c17419bb8bc09ec21f705b9946f4a2e51f637f5d
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79                                 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81                                    struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84                           int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86                                   struct intel_framebuffer *ifb,
87                                   struct drm_mode_fb_cmd2 *mode_cmd,
88                                   struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92                                          struct intel_link_m_n *m_n,
93                                          struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98                             const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104         if (!connector->mst_port)
105                 return connector->encoder;
106         else
107                 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111         int     min, max;
112 } intel_range_t;
113
114 typedef struct {
115         int     dot_limit;
116         int     p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
122         intel_p2_t          p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128         struct drm_i915_private *dev_priv = dev->dev_private;
129
130         WARN_ON(!HAS_PCH_SPLIT(dev));
131
132         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138         if (IS_GEN5(dev)) {
139                 struct drm_i915_private *dev_priv = dev->dev_private;
140                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141         } else
142                 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146         .dot = { .min = 25000, .max = 350000 },
147         .vco = { .min = 908000, .max = 1512000 },
148         .n = { .min = 2, .max = 16 },
149         .m = { .min = 96, .max = 140 },
150         .m1 = { .min = 18, .max = 26 },
151         .m2 = { .min = 6, .max = 16 },
152         .p = { .min = 4, .max = 128 },
153         .p1 = { .min = 2, .max = 33 },
154         .p2 = { .dot_limit = 165000,
155                 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159         .dot = { .min = 25000, .max = 350000 },
160         .vco = { .min = 908000, .max = 1512000 },
161         .n = { .min = 2, .max = 16 },
162         .m = { .min = 96, .max = 140 },
163         .m1 = { .min = 18, .max = 26 },
164         .m2 = { .min = 6, .max = 16 },
165         .p = { .min = 4, .max = 128 },
166         .p1 = { .min = 2, .max = 33 },
167         .p2 = { .dot_limit = 165000,
168                 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172         .dot = { .min = 25000, .max = 350000 },
173         .vco = { .min = 908000, .max = 1512000 },
174         .n = { .min = 2, .max = 16 },
175         .m = { .min = 96, .max = 140 },
176         .m1 = { .min = 18, .max = 26 },
177         .m2 = { .min = 6, .max = 16 },
178         .p = { .min = 4, .max = 128 },
179         .p1 = { .min = 1, .max = 6 },
180         .p2 = { .dot_limit = 165000,
181                 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185         .dot = { .min = 20000, .max = 400000 },
186         .vco = { .min = 1400000, .max = 2800000 },
187         .n = { .min = 1, .max = 6 },
188         .m = { .min = 70, .max = 120 },
189         .m1 = { .min = 8, .max = 18 },
190         .m2 = { .min = 3, .max = 7 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8 },
193         .p2 = { .dot_limit = 200000,
194                 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198         .dot = { .min = 20000, .max = 400000 },
199         .vco = { .min = 1400000, .max = 2800000 },
200         .n = { .min = 1, .max = 6 },
201         .m = { .min = 70, .max = 120 },
202         .m1 = { .min = 8, .max = 18 },
203         .m2 = { .min = 3, .max = 7 },
204         .p = { .min = 7, .max = 98 },
205         .p1 = { .min = 1, .max = 8 },
206         .p2 = { .dot_limit = 112000,
207                 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212         .dot = { .min = 25000, .max = 270000 },
213         .vco = { .min = 1750000, .max = 3500000},
214         .n = { .min = 1, .max = 4 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 10, .max = 30 },
219         .p1 = { .min = 1, .max = 3},
220         .p2 = { .dot_limit = 270000,
221                 .p2_slow = 10,
222                 .p2_fast = 10
223         },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227         .dot = { .min = 22000, .max = 400000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 16, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 5, .max = 80 },
234         .p1 = { .min = 1, .max = 8},
235         .p2 = { .dot_limit = 165000,
236                 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240         .dot = { .min = 20000, .max = 115000 },
241         .vco = { .min = 1750000, .max = 3500000 },
242         .n = { .min = 1, .max = 3 },
243         .m = { .min = 104, .max = 138 },
244         .m1 = { .min = 17, .max = 23 },
245         .m2 = { .min = 5, .max = 11 },
246         .p = { .min = 28, .max = 112 },
247         .p1 = { .min = 2, .max = 8 },
248         .p2 = { .dot_limit = 0,
249                 .p2_slow = 14, .p2_fast = 14
250         },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254         .dot = { .min = 80000, .max = 224000 },
255         .vco = { .min = 1750000, .max = 3500000 },
256         .n = { .min = 1, .max = 3 },
257         .m = { .min = 104, .max = 138 },
258         .m1 = { .min = 17, .max = 23 },
259         .m2 = { .min = 5, .max = 11 },
260         .p = { .min = 14, .max = 42 },
261         .p1 = { .min = 2, .max = 6 },
262         .p2 = { .dot_limit = 0,
263                 .p2_slow = 7, .p2_fast = 7
264         },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268         .dot = { .min = 20000, .max = 400000},
269         .vco = { .min = 1700000, .max = 3500000 },
270         /* Pineview's Ncounter is a ring counter */
271         .n = { .min = 3, .max = 6 },
272         .m = { .min = 2, .max = 256 },
273         /* Pineview only has one combined m divider, which we treat as m2. */
274         .m1 = { .min = 0, .max = 0 },
275         .m2 = { .min = 0, .max = 254 },
276         .p = { .min = 5, .max = 80 },
277         .p1 = { .min = 1, .max = 8 },
278         .p2 = { .dot_limit = 200000,
279                 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283         .dot = { .min = 20000, .max = 400000 },
284         .vco = { .min = 1700000, .max = 3500000 },
285         .n = { .min = 3, .max = 6 },
286         .m = { .min = 2, .max = 256 },
287         .m1 = { .min = 0, .max = 0 },
288         .m2 = { .min = 0, .max = 254 },
289         .p = { .min = 7, .max = 112 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 112000,
292                 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296  *
297  * We calculate clock using (register_value + 2) for N/M1/M2, so here
298  * the range value for them is (actual_value - 2).
299  */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 5 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 5, .max = 80 },
308         .p1 = { .min = 1, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314         .dot = { .min = 25000, .max = 350000 },
315         .vco = { .min = 1760000, .max = 3510000 },
316         .n = { .min = 1, .max = 3 },
317         .m = { .min = 79, .max = 118 },
318         .m1 = { .min = 12, .max = 22 },
319         .m2 = { .min = 5, .max = 9 },
320         .p = { .min = 28, .max = 112 },
321         .p1 = { .min = 2, .max = 8 },
322         .p2 = { .dot_limit = 225000,
323                 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327         .dot = { .min = 25000, .max = 350000 },
328         .vco = { .min = 1760000, .max = 3510000 },
329         .n = { .min = 1, .max = 3 },
330         .m = { .min = 79, .max = 127 },
331         .m1 = { .min = 12, .max = 22 },
332         .m2 = { .min = 5, .max = 9 },
333         .p = { .min = 14, .max = 56 },
334         .p1 = { .min = 2, .max = 8 },
335         .p2 = { .dot_limit = 225000,
336                 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341         .dot = { .min = 25000, .max = 350000 },
342         .vco = { .min = 1760000, .max = 3510000 },
343         .n = { .min = 1, .max = 2 },
344         .m = { .min = 79, .max = 126 },
345         .m1 = { .min = 12, .max = 22 },
346         .m2 = { .min = 5, .max = 9 },
347         .p = { .min = 28, .max = 112 },
348         .p1 = { .min = 2, .max = 8 },
349         .p2 = { .dot_limit = 225000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 79, .max = 126 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 14, .max = 42 },
361         .p1 = { .min = 2, .max = 6 },
362         .p2 = { .dot_limit = 225000,
363                 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367          /*
368           * These are the data rate limits (measured in fast clocks)
369           * since those are the strictest limits we have. The fast
370           * clock and actual rate limits are more relaxed, so checking
371           * them would make no difference.
372           */
373         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374         .vco = { .min = 4000000, .max = 6000000 },
375         .n = { .min = 1, .max = 7 },
376         .m1 = { .min = 2, .max = 3 },
377         .m2 = { .min = 11, .max = 156 },
378         .p1 = { .min = 2, .max = 3 },
379         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383         /*
384          * These are the data rate limits (measured in fast clocks)
385          * since those are the strictest limits we have.  The fast
386          * clock and actual rate limits are more relaxed, so checking
387          * them would make no difference.
388          */
389         .dot = { .min = 25000 * 5, .max = 540000 * 5},
390         .vco = { .min = 4860000, .max = 6700000 },
391         .n = { .min = 1, .max = 1 },
392         .m1 = { .min = 2, .max = 2 },
393         .m2 = { .min = 24 << 22, .max = 175 << 22 },
394         .p1 = { .min = 2, .max = 4 },
395         .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400         clock->m = clock->m1 * clock->m2;
401         clock->p = clock->p1 * clock->p2;
402         if (WARN_ON(clock->n == 0 || clock->p == 0))
403                 return;
404         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409  * Returns whether any output on the specified pipe is of the specified type
410  */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
412 {
413         struct drm_device *dev = crtc->base.dev;
414         struct intel_encoder *encoder;
415
416         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417                 if (encoder->type == type)
418                         return true;
419
420         return false;
421 }
422
423 /**
424  * Returns whether any output on the specified pipe will have the specified
425  * type after a staged modeset is complete, i.e., the same as
426  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427  * encoder->crtc.
428  */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431         struct drm_device *dev = crtc->base.dev;
432         struct intel_encoder *encoder;
433
434         for_each_intel_encoder(dev, encoder)
435                 if (encoder->new_crtc == crtc && encoder->type == type)
436                         return true;
437
438         return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442                                                 int refclk)
443 {
444         struct drm_device *dev = crtc->base.dev;
445         const intel_limit_t *limit;
446
447         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448                 if (intel_is_dual_link_lvds(dev)) {
449                         if (refclk == 100000)
450                                 limit = &intel_limits_ironlake_dual_lvds_100m;
451                         else
452                                 limit = &intel_limits_ironlake_dual_lvds;
453                 } else {
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_single_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_single_lvds;
458                 }
459         } else
460                 limit = &intel_limits_ironlake_dac;
461
462         return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467         struct drm_device *dev = crtc->base.dev;
468         const intel_limit_t *limit;
469
470         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471                 if (intel_is_dual_link_lvds(dev))
472                         limit = &intel_limits_g4x_dual_channel_lvds;
473                 else
474                         limit = &intel_limits_g4x_single_channel_lvds;
475         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477                 limit = &intel_limits_g4x_hdmi;
478         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479                 limit = &intel_limits_g4x_sdvo;
480         } else /* The option is for other outputs */
481                 limit = &intel_limits_i9xx_sdvo;
482
483         return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488         struct drm_device *dev = crtc->base.dev;
489         const intel_limit_t *limit;
490
491         if (HAS_PCH_SPLIT(dev))
492                 limit = intel_ironlake_limit(crtc, refclk);
493         else if (IS_G4X(dev)) {
494                 limit = intel_g4x_limit(crtc);
495         } else if (IS_PINEVIEW(dev)) {
496                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497                         limit = &intel_limits_pineview_lvds;
498                 else
499                         limit = &intel_limits_pineview_sdvo;
500         } else if (IS_CHERRYVIEW(dev)) {
501                 limit = &intel_limits_chv;
502         } else if (IS_VALLEYVIEW(dev)) {
503                 limit = &intel_limits_vlv;
504         } else if (!IS_GEN2(dev)) {
505                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506                         limit = &intel_limits_i9xx_lvds;
507                 else
508                         limit = &intel_limits_i9xx_sdvo;
509         } else {
510                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511                         limit = &intel_limits_i8xx_lvds;
512                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513                         limit = &intel_limits_i8xx_dvo;
514                 else
515                         limit = &intel_limits_i8xx_dac;
516         }
517         return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = clock->m2 + 2;
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538         clock->m = i9xx_dpll_compute_m(clock);
539         clock->p = clock->p1 * clock->p2;
540         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541                 return;
542         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548         clock->m = clock->m1 * clock->m2;
549         clock->p = clock->p1 * clock->p2;
550         if (WARN_ON(clock->n == 0 || clock->p == 0))
551                 return;
552         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553                         clock->n << 22);
554         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559  * Returns whether the given set of divisors are valid for a given refclk with
560  * the given connectors.
561  */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564                                const intel_limit_t *limit,
565                                const intel_clock_t *clock)
566 {
567         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
568                 INTELPllInvalid("n out of range\n");
569         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
570                 INTELPllInvalid("p1 out of range\n");
571         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
572                 INTELPllInvalid("m2 out of range\n");
573         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
574                 INTELPllInvalid("m1 out of range\n");
575
576         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577                 if (clock->m1 <= clock->m2)
578                         INTELPllInvalid("m1 <= m2\n");
579
580         if (!IS_VALLEYVIEW(dev)) {
581                 if (clock->p < limit->p.min || limit->p.max < clock->p)
582                         INTELPllInvalid("p out of range\n");
583                 if (clock->m < limit->m.min || limit->m.max < clock->m)
584                         INTELPllInvalid("m out of range\n");
585         }
586
587         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588                 INTELPllInvalid("vco out of range\n");
589         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590          * connector, etc., rather than just a single range.
591          */
592         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593                 INTELPllInvalid("dot out of range\n");
594
595         return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600                     int target, int refclk, intel_clock_t *match_clock,
601                     intel_clock_t *best_clock)
602 {
603         struct drm_device *dev = crtc->base.dev;
604         intel_clock_t clock;
605         int err = target;
606
607         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608                 /*
609                  * For LVDS just rely on its current settings for dual-channel.
610                  * We haven't figured out how to reliably set up different
611                  * single/dual channel state, if we even can.
612                  */
613                 if (intel_is_dual_link_lvds(dev))
614                         clock.p2 = limit->p2.p2_fast;
615                 else
616                         clock.p2 = limit->p2.p2_slow;
617         } else {
618                 if (target < limit->p2.dot_limit)
619                         clock.p2 = limit->p2.p2_slow;
620                 else
621                         clock.p2 = limit->p2.p2_fast;
622         }
623
624         memset(best_clock, 0, sizeof(*best_clock));
625
626         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627              clock.m1++) {
628                 for (clock.m2 = limit->m2.min;
629                      clock.m2 <= limit->m2.max; clock.m2++) {
630                         if (clock.m2 >= clock.m1)
631                                 break;
632                         for (clock.n = limit->n.min;
633                              clock.n <= limit->n.max; clock.n++) {
634                                 for (clock.p1 = limit->p1.min;
635                                         clock.p1 <= limit->p1.max; clock.p1++) {
636                                         int this_err;
637
638                                         i9xx_clock(refclk, &clock);
639                                         if (!intel_PLL_is_valid(dev, limit,
640                                                                 &clock))
641                                                 continue;
642                                         if (match_clock &&
643                                             clock.p != match_clock->p)
644                                                 continue;
645
646                                         this_err = abs(clock.dot - target);
647                                         if (this_err < err) {
648                                                 *best_clock = clock;
649                                                 err = this_err;
650                                         }
651                                 }
652                         }
653                 }
654         }
655
656         return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661                    int target, int refclk, intel_clock_t *match_clock,
662                    intel_clock_t *best_clock)
663 {
664         struct drm_device *dev = crtc->base.dev;
665         intel_clock_t clock;
666         int err = target;
667
668         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 /*
670                  * For LVDS just rely on its current settings for dual-channel.
671                  * We haven't figured out how to reliably set up different
672                  * single/dual channel state, if we even can.
673                  */
674                 if (intel_is_dual_link_lvds(dev))
675                         clock.p2 = limit->p2.p2_fast;
676                 else
677                         clock.p2 = limit->p2.p2_slow;
678         } else {
679                 if (target < limit->p2.dot_limit)
680                         clock.p2 = limit->p2.p2_slow;
681                 else
682                         clock.p2 = limit->p2.p2_fast;
683         }
684
685         memset(best_clock, 0, sizeof(*best_clock));
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         for (clock.n = limit->n.min;
692                              clock.n <= limit->n.max; clock.n++) {
693                                 for (clock.p1 = limit->p1.min;
694                                         clock.p1 <= limit->p1.max; clock.p1++) {
695                                         int this_err;
696
697                                         pineview_clock(refclk, &clock);
698                                         if (!intel_PLL_is_valid(dev, limit,
699                                                                 &clock))
700                                                 continue;
701                                         if (match_clock &&
702                                             clock.p != match_clock->p)
703                                                 continue;
704
705                                         this_err = abs(clock.dot - target);
706                                         if (this_err < err) {
707                                                 *best_clock = clock;
708                                                 err = this_err;
709                                         }
710                                 }
711                         }
712                 }
713         }
714
715         return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->base.dev;
724         intel_clock_t clock;
725         int max_n;
726         bool found;
727         /* approximately equals target * 0.00585 */
728         int err_most = (target >> 8) + (target >> 9);
729         found = false;
730
731         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732                 if (intel_is_dual_link_lvds(dev))
733                         clock.p2 = limit->p2.p2_fast;
734                 else
735                         clock.p2 = limit->p2.p2_slow;
736         } else {
737                 if (target < limit->p2.dot_limit)
738                         clock.p2 = limit->p2.p2_slow;
739                 else
740                         clock.p2 = limit->p2.p2_fast;
741         }
742
743         memset(best_clock, 0, sizeof(*best_clock));
744         max_n = limit->n.max;
745         /* based on hardware requirement, prefer smaller n to precision */
746         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747                 /* based on hardware requirement, prefere larger m1,m2 */
748                 for (clock.m1 = limit->m1.max;
749                      clock.m1 >= limit->m1.min; clock.m1--) {
750                         for (clock.m2 = limit->m2.max;
751                              clock.m2 >= limit->m2.min; clock.m2--) {
752                                 for (clock.p1 = limit->p1.max;
753                                      clock.p1 >= limit->p1.min; clock.p1--) {
754                                         int this_err;
755
756                                         i9xx_clock(refclk, &clock);
757                                         if (!intel_PLL_is_valid(dev, limit,
758                                                                 &clock))
759                                                 continue;
760
761                                         this_err = abs(clock.dot - target);
762                                         if (this_err < err_most) {
763                                                 *best_clock = clock;
764                                                 err_most = this_err;
765                                                 max_n = clock.n;
766                                                 found = true;
767                                         }
768                                 }
769                         }
770                 }
771         }
772         return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         intel_clock_t clock;
782         unsigned int bestppm = 1000000;
783         /* min update 19.2 MHz */
784         int max_n = min(limit->n.max, refclk / 19200);
785         bool found = false;
786
787         target *= 5; /* fast clock */
788
789         memset(best_clock, 0, sizeof(*best_clock));
790
791         /* based on hardware requirement, prefer smaller n to precision */
792         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796                                 clock.p = clock.p1 * clock.p2;
797                                 /* based on hardware requirement, prefer bigger m1,m2 values */
798                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799                                         unsigned int ppm, diff;
800
801                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802                                                                      refclk * clock.m1);
803
804                                         vlv_clock(refclk, &clock);
805
806                                         if (!intel_PLL_is_valid(dev, limit,
807                                                                 &clock))
808                                                 continue;
809
810                                         diff = abs(clock.dot - target);
811                                         ppm = div_u64(1000000ULL * diff, target);
812
813                                         if (ppm < 100 && clock.p > best_clock->p) {
814                                                 bestppm = 0;
815                                                 *best_clock = clock;
816                                                 found = true;
817                                         }
818
819                                         if (bestppm >= 10 && ppm < bestppm - 10) {
820                                                 bestppm = ppm;
821                                                 *best_clock = clock;
822                                                 found = true;
823                                         }
824                                 }
825                         }
826                 }
827         }
828
829         return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834                    int target, int refclk, intel_clock_t *match_clock,
835                    intel_clock_t *best_clock)
836 {
837         struct drm_device *dev = crtc->base.dev;
838         intel_clock_t clock;
839         uint64_t m2;
840         int found = false;
841
842         memset(best_clock, 0, sizeof(*best_clock));
843
844         /*
845          * Based on hardware doc, the n always set to 1, and m1 always
846          * set to 2.  If requires to support 200Mhz refclk, we need to
847          * revisit this because n may not 1 anymore.
848          */
849         clock.n = 1, clock.m1 = 2;
850         target *= 5;    /* fast clock */
851
852         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853                 for (clock.p2 = limit->p2.p2_fast;
854                                 clock.p2 >= limit->p2.p2_slow;
855                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857                         clock.p = clock.p1 * clock.p2;
858
859                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860                                         clock.n) << 22, refclk * clock.m1);
861
862                         if (m2 > INT_MAX/clock.m1)
863                                 continue;
864
865                         clock.m2 = m2;
866
867                         chv_clock(refclk, &clock);
868
869                         if (!intel_PLL_is_valid(dev, limit, &clock))
870                                 continue;
871
872                         /* based on hardware requirement, prefer bigger p
873                          */
874                         if (clock.p > best_clock->p) {
875                                 *best_clock = clock;
876                                 found = true;
877                         }
878                 }
879         }
880
881         return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888         /* Be paranoid as we can arrive here with only partial
889          * state retrieved from the hardware during setup.
890          *
891          * We can ditch the adjusted_mode.crtc_clock check as soon
892          * as Haswell has gained clock readout/fastboot support.
893          *
894          * We can ditch the crtc->primary->fb check as soon as we can
895          * properly reconstruct framebuffers.
896          */
897         return intel_crtc->active && crtc->primary->fb &&
898                 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902                                              enum pipe pipe)
903 {
904         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907         return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         u32 reg = PIPEDSL(pipe);
914         u32 line1, line2;
915         u32 line_mask;
916
917         if (IS_GEN2(dev))
918                 line_mask = DSL_LINEMASK_GEN2;
919         else
920                 line_mask = DSL_LINEMASK_GEN3;
921
922         line1 = I915_READ(reg) & line_mask;
923         mdelay(5);
924         line2 = I915_READ(reg) & line_mask;
925
926         return line1 == line2;
927 }
928
929 /*
930  * intel_wait_for_pipe_off - wait for pipe to turn off
931  * @crtc: crtc whose pipe to wait for
932  *
933  * After disabling a pipe, we can't wait for vblank in the usual way,
934  * spinning on the vblank interrupt status bit, since we won't actually
935  * see an interrupt when the pipe is disabled.
936  *
937  * On Gen4 and above:
938  *   wait for the pipe register state bit to turn off
939  *
940  * Otherwise:
941  *   wait for the display line value to settle (it usually
942  *   ends up stopping at the start of the next frame).
943  *
944  */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947         struct drm_device *dev = crtc->base.dev;
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950         enum pipe pipe = crtc->pipe;
951
952         if (INTEL_INFO(dev)->gen >= 4) {
953                 int reg = PIPECONF(cpu_transcoder);
954
955                 /* Wait for the Pipe State to go off */
956                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957                              100))
958                         WARN(1, "pipe_off wait timed out\n");
959         } else {
960                 /* Wait for the display line to settle */
961                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962                         WARN(1, "pipe_off wait timed out\n");
963         }
964 }
965
966 /*
967  * ibx_digital_port_connected - is the specified port connected?
968  * @dev_priv: i915 private structure
969  * @port: the port to test
970  *
971  * Returns true if @port is connected, false otherwise.
