dfe47d5eb157555986a9b8055bf17704bb118ce2
[pandora-kernel.git] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static u16 ide_inw (unsigned long port)
41 {
42         return (u16) inw(port);
43 }
44
45 static void ide_outb (u8 val, unsigned long port)
46 {
47         outb(val, port);
48 }
49
50 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
51 {
52         outb(addr, port);
53 }
54
55 static void ide_outw (u16 val, unsigned long port)
56 {
57         outw(val, port);
58 }
59
60 void default_hwif_iops (ide_hwif_t *hwif)
61 {
62         hwif->OUTB      = ide_outb;
63         hwif->OUTBSYNC  = ide_outbsync;
64         hwif->OUTW      = ide_outw;
65         hwif->INB       = ide_inb;
66         hwif->INW       = ide_inw;
67 }
68
69 /*
70  *      MMIO operations, typically used for SATA controllers
71  */
72
73 static u8 ide_mm_inb (unsigned long port)
74 {
75         return (u8) readb((void __iomem *) port);
76 }
77
78 static u16 ide_mm_inw (unsigned long port)
79 {
80         return (u16) readw((void __iomem *) port);
81 }
82
83 static void ide_mm_outb (u8 value, unsigned long port)
84 {
85         writeb(value, (void __iomem *) port);
86 }
87
88 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
89 {
90         writeb(value, (void __iomem *) port);
91 }
92
93 static void ide_mm_outw (u16 value, unsigned long port)
94 {
95         writew(value, (void __iomem *) port);
96 }
97
98 void default_hwif_mmiops (ide_hwif_t *hwif)
99 {
100         hwif->OUTB      = ide_mm_outb;
101         /* Most systems will need to override OUTBSYNC, alas however
102            this one is controller specific! */
103         hwif->OUTBSYNC  = ide_mm_outbsync;
104         hwif->OUTW      = ide_mm_outw;
105         hwif->INB       = ide_mm_inb;
106         hwif->INW       = ide_mm_inw;
107 }
108
109 EXPORT_SYMBOL(default_hwif_mmiops);
110
111 void SELECT_DRIVE (ide_drive_t *drive)
112 {
113         ide_hwif_t *hwif = drive->hwif;
114         const struct ide_port_ops *port_ops = hwif->port_ops;
115
116         if (port_ops && port_ops->selectproc)
117                 port_ops->selectproc(drive);
118
119         hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
120 }
121
122 void SELECT_MASK (ide_drive_t *drive, int mask)
123 {
124         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
125
126         if (port_ops && port_ops->maskproc)
127                 port_ops->maskproc(drive, mask);
128 }
129
130 /*
131  * Some localbus EIDE interfaces require a special access sequence
132  * when using 32-bit I/O instructions to transfer data.  We call this
133  * the "vlb_sync" sequence, which consists of three successive reads
134  * of the sector count register location, with interrupts disabled
135  * to ensure that the reads all happen together.
136  */
137 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
138 {
139         (void) HWIF(drive)->INB(port);
140         (void) HWIF(drive)->INB(port);
141         (void) HWIF(drive)->INB(port);
142 }
143
144 /*
145  * This is used for most PIO data transfers *from* the IDE interface
146  *
147  * These routines will round up any request for an odd number of bytes,
148  * so if an odd len is specified, be sure that there's at least one
149  * extra byte allocated for the buffer.
