5e9bb531aeef4e79d35b8b00daf942230472afc0
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define CTX_LRI_HEADER_0                0x01
158 #define CTX_CONTEXT_CONTROL             0x02
159 #define CTX_RING_HEAD                   0x04
160 #define CTX_RING_TAIL                   0x06
161 #define CTX_RING_BUFFER_START           0x08
162 #define CTX_RING_BUFFER_CONTROL         0x0a
163 #define CTX_BB_HEAD_U                   0x0c
164 #define CTX_BB_HEAD_L                   0x0e
165 #define CTX_BB_STATE                    0x10
166 #define CTX_SECOND_BB_HEAD_U            0x12
167 #define CTX_SECOND_BB_HEAD_L            0x14
168 #define CTX_SECOND_BB_STATE             0x16
169 #define CTX_BB_PER_CTX_PTR              0x18
170 #define CTX_RCS_INDIRECT_CTX            0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
172 #define CTX_LRI_HEADER_1                0x21
173 #define CTX_CTX_TIMESTAMP               0x22
174 #define CTX_PDP3_UDW                    0x24
175 #define CTX_PDP3_LDW                    0x26
176 #define CTX_PDP2_UDW                    0x28
177 #define CTX_PDP2_LDW                    0x2a
178 #define CTX_PDP1_UDW                    0x2c
179 #define CTX_PDP1_LDW                    0x2e
180 #define CTX_PDP0_UDW                    0x30
181 #define CTX_PDP0_LDW                    0x32
182 #define CTX_LRI_HEADER_2                0x41
183 #define CTX_R_PWR_CLK_STATE             0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192         ADVANCED_CONTEXT = 0,
193         LEGACY_CONTEXT,
194         ADVANCED_AD_CONTEXT,
195         LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199         FAULT_AND_HANG = 0,
200         FAULT_AND_HALT, /* Debug only */
201         FAULT_AND_STREAM,
202         FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207                 struct intel_context *ctx);
208
209 /**
210  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211  * @dev: DRM device.
212  * @enable_execlists: value of i915.enable_execlists module parameter.
213  *
214  * Only certain platforms support Execlists (the prerequisites being
215  * support for Logical Ring Contexts and Aliasing PPGTT or better),
216  * and only when enabled via module parameter.
217  *
218  * Return: 1 if Execlists is supported and has to be enabled.
219  */
220 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
221 {
222         WARN_ON(i915.enable_ppgtt == -1);
223
224         if (INTEL_INFO(dev)->gen >= 9)
225                 return 1;
226
227         if (enable_execlists == 0)
228                 return 0;
229
230         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
231             i915.use_mmio_flip >= 0)
232                 return 1;
233
234         return 0;
235 }
236
237 /**
238  * intel_execlists_ctx_id() - get the Execlists Context ID
239  * @ctx_obj: Logical Ring Context backing object.
240  *
241  * Do not confuse with ctx->id! Unfortunately we have a name overload
242  * here: the old context ID we pass to userspace as a handler so that
243  * they can refer to a context, and the new context ID we pass to the
244  * ELSP so that the GPU can inform us of the context status via
245  * interrupts.
246  *
247  * Return: 20-bits globally unique context ID.
248  */
249 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
250 {
251         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
252
253         /* LRCA is required to be 4K aligned so the more significant 20 bits
254          * are globally unique */
255         return lrca >> 12;
256 }
257
258 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
259 {
260         uint64_t desc;
261         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
262
263         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
264
265         desc = GEN8_CTX_VALID;
266         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
267         desc |= GEN8_CTX_L3LLC_COHERENT;
268         desc |= GEN8_CTX_PRIVILEGE;
269         desc |= lrca;
270         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
271
272         /* TODO: WaDisableLiteRestore when we start using semaphore
273          * signalling between Command Streamers */
274         /* desc |= GEN8_CTX_FORCE_RESTORE; */
275
276         return desc;
277 }
278
279 static void execlists_elsp_write(struct intel_engine_cs *ring,
280                                  struct drm_i915_gem_object *ctx_obj0,
281                                  struct drm_i915_gem_object *ctx_obj1)
282 {
283         struct drm_device *dev = ring->dev;
284         struct drm_i915_private *dev_priv = dev->dev_private;
285         uint64_t temp = 0;
286         uint32_t desc[4];
287         unsigned long flags;
288
289         /* XXX: You must always write both descriptors in the order below. */
290         if (ctx_obj1)
291                 temp = execlists_ctx_descriptor(ctx_obj1);
292         else
293                 temp = 0;
294         desc[1] = (u32)(temp >> 32);
295         desc[0] = (u32)temp;
296
297         temp = execlists_ctx_descriptor(ctx_obj0);
298         desc[3] = (u32)(temp >> 32);
299         desc[2] = (u32)temp;
300
301         /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
302          * are in progress.
303          *
304          * The other problem is that we can't just call gen6_gt_force_wake_get()
305          * because that function calls intel_runtime_pm_get(), which might sleep.
306          * Instead, we do the runtime_pm_get/put when creating/destroying requests.