972  */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974                                 struct intel_digital_port *port)
975 {
976         u32 bit;
977
978         if (HAS_PCH_IBX(dev_priv->dev)) {
979                 switch (port->port) {
980                 case PORT_B:
981                         bit = SDE_PORTB_HOTPLUG;
982                         break;
983                 case PORT_C:
984                         bit = SDE_PORTC_HOTPLUG;
985                         break;
986                 case PORT_D:
987                         bit = SDE_PORTD_HOTPLUG;
988                         break;
989                 default:
990                         return true;
991                 }
992         } else {
993                 switch (port->port) {
994                 case PORT_B:
995                         bit = SDE_PORTB_HOTPLUG_CPT;
996                         break;
997                 case PORT_C:
998                         bit = SDE_PORTC_HOTPLUG_CPT;
999                         break;
1000                 case PORT_D:
1001                         bit = SDE_PORTD_HOTPLUG_CPT;
1002                         break;
1003                 default:
1004                         return true;
1005                 }
1006         }
1007
1008         return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013         return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018                 enum pipe pipe, bool state)
1019 {
1020         int reg;
1021         u32 val;
1022         bool cur_state;
1023
1024         reg = DPLL(pipe);
1025         val = I915_READ(reg);
1026         cur_state = !!(val & DPLL_VCO_ENABLE);
1027         WARN(cur_state != state,
1028              "PLL state assertion failure (expected %s, current %s)\n",
1029              state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035         u32 val;
1036         bool cur_state;
1037
1038         mutex_lock(&dev_priv->dpio_lock);
1039         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040         mutex_unlock(&dev_priv->dpio_lock);
1041
1042         cur_state = val & DSI_PLL_VCO_EN;
1043         WARN(cur_state != state,
1044              "DSI PLL state assertion failure (expected %s, current %s)\n",
1045              state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055         if (crtc->config.shared_dpll < 0)
1056                 return NULL;
1057
1058         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063                         struct intel_shared_dpll *pll,
1064                         bool state)
1065 {
1066         bool cur_state;
1067         struct intel_dpll_hw_state hw_state;
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                            enum pipe pipe)
1158 {
1159         struct drm_device *dev = dev_priv->dev;
1160         int pp_reg;
1161         u32 val;
1162         enum pipe panel_pipe = PIPE_A;
1163         bool locked = true;
1164
1165         if (WARN_ON(HAS_DDI(dev)))
1166                 return;
1167
1168         if (HAS_PCH_SPLIT(dev)) {
1169                 u32 port_sel;
1170
1171                 pp_reg = PCH_PP_CONTROL;
1172                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176                         panel_pipe = PIPE_B;
1177                 /* XXX: else fix for eDP */
1178         } else if (IS_VALLEYVIEW(dev)) {
1179                 /* presumably write lock depends on pipe, not port select */
1180                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181                 panel_pipe = pipe;
1182         } else {
1183                 pp_reg = PP_CONTROL;
1184                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185                         panel_pipe = PIPE_B;
1186         }
1187
1188         val = I915_READ(pp_reg);
1189         if (!(val & PANEL_POWER_ON) ||
1190             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191                 locked = false;
1192
1193         WARN(panel_pipe == pipe && locked,
1194              "panel assertion failure, pipe %c regs locked\n",
1195              pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199                           enum pipe pipe, bool state)
1200 {
1201         struct drm_device *dev = dev_priv->dev;
1202         bool cur_state;
1203
1204         if (IS_845G(dev) || IS_I865G(dev))
1205                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206         else
1207                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209         WARN(cur_state != state,
1210              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211              pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217                  enum pipe pipe, bool state)
1218 {
1219         int reg;
1220         u32 val;
1221         bool cur_state;
1222         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223                                                                       pipe);
1224
1225         /* if we need the pipe quirk it must be always on */
1226         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228                 state = true;
1229
1230         if (!intel_display_power_is_enabled(dev_priv,
1231                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int reg, i;
1267         u32 val;
1268         int cur_pipe;
1269
1270         /* Primary planes are fixed to pipes on gen4+ */
1271         if (INTEL_INFO(dev)->gen >= 4) {
1272                 reg = DSPCNTR(pipe);
1273                 val = I915_READ(reg);
1274                 WARN(val & DISPLAY_PLANE_ENABLE,
1275                      "plane %c assertion failure, should be disabled but not\n",
1276                      plane_name(pipe));
1277                 return;
1278         }
1279
1280         /* Need to check both planes against the pipe */
1281         for_each_pipe(dev_priv, i) {
1282                 reg = DSPCNTR(i);
1283                 val = I915_READ(reg);
1284                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285                         DISPPLANE_SEL_PIPE_SHIFT;
1286                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288                      plane_name(i), pipe_name(pipe));
1289         }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293                                     enum pipe pipe)
1294 {
1295         struct drm_device *dev = dev_priv->dev;
1296         int reg, sprite;
1297         u32 val;
1298
1299         if (INTEL_INFO(dev)->gen >= 9) {
1300                 for_each_sprite(pipe, sprite) {
1301                         val = I915_READ(PLANE_CTL(pipe, sprite));
1302                         WARN(val & PLANE_CTL_ENABLE,
1303                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304                              sprite, pipe_name(pipe));
1305                 }
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 for_each_sprite(pipe, sprite) {
1308                         reg = SPCNTR(pipe, sprite);
1309                         val = I915_READ(reg);
1310                         WARN(val & SP_ENABLE,
1311                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312                              sprite_name(pipe, sprite), pipe_name(pipe));
1313                 }
1314         } else if (INTEL_INFO(dev)->gen >= 7) {
1315                 reg = SPRCTL(pipe);
1316                 val = I915_READ(reg);
1317                 WARN(val & SPRITE_ENABLE,
1318                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319                      plane_name(pipe), pipe_name(pipe));
1320         } else if (INTEL_INFO(dev)->gen >= 5) {
1321                 reg = DVSCNTR(pipe);
1322                 val = I915_READ(reg);
1323                 WARN(val & DVS_ENABLE,
1324                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325                      plane_name(pipe), pipe_name(pipe));
1326         }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332                 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337         u32 val;
1338         bool enabled;
1339
1340         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342         val = I915_READ(PCH_DREF_CONTROL);
1343         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344                             DREF_SUPERSPREAD_SOURCE_MASK));
1345         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349                                            enum pipe pipe)
1350 {
1351         int reg;
1352         u32 val;
1353         bool enabled;
1354
1355         reg = PCH_TRANSCONF(pipe);
1356         val = I915_READ(reg);
1357         enabled = !!(val & TRANS_ENABLE);
1358         WARN(enabled,
1359              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360              pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364                             enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366         if ((val & DP_PORT_EN) == 0)
1367                 return false;
1368
1369         if (HAS_PCH_CPT(dev_priv->dev)) {
1370                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373                         return false;
1374         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376                         return false;
1377         } else {
1378                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379                         return false;
1380         }
1381         return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385                               enum pipe pipe, u32 val)
1386 {
1387         if ((val & SDVO_ENABLE) == 0)
1388                 return false;
1389
1390         if (HAS_PCH_CPT(dev_priv->dev)) {
1391                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392                         return false;
1393         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395                         return false;
1396         } else {
1397                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398                         return false;
1399         }
1400         return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404                               enum pipe pipe, u32 val)
1405 {
1406         if ((val & LVDS_PORT_EN) == 0)
1407                 return false;
1408
1409         if (HAS_PCH_CPT(dev_priv->dev)) {
1410                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411                         return false;
1412         } else {
1413                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414                         return false;
1415         }
1416         return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420                               enum pipe pipe, u32 val)
1421 {
1422         if ((val & ADPA_DAC_ENABLE) == 0)
1423                 return false;
1424         if (HAS_PCH_CPT(dev_priv->dev)) {
1425                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426                         return false;
1427         } else {
1428                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429                         return false;
1430         }
1431         return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435                                    enum pipe pipe, int reg, u32 port_sel)
1436 {
1437         u32 val = I915_READ(reg);
1438         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440              reg, pipe_name(pipe));
1441
1442         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443              && (val & DP_PIPEB_SELECT),
1444              "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448                                      enum pipe pipe, int reg)
1449 {
1450         u32 val = I915_READ(reg);
1451         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453              reg, pipe_name(pipe));
1454
1455         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456              && (val & SDVO_PIPE_B_SELECT),
1457              "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461                                       enum pipe pipe)
1462 {
1463         int reg;
1464         u32 val;
1465
1466         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470         reg = PCH_ADPA;
1471         val = I915_READ(reg);
1472         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473              "PCH VGA enabled on transcoder %c, should be disabled\n",
1474              pipe_name(pipe));
1475
1476         reg = PCH_LVDS;
1477         val = I915_READ(reg);
1478         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480              pipe_name(pipe));
1481
1482         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491         if (!IS_VALLEYVIEW(dev))
1492                 return;
1493
1494         /*
1495          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496          * CHV x1 PHY (DP/HDMI D)
1497          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498          */
1499         if (IS_CHERRYVIEW(dev)) {
1500                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502         } else {
1503                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504         }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508                            const struct intel_crtc_config *pipe_config)
1509 {
1510         struct drm_device *dev = crtc->base.dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         int reg = DPLL(crtc->pipe);
1513         u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515         assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517         /* No really, not for ILK+ */
1518         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520         /* PLL is protected by panel, make sure we can write it */
1521         if (IS_MOBILE(dev_priv->dev))
1522                 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524         I915_WRITE(reg, dpll);
1525         POSTING_READ(reg);
1526         udelay(150);
1527
1528         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532         POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534         /* We do this three times for luck */
1535         I915_WRITE(reg, dpll);
1536         POSTING_READ(reg);
1537         udelay(150); /* wait for warmup */
1538         I915_WRITE(reg, dpll);
1539         POSTING_READ(reg);
1540         udelay(150); /* wait for warmup */
1541         I915_WRITE(reg, dpll);
1542         POSTING_READ(reg);
1543         udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547                            const struct intel_crtc_config *pipe_config)
1548 {
1549         struct drm_device *dev = crtc->base.dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         int pipe = crtc->pipe;
1552         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553         u32 tmp;
1554
1555         assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559         mutex_lock(&dev_priv->dpio_lock);
1560
1561         /* Enable back the 10bit clock to display controller */
1562         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563         tmp |= DPIO_DCLKP_EN;
1564         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566         /*
1567          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568          */
1569         udelay(1);
1570
1571         /* Enable PLL */
1572         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574         /* Check PLL is locked */
1575         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578         /* not sure when this should be written */
1579         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580         POSTING_READ(DPLL_MD(pipe));
1581
1582         mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587         struct intel_crtc *crtc;
1588         int count = 0;
1589
1590         for_each_intel_crtc(dev, crtc)
1591                 count += crtc->active &&
1592                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594         return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599         struct drm_device *dev = crtc->base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         int reg = DPLL(crtc->pipe);
1602         u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604         assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606         /* No really, not for ILK+ */
1607         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609         /* PLL is protected by panel, make sure we can write it */
1610         if (IS_MOBILE(dev) && !IS_I830(dev))
1611                 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613         /* Enable DVO 2x clock on both PLLs if necessary */
1614         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615                 /*
1616                  * It appears to be important that we don't enable this
1617                  * for the current pipe before otherwise configuring the
1618                  * PLL. No idea how this should be handled if multiple
1619                  * DVO outputs are enabled simultaneosly.
1620                  */
1621                 dpll |= DPLL_DVO_2X_MODE;
1622                 I915_WRITE(DPLL(!crtc->pipe),
1623                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624         }
1625
1626         /* Wait for the clocks to stabilize. */
1627         POSTING_READ(reg);
1628         udelay(150);
1629
1630         if (INTEL_INFO(dev)->gen >= 4) {
1631                 I915_WRITE(DPLL_MD(crtc->pipe),
1632                            crtc->config.dpll_hw_state.dpll_md);
1633         } else {
1634                 /* The pixel multiplier can only be updated once the
1635                  * DPLL is enabled and the clocks are stable.
1636                  *
1637                  * So write it again.
1638                  */
1639                 I915_WRITE(reg, dpll);
1640         }
1641
1642         /* We do this three times for luck */
1643         I915_WRITE(reg, dpll);
1644         POSTING_READ(reg);
1645         udelay(150); /* wait for warmup */
1646         I915_WRITE(reg, dpll);
1647         POSTING_READ(reg);
1648         udelay(150); /* wait for warmup */
1649         I915_WRITE(reg, dpll);
1650         POSTING_READ(reg);
1651         udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655  * i9xx_disable_pll - disable a PLL
1656  * @dev_priv: i915 private structure
1657  * @pipe: pipe PLL to disable
1658  *
1659  * Disable the PLL for @pipe, making sure the pipe is off first.
1660  *
1661  * Note!  This is for pre-ILK only.
1662  */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665         struct drm_device *dev = crtc->base.dev;
1666         struct drm_i915_private *dev_priv = dev->dev_private;
1667         enum pipe pipe = crtc->pipe;
1668
1669         /* Disable DVO 2x clock on both PLLs if necessary */
1670         if (IS_I830(dev) &&
1671             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672             intel_num_dvo_pipes(dev) == 1) {
1673                 I915_WRITE(DPLL(PIPE_B),
1674                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675                 I915_WRITE(DPLL(PIPE_A),
1676                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677         }
1678
1679         /* Don't disable pipe or pipe PLLs if needed */
1680         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682                 return;
1683
1684         /* Make sure the pipe isn't still relying on us */
1685         assert_pipe_disabled(dev_priv, pipe);
1686
1687         I915_WRITE(DPLL(pipe), 0);
1688         POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693         u32 val = 0;
1694
1695         /* Make sure the pipe isn't still relying on us */
1696         assert_pipe_disabled(dev_priv, pipe);
1697
1698         /*
1699          * Leave integrated clock source and reference clock enabled for pipe B.
1700          * The latter is needed for VGA hotplug / manual detection.
1701          */
1702         if (pipe == PIPE_B)
1703                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704         I915_WRITE(DPLL(pipe), val);
1705         POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712         u32 val;
1713
1714         /* Make sure the pipe isn't still relying on us */
1715         assert_pipe_disabled(dev_priv, pipe);
1716
1717         /* Set PLL en = 0 */
1718         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719         if (pipe != PIPE_A)
1720                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721         I915_WRITE(DPLL(pipe), val);
1722         POSTING_READ(DPLL(pipe));
1723
1724         mutex_lock(&dev_priv->dpio_lock);
1725
1726         /* Disable 10bit clock to display controller */
1727         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728         val &= ~DPIO_DCLKP_EN;
1729         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731         /* disable left/right clock distribution */
1732         if (pipe != PIPE_B) {
1733                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736         } else {
1737                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740         }
1741
1742         mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746                 struct intel_digital_port *dport)
1747 {
1748         u32 port_mask;
1749         int dpll_reg;
1750
1751         switch (dport->port) {
1752         case PORT_B:
1753                 port_mask = DPLL_PORTB_READY_MASK;
1754                 dpll_reg = DPLL(0);
1755                 break;
1756         case PORT_C:
1757                 port_mask = DPLL_PORTC_READY_MASK;
1758                 dpll_reg = DPLL(0);
1759                 break;
1760         case PORT_D:
1761                 port_mask = DPLL_PORTD_READY_MASK;
1762                 dpll_reg = DPIO_PHY_STATUS;
1763                 break;
1764         default:
1765                 BUG();
1766         }
1767
1768         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770                      port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775         struct drm_device *dev = crtc->base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779         if (WARN_ON(pll == NULL))
1780                 return;
1781
1782         WARN_ON(!pll->config.crtc_mask);
1783         if (pll->active == 0) {
1784                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785                 WARN_ON(pll->on);
1786                 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788                 pll->mode_set(dev_priv, pll);
1789         }
1790 }
1791
1792 /**
1793  * intel_enable_shared_dpll - enable PCH PLL
1794  * @dev_priv: i915 private structure
1795  * @pipe: pipe PLL to enable
1796  *
1797  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798  * drives the transcoder clock.
1799  */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806         if (WARN_ON(pll == NULL))
1807                 return;
1808
1809         if (WARN_ON(pll->config.crtc_mask == 0))
1810                 return;
1811
1812         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813                       pll->name, pll->active, pll->on,
1814                       crtc->base.base.id);
1815
1816         if (pll->active++) {
1817                 WARN_ON(!pll->on);
1818                 assert_shared_dpll_enabled(dev_priv, pll);
1819                 return;
1820         }
1821         WARN_ON(pll->on);
1822
1823         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826         pll->enable(dev_priv, pll);
1827         pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832         struct drm_device *dev = crtc->base.dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836         /* PCH only available on ILK+ */
1837         BUG_ON(INTEL_INFO(dev)->gen < 5);
1838         if (WARN_ON(pll == NULL))
1839                return;
1840
1841         if (WARN_ON(pll->config.crtc_mask == 0))
1842                 return;
1843
1844         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845                       pll->name, pll->active, pll->on,
1846                       crtc->base.base.id);
1847
1848         if (WARN_ON(pll->active == 0)) {
1849                 assert_shared_dpll_disabled(dev_priv, pll);
1850                 return;
1851         }
1852
1853         assert_shared_dpll_enabled(dev_priv, pll);
1854         WARN_ON(!pll->on);
1855         if (--pll->active)
1856                 return;
1857
1858         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859         pll->disable(dev_priv, pll);
1860         pll->on = false;
1861
1862         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866                                            enum pipe pipe)
1867 {
1868         struct drm_device *dev = dev_priv->dev;
1869         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871         uint32_t reg, val, pipeconf_val;
1872
1873         /* PCH only available on ILK+ */
1874         BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876         /* Make sure PCH DPLL is enabled */
1877         assert_shared_dpll_enabled(dev_priv,
1878                                    intel_crtc_to_shared_dpll(intel_crtc));
1879
1880         /* FDI must be feeding us bits for PCH ports */
1881         assert_fdi_tx_enabled(dev_priv, pipe);
1882         assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884         if (HAS_PCH_CPT(dev)) {
1885                 /* Workaround: Set the timing override bit before enabling the
1886                  * pch transcoder. */
1887                 reg = TRANS_CHICKEN2(pipe);
1888                 val = I915_READ(reg);
1889                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890                 I915_WRITE(reg, val);
1891         }
1892
1893         reg = PCH_TRANSCONF(pipe);
1894         val = I915_READ(reg);
1895         pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897         if (HAS_PCH_IBX(dev_priv->dev)) {
1898                 /*
1899                  * make the BPC in transcoder be consistent with
1900                  * that in pipeconf reg.
1901                  */
1902                 val &= ~PIPECONF_BPC_MASK;
1903                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904         }
1905
1906         val &= ~TRANS_INTERLACE_MASK;
1907         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908                 if (HAS_PCH_IBX(dev_priv->dev) &&
1909                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910                         val |= TRANS_LEGACY_INTERLACED_ILK;
1911                 else
1912                         val |= TRANS_INTERLACED;
1913         else
1914                 val |= TRANS_PROGRESSIVE;
1915
1916         I915_WRITE(reg, val | TRANS_ENABLE);
1917         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922                                       enum transcoder cpu_transcoder)
1923 {
1924         u32 val, pipeconf_val;
1925
1926         /* PCH only available on ILK+ */
1927         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929         /* FDI must be feeding us bits for PCH ports */
1930         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933         /* Workaround: set timing override bit. */
1934         val = I915_READ(_TRANSA_CHICKEN2);
1935         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936         I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938         val = TRANS_ENABLE;
1939         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942             PIPECONF_INTERLACED_ILK)
1943                 val |= TRANS_INTERLACED;
1944         else
1945                 val |= TRANS_PROGRESSIVE;
1946
1947         I915_WRITE(LPT_TRANSCONF, val);
1948         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949                 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953                                             enum pipe pipe)
1954 {
1955         struct drm_device *dev = dev_priv->dev;
1956         uint32_t reg, val;
1957
1958         /* FDI relies on the transcoder */
1959         assert_fdi_tx_disabled(dev_priv, pipe);
1960         assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962         /* Ports must be off as well */
1963         assert_pch_ports_disabled(dev_priv, pipe);
1964
1965         reg = PCH_TRANSCONF(pipe);
1966         val = I915_READ(reg);
1967         val &= ~TRANS_ENABLE;
1968         I915_WRITE(reg, val);
1969         /* wait for PCH transcoder off, transcoder state */
1970         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973         if (!HAS_PCH_IBX(dev)) {
1974                 /* Workaround: Clear the timing override chicken bit again. */
1975                 reg = TRANS_CHICKEN2(pipe);
1976                 val = I915_READ(reg);
1977                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978                 I915_WRITE(reg, val);
1979         }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984         u32 val;
1985
1986         val = I915_READ(LPT_TRANSCONF);
1987         val &= ~TRANS_ENABLE;
1988         I915_WRITE(LPT_TRANSCONF, val);
1989         /* wait for PCH transcoder off, transcoder state */
1990         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991                 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993         /* Workaround: clear timing override bit. */
1994         val = I915_READ(_TRANSA_CHICKEN2);
1995         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996         I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000  * intel_enable_pipe - enable a pipe, asserting requirements
2001  * @crtc: crtc responsible for the pipe
2002  *
2003  * Enable @crtc's pipe, making sure that various hardware specific requirements
2004  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005  */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008         struct drm_device *dev = crtc->base.dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         enum pipe pipe = crtc->pipe;
2011         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012                                                                       pipe);
2013         enum pipe pch_transcoder;
2014         int reg;
2015         u32 val;
2016
2017         assert_planes_disabled(dev_priv, pipe);
2018         assert_cursor_disabled(dev_priv, pipe);
2019         assert_sprites_disabled(dev_priv, pipe);
2020
2021         if (HAS_PCH_LPT(dev_priv->dev))
2022                 pch_transcoder = TRANSCODER_A;
2023         else
2024                 pch_transcoder = pipe;
2025
2026         /*
2027          * A pipe without a PLL won't actually be able to drive bits from
2028          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2029          * need the check.
2030          */
2031         if (!HAS_PCH_SPLIT(dev_priv->dev))
2032                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033                         assert_dsi_pll_enabled(dev_priv);
2034                 else
2035                         assert_pll_enabled(dev_priv, pipe);
2036         else {
2037                 if (crtc->config.has_pch_encoder) {
2038                         /* if driving the PCH, we need FDI enabled */
2039                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040                         assert_fdi_tx_pll_enabled(dev_priv,
2041                                                   (enum pipe) cpu_transcoder);
2042                 }
2043                 /* FIXME: assert CPU port conditions for SNB+ */
2044         }
2045
2046         reg = PIPECONF(cpu_transcoder);
2047         val = I915_READ(reg);
2048         if (val & PIPECONF_ENABLE) {
2049                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051                 return;
2052         }
2053
2054         I915_WRITE(reg, val | PIPECONF_ENABLE);
2055         POSTING_READ(reg);
2056 }
2057
2058 /**
2059  * intel_disable_pipe - disable a pipe, asserting requirements
2060  * @crtc: crtc whose pipes is to be disabled
2061  *
2062  * Disable the pipe of @crtc, making sure that various hardware
2063  * specific requirements are met, if applicable, e.g. plane
2064  * disabled, panel fitter off, etc.
2065  *
2066  * Will wait until the pipe has shut down before returning.
2067  */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072         enum pipe pipe = crtc->pipe;
2073         int reg;
2074         u32 val;
2075
2076         /*
2077          * Make sure planes won't keep trying to pump pixels to us,
2078          * or we might hang the display.
2079          */
2080         assert_planes_disabled(dev_priv, pipe);
2081         assert_cursor_disabled(dev_priv, pipe);
2082         assert_sprites_disabled(dev_priv, pipe);
2083
2084         reg = PIPECONF(cpu_transcoder);
2085         val = I915_READ(reg);
2086         if ((val & PIPECONF_ENABLE) == 0)
2087                 return;
2088
2089         /*
2090          * Double wide has implications for planes
2091          * so best keep it disabled when not needed.
2092          */
2093         if (crtc->config.double_wide)
2094                 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096         /* Don't disable pipe or pipe PLLs if needed */
2097         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099                 val &= ~PIPECONF_ENABLE;
2100
2101         I915_WRITE(reg, val);
2102         if ((val & PIPECONF_ENABLE) == 0)
2103                 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107  * Plane regs are double buffered, going from enabled->disabled needs a
2108  * trigger in order to latch.  The display address reg provides this.
2109  */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111                                enum plane plane)
2112 {
2113         struct drm_device *dev = dev_priv->dev;
2114         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116         I915_WRITE(reg, I915_READ(reg));
2117         POSTING_READ(reg);
2118 }
2119
2120 /**
2121  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122  * @plane:  plane to be enabled
2123  * @crtc: crtc for the plane
2124  *
2125  * Enable @plane on @crtc, making sure that the pipe is running first.
2126  */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128                                           struct drm_crtc *crtc)
2129 {
2130         struct drm_device *dev = plane->dev;
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137         if (intel_crtc->primary_enabled)
2138                 return;
2139
2140         intel_crtc->primary_enabled = true;
2141
2142         dev_priv->display.update_primary_plane(crtc, plane->fb,
2143                                                crtc->x, crtc->y);
2144
2145         /*
2146          * BDW signals flip done immediately if the plane
2147          * is disabled, even if the plane enable is already
2148          * armed to occur at the next vblank :(
2149          */
2150         if (IS_BROADWELL(dev))
2151                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155  * intel_disable_primary_hw_plane - disable the primary hardware plane
2156  * @plane: plane to be disabled
2157  * @crtc: crtc for the plane
2158  *
2159  * Disable @plane on @crtc, making sure that the pipe is running first.
2160  */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162                                            struct drm_crtc *crtc)
2163 {
2164         struct drm_device *dev = plane->dev;
2165         struct drm_i915_private *dev_priv = dev->dev_private;
2166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170         if (!intel_crtc->primary_enabled)
2171                 return;
2172
2173         intel_crtc->primary_enabled = false;
2174
2175         dev_priv->display.update_primary_plane(crtc, plane->fb,
2176                                                crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183                 return true;
2184 #endif
2185         return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190         int tile_height;
2191
2192         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193         return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198                            struct drm_framebuffer *fb,
2199                            struct intel_engine_cs *pipelined)
2200 {
2201         struct drm_device *dev = fb->dev;
2202         struct drm_i915_private *dev_priv = dev->dev_private;
2203         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2204         u32 alignment;
2205         int ret;
2206
2207         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
2209         switch (obj->tiling_mode) {
2210         case I915_TILING_NONE:
2211                 if (INTEL_INFO(dev)->gen >= 9)
2212                         alignment = 256 * 1024;
2213                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2214                         alignment = 128 * 1024;
2215                 else if (INTEL_INFO(dev)->gen >= 4)
2216                         alignment = 4 * 1024;
2217                 else
2218                         alignment = 64 * 1024;
2219                 break;
2220         case I915_TILING_X:
2221                 if (INTEL_INFO(dev)->gen >= 9)
2222                         alignment = 256 * 1024;
2223                 else {
2224                         /* pin() will align the object as required by fence */
2225                         alignment = 0;
2226                 }
2227                 break;
2228         case I915_TILING_Y:
2229                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2230                 return -EINVAL;
2231         default:
2232                 BUG();
2233         }
2234
2235         /* Note that the w/a also requires 64 PTE of padding following the
2236          * bo. We currently fill all unused PTE with the shadow page and so
2237          * we should always have valid PTE following the scanout preventing
2238          * the VT-d warning.
2239          */
2240         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241                 alignment = 256 * 1024;
2242
2243         /*
2244          * Global gtt pte registers are special registers which actually forward
2245          * writes to a chunk of system memory. Which means that there is no risk
2246          * that the register values disappear as soon as we call
2247          * intel_runtime_pm_put(), so it is correct to wrap only the
2248          * pin/unpin/fence and not more.
2249          */
2250         intel_runtime_pm_get(dev_priv);
2251
2252         dev_priv->mm.interruptible = false;
2253         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2254         if (ret)
2255                 goto err_interruptible;
2256
2257         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258          * fence, whereas 965+ only requires a fence if using
2259          * framebuffer compression.  For simplicity, we always install
2260          * a fence as the cost is not that onerous.
2261          */
2262         ret = i915_gem_object_get_fence(obj);
2263         if (ret)
2264                 goto err_unpin;
2265
2266         i915_gem_object_pin_fence(obj);
2267
2268         dev_priv->mm.interruptible = true;
2269         intel_runtime_pm_put(dev_priv);
2270         return 0;
2271
2272 err_unpin:
2273         i915_gem_object_unpin_from_display_plane(obj);
2274 err_interruptible:
2275         dev_priv->mm.interruptible = true;
2276         intel_runtime_pm_put(dev_priv);
2277         return ret;
2278 }
2279
2280 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281 {
2282         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
2284         i915_gem_object_unpin_fence(obj);
2285         i915_gem_object_unpin_from_display_plane(obj);
2286 }
2287
2288 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289  * is assumed to be a power-of-two. */
2290 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291                                              unsigned int tiling_mode,
2292                                              unsigned int cpp,
2293                                              unsigned int pitch)
2294 {
2295         if (tiling_mode != I915_TILING_NONE) {
2296                 unsigned int tile_rows, tiles;
2297
2298                 tile_rows = *y / 8;
2299                 *y %= 8;
2300
2301                 tiles = *x / (512/cpp);
2302                 *x %= 512/cpp;
2303
2304                 return tile_rows * pitch * 8 + tiles * 4096;
2305         } else {
2306                 unsigned int offset;
2307
2308                 offset = *y * pitch + *x * cpp;
2309                 *y = 0;
2310                 *x = (offset & 4095) / cpp;
2311                 return offset & -4096;
2312         }
2313 }
2314
2315 int intel_format_to_fourcc(int format)
2316 {
2317         switch (format) {
2318         case DISPPLANE_8BPP:
2319                 return DRM_FORMAT_C8;
2320         case DISPPLANE_BGRX555:
2321                 return DRM_FORMAT_XRGB1555;
2322         case DISPPLANE_BGRX565:
2323                 return DRM_FORMAT_RGB565;
2324         default:
2325         case DISPPLANE_BGRX888:
2326                 return DRM_FORMAT_XRGB8888;
2327         case DISPPLANE_RGBX888:
2328                 return DRM_FORMAT_XBGR8888;
2329         case DISPPLANE_BGRX101010:
2330                 return DRM_FORMAT_XRGB2101010;
2331         case DISPPLANE_RGBX101010:
2332                 return DRM_FORMAT_XBGR2101010;
2333         }
2334 }
2335
2336 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2337                                   struct intel_plane_config *plane_config)
2338 {
2339         struct drm_device *dev = crtc->base.dev;
2340         struct drm_i915_gem_object *obj = NULL;
2341         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342         u32 base = plane_config->base;
2343
2344         if (plane_config->size == 0)
2345                 return false;
2346
2347         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348                                                              plane_config->size);
2349         if (!obj)
2350                 return false;
2351
2352         if (plane_config->tiled) {
2353                 obj->tiling_mode = I915_TILING_X;
2354                 obj->stride = crtc->base.primary->fb->pitches[0];
2355         }
2356
2357         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358         mode_cmd.width = crtc->base.primary->fb->width;
2359         mode_cmd.height = crtc->base.primary->fb->height;
2360         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2361
2362         mutex_lock(&dev->struct_mutex);
2363
2364         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2365                                    &mode_cmd, obj)) {
2366                 DRM_DEBUG_KMS("intel fb init failed\n");
2367                 goto out_unref_obj;
2368         }
2369
2370         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2371         mutex_unlock(&dev->struct_mutex);
2372
2373         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374         return true;
2375
2376 out_unref_obj:
2377         drm_gem_object_unreference(&obj->base);
2378         mutex_unlock(&dev->struct_mutex);
2379         return false;
2380 }
2381
2382 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383                                  struct intel_plane_config *plane_config)
2384 {
2385         struct drm_device *dev = intel_crtc->base.dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         struct drm_crtc *c;
2388         struct intel_crtc *i;
2389         struct drm_i915_gem_object *obj;
2390
2391         if (!intel_crtc->base.primary->fb)
2392                 return;
2393
2394         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395                 return;
2396
2397         kfree(intel_crtc->base.primary->fb);
2398         intel_crtc->base.primary->fb = NULL;
2399
2400         /*
2401          * Failed to alloc the obj, check to see if we should share
2402          * an fb with another CRTC instead
2403          */
2404         for_each_crtc(dev, c) {
2405                 i = to_intel_crtc(c);
2406
2407                 if (c == &intel_crtc->base)
2408                         continue;
2409
2410                 if (!i->active)
2411                         continue;
2412
2413                 obj = intel_fb_obj(c->primary->fb);
2414                 if (obj == NULL)
2415                         continue;
2416
2417                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2418                         if (obj->tiling_mode != I915_TILING_NONE)
2419                                 dev_priv->preserve_bios_swizzle = true;
2420
2421                         drm_framebuffer_reference(c->primary->fb);
2422                         intel_crtc->base.primary->fb = c->primary->fb;
2423                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2424                         break;
2425                 }
2426         }
2427 }
2428
2429 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430                                       struct drm_framebuffer *fb,
2431                                       int x, int y)
2432 {
2433         struct drm_device *dev = crtc->dev;
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2436         struct drm_i915_gem_object *obj;
2437         int plane = intel_crtc->plane;
2438         unsigned long linear_offset;
2439         u32 dspcntr;
2440         u32 reg = DSPCNTR(plane);
2441         int pixel_size;
2442
2443         if (!intel_crtc->primary_enabled) {
2444                 I915_WRITE(reg, 0);
2445                 if (INTEL_INFO(dev)->gen >= 4)
2446                         I915_WRITE(DSPSURF(plane), 0);
2447                 else
2448                         I915_WRITE(DSPADDR(plane), 0);
2449                 POSTING_READ(reg);
2450                 return;
2451         }
2452
2453         obj = intel_fb_obj(fb);
2454         if (WARN_ON(obj == NULL))
2455                 return;
2456
2457         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
2459         dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
2461         dspcntr |= DISPLAY_PLANE_ENABLE;
2462
2463         if (INTEL_INFO(dev)->gen < 4) {
2464                 if (intel_crtc->pipe == PIPE_B)
2465                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467                 /* pipesrc and dspsize control the size that is scaled from,
2468                  * which should always be the user's requested size.