150  */
151 static void ata_input_data(ide_drive_t *drive, struct request *rq,
152                            void *buf, unsigned int len)
153 {
154         ide_hwif_t *hwif = drive->hwif;
155         struct ide_io_ports *io_ports = &hwif->io_ports;
156         unsigned long data_addr = io_ports->data_addr;
157         u8 io_32bit = drive->io_32bit;
158         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
159
160         len++;
161
162         if (io_32bit) {
163                 unsigned long uninitialized_var(flags);
164
165                 if (io_32bit & 2) {
166                         local_irq_save(flags);
167                         ata_vlb_sync(drive, io_ports->nsect_addr);
168                 }
169
170                 if (mmio)
171                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
172                 else
173                         insl(data_addr, buf, len / 4);
174
175                 if (io_32bit & 2)
176                         local_irq_restore(flags);
177
178                 if ((len & 3) >= 2) {
179                         if (mmio)
180                                 __ide_mm_insw((void __iomem *)data_addr,
181                                                 (u8 *)buf + (len & ~3), 1);
182                         else
183                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
184                 }
185         } else {
186                 if (mmio)
187                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
188                 else
189                         insw(data_addr, buf, len / 2);
190         }
191 }
192
193 /*
194  * This is used for most PIO data transfers *to* the IDE interface
195  */
196 static void ata_output_data(ide_drive_t *drive, struct request *rq,
197                             void *buf, unsigned int len)
198 {
199         ide_hwif_t *hwif = drive->hwif;
200         struct ide_io_ports *io_ports = &hwif->io_ports;
201         unsigned long data_addr = io_ports->data_addr;
202         u8 io_32bit = drive->io_32bit;
203         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
204
205         if (io_32bit) {
206                 unsigned long uninitialized_var(flags);
207
208                 if (io_32bit & 2) {
209                         local_irq_save(flags);
210                         ata_vlb_sync(drive, io_ports->nsect_addr);
211                 }
212
213                 if (mmio)
214                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
215                 else
216                         outsl(data_addr, buf, len / 4);
217
218                 if (io_32bit & 2)
219                         local_irq_restore(flags);
220
221                 if ((len & 3) >= 2) {
222                         if (mmio)
223                                 __ide_mm_outsw((void __iomem *)data_addr,
224                                                  (u8 *)buf + (len & ~3), 1);
225                         else
226                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
227                 }
228         } else {
229                 if (mmio)
230                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
231                 else
232                         outsw(data_addr, buf, len / 2);
233         }
234 }
235
236 void default_hwif_transport(ide_hwif_t *hwif)
237 {
238         hwif->input_data  = ata_input_data;
239         hwif->output_data = ata_output_data;
240 }
241
242 void ide_fix_driveid (struct hd_driveid *id)
243 {
244 #ifndef __LITTLE_ENDIAN
245 # ifdef __BIG_ENDIAN
246         int i;
247         u16 *stringcast;
248
249         id->config         = __le16_to_cpu(id->config);
250         id->cyls           = __le16_to_cpu(id->cyls);
251         id->reserved2      = __le16_to_cpu(id->reserved2);
252         id->heads          = __le16_to_cpu(id->heads);
253         id->track_bytes    = __le16_to_cpu(id->track_bytes);
254         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
255         id->sectors        = __le16_to_cpu(id->sectors);
256         id->vendor0        = __le16_to_cpu(id->vendor0);
257         id->vendor1        = __le16_to_cpu(id->vendor1);
258         id->vendor2        = __le16_to_cpu(id->vendor2);
259         stringcast = (u16 *)&id->serial_no[0];
260         for (i = 0; i < (20/2); i++)
261                 stringcast[i] = __le16_to_cpu(stringcast[i]);
262         id->buf_type       = __le16_to_cpu(id->buf_type);
263         id->buf_size       = __le16_to_cpu(id->buf_size);
264         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
265         stringcast = (u16 *)&id->fw_rev[0];
266         for (i = 0; i < (8/2); i++)
267                 stringcast[i] = __le16_to_cpu(stringcast[i]);
268         stringcast = (u16 *)&id->model[0];
269         for (i = 0; i < (40/2); i++)
270                 stringcast[i] = __le16_to_cpu(stringcast[i]);
271         id->dword_io       = __le16_to_cpu(id->dword_io);
272         id->reserved50     = __le16_to_cpu(id->reserved50);
273         id->field_valid    = __le16_to_cpu(id->field_valid);
274         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
275         id->cur_heads      = __le16_to_cpu(id->cur_heads);
276         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
277         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
278         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
279         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
280         id->dma_1word      = __le16_to_cpu(id->dma_1word);
281         id->dma_mword      = __le16_to_cpu(id->dma_mword);
282         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
283         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