307          */
308         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
309         if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
310                 if (dev_priv->uncore.fw_rendercount++ == 0)
311                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
312                                                               FORCEWAKE_RENDER);
313                 if (dev_priv->uncore.fw_mediacount++ == 0)
314                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
315                                                               FORCEWAKE_MEDIA);
316                 if (INTEL_INFO(dev)->gen >= 9) {
317                         if (dev_priv->uncore.fw_blittercount++ == 0)
318                                 dev_priv->uncore.funcs.force_wake_get(dev_priv,
319                                                         FORCEWAKE_BLITTER);
320                 }
321         } else {
322                 if (dev_priv->uncore.forcewake_count++ == 0)
323                         dev_priv->uncore.funcs.force_wake_get(dev_priv,
324                                                               FORCEWAKE_ALL);
325         }
326         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
327
328         I915_WRITE(RING_ELSP(ring), desc[1]);
329         I915_WRITE(RING_ELSP(ring), desc[0]);
330         I915_WRITE(RING_ELSP(ring), desc[3]);
331         /* The context is automatically loaded after the following */
332         I915_WRITE(RING_ELSP(ring), desc[2]);
333
334         /* ELSP is a wo register, so use another nearby reg for posting instead */
335         POSTING_READ(RING_EXECLIST_STATUS(ring));
336
337         /* Release Force Wakeup (see the big comment above). */
338         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
339         if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
340                 if (--dev_priv->uncore.fw_rendercount == 0)
341                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
342                                                               FORCEWAKE_RENDER);
343                 if (--dev_priv->uncore.fw_mediacount == 0)
344                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
345                                                               FORCEWAKE_MEDIA);
346                 if (INTEL_INFO(dev)->gen >= 9) {
347                         if (--dev_priv->uncore.fw_blittercount == 0)
348                                 dev_priv->uncore.funcs.force_wake_put(dev_priv,
349                                                         FORCEWAKE_BLITTER);
350                 }
351         } else {
352                 if (--dev_priv->uncore.forcewake_count == 0)
353                         dev_priv->uncore.funcs.force_wake_put(dev_priv,
354                                                               FORCEWAKE_ALL);
355         }
356
357         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
358 }
359
360 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
361                                     struct drm_i915_gem_object *ring_obj,
362                                     u32 tail)
363 {
364         struct page *page;
365         uint32_t *reg_state;
366
367         page = i915_gem_object_get_page(ctx_obj, 1);
368         reg_state = kmap_atomic(page);
369
370         reg_state[CTX_RING_TAIL+1] = tail;
371         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
372
373         kunmap_atomic(reg_state);
374
375         return 0;
376 }
377
378 static void execlists_submit_contexts(struct intel_engine_cs *ring,
379                                       struct intel_context *to0, u32 tail0,
380                                       struct intel_context *to1, u32 tail1)
381 {
382         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
383         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
384         struct drm_i915_gem_object *ctx_obj1 = NULL;
385         struct intel_ringbuffer *ringbuf1 = NULL;
386
387         BUG_ON(!ctx_obj0);
388         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
389         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
390
391         execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
392
393         if (to1) {
394                 ringbuf1 = to1->engine[ring->id].ringbuf;
395                 ctx_obj1 = to1->engine[ring->id].state;
396                 BUG_ON(!ctx_obj1);
397                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
398                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
399
400                 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
401         }
402
403         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
404 }
405
406 static void execlists_context_unqueue(struct intel_engine_cs *ring)
407 {
408         struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
409         struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
410
411         assert_spin_locked(&ring->execlist_lock);
412
413         if (list_empty(&ring->execlist_queue))
414                 return;
415
416         /* Try to read in pairs */
417         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
418                                  execlist_link) {
419                 if (!req0) {
420                         req0 = cursor;
421                 } else if (req0->ctx == cursor->ctx) {
422                         /* Same ctx: ignore first request, as second request
423                          * will update tail past first request's workload */
424                         cursor->elsp_submitted = req0->elsp_submitted;
425                         list_del(&req0->execlist_link);
426                         list_add_tail(&req0->execlist_link,
427                                 &ring->execlist_retired_req_list);
428                         req0 = cursor;
429                 } else {
430                         req1 = cursor;
431                         break;
432                 }
433         }
434
435         WARN_ON(req1 && req1->elsp_submitted);
436
437         execlists_submit_contexts(ring, req0->ctx, req0->tail,
438                                   req1 ? req1->ctx : NULL,
439                                   req1 ? req1->tail : 0);
440
441         req0->elsp_submitted++;
442         if (req1)
443                 req1->elsp_submitted++;
444 }
445
446 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
447                                            u32 request_id)
448 {
449         struct intel_ctx_submit_request *head_req;
450
451         assert_spin_locked(&ring->execlist_lock);
452
453         head_req = list_first_entry_or_null(&ring->execlist_queue,
454                                             struct intel_ctx_submit_request,
455                                             execlist_link);
456
457         if (head_req != NULL) {
458                 struct drm_i915_gem_object *ctx_obj =
459                                 head_req->ctx->engine[ring->id].state;
460                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
461                         WARN(head_req->elsp_submitted == 0,
462                              "Never submitted head request\n");
463
464                         if (--head_req->elsp_submitted <= 0) {
465                                 list_del(&head_req->execlist_link);
466                                 list_add_tail(&head_req->execlist_link,
467                                         &ring->execlist_retired_req_list);
468                                 return true;
469                         }
470                 }
471         }
472
473         return false;
474 }
475
476 /**
477  * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
478  * @ring: Engine Command Streamer to handle.
479  *
480  * Check the unread Context Status Buffers and manage the submission of new
481  * contexts to the ELSP accordingly.
482  */
483 void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
484 {
485         struct drm_i915_private *dev_priv = ring->dev->dev_private;
486         u32 status_pointer;
487         u8 read_pointer;
488         u8 write_pointer;
489         u32 status;
490         u32 status_id;
491         u32 submit_contexts = 0;
492
493         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
494
495         read_pointer = ring->next_context_status_buffer;
496         write_pointer = status_pointer & 0x07;
497         if (read_pointer > write_pointer)
498                 write_pointer += 6;
499
500         spin_lock(&ring->execlist_lock);
501
502         while (read_pointer < write_pointer) {
503                 read_pointer++;
504                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
505                                 (read_pointer % 6) * 8);
506                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
507                                 (read_pointer % 6) * 8 + 4);
508
509                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
510                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
511                                 if (execlists_check_remove_request(ring, status_id))
512                                         WARN(1, "Lite Restored request removed from queue\n");
513                         } else
514                                 WARN(1, "Preemption without Lite Restore\n");
515                 }
516
517                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
518                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
519                         if (execlists_check_remove_request(ring, status_id))
520                                 submit_contexts++;
521                 }
522         }
523
524         if (submit_contexts != 0)
525                 execlists_context_unqueue(ring);
526
527         spin_unlock(&ring->execlist_lock);
528
529         WARN(submit_contexts > 2, "More than two context complete events?\n");
530         ring->next_context_status_buffer = write_pointer % 6;
531
532         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
533                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
534 }
535
536 static int execlists_context_queue(struct intel_engine_cs *ring,
537                                    struct intel_context *to,
538                                    u32 tail)
539 {
540         struct intel_ctx_submit_request *req = NULL, *cursor;
541         struct drm_i915_private *dev_priv = ring->dev->dev_private;
542         unsigned long flags;
543         int num_elements = 0;
544
545         req = kzalloc(sizeof(*req), GFP_KERNEL);
546         if (req == NULL)
547                 return -ENOMEM;
548         req->ctx = to;
549         i915_gem_context_reference(req->ctx);
550
551         if (to != ring->default_context)
552                 intel_lr_context_pin(ring, to);
553
554         req->ring = ring;
555         req->tail = tail;
556
557         intel_runtime_pm_get(dev_priv);
558
559         spin_lock_irqsave(&ring->execlist_lock, flags);
560
561         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
562                 if (++num_elements > 2)
563                         break;
564
565         if (num_elements > 2) {
566                 struct intel_ctx_submit_request *tail_req;
567
568                 tail_req = list_last_entry(&ring->execlist_queue,
569                                            struct intel_ctx_submit_request,
570                                            execlist_link);
571
572                 if (to == tail_req->ctx) {
573                         WARN(tail_req->elsp_submitted != 0,
574                                 "More than 2 already-submitted reqs queued\n");
575                         list_del(&tail_req->execlist_link);
576                         list_add_tail(&tail_req->execlist_link,
577                                 &ring->execlist_retired_req_list);
578                 }
579         }
580
581         list_add_tail(&req->execlist_link, &ring->execlist_queue);
582         if (num_elements == 0)
583                 execlists_context_unqueue(ring);
584
585         spin_unlock_irqrestore(&ring->execlist_lock, flags);
586
587         return 0;
588 }
589
590 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
591 {
592         struct intel_engine_cs *ring = ringbuf->ring;
593         uint32_t flush_domains;
594         int ret;
595
596         flush_domains = 0;
597         if (ring->gpu_caches_dirty)
598                 flush_domains = I915_GEM_GPU_DOMAINS;
599
600         ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
601         if (ret)
602                 return ret;
603
604         ring->gpu_caches_dirty = false;
605         return 0;
606 }
607
608 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
609                                  struct list_head *vmas)
610 {
611         struct intel_engine_cs *ring = ringbuf->ring;
612         struct i915_vma *vma;
613         uint32_t flush_domains = 0;
614         bool flush_chipset = false;
615         int ret;
616
617         list_for_each_entry(vma, vmas, exec_list) {
618                 struct drm_i915_gem_object *obj = vma->obj;
619
620                 ret = i915_gem_object_sync(obj, ring);
621                 if (ret)
622                         return ret;
623
624                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
625                         flush_chipset |= i915_gem_clflush_object(obj, false);
626
627                 flush_domains |= obj->base.write_domain;
628         }
629
630         if (flush_domains & I915_GEM_DOMAIN_GTT)
631                 wmb();
632
633         /* Unconditionally invalidate gpu caches and ensure that we do flush
634          * any residual writes from the previous batch.