2469                  */
2470                 I915_WRITE(DSPSIZE(plane),
2471                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472                            (intel_crtc->config.pipe_src_w - 1));
2473                 I915_WRITE(DSPPOS(plane), 0);
2474         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475                 I915_WRITE(PRIMSIZE(plane),
2476                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477                            (intel_crtc->config.pipe_src_w - 1));
2478                 I915_WRITE(PRIMPOS(plane), 0);
2479                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2480         }
2481
2482         switch (fb->pixel_format) {
2483         case DRM_FORMAT_C8:
2484                 dspcntr |= DISPPLANE_8BPP;
2485                 break;
2486         case DRM_FORMAT_XRGB1555:
2487         case DRM_FORMAT_ARGB1555:
2488                 dspcntr |= DISPPLANE_BGRX555;
2489                 break;
2490         case DRM_FORMAT_RGB565:
2491                 dspcntr |= DISPPLANE_BGRX565;
2492                 break;
2493         case DRM_FORMAT_XRGB8888:
2494         case DRM_FORMAT_ARGB8888:
2495                 dspcntr |= DISPPLANE_BGRX888;
2496                 break;
2497         case DRM_FORMAT_XBGR8888:
2498         case DRM_FORMAT_ABGR8888:
2499                 dspcntr |= DISPPLANE_RGBX888;
2500                 break;
2501         case DRM_FORMAT_XRGB2101010:
2502         case DRM_FORMAT_ARGB2101010:
2503                 dspcntr |= DISPPLANE_BGRX101010;
2504                 break;
2505         case DRM_FORMAT_XBGR2101010:
2506         case DRM_FORMAT_ABGR2101010:
2507                 dspcntr |= DISPPLANE_RGBX101010;
2508                 break;
2509         default:
2510                 BUG();
2511         }
2512
2513         if (INTEL_INFO(dev)->gen >= 4 &&
2514             obj->tiling_mode != I915_TILING_NONE)
2515                 dspcntr |= DISPPLANE_TILED;
2516
2517         if (IS_G4X(dev))
2518                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
2520         linear_offset = y * fb->pitches[0] + x * pixel_size;
2521
2522         if (INTEL_INFO(dev)->gen >= 4) {
2523                 intel_crtc->dspaddr_offset =
2524                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525                                                        pixel_size,
2526                                                        fb->pitches[0]);
2527                 linear_offset -= intel_crtc->dspaddr_offset;
2528         } else {
2529                 intel_crtc->dspaddr_offset = linear_offset;
2530         }
2531
2532         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533                 dspcntr |= DISPPLANE_ROTATE_180;
2534
2535                 x += (intel_crtc->config.pipe_src_w - 1);
2536                 y += (intel_crtc->config.pipe_src_h - 1);
2537
2538                 /* Finding the last pixel of the last line of the display
2539                 data and adding to linear_offset*/
2540                 linear_offset +=
2541                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543         }
2544
2545         I915_WRITE(reg, dspcntr);
2546
2547         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549                       fb->pitches[0]);
2550         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2551         if (INTEL_INFO(dev)->gen >= 4) {
2552                 I915_WRITE(DSPSURF(plane),
2553                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2554                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2556         } else
2557                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2558         POSTING_READ(reg);
2559 }
2560
2561 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562                                           struct drm_framebuffer *fb,
2563                                           int x, int y)
2564 {
2565         struct drm_device *dev = crtc->dev;
2566         struct drm_i915_private *dev_priv = dev->dev_private;
2567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568         struct drm_i915_gem_object *obj;
2569         int plane = intel_crtc->plane;
2570         unsigned long linear_offset;
2571         u32 dspcntr;
2572         u32 reg = DSPCNTR(plane);
2573         int pixel_size;
2574
2575         if (!intel_crtc->primary_enabled) {
2576                 I915_WRITE(reg, 0);
2577                 I915_WRITE(DSPSURF(plane), 0);
2578                 POSTING_READ(reg);
2579                 return;
2580         }
2581
2582         obj = intel_fb_obj(fb);
2583         if (WARN_ON(obj == NULL))
2584                 return;
2585
2586         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
2588         dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
2590         dspcntr |= DISPLAY_PLANE_ENABLE;
2591
2592         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2594
2595         switch (fb->pixel_format) {
2596         case DRM_FORMAT_C8:
2597                 dspcntr |= DISPPLANE_8BPP;
2598                 break;
2599         case DRM_FORMAT_RGB565:
2600                 dspcntr |= DISPPLANE_BGRX565;
2601                 break;
2602         case DRM_FORMAT_XRGB8888:
2603         case DRM_FORMAT_ARGB8888:
2604                 dspcntr |= DISPPLANE_BGRX888;
2605                 break;
2606         case DRM_FORMAT_XBGR8888:
2607         case DRM_FORMAT_ABGR8888:
2608                 dspcntr |= DISPPLANE_RGBX888;
2609                 break;
2610         case DRM_FORMAT_XRGB2101010:
2611         case DRM_FORMAT_ARGB2101010:
2612                 dspcntr |= DISPPLANE_BGRX101010;
2613                 break;
2614         case DRM_FORMAT_XBGR2101010:
2615         case DRM_FORMAT_ABGR2101010:
2616                 dspcntr |= DISPPLANE_RGBX101010;
2617                 break;
2618         default:
2619                 BUG();
2620         }
2621
2622         if (obj->tiling_mode != I915_TILING_NONE)
2623                 dspcntr |= DISPPLANE_TILED;
2624
2625         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2626                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2627
2628         linear_offset = y * fb->pitches[0] + x * pixel_size;
2629         intel_crtc->dspaddr_offset =
2630                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2631                                                pixel_size,
2632                                                fb->pitches[0]);
2633         linear_offset -= intel_crtc->dspaddr_offset;
2634         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635                 dspcntr |= DISPPLANE_ROTATE_180;
2636
2637                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638                         x += (intel_crtc->config.pipe_src_w - 1);
2639                         y += (intel_crtc->config.pipe_src_h - 1);
2640
2641                         /* Finding the last pixel of the last line of the display
2642                         data and adding to linear_offset*/
2643                         linear_offset +=
2644                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646                 }
2647         }
2648
2649         I915_WRITE(reg, dspcntr);
2650
2651         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653                       fb->pitches[0]);
2654         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2655         I915_WRITE(DSPSURF(plane),
2656                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2657         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2658                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659         } else {
2660                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2662         }
2663         POSTING_READ(reg);
2664 }
2665
2666 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667                                          struct drm_framebuffer *fb,
2668                                          int x, int y)
2669 {
2670         struct drm_device *dev = crtc->dev;
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673         struct intel_framebuffer *intel_fb;
2674         struct drm_i915_gem_object *obj;
2675         int pipe = intel_crtc->pipe;
2676         u32 plane_ctl, stride;
2677
2678         if (!intel_crtc->primary_enabled) {
2679                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681                 POSTING_READ(PLANE_CTL(pipe, 0));
2682                 return;
2683         }
2684
2685         plane_ctl = PLANE_CTL_ENABLE |
2686                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2687                     PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689         switch (fb->pixel_format) {
2690         case DRM_FORMAT_RGB565:
2691                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692                 break;
2693         case DRM_FORMAT_XRGB8888:
2694                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695                 break;
2696         case DRM_FORMAT_XBGR8888:
2697                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699                 break;
2700         case DRM_FORMAT_XRGB2101010:
2701                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702                 break;
2703         case DRM_FORMAT_XBGR2101010:
2704                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706                 break;
2707         default:
2708                 BUG();
2709         }
2710
2711         intel_fb = to_intel_framebuffer(fb);
2712         obj = intel_fb->obj;
2713
2714         /*
2715          * The stride is either expressed as a multiple of 64 bytes chunks for
2716          * linear buffers or in number of tiles for tiled buffers.
2717          */
2718         switch (obj->tiling_mode) {
2719         case I915_TILING_NONE:
2720                 stride = fb->pitches[0] >> 6;
2721                 break;
2722         case I915_TILING_X:
2723                 plane_ctl |= PLANE_CTL_TILED_X;
2724                 stride = fb->pitches[0] >> 9;
2725                 break;
2726         default:
2727                 BUG();
2728         }
2729
2730         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2731         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732                 plane_ctl |= PLANE_CTL_ROTATE_180;
2733
2734         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737                       i915_gem_obj_ggtt_offset(obj),
2738                       x, y, fb->width, fb->height,
2739                       fb->pitches[0]);
2740
2741         I915_WRITE(PLANE_POS(pipe, 0), 0);
2742         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743         I915_WRITE(PLANE_SIZE(pipe, 0),
2744                    (intel_crtc->config.pipe_src_h - 1) << 16 |
2745                    (intel_crtc->config.pipe_src_w - 1));
2746         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749         POSTING_READ(PLANE_SURF(pipe, 0));
2750 }
2751
2752 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2753 static int
2754 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755                            int x, int y, enum mode_set_atomic state)
2756 {
2757         struct drm_device *dev = crtc->dev;
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760         if (dev_priv->display.disable_fbc)
2761                 dev_priv->display.disable_fbc(dev);
2762
2763         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765         return 0;
2766 }
2767
2768 static void intel_complete_page_flips(struct drm_device *dev)
2769 {
2770         struct drm_crtc *crtc;
2771
2772         for_each_crtc(dev, crtc) {
2773                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774                 enum plane plane = intel_crtc->plane;
2775
2776                 intel_prepare_page_flip(dev, plane);
2777                 intel_finish_page_flip_plane(dev, plane);
2778         }
2779 }
2780
2781 static void intel_update_primary_planes(struct drm_device *dev)
2782 {
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         struct drm_crtc *crtc;
2785
2786         for_each_crtc(dev, crtc) {
2787                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788
2789                 drm_modeset_lock(&crtc->mutex, NULL);
2790                 /*
2791                  * FIXME: Once we have proper support for primary planes (and
2792                  * disabling them without disabling the entire crtc) allow again
2793                  * a NULL crtc->primary->fb.
2794                  */
2795                 if (intel_crtc->active && crtc->primary->fb)
2796                         dev_priv->display.update_primary_plane(crtc,
2797                                                                crtc->primary->fb,
2798                                                                crtc->x,
2799                                                                crtc->y);
2800                 drm_modeset_unlock(&crtc->mutex);
2801         }
2802 }
2803
2804 void intel_prepare_reset(struct drm_device *dev)
2805 {
2806         struct drm_i915_private *dev_priv = to_i915(dev);
2807         struct intel_crtc *crtc;
2808
2809         /* no reset support for gen2 */
2810         if (IS_GEN2(dev))
2811                 return;
2812
2813         /* reset doesn't touch the display */
2814         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2815                 return;
2816
2817         drm_modeset_lock_all(dev);
2818
2819         /*
2820          * Disabling the crtcs gracefully seems nicer. Also the
2821          * g33 docs say we should at least disable all the planes.
2822          */
2823         for_each_intel_crtc(dev, crtc) {
2824                 if (crtc->active)
2825                         dev_priv->display.crtc_disable(&crtc->base);
2826         }
2827 }
2828
2829 void intel_finish_reset(struct drm_device *dev)
2830 {
2831         struct drm_i915_private *dev_priv = to_i915(dev);
2832
2833         /*
2834          * Flips in the rings will be nuked by the reset,
2835          * so complete all pending flips so that user space
2836          * will get its events and not get stuck.
2837          */
2838         intel_complete_page_flips(dev);
2839
2840         /* no reset support for gen2 */
2841         if (IS_GEN2(dev))
2842                 return;
2843
2844         /* reset doesn't touch the display */
2845         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2846                 /*
2847                  * Flips in the rings have been nuked by the reset,
2848                  * so update the base address of all primary
2849                  * planes to the the last fb to make sure we're
2850                  * showing the correct fb after a reset.
2851                  */
2852                 intel_update_primary_planes(dev);
2853                 return;
2854         }
2855
2856         /*
2857          * The display has been reset as well,
2858          * so need a full re-initialization.
2859          */
2860         intel_runtime_pm_disable_interrupts(dev_priv);
2861         intel_runtime_pm_enable_interrupts(dev_priv);
2862
2863         intel_modeset_init_hw(dev);
2864
2865         spin_lock_irq(&dev_priv->irq_lock);
2866         if (dev_priv->display.hpd_irq_setup)
2867                 dev_priv->display.hpd_irq_setup(dev);
2868         spin_unlock_irq(&dev_priv->irq_lock);
2869
2870         intel_modeset_setup_hw_state(dev, true);
2871
2872         intel_hpd_init(dev_priv);
2873
2874         drm_modeset_unlock_all(dev);
2875 }
2876
2877 static int
2878 intel_finish_fb(struct drm_framebuffer *old_fb)
2879 {
2880         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2881         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2882         bool was_interruptible = dev_priv->mm.interruptible;
2883         int ret;
2884
2885         /* Big Hammer, we also need to ensure that any pending
2886          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2887          * current scanout is retired before unpinning the old
2888          * framebuffer.
2889          *
2890          * This should only fail upon a hung GPU, in which case we
2891          * can safely continue.
2892          */
2893         dev_priv->mm.interruptible = false;
2894         ret = i915_gem_object_finish_gpu(obj);
2895         dev_priv->mm.interruptible = was_interruptible;
2896
2897         return ret;
2898 }
2899
2900 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2901 {
2902         struct drm_device *dev = crtc->dev;
2903         struct drm_i915_private *dev_priv = dev->dev_private;
2904         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2905         bool pending;
2906
2907         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2908             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2909                 return false;
2910
2911         spin_lock_irq(&dev->event_lock);
2912         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2913         spin_unlock_irq(&dev->event_lock);
2914
2915         return pending;
2916 }
2917
2918 static void intel_update_pipe_size(struct intel_crtc *crtc)
2919 {
2920         struct drm_device *dev = crtc->base.dev;
2921         struct drm_i915_private *dev_priv = dev->dev_private;
2922         const struct drm_display_mode *adjusted_mode;
2923
2924         if (!i915.fastboot)
2925                 return;
2926
2927         /*
2928          * Update pipe size and adjust fitter if needed: the reason for this is
2929          * that in compute_mode_changes we check the native mode (not the pfit
2930          * mode) to see if we can flip rather than do a full mode set. In the
2931          * fastboot case, we'll flip, but if we don't update the pipesrc and
2932          * pfit state, we'll end up with a big fb scanned out into the wrong
2933          * sized surface.
2934          *
2935          * To fix this properly, we need to hoist the checks up into
2936          * compute_mode_changes (or above), check the actual pfit state and
2937          * whether the platform allows pfit disable with pipe active, and only
2938          * then update the pipesrc and pfit state, even on the flip path.
2939          */
2940
2941         adjusted_mode = &crtc->config.adjusted_mode;
2942
2943         I915_WRITE(PIPESRC(crtc->pipe),
2944                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2945                    (adjusted_mode->crtc_vdisplay - 1));
2946         if (!crtc->config.pch_pfit.enabled &&
2947             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2948              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2949                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2950                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2951                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2952         }
2953         crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2954         crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2955 }
2956
2957 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2958 {
2959         struct drm_device *dev = crtc->dev;
2960         struct drm_i915_private *dev_priv = dev->dev_private;
2961         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2962         int pipe = intel_crtc->pipe;
2963         u32 reg, temp;
2964
2965         /* enable normal train */
2966         reg = FDI_TX_CTL(pipe);
2967         temp = I915_READ(reg);
2968         if (IS_IVYBRIDGE(dev)) {
2969                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2970                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2971         } else {
2972                 temp &= ~FDI_LINK_TRAIN_NONE;
2973                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2974         }
2975         I915_WRITE(reg, temp);
2976
2977         reg = FDI_RX_CTL(pipe);
2978         temp = I915_READ(reg);
2979         if (HAS_PCH_CPT(dev)) {
2980                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2981                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2982         } else {
2983                 temp &= ~FDI_LINK_TRAIN_NONE;
2984                 temp |= FDI_LINK_TRAIN_NONE;
2985         }
2986         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2987
2988         /* wait one idle pattern time */
2989         POSTING_READ(reg);
2990         udelay(1000);
2991
2992         /* IVB wants error correction enabled */
2993         if (IS_IVYBRIDGE(dev))
2994                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2995                            FDI_FE_ERRC_ENABLE);
2996 }
2997
2998 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2999 {
3000         return crtc->base.enabled && crtc->active &&
3001                 crtc->config.has_pch_encoder;
3002 }
3003
3004 static void ivb_modeset_global_resources(struct drm_device *dev)
3005 {
3006         struct drm_i915_private *dev_priv = dev->dev_private;
3007         struct intel_crtc *pipe_B_crtc =
3008                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3009         struct intel_crtc *pipe_C_crtc =
3010                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3011         uint32_t temp;
3012
3013         /*
3014          * When everything is off disable fdi C so that we could enable fdi B
3015          * with all lanes. Note that we don't care about enabled pipes without
3016          * an enabled pch encoder.
3017          */
3018         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3019             !pipe_has_enabled_pch(pipe_C_crtc)) {
3020                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3021                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3022
3023                 temp = I915_READ(SOUTH_CHICKEN1);
3024                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3025                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3026                 I915_WRITE(SOUTH_CHICKEN1, temp);
3027         }
3028 }
3029
3030 /* The FDI link training functions for ILK/Ibexpeak. */
3031 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3032 {
3033         struct drm_device *dev = crtc->dev;
3034         struct drm_i915_private *dev_priv = dev->dev_private;
3035         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3036         int pipe = intel_crtc->pipe;
3037         u32 reg, temp, tries;
3038
3039         /* FDI needs bits from pipe first */
3040         assert_pipe_enabled(dev_priv, pipe);
3041
3042         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3043            for train result */
3044         reg = FDI_RX_IMR(pipe);
3045         temp = I915_READ(reg);
3046         temp &= ~FDI_RX_SYMBOL_LOCK;
3047         temp &= ~FDI_RX_BIT_LOCK;
3048         I915_WRITE(reg, temp);
3049         I915_READ(reg);
3050         udelay(150);
3051
3052         /* enable CPU FDI TX and PCH FDI RX */
3053         reg = FDI_TX_CTL(pipe);
3054         temp = I915_READ(reg);
3055         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3056         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3057         temp &= ~FDI_LINK_TRAIN_NONE;
3058         temp |= FDI_LINK_TRAIN_PATTERN_1;
3059         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3060
3061         reg = FDI_RX_CTL(pipe);
3062         temp = I915_READ(reg);
3063         temp &= ~FDI_LINK_TRAIN_NONE;
3064         temp |= FDI_LINK_TRAIN_PATTERN_1;
3065         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3066
3067         POSTING_READ(reg);
3068         udelay(150);
3069
3070         /* Ironlake workaround, enable clock pointer after FDI enable*/
3071         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3072         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3073                    FDI_RX_PHASE_SYNC_POINTER_EN);
3074
3075         reg = FDI_RX_IIR(pipe);
3076         for (tries = 0; tries < 5; tries++) {
3077                 temp = I915_READ(reg);
3078                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3079
3080                 if ((temp & FDI_RX_BIT_LOCK)) {
3081                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3082                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3083                         break;
3084                 }
3085         }
3086         if (tries == 5)
3087                 DRM_ERROR("FDI train 1 fail!\n");
3088
3089         /* Train 2 */
3090         reg = FDI_TX_CTL(pipe);
3091         temp = I915_READ(reg);
3092         temp &= ~FDI_LINK_TRAIN_NONE;
3093         temp |= FDI_LINK_TRAIN_PATTERN_2;
3094         I915_WRITE(reg, temp);
3095
3096         reg = FDI_RX_CTL(pipe);
3097         temp = I915_READ(reg);
3098         temp &= ~FDI_LINK_TRAIN_NONE;
3099         temp |= FDI_LINK_TRAIN_PATTERN_2;
3100         I915_WRITE(reg, temp);
3101
3102         POSTING_READ(reg);
3103         udelay(150);
3104
3105         reg = FDI_RX_IIR(pipe);
3106         for (tries = 0; tries < 5; tries++) {
3107                 temp = I915_READ(reg);
3108                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3109
3110                 if (temp & FDI_RX_SYMBOL_LOCK) {
3111                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3112                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3113                         break;
3114                 }
3115         }
3116         if (tries == 5)
3117                 DRM_ERROR("FDI train 2 fail!\n");
3118
3119         DRM_DEBUG_KMS("FDI train done\n");
3120
3121 }
3122
3123 static const int snb_b_fdi_train_param[] = {
3124         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3125         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3126         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3127         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3128 };
3129
3130 /* The FDI link training functions for SNB/Cougarpoint. */
3131 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3132 {
3133         struct drm_device *dev = crtc->dev;
3134         struct drm_i915_private *dev_priv = dev->dev_private;
3135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3136         int pipe = intel_crtc->pipe;
3137         u32 reg, temp, i, retry;
3138
3139         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3140            for train result */
3141         reg = FDI_RX_IMR(pipe);
3142         temp = I915_READ(reg);
3143         temp &= ~FDI_RX_SYMBOL_LOCK;
3144         temp &= ~FDI_RX_BIT_LOCK;
3145         I915_WRITE(reg, temp);
3146
3147         POSTING_READ(reg);
3148         udelay(150);
3149
3150         /* enable CPU FDI TX and PCH FDI RX */
3151         reg = FDI_TX_CTL(pipe);
3152         temp = I915_READ(reg);
3153         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3154         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3155         temp &= ~FDI_LINK_TRAIN_NONE;
3156         temp |= FDI_LINK_TRAIN_PATTERN_1;
3157         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3158         /* SNB-B */
3159         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3160         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3161
3162         I915_WRITE(FDI_RX_MISC(pipe),
3163                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3164
3165         reg = FDI_RX_CTL(pipe);
3166         temp = I915_READ(reg);
3167         if (HAS_PCH_CPT(dev)) {
3168                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3169                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3170         } else {
3171                 temp &= ~FDI_LINK_TRAIN_NONE;
3172                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3173         }
3174         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3175
3176         POSTING_READ(reg);
3177         udelay(150);
3178
3179         for (i = 0; i < 4; i++) {
3180                 reg = FDI_TX_CTL(pipe);
3181                 temp = I915_READ(reg);
3182                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3183                 temp |= snb_b_fdi_train_param[i];
3184                 I915_WRITE(reg, temp);
3185
3186                 POSTING_READ(reg);
3187                 udelay(500);
3188
3189                 for (retry = 0; retry < 5; retry++) {
3190                         reg = FDI_RX_IIR(pipe);
3191                         temp = I915_READ(reg);
3192                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3193                         if (temp & FDI_RX_BIT_LOCK) {
3194                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3195                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3196                                 break;
3197                         }
3198                         udelay(50);
3199                 }
3200                 if (retry < 5)
3201                         break;
3202         }
3203         if (i == 4)
3204                 DRM_ERROR("FDI train 1 fail!\n");
3205
3206         /* Train 2 */
3207         reg = FDI_TX_CTL(pipe);
3208         temp = I915_READ(reg);
3209         temp &= ~FDI_LINK_TRAIN_NONE;
3210         temp |= FDI_LINK_TRAIN_PATTERN_2;
3211         if (IS_GEN6(dev)) {
3212                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3213                 /* SNB-B */
3214                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3215         }
3216         I915_WRITE(reg, temp);
3217
3218         reg = FDI_RX_CTL(pipe);
3219         temp = I915_READ(reg);
3220         if (HAS_PCH_CPT(dev)) {
3221                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3222                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3223         } else {
3224                 temp &= ~FDI_LINK_TRAIN_NONE;
3225                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3226         }
3227         I915_WRITE(reg, temp);
3228
3229         POSTING_READ(reg);
3230         udelay(150);
3231
3232         for (i = 0; i < 4; i++) {
3233                 reg = FDI_TX_CTL(pipe);
3234                 temp = I915_READ(reg);
3235                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3236                 temp |= snb_b_fdi_train_param[i];
3237                 I915_WRITE(reg, temp);
3238
3239                 POSTING_READ(reg);
3240                 udelay(500);
3241
3242                 for (retry = 0; retry < 5; retry++) {
3243                         reg = FDI_RX_IIR(pipe);
3244                         temp = I915_READ(reg);
3245                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3246                         if (temp & FDI_RX_SYMBOL_LOCK) {
3247                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3248                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3249                                 break;
3250                         }
3251                         udelay(50);
3252                 }
3253                 if (retry < 5)
3254                         break;
3255         }
3256         if (i == 4)
3257                 DRM_ERROR("FDI train 2 fail!\n");
3258
3259         DRM_DEBUG_KMS("FDI train done.\n");
3260 }
3261
3262 /* Manual link training for Ivy Bridge A0 parts */
3263 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3264 {
3265         struct drm_device *dev = crtc->dev;
3266         struct drm_i915_private *dev_priv = dev->dev_private;
3267         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3268         int pipe = intel_crtc->pipe;
3269         u32 reg, temp, i, j;
3270
3271         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3272            for train result */
3273         reg = FDI_RX_IMR(pipe);
3274         temp = I915_READ(reg);
3275         temp &= ~FDI_RX_SYMBOL_LOCK;
3276         temp &= ~FDI_RX_BIT_LOCK;
3277         I915_WRITE(reg, temp);
3278
3279         POSTING_READ(reg);
3280         udelay(150);
3281
3282         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3283                       I915_READ(FDI_RX_IIR(pipe)));
3284
3285         /* Try each vswing and preemphasis setting twice before moving on */
3286         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3287                 /* disable first in case we need to retry */
3288                 reg = FDI_TX_CTL(pipe);
3289                 temp = I915_READ(reg);
3290                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3291                 temp &= ~FDI_TX_ENABLE;
3292                 I915_WRITE(reg, temp);
3293
3294                 reg = FDI_RX_CTL(pipe);
3295                 temp = I915_READ(reg);
3296                 temp &= ~FDI_LINK_TRAIN_AUTO;
3297                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3298                 temp &= ~FDI_RX_ENABLE;
3299                 I915_WRITE(reg, temp);
3300
3301                 /* enable CPU FDI TX and PCH FDI RX */
3302                 reg = FDI_TX_CTL(pipe);
3303                 temp = I915_READ(reg);
3304                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3305                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3306                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3307                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3308                 temp |= snb_b_fdi_train_param[j/2];
3309                 temp |= FDI_COMPOSITE_SYNC;
3310                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3311
3312                 I915_WRITE(FDI_RX_MISC(pipe),
3313                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3314
3315                 reg = FDI_RX_CTL(pipe);
3316                 temp = I915_READ(reg);
3317                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3318                 temp |= FDI_COMPOSITE_SYNC;
3319                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3320
3321                 POSTING_READ(reg);
3322                 udelay(1); /* should be 0.5us */
3323
3324                 for (i = 0; i < 4; i++) {
3325                         reg = FDI_RX_IIR(pipe);
3326                         temp = I915_READ(reg);
3327                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3328
3329                         if (temp & FDI_RX_BIT_LOCK ||
3330                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3331                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3332                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3333                                               i);
3334                                 break;
3335                         }
3336                         udelay(1); /* should be 0.5us */
3337                 }
3338                 if (i == 4) {
3339                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3340                         continue;
3341                 }
3342
3343                 /* Train 2 */
3344                 reg = FDI_TX_CTL(pipe);
3345                 temp = I915_READ(reg);
3346                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3347                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3348                 I915_WRITE(reg, temp);
3349
3350                 reg = FDI_RX_CTL(pipe);
3351                 temp = I915_READ(reg);
3352                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3353                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3354                 I915_WRITE(reg, temp);
3355
3356                 POSTING_READ(reg);
3357                 udelay(2); /* should be 1.5us */
3358
3359                 for (i = 0; i < 4; i++) {
3360                         reg = FDI_RX_IIR(pipe);
3361                         temp = I915_READ(reg);
3362                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3363
3364                         if (temp & FDI_RX_SYMBOL_LOCK ||
3365                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3366                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3367                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3368                                               i);
3369                                 goto train_done;
3370                         }
3371                         udelay(2); /* should be 1.5us */
3372                 }
3373                 if (i == 4)
3374                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3375         }
3376
3377 train_done:
3378         DRM_DEBUG_KMS("FDI train done.\n");
3379 }
3380
3381 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3382 {
3383         struct drm_device *dev = intel_crtc->base.dev;
3384         struct drm_i915_private *dev_priv = dev->dev_private;
3385         int pipe = intel_crtc->pipe;
3386         u32 reg, temp;
3387
3388
3389         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3390         reg = FDI_RX_CTL(pipe);
3391         temp = I915_READ(reg);
3392         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3393         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3394         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3395         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3396
3397         POSTING_READ(reg);
3398         udelay(200);
3399
3400         /* Switch from Rawclk to PCDclk */
3401         temp = I915_READ(reg);
3402         I915_WRITE(reg, temp | FDI_PCDCLK);
3403
3404         POSTING_READ(reg);
3405         udelay(200);
3406
3407         /* Enable CPU FDI TX PLL, always on for Ironlake */
3408         reg = FDI_TX_CTL(pipe);
3409         temp = I915_READ(reg);
3410         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3411                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3412
3413                 POSTING_READ(reg);
3414                 udelay(100);
3415         }
3416 }
3417
3418 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3419 {
3420         struct drm_device *dev = intel_crtc->base.dev;
3421         struct drm_i915_private *dev_priv = dev->dev_private;
3422         int pipe = intel_crtc->pipe;
3423         u32 reg, temp;
3424
3425         /* Switch from PCDclk to Rawclk */
3426         reg = FDI_RX_CTL(pipe);
3427         temp = I915_READ(reg);
3428         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3429
3430         /* Disable CPU FDI TX PLL */
3431         reg = FDI_TX_CTL(pipe);
3432         temp = I915_READ(reg);
3433         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3434
3435         POSTING_READ(reg);
3436         udelay(100);
3437
3438         reg = FDI_RX_CTL(pipe);
3439         temp = I915_READ(reg);
3440         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3441
3442         /* Wait for the clocks to turn off. */
3443         POSTING_READ(reg);
3444         udelay(100);
3445 }
3446
3447 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3448 {
3449         struct drm_device *dev = crtc->dev;
3450         struct drm_i915_private *dev_priv = dev->dev_private;
3451         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3452         int pipe = intel_crtc->pipe;
3453         u32 reg, temp;
3454
3455         /* disable CPU FDI tx and PCH FDI rx */
3456         reg = FDI_TX_CTL(pipe);
3457         temp = I915_READ(reg);
3458         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3459         POSTING_READ(reg);
3460
3461         reg = FDI_RX_CTL(pipe);
3462         temp = I915_READ(reg);
3463         temp &= ~(0x7 << 16);
3464         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3465         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3466
3467         POSTING_READ(reg);
3468         udelay(100);
3469
3470         /* Ironlake workaround, disable clock pointer after downing FDI */
3471         if (HAS_PCH_IBX(dev))
3472                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3473
3474         /* still set train pattern 1 */
3475         reg = FDI_TX_CTL(pipe);
3476         temp = I915_READ(reg);
3477         temp &= ~FDI_LINK_TRAIN_NONE;
3478         temp |= FDI_LINK_TRAIN_PATTERN_1;
3479         I915_WRITE(reg, temp);
3480
3481         reg = FDI_RX_CTL(pipe);
3482         temp = I915_READ(reg);
3483         if (HAS_PCH_CPT(dev)) {
3484                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3485                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3486         } else {
3487                 temp &= ~FDI_LINK_TRAIN_NONE;
3488                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3489         }
3490         /* BPC in FDI rx is consistent with that in PIPECONF */
3491         temp &= ~(0x07 << 16);
3492         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3493         I915_WRITE(reg, temp);
3494
3495         POSTING_READ(reg);
3496         udelay(100);
3497 }
3498
3499 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3500 {
3501         struct intel_crtc *crtc;
3502
3503         /* Note that we don't need to be called with mode_config.lock here
3504          * as our list of CRTC objects is static for the lifetime of the
3505          * device and so cannot disappear as we iterate. Similarly, we can
3506          * happily treat the predicates as racy, atomic checks as userspace
3507          * cannot claim and pin a new fb without at least acquring the
3508          * struct_mutex and so serialising with us.