284         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
285         id->eide_pio       = __le16_to_cpu(id->eide_pio);
286         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
287         for (i = 0; i < 2; ++i)
288                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
289         for (i = 0; i < 4; ++i)
290                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
291         id->queue_depth    = __le16_to_cpu(id->queue_depth);
292         for (i = 0; i < 4; ++i)
293                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
294         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
295         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
296         id->command_set_1  = __le16_to_cpu(id->command_set_1);
297         id->command_set_2  = __le16_to_cpu(id->command_set_2);
298         id->cfsse          = __le16_to_cpu(id->cfsse);
299         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
300         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
301         id->csf_default    = __le16_to_cpu(id->csf_default);
302         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
303         id->trseuc         = __le16_to_cpu(id->trseuc);
304         id->trsEuc         = __le16_to_cpu(id->trsEuc);
305         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
306         id->mprc           = __le16_to_cpu(id->mprc);
307         id->hw_config      = __le16_to_cpu(id->hw_config);
308         id->acoustic       = __le16_to_cpu(id->acoustic);
309         id->msrqs          = __le16_to_cpu(id->msrqs);
310         id->sxfert         = __le16_to_cpu(id->sxfert);
311         id->sal            = __le16_to_cpu(id->sal);
312         id->spg            = __le32_to_cpu(id->spg);
313         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
314         for (i = 0; i < 22; i++)
315                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
316         id->last_lun       = __le16_to_cpu(id->last_lun);
317         id->word127        = __le16_to_cpu(id->word127);
318         id->dlf            = __le16_to_cpu(id->dlf);
319         id->csfo           = __le16_to_cpu(id->csfo);
320         for (i = 0; i < 26; i++)
321                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
322         id->word156        = __le16_to_cpu(id->word156);
323         for (i = 0; i < 3; i++)
324                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
325         id->cfa_power      = __le16_to_cpu(id->cfa_power);
326         for (i = 0; i < 14; i++)
327                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
328         for (i = 0; i < 31; i++)
329                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
330         for (i = 0; i < 48; i++)
331                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
332         id->integrity_word  = __le16_to_cpu(id->integrity_word);
333 # else
334 #  error "Please fix <asm/byteorder.h>"
335 # endif
336 #endif
337 }
338
339 /*
340  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
341  * removing leading/trailing blanks and compressing internal blanks.
342  * It is primarily used to tidy up the model name/number fields as
343  * returned by the WIN_[P]IDENTIFY commands.
344  */
345
346 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
347 {
348         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
349
350         if (byteswap) {
351                 /* convert from big-endian to host byte order */
352                 for (p = end ; p != s;) {
353                         unsigned short *pp = (unsigned short *) (p -= 2);
354                         *pp = ntohs(*pp);
355                 }
356         }
357         /* strip leading blanks */
358         while (s != end && *s == ' ')
359                 ++s;
360         /* compress internal blanks and strip trailing blanks */
361         while (s != end && *s) {
362                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
363                         *p++ = *(s-1);
364         }
365         /* wipe out trailing garbage */
366         while (p != end)
367                 *p++ = '\0';
368 }
369
370 EXPORT_SYMBOL(ide_fixstring);
371
372 /*
373  * Needed for PCI irq sharing
374  */
375 int drive_is_ready (ide_drive_t *drive)
376 {
377         ide_hwif_t *hwif        = HWIF(drive);
378         u8 stat                 = 0;
379
380         if (drive->waiting_for_dma)
381                 return hwif->dma_ops->dma_test_irq(drive);
382
383 #if 0
384         /* need to guarantee 400ns since last command was issued */
385         udelay(1);
386 #endif
387
388         /*
389          * We do a passive status test under shared PCI interrupts on
390          * cards that truly share the ATA side interrupt, but may also share
391          * an interrupt with another pci card/device.  We make no assumptions
392          * about possible isa-pnp and pci-pnp issues yet.
393          */
394         if (hwif->io_ports.ctl_addr)
395                 stat = ide_read_altstatus(drive);
396         else
397                 /* Note: this may clear a pending IRQ!! */
398                 stat = ide_read_status(drive);
399
400         if (stat & BUSY_STAT)
401                 /* drive busy:  definitely not interrupting */
402                 return 0;
403
404         /* drive ready: *might* be interrupting */
405         return 1;
406 }
407
408 EXPORT_SYMBOL(drive_is_ready);
409
410 /*
411  * This routine busy-waits for the drive status to be not "busy".
412  * It then checks the status for all of the "good" bits and none
413  * of the "bad" bits, and if all is okay it returns 0.  All other
414  * cases return error -- caller may then invoke ide_error().