635          */
636         return logical_ring_invalidate_all_caches(ringbuf);
637 }
638
639 /**
640  * execlists_submission() - submit a batchbuffer for execution, Execlists style
641  * @dev: DRM device.
642  * @file: DRM file.
643  * @ring: Engine Command Streamer to submit to.
644  * @ctx: Context to employ for this submission.
645  * @args: execbuffer call arguments.
646  * @vmas: list of vmas.
647  * @batch_obj: the batchbuffer to submit.
648  * @exec_start: batchbuffer start virtual address pointer.
649  * @flags: translated execbuffer call flags.
650  *
651  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
652  * away the submission details of the execbuffer ioctl call.
653  *
654  * Return: non-zero if the submission fails.
655  */
656 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
657                                struct intel_engine_cs *ring,
658                                struct intel_context *ctx,
659                                struct drm_i915_gem_execbuffer2 *args,
660                                struct list_head *vmas,
661                                struct drm_i915_gem_object *batch_obj,
662                                u64 exec_start, u32 flags)
663 {
664         struct drm_i915_private *dev_priv = dev->dev_private;
665         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
666         int instp_mode;
667         u32 instp_mask;
668         int ret;
669
670         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
671         instp_mask = I915_EXEC_CONSTANTS_MASK;
672         switch (instp_mode) {
673         case I915_EXEC_CONSTANTS_REL_GENERAL:
674         case I915_EXEC_CONSTANTS_ABSOLUTE:
675         case I915_EXEC_CONSTANTS_REL_SURFACE:
676                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
677                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
678                         return -EINVAL;
679                 }
680
681                 if (instp_mode != dev_priv->relative_constants_mode) {
682                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
683                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
684                                 return -EINVAL;
685                         }
686
687                         /* The HW changed the meaning on this bit on gen6 */
688                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
689                 }
690                 break;
691         default:
692                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
693                 return -EINVAL;
694         }
695
696         if (args->num_cliprects != 0) {
697                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
698                 return -EINVAL;
699         } else {
700                 if (args->DR4 == 0xffffffff) {
701                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
702                         args->DR4 = 0;
703                 }
704
705                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
706                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
707                         return -EINVAL;
708                 }
709         }
710
711         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
712                 DRM_DEBUG("sol reset is gen7 only\n");
713                 return -EINVAL;
714         }
715
716         ret = execlists_move_to_gpu(ringbuf, vmas);
717         if (ret)
718                 return ret;
719
720         if (ring == &dev_priv->ring[RCS] &&
721             instp_mode != dev_priv->relative_constants_mode) {
722                 ret = intel_logical_ring_begin(ringbuf, 4);
723                 if (ret)
724                         return ret;
725
726                 intel_logical_ring_emit(ringbuf, MI_NOOP);
727                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
728                 intel_logical_ring_emit(ringbuf, INSTPM);
729                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
730                 intel_logical_ring_advance(ringbuf);
731
732                 dev_priv->relative_constants_mode = instp_mode;
733         }
734
735         ret = ring->emit_bb_start(ringbuf, exec_start, flags);
736         if (ret)
737                 return ret;
738
739         i915_gem_execbuffer_move_to_active(vmas, ring);
740         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
741
742         return 0;
743 }
744
745 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
746 {
747         struct intel_ctx_submit_request *req, *tmp;
748         struct drm_i915_private *dev_priv = ring->dev->dev_private;
749         unsigned long flags;
750         struct list_head retired_list;
751
752         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
753         if (list_empty(&ring->execlist_retired_req_list))
754                 return;
755
756         INIT_LIST_HEAD(&retired_list);
757         spin_lock_irqsave(&ring->execlist_lock, flags);
758         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
759         spin_unlock_irqrestore(&ring->execlist_lock, flags);
760
761         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
762                 struct intel_context *ctx = req->ctx;
763                 struct drm_i915_gem_object *ctx_obj =
764                                 ctx->engine[ring->id].state;
765
766                 if (ctx_obj && (ctx != ring->default_context))
767                         intel_lr_context_unpin(ring, ctx);
768                 intel_runtime_pm_put(dev_priv);
769                 i915_gem_context_unreference(req->ctx);
770                 list_del(&req->execlist_link);
771                 kfree(req);
772         }
773 }
774
775 void intel_logical_ring_stop(struct intel_engine_cs *ring)
776 {
777         struct drm_i915_private *dev_priv = ring->dev->dev_private;
778         int ret;
779
780         if (!intel_ring_initialized(ring))
781                 return;
782
783         ret = intel_ring_idle(ring);
784         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
785                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
786                           ring->name, ret);
787
788         /* TODO: Is this correct with Execlists enabled? */
789         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
790         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
791                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
792                 return;
793         }
794         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
795 }
796
797 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
798 {
799         struct intel_engine_cs *ring = ringbuf->ring;
800         int ret;
801
802         if (!ring->gpu_caches_dirty)
803                 return 0;
804
805         ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
806         if (ret)
807                 return ret;
808
809         ring->gpu_caches_dirty = false;
810         return 0;
811 }
812
813 /**
814  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
815  * @ringbuf: Logical Ringbuffer to advance.
816  *
817  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
818  * really happens during submission is that the context and current tail will be placed
819  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
820  * point, the tail *inside* the context is updated and the ELSP written to.
821  */
822 void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
823 {
824         struct intel_engine_cs *ring = ringbuf->ring;
825         struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
826
827         intel_logical_ring_advance(ringbuf);
828
829         if (intel_ring_stopped(ring))
830                 return;
831
832         execlists_context_queue(ring, ctx, ringbuf->tail);
833 }
834
835 static int intel_lr_context_pin(struct intel_engine_cs *ring,
836                 struct intel_context *ctx)
837 {
838         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
839         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
840         int ret = 0;
841
842         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
843         if (ctx->engine[ring->id].unpin_count++ == 0) {
844                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
845                                 GEN8_LR_CONTEXT_ALIGN, 0);
846                 if (ret)
847                         goto reset_unpin_count;
848
849                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
850                 if (ret)
851                         goto unpin_ctx_obj;
852         }
853
854         return ret;
855
856 unpin_ctx_obj:
857         i915_gem_object_ggtt_unpin(ctx_obj);
858 reset_unpin_count:
859         ctx->engine[ring->id].unpin_count = 0;
860
861         return ret;
862 }
863
864 void intel_lr_context_unpin(struct intel_engine_cs *ring,
865                 struct intel_context *ctx)
866 {
867         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
868         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
869
870         if (ctx_obj) {
871                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
872                 if (--ctx->engine[ring->id].unpin_count == 0) {
873                         intel_unpin_ringbuffer_obj(ringbuf);
874                         i915_gem_object_ggtt_unpin(ctx_obj);
875                 }
876         }
877 }
878
879 static int logical_ring_alloc_request(struct intel_engine_cs *ring,
880                                       struct intel_context *ctx)
881 {
882         struct drm_i915_gem_request *request;
883         int ret;
884
885         if (ring->outstanding_lazy_request)
886                 return 0;
887
888         request = kmalloc(sizeof(*request), GFP_KERNEL);
889         if (request == NULL)
890                 return -ENOMEM;
891
892         if (ctx != ring->default_context) {
893                 ret = intel_lr_context_pin(ring, ctx);
894                 if (ret) {
895                         kfree(request);
896                         return ret;
897                 }
898         }
899
900         kref_init(&request->ref);
901         request->ring = ring;
902
903         ret = i915_gem_get_seqno(ring->dev, &request->seqno);
904         if (ret) {
905                 intel_lr_context_unpin(ring, ctx);
906                 kfree(request);
907                 return ret;
908         }
909
910         /* Hold a reference to the context this request belongs to
911          * (we will need it when the time comes to emit/retire the
912          * request).
913          */
914         request->ctx = ctx;
915         i915_gem_context_reference(request->ctx);
916
917         ring->outstanding_lazy_request = request;
918         return 0;
919 }
920
921 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
922                                      int bytes)
923 {
924         struct intel_engine_cs *ring = ringbuf->ring;
925         struct drm_i915_gem_request *request;
926         int ret;
927
928         if (intel_ring_space(ringbuf) >= bytes)
929                 return 0;
930
931         list_for_each_entry(request, &ring->request_list, list) {
932                 /*
933                  * The request queue is per-engine, so can contain requests
934                  * from multiple ringbuffers. Here, we must ignore any that
935                  * aren't from the ringbuffer we're considering.
936                  */
937                 struct intel_context *ctx = request->ctx;
938                 if (ctx->engine[ring->id].ringbuf != ringbuf)
939                         continue;
940
941                 /* Would completion of this request free enough space? */
942                 if (__intel_ring_space(request->tail, ringbuf->tail,
943                                        ringbuf->size) >= bytes) {
944                         break;
945                 }
946         }
947
948         if (&request->list == &ring->request_list)
949                 return -ENOSPC;
950
951         ret = i915_wait_request(request);
952         if (ret)
953                 return ret;
954
955         i915_gem_retire_requests_ring(ring);
956
957         return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
958 }
959
960 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
961                                        int bytes)
962 {
963         struct intel_engine_cs *ring = ringbuf->ring;
964         struct drm_device *dev = ring->dev;
965         struct drm_i915_private *dev_priv = dev->dev_private;
966         unsigned long end;
967         int ret;
968
969         ret = logical_ring_wait_request(ringbuf, bytes);
970         if (ret != -ENOSPC)
971                 return ret;
972
973         /* Force the context submission in case we have been skipping it */
974         intel_logical_ring_advance_and_submit(ringbuf);
975
976         /* With GEM the hangcheck timer should kick us out of the loop,
977          * leaving it early runs the risk of corrupting GEM state (due
978          * to running on almost untested codepaths). But on resume
979          * timers don't work yet, so prevent a complete hang in that
980          * case by choosing an insanely large timeout. */
981         end = jiffies + 60 * HZ;
982
983         ret = 0;
984         do {
985                 if (intel_ring_space(ringbuf) >= bytes)
986                         break;
987
988                 msleep(1);
989
990                 if (dev_priv->mm.interruptible && signal_pending(current)) {
991                         ret = -ERESTARTSYS;
992                         break;
993                 }
994
995                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
996                                            dev_priv->mm.interruptible);
997                 if (ret)
998                         break;
999
1000                 if (time_after(jiffies, end)) {
1001                         ret = -EBUSY;
1002                         break;
1003                 }
1004         } while (1);
1005
1006         return ret;
1007 }
1008
1009 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
1010 {
1011         uint32_t __iomem *virt;
1012         int rem = ringbuf->size - ringbuf->tail;
1013
1014         if (ringbuf->space < rem) {
1015                 int ret = logical_ring_wait_for_space(ringbuf, rem);
1016
1017                 if (ret)
1018                         return ret;
1019         }
1020
1021         virt = ringbuf->virtual_start + ringbuf->tail;
1022         rem /= 4;
1023         while (rem--)
1024                 iowrite32(MI_NOOP, virt++);
1025
1026         ringbuf->tail = 0;
1027         intel_ring_update_space(ringbuf);
1028
1029         return 0;
1030 }
1031
1032 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
1033 {
1034         int ret;
1035
1036         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1037                 ret = logical_ring_wrap_buffer(ringbuf);
1038                 if (unlikely(ret))
1039                         return ret;
1040         }
1041
1042         if (unlikely(ringbuf->space < bytes)) {
1043                 ret = logical_ring_wait_for_space(ringbuf, bytes);
1044                 if (unlikely(ret))
1045                         return ret;
1046         }
1047
1048         return 0;
1049 }
1050
1051 /**
1052  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1053  *
1054  * @ringbuf: Logical ringbuffer.