3509          */
3510         for_each_intel_crtc(dev, crtc) {
3511                 if (atomic_read(&crtc->unpin_work_count) == 0)
3512                         continue;
3513
3514                 if (crtc->unpin_work)
3515                         intel_wait_for_vblank(dev, crtc->pipe);
3516
3517                 return true;
3518         }
3519
3520         return false;
3521 }
3522
3523 static void page_flip_completed(struct intel_crtc *intel_crtc)
3524 {
3525         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3526         struct intel_unpin_work *work = intel_crtc->unpin_work;
3527
3528         /* ensure that the unpin work is consistent wrt ->pending. */
3529         smp_rmb();
3530         intel_crtc->unpin_work = NULL;
3531
3532         if (work->event)
3533                 drm_send_vblank_event(intel_crtc->base.dev,
3534                                       intel_crtc->pipe,
3535                                       work->event);
3536
3537         drm_crtc_vblank_put(&intel_crtc->base);
3538
3539         wake_up_all(&dev_priv->pending_flip_queue);
3540         queue_work(dev_priv->wq, &work->work);
3541
3542         trace_i915_flip_complete(intel_crtc->plane,
3543                                  work->pending_flip_obj);
3544 }
3545
3546 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3547 {
3548         struct drm_device *dev = crtc->dev;
3549         struct drm_i915_private *dev_priv = dev->dev_private;
3550
3551         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3552         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3553                                        !intel_crtc_has_pending_flip(crtc),
3554                                        60*HZ) == 0)) {
3555                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3556
3557                 spin_lock_irq(&dev->event_lock);
3558                 if (intel_crtc->unpin_work) {
3559                         WARN_ONCE(1, "Removing stuck page flip\n");
3560                         page_flip_completed(intel_crtc);
3561                 }
3562                 spin_unlock_irq(&dev->event_lock);
3563         }
3564
3565         if (crtc->primary->fb) {
3566                 mutex_lock(&dev->struct_mutex);
3567                 intel_finish_fb(crtc->primary->fb);
3568                 mutex_unlock(&dev->struct_mutex);
3569         }
3570 }
3571
3572 /* Program iCLKIP clock to the desired frequency */
3573 static void lpt_program_iclkip(struct drm_crtc *crtc)
3574 {
3575         struct drm_device *dev = crtc->dev;
3576         struct drm_i915_private *dev_priv = dev->dev_private;
3577         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3578         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3579         u32 temp;
3580
3581         mutex_lock(&dev_priv->dpio_lock);
3582
3583         /* It is necessary to ungate the pixclk gate prior to programming
3584          * the divisors, and gate it back when it is done.
3585          */
3586         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3587
3588         /* Disable SSCCTL */
3589         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3590                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3591                                 SBI_SSCCTL_DISABLE,
3592                         SBI_ICLK);
3593
3594         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3595         if (clock == 20000) {
3596                 auxdiv = 1;
3597                 divsel = 0x41;
3598                 phaseinc = 0x20;
3599         } else {
3600                 /* The iCLK virtual clock root frequency is in MHz,
3601                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3602                  * divisors, it is necessary to divide one by another, so we
3603                  * convert the virtual clock precision to KHz here for higher
3604                  * precision.
3605                  */
3606                 u32 iclk_virtual_root_freq = 172800 * 1000;
3607                 u32 iclk_pi_range = 64;
3608                 u32 desired_divisor, msb_divisor_value, pi_value;
3609
3610                 desired_divisor = (iclk_virtual_root_freq / clock);
3611                 msb_divisor_value = desired_divisor / iclk_pi_range;
3612                 pi_value = desired_divisor % iclk_pi_range;
3613
3614                 auxdiv = 0;
3615                 divsel = msb_divisor_value - 2;
3616                 phaseinc = pi_value;
3617         }
3618
3619         /* This should not happen with any sane values */
3620         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3621                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3622         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3623                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3624
3625         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3626                         clock,
3627                         auxdiv,
3628                         divsel,
3629                         phasedir,
3630                         phaseinc);
3631
3632         /* Program SSCDIVINTPHASE6 */
3633         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3634         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3635         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3636         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3637         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3638         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3639         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3640         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3641
3642         /* Program SSCAUXDIV */
3643         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3644         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3645         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3646         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3647
3648         /* Enable modulator and associated divider */
3649         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3650         temp &= ~SBI_SSCCTL_DISABLE;
3651         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3652
3653         /* Wait for initialization time */
3654         udelay(24);
3655
3656         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3657
3658         mutex_unlock(&dev_priv->dpio_lock);
3659 }
3660
3661 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3662                                                 enum pipe pch_transcoder)
3663 {
3664         struct drm_device *dev = crtc->base.dev;
3665         struct drm_i915_private *dev_priv = dev->dev_private;
3666         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3667
3668         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3669                    I915_READ(HTOTAL(cpu_transcoder)));
3670         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3671                    I915_READ(HBLANK(cpu_transcoder)));
3672         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3673                    I915_READ(HSYNC(cpu_transcoder)));
3674
3675         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3676                    I915_READ(VTOTAL(cpu_transcoder)));
3677         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3678                    I915_READ(VBLANK(cpu_transcoder)));
3679         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3680                    I915_READ(VSYNC(cpu_transcoder)));
3681         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3682                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3683 }
3684
3685 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3686 {
3687         struct drm_i915_private *dev_priv = dev->dev_private;
3688         uint32_t temp;
3689
3690         temp = I915_READ(SOUTH_CHICKEN1);
3691         if (temp & FDI_BC_BIFURCATION_SELECT)
3692                 return;
3693
3694         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3695         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3696
3697         temp |= FDI_BC_BIFURCATION_SELECT;
3698         DRM_DEBUG_KMS("enabling fdi C rx\n");
3699         I915_WRITE(SOUTH_CHICKEN1, temp);
3700         POSTING_READ(SOUTH_CHICKEN1);
3701 }
3702
3703 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3704 {
3705         struct drm_device *dev = intel_crtc->base.dev;
3706         struct drm_i915_private *dev_priv = dev->dev_private;
3707
3708         switch (intel_crtc->pipe) {
3709         case PIPE_A:
3710                 break;
3711         case PIPE_B:
3712                 if (intel_crtc->config.fdi_lanes > 2)
3713                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3714                 else
3715                         cpt_enable_fdi_bc_bifurcation(dev);
3716
3717                 break;
3718         case PIPE_C:
3719                 cpt_enable_fdi_bc_bifurcation(dev);
3720
3721                 break;
3722         default:
3723                 BUG();
3724         }
3725 }
3726
3727 /*
3728  * Enable PCH resources required for PCH ports:
3729  *   - PCH PLLs
3730  *   - FDI training & RX/TX
3731  *   - update transcoder timings
3732  *   - DP transcoding bits
3733  *   - transcoder
3734  */
3735 static void ironlake_pch_enable(struct drm_crtc *crtc)
3736 {
3737         struct drm_device *dev = crtc->dev;
3738         struct drm_i915_private *dev_priv = dev->dev_private;
3739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3740         int pipe = intel_crtc->pipe;
3741         u32 reg, temp;
3742
3743         assert_pch_transcoder_disabled(dev_priv, pipe);
3744
3745         if (IS_IVYBRIDGE(dev))
3746                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3747
3748         /* Write the TU size bits before fdi link training, so that error
3749          * detection works. */
3750         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3751                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3752
3753         /* For PCH output, training FDI link */
3754         dev_priv->display.fdi_link_train(crtc);
3755
3756         /* We need to program the right clock selection before writing the pixel
3757          * mutliplier into the DPLL. */
3758         if (HAS_PCH_CPT(dev)) {
3759                 u32 sel;
3760
3761                 temp = I915_READ(PCH_DPLL_SEL);
3762                 temp |= TRANS_DPLL_ENABLE(pipe);
3763                 sel = TRANS_DPLLB_SEL(pipe);
3764                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3765                         temp |= sel;
3766                 else
3767                         temp &= ~sel;
3768                 I915_WRITE(PCH_DPLL_SEL, temp);
3769         }
3770
3771         /* XXX: pch pll's can be enabled any time before we enable the PCH
3772          * transcoder, and we actually should do this to not upset any PCH
3773          * transcoder that already use the clock when we share it.
3774          *
3775          * Note that enable_shared_dpll tries to do the right thing, but
3776          * get_shared_dpll unconditionally resets the pll - we need that to have
3777          * the right LVDS enable sequence. */
3778         intel_enable_shared_dpll(intel_crtc);
3779
3780         /* set transcoder timing, panel must allow it */
3781         assert_panel_unlocked(dev_priv, pipe);
3782         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3783
3784         intel_fdi_normal_train(crtc);
3785
3786         /* For PCH DP, enable TRANS_DP_CTL */
3787         if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3788                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3789                 reg = TRANS_DP_CTL(pipe);
3790                 temp = I915_READ(reg);
3791                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3792                           TRANS_DP_SYNC_MASK |
3793                           TRANS_DP_BPC_MASK);
3794                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3795                          TRANS_DP_ENH_FRAMING);
3796                 temp |= bpc << 9; /* same format but at 11:9 */
3797
3798                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3799                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3800                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3801                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3802
3803                 switch (intel_trans_dp_port_sel(crtc)) {
3804                 case PCH_DP_B:
3805                         temp |= TRANS_DP_PORT_SEL_B;
3806                         break;
3807                 case PCH_DP_C:
3808                         temp |= TRANS_DP_PORT_SEL_C;
3809                         break;
3810                 case PCH_DP_D:
3811                         temp |= TRANS_DP_PORT_SEL_D;
3812                         break;
3813                 default:
3814                         BUG();
3815                 }
3816
3817                 I915_WRITE(reg, temp);
3818         }
3819
3820         ironlake_enable_pch_transcoder(dev_priv, pipe);
3821 }
3822
3823 static void lpt_pch_enable(struct drm_crtc *crtc)
3824 {
3825         struct drm_device *dev = crtc->dev;
3826         struct drm_i915_private *dev_priv = dev->dev_private;
3827         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3828         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3829
3830         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3831
3832         lpt_program_iclkip(crtc);
3833
3834         /* Set transcoder timing. */
3835         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3836
3837         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3838 }
3839
3840 void intel_put_shared_dpll(struct intel_crtc *crtc)
3841 {
3842         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3843
3844         if (pll == NULL)
3845                 return;
3846
3847         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3848                 WARN(1, "bad %s crtc mask\n", pll->name);
3849                 return;
3850         }
3851
3852         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3853         if (pll->config.crtc_mask == 0) {
3854                 WARN_ON(pll->on);
3855                 WARN_ON(pll->active);
3856         }
3857
3858         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3859 }
3860
3861 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3862 {
3863         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3864         struct intel_shared_dpll *pll;
3865         enum intel_dpll_id i;
3866
3867         if (HAS_PCH_IBX(dev_priv->dev)) {
3868                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3869                 i = (enum intel_dpll_id) crtc->pipe;
3870                 pll = &dev_priv->shared_dplls[i];
3871
3872                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3873                               crtc->base.base.id, pll->name);
3874
3875                 WARN_ON(pll->new_config->crtc_mask);
3876
3877                 goto found;
3878         }
3879
3880         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3881                 pll = &dev_priv->shared_dplls[i];
3882
3883                 /* Only want to check enabled timings first */
3884                 if (pll->new_config->crtc_mask == 0)
3885                         continue;
3886
3887                 if (memcmp(&crtc->new_config->dpll_hw_state,
3888                            &pll->new_config->hw_state,
3889                            sizeof(pll->new_config->hw_state)) == 0) {
3890                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3891                                       crtc->base.base.id, pll->name,
3892                                       pll->new_config->crtc_mask,
3893                                       pll->active);
3894                         goto found;
3895                 }
3896         }
3897
3898         /* Ok no matching timings, maybe there's a free one? */
3899         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3900                 pll = &dev_priv->shared_dplls[i];
3901                 if (pll->new_config->crtc_mask == 0) {
3902                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3903                                       crtc->base.base.id, pll->name);
3904                         goto found;
3905                 }
3906         }
3907
3908         return NULL;
3909
3910 found:
3911         if (pll->new_config->crtc_mask == 0)
3912                 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3913
3914         crtc->new_config->shared_dpll = i;
3915         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3916                          pipe_name(crtc->pipe));
3917
3918         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3919
3920         return pll;
3921 }
3922
3923 /**
3924  * intel_shared_dpll_start_config - start a new PLL staged config
3925  * @dev_priv: DRM device
3926  * @clear_pipes: mask of pipes that will have their PLLs freed
3927  *
3928  * Starts a new PLL staged config, copying the current config but
3929  * releasing the references of pipes specified in clear_pipes.
3930  */
3931 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3932                                           unsigned clear_pipes)
3933 {
3934         struct intel_shared_dpll *pll;
3935         enum intel_dpll_id i;
3936
3937         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3938                 pll = &dev_priv->shared_dplls[i];
3939
3940                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3941                                           GFP_KERNEL);
3942                 if (!pll->new_config)
3943                         goto cleanup;
3944
3945                 pll->new_config->crtc_mask &= ~clear_pipes;
3946         }
3947
3948         return 0;
3949
3950 cleanup:
3951         while (--i >= 0) {
3952                 pll = &dev_priv->shared_dplls[i];
3953                 kfree(pll->new_config);
3954                 pll->new_config = NULL;
3955         }
3956
3957         return -ENOMEM;
3958 }
3959
3960 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3961 {
3962         struct intel_shared_dpll *pll;
3963         enum intel_dpll_id i;
3964
3965         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3966                 pll = &dev_priv->shared_dplls[i];
3967
3968                 WARN_ON(pll->new_config == &pll->config);
3969
3970                 pll->config = *pll->new_config;
3971                 kfree(pll->new_config);
3972                 pll->new_config = NULL;
3973         }
3974 }
3975
3976 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3977 {
3978         struct intel_shared_dpll *pll;
3979         enum intel_dpll_id i;
3980
3981         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3982                 pll = &dev_priv->shared_dplls[i];
3983
3984                 WARN_ON(pll->new_config == &pll->config);
3985
3986                 kfree(pll->new_config);
3987                 pll->new_config = NULL;
3988         }
3989 }
3990
3991 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3992 {
3993         struct drm_i915_private *dev_priv = dev->dev_private;
3994         int dslreg = PIPEDSL(pipe);
3995         u32 temp;
3996
3997         temp = I915_READ(dslreg);
3998         udelay(500);
3999         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4000                 if (wait_for(I915_READ(dslreg) != temp, 5))
4001                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4002         }
4003 }
4004
4005 static void skylake_pfit_enable(struct intel_crtc *crtc)
4006 {
4007         struct drm_device *dev = crtc->base.dev;
4008         struct drm_i915_private *dev_priv = dev->dev_private;
4009         int pipe = crtc->pipe;
4010
4011         if (crtc->config.pch_pfit.enabled) {
4012                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4013                 I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4014                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4015         }
4016 }
4017
4018 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4019 {
4020         struct drm_device *dev = crtc->base.dev;
4021         struct drm_i915_private *dev_priv = dev->dev_private;
4022         int pipe = crtc->pipe;
4023
4024         if (crtc->config.pch_pfit.enabled) {
4025                 /* Force use of hard-coded filter coefficients
4026                  * as some pre-programmed values are broken,
4027                  * e.g. x201.
4028                  */
4029                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4030                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4031                                                  PF_PIPE_SEL_IVB(pipe));
4032                 else
4033                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4034                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4035                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4036         }
4037 }
4038
4039 static void intel_enable_planes(struct drm_crtc *crtc)
4040 {
4041         struct drm_device *dev = crtc->dev;
4042         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4043         struct drm_plane *plane;
4044         struct intel_plane *intel_plane;
4045
4046         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4047                 intel_plane = to_intel_plane(plane);
4048                 if (intel_plane->pipe == pipe)
4049                         intel_plane_restore(&intel_plane->base);
4050         }
4051 }
4052
4053 static void intel_disable_planes(struct drm_crtc *crtc)
4054 {
4055         struct drm_device *dev = crtc->dev;
4056         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4057         struct drm_plane *plane;
4058         struct intel_plane *intel_plane;
4059
4060         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4061                 intel_plane = to_intel_plane(plane);
4062                 if (intel_plane->pipe == pipe)
4063                         plane->funcs->disable_plane(plane);
4064         }
4065 }
4066
4067 void hsw_enable_ips(struct intel_crtc *crtc)
4068 {
4069         struct drm_device *dev = crtc->base.dev;
4070         struct drm_i915_private *dev_priv = dev->dev_private;
4071
4072         if (!crtc->config.ips_enabled)
4073                 return;
4074
4075         /* We can only enable IPS after we enable a plane and wait for a vblank */
4076         intel_wait_for_vblank(dev, crtc->pipe);
4077
4078         assert_plane_enabled(dev_priv, crtc->plane);
4079         if (IS_BROADWELL(dev)) {
4080                 mutex_lock(&dev_priv->rps.hw_lock);
4081                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4082                 mutex_unlock(&dev_priv->rps.hw_lock);
4083                 /* Quoting Art Runyan: "its not safe to expect any particular
4084                  * value in IPS_CTL bit 31 after enabling IPS through the
4085                  * mailbox." Moreover, the mailbox may return a bogus state,
4086                  * so we need to just enable it and continue on.
4087                  */
4088         } else {
4089                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4090                 /* The bit only becomes 1 in the next vblank, so this wait here
4091                  * is essentially intel_wait_for_vblank. If we don't have this
4092                  * and don't wait for vblanks until the end of crtc_enable, then
4093                  * the HW state readout code will complain that the expected
4094                  * IPS_CTL value is not the one we read. */
4095                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4096                         DRM_ERROR("Timed out waiting for IPS enable\n");
4097         }
4098 }
4099
4100 void hsw_disable_ips(struct intel_crtc *crtc)
4101 {
4102         struct drm_device *dev = crtc->base.dev;
4103         struct drm_i915_private *dev_priv = dev->dev_private;
4104
4105         if (!crtc->config.ips_enabled)
4106                 return;
4107
4108         assert_plane_enabled(dev_priv, crtc->plane);
4109         if (IS_BROADWELL(dev)) {
4110                 mutex_lock(&dev_priv->rps.hw_lock);
4111                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4112                 mutex_unlock(&dev_priv->rps.hw_lock);
4113                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4114                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4115                         DRM_ERROR("Timed out waiting for IPS disable\n");
4116         } else {
4117                 I915_WRITE(IPS_CTL, 0);
4118                 POSTING_READ(IPS_CTL);
4119         }
4120
4121         /* We need to wait for a vblank before we can disable the plane. */
4122         intel_wait_for_vblank(dev, crtc->pipe);
4123 }
4124
4125 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4126 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4127 {
4128         struct drm_device *dev = crtc->dev;
4129         struct drm_i915_private *dev_priv = dev->dev_private;
4130         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4131         enum pipe pipe = intel_crtc->pipe;
4132         int palreg = PALETTE(pipe);
4133         int i;
4134         bool reenable_ips = false;
4135
4136         /* The clocks have to be on to load the palette. */
4137         if (!crtc->enabled || !intel_crtc->active)
4138                 return;
4139
4140         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4141                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4142                         assert_dsi_pll_enabled(dev_priv);
4143                 else
4144                         assert_pll_enabled(dev_priv, pipe);
4145         }
4146
4147         /* use legacy palette for Ironlake */
4148         if (!HAS_GMCH_DISPLAY(dev))
4149                 palreg = LGC_PALETTE(pipe);
4150
4151         /* Workaround : Do not read or write the pipe palette/gamma data while
4152          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4153          */
4154         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4155             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4156              GAMMA_MODE_MODE_SPLIT)) {
4157                 hsw_disable_ips(intel_crtc);
4158                 reenable_ips = true;
4159         }
4160
4161         for (i = 0; i < 256; i++) {
4162                 I915_WRITE(palreg + 4 * i,
4163                            (intel_crtc->lut_r[i] << 16) |
4164                            (intel_crtc->lut_g[i] << 8) |
4165                            intel_crtc->lut_b[i]);
4166         }
4167
4168         if (reenable_ips)
4169                 hsw_enable_ips(intel_crtc);
4170 }
4171
4172 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4173 {
4174         if (!enable && intel_crtc->overlay) {
4175                 struct drm_device *dev = intel_crtc->base.dev;
4176                 struct drm_i915_private *dev_priv = dev->dev_private;
4177
4178                 mutex_lock(&dev->struct_mutex);
4179                 dev_priv->mm.interruptible = false;
4180                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4181                 dev_priv->mm.interruptible = true;
4182                 mutex_unlock(&dev->struct_mutex);
4183         }
4184
4185         /* Let userspace switch the overlay on again. In most cases userspace
4186          * has to recompute where to put it anyway.
4187          */
4188 }
4189
4190 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4191 {
4192         struct drm_device *dev = crtc->dev;
4193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4194         int pipe = intel_crtc->pipe;
4195
4196         intel_enable_primary_hw_plane(crtc->primary, crtc);
4197         intel_enable_planes(crtc);
4198         intel_crtc_update_cursor(crtc, true);
4199         intel_crtc_dpms_overlay(intel_crtc, true);
4200
4201         hsw_enable_ips(intel_crtc);
4202
4203         mutex_lock(&dev->struct_mutex);
4204         intel_update_fbc(dev);
4205         mutex_unlock(&dev->struct_mutex);
4206
4207         /*
4208          * FIXME: Once we grow proper nuclear flip support out of this we need
4209          * to compute the mask of flip planes precisely. For the time being
4210          * consider this a flip from a NULL plane.
4211          */
4212         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4213 }
4214
4215 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4216 {
4217         struct drm_device *dev = crtc->dev;
4218         struct drm_i915_private *dev_priv = dev->dev_private;
4219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4220         int pipe = intel_crtc->pipe;
4221         int plane = intel_crtc->plane;
4222
4223         intel_crtc_wait_for_pending_flips(crtc);
4224
4225         if (dev_priv->fbc.plane == plane)
4226                 intel_disable_fbc(dev);
4227
4228         hsw_disable_ips(intel_crtc);
4229
4230         intel_crtc_dpms_overlay(intel_crtc, false);
4231         intel_crtc_update_cursor(crtc, false);
4232         intel_disable_planes(crtc);
4233         intel_disable_primary_hw_plane(crtc->primary, crtc);
4234
4235         /*
4236          * FIXME: Once we grow proper nuclear flip support out of this we need
4237          * to compute the mask of flip planes precisely. For the time being
4238          * consider this a flip to a NULL plane.
4239          */
4240         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4241 }
4242
4243 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4244 {
4245         struct drm_device *dev = crtc->dev;
4246         struct drm_i915_private *dev_priv = dev->dev_private;
4247         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4248         struct intel_encoder *encoder;
4249         int pipe = intel_crtc->pipe;
4250
4251         WARN_ON(!crtc->enabled);
4252
4253         if (intel_crtc->active)
4254                 return;
4255
4256         if (intel_crtc->config.has_pch_encoder)
4257                 intel_prepare_shared_dpll(intel_crtc);
4258
4259         if (intel_crtc->config.has_dp_encoder)
4260                 intel_dp_set_m_n(intel_crtc);
4261
4262         intel_set_pipe_timings(intel_crtc);
4263
4264         if (intel_crtc->config.has_pch_encoder) {
4265                 intel_cpu_transcoder_set_m_n(intel_crtc,
4266                                      &intel_crtc->config.fdi_m_n, NULL);
4267         }
4268
4269         ironlake_set_pipeconf(crtc);
4270
4271         intel_crtc->active = true;
4272
4273         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4274         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4275
4276         for_each_encoder_on_crtc(dev, crtc, encoder)
4277                 if (encoder->pre_enable)
4278                         encoder->pre_enable(encoder);
4279
4280         if (intel_crtc->config.has_pch_encoder) {
4281                 /* Note: FDI PLL enabling _must_ be done before we enable the
4282                  * cpu pipes, hence this is separate from all the other fdi/pch
4283                  * enabling. */
4284                 ironlake_fdi_pll_enable(intel_crtc);
4285         } else {
4286                 assert_fdi_tx_disabled(dev_priv, pipe);
4287                 assert_fdi_rx_disabled(dev_priv, pipe);
4288         }
4289
4290         ironlake_pfit_enable(intel_crtc);
4291
4292         /*
4293          * On ILK+ LUT must be loaded before the pipe is running but with
4294          * clocks enabled
4295          */
4296         intel_crtc_load_lut(crtc);
4297
4298         intel_update_watermarks(crtc);
4299         intel_enable_pipe(intel_crtc);
4300
4301         if (intel_crtc->config.has_pch_encoder)
4302                 ironlake_pch_enable(crtc);
4303
4304         for_each_encoder_on_crtc(dev, crtc, encoder)
4305                 encoder->enable(encoder);
4306
4307         if (HAS_PCH_CPT(dev))
4308                 cpt_verify_modeset(dev, intel_crtc->pipe);
4309
4310         assert_vblank_disabled(crtc);
4311         drm_crtc_vblank_on(crtc);
4312
4313         intel_crtc_enable_planes(crtc);
4314 }
4315
4316 /* IPS only exists on ULT machines and is tied to pipe A. */
4317 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4318 {
4319         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4320 }
4321
4322 /*
4323  * This implements the workaround described in the "notes" section of the mode
4324  * set sequence documentation. When going from no pipes or single pipe to
4325  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4326  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4327  */
4328 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4329 {
4330         struct drm_device *dev = crtc->base.dev;
4331         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4332
4333         /* We want to get the other_active_crtc only if there's only 1 other
4334          * active crtc. */
4335         for_each_intel_crtc(dev, crtc_it) {
4336                 if (!crtc_it->active || crtc_it == crtc)
4337                         continue;
4338
4339                 if (other_active_crtc)
4340                         return;
4341
4342                 other_active_crtc = crtc_it;
4343         }
4344         if (!other_active_crtc)
4345                 return;
4346
4347         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4348         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4349 }
4350
4351 static void haswell_crtc_enable(struct drm_crtc *crtc)
4352 {
4353         struct drm_device *dev = crtc->dev;
4354         struct drm_i915_private *dev_priv = dev->dev_private;
4355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4356         struct intel_encoder *encoder;
4357         int pipe = intel_crtc->pipe;
4358
4359         WARN_ON(!crtc->enabled);
4360
4361         if (intel_crtc->active)
4362                 return;
4363
4364         if (intel_crtc_to_shared_dpll(intel_crtc))
4365                 intel_enable_shared_dpll(intel_crtc);
4366
4367         if (intel_crtc->config.has_dp_encoder)
4368                 intel_dp_set_m_n(intel_crtc);
4369
4370         intel_set_pipe_timings(intel_crtc);
4371
4372         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4373                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4374                            intel_crtc->config.pixel_multiplier - 1);
4375         }
4376
4377         if (intel_crtc->config.has_pch_encoder) {
4378                 intel_cpu_transcoder_set_m_n(intel_crtc,
4379                                      &intel_crtc->config.fdi_m_n, NULL);
4380         }
4381
4382         haswell_set_pipeconf(crtc);
4383
4384         intel_set_pipe_csc(crtc);
4385
4386         intel_crtc->active = true;
4387
4388         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4389         for_each_encoder_on_crtc(dev, crtc, encoder)
4390                 if (encoder->pre_enable)
4391                         encoder->pre_enable(encoder);
4392
4393         if (intel_crtc->config.has_pch_encoder) {
4394                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4395                                                       true);
4396                 dev_priv->display.fdi_link_train(crtc);
4397         }
4398
4399         intel_ddi_enable_pipe_clock(intel_crtc);
4400
4401         if (IS_SKYLAKE(dev))
4402                 skylake_pfit_enable(intel_crtc);
4403         else
4404                 ironlake_pfit_enable(intel_crtc);
4405
4406         /*
4407          * On ILK+ LUT must be loaded before the pipe is running but with
4408          * clocks enabled
4409          */
4410         intel_crtc_load_lut(crtc);
4411
4412         intel_ddi_set_pipe_settings(crtc);
4413         intel_ddi_enable_transcoder_func(crtc);
4414
4415         intel_update_watermarks(crtc);
4416         intel_enable_pipe(intel_crtc);
4417
4418         if (intel_crtc->config.has_pch_encoder)
4419                 lpt_pch_enable(crtc);
4420
4421         if (intel_crtc->config.dp_encoder_is_mst)
4422                 intel_ddi_set_vc_payload_alloc(crtc, true);
4423
4424         for_each_encoder_on_crtc(dev, crtc, encoder) {
4425                 encoder->enable(encoder);
4426                 intel_opregion_notify_encoder(encoder, true);
4427         }
4428
4429         assert_vblank_disabled(crtc);
4430         drm_crtc_vblank_on(crtc);
4431
4432         /* If we change the relative order between pipe/planes enabling, we need
4433          * to change the workaround. */
4434         haswell_mode_set_planes_workaround(intel_crtc);
4435         intel_crtc_enable_planes(crtc);
4436 }
4437
4438 static void skylake_pfit_disable(struct intel_crtc *crtc)
4439 {
4440         struct drm_device *dev = crtc->base.dev;
4441         struct drm_i915_private *dev_priv = dev->dev_private;
4442         int pipe = crtc->pipe;
4443
4444         /* To avoid upsetting the power well on haswell only disable the pfit if
4445          * it's in use. The hw state code will make sure we get this right. */
4446         if (crtc->config.pch_pfit.enabled) {
4447                 I915_WRITE(PS_CTL(pipe), 0);
4448                 I915_WRITE(PS_WIN_POS(pipe), 0);
4449                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4450         }
4451 }
4452
4453 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4454 {
4455         struct drm_device *dev = crtc->base.dev;
4456         struct drm_i915_private *dev_priv = dev->dev_private;
4457         int pipe = crtc->pipe;
4458
4459         /* To avoid upsetting the power well on haswell only disable the pfit if
4460          * it's in use. The hw state code will make sure we get this right. */
4461         if (crtc->config.pch_pfit.enabled) {
4462                 I915_WRITE(PF_CTL(pipe), 0);
4463                 I915_WRITE(PF_WIN_POS(pipe), 0);
4464                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4465         }
4466 }
4467
4468 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4469 {
4470         struct drm_device *dev = crtc->dev;
4471         struct drm_i915_private *dev_priv = dev->dev_private;
4472         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4473         struct intel_encoder *encoder;
4474         int pipe = intel_crtc->pipe;
4475         u32 reg, temp;
4476
4477         if (!intel_crtc->active)
4478                 return;
4479
4480         intel_crtc_disable_planes(crtc);
4481
4482         drm_crtc_vblank_off(crtc);
4483         assert_vblank_disabled(crtc);
4484
4485         for_each_encoder_on_crtc(dev, crtc, encoder)
4486                 encoder->disable(encoder);
4487
4488         if (intel_crtc->config.has_pch_encoder)
4489                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4490
4491         intel_disable_pipe(intel_crtc);
4492
4493         ironlake_pfit_disable(intel_crtc);
4494
4495         for_each_encoder_on_crtc(dev, crtc, encoder)
4496                 if (encoder->post_disable)
4497                         encoder->post_disable(encoder);
4498
4499         if (intel_crtc->config.has_pch_encoder) {
4500                 ironlake_fdi_disable(crtc);
4501
4502                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4503                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4504
4505                 if (HAS_PCH_CPT(dev)) {
4506                         /* disable TRANS_DP_CTL */
4507                         reg = TRANS_DP_CTL(pipe);
4508                         temp = I915_READ(reg);
4509                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4510                                   TRANS_DP_PORT_SEL_MASK);
4511                         temp |= TRANS_DP_PORT_SEL_NONE;
4512                         I915_WRITE(reg, temp);
4513
4514                         /* disable DPLL_SEL */
4515                         temp = I915_READ(PCH_DPLL_SEL);
4516                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4517                         I915_WRITE(PCH_DPLL_SEL, temp);
4518                 }
4519
4520                 /* disable PCH DPLL */
4521                 intel_disable_shared_dpll(intel_crtc);
4522
4523                 ironlake_fdi_pll_disable(intel_crtc);
4524         }
4525
4526         intel_crtc->active = false;
4527         intel_update_watermarks(crtc);
4528
4529         mutex_lock(&dev->struct_mutex);
4530         intel_update_fbc(dev);
4531         mutex_unlock(&dev->struct_mutex);
4532 }
4533
4534 static void haswell_crtc_disable(struct drm_crtc *crtc)
4535 {
4536         struct drm_device *dev = crtc->dev;
4537         struct drm_i915_private *dev_priv = dev->dev_private;
4538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4539         struct intel_encoder *encoder;
4540         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4541
4542         if (!intel_crtc->active)
4543                 return;
4544
4545         intel_crtc_disable_planes(crtc);
4546
4547         drm_crtc_vblank_off(crtc);
4548         assert_vblank_disabled(crtc);
4549
4550         for_each_encoder_on_crtc(dev, crtc, encoder) {
4551                 intel_opregion_notify_encoder(encoder, false);
4552                 encoder->disable(encoder);
4553         }
4554
4555         if (intel_crtc->config.has_pch_encoder)
4556                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4557                                                       false);
4558         intel_disable_pipe(intel_crtc);
4559
4560         if (intel_crtc->config.dp_encoder_is_mst)
4561                 intel_ddi_set_vc_payload_alloc(crtc, false);
4562
4563         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4564
4565         if (IS_SKYLAKE(dev))
4566                 skylake_pfit_disable(intel_crtc);
4567         else
4568                 ironlake_pfit_disable(intel_crtc);
4569
4570         intel_ddi_disable_pipe_clock(intel_crtc);
4571
4572         if (intel_crtc->config.has_pch_encoder) {
4573                 lpt_disable_pch_transcoder(dev_priv);
4574                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4575                                                       true);
4576                 intel_ddi_fdi_disable(crtc);
4577         }
4578
4579         for_each_encoder_on_crtc(dev, crtc, encoder)
4580                 if (encoder->post_disable)
4581                         encoder->post_disable(encoder);
4582
4583         intel_crtc->active = false;
4584         intel_update_watermarks(crtc);
4585
4586         mutex_lock(&dev->struct_mutex);
4587         intel_update_fbc(dev);
4588         mutex_unlock(&dev->struct_mutex);
4589
4590         if (intel_crtc_to_shared_dpll(intel_crtc))
4591                 intel_disable_shared_dpll(intel_crtc);
4592 }
4593
4594 static void ironlake_crtc_off(struct drm_crtc *crtc)
4595 {
4596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4597         intel_put_shared_dpll(intel_crtc);
4598 }
4599
4600
4601 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4602 {
4603         struct drm_device *dev = crtc->base.dev;
4604         struct drm_i915_private *dev_priv = dev->dev_private;
4605         struct intel_crtc_config *pipe_config = &crtc->config;
4606
4607         if (!crtc->config.gmch_pfit.control)
4608                 return;
4609
4610         /*
4611          * The panel fitter should only be adjusted whilst the pipe is disabled,
4612          * according to register description and PRM.
4613          */
4614         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4615         assert_pipe_disabled(dev_priv, crtc->pipe);
4616
4617         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4618         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4619
4620         /* Border color in case we don't scale up to the full screen. Black by
4621          * default, change to something else for debugging. */
4622         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4623 }
4624
4625 static enum intel_display_power_domain port_to_power_domain(enum port port)
4626 {
4627         switch (port) {
4628         case PORT_A:
4629                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4630         case PORT_B:
4631                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4632         case PORT_C:
4633                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4634         case PORT_D:
4635                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4636         default:
4637                 WARN_ON_ONCE(1);
4638                 return POWER_DOMAIN_PORT_OTHER;
4639         }
4640 }
4641
4642 #define for_each_power_domain(domain, mask)                             \
4643         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4644                 if ((1 << (domain)) & (mask))
4645
4646 enum intel_display_power_domain
4647 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4648 {
4649         struct drm_device *dev = intel_encoder->base.dev;
4650         struct intel_digital_port *intel_dig_port;
4651
4652         switch (intel_encoder->type) {
4653         case INTEL_OUTPUT_UNKNOWN:
4654                 /* Only DDI platforms should ever use this output type */
4655                 WARN_ON_ONCE(!HAS_DDI(dev));
4656         case INTEL_OUTPUT_DISPLAYPORT:
4657         case INTEL_OUTPUT_HDMI:
4658         case INTEL_OUTPUT_EDP:
4659                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4660                 return port_to_power_domain(intel_dig_port->port);
4661         case INTEL_OUTPUT_DP_MST:
4662                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4663                 return port_to_power_domain(intel_dig_port->port);
4664         case INTEL_OUTPUT_ANALOG:
4665                 return POWER_DOMAIN_PORT_CRT;
4666         case INTEL_OUTPUT_DSI:
4667                 return POWER_DOMAIN_PORT_DSI;
4668         default:
4669                 return POWER_DOMAIN_PORT_OTHER;
4670         }
4671 }
4672
4673 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4674 {
4675         struct drm_device *dev = crtc->dev;
4676         struct intel_encoder *intel_encoder;
4677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4678         enum pipe pipe = intel_crtc->pipe;
4679         unsigned long mask;
4680         enum transcoder transcoder;
4681
4682         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4683
4684         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4685         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4686         if (intel_crtc->config.pch_pfit.enabled ||
4687             intel_crtc->config.pch_pfit.force_thru)
4688                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4689
4690         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4691                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4692
4693         return mask;
4694 }
4695
4696 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4697 {
4698         struct drm_i915_private *dev_priv = dev->dev_private;
4699         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4700         struct intel_crtc *crtc;
4701
4702         /*
4703          * First get all needed power domains, then put all unneeded, to avoid
4704          * any unnecessary toggling of the power wells.
4705          */
4706         for_each_intel_crtc(dev, crtc) {
4707                 enum intel_display_power_domain domain;
4708
4709                 if (!crtc->base.enabled)
4710                         continue;
4711
4712                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4713
4714                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4715                         intel_display_power_get(dev_priv, domain);
4716         }
4717
4718         if (dev_priv->display.modeset_global_resources)
4719                 dev_priv->display.modeset_global_resources(dev);
4720
4721         for_each_intel_crtc(dev, crtc) {
4722                 enum intel_display_power_domain domain;
4723
4724                 for_each_power_domain(domain, crtc->enabled_power_domains)
4725                         intel_display_power_put(dev_priv, domain);
4726
4727                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4728         }
4729
4730         intel_display_set_init_power(dev_priv, false);
4731 }
4732
4733 /* returns HPLL frequency in kHz */
4734 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4735 {
4736         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4737
4738         /* Obtain SKU information */
4739         mutex_lock(&dev_priv->dpio_lock);
4740         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4741                 CCK_FUSE_HPLL_FREQ_MASK;
4742         mutex_unlock(&dev_priv->dpio_lock);
4743
4744         return vco_freq[hpll_freq] * 1000;
4745 }
4746
4747 static void vlv_update_cdclk(struct drm_device *dev)
4748 {
4749         struct drm_i915_private *dev_priv = dev->dev_private;
4750
4751         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4752         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4753                          dev_priv->vlv_cdclk_freq);
4754
4755         /*
4756          * Program the gmbus_freq based on the cdclk frequency.
4757          * BSpec erroneously claims we should aim for 4MHz, but
4758          * in fact 1MHz is the correct frequency.
4759          */
4760         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4761 }
4762
4763 /* Adjust CDclk dividers to allow high res or save power if possible */
4764 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4765 {
4766         struct drm_i915_private *dev_priv = dev->dev_private;
4767         u32 val, cmd;
4768
4769         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4770
4771         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4772                 cmd = 2;
4773         else if (cdclk == 266667)
4774                 cmd = 1;
4775         else
4776                 cmd = 0;
4777
4778         mutex_lock(&dev_priv->rps.hw_lock);
4779         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4780         val &= ~DSPFREQGUAR_MASK;
4781         val |= (cmd << DSPFREQGUAR_SHIFT);
4782         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4783         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4784                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4785                      50)) {
4786                 DRM_ERROR("timed out waiting for CDclk change\n");
4787         }
4788         mutex_unlock(&dev_priv->rps.hw_lock);
4789
4790         if (cdclk == 400000) {
4791                 u32 divider;
4792
4793                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4794
4795                 mutex_lock(&dev_priv->dpio_lock);
4796                 /* adjust cdclk divider */
4797                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4798                 val &= ~DISPLAY_FREQUENCY_VALUES;
4799                 val |= divider;
4800                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4801
4802                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4803                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4804                              50))
4805                         DRM_ERROR("timed out waiting for CDclk change\n");
4806                 mutex_unlock(&dev_priv->dpio_lock);
4807         }
4808
4809         mutex_lock(&dev_priv->dpio_lock);
4810         /* adjust self-refresh exit latency value */
4811         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4812         val &= ~0x7f;
4813
4814         /*
4815          * For high bandwidth configs, we set a higher latency in the bunit
4816          * so that the core display fetch happens in time to avoid underruns.
4817          */
4818         if (cdclk == 400000)
4819                 val |= 4500 / 250; /* 4.5 usec */
4820         else
4821                 val |= 3000 / 250; /* 3.0 usec */
4822         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4823         mutex_unlock(&dev_priv->dpio_lock);
4824
4825         vlv_update_cdclk(dev);
4826 }
4827
4828 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4829 {
4830         struct drm_i915_private *dev_priv = dev->dev_private;
4831         u32 val, cmd;
4832
4833         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4834
4835         switch (cdclk) {
4836         case 400000:
4837                 cmd = 3;
4838                 break;
4839         case 333333:
4840         case 320000:
4841                 cmd = 2;
4842                 break;
4843         case 266667:
4844                 cmd = 1;
4845                 break;
4846         case 200000:
4847                 cmd = 0;
4848                 break;
4849         default:
4850                 WARN_ON(1);
4851                 return;
4852         }
4853
4854         mutex_lock(&dev_priv->rps.hw_lock);
4855         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4856         val &= ~DSPFREQGUAR_MASK_CHV;
4857         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4858         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4859         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4860                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4861                      50)) {
4862                 DRM_ERROR("timed out waiting for CDclk change\n");
4863         }
4864         mutex_unlock(&dev_priv->rps.hw_lock);
4865
4866         vlv_update_cdclk(dev);
4867 }
4868
4869 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4870                                  int max_pixclk)
4871 {
4872         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
4873
4874         /* FIXME: Punit isn't quite ready yet */
4875         if (IS_CHERRYVIEW(dev_priv->dev))
4876                 return 400000;
4877
4878         /*
4879          * Really only a few cases to deal with, as only 4 CDclks are supported:
4880          *   200MHz
4881          *   267MHz
4882          *   320/333MHz (depends on HPLL freq)
4883          *   400MHz
4884          * So we check to see whether we're above 90% of the lower bin and
4885          * adjust if needed.
4886          *
4887          * We seem to get an unstable or solid color picture at 200MHz.
4888          * Not sure what's wrong. For now use 200MHz only when all pipes
4889          * are off.
4890          */
4891         if (max_pixclk > freq_320*9/10)
4892                 return 400000;
4893         else if (max_pixclk > 266667*9/10)
4894                 return freq_320;
4895         else if (max_pixclk > 0)
4896                 return 266667;
4897         else
4898                 return 200000;
4899 }
4900
4901 /* compute the max pixel clock for new configuration */
4902 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4903 {
4904         struct drm_device *dev = dev_priv->dev;
4905         struct intel_crtc *intel_crtc;
4906         int max_pixclk = 0;
4907
4908         for_each_intel_crtc(dev, intel_crtc) {
4909                 if (intel_crtc->new_enabled)
4910                         max_pixclk = max(max_pixclk,
4911                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4912         }
4913
4914         return max_pixclk;
4915 }
4916
4917 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4918                                             unsigned *prepare_pipes)
4919 {
4920         struct drm_i915_private *dev_priv = dev->dev_private;
4921         struct intel_crtc *intel_crtc;
4922         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4923
4924         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4925             dev_priv->vlv_cdclk_freq)
4926                 return;
4927
4928         /* disable/enable all currently active pipes while we change cdclk */
4929         for_each_intel_crtc(dev, intel_crtc)
4930                 if (intel_crtc->base.enabled)
4931                         *prepare_pipes |= (1 << intel_crtc->pipe);
4932 }
4933
4934 static void valleyview_modeset_global_resources(struct drm_device *dev)
4935 {
4936         struct drm_i915_private *dev_priv = dev->dev_private;
4937         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4938         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4939
4940         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4941                 /*
4942                  * FIXME: We can end up here with all power domains off, yet
4943                  * with a CDCLK frequency other than the minimum. To account
4944                  * for this take the PIPE-A power domain, which covers the HW
4945                  * blocks needed for the following programming. This can be
4946                  * removed once it's guaranteed that we get here either with
4947                  * the minimum CDCLK set, or the required power domains
4948                  * enabled.
4949                  */
4950                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4951
4952                 if (IS_CHERRYVIEW(dev))
4953                         cherryview_set_cdclk(dev, req_cdclk);
4954                 else
4955                         valleyview_set_cdclk(dev, req_cdclk);
4956
4957                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
4958         }
4959 }
4960
4961 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4962 {
4963         struct drm_device *dev = crtc->dev;
4964         struct drm_i915_private *dev_priv = to_i915(dev);
4965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4966         struct intel_encoder *encoder;
4967         int pipe = intel_crtc->pipe;
4968         bool is_dsi;
4969
4970         WARN_ON(!crtc->enabled);
4971
4972         if (intel_crtc->active)
4973                 return;
4974
4975         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4976
4977         if (!is_dsi) {
4978                 if (IS_CHERRYVIEW(dev))
4979                         chv_prepare_pll(intel_crtc, &intel_crtc->config);
4980                 else
4981                         vlv_prepare_pll(intel_crtc, &intel_crtc->config);
4982         }
4983
4984         if (intel_crtc->config.has_dp_encoder)
4985                 intel_dp_set_m_n(intel_crtc);
4986
4987         intel_set_pipe_timings(intel_crtc);
4988
4989         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4990                 struct drm_i915_private *dev_priv = dev->dev_private;
4991
4992                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4993                 I915_WRITE(CHV_CANVAS(pipe), 0);
4994         }
4995
4996         i9xx_set_pipeconf(intel_crtc);
4997
4998         intel_crtc->active = true;
4999
5000         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5001
5002         for_each_encoder_on_crtc(dev, crtc, encoder)
5003                 if (encoder->pre_pll_enable)
5004                         encoder->pre_pll_enable(encoder);
5005
5006         if (!is_dsi) {
5007                 if (IS_CHERRYVIEW(dev))
5008                         chv_enable_pll(intel_crtc, &intel_crtc->config);
5009                 else
5010                         vlv_enable_pll(intel_crtc, &intel_crtc->config);
5011         }
5012
5013         for_each_encoder_on_crtc(dev, crtc, encoder)
5014                 if (encoder->pre_enable)
5015                         encoder->pre_enable(encoder);
5016
5017         i9xx_pfit_enable(intel_crtc);
5018
5019         intel_crtc_load_lut(crtc);
5020
5021         intel_update_watermarks(crtc);
5022         intel_enable_pipe(intel_crtc);
5023
5024         for_each_encoder_on_crtc(dev, crtc, encoder)
5025                 encoder->enable(encoder);
5026
5027         assert_vblank_disabled(crtc);
5028         drm_crtc_vblank_on(crtc);
5029
5030         intel_crtc_enable_planes(crtc);
5031
5032         /* Underruns don't raise interrupts, so check manually. */
5033         i9xx_check_fifo_underruns(dev_priv);
5034 }
5035
5036 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5037 {
5038         struct drm_device *dev = crtc->base.dev;
5039         struct drm_i915_private *dev_priv = dev->dev_private;
5040
5041         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
5042         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
5043 }
5044
5045 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5046 {
5047         struct drm_device *dev = crtc->dev;
5048         struct drm_i915_private *dev_priv = to_i915(dev);
5049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5050         struct intel_encoder *encoder;
5051         int pipe = intel_crtc->pipe;
5052
5053         WARN_ON(!crtc->enabled);
5054
5055         if (intel_crtc->active)
5056                 return;
5057
5058         i9xx_set_pll_dividers(intel_crtc);
5059
5060         if (intel_crtc->config.has_dp_encoder)
5061                 intel_dp_set_m_n(intel_crtc);
5062
5063         intel_set_pipe_timings(intel_crtc);
5064
5065         i9xx_set_pipeconf(intel_crtc);
5066
5067         intel_crtc->active = true;
5068
5069         if (!IS_GEN2(dev))
5070                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5071
5072         for_each_encoder_on_crtc(dev, crtc, encoder)
5073                 if (encoder->pre_enable)
5074                         encoder->pre_enable(encoder);
5075
5076         i9xx_enable_pll(intel_crtc);
5077
5078         i9xx_pfit_enable(intel_crtc);
5079
5080         intel_crtc_load_lut(crtc);
5081
5082         intel_update_watermarks(crtc);
5083         intel_enable_pipe(intel_crtc);
5084
5085         for_each_encoder_on_crtc(dev, crtc, encoder)
5086                 encoder->enable(encoder);
5087
5088         assert_vblank_disabled(crtc);
5089         drm_crtc_vblank_on(crtc);
5090
5091         intel_crtc_enable_planes(crtc);
5092
5093         /*
5094          * Gen2 reports pipe underruns whenever all planes are disabled.
5095          * So don't enable underrun reporting before at least some planes
5096          * are enabled.
5097          * FIXME: Need to fix the logic to work when we turn off all planes
5098          * but leave the pipe running.
5099          */
5100         if (IS_GEN2(dev))
5101                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5102
5103         /* Underruns don't raise interrupts, so check manually. */
5104         i9xx_check_fifo_underruns(dev_priv);
5105 }
5106
5107 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5108 {
5109         struct drm_device *dev = crtc->base.dev;
5110         struct drm_i915_private *dev_priv = dev->dev_private;
5111
5112         if (!crtc->config.gmch_pfit.control)
5113                 return;
5114
5115         assert_pipe_disabled(dev_priv, crtc->pipe);
5116
5117         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5118                          I915_READ(PFIT_CONTROL));
5119         I915_WRITE(PFIT_CONTROL, 0);
5120 }
5121
5122 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5123 {
5124         struct drm_device *dev = crtc->dev;
5125         struct drm_i915_private *dev_priv = dev->dev_private;
5126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5127         struct intel_encoder *encoder;
5128         int pipe = intel_crtc->pipe;
5129
5130         if (!intel_crtc->active)
5131                 return;
5132
5133         /*
5134          * Gen2 reports pipe underruns whenever all planes are disabled.
5135          * So diasble underrun reporting before all the planes get disabled.
5136          * FIXME: Need to fix the logic to work when we turn off all planes
5137          * but leave the pipe running.
5138          */
5139         if (IS_GEN2(dev))
5140                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5141
5142         /*
5143          * Vblank time updates from the shadow to live plane control register
5144          * are blocked if the memory self-refresh mode is active at that
5145          * moment. So to make sure the plane gets truly disabled, disable
5146          * first the self-refresh mode. The self-refresh enable bit in turn
5147          * will be checked/applied by the HW only at the next frame start
5148          * event which is after the vblank start event, so we need to have a
5149          * wait-for-vblank between disabling the plane and the pipe.
5150          */
5151         intel_set_memory_cxsr(dev_priv, false);
5152         intel_crtc_disable_planes(crtc);
5153
5154         /*
5155          * On gen2 planes are double buffered but the pipe isn't, so we must
5156          * wait for planes to fully turn off before disabling the pipe.
5157          * We also need to wait on all gmch platforms because of the
5158          * self-refresh mode constraint explained above.
5159          */
5160         intel_wait_for_vblank(dev, pipe);
5161
5162         drm_crtc_vblank_off(crtc);
5163         assert_vblank_disabled(crtc);
5164
5165         for_each_encoder_on_crtc(dev, crtc, encoder)
5166                 encoder->disable(encoder);
5167
5168         intel_disable_pipe(intel_crtc);
5169
5170         i9xx_pfit_disable(intel_crtc);
5171
5172         for_each_encoder_on_crtc(dev, crtc, encoder)
5173                 if (encoder->post_disable)
5174                         encoder->post_disable(encoder);
5175
5176         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5177                 if (IS_CHERRYVIEW(dev))
5178                         chv_disable_pll(dev_priv, pipe);
5179                 else if (IS_VALLEYVIEW(dev))
5180                         vlv_disable_pll(dev_priv, pipe);
5181                 else
5182                         i9xx_disable_pll(intel_crtc);
5183         }
5184
5185         if (!IS_GEN2(dev))
5186                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5187
5188         intel_crtc->active = false;
5189         intel_update_watermarks(crtc);
5190
5191         mutex_lock(&dev->struct_mutex);
5192         intel_update_fbc(dev);
5193         mutex_unlock(&dev->struct_mutex);
5194 }
5195
5196 static void i9xx_crtc_off(struct drm_crtc *crtc)
5197 {
5198 }
5199
5200 /* Master function to enable/disable CRTC and corresponding power wells */
5201 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5202 {
5203         struct drm_device *dev = crtc->dev;
5204         struct drm_i915_private *dev_priv = dev->dev_private;
5205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5206         enum intel_display_power_domain domain;
5207         unsigned long domains;
5208
5209         if (enable) {
5210                 if (!intel_crtc->active) {
5211                         domains = get_crtc_power_domains(crtc);
5212                         for_each_power_domain(domain, domains)
5213                                 intel_display_power_get(dev_priv, domain);
5214                         intel_crtc->enabled_power_domains = domains;
5215
5216                         dev_priv->display.crtc_enable(crtc);
5217                 }
5218         } else {
5219                 if (intel_crtc->active) {
5220                         dev_priv->display.crtc_disable(crtc);
5221
5222                         domains = intel_crtc->enabled_power_domains;
5223                         for_each_power_domain(domain, domains)
5224                                 intel_display_power_put(dev_priv, domain);
5225                         intel_crtc->enabled_power_domains = 0;
5226                 }
5227         }
5228 }
5229
5230 /**
5231  * Sets the power management mode of the pipe and plane.
5232  */
5233 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5234 {
5235         struct drm_device *dev = crtc->dev;
5236         struct intel_encoder *intel_encoder;
5237         bool enable = false;
5238
5239         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5240                 enable |= intel_encoder->connectors_active;
5241
5242         intel_crtc_control(crtc, enable);
5243 }
5244
5245 static void intel_crtc_disable(struct drm_crtc *crtc)
5246 {
5247         struct drm_device *dev = crtc->dev;
5248         struct drm_connector *connector;
5249         struct drm_i915_private *dev_priv = dev->dev_private;
5250
5251         /* crtc should still be enabled when we disable it. */
5252         WARN_ON(!crtc->enabled);
5253
5254         dev_priv->display.crtc_disable(crtc);
5255         dev_priv->display.off(crtc);
5256
5257         crtc->primary->funcs->disable_plane(crtc->primary);
5258
5259         /* Update computed state. */
5260         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5261                 if (!connector->encoder || !connector->encoder->crtc)
5262                         continue;
5263
5264                 if (connector->encoder->crtc != crtc)
5265                         continue;
5266
5267                 connector->dpms = DRM_MODE_DPMS_OFF;
5268                 to_intel_encoder(connector->encoder)->connectors_active = false;
5269         }
5270 }
5271
5272 void intel_encoder_destroy(struct drm_encoder *encoder)
5273 {
5274         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5275
5276         drm_encoder_cleanup(encoder);
5277         kfree(intel_encoder);
5278 }
5279
5280 /* Simple dpms helper for encoders with just one connector, no cloning and only
5281  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5282  * state of the entire output pipe. */
5283 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5284 {
5285         if (mode == DRM_MODE_DPMS_ON) {
5286                 encoder->connectors_active = true;
5287
5288                 intel_crtc_update_dpms(encoder->base.crtc);
5289         } else {
5290                 encoder->connectors_active = false;
5291
5292                 intel_crtc_update_dpms(encoder->base.crtc);
5293         }
5294 }
5295
5296 /* Cross check the actual hw state with our own modeset state tracking (and it's
5297  * internal consistency). */
5298 static void intel_connector_check_state(struct intel_connector *connector)
5299 {
5300         if (connector->get_hw_state(connector)) {
5301                 struct intel_encoder *encoder = connector->encoder;
5302                 struct drm_crtc *crtc;
5303                 bool encoder_enabled;
5304                 enum pipe pipe;
5305
5306                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5307                               connector->base.base.id,
5308                               connector->base.name);
5309
5310                 /* there is no real hw state for MST connectors */
5311                 if (connector->mst_port)
5312                         return;
5313
5314                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5315                      "wrong connector dpms state\n");
5316                 WARN(connector->base.encoder != &encoder->base,
5317                      "active connector not linked to encoder\n");
5318
5319                 if (encoder) {
5320                         WARN(!encoder->connectors_active,
5321                              "encoder->connectors_active not set\n");
5322
5323                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5324                         WARN(!encoder_enabled, "encoder not enabled\n");
5325                         if (WARN_ON(!encoder->base.crtc))
5326                                 return;
5327
5328                         crtc = encoder->base.crtc;
5329
5330                         WARN(!crtc->enabled, "crtc not enabled\n");
5331                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5332                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5333                              "encoder active on the wrong pipe\n");
5334                 }
5335         }
5336 }
5337
5338 /* Even simpler default implementation, if there's really no special case to
5339  * consider. */
5340 void intel_connector_dpms(struct drm_connector *connector, int mode)
5341 {
5342         /* All the simple cases only support two dpms states. */
5343         if (mode != DRM_MODE_DPMS_ON)
5344                 mode = DRM_MODE_DPMS_OFF;
5345
5346         if (mode == connector->dpms)
5347                 return;
5348
5349         connector->dpms = mode;
5350
5351         /* Only need to change hw state when actually enabled */
5352         if (connector->encoder)
5353                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5354
5355         intel_modeset_check_state(connector->dev);
5356 }
5357
5358 /* Simple connector->get_hw_state implementation for encoders that support only
5359  * one connector and no cloning and hence the encoder state determines the state
5360  * of the connector. */
5361 bool intel_connector_get_hw_state(struct intel_connector *connector)
5362 {
5363         enum pipe pipe = 0;
5364         struct intel_encoder *encoder = connector->encoder;
5365
5366         return encoder->get_hw_state(encoder, &pipe);
5367 }
5368
5369 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5370                                      struct intel_crtc_config *pipe_config)
5371 {
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373         struct intel_crtc *pipe_B_crtc =
5374                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5375
5376         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5377                       pipe_name(pipe), pipe_config->fdi_lanes);
5378         if (pipe_config->fdi_lanes > 4) {
5379                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5380                               pipe_name(pipe), pipe_config->fdi_lanes);
5381                 return false;
5382         }
5383
5384         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5385                 if (pipe_config->fdi_lanes > 2) {
5386                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5387                                       pipe_config->fdi_lanes);
5388                         return false;
5389                 } else {
5390                         return true;
5391                 }
5392         }
5393
5394         if (INTEL_INFO(dev)->num_pipes == 2)
5395                 return true;
5396
5397         /* Ivybridge 3 pipe is really complicated */
5398         switch (pipe) {
5399         case PIPE_A:
5400                 return true;
5401         case PIPE_B:
5402                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5403                     pipe_config->fdi_lanes > 2) {
5404                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5405                                       pipe_name(pipe), pipe_config->fdi_lanes);
5406                         return false;
5407                 }
5408                 return true;
5409         case PIPE_C:
5410                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5411                     pipe_B_crtc->config.fdi_lanes <= 2) {
5412                         if (pipe_config->fdi_lanes > 2) {
5413                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5414                                               pipe_name(pipe), pipe_config->fdi_lanes);
5415                                 return false;
5416                         }
5417                 } else {
5418                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5419                         return false;
5420                 }
5421                 return true;
5422         default:
5423                 BUG();
5424         }
5425 }
5426
5427 #define RETRY 1
5428 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5429                                        struct intel_crtc_config *pipe_config)
5430 {
5431         struct drm_device *dev = intel_crtc->base.dev;
5432         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5433         int lane, link_bw, fdi_dotclock;
5434         bool setup_ok, needs_recompute = false;
5435
5436 retry:
5437         /* FDI is a binary signal running at ~2.7GHz, encoding
5438          * each output octet as 10 bits. The actual frequency
5439          * is stored as a divider into a 100MHz clock, and the
5440          * mode pixel clock is stored in units of 1KHz.
5441          * Hence the bw of each lane in terms of the mode signal
5442          * is:
5443          */
5444         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5445
5446         fdi_dotclock = adjusted_mode->crtc_clock;
5447
5448         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5449                                            pipe_config->pipe_bpp);
5450
5451         pipe_config->fdi_lanes = lane;
5452
5453         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5454                                link_bw, &pipe_config->fdi_m_n);
5455
5456         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5457                                             intel_crtc->pipe, pipe_config);
5458         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5459                 pipe_config->pipe_bpp -= 2*3;
5460                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5461                               pipe_config->pipe_bpp);
5462                 needs_recompute = true;
5463                 pipe_config->bw_constrained = true;
5464
5465                 goto retry;
5466         }
5467
5468         if (needs_recompute)
5469                 return RETRY;
5470
5471         return setup_ok ? 0 : -EINVAL;
5472 }
5473
5474 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5475                                    struct intel_crtc_config *pipe_config)
5476 {
5477         pipe_config->ips_enabled = i915.enable_ips &&
5478                                    hsw_crtc_supports_ips(crtc) &&
5479                                    pipe_config->pipe_bpp <= 24;
5480 }
5481
5482 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5483                                      struct intel_crtc_config *pipe_config)
5484 {
5485         struct drm_device *dev = crtc->base.dev;
5486         struct drm_i915_private *dev_priv = dev->dev_private;
5487         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5488
5489         /* FIXME should check pixel clock limits on all platforms */
5490         if (INTEL_INFO(dev)->gen < 4) {
5491                 int clock_limit =
5492                         dev_priv->display.get_display_clock_speed(dev);
5493
5494                 /*
5495                  * Enable pixel doubling when the dot clock
5496                  * is > 90% of the (display) core speed.
5497                  *
5498                  * GDG double wide on either pipe,
5499                  * otherwise pipe A only.
5500                  */
5501                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5502                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5503                         clock_limit *= 2;
5504                         pipe_config->double_wide = true;
5505                 }
5506
5507                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5508                         return -EINVAL;
5509         }
5510
5511         /*
5512          * Pipe horizontal size must be even in:
5513          * - DVO ganged mode
5514          * - LVDS dual channel mode
5515          * - Double wide pipe
5516          */
5517         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5518              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5519                 pipe_config->pipe_src_w &= ~1;
5520
5521         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5522          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5523          */
5524         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5525                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5526                 return -EINVAL;
5527
5528         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5529                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5530         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5531                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5532                  * for lvds. */
5533                 pipe_config->pipe_bpp = 8*3;
5534         }
5535
5536         if (HAS_IPS(dev))
5537                 hsw_compute_ips_config(crtc, pipe_config);
5538
5539         if (pipe_config->has_pch_encoder)
5540                 return ironlake_fdi_compute_config(crtc, pipe_config);
5541
5542         return 0;
5543 }
5544
5545 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5546 {
5547         struct drm_i915_private *dev_priv = dev->dev_private;
5548         u32 val;
5549         int divider;
5550
5551         /* FIXME: Punit isn't quite ready yet */
5552         if (IS_CHERRYVIEW(dev))
5553                 return 400000;
5554
5555         if (dev_priv->hpll_freq == 0)
5556                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5557
5558         mutex_lock(&dev_priv->dpio_lock);
5559         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5560         mutex_unlock(&dev_priv->dpio_lock);
5561
5562         divider = val & DISPLAY_FREQUENCY_VALUES;
5563
5564         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5565              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5566              "cdclk change in progress\n");
5567
5568         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5569 }
5570
5571 static int i945_get_display_clock_speed(struct drm_device *dev)
5572 {
5573         return 400000;
5574 }
5575
5576 static int i915_get_display_clock_speed(struct drm_device *dev)
5577 {
5578         return 333000;
5579 }
5580
5581 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5582 {
5583         return 200000;
5584 }
5585
5586 static int pnv_get_display_clock_speed(struct drm_device *dev)
5587 {
5588         u16 gcfgc = 0;
5589
5590         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5591
5592         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5593         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5594                 return 267000;
5595         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5596                 return 333000;
5597         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5598                 return 444000;
5599         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5600                 return 200000;
5601         default:
5602                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5603         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5604                 return 133000;
5605         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5606                 return 167000;
5607         }
5608 }
5609
5610 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5611 {
5612         u16 gcfgc = 0;
5613
5614         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5615
5616         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5617                 return 133000;
5618         else {
5619                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5620                 case GC_DISPLAY_CLOCK_333_MHZ:
5621                         return 333000;
5622                 default:
5623                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5624                         return 190000;
5625                 }
5626         }
5627 }
5628
5629 static int i865_get_display_clock_speed(struct drm_device *dev)
5630 {
5631         return 266000;
5632 }
5633
5634 static int i855_get_display_clock_speed(struct drm_device *dev)
5635 {
5636         u16 hpllcc = 0;
5637         /* Assume that the hardware is in the high speed state.  This
5638          * should be the default.
5639          */
5640         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5641         case GC_CLOCK_133_200:
5642         case GC_CLOCK_100_200:
5643                 return 200000;
5644         case GC_CLOCK_166_250:
5645                 return 250000;
5646         case GC_CLOCK_100_133:
5647                 return 133000;
5648         }
5649
5650         /* Shouldn't happen */
5651         return 0;
5652 }
5653
5654 static int i830_get_display_clock_speed(struct drm_device *dev)
5655 {
5656         return 133000;
5657 }
5658
5659 static void
5660 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5661 {
5662         while (*num > DATA_LINK_M_N_MASK ||
5663                *den > DATA_LINK_M_N_MASK) {
5664                 *num >>= 1;
5665                 *den >>= 1;
5666         }
5667 }
5668
5669 static void compute_m_n(unsigned int m, unsigned int n,
5670                         uint32_t *ret_m, uint32_t *ret_n)
5671 {
5672         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5673         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5674         intel_reduce_m_n_ratio(ret_m, ret_n);
5675 }
5676
5677 void
5678 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5679                        int pixel_clock, int link_clock,
5680                        struct intel_link_m_n *m_n)
5681 {
5682         m_n->tu = 64;
5683
5684         compute_m_n(bits_per_pixel * pixel_clock,
5685                     link_clock * nlanes * 8,
5686                     &m_n->gmch_m, &m_n->gmch_n);
5687
5688         compute_m_n(pixel_clock, link_clock,
5689                     &m_n->link_m, &m_n->link_n);
5690 }
5691
5692 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5693 {
5694         if (i915.panel_use_ssc >= 0)
5695                 return i915.panel_use_ssc != 0;
5696         return dev_priv->vbt.lvds_use_ssc
5697                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5698 }
5699
5700 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5701 {
5702         struct drm_device *dev = crtc->base.dev;
5703         struct drm_i915_private *dev_priv = dev->dev_private;
5704         int refclk;
5705
5706         if (IS_VALLEYVIEW(dev)) {
5707                 refclk = 100000;
5708         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5709             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5710                 refclk = dev_priv->vbt.lvds_ssc_freq;
5711                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5712         } else if (!IS_GEN2(dev)) {
5713                 refclk = 96000;
5714         } else {
5715                 refclk = 48000;
5716         }
5717
5718         return refclk;
5719 }
5720
5721 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5722 {
5723         return (1 << dpll->n) << 16 | dpll->m2;
5724 }
5725
5726 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5727 {
5728         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5729 }
5730
5731 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5732                                      intel_clock_t *reduced_clock)
5733 {
5734         struct drm_device *dev = crtc->base.dev;
5735         u32 fp, fp2 = 0;
5736
5737         if (IS_PINEVIEW(dev)) {
5738                 fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
5739                 if (reduced_clock)
5740                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5741         } else {
5742                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
5743                 if (reduced_clock)
5744                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5745         }
5746
5747         crtc->new_config->dpll_hw_state.fp0 = fp;
5748
5749         crtc->lowfreq_avail = false;
5750         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5751             reduced_clock && i915.powersave) {
5752                 crtc->new_config->dpll_hw_state.fp1 = fp2;
5753                 crtc->lowfreq_avail = true;
5754         } else {
5755                 crtc->new_config->dpll_hw_state.fp1 = fp;
5756         }
5757 }
5758
5759 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5760                 pipe)
5761 {
5762         u32 reg_val;
5763
5764         /*
5765          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5766          * and set it to a reasonable value instead.
5767          */
5768         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5769         reg_val &= 0xffffff00;
5770         reg_val |= 0x00000030;
5771         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5772
5773         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5774         reg_val &= 0x8cffffff;
5775         reg_val = 0x8c000000;
5776         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5777
5778         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5779         reg_val &= 0xffffff00;
5780         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5781
5782         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5783         reg_val &= 0x00ffffff;
5784         reg_val |= 0xb0000000;
5785         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5786 }
5787
5788 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5789                                          struct intel_link_m_n *m_n)
5790 {
5791         struct drm_device *dev = crtc->base.dev;
5792         struct drm_i915_private *dev_priv = dev->dev_private;
5793         int pipe = crtc->pipe;
5794
5795         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5796         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5797         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5798         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5799 }
5800
5801 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5802                                          struct intel_link_m_n *m_n,
5803                                          struct intel_link_m_n *m2_n2)
5804 {
5805         struct drm_device *dev = crtc->base.dev;
5806         struct drm_i915_private *dev_priv = dev->dev_private;
5807         int pipe = crtc->pipe;
5808         enum transcoder transcoder = crtc->config.cpu_transcoder;
5809
5810         if (INTEL_INFO(dev)->gen >= 5) {
5811                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5812                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5813                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5814                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5815                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5816                  * for gen < 8) and if DRRS is supported (to make sure the
5817                  * registers are not unnecessarily accessed).
5818                  */
5819                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5820                         crtc->config.has_drrs) {
5821                         I915_WRITE(PIPE_DATA_M2(transcoder),
5822                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5823                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5824                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5825                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5826                 }
5827         } else {
5828                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5829                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5830                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5831                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5832         }
5833 }
5834
5835 void intel_dp_set_m_n(struct intel_crtc *crtc)
5836 {
5837         if (crtc->config.has_pch_encoder)
5838                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5839         else
5840                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5841                                                    &crtc->config.dp_m2_n2);
5842 }
5843
5844 static void vlv_update_pll(struct intel_crtc *crtc,
5845                            struct intel_crtc_config *pipe_config)
5846 {
5847         u32 dpll, dpll_md;
5848
5849         /*
5850          * Enable DPIO clock input. We should never disable the reference
5851          * clock for pipe B, since VGA hotplug / manual detection depends
5852          * on it.
5853          */
5854         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5855                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5856         /* We should never disable this, set it here for state tracking */
5857         if (crtc->pipe == PIPE_B)
5858                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5859         dpll |= DPLL_VCO_ENABLE;
5860         pipe_config->dpll_hw_state.dpll = dpll;
5861
5862         dpll_md = (pipe_config->pixel_multiplier - 1)
5863                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5864         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5865 }
5866
5867 static void vlv_prepare_pll(struct intel_crtc *crtc,
5868                             const struct intel_crtc_config *pipe_config)
5869 {
5870         struct drm_device *dev = crtc->base.dev;
5871         struct drm_i915_private *dev_priv = dev->dev_private;
5872         int pipe = crtc->pipe;
5873         u32 mdiv;
5874         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5875         u32 coreclk, reg_val;
5876
5877         mutex_lock(&dev_priv->dpio_lock);
5878
5879         bestn = pipe_config->dpll.n;
5880         bestm1 = pipe_config->dpll.m1;
5881         bestm2 = pipe_config->dpll.m2;
5882         bestp1 = pipe_config->dpll.p1;
5883         bestp2 = pipe_config->dpll.p2;
5884
5885         /* See eDP HDMI DPIO driver vbios notes doc */
5886
5887         /* PLL B needs special handling */
5888         if (pipe == PIPE_B)
5889                 vlv_pllb_recal_opamp(dev_priv, pipe);
5890
5891         /* Set up Tx target for periodic Rcomp update */
5892         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5893
5894         /* Disable target IRef on PLL */
5895         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5896         reg_val &= 0x00ffffff;
5897         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5898
5899         /* Disable fast lock */
5900         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5901
5902         /* Set idtafcrecal before PLL is enabled */
5903         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5904         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5905         mdiv |= ((bestn << DPIO_N_SHIFT));
5906         mdiv |= (1 << DPIO_K_SHIFT);
5907
5908         /*
5909          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5910          * but we don't support that).
5911          * Note: don't use the DAC post divider as it seems unstable.
5912          */
5913         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5914         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5915
5916         mdiv |= DPIO_ENABLE_CALIBRATION;
5917         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5918
5919         /* Set HBR and RBR LPF coefficients */
5920         if (pipe_config->port_clock == 162000 ||
5921             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5922             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5923                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5924                                  0x009f0003);
5925         else
5926                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5927                                  0x00d0000f);
5928
5929         if (crtc->config.has_dp_encoder) {
5930                 /* Use SSC source */
5931                 if (pipe == PIPE_A)
5932                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5933                                          0x0df40000);
5934                 else
5935                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5936                                          0x0df70000);
5937         } else { /* HDMI or VGA */
5938                 /* Use bend source */
5939                 if (pipe == PIPE_A)
5940                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5941                                          0x0df70000);
5942                 else
5943                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5944                                          0x0df40000);
5945         }
5946
5947         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5948         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5949         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5950             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5951                 coreclk |= 0x01000000;
5952         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5953
5954         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5955         mutex_unlock(&dev_priv->dpio_lock);
5956 }
5957
5958 static void chv_update_pll(struct intel_crtc *crtc,
5959                            struct intel_crtc_config *pipe_config)
5960 {
5961         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5962                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5963                 DPLL_VCO_ENABLE;
5964         if (crtc->pipe != PIPE_A)
5965                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5966
5967         pipe_config->dpll_hw_state.dpll_md =
5968                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5969 }
5970
5971 static void chv_prepare_pll(struct intel_crtc *crtc,
5972                             const struct intel_crtc_config *pipe_config)
5973 {
5974         struct drm_device *dev = crtc->base.dev;
5975         struct drm_i915_private *dev_priv = dev->dev_private;
5976         int pipe = crtc->pipe;
5977         int dpll_reg = DPLL(crtc->pipe);
5978         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5979         u32 loopfilter, intcoeff;
5980         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5981         int refclk;
5982
5983         bestn = pipe_config->dpll.n;
5984         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5985         bestm1 = pipe_config->dpll.m1;
5986         bestm2 = pipe_config->dpll.m2 >> 22;
5987         bestp1 = pipe_config->dpll.p1;
5988         bestp2 = pipe_config->dpll.p2;
5989
5990         /*
5991          * Enable Refclk and SSC
5992          */
5993         I915_WRITE(dpll_reg,
5994                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5995
5996         mutex_lock(&dev_priv->dpio_lock);
5997
5998         /* p1 and p2 divider */
5999         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6000                         5 << DPIO_CHV_S1_DIV_SHIFT |
6001                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6002                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6003                         1 << DPIO_CHV_K_DIV_SHIFT);
6004
6005         /* Feedback post-divider - m2 */
6006         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6007
6008         /* Feedback refclk divider - n and m1 */
6009         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6010                         DPIO_CHV_M1_DIV_BY_2 |
6011                         1 << DPIO_CHV_N_DIV_SHIFT);
6012
6013         /* M2 fraction division */
6014         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6015
6016         /* M2 fraction division enable */
6017         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6018                        DPIO_CHV_FRAC_DIV_EN |
6019                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6020
6021         /* Loop filter */
6022         refclk = i9xx_get_refclk(crtc, 0);
6023         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6024                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6025         if (refclk == 100000)
6026                 intcoeff = 11;
6027         else if (refclk == 38400)
6028                 intcoeff = 10;
6029         else
6030                 intcoeff = 9;
6031         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6032         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6033
6034         /* AFC Recal */
6035         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6036                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6037                         DPIO_AFC_RECAL);
6038
6039         mutex_unlock(&dev_priv->dpio_lock);
6040 }
6041
6042 /**
6043  * vlv_force_pll_on - forcibly enable just the PLL
6044  * @dev_priv: i915 private structure
6045  * @pipe: pipe PLL to enable
6046  * @dpll: PLL configuration
6047  *
6048  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6049  * in cases where we need the PLL enabled even when @pipe is not going to
6050  * be enabled.
6051  */
6052 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6053                       const struct dpll *dpll)
6054 {
6055         struct intel_crtc *crtc =
6056                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6057         struct intel_crtc_config pipe_config = {
6058                 .pixel_multiplier = 1,
6059                 .dpll = *dpll,
6060         };
6061
6062         if (IS_CHERRYVIEW(dev)) {
6063                 chv_update_pll(crtc, &pipe_config);
6064                 chv_prepare_pll(crtc, &pipe_config);
6065                 chv_enable_pll(crtc, &pipe_config);
6066         } else {
6067                 vlv_update_pll(crtc, &pipe_config);
6068                 vlv_prepare_pll(crtc, &pipe_config);
6069                 vlv_enable_pll(crtc, &pipe_config);
6070         }
6071 }
6072
6073 /**
6074  * vlv_force_pll_off - forcibly disable just the PLL
6075  * @dev_priv: i915 private structure
6076  * @pipe: pipe PLL to disable
6077  *
6078  * Disable the PLL for @pipe. To be used in cases where we need
6079  * the PLL enabled even when @pipe is not going to be enabled.
6080  */
6081 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6082 {
6083         if (IS_CHERRYVIEW(dev))
6084                 chv_disable_pll(to_i915(dev), pipe);
6085         else
6086                 vlv_disable_pll(to_i915(dev), pipe);
6087 }
6088
6089 static void i9xx_update_pll(struct intel_crtc *crtc,
6090                             intel_clock_t *reduced_clock,
6091                             int num_connectors)
6092 {
6093         struct drm_device *dev = crtc->base.dev;
6094         struct drm_i915_private *dev_priv = dev->dev_private;
6095         u32 dpll;
6096         bool is_sdvo;
6097         struct dpll *clock = &crtc->new_config->dpll;
6098
6099         i9xx_update_pll_dividers(crtc, reduced_clock);
6100
6101         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6102                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6103
6104         dpll = DPLL_VGA_MODE_DIS;
6105
6106         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6107                 dpll |= DPLLB_MODE_LVDS;
6108         else
6109                 dpll |= DPLLB_MODE_DAC_SERIAL;
6110
6111         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6112                 dpll |= (crtc->new_config->pixel_multiplier - 1)
6113                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6114         }
6115
6116         if (is_sdvo)
6117                 dpll |= DPLL_SDVO_HIGH_SPEED;
6118
6119         if (crtc->new_config->has_dp_encoder)
6120                 dpll |= DPLL_SDVO_HIGH_SPEED;
6121
6122         /* compute bitmask from p1 value */
6123         if (IS_PINEVIEW(dev))
6124                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6125         else {
6126                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6127                 if (IS_G4X(dev) && reduced_clock)
6128                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6129         }
6130         switch (clock->p2) {
6131         case 5:
6132                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6133                 break;
6134         case 7:
6135                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6136                 break;
6137         case 10:
6138                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6139                 break;
6140         case 14:
6141                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6142                 break;
6143         }
6144         if (INTEL_INFO(dev)->gen >= 4)
6145                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6146
6147         if (crtc->new_config->sdvo_tv_clock)
6148                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6149         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6150                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6151                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6152         else
6153                 dpll |= PLL_REF_INPUT_DREFCLK;
6154
6155         dpll |= DPLL_VCO_ENABLE;
6156         crtc->new_config->dpll_hw_state.dpll = dpll;
6157
6158         if (INTEL_INFO(dev)->gen >= 4) {
6159                 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6160                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6161                 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6162         }
6163 }
6164
6165 static void i8xx_update_pll(struct intel_crtc *crtc,
6166                             intel_clock_t *reduced_clock,
6167                             int num_connectors)
6168 {
6169         struct drm_device *dev = crtc->base.dev;
6170         struct drm_i915_private *dev_priv = dev->dev_private;
6171         u32 dpll;
6172         struct dpll *clock = &crtc->new_config->dpll;
6173
6174         i9xx_update_pll_dividers(crtc, reduced_clock);
6175
6176         dpll = DPLL_VGA_MODE_DIS;
6177
6178         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6179                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6180         } else {
6181                 if (clock->p1 == 2)
6182                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6183                 else
6184                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6185                 if (clock->p2 == 4)
6186                         dpll |= PLL_P2_DIVIDE_BY_4;
6187         }
6188
6189         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6190                 dpll |= DPLL_DVO_2X_MODE;
6191
6192         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6193                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6194                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6195         else
6196                 dpll |= PLL_REF_INPUT_DREFCLK;
6197
6198         dpll |= DPLL_VCO_ENABLE;
6199         crtc->new_config->dpll_hw_state.dpll = dpll;
6200 }
6201
6202 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6203 {
6204         struct drm_device *dev = intel_crtc->base.dev;
6205         struct drm_i915_private *dev_priv = dev->dev_private;
6206         enum pipe pipe = intel_crtc->pipe;
6207         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6208         struct drm_display_mode *adjusted_mode =
6209                 &intel_crtc->config.adjusted_mode;
6210         uint32_t crtc_vtotal, crtc_vblank_end;
6211         int vsyncshift = 0;
6212
6213         /* We need to be careful not to changed the adjusted mode, for otherwise
6214          * the hw state checker will get angry at the mismatch. */
6215         crtc_vtotal = adjusted_mode->crtc_vtotal;
6216         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6217
6218         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6219                 /* the chip adds 2 halflines automatically */
6220                 crtc_vtotal -= 1;
6221                 crtc_vblank_end -= 1;
6222
6223                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6224                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6225                 else
6226                         vsyncshift = adjusted_mode->crtc_hsync_start -
6227                                 adjusted_mode->crtc_htotal / 2;
6228                 if (vsyncshift < 0)
6229                         vsyncshift += adjusted_mode->crtc_htotal;
6230         }
6231
6232         if (INTEL_INFO(dev)->gen > 3)
6233                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6234
6235         I915_WRITE(HTOTAL(cpu_transcoder),
6236                    (adjusted_mode->crtc_hdisplay - 1) |
6237                    ((adjusted_mode->crtc_htotal - 1) << 16));
6238         I915_WRITE(HBLANK(cpu_transcoder),
6239                    (adjusted_mode->crtc_hblank_start - 1) |
6240                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6241         I915_WRITE(HSYNC(cpu_transcoder),
6242                    (adjusted_mode->crtc_hsync_start - 1) |
6243                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6244
6245         I915_WRITE(VTOTAL(cpu_transcoder),
6246                    (adjusted_mode->crtc_vdisplay - 1) |
6247                    ((crtc_vtotal - 1) << 16));
6248         I915_WRITE(VBLANK(cpu_transcoder),
6249                    (adjusted_mode->crtc_vblank_start - 1) |
6250                    ((crtc_vblank_end - 1) << 16));
6251         I915_WRITE(VSYNC(cpu_transcoder),
6252                    (adjusted_mode->crtc_vsync_start - 1) |
6253                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6254
6255         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6256          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6257          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6258          * bits. */
6259         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6260             (pipe == PIPE_B || pipe == PIPE_C))
6261                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6262
6263         /* pipesrc controls the size that is scaled from, which should
6264          * always be the user's requested size.
6265          */
6266         I915_WRITE(PIPESRC(pipe),
6267                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6268                    (intel_crtc->config.pipe_src_h - 1));
6269 }
6270
6271 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6272                                    struct intel_crtc_config *pipe_config)
6273 {
6274         struct drm_device *dev = crtc->base.dev;
6275         struct drm_i915_private *dev_priv = dev->dev_private;
6276         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6277         uint32_t tmp;
6278
6279         tmp = I915_READ(HTOTAL(cpu_transcoder));
6280         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6281         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6282         tmp = I915_READ(HBLANK(cpu_transcoder));
6283         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6284         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6285         tmp = I915_READ(HSYNC(cpu_transcoder));
6286         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6287         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6288
6289         tmp = I915_READ(VTOTAL(cpu_transcoder));
6290         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6291         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6292         tmp = I915_READ(VBLANK(cpu_transcoder));
6293         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6294         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6295         tmp = I915_READ(VSYNC(cpu_transcoder));
6296         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6297         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6298
6299         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6300                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6301                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6302                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6303         }
6304
6305         tmp = I915_READ(PIPESRC(crtc->pipe));
6306         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6307         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6308
6309         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6310         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6311 }
6312
6313 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6314                                  struct intel_crtc_config *pipe_config)
6315 {
6316         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6317         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6318         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6319         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6320
6321         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6322         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6323         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6324         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6325
6326         mode->flags = pipe_config->adjusted_mode.flags;
6327
6328         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6329         mode->flags |= pipe_config->adjusted_mode.flags;
6330 }
6331
6332 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6333 {
6334         struct drm_device *dev = intel_crtc->base.dev;
6335         struct drm_i915_private *dev_priv = dev->dev_private;
6336         uint32_t pipeconf;
6337
6338         pipeconf = 0;
6339
6340         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6341             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6342                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6343
6344         if (intel_crtc->config.double_wide)
6345                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6346
6347         /* only g4x and later have fancy bpc/dither controls */
6348         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6349                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6350                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6351                         pipeconf |= PIPECONF_DITHER_EN |
6352                                     PIPECONF_DITHER_TYPE_SP;
6353
6354                 switch (intel_crtc->config.pipe_bpp) {
6355                 case 18:
6356                         pipeconf |= PIPECONF_6BPC;
6357                         break;
6358                 case 24:
6359                         pipeconf |= PIPECONF_8BPC;
6360                         break;
6361                 case 30:
6362                         pipeconf |= PIPECONF_10BPC;
6363                         break;
6364                 default:
6365                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6366                         BUG();
6367                 }
6368         }
6369
6370         if (HAS_PIPE_CXSR(dev)) {
6371                 if (intel_crtc->lowfreq_avail) {
6372                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6373                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6374                 } else {
6375                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6376                 }
6377         }
6378
6379         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6380                 if (INTEL_INFO(dev)->gen < 4 ||
6381                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6382                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6383                 else
6384                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6385         } else
6386                 pipeconf |= PIPECONF_PROGRESSIVE;
6387
6388         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6389                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6390
6391         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6392         POSTING_READ(PIPECONF(intel_crtc->pipe));
6393 }
6394
6395 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6396 {
6397         struct drm_device *dev = crtc->base.dev;
6398         struct drm_i915_private *dev_priv = dev->dev_private;
6399         int refclk, num_connectors = 0;
6400         intel_clock_t clock, reduced_clock;
6401         bool ok, has_reduced_clock = false;
6402         bool is_lvds = false, is_dsi = false;
6403         struct intel_encoder *encoder;
6404         const intel_limit_t *limit;
6405
6406         for_each_intel_encoder(dev, encoder) {
6407                 if (encoder->new_crtc != crtc)
6408                         continue;
6409
6410                 switch (encoder->type) {
6411                 case INTEL_OUTPUT_LVDS:
6412                         is_lvds = true;
6413                         break;
6414                 case INTEL_OUTPUT_DSI:
6415                         is_dsi = true;
6416                         break;
6417                 default:
6418                         break;
6419                 }
6420
6421                 num_connectors++;
6422         }
6423
6424         if (is_dsi)
6425                 return 0;
6426
6427         if (!crtc->new_config->clock_set) {
6428                 refclk = i9xx_get_refclk(crtc, num_connectors);
6429
6430                 /*
6431                  * Returns a set of divisors for the desired target clock with
6432                  * the given refclk, or FALSE.  The returned values represent
6433                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6434                  * 2) / p1 / p2.
6435                  */
6436                 limit = intel_limit(crtc, refclk);
6437                 ok = dev_priv->display.find_dpll(limit, crtc,
6438                                                  crtc->new_config->port_clock,
6439                                                  refclk, NULL, &clock);
6440                 if (!ok) {
6441                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6442                         return -EINVAL;
6443                 }
6444
6445                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6446                         /*
6447                          * Ensure we match the reduced clock's P to the target
6448                          * clock.  If the clocks don't match, we can't switch
6449                          * the display clock by using the FP0/FP1. In such case
6450                          * we will disable the LVDS downclock feature.
6451                          */
6452                         has_reduced_clock =
6453                                 dev_priv->display.find_dpll(limit, crtc,
6454                                                             dev_priv->lvds_downclock,
6455                                                             refclk, &clock,
6456                                                             &reduced_clock);
6457                 }
6458                 /* Compat-code for transition, will disappear. */
6459                 crtc->new_config->dpll.n = clock.n;
6460                 crtc->new_config->dpll.m1 = clock.m1;
6461                 crtc->new_config->dpll.m2 = clock.m2;
6462                 crtc->new_config->dpll.p1 = clock.p1;
6463                 crtc->new_config->dpll.p2 = clock.p2;
6464         }
6465
6466         if (IS_GEN2(dev)) {
6467                 i8xx_update_pll(crtc,
6468                                 has_reduced_clock ? &reduced_clock : NULL,
6469                                 num_connectors);
6470         } else if (IS_CHERRYVIEW(dev)) {
6471                 chv_update_pll(crtc, crtc->new_config);
6472         } else if (IS_VALLEYVIEW(dev)) {
6473                 vlv_update_pll(crtc, crtc->new_config);
6474         } else {
6475                 i9xx_update_pll(crtc,
6476                                 has_reduced_clock ? &reduced_clock : NULL,
6477                                 num_connectors);
6478         }
6479
6480         return 0;
6481 }
6482
6483 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6484                                  struct intel_crtc_config *pipe_config)
6485 {
6486         struct drm_device *dev = crtc->base.dev;
6487         struct drm_i915_private *dev_priv = dev->dev_private;
6488         uint32_t tmp;
6489
6490         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6491                 return;
6492
6493         tmp = I915_READ(PFIT_CONTROL);
6494         if (!(tmp & PFIT_ENABLE))
6495                 return;
6496
6497         /* Check whether the pfit is attached to our pipe. */
6498         if (INTEL_INFO(dev)->gen < 4) {
6499                 if (crtc->pipe != PIPE_B)
6500                         return;
6501         } else {
6502                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6503                         return;
6504         }
6505
6506         pipe_config->gmch_pfit.control = tmp;
6507         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6508         if (INTEL_INFO(dev)->gen < 5)
6509                 pipe_config->gmch_pfit.lvds_border_bits =
6510                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6511 }
6512
6513 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6514                                struct intel_crtc_config *pipe_config)
6515 {
6516         struct drm_device *dev = crtc->base.dev;
6517         struct drm_i915_private *dev_priv = dev->dev_private;
6518         int pipe = pipe_config->cpu_transcoder;
6519         intel_clock_t clock;
6520         u32 mdiv;
6521         int refclk = 100000;
6522
6523         /* In case of MIPI DPLL will not even be used */
6524         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6525                 return;
6526
6527         mutex_lock(&dev_priv->dpio_lock);
6528         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6529         mutex_unlock(&dev_priv->dpio_lock);
6530
6531         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6532         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6533         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6534         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6535         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6536
6537         vlv_clock(refclk, &clock);
6538
6539         /* clock.dot is the fast clock */
6540         pipe_config->port_clock = clock.dot / 5;
6541 }
6542
6543 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6544                                   struct intel_plane_config *plane_config)
6545 {
6546         struct drm_device *dev = crtc->base.dev;
6547         struct drm_i915_private *dev_priv = dev->dev_private;
6548         u32 val, base, offset;
6549         int pipe = crtc->pipe, plane = crtc->plane;
6550         int fourcc, pixel_format;
6551         int aligned_height;
6552
6553         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6554         if (!crtc->base.primary->fb) {
6555                 DRM_DEBUG_KMS("failed to alloc fb\n");
6556                 return;
6557         }
6558
6559         val = I915_READ(DSPCNTR(plane));
6560
6561         if (INTEL_INFO(dev)->gen >= 4)
6562                 if (val & DISPPLANE_TILED)
6563                         plane_config->tiled = true;
6564
6565         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6566         fourcc = intel_format_to_fourcc(pixel_format);
6567         crtc->base.primary->fb->pixel_format = fourcc;
6568         crtc->base.primary->fb->bits_per_pixel =
6569                 drm_format_plane_cpp(fourcc, 0) * 8;
6570
6571         if (INTEL_INFO(dev)->gen >= 4) {
6572                 if (plane_config->tiled)
6573                         offset = I915_READ(DSPTILEOFF(plane));
6574                 else
6575                         offset = I915_READ(DSPLINOFF(plane));
6576                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6577         } else {
6578                 base = I915_READ(DSPADDR(plane));
6579         }
6580         plane_config->base = base;
6581
6582         val = I915_READ(PIPESRC(pipe));
6583         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6584         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6585
6586         val = I915_READ(DSPSTRIDE(pipe));
6587         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6588
6589         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6590                                             plane_config->tiled);
6591
6592         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6593                                         aligned_height);
6594
6595         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6596                       pipe, plane, crtc->base.primary->fb->width,
6597                       crtc->base.primary->fb->height,
6598                       crtc->base.primary->fb->bits_per_pixel, base,
6599                       crtc->base.primary->fb->pitches[0],
6600                       plane_config->size);
6601
6602 }
6603
6604 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6605                                struct intel_crtc_config *pipe_config)
6606 {
6607         struct drm_device *dev = crtc->base.dev;
6608         struct drm_i915_private *dev_priv = dev->dev_private;
6609         int pipe = pipe_config->cpu_transcoder;
6610         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6611         intel_clock_t clock;
6612         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6613         int refclk = 100000;
6614
6615         mutex_lock(&dev_priv->dpio_lock);
6616         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6617         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6618         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6619         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6620         mutex_unlock(&dev_priv->dpio_lock);
6621
6622         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6623         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6624         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6625         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6626         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6627
6628         chv_clock(refclk, &clock);
6629
6630         /* clock.dot is the fast clock */
6631         pipe_config->port_clock = clock.dot / 5;
6632 }
6633
6634 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6635                                  struct intel_crtc_config *pipe_config)
6636 {
6637         struct drm_device *dev = crtc->base.dev;
6638         struct drm_i915_private *dev_priv = dev->dev_private;
6639         uint32_t tmp;
6640
6641         if (!intel_display_power_is_enabled(dev_priv,
6642                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6643                 return false;
6644
6645         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6646         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6647
6648         tmp = I915_READ(PIPECONF(crtc->pipe));
6649         if (!(tmp & PIPECONF_ENABLE))
6650                 return false;
6651
6652         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6653                 switch (tmp & PIPECONF_BPC_MASK) {
6654                 case PIPECONF_6BPC:
6655                         pipe_config->pipe_bpp = 18;
6656                         break;
6657                 case PIPECONF_8BPC:
6658                         pipe_config->pipe_bpp = 24;
6659                         break;
6660                 case PIPECONF_10BPC:
6661                         pipe_config->pipe_bpp = 30;
6662                         break;
6663                 default:
6664                         break;
6665                 }
6666         }
6667
6668         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6669                 pipe_config->limited_color_range = true;
6670
6671         if (INTEL_INFO(dev)->gen < 4)
6672                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6673
6674         intel_get_pipe_timings(crtc, pipe_config);
6675
6676         i9xx_get_pfit_config(crtc, pipe_config);
6677
6678         if (INTEL_INFO(dev)->gen >= 4) {
6679                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6680                 pipe_config->pixel_multiplier =
6681                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6682                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6683                 pipe_config->dpll_hw_state.dpll_md = tmp;
6684         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6685                 tmp = I915_READ(DPLL(crtc->pipe));
6686                 pipe_config->pixel_multiplier =
6687                         ((tmp & SDVO_MULTIPLIER_MASK)
6688                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6689         } else {
6690                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6691                  * port and will be fixed up in the encoder->get_config
6692                  * function. */
6693                 pipe_config->pixel_multiplier = 1;
6694         }
6695         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6696         if (!IS_VALLEYVIEW(dev)) {
6697                 /*
6698                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6699                  * on 830. Filter it out here so that we don't
6700                  * report errors due to that.
6701                  */
6702                 if (IS_I830(dev))
6703                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6704
6705                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6706                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6707         } else {
6708                 /* Mask out read-only status bits. */
6709                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6710                                                      DPLL_PORTC_READY_MASK |
6711                                                      DPLL_PORTB_READY_MASK);
6712         }
6713
6714         if (IS_CHERRYVIEW(dev))
6715                 chv_crtc_clock_get(crtc, pipe_config);
6716         else if (IS_VALLEYVIEW(dev))
6717                 vlv_crtc_clock_get(crtc, pipe_config);
6718         else
6719                 i9xx_crtc_clock_get(crtc, pipe_config);
6720
6721         return true;
6722 }
6723
6724 static void ironlake_init_pch_refclk(struct drm_device *dev)
6725 {
6726         struct drm_i915_private *dev_priv = dev->dev_private;
6727         struct intel_encoder *encoder;
6728         u32 val, final;
6729         bool has_lvds = false;
6730         bool has_cpu_edp = false;
6731         bool has_panel = false;
6732         bool has_ck505 = false;
6733         bool can_ssc = false;
6734
6735         /* We need to take the global config into account */
6736         for_each_intel_encoder(dev, encoder) {
6737                 switch (encoder->type) {
6738                 case INTEL_OUTPUT_LVDS:
6739                         has_panel = true;
6740                         has_lvds = true;
6741                         break;
6742                 case INTEL_OUTPUT_EDP:
6743                         has_panel = true;
6744                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6745                                 has_cpu_edp = true;
6746                         break;
6747                 default:
6748                         break;
6749                 }
6750         }
6751
6752         if (HAS_PCH_IBX(dev)) {
6753                 has_ck505 = dev_priv->vbt.display_clock_mode;
6754                 can_ssc = has_ck505;
6755         } else {
6756                 has_ck505 = false;
6757                 can_ssc = true;
6758         }
6759
6760         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6761                       has_panel, has_lvds, has_ck505);
6762
6763         /* Ironlake: try to setup display ref clock before DPLL
6764          * enabling. This is only under driver's control after
6765          * PCH B stepping, previous chipset stepping should be
6766          * ignoring this setting.
6767          */
6768         val = I915_READ(PCH_DREF_CONTROL);
6769
6770         /* As we must carefully and slowly disable/enable each source in turn,
6771          * compute the final state we want first and check if we need to
6772          * make any changes at all.
6773          */
6774         final = val;
6775         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6776         if (has_ck505)
6777                 final |= DREF_NONSPREAD_CK505_ENABLE;
6778         else
6779                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6780
6781         final &= ~DREF_SSC_SOURCE_MASK;
6782         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6783         final &= ~DREF_SSC1_ENABLE;
6784
6785         if (has_panel) {
6786                 final |= DREF_SSC_SOURCE_ENABLE;
6787
6788                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6789                         final |= DREF_SSC1_ENABLE;
6790
6791                 if (has_cpu_edp) {
6792                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6793                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6794                         else
6795                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6796                 } else
6797                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6798         } else {
6799                 final |= DREF_SSC_SOURCE_DISABLE;
6800                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6801         }
6802
6803         if (final == val)
6804                 return;
6805
6806         /* Always enable nonspread source */
6807         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6808
6809         if (has_ck505)
6810                 val |= DREF_NONSPREAD_CK505_ENABLE;
6811         else
6812                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6813
6814         if (has_panel) {
6815                 val &= ~DREF_SSC_SOURCE_MASK;
6816                 val |= DREF_SSC_SOURCE_ENABLE;
6817
6818                 /* SSC must be turned on before enabling the CPU output  */
6819                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6820                         DRM_DEBUG_KMS("Using SSC on panel\n");
6821                         val |= DREF_SSC1_ENABLE;
6822                 } else
6823                         val &= ~DREF_SSC1_ENABLE;
6824
6825                 /* Get SSC going before enabling the outputs */
6826                 I915_WRITE(PCH_DREF_CONTROL, val);
6827                 POSTING_READ(PCH_DREF_CONTROL);
6828                 udelay(200);
6829
6830                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6831
6832                 /* Enable CPU source on CPU attached eDP */
6833                 if (has_cpu_edp) {
6834                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6835                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6836                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6837                         } else
6838                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6839                 } else
6840                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6841
6842                 I915_WRITE(PCH_DREF_CONTROL, val);
6843                 POSTING_READ(PCH_DREF_CONTROL);
6844                 udelay(200);
6845         } else {
6846                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6847
6848                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6849
6850                 /* Turn off CPU output */
6851                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6852
6853                 I915_WRITE(PCH_DREF_CONTROL, val);
6854                 POSTING_READ(PCH_DREF_CONTROL);
6855                 udelay(200);
6856
6857                 /* Turn off the SSC source */
6858                 val &= ~DREF_SSC_SOURCE_MASK;
6859                 val |= DREF_SSC_SOURCE_DISABLE;
6860
6861                 /* Turn off SSC1 */
6862                 val &= ~DREF_SSC1_ENABLE;
6863
6864                 I915_WRITE(PCH_DREF_CONTROL, val);
6865                 POSTING_READ(PCH_DREF_CONTROL);
6866                 udelay(200);
6867         }
6868
6869         BUG_ON(val != final);
6870 }
6871
6872 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6873 {
6874         uint32_t tmp;
6875
6876         tmp = I915_READ(SOUTH_CHICKEN2);
6877         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6878         I915_WRITE(SOUTH_CHICKEN2, tmp);
6879
6880         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6881                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6882                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6883
6884         tmp = I915_READ(SOUTH_CHICKEN2);
6885         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6886         I915_WRITE(SOUTH_CHICKEN2, tmp);
6887
6888         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6889                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6890                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6891 }
6892
6893 /* WaMPhyProgramming:hsw */
6894 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6895 {
6896         uint32_t tmp;
6897
6898         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6899         tmp &= ~(0xFF << 24);
6900         tmp |= (0x12 << 24);
6901         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6902
6903         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6904         tmp |= (1 << 11);
6905         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6906
6907         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6908         tmp |= (1 << 11);
6909         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6910
6911         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6912         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6913         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6914
6915         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6916         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6917         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6918
6919         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6920         tmp &= ~(7 << 13);
6921         tmp |= (5 << 13);
6922         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6923
6924         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6925         tmp &= ~(7 << 13);
6926         tmp |= (5 << 13);
6927         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6928
6929         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6930         tmp &= ~0xFF;
6931         tmp |= 0x1C;
6932         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6933
6934         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6935         tmp &= ~0xFF;
6936         tmp |= 0x1C;
6937         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6938
6939         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6940         tmp &= ~(0xFF << 16);
6941         tmp |= (0x1C << 16);
6942         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6943
6944         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6945         tmp &= ~(0xFF << 16);
6946         tmp |= (0x1C << 16);
6947         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6948
6949         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6950         tmp |= (1 << 27);
6951         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6952
6953         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6954         tmp |= (1 << 27);
6955         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6956
6957         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6958         tmp &= ~(0xF << 28);
6959         tmp |= (4 << 28);
6960         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6961
6962         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6963         tmp &= ~(0xF << 28);
6964         tmp |= (4 << 28);
6965         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6966 }
6967
6968 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6969  * Programming" based on the parameters passed:
6970  * - Sequence to enable CLKOUT_DP
6971  * - Sequence to enable CLKOUT_DP without spread
6972  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6973  */
6974 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6975                                  bool with_fdi)
6976 {
6977         struct drm_i915_private *dev_priv = dev->dev_private;
6978         uint32_t reg, tmp;
6979
6980         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6981                 with_spread = true;
6982         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6983                  with_fdi, "LP PCH doesn't have FDI\n"))
6984                 with_fdi = false;
6985
6986         mutex_lock(&dev_priv->dpio_lock);
6987
6988         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6989         tmp &= ~SBI_SSCCTL_DISABLE;
6990         tmp |= SBI_SSCCTL_PATHALT;
6991         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6992
6993         udelay(24);
6994
6995         if (with_spread) {
6996                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6997                 tmp &= ~SBI_SSCCTL_PATHALT;
6998                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6999
7000                 if (with_fdi) {
7001                         lpt_reset_fdi_mphy(dev_priv);
7002                         lpt_program_fdi_mphy(dev_priv);
7003                 }
7004         }
7005
7006         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7007                SBI_GEN0 : SBI_DBUFF0;
7008         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7009         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7010         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7011
7012         mutex_unlock(&dev_priv->dpio_lock);
7013 }
7014
7015 /* Sequence to disable CLKOUT_DP */
7016 static void lpt_disable_clkout_dp(struct drm_device *dev)
7017 {
7018         struct drm_i915_private *dev_priv = dev->dev_private;
7019         uint32_t reg, tmp;
7020
7021         mutex_lock(&dev_priv->dpio_lock);
7022
7023         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7024                SBI_GEN0 : SBI_DBUFF0;
7025         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7026         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7027         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7028
7029         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7030         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7031                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7032                         tmp |= SBI_SSCCTL_PATHALT;
7033                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7034                         udelay(32);
7035                 }
7036                 tmp |= SBI_SSCCTL_DISABLE;
7037                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7038         }
7039
7040         mutex_unlock(&dev_priv->dpio_lock);
7041 }
7042
7043 static void lpt_init_pch_refclk(struct drm_device *dev)
7044 {
7045         struct intel_encoder *encoder;
7046         bool has_vga = false;
7047
7048         for_each_intel_encoder(dev, encoder) {
7049                 switch (encoder->type) {
7050                 case INTEL_OUTPUT_ANALOG:
7051                         has_vga = true;
7052                         break;
7053                 default:
7054                         break;
7055                 }
7056         }
7057
7058         if (has_vga)
7059                 lpt_enable_clkout_dp(dev, true, true);
7060         else
7061                 lpt_disable_clkout_dp(dev);
7062 }
7063
7064 /*
7065  * Initialize reference clocks when the driver loads
7066  */
7067 void intel_init_pch_refclk(struct drm_device *dev)
7068 {
7069         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7070                 ironlake_init_pch_refclk(dev);
7071         else if (HAS_PCH_LPT(dev))
7072                 lpt_init_pch_refclk(dev);
7073 }
7074
7075 static int ironlake_get_refclk(struct drm_crtc *crtc)
7076 {
7077         struct drm_device *dev = crtc->dev;
7078         struct drm_i915_private *dev_priv = dev->dev_private;
7079         struct intel_encoder *encoder;
7080         int num_connectors = 0;
7081         bool is_lvds = false;
7082
7083         for_each_intel_encoder(dev, encoder) {
7084                 if (encoder->new_crtc != to_intel_crtc(crtc))
7085                         continue;
7086
7087                 switch (encoder->type) {
7088                 case INTEL_OUTPUT_LVDS:
7089                         is_lvds = true;
7090                         break;
7091                 default:
7092                         break;
7093                 }
7094                 num_connectors++;
7095         }
7096
7097         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7098                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7099                               dev_priv->vbt.lvds_ssc_freq);
7100                 return dev_priv->vbt.lvds_ssc_freq;
7101         }
7102
7103         return 120000;
7104 }
7105
7106 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7107 {
7108         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7110         int pipe = intel_crtc->pipe;
7111         uint32_t val;
7112
7113         val = 0;
7114
7115         switch (intel_crtc->config.pipe_bpp) {
7116         case 18:
7117                 val |= PIPECONF_6BPC;
7118                 break;
7119         case 24:
7120                 val |= PIPECONF_8BPC;
7121                 break;
7122         case 30:
7123                 val |= PIPECONF_10BPC;
7124                 break;
7125         case 36:
7126                 val |= PIPECONF_12BPC;
7127                 break;
7128         default:
7129                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7130                 BUG();
7131         }
7132
7133         if (intel_crtc->config.dither)
7134                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7135
7136         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7137                 val |= PIPECONF_INTERLACED_ILK;
7138         else
7139                 val |= PIPECONF_PROGRESSIVE;
7140
7141         if (intel_crtc->config.limited_color_range)
7142                 val |= PIPECONF_COLOR_RANGE_SELECT;
7143
7144         I915_WRITE(PIPECONF(pipe), val);
7145         POSTING_READ(PIPECONF(pipe));
7146 }
7147
7148 /*
7149  * Set up the pipe CSC unit.
7150  *
7151  * Currently only full range RGB to limited range RGB conversion
7152  * is supported, but eventually this should handle various
7153  * RGB<->YCbCr scenarios as well.
7154  */
7155 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7156 {
7157         struct drm_device *dev = crtc->dev;
7158         struct drm_i915_private *dev_priv = dev->dev_private;
7159         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7160         int pipe = intel_crtc->pipe;
7161         uint16_t coeff = 0x7800; /* 1.0 */
7162
7163         /*
7164          * TODO: Check what kind of values actually come out of the pipe
7165          * with these coeff/postoff values and adjust to get the best
7166          * accuracy. Perhaps we even need to take the bpc value into
7167          * consideration.
7168          */
7169
7170         if (intel_crtc->config.limited_color_range)
7171                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7172
7173         /*
7174          * GY/GU and RY/RU should be the other way around according
7175          * to BSpec, but reality doesn't agree. Just set them up in
7176          * a way that results in the correct picture.
7177          */
7178         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7179         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7180
7181         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7182         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7183
7184         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7185         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7186
7187         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7188         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7189         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7190
7191         if (INTEL_INFO(dev)->gen > 6) {
7192                 uint16_t postoff = 0;
7193
7194                 if (intel_crtc->config.limited_color_range)
7195                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7196
7197                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7198                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7199                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7200
7201                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7202         } else {
7203                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7204
7205                 if (intel_crtc->config.limited_color_range)
7206                         mode |= CSC_BLACK_SCREEN_OFFSET;
7207
7208                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7209         }
7210 }
7211
7212 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7213 {
7214         struct drm_device *dev = crtc->dev;
7215         struct drm_i915_private *dev_priv = dev->dev_private;
7216         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7217         enum pipe pipe = intel_crtc->pipe;
7218         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7219         uint32_t val;
7220
7221         val = 0;
7222
7223         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7224                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7225
7226         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7227                 val |= PIPECONF_INTERLACED_ILK;
7228         else
7229                 val |= PIPECONF_PROGRESSIVE;
7230
7231         I915_WRITE(PIPECONF(cpu_transcoder), val);
7232         POSTING_READ(PIPECONF(cpu_transcoder));
7233
7234         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7235         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7236
7237         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7238                 val = 0;
7239
7240                 switch (intel_crtc->config.pipe_bpp) {
7241                 case 18:
7242                         val |= PIPEMISC_DITHER_6_BPC;
7243                         break;
7244                 case 24:
7245                         val |= PIPEMISC_DITHER_8_BPC;
7246                         break;
7247                 case 30:
7248                         val |= PIPEMISC_DITHER_10_BPC;
7249                         break;
7250                 case 36:
7251                         val |= PIPEMISC_DITHER_12_BPC;
7252                         break;
7253                 default:
7254                         /* Case prevented by pipe_config_set_bpp. */
7255                         BUG();
7256                 }
7257
7258                 if (intel_crtc->config.dither)
7259                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7260
7261                 I915_WRITE(PIPEMISC(pipe), val);
7262         }
7263 }
7264
7265 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7266                                     intel_clock_t *clock,
7267                                     bool *has_reduced_clock,
7268                                     intel_clock_t *reduced_clock)
7269 {
7270         struct drm_device *dev = crtc->dev;
7271         struct drm_i915_private *dev_priv = dev->dev_private;
7272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7273         int refclk;
7274         const intel_limit_t *limit;
7275         bool ret, is_lvds = false;
7276
7277         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7278
7279         refclk = ironlake_get_refclk(crtc);
7280
7281         /*
7282          * Returns a set of divisors for the desired target clock with the given
7283          * refclk, or FALSE.  The returned values represent the clock equation:
7284          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7285          */
7286         limit = intel_limit(intel_crtc, refclk);
7287         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7288                                           intel_crtc->new_config->port_clock,
7289                                           refclk, NULL, clock);
7290         if (!ret)
7291                 return false;
7292
7293         if (is_lvds && dev_priv->lvds_downclock_avail) {
7294                 /*
7295                  * Ensure we match the reduced clock's P to the target clock.
7296                  * If the clocks don't match, we can't switch the display clock
7297                  * by using the FP0/FP1. In such case we will disable the LVDS
7298                  * downclock feature.
7299                 */
7300                 *has_reduced_clock =
7301                         dev_priv->display.find_dpll(limit, intel_crtc,
7302                                                     dev_priv->lvds_downclock,
7303                                                     refclk, clock,
7304                                                     reduced_clock);
7305         }
7306
7307         return true;
7308 }
7309
7310 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7311 {
7312         /*
7313          * Account for spread spectrum to avoid
7314          * oversubscribing the link. Max center spread
7315          * is 2.5%; use 5% for safety's sake.
7316          */
7317         u32 bps = target_clock * bpp * 21 / 20;
7318         return DIV_ROUND_UP(bps, link_bw * 8);
7319 }
7320
7321 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7322 {
7323         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7324 }
7325
7326 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7327                                       u32 *fp,
7328                                       intel_clock_t *reduced_clock, u32 *fp2)
7329 {
7330         struct drm_crtc *crtc = &intel_crtc->base;
7331         struct drm_device *dev = crtc->dev;
7332         struct drm_i915_private *dev_priv = dev->dev_private;
7333         struct intel_encoder *intel_encoder;
7334         uint32_t dpll;
7335         int factor, num_connectors = 0;
7336         bool is_lvds = false, is_sdvo = false;
7337
7338         for_each_intel_encoder(dev, intel_encoder) {
7339                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7340                         continue;
7341
7342                 switch (intel_encoder->type) {
7343                 case INTEL_OUTPUT_LVDS:
7344                         is_lvds = true;
7345                         break;
7346                 case INTEL_OUTPUT_SDVO:
7347                 case INTEL_OUTPUT_HDMI:
7348                         is_sdvo = true;
7349                         break;
7350                 default:
7351                         break;
7352                 }
7353
7354                 num_connectors++;
7355         }
7356
7357         /* Enable autotuning of the PLL clock (if permissible) */
7358         factor = 21;
7359         if (is_lvds) {
7360                 if ((intel_panel_use_ssc(dev_priv) &&
7361                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7362                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7363                         factor = 25;
7364         } else if (intel_crtc->new_config->sdvo_tv_clock)
7365                 factor = 20;
7366
7367         if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7368                 *fp |= FP_CB_TUNE;
7369
7370         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7371                 *fp2 |= FP_CB_TUNE;
7372
7373         dpll = 0;
7374
7375         if (is_lvds)
7376                 dpll |= DPLLB_MODE_LVDS;
7377         else
7378                 dpll |= DPLLB_MODE_DAC_SERIAL;
7379
7380         dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7381                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7382
7383         if (is_sdvo)
7384                 dpll |= DPLL_SDVO_HIGH_SPEED;
7385         if (intel_crtc->new_config->has_dp_encoder)
7386                 dpll |= DPLL_SDVO_HIGH_SPEED;
7387
7388         /* compute bitmask from p1 value */
7389         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7390         /* also FPA1 */
7391         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7392
7393         switch (intel_crtc->new_config->dpll.p2) {
7394         case 5:
7395                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7396                 break;
7397         case 7:
7398                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7399                 break;
7400         case 10:
7401                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7402                 break;
7403         case 14:
7404                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7405                 break;
7406         }
7407
7408         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7409                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7410         else
7411                 dpll |= PLL_REF_INPUT_DREFCLK;
7412
7413         return dpll | DPLL_VCO_ENABLE;
7414 }
7415
7416 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7417 {
7418         struct drm_device *dev = crtc->base.dev;
7419         intel_clock_t clock, reduced_clock;
7420         u32 dpll = 0, fp = 0, fp2 = 0;
7421         bool ok, has_reduced_clock = false;
7422         bool is_lvds = false;
7423         struct intel_shared_dpll *pll;
7424
7425         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7426
7427         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7428              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7429
7430         ok = ironlake_compute_clocks(&crtc->base, &clock,
7431                                      &has_reduced_clock, &reduced_clock);
7432         if (!ok && !crtc->new_config->clock_set) {
7433                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7434                 return -EINVAL;
7435         }
7436         /* Compat-code for transition, will disappear. */
7437         if (!crtc->new_config->clock_set) {
7438                 crtc->new_config->dpll.n = clock.n;
7439                 crtc->new_config->dpll.m1 = clock.m1;
7440                 crtc->new_config->dpll.m2 = clock.m2;
7441                 crtc->new_config->dpll.p1 = clock.p1;
7442                 crtc->new_config->dpll.p2 = clock.p2;
7443         }
7444
7445         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7446         if (crtc->new_config->has_pch_encoder) {
7447                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7448                 if (has_reduced_clock)
7449                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7450
7451                 dpll = ironlake_compute_dpll(crtc,
7452                                              &fp, &reduced_clock,
7453                                              has_reduced_clock ? &fp2 : NULL);
7454
7455                 crtc->new_config->dpll_hw_state.dpll = dpll;
7456                 crtc->new_config->dpll_hw_state.fp0 = fp;
7457                 if (has_reduced_clock)
7458                         crtc->new_config->dpll_hw_state.fp1 = fp2;
7459                 else
7460                         crtc->new_config->dpll_hw_state.fp1 = fp;
7461
7462                 pll = intel_get_shared_dpll(crtc);
7463                 if (pll == NULL) {
7464                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7465                                          pipe_name(crtc->pipe));
7466                         return -EINVAL;
7467                 }
7468         }
7469
7470         if (is_lvds && has_reduced_clock && i915.powersave)
7471                 crtc->lowfreq_avail = true;
7472         else
7473                 crtc->lowfreq_avail = false;
7474
7475         return 0;
7476 }
7477
7478 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7479                                          struct intel_link_m_n *m_n)
7480 {
7481         struct drm_device *dev = crtc->base.dev;
7482         struct drm_i915_private *dev_priv = dev->dev_private;
7483         enum pipe pipe = crtc->pipe;
7484
7485         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7486         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7487         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7488                 & ~TU_SIZE_MASK;
7489         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7490         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7491                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7492 }
7493
7494 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7495                                          enum transcoder transcoder,
7496                                          struct intel_link_m_n *m_n,
7497                                          struct intel_link_m_n *m2_n2)
7498 {
7499         struct drm_device *dev = crtc->base.dev;
7500         struct drm_i915_private *dev_priv = dev->dev_private;
7501         enum pipe pipe = crtc->pipe;
7502
7503         if (INTEL_INFO(dev)->gen >= 5) {
7504                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7505                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7506                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7507                         & ~TU_SIZE_MASK;
7508                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7509                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7510                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7511                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7512                  * gen < 8) and if DRRS is supported (to make sure the
7513                  * registers are not unnecessarily read).
7514                  */
7515                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7516                         crtc->config.has_drrs) {
7517                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7518                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7519                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7520                                         & ~TU_SIZE_MASK;
7521                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7522                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7523                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7524                 }
7525         } else {
7526                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7527                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7528                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7529                         & ~TU_SIZE_MASK;
7530                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7531                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7532                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7533         }
7534 }
7535
7536 void intel_dp_get_m_n(struct intel_crtc *crtc,
7537                       struct intel_crtc_config *pipe_config)
7538 {
7539         if (crtc->config.has_pch_encoder)
7540                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7541         else
7542                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7543                                              &pipe_config->dp_m_n,
7544                                              &pipe_config->dp_m2_n2);
7545 }
7546
7547 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7548                                         struct intel_crtc_config *pipe_config)
7549 {
7550         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7551                                      &pipe_config->fdi_m_n, NULL);
7552 }
7553
7554 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7555                                     struct intel_crtc_config *pipe_config)
7556 {
7557         struct drm_device *dev = crtc->base.dev;
7558         struct drm_i915_private *dev_priv = dev->dev_private;
7559         uint32_t tmp;
7560
7561         tmp = I915_READ(PS_CTL(crtc->pipe));
7562
7563         if (tmp & PS_ENABLE) {
7564                 pipe_config->pch_pfit.enabled = true;
7565                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7566                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7567         }
7568 }
7569
7570 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7571                                      struct intel_crtc_config *pipe_config)
7572 {
7573         struct drm_device *dev = crtc->base.dev;
7574         struct drm_i915_private *dev_priv = dev->dev_private;
7575         uint32_t tmp;
7576
7577         tmp = I915_READ(PF_CTL(crtc->pipe));
7578
7579         if (tmp & PF_ENABLE) {
7580                 pipe_config->pch_pfit.enabled = true;
7581                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7582                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7583
7584                 /* We currently do not free assignements of panel fitters on
7585                  * ivb/hsw (since we don't use the higher upscaling modes which
7586                  * differentiates them) so just WARN about this case for now. */
7587                 if (IS_GEN7(dev)) {
7588                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7589                                 PF_PIPE_SEL_IVB(crtc->pipe));
7590                 }
7591         }
7592 }
7593
7594 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7595                                       struct intel_plane_config *plane_config)
7596 {
7597         struct drm_device *dev = crtc->base.dev;
7598         struct drm_i915_private *dev_priv = dev->dev_private;
7599         u32 val, base, offset;
7600         int pipe = crtc->pipe, plane = crtc->plane;
7601         int fourcc, pixel_format;
7602         int aligned_height;
7603
7604         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7605         if (!crtc->base.primary->fb) {
7606                 DRM_DEBUG_KMS("failed to alloc fb\n");
7607                 return;
7608         }
7609
7610         val = I915_READ(DSPCNTR(plane));
7611
7612         if (INTEL_INFO(dev)->gen >= 4)
7613                 if (val & DISPPLANE_TILED)
7614                         plane_config->tiled = true;
7615
7616         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7617         fourcc = intel_format_to_fourcc(pixel_format);
7618         crtc->base.primary->fb->pixel_format = fourcc;
7619         crtc->base.primary->fb->bits_per_pixel =
7620                 drm_format_plane_cpp(fourcc, 0) * 8;
7621
7622         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7623         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7624                 offset = I915_READ(DSPOFFSET(plane));
7625         } else {
7626                 if (plane_config->tiled)
7627                         offset = I915_READ(DSPTILEOFF(plane));
7628                 else
7629                         offset = I915_READ(DSPLINOFF(plane));
7630         }
7631         plane_config->base = base;
7632
7633         val = I915_READ(PIPESRC(pipe));
7634         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7635         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7636
7637         val = I915_READ(DSPSTRIDE(pipe));
7638         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7639
7640         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7641                                             plane_config->tiled);
7642
7643         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7644                                         aligned_height);
7645
7646         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7647                       pipe, plane, crtc->base.primary->fb->width,
7648                       crtc->base.primary->fb->height,
7649                       crtc->base.primary->fb->bits_per_pixel, base,
7650                       crtc->base.primary->fb->pitches[0],
7651                       plane_config->size);
7652 }
7653
7654 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7655                                      struct intel_crtc_config *pipe_config)
7656 {
7657         struct drm_device *dev = crtc->base.dev;
7658         struct drm_i915_private *dev_priv = dev->dev_private;
7659         uint32_t tmp;
7660
7661         if (!intel_display_power_is_enabled(dev_priv,
7662                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7663                 return false;
7664
7665         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7666         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7667
7668         tmp = I915_READ(PIPECONF(crtc->pipe));
7669         if (!(tmp & PIPECONF_ENABLE))
7670                 return false;
7671
7672         switch (tmp & PIPECONF_BPC_MASK) {
7673         case PIPECONF_6BPC:
7674                 pipe_config->pipe_bpp = 18;
7675                 break;
7676         case PIPECONF_8BPC:
7677                 pipe_config->pipe_bpp = 24;
7678                 break;
7679         case PIPECONF_10BPC:
7680                 pipe_config->pipe_bpp = 30;
7681                 break;
7682         case PIPECONF_12BPC:
7683                 pipe_config->pipe_bpp = 36;
7684                 break;
7685         default:
7686                 break;
7687         }
7688
7689         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7690                 pipe_config->limited_color_range = true;
7691
7692         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7693                 struct intel_shared_dpll *pll;
7694
7695                 pipe_config->has_pch_encoder = true;
7696
7697                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7698                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7699                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7700
7701                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7702
7703                 if (HAS_PCH_IBX(dev_priv->dev)) {
7704                         pipe_config->shared_dpll =
7705                                 (enum intel_dpll_id) crtc->pipe;
7706                 } else {
7707                         tmp = I915_READ(PCH_DPLL_SEL);
7708                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7709                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7710                         else
7711                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7712                 }
7713
7714                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7715
7716                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7717                                            &pipe_config->dpll_hw_state));
7718
7719                 tmp = pipe_config->dpll_hw_state.dpll;
7720                 pipe_config->pixel_multiplier =
7721                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7722                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7723
7724                 ironlake_pch_clock_get(crtc, pipe_config);
7725         } else {
7726                 pipe_config->pixel_multiplier = 1;
7727         }
7728
7729         intel_get_pipe_timings(crtc, pipe_config);
7730
7731         ironlake_get_pfit_config(crtc, pipe_config);
7732
7733         return true;
7734 }
7735
7736 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7737 {
7738         struct drm_device *dev = dev_priv->dev;
7739         struct intel_crtc *crtc;
7740
7741         for_each_intel_crtc(dev, crtc)
7742                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7743                      pipe_name(crtc->pipe));
7744
7745         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7746         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7747         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7748         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7749         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7750         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7751              "CPU PWM1 enabled\n");
7752         if (IS_HASWELL(dev))
7753                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7754                      "CPU PWM2 enabled\n");
7755         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7756              "PCH PWM1 enabled\n");
7757         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7758              "Utility pin enabled\n");
7759         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7760
7761         /*
7762          * In theory we can still leave IRQs enabled, as long as only the HPD
7763          * interrupts remain enabled. We used to check for that, but since it's
7764          * gen-specific and since we only disable LCPLL after we fully disable
7765          * the interrupts, the check below should be enough.
7766          */
7767         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7768 }
7769
7770 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7771 {
7772         struct drm_device *dev = dev_priv->dev;
7773
7774         if (IS_HASWELL(dev))
7775                 return I915_READ(D_COMP_HSW);
7776         else
7777                 return I915_READ(D_COMP_BDW);
7778 }
7779
7780 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7781 {
7782         struct drm_device *dev = dev_priv->dev;
7783
7784         if (IS_HASWELL(dev)) {
7785                 mutex_lock(&dev_priv->rps.hw_lock);
7786                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7787                                             val))
7788                         DRM_ERROR("Failed to write to D_COMP\n");
7789                 mutex_unlock(&dev_priv->rps.hw_lock);
7790         } else {
7791                 I915_WRITE(D_COMP_BDW, val);
7792                 POSTING_READ(D_COMP_BDW);
7793         }
7794 }
7795
7796 /*
7797  * This function implements pieces of two sequences from BSpec:
7798  * - Sequence for display software to disable LCPLL
7799  * - Sequence for display software to allow package C8+
7800  * The steps implemented here are just the steps that actually touch the LCPLL
7801  * register. Callers should take care of disabling all the display engine
7802  * functions, doing the mode unset, fixing interrupts, etc.
7803  */
7804 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7805                               bool switch_to_fclk, bool allow_power_down)
7806 {
7807         uint32_t val;
7808
7809         assert_can_disable_lcpll(dev_priv);
7810
7811         val = I915_READ(LCPLL_CTL);
7812
7813         if (switch_to_fclk) {
7814                 val |= LCPLL_CD_SOURCE_FCLK;
7815                 I915_WRITE(LCPLL_CTL, val);
7816
7817                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7818                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7819                         DRM_ERROR("Switching to FCLK failed\n");
7820
7821                 val = I915_READ(LCPLL_CTL);
7822         }
7823
7824         val |= LCPLL_PLL_DISABLE;
7825         I915_WRITE(LCPLL_CTL, val);
7826         POSTING_READ(LCPLL_CTL);
7827
7828         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7829                 DRM_ERROR("LCPLL still locked\n");
7830
7831         val = hsw_read_dcomp(dev_priv);
7832         val |= D_COMP_COMP_DISABLE;
7833         hsw_write_dcomp(dev_priv, val);
7834         ndelay(100);
7835
7836         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7837                      1))
7838                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7839
7840         if (allow_power_down) {
7841                 val = I915_READ(LCPLL_CTL);
7842                 val |= LCPLL_POWER_DOWN_ALLOW;
7843                 I915_WRITE(LCPLL_CTL, val);
7844                 POSTING_READ(LCPLL_CTL);
7845         }
7846 }
7847
7848 /*
7849  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7850  * source.
7851  */
7852 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7853 {
7854         uint32_t val;
7855
7856         val = I915_READ(LCPLL_CTL);
7857
7858         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7859                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7860                 return;
7861
7862         /*
7863          * Make sure we're not on PC8 state before disabling PC8, otherwise
7864          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7865          *
7866          * The other problem is that hsw_restore_lcpll() is called as part of
7867          * the runtime PM resume sequence, so we can't just call
7868          * gen6_gt_force_wake_get() because that function calls
7869          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7870          * while we are on the resume sequence. So to solve this problem we have
7871          * to call special forcewake code that doesn't touch runtime PM and
7872          * doesn't enable the forcewake delayed work.
7873          */
7874         spin_lock_irq(&dev_priv->uncore.lock);
7875         if (dev_priv->uncore.forcewake_count++ == 0)
7876                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7877         spin_unlock_irq(&dev_priv->uncore.lock);
7878
7879         if (val & LCPLL_POWER_DOWN_ALLOW) {
7880                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7881                 I915_WRITE(LCPLL_CTL, val);
7882                 POSTING_READ(LCPLL_CTL);
7883         }
7884
7885         val = hsw_read_dcomp(dev_priv);
7886         val |= D_COMP_COMP_FORCE;
7887         val &= ~D_COMP_COMP_DISABLE;
7888         hsw_write_dcomp(dev_priv, val);
7889
7890         val = I915_READ(LCPLL_CTL);
7891         val &= ~LCPLL_PLL_DISABLE;
7892         I915_WRITE(LCPLL_CTL, val);
7893
7894         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7895                 DRM_ERROR("LCPLL not locked yet\n");
7896
7897         if (val & LCPLL_CD_SOURCE_FCLK) {
7898                 val = I915_READ(LCPLL_CTL);
7899                 val &= ~LCPLL_CD_SOURCE_FCLK;
7900                 I915_WRITE(LCPLL_CTL, val);
7901
7902                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7903                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7904                         DRM_ERROR("Switching back to LCPLL failed\n");
7905         }
7906
7907         /* See the big comment above. */
7908         spin_lock_irq(&dev_priv->uncore.lock);
7909         if (--dev_priv->uncore.forcewake_count == 0)
7910                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7911         spin_unlock_irq(&dev_priv->uncore.lock);
7912 }
7913
7914 /*
7915  * Package states C8 and deeper are really deep PC states that can only be
7916  * reached when all the devices on the system allow it, so even if the graphics
7917  * device allows PC8+, it doesn't mean the system will actually get to these
7918  * states. Our driver only allows PC8+ when going into runtime PM.
7919  *
7920  * The requirements for PC8+ are that all the outputs are disabled, the power
7921  * well is disabled and most interrupts are disabled, and these are also
7922  * requirements for runtime PM. When these conditions are met, we manually do
7923  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7924  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7925  * hang the machine.
7926  *
7927  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7928  * the state of some registers, so when we come back from PC8+ we need to
7929  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7930  * need to take care of the registers kept by RC6. Notice that this happens even
7931  * if we don't put the device in PCI D3 state (which is what currently happens
7932  * because of the runtime PM support).
7933  *
7934  * For more, read "Display Sequences for Package C8" on the hardware
7935  * documentation.
7936  */
7937 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7938 {
7939         struct drm_device *dev = dev_priv->dev;
7940         uint32_t val;
7941
7942         DRM_DEBUG_KMS("Enabling package C8+\n");
7943
7944         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7945                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7946                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7947                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7948         }
7949
7950         lpt_disable_clkout_dp(dev);
7951         hsw_disable_lcpll(dev_priv, true, true);
7952 }
7953
7954 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7955 {
7956         struct drm_device *dev = dev_priv->dev;
7957         uint32_t val;
7958
7959         DRM_DEBUