UPTODATE;
2511                 bio->bi_vcnt = 0;
2512                 bio->bi_idx = 0;
2513                 bio->bi_phys_segments = 0;
2514                 bio->bi_size = 0;
2515         }
2516
2517         nr_sectors = 0;
2518         if (sector_nr + max_sync < max_sector)
2519                 max_sector = sector_nr + max_sync;
2520         do {
2521                 struct page *page;
2522                 int len = PAGE_SIZE;
2523                 if (sector_nr + (len>>9) > max_sector)
2524                         len = (max_sector - sector_nr) << 9;
2525                 if (len == 0)
2526                         break;
2527                 for (bio= biolist ; bio ; bio=bio->bi_next) {
2528                         struct bio *bio2;
2529                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2530                         if (bio_add_page(bio, page, len, 0))
2531                                 continue;
2532
2533                         /* stop here */
2534                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2535                         for (bio2 = biolist;
2536                              bio2 && bio2 != bio;
2537                              bio2 = bio2->bi_next) {
2538                                 /* remove last page from this bio */
2539                                 bio2->bi_vcnt--;
2540                                 bio2->bi_size -= len;
2541                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2542                         }
2543                         goto bio_full;
2544                 }
2545                 nr_sectors += len>>9;
2546                 sector_nr += len>>9;
2547         } while (biolist->bi_vcnt < RESYNC_PAGES);
2548  bio_full:
2549         r10_bio->sectors = nr_sectors;
2550
2551         while (biolist) {
2552                 bio = biolist;
2553                 biolist = biolist->bi_next;
2554
2555                 bio->bi_next = NULL;
2556                 r10_bio = bio->bi_private;
2557                 r10_bio->sectors = nr_sectors;
2558
2559                 if (bio->bi_end_io == end_sync_read) {
2560                         md_sync_acct(bio->bi_bdev, nr_sectors);
2561                         generic_make_request(bio);
2562                 }
2563         }
2564
2565         if (sectors_skipped)
2566                 /* pretend they weren't skipped, it makes
2567                  * no important difference in this case
2568                  */
2569                 md_done_sync(mddev, sectors_skipped, 1);
2570
2571         return sectors_skipped + nr_sectors;
2572  giveup:
2573         /* There is nowhere to write, so all non-sync
2574          * drives must be failed or in resync, all drives
2575          * have a bad block, so try the next chunk...
2576          */
2577         if (sector_nr + max_sync < max_sector)
2578                 max_sector = sector_nr + max_sync;
2579
2580         sectors_skipped += (max_sector - sector_nr);
2581         chunks_skipped ++;
2582         sector_nr = max_sector;
2583         goto skipped;
2584 }
2585
2586 static sector_t
2587 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2588 {
2589         sector_t size;
2590         conf_t *conf = mddev->private;
2591
2592         if (!raid_disks)
2593                 raid_disks = conf->raid_disks;
2594         if (!sectors)
2595                 sectors = conf->dev_sectors;
2596
2597         size = sectors >> conf->chunk_shift;
2598         sector_div(size, conf->far_copies);
2599         size = size * raid_disks;
2600         sector_div(size, conf->near_copies);
2601
2602         return size << conf->chunk_shift;
2603 }
2604
2605
2606 static conf_t *setup_conf(mddev_t *mddev)
2607 {
2608         conf_t *conf = NULL;
2609         int nc, fc, fo;
2610         sector_t stride, size;
2611         int err = -EINVAL;
2612
2613         if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2614             !is_power_of_2(mddev->new_chunk_sectors)) {
2615                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2616                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2617                        mdname(mddev), PAGE_SIZE);
2618                 goto out;
2619         }
2620
2621         nc = mddev->new_layout & 255;
2622         fc = (mddev->new_layout >> 8) & 255;
2623         fo = mddev->new_layout & (1<<16);
2624
2625         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2626             (mddev->new_layout >> 17)) {
2627                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2628                        mdname(mddev), mddev->new_layout);
2629                 goto out;
2630         }
2631
2632         err = -ENOMEM;
2633         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2634         if (!conf)
2635                 goto out;
2636
2637         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2638                                 GFP_KERNEL);
2639         if (!conf->mirrors)
2640                 goto out;
2641
2642         conf->tmppage = alloc_page(GFP_KERNEL);
2643         if (!conf->tmppage)
2644                 goto out;
2645
2646
2647         conf->raid_disks = mddev->raid_disks;
2648         conf->near_copies = nc;
2649         conf->far_copies = fc;
2650         conf->copies = nc*fc;
2651         conf->far_offset = fo;
2652         conf->chunk_mask = mddev->new_chunk_sectors - 1;
2653         conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2654
2655         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2656                                            r10bio_pool_free, conf);
2657         if (!conf->r10bio_pool)
2658                 goto out;
2659
2660         size = mddev->dev_sectors >> conf->chunk_shift;
2661         sector_div(size, fc);
2662         size = size * conf->raid_disks;
2663         sector_div(size, nc);
2664         /* 'size' is now the number of chunks in the array */
2665         /* calculate "used chunks per device" in 'stride' */
2666         stride = size * conf->copies;
2667
2668         /* We need to round up when dividing by raid_disks to
2669          * get the stride size.
2670          */
2671         stride += conf->raid_disks - 1;
2672         sector_div(stride, conf->raid_disks);
2673
2674         conf->dev_sectors = stride << conf->chunk_shift;
2675
2676         if (fo)
2677                 stride = 1;
2678         else
2679                 sector_div(stride, fc);
2680         conf->stride = stride << conf->chunk_shift;
2681
2682
2683         spin_lock_init(&conf->device_lock);
2684         INIT_LIST_HEAD(&conf->retry_list);
2685
2686         spin_lock_init(&conf->resync_lock);
2687         init_waitqueue_head(&conf->wait_barrier);
2688
2689         conf->thread = md_register_thread(raid10d, mddev, NULL);
2690         if (!conf->thread)
2691                 goto out;
2692
2693         conf->mddev = mddev;
2694         return conf;
2695
2696  out:
2697         printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2698                mdname(mddev));
2699         if (conf) {
2700                 if (conf->r10bio_pool)
2701                         mempool_destroy(conf->r10bio_pool);
2702                 kfree(conf->mirrors);
2703                 safe_put_page(conf->tmppage);
2704                 kfree(conf);
2705         }
2706         return ERR_PTR(err);
2707 }
2708
2709 static int run(mddev_t *mddev)
2710 {
2711         conf_t *conf;
2712         int i, disk_idx, chunk_size;
2713         mirror_info_t *disk;
2714         mdk_rdev_t *rdev;
2715         sector_t size;
2716
2717         /*
2718          * copy the already verified devices into our private RAID10
2719          * bookkeeping area. [whatever we allocate in run(),
2720          * should be freed in stop()]
2721          */
2722
2723         if (mddev->private == NULL) {
2724                 conf = setup_conf(mddev);
2725                 if (IS_ERR(conf))
2726                         return PTR_ERR(conf);
2727                 mddev->private = conf;
2728         }
2729         conf = mddev->private;
2730         if (!conf)
2731                 goto out;
2732
2733         mddev->thread = conf->thread;
2734         conf->thread = NULL;
2735
2736         chunk_size = mddev->chunk_sectors << 9;
2737         blk_queue_io_min(mddev->queue, chunk_size);
2738         if (conf->raid_disks % conf->near_copies)
2739                 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2740         else
2741                 blk_queue_io_opt(mddev->queue, chunk_size *
2742                                  (conf->raid_disks / conf->near_copies));
2743
2744         list_for_each_entry(rdev, &mddev->disks, same_set) {
2745
2746                 disk_idx = rdev->raid_disk;
2747                 if (disk_idx >= conf->raid_disks
2748                     || disk_idx < 0)
2749                         continue;
2750                 disk = conf->mirrors + disk_idx;
2751
2752                 disk->rdev = rdev;
2753                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2754                                   rdev->data_offset << 9);
2755                 /* as we don't honour merge_bvec_fn, we must never risk
2756                  * violating it, so limit max_segments to 1 lying
2757                  * within a single page.
2758                  */
2759                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2760                         blk_queue_max_segments(mddev->queue, 1);
2761                         blk_queue_segment_boundary(mddev->queue,
2762                                                    PAGE_CACHE_SIZE - 1);
2763                 }
2764
2765                 disk->head_position = 0;
2766         }
2767         /* need to check that every block has at least one working mirror */
2768         if (!enough(conf, -1)) {
2769                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2770                        mdname(mddev));
2771                 goto out_free_conf;
2772         }
2773
2774         mddev->degraded = 0;
2775         for (i = 0; i < conf->raid_disks; i++) {
2776
2777                 disk = conf->mirrors + i;
2778
2779                 if (!disk->rdev ||
2780                     !test_bit(In_sync, &disk->rdev->flags)) {
2781                         disk->head_position = 0;
2782                         mddev->degraded++;
2783                         if (disk->rdev)
2784                                 conf->fullsync = 1;
2785                 }
2786         }
2787
2788         if (mddev->recovery_cp != MaxSector)
2789                 printk(KERN_NOTICE "md/raid10:%s: not clean"
2790                        " -- starting background reconstruction\n",
2791                        mdname(mddev));
2792         printk(KERN_INFO
2793                 "md/raid10:%s: active with %d out of %d devices\n",
2794                 mdname(mddev), conf->raid_disks - mddev->degraded,
2795                 conf->raid_disks);
2796         /*
2797          * Ok, everything is just fine now
2798          */
2799         mddev->dev_sectors = conf->dev_sectors;
2800         size = raid10_size(mddev, 0, 0);
2801         md_set_array_sectors(mddev, size);
2802         mddev->resync_max_sectors = size;
2803
2804         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2805         mddev->queue->backing_dev_info.congested_data = mddev;
2806
2807         /* Calculate max read-ahead size.
2808          * We need to readahead at least twice a whole stripe....
2809          * maybe...
2810          */
2811         {
2812                 int stripe = conf->raid_disks *
2813                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2814                 stripe /= conf->near_copies;
2815                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2816                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2817         }
2818
2819         if (conf->near_copies < conf->raid_disks)
2820                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2821
2822         if (md_integrity_register(mddev))
2823                 goto out_free_conf;
2824
2825         return 0;
2826
2827 out_free_conf:
2828         md_unregister_thread(mddev->thread);
2829         if (conf->r10bio_pool)
2830                 mempool_destroy(conf->r10bio_pool);
2831         safe_put_page(conf->tmppage);
2832         kfree(conf->mirrors);
2833         kfree(conf);
2834         mddev->private = NULL;
2835 out:
2836         return -EIO;
2837 }
2838
2839 static int stop(mddev_t *mddev)
2840 {
2841         conf_t *conf = mddev->private;
2842
2843         raise_barrier(conf, 0);
2844         lower_barrier(conf);
2845
2846         md_unregister_thread(mddev->thread);
2847         mddev->thread = NULL;
2848         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2849         if (conf->r10bio_pool)
2850                 mempool_destroy(conf->r10bio_pool);
2851         kfree(conf->mirrors);
2852         kfree(conf);
2853         mddev->private = NULL;
2854         return 0;
2855 }
2856
2857 static void raid10_quiesce(mddev_t *mddev, int state)
2858 {
2859         conf_t *conf = mddev->private;
2860
2861         switch(state) {
2862         case 1:
2863                 raise_barrier(conf, 0);
2864                 break;
2865         case 0:
2866                 lower_barrier(conf);
2867                 break;
2868         }
2869 }
2870
2871 static void *raid10_takeover_raid0(mddev_t *mddev)
2872 {
2873         mdk_rdev_t *rdev;
2874         conf_t *conf;
2875
2876         if (mddev->degraded > 0) {
2877                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2878                        mdname(mddev));
2879                 return ERR_PTR(-EINVAL);
2880         }
2881
2882         /* Set new parameters */
2883         mddev->new_level = 10;
2884         /* new layout: far_copies = 1, near_copies = 2 */
2885         mddev->new_layout = (1<<8) + 2;
2886         mddev->new_chunk_sectors = mddev->chunk_sectors;
2887         mddev->delta_disks = mddev->raid_disks;
2888         mddev->raid_disks *= 2;
2889         /* make sure it will be not marked as dirty */
2890         mddev->recovery_cp = MaxSector;
2891
2892         conf = setup_conf(mddev);
2893         if (!IS_ERR(conf)) {
2894                 list_for_each_entry(rdev, &mddev->disks, same_set)
2895                         if (rdev->raid_disk >= 0)
2896                                 rdev->new_raid_disk = rdev->raid_disk * 2;
2897                 conf->barrier = 1;
2898         }
2899
2900         return conf;
2901 }
2902
2903 static void *raid10_takeover(mddev_t *mddev)
2904 {
2905         struct raid0_private_data *raid0_priv;
2906
2907         /* raid10 can take over:
2908          *  raid0 - providing it has only two drives
2909          */
2910         if (mddev->level == 0) {
2911                 /* for raid0 takeover only one zone is supported */
2912                 raid0_priv = mddev->private;
2913                 if (raid0_priv->nr_strip_zones > 1) {
2914                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2915                                " with more than one zone.\n",
2916                                mdname(mddev));
2917                         return ERR_PTR(-EINVAL);
2918                 }
2919                 return raid10_takeover_raid0(mddev);
2920         }
2921         return ERR_PTR(-EINVAL);
2922 }
2923
2924 static struct mdk_personality raid10_personality =
2925 {
2926         .name           = "raid10",
2927         .level          = 10,
2928         .owner          = THIS_MODULE,
2929         .make_request   = make_request,
2930         .run            = run,
2931         .stop           = stop,
2932         .status         = status,
2933         .error_handler  = error,
2934         .hot_add_disk   = raid10_add_disk,
2935         .hot_remove_disk= raid10_remove_disk,
2936         .spare_active   = raid10_spare_active,
2937         .sync_request   = sync_request,
2938         .quiesce        = raid10_quiesce,
2939         .size           = raid10_size,
2940         .takeover       = raid10_takeover,
2941 };
2942
2943 static int __init raid_init(void)
2944 {
2945         return register_md_personality(&raid10_personality);
2946 }
2947
2948 static void raid_exit(void)
2949 {
2950         unregister_md_personality(&raid10_personality);
2951 }
2952
2953 module_init(raid_init);
2954 module_exit(raid_exit);
2955 MODULE_LICENSE("GPL");
2956 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2957 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2958 MODULE_ALIAS("md-raid10");
2959 MODULE_ALIAS("md-level-10");