1055  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1056  *
1057  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1058  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1059  * and also preallocates a request (every workload submission is still mediated through
1060  * requests, same as it did with legacy ringbuffer submission).
1061  *
1062  * Return: non-zero if the ringbuffer is not ready to be written to.
1063  */
1064 int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
1065 {
1066         struct intel_engine_cs *ring = ringbuf->ring;
1067         struct drm_device *dev = ring->dev;
1068         struct drm_i915_private *dev_priv = dev->dev_private;
1069         int ret;
1070
1071         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1072                                    dev_priv->mm.interruptible);
1073         if (ret)
1074                 return ret;
1075
1076         ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
1077         if (ret)
1078                 return ret;
1079
1080         /* Preallocate the olr before touching the ring */
1081         ret = logical_ring_alloc_request(ring, ringbuf->FIXME_lrc_ctx);
1082         if (ret)
1083                 return ret;
1084
1085         ringbuf->space -= num_dwords * sizeof(uint32_t);
1086         return 0;
1087 }
1088
1089 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1090                                                struct intel_context *ctx)
1091 {
1092         int ret, i;
1093         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1094         struct drm_device *dev = ring->dev;
1095         struct drm_i915_private *dev_priv = dev->dev_private;
1096         struct i915_workarounds *w = &dev_priv->workarounds;
1097
1098         if (WARN_ON(w->count == 0))
1099                 return 0;
1100
1101         ring->gpu_caches_dirty = true;
1102         ret = logical_ring_flush_all_caches(ringbuf);
1103         if (ret)
1104                 return ret;
1105
1106         ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
1107         if (ret)
1108                 return ret;
1109
1110         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1111         for (i = 0; i < w->count; i++) {
1112                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1113                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1114         }
1115         intel_logical_ring_emit(ringbuf, MI_NOOP);
1116
1117         intel_logical_ring_advance(ringbuf);
1118
1119         ring->gpu_caches_dirty = true;
1120         ret = logical_ring_flush_all_caches(ringbuf);
1121         if (ret)
1122                 return ret;
1123
1124         return 0;
1125 }
1126
1127 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1128 {
1129         struct drm_device *dev = ring->dev;
1130         struct drm_i915_private *dev_priv = dev->dev_private;
1131
1132         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1133         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1134
1135         I915_WRITE(RING_MODE_GEN7(ring),
1136                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1137                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1138         POSTING_READ(RING_MODE_GEN7(ring));
1139         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1140
1141         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1142
1143         return 0;
1144 }
1145
1146 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1147 {
1148         struct drm_device *dev = ring->dev;
1149         struct drm_i915_private *dev_priv = dev->dev_private;
1150         int ret;
1151
1152         ret = gen8_init_common_ring(ring);
1153         if (ret)
1154                 return ret;
1155
1156         /* We need to disable the AsyncFlip performance optimisations in order
1157          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1158          * programmed to '1' on all products.
1159          *
1160          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1161          */
1162         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1163
1164         ret = intel_init_pipe_control(ring);
1165         if (ret)
1166                 return ret;
1167
1168         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1169
1170         return init_workarounds_ring(ring);
1171 }
1172
1173 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1174                               u64 offset, unsigned flags)
1175 {
1176         bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1177         int ret;
1178
1179         ret = intel_logical_ring_begin(ringbuf, 4);
1180         if (ret)
1181                 return ret;
1182
1183         /* FIXME(BDW): Address space and security selectors. */
1184         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1185         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1186         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1187         intel_logical_ring_emit(ringbuf, MI_NOOP);
1188         intel_logical_ring_advance(ringbuf);
1189
1190         return 0;
1191 }
1192
1193 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1194 {
1195         struct drm_device *dev = ring->dev;
1196         struct drm_i915_private *dev_priv = dev->dev_private;
1197         unsigned long flags;
1198
1199         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1200                 return false;
1201
1202         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1203         if (ring->irq_refcount++ == 0) {
1204                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1205                 POSTING_READ(RING_IMR(ring->mmio_base));
1206         }
1207         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1208
1209         return true;
1210 }
1211
1212 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1213 {
1214         struct drm_device *dev = ring->dev;
1215         struct drm_i915_private *dev_priv = dev->dev_private;
1216         unsigned long flags;
1217
1218         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1219         if (--ring->irq_refcount == 0) {
1220                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1221                 POSTING_READ(RING_IMR(ring->mmio_base));
1222         }
1223         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1224 }
1225
1226 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1227                            u32 invalidate_domains,
1228                            u32 unused)
1229 {
1230         struct intel_engine_cs *ring = ringbuf->ring;
1231         struct drm_device *dev = ring->dev;
1232         struct drm_i915_private *dev_priv = dev->dev_private;
1233         uint32_t cmd;
1234         int ret;
1235
1236         ret = intel_logical_ring_begin(ringbuf, 4);
1237         if (ret)
1238                 return ret;
1239
1240         cmd = MI_FLUSH_DW + 1;
1241
1242         if (ring == &dev_priv->ring[VCS]) {
1243                 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1244                         cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1245                                 MI_FLUSH_DW_STORE_INDEX |
1246                                 MI_FLUSH_DW_OP_STOREDW;
1247         } else {
1248                 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1249                         cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1250                                 MI_FLUSH_DW_OP_STOREDW;
1251         }
1252
1253         intel_logical_ring_emit(ringbuf, cmd);
1254         intel_logical_ring_emit(ringbuf,
1255                                 I915_GEM_HWS_SCRATCH_ADDR |
1256                                 MI_FLUSH_DW_USE_GTT);
1257         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1258         intel_logical_ring_emit(ringbuf, 0); /* value */
1259         intel_logical_ring_advance(ringbuf);
1260
1261         return 0;
1262 }
1263
1264 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1265                                   u32 invalidate_domains,
1266                                   u32 flush_domains)
1267 {
1268         struct intel_engine_cs *ring = ringbuf->ring;
1269         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1270         u32 flags = 0;
1271         int ret;
1272
1273         flags |= PIPE_CONTROL_CS_STALL;
1274
1275         if (flush_domains) {
1276                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1277                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1278         }
1279
1280         if (invalidate_domains) {
1281                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1282                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1283                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1284                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1285                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1286                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1287                 flags |= PIPE_CONTROL_QW_WRITE;
1288                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1289         }
1290
1291         ret = intel_logical_ring_begin(ringbuf, 6);
1292         if (ret)
1293                 return ret;
1294
1295         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1296         intel_logical_ring_emit(ringbuf, flags);
1297         intel_logical_ring_emit(ringbuf, scratch_addr);
1298         intel_logical_ring_emit(ringbuf, 0);
1299         intel_logical_ring_emit(ringbuf, 0);
1300         intel_logical_ring_emit(ringbuf, 0);
1301         intel_logical_ring_advance(ringbuf);
1302
1303         return 0;
1304 }
1305
1306 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1307 {
1308         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1309 }
1310
1311 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1312 {
1313         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1314 }
1315
1316 static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1317 {
1318         struct intel_engine_cs *ring = ringbuf->ring;
1319         u32 cmd;
1320         int ret;
1321
1322         ret = intel_logical_ring_begin(ringbuf, 6);
1323         if (ret)
1324                 return ret;
1325
1326         cmd = MI_STORE_DWORD_IMM_GEN8;
1327         cmd |= MI_GLOBAL_GTT;
1328
1329         intel_logical_ring_emit(ringbuf, cmd);
1330         intel_logical_ring_emit(ringbuf,
1331                                 (ring->status_page.gfx_addr +
1332                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1333         intel_logical_ring_emit(ringbuf, 0);
1334         intel_logical_ring_emit(ringbuf,
1335                 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1336         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1337         intel_logical_ring_emit(ringbuf, MI_NOOP);
1338         intel_logical_ring_advance_and_submit(ringbuf);
1339
1340         return 0;
1341 }
1342
1343 /**
1344  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1345  *
1346  * @ring: Engine Command Streamer.