415  *
416  * This routine should get fixed to not hog the cpu during extra long waits..
417  * That could be done by busy-waiting for the first jiffy or two, and then
418  * setting a timer to wake up at half second intervals thereafter,
419  * until timeout is achieved, before timing out.
420  */
421 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
422 {
423         unsigned long flags;
424         int i;
425         u8 stat;
426
427         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
428         stat = ide_read_status(drive);
429
430         if (stat & BUSY_STAT) {
431                 local_irq_set(flags);
432                 timeout += jiffies;
433                 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
434                         if (time_after(jiffies, timeout)) {
435                                 /*
436                                  * One last read after the timeout in case
437                                  * heavy interrupt load made us not make any
438                                  * progress during the timeout..
439                                  */
440                                 stat = ide_read_status(drive);
441                                 if (!(stat & BUSY_STAT))
442                                         break;
443
444                                 local_irq_restore(flags);
445                                 *rstat = stat;
446                                 return -EBUSY;
447                         }
448                 }
449                 local_irq_restore(flags);
450         }
451         /*
452          * Allow status to settle, then read it again.
453          * A few rare drives vastly violate the 400ns spec here,
454          * so we'll wait up to 10usec for a "good" status
455          * rather than expensively fail things immediately.
456          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
457          */
458         for (i = 0; i < 10; i++) {
459                 udelay(1);
460                 stat = ide_read_status(drive);
461
462                 if (OK_STAT(stat, good, bad)) {
463                         *rstat = stat;
464                         return 0;
465                 }
466         }
467         *rstat = stat;
468         return -EFAULT;
469 }
470
471 /*
472  * In case of error returns error value after doing "*startstop = ide_error()".
473  * The caller should return the updated value of "startstop" in this case,
474  * "startstop" is unchanged when the function returns 0.
475  */
476 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
477 {
478         int err;
479         u8 stat;
480
481         /* bail early if we've exceeded max_failures */
482         if (drive->max_failures && (drive->failures > drive->max_failures)) {
483                 *startstop = ide_stopped;
484                 return 1;
485         }
486
487         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
488
489         if (err) {
490                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
491                 *startstop = ide_error(drive, s, stat);
492         }
493
494         return err;
495 }
496
497 EXPORT_SYMBOL(ide_wait_stat);
498
499 /**
500  *      ide_in_drive_list       -       look for drive in black/white list
501  *      @id: drive identifier
502  *      @drive_table: list to inspect
503  *
504  *      Look for a drive in the blacklist and the whitelist tables
505  *      Returns 1 if the drive is found in the table.
506  */
507
508 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
509 {
510         for ( ; drive_table->id_model; drive_table++)
511                 if ((!strcmp(drive_table->id_model, id->model)) &&
512                     (!drive_table->id_firmware ||
513                      strstr(id->fw_rev, drive_table->id_firmware)))
514                         return 1;
515         return 0;
516 }
517
518 EXPORT_SYMBOL_GPL(ide_in_drive_list);
519
520 /*
521  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
522  * We list them here and depend on the device side cable detection for them.
523  *
524  * Some optical devices with the buggy firmwares have the same problem.
525  */
526 static const struct drive_list_entry ivb_list[] = {
527         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
528         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
529         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
530         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
531         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
532         { NULL                          , NULL          }
533 };
534
535 /*
536  *  All hosts that use the 80c ribbon must use!
537  *  The name is derived from upper byte of word 93 and the 80c ribbon.
538  */
539 u8 eighty_ninty_three (ide_drive_t *drive)
540 {
541         ide_hwif_t *hwif = drive->hwif;
542         struct hd_driveid *id = drive->id;
543         int ivb = ide_in_drive_list(id, ivb_list);
544
545         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
546                 return 1;
547
548         if (ivb)
549                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
550                                   drive->name);
551
552         if (ide_dev_is_sata(id) && !ivb)
553                 return 1;
554
555         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
556                 goto no_80w;
557
558         /*
559          * FIXME:
560          * - change master/slave IDENTIFY order
561          * - force bit13 (80c cable present) check also for !ivb devices
562          *   (unless the slave device is pre-ATA3)
563          */
564         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
565                 return 1;
566
567 no_80w:
568         if (drive->udma33_warned == 1)
569                 return 0;
570
571         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
572                             "limiting max speed to UDMA33\n",
573                             drive->name,
574                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
575
576         drive->udma33_warned = 1;
577
578         return 0;
579 }
580
581 int ide_driveid_update(ide_drive_t *drive)
582 {
583         ide_hwif_t *hwif = drive->hwif;
584         struct hd_driveid *id;
585         unsigned long timeout, flags;
586         u8 stat;
587
588         /*
589          * Re-read drive->id for possible DMA mode
590          * change (copied from ide-probe.c)
591          */
592
593         SELECT_MASK(drive, 1);
594         ide_set_irq(drive, 1);
595         msleep(50);
596         hwif->OUTBSYNC(drive, WIN_IDENTIFY, hwif->io_ports.command_addr);
597         timeout = jiffies + WAIT_WORSTCASE;
598         do {
599                 if (time_after(jiffies, timeout)) {
600                         SELECT_MASK(drive, 0);
601                         return 0;       /* drive timed-out */
602                 }
603
604                 msleep(50);     /* give drive a breather */
605                 stat = ide_read_altstatus(drive);
606         } while (stat & BUSY_STAT);
607
608         msleep(50);     /* wait for IRQ and DRQ_STAT */
609         stat = ide_read_status(drive);
610
611         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
612                 SELECT_MASK(drive, 0);
613                 printk("%s: CHECK for good STATUS\n", drive->name);
614                 return 0;
615         }
616         local_irq_save(flags);
617         SELECT_MASK(drive, 0);
618         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
619         if (!id) {
620                 local_irq_restore(flags);
621                 return 0;
622         }
623         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
624         (void)ide_read_status(drive);   /* clear drive IRQ */
625         local_irq_enable();
626         local_irq_restore(flags);
627         ide_fix_driveid(id);
628         if (id) {
629                 drive->id->dma_ultra = id->dma_ultra;
630                 drive->id->dma_mword = id->dma_mword;
631                 drive->id->dma_1word = id->dma_1word;
632                 /* anything more ? */
633                 kfree(id);
634
635                 if (drive->using_dma && ide_id_dma_bug(drive))
636                         ide_dma_off(drive);
637         }
638
639         return 1;
640 }
641
642 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
643 {
644         ide_hwif_t *hwif = drive->hwif;
645         struct ide_io_ports *io_ports = &hwif->io_ports;
646         int error = 0;
647         u8 stat;
648
649 //      while (HWGROUP(drive)->busy)
650 //              msleep(50);
651
652 #ifdef CONFIG_BLK_DEV_IDEDMA
653         if (hwif->dma_ops)      /* check if host supports DMA */
654                 hwif->dma_ops->dma_host_set(drive, 0);
655 #endif
656
657         /* Skip setting PIO flow-control modes on pre-EIDE drives */
658         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
659                 goto skip;
660
661         /*
662          * Don't use ide_wait_cmd here - it will
663          * attempt to set_geometry and recalibrate,
664          * but for some reason these don't work at
665          * this point (lost interrupt).
666          */
667         /*
668          * Select the drive, and issue the SETFEATURES command
669          */
670         disable_irq_nosync(hwif->irq);
671         
672         /*
673          *      FIXME: we race against the running IRQ here if
674          *      this is called from non IRQ context. If we use
675          *      disable_irq() we hang on the error path. Work
676          *      is needed.
677          */
678          
679         udelay(1);
680         SELECT_DRIVE(drive);
681         SELECT_MASK(drive, 0);
682         udelay(1);
683         ide_set_irq(drive, 0);
684         hwif->OUTB(speed, io_ports->nsect_addr);
685         hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
686         hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
687         if (drive->quirk_list == 2)
688                 ide_set_irq(drive, 1);
689
690         error = __ide_wait_stat(drive, drive->ready_stat,
691                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
692                                 WAIT_CMD, &stat);
693
694         SELECT_MASK(drive, 0);
695
696         enable_irq(hwif->irq);
697
698         if (error) {
699                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
700                 return error;
701         }
702
703         drive->id->dma_ultra &= ~0xFF00;
704         drive->id->dma_mword &= ~0x0F00;
705         drive->id->dma_1word &= ~0x0F00;
706
707  skip:
708 #ifdef CONFIG_BLK_DEV_IDEDMA
709         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
710             drive->using_dma)
711                 hwif->dma_ops->dma_host_set(drive, 1);
712         else if (hwif->dma_ops) /* check if host supports DMA */
713                 ide_dma_off_quietly(drive);
714 #endif
715
716         switch(speed) {
717                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
718                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
719                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
720                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
721                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
722                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
723                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
724                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
725                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
726                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
727                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
728                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
729                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
730                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
731                 default: break;
732         }
733         if (!drive->init_speed)
734                 drive->init_speed = speed;
735         drive->current_speed = speed;
736         return error;
737 }
738
739 /*
740  * This should get invoked any time we exit the driver to
741  * wait for an interrupt response from a drive.  handler() points
742  * at the appropriate code to handle the next interrupt, and a
743  * timer is started to prevent us from waiting forever in case
744  * something goes wrong (see the ide_timer_expiry() handler later on).
745  *
746  * See also ide_execute_command
747  */
748 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
749                       unsigned int timeout, ide_expiry_t *expiry)
750 {
751         ide_hwgroup_t *hwgroup = HWGROUP(drive);
752
753         BUG_ON(hwgroup->handler);
754         hwgroup->handler        = handler;
755         hwgroup->expiry         = expiry;
756         hwgroup->timer.expires  = jiffies + timeout;
757         hwgroup->req_gen_timer  = hwgroup->req_gen;
758         add_timer(&hwgroup->timer);
759 }
760
761 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
762                       unsigned int timeout, ide_expiry_t *expiry)
763 {
764         unsigned long flags;
765         spin_lock_irqsave(&ide_lock, flags);
766         __ide_set_handler(drive, handler, timeout, expiry);
767         spin_unlock_irqrestore(&ide_lock, flags);
768 }
769
770 EXPORT_SYMBOL(ide_set_handler);
771  
772 /**
773  *      ide_execute_command     -       execute an IDE command
774  *      @drive: IDE drive to issue the command against
775  *      @command: command byte to write
776  *      @handler: handler for next phase
777  *      @timeout: timeout for command
778  *      @expiry:  handler to run on timeout
779  *
780  *      Helper function to issue an IDE command. This handles the
781  *      atomicity requirements, command timing and ensures that the 
782  *      handler and IRQ setup do not race. All IDE command kick off
783  *      should go via this function or do equivalent locking.
784  */
785
786 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
787                          unsigned timeout, ide_expiry_t *expiry)
788 {
789         unsigned long flags;
790         ide_hwif_t *hwif = HWIF(drive);
791
792         spin_lock_irqsave(&ide_lock, flags);
793         __ide_set_handler(drive, handler, timeout, expiry);
794         hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
795         /*
796          * Drive takes 400nS to respond, we must avoid the IRQ being
797          * serviced before that.
798          *
799          * FIXME: we could skip this delay with care on non shared devices
800          */
801         ndelay(400);
802         spin_unlock_irqrestore(&ide_lock, flags);
803 }
804 EXPORT_SYMBOL(ide_execute_command);
805
806 void ide_execute_pkt_cmd(ide_drive_t *drive)
807 {
808         ide_hwif_t *hwif = drive->hwif;
809         unsigned long flags;
810
811         spin_lock_irqsave(&ide_lock, flags);
812         hwif->OUTBSYNC(drive, WIN_PACKETCMD, hwif->io_ports.command_addr);
813         ndelay(400);
814         spin_unlock_irqrestore(&ide_lock, flags);
815 }
816 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
817
818 /* needed below */
819 static ide_startstop_t do_reset1 (ide_drive_t *, int);
820
821 /*
822  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
823  * during an atapi drive reset operation. If the drive has not yet responded,
824  * and we have not yet hit our maximum waiting time, then the timer is restarted
825  * for another 50ms.
826  */
827 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
828 {
829         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
830         u8 stat;
831
832         SELECT_DRIVE(drive);
833         udelay (10);
834         stat = ide_read_status(drive);
835
836         if (OK_STAT(stat, 0, BUSY_STAT))
837                 printk("%s: ATAPI reset complete\n", drive->name);
838         else {
839                 if (time_before(jiffies, hwgroup->poll_timeout)) {
840                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
841                         /* continue polling */
842                         return ide_started;
843                 }
844                 /* end of polling */
845                 hwgroup->polling = 0;
846                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
847                                 drive->name, stat);
848                 /* do it the old fashioned way */
849                 return do_reset1(drive, 1);
850         }
851         /* done polling */
852         hwgroup->polling = 0;
853         hwgroup->resetting = 0;
854         return ide_stopped;
855 }
856
857 /*
858  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
859  * during an ide reset operation. If the drives have not yet responded,
860  * and we have not yet hit our maximum waiting time, then the timer is restarted
861  * for another 50ms.
862  */
863 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
864 {
865         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
866         ide_hwif_t *hwif        = HWIF(drive);
867         const struct ide_port_ops *port_ops = hwif->port_ops;
868         u8 tmp;
869
870         if (port_ops && port_ops->reset_poll) {
871                 if (port_ops->reset_poll(drive)) {
872                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
873                                 hwif->name, drive->name);
874                         return ide_stopped;
875                 }
876         }
877
878         tmp = ide_read_status(drive);
879
880         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
881                 if (time_before(jiffies, hwgroup->poll_timeout)) {
882                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
883                         /* continue polling */
884                         return ide_started;
885                 }
886                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
887                 drive->failures++;
888         } else  {
889                 printk("%s: reset: ", hwif->name);
890                 tmp = ide_read_error(drive);
891
892                 if (tmp == 1) {
893                         printk("success\n");
894                         drive->failures = 0;
895                 } else {
896                         drive->failures++;
897                         printk("master: ");
898                         switch (tmp & 0x7f) {
899                                 case 1: printk("passed");
900                                         break;
901                                 case 2: printk("formatter device error");
902                                         break;
903                                 case 3: printk("sector buffer error");
904                                         break;
905                                 case 4: printk("ECC circuitry error");
906                                         break;
907                                 case 5: printk("controlling MPU error");
908                                         break;
909                                 default:printk("error (0x%02x?)", tmp);
910                         }
911                         if (tmp & 0x80)
912                                 printk("; slave: failed");
913                         printk("\n");
914                 }
915         }
916         hwgroup->polling = 0;   /* done polling */
917         hwgroup->resetting = 0; /* done reset attempt */
918         return ide_stopped;
919 }
920
921 static void ide_disk_pre_reset(ide_drive_t *drive)
922 {
923         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
924
925         drive->special.all = 0;
926         drive->special.b.set_geometry = legacy;
927         drive->special.b.recalibrate  = legacy;
928         drive->mult_count = 0;
929         if (!drive->keep_settings && !drive->using_dma)
930                 drive->mult_req = 0;
931         if (drive->mult_req != drive->mult_count)
932                 drive->special.b.set_multmode = 1;
933 }
934
935 static void pre_reset(ide_drive_t *drive)
936 {
937         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
938
939         if (drive->media == ide_disk)
940                 ide_disk_pre_reset(drive);
941         else
942                 drive->post_reset = 1;
943
944         if (drive->using_dma) {
945                 if (drive->crc_count)
946                         ide_check_dma_crc(drive);
947                 else
948                         ide_dma_off(drive);
949         }
950
951         if (!drive->keep_settings) {
952                 if (!drive->using_dma) {
953                         drive->unmask = 0;
954                         drive->io_32bit = 0;
955                 }
956                 return;
957         }
958
959         if (port_ops && port_ops->pre_reset)
960                 port_ops->pre_reset(drive);
961
962         if (drive->current_speed != 0xff)
963                 drive->desired_speed = drive->current_speed;
964         drive->current_speed = 0xff;
965 }
966
967 /*
968  * do_reset1() attempts to recover a confused drive by resetting it.
969  * Unfortunately, resetting a disk drive actually resets all devices on
970  * the same interface, so it can really be thought of as resetting the
971  * interface rather than resetting the drive.
972  *
973  * ATAPI devices have their own reset mechanism which allows them to be
974  * individually reset without clobbering other devices on the same interface.
975  *
976  * Unfortunately, the IDE interface does not generate an interrupt to let
977  * us know when the reset operation has finished, so we must poll for this.
978  * Equally poor, though, is the fact that this may a very long time to complete,
979  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
980  * we set a timer to poll at 50ms intervals.
981  */
982 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
983 {
984         unsigned int unit;
985         unsigned long flags;
986         ide_hwif_t *hwif;
987         ide_hwgroup_t *hwgroup;
988         struct ide_io_ports *io_ports;
989         const struct ide_port_ops *port_ops;
990         u8 ctl;
991
992         spin_lock_irqsave(&ide_lock, flags);
993         hwif = HWIF(drive);
994         hwgroup = HWGROUP(drive);
995
996         io_ports = &hwif->io_ports;
997
998         /* We must not reset with running handlers */
999         BUG_ON(hwgroup->handler != NULL);
1000
1001         /* For an ATAPI device, first try an ATAPI SRST. */
1002         if (drive->media != ide_disk && !do_not_try_atapi) {
1003                 hwgroup->resetting = 1;
1004                 pre_reset(drive);
1005                 SELECT_DRIVE(drive);
1006                 udelay (20);
1007                 hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
1008                 ndelay(400);
1009                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1010                 hwgroup->polling = 1;
1011                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1012                 spin_unlock_irqrestore(&ide_lock, flags);
1013                 return ide_started;
1014         }
1015
1016         /*
1017          * First, reset any device state data we were maintaining
1018          * for any of the drives on this interface.
1019          */
1020         for (unit = 0; unit < MAX_DRIVES; ++unit)
1021                 pre_reset(&hwif->drives[unit]);
1022
1023         if (io_ports->ctl_addr == 0) {
1024                 spin_unlock_irqrestore(&ide_lock, flags);
1025                 return ide_stopped;
1026         }
1027
1028         hwgroup->resetting = 1;
1029         /*
1030          * Note that we also set nIEN while resetting the device,
1031          * to mask unwanted interrupts from the interface during the reset.
1032          * However, due to the design of PC hardware, this will cause an
1033          * immediate interrupt due to the edge transition it produces.
1034          * This single interrupt gives us a "fast poll" for drives that
1035          * recover from reset very quickly, saving us the first 50ms wait time.
1036          */
1037         /* set SRST and nIEN */
1038         hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1039         /* more than enough time */
1040         udelay(10);
1041         if (drive->quirk_list == 2)
1042                 ctl = drive->ctl;       /* clear SRST and nIEN */
1043         else
1044                 ctl = drive->ctl | 2;   /* clear SRST, leave nIEN */
1045         hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1046         /* more than enough time */
1047         udelay(10);
1048         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1049         hwgroup->polling = 1;
1050         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1051
1052         /*
1053          * Some weird controller like resetting themselves to a strange
1054          * state when the disks are reset this way. At least, the Winbond
1055          * 553 documentation says that
1056          */
1057         port_ops = hwif->port_ops;
1058         if (port_ops && port_ops->resetproc)
1059                 port_ops->resetproc(drive);
1060
1061         spin_unlock_irqrestore(&ide_lock, flags);
1062         return ide_started;
1063 }
1064
1065 /*
1066  * ide_do_reset() is the entry point to the drive/interface reset code.
1067  */
1068
1069 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1070 {
1071         return do_reset1(drive, 0);
1072 }
1073
1074 EXPORT_SYMBOL(ide_do_reset);
1075
1076 /*
1077  * ide_wait_not_busy() waits for the currently selected device on the hwif
1078  * to report a non-busy status, see comments in ide_probe_port().
1079  */
1080 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1081 {
1082         u8 stat = 0;
1083
1084         while(timeout--) {
1085                 /*
1086                  * Turn this into a schedule() sleep once I'm sure
1087                  * about locking issues (2.5 work ?).
1088                  */
1089                 mdelay(1);
1090                 stat = hwif->INB(hwif->io_ports.status_addr);
1091                 if ((stat & BUSY_STAT) == 0)
1092                         return 0;
1093                 /*
1094                  * Assume a value of 0xff means nothing is connected to
1095                  * the interface and it doesn't implement the pull-down
1096                  * resistor on D7.
1097                  */
1098                 if (stat == 0xff)
1099                         return -ENODEV;
1100                 touch_softlockup_watchdog();
1101                 touch_nmi_watchdog();
1102         }
1103         return -EBUSY;
1104 }
1105
1106 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1107