1347  *
1348  */
1349 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1350 {
1351         struct drm_i915_private *dev_priv;
1352
1353         if (!intel_ring_initialized(ring))
1354                 return;
1355
1356         dev_priv = ring->dev->dev_private;
1357
1358         intel_logical_ring_stop(ring);
1359         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1360         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1361
1362         if (ring->cleanup)
1363                 ring->cleanup(ring);
1364
1365         i915_cmd_parser_fini_ring(ring);
1366
1367         if (ring->status_page.obj) {
1368                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1369                 ring->status_page.obj = NULL;
1370         }
1371 }
1372
1373 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1374 {
1375         int ret;
1376
1377         /* Intentionally left blank. */
1378         ring->buffer = NULL;
1379
1380         ring->dev = dev;
1381         INIT_LIST_HEAD(&ring->active_list);
1382         INIT_LIST_HEAD(&ring->request_list);
1383         init_waitqueue_head(&ring->irq_queue);
1384
1385         INIT_LIST_HEAD(&ring->execlist_queue);
1386         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1387         spin_lock_init(&ring->execlist_lock);
1388         ring->next_context_status_buffer = 0;
1389
1390         ret = i915_cmd_parser_init_ring(ring);
1391         if (ret)
1392                 return ret;
1393
1394         if (ring->init_hw) {
1395                 ret = ring->init_hw(ring);
1396                 if (ret)
1397                         return ret;
1398         }
1399
1400         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1401
1402         return ret;
1403 }
1404
1405 static int logical_render_ring_init(struct drm_device *dev)
1406 {
1407         struct drm_i915_private *dev_priv = dev->dev_private;
1408         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1409
1410         ring->name = "render ring";
1411         ring->id = RCS;
1412         ring->mmio_base = RENDER_RING_BASE;
1413         ring->irq_enable_mask =
1414                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1415         ring->irq_keep_mask =
1416                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1417         if (HAS_L3_DPF(dev))
1418                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1419
1420         ring->init_hw = gen8_init_render_ring;
1421         ring->init_context = intel_logical_ring_workarounds_emit;
1422         ring->cleanup = intel_fini_pipe_control;
1423         ring->get_seqno = gen8_get_seqno;
1424         ring->set_seqno = gen8_set_seqno;
1425         ring->emit_request = gen8_emit_request;
1426         ring->emit_flush = gen8_emit_flush_render;
1427         ring->irq_get = gen8_logical_ring_get_irq;
1428         ring->irq_put = gen8_logical_ring_put_irq;
1429         ring->emit_bb_start = gen8_emit_bb_start;
1430
1431         return logical_ring_init(dev, ring);
1432 }
1433
1434 static int logical_bsd_ring_init(struct drm_device *dev)
1435 {
1436         struct drm_i915_private *dev_priv = dev->dev_private;
1437         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1438
1439         ring->name = "bsd ring";
1440         ring->id = VCS;
1441         ring->mmio_base = GEN6_BSD_RING_BASE;
1442         ring->irq_enable_mask =
1443                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1444         ring->irq_keep_mask =
1445                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1446
1447         ring->init_hw = gen8_init_common_ring;
1448         ring->get_seqno = gen8_get_seqno;
1449         ring->set_seqno = gen8_set_seqno;
1450         ring->emit_request = gen8_emit_request;
1451         ring->emit_flush = gen8_emit_flush;
1452         ring->irq_get = gen8_logical_ring_get_irq;
1453         ring->irq_put = gen8_logical_ring_put_irq;
1454         ring->emit_bb_start = gen8_emit_bb_start;
1455
1456         return logical_ring_init(dev, ring);
1457 }
1458
1459 static int logical_bsd2_ring_init(struct drm_device *dev)
1460 {
1461         struct drm_i915_private *dev_priv = dev->dev_private;
1462         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1463
1464         ring->name = "bds2 ring";
1465         ring->id = VCS2;
1466         ring->mmio_base = GEN8_BSD2_RING_BASE;
1467         ring->irq_enable_mask =
1468                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1469         ring->irq_keep_mask =
1470                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1471
1472         ring->init_hw = gen8_init_common_ring;
1473         ring->get_seqno = gen8_get_seqno;
1474         ring->set_seqno = gen8_set_seqno;
1475         ring->emit_request = gen8_emit_request;
1476         ring->emit_flush = gen8_emit_flush;
1477         ring->irq_get = gen8_logical_ring_get_irq;
1478         ring->irq_put = gen8_logical_ring_put_irq;
1479         ring->emit_bb_start = gen8_emit_bb_start;
1480
1481         return logical_ring_init(dev, ring);
1482 }
1483
1484 static int logical_blt_ring_init(struct drm_device *dev)
1485 {
1486         struct drm_i915_private *dev_priv = dev->dev_private;
1487         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1488
1489         ring->name = "blitter ring";
1490         ring->id = BCS;
1491         ring->mmio_base = BLT_RING_BASE;
1492         ring->irq_enable_mask =
1493                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1494         ring->irq_keep_mask =
1495                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1496
1497         ring->init_hw = gen8_init_common_ring;
1498         ring->get_seqno = gen8_get_seqno;
1499         ring->set_seqno = gen8_set_seqno;
1500         ring->emit_request = gen8_emit_request;
1501         ring->emit_flush = gen8_emit_flush;
1502         ring->irq_get = gen8_logical_ring_get_irq;
1503         ring->irq_put = gen8_logical_ring_put_irq;
1504         ring->emit_bb_start = gen8_emit_bb_start;
1505
1506         return logical_ring_init(dev, ring);
1507 }
1508
1509 static int logical_vebox_ring_init(struct drm_device *dev)
1510 {
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1513
1514         ring->name = "video enhancement ring";
1515         ring->id = VECS;
1516         ring->mmio_base = VEBOX_RING_BASE;
1517         ring->irq_enable_mask =
1518                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1519         ring->irq_keep_mask =
1520                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1521
1522         ring->init_hw = gen8_init_common_ring;
1523         ring->get_seqno = gen8_get_seqno;
1524         ring->set_seqno = gen8_set_seqno;
1525         ring->emit_request = gen8_emit_request;
1526         ring->emit_flush = gen8_emit_flush;
1527         ring->irq_get = gen8_logical_ring_get_irq;
1528         ring->irq_put = gen8_logical_ring_put_irq;
1529         ring->emit_bb_start = gen8_emit_bb_start;
1530
1531         return logical_ring_init(dev, ring);
1532 }
1533
1534 /**
1535  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1536  * @dev: DRM device.
1537  *
1538  * This function inits the engines for an Execlists submission style (the equivalent in the
1539  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1540  * those engines that are present in the hardware.
1541  *
1542  * Return: non-zero if the initialization failed.
1543  */
1544 int intel_logical_rings_init(struct drm_device *dev)
1545 {
1546         struct drm_i915_private *dev_priv = dev->dev_private;
1547         int ret;
1548
1549         ret = logical_render_ring_init(dev);
1550         if (ret)
1551                 return ret;
1552
1553         if (HAS_BSD(dev)) {
1554                 ret = logical_bsd_ring_init(dev);
1555                 if (ret)
1556                         goto cleanup_render_ring;
1557         }
1558
1559         if (HAS_BLT(dev)) {
1560                 ret = logical_blt_ring_init(dev);
1561                 if (ret)
1562                         goto cleanup_bsd_ring;
1563         }
1564
1565         if (HAS_VEBOX(dev)) {
1566                 ret = logical_vebox_ring_init(dev);
1567                 if (ret)
1568                         goto cleanup_blt_ring;
1569         }
1570
1571         if (HAS_BSD2(dev)) {
1572                 ret = logical_bsd2_ring_init(dev);
1573                 if (ret)
1574                         goto cleanup_vebox_ring;
1575         }
1576
1577         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1578         if (ret)
1579                 goto cleanup_bsd2_ring;
1580
1581         return 0;
1582
1583 cleanup_bsd2_ring:
1584         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1585 cleanup_vebox_ring:
1586         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1587 cleanup_blt_ring:
1588         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1589 cleanup_bsd_ring:
1590         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1591 cleanup_render_ring:
1592         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1593
1594         return ret;
1595 }
1596
1597 int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1598                                        struct intel_context *ctx)
1599 {
1600         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1601         struct render_state so;
1602         struct drm_i915_file_private *file_priv = ctx->file_priv;
1603         struct drm_file *file = file_priv ? file_priv->file : NULL;
1604         int ret;
1605
1606         ret = i915_gem_render_state_prepare(ring, &so);
1607         if (ret)
1608                 return ret;
1609
1610         if (so.rodata == NULL)
1611                 return 0;
1612
1613         ret = ring->emit_bb_start(ringbuf,
1614                         so.ggtt_offset,
1615                         I915_DISPATCH_SECURE);
1616         if (ret)
1617                 goto out;
1618
1619         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1620
1621         ret = __i915_add_request(ring, file, so.obj);
1622         /* intel_logical_ring_add_request moves object to inactive if it
1623          * fails */
1624 out:
1625         i915_gem_render_state_fini(&so);
1626         return ret;
1627 }
1628
1629 static int
1630 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1631                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1632 {
1633         struct drm_device *dev = ring->dev;
1634         struct drm_i915_private *dev_priv = dev->dev_private;
1635         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1636         struct page *page;
1637         uint32_t *reg_state;
1638         int ret;
1639
1640         if (!ppgtt)
1641                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1642
1643         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1644         if (ret) {
1645                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1646                 return ret;
1647         }
1648
1649         ret = i915_gem_object_get_pages(ctx_obj);
1650         if (ret) {
1651                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1652                 return ret;
1653         }
1654
1655         i915_gem_object_pin_pages(ctx_obj);
1656
1657         /* The second page of the context object contains some fields which must
1658          * be set up prior to the first execution. */
1659         page = i915_gem_object_get_page(ctx_obj, 1);
1660         reg_state = kmap_atomic(page);
1661
1662         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1663          * commands followed by (reg, value) pairs. The values we are setting here are
1664          * only for the first context restore: on a subsequent save, the GPU will
1665          * recreate this batchbuffer with new values (including all the missing
1666          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1667         if (ring->id == RCS)
1668                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1669         else
1670                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1671         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1672         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1673         reg_state[CTX_CONTEXT_CONTROL+1] =
1674                         _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1675         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1676         reg_state[CTX_RING_HEAD+1] = 0;
1677         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1678         reg_state[CTX_RING_TAIL+1] = 0;
1679         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1680         /* Ring buffer start address is not known until the buffer is pinned.
1681          * It is written to the context image in execlists_update_context()
1682          */
1683         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1684         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1685                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1686         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1687         reg_state[CTX_BB_HEAD_U+1] = 0;
1688         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1689         reg_state[CTX_BB_HEAD_L+1] = 0;
1690         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1691         reg_state[CTX_BB_STATE+1] = (1<<5);
1692         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1693         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1694         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1695         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1696         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1697         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1698         if (ring->id == RCS) {
1699                 /* TODO: according to BSpec, the register state context
1700                  * for CHV does not have these. OTOH, these registers do
1701                  * exist in CHV. I'm waiting for a clarification */
1702                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1703                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1704                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1705                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1706                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1707                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1708         }
1709         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1710         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1711         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1712         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1713         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1714         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1715         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1716         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1717         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1718         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1719         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1720         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1721         reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1722         reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1723         reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1724         reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1725         reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1726         reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1727         reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1728         reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1729         if (ring->id == RCS) {
1730                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1731                 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1732                 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1733         }
1734
1735         kunmap_atomic(reg_state);
1736
1737         ctx_obj->dirty = 1;
1738         set_page_dirty(page);
1739         i915_gem_object_unpin_pages(ctx_obj);
1740
1741         return 0;
1742 }
1743
1744 /**
1745  * intel_lr_context_free() - free the LRC specific bits of a context
1746  * @ctx: the LR context to free.
1747  *
1748  * The real context freeing is done in i915_gem_context_free: this only
1749  * takes care of the bits that are LRC related: the per-engine backing
1750  * objects and the logical ringbuffer.
1751  */
1752 void intel_lr_context_free(struct intel_context *ctx)
1753 {
1754         int i;
1755
1756         for (i = 0; i < I915_NUM_RINGS; i++) {
1757                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1758
1759                 if (ctx_obj) {
1760                         struct intel_ringbuffer *ringbuf =
1761                                         ctx->engine[i].ringbuf;
1762                         struct intel_engine_cs *ring = ringbuf->ring;
1763
1764                         if (ctx == ring->default_context) {
1765                                 intel_unpin_ringbuffer_obj(ringbuf);
1766                                 i915_gem_object_ggtt_unpin(ctx_obj);
1767                         }
1768                         intel_destroy_ringbuffer_obj(ringbuf);
1769                         kfree(ringbuf);
1770                         drm_gem_object_unreference(&ctx_obj->base);
1771                 }
1772         }
1773 }
1774
1775 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1776 {
1777         int ret = 0;
1778
1779         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1780
1781         switch (ring->id) {
1782         case RCS:
1783                 if (INTEL_INFO(ring->dev)->gen >= 9)
1784                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1785                 else
1786                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1787                 break;
1788         case VCS:
1789         case BCS:
1790         case VECS:
1791         case VCS2:
1792                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1793                 break;
1794         }
1795
1796         return ret;
1797 }
1798
1799 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1800                 struct drm_i915_gem_object *default_ctx_obj)
1801 {
1802         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1803
1804         /* The status page is offset 0 from the default context object
1805          * in LRC mode. */
1806         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1807         ring->status_page.page_addr =
1808                         kmap(sg_page(default_ctx_obj->pages->sgl));
1809         ring->status_page.obj = default_ctx_obj;
1810
1811         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1812                         (u32)ring->status_page.gfx_addr);
1813         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1814 }
1815
1816 /**
1817  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1818  * @ctx: LR context to create.
1819  * @ring: engine to be used with the context.
1820  *
1821  * This function can be called more than once, with different engines, if we plan
1822  * to use the context with them. The context backing objects and the ringbuffers
1823  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1824  * the creation is a deferred call: it's better to make sure first that we need to use
1825  * a given ring with the context.
1826  *
1827  * Return: non-zero on error.
1828  */
1829 int intel_lr_context_deferred_create(struct intel_context *ctx,
1830                                      struct intel_engine_cs *ring)
1831 {
1832         const bool is_global_default_ctx = (ctx == ring->default_context);
1833         struct drm_device *dev = ring->dev;
1834         struct drm_i915_gem_object *ctx_obj;
1835         uint32_t context_size;
1836         struct intel_ringbuffer *ringbuf;
1837         int ret;
1838
1839         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1840         if (ctx->engine[ring->id].state)
1841                 return 0;
1842
1843         context_size = round_up(get_lr_context_size(ring), 4096);
1844
1845         ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1846         if (IS_ERR(ctx_obj)) {
1847                 ret = PTR_ERR(ctx_obj);
1848                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1849                 return ret;
1850         }
1851
1852         if (is_global_default_ctx) {
1853                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1854                 if (ret) {
1855                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1856                                         ret);
1857                         drm_gem_object_unreference(&ctx_obj->base);
1858                         return ret;
1859                 }
1860         }
1861
1862         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1863         if (!ringbuf) {
1864                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1865                                 ring->name);
1866                 ret = -ENOMEM;
1867                 goto error_unpin_ctx;
1868         }
1869
1870         ringbuf->ring = ring;
1871         ringbuf->FIXME_lrc_ctx = ctx;
1872
1873         ringbuf->size = 32 * PAGE_SIZE;
1874         ringbuf->effective_size = ringbuf->size;
1875         ringbuf->head = 0;
1876         ringbuf->tail = 0;
1877         ringbuf->last_retired_head = -1;
1878         intel_ring_update_space(ringbuf);
1879
1880         if (ringbuf->obj == NULL) {
1881                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1882                 if (ret) {
1883                         DRM_DEBUG_DRIVER(
1884                                 "Failed to allocate ringbuffer obj %s: %d\n",
1885                                 ring->name, ret);
1886                         goto error_free_rbuf;
1887                 }
1888
1889                 if (is_global_default_ctx) {
1890                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1891                         if (ret) {
1892                                 DRM_ERROR(
1893                                         "Failed to pin and map ringbuffer %s: %d\n",
1894                                         ring->name, ret);
1895                                 goto error_destroy_rbuf;
1896                         }
1897                 }
1898
1899         }
1900
1901         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1902         if (ret) {
1903                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1904                 goto error;
1905         }
1906
1907         ctx->engine[ring->id].ringbuf = ringbuf;
1908         ctx->engine[ring->id].state = ctx_obj;
1909
1910         if (ctx == ring->default_context)
1911                 lrc_setup_hardware_status_page(ring, ctx_obj);
1912
1913         if (ring->id == RCS && !ctx->rcs_initialized) {
1914                 if (ring->init_context) {
1915                         ret = ring->init_context(ring, ctx);
1916                         if (ret)
1917                                 DRM_ERROR("ring init context: %d\n", ret);
1918                 }
1919
1920                 ret = intel_lr_context_render_state_init(ring, ctx);
1921                 if (ret) {
1922                         DRM_ERROR("Init render state failed: %d\n", ret);
1923                         ctx->engine[ring->id].ringbuf = NULL;
1924                         ctx->engine[ring->id].state = NULL;
1925                         goto error;
1926                 }
1927                 ctx->rcs_initialized = true;
1928         }
1929
1930         return 0;
1931
1932 error:
1933         if (is_global_default_ctx)
1934                 intel_unpin_ringbuffer_obj(ringbuf);
1935 error_destroy_rbuf:
1936         intel_destroy_ringbuffer_obj(ringbuf);
1937 error_free_rbuf:
1938         kfree(ringbuf);
1939 error_unpin_ctx:
1940         if (is_global_default_ctx)
1941                 i915_gem_object_ggtt_unpin(ctx_obj);
1942         drm_gem_object_unreference(&ctx_obj->base);
1943         return ret;
1944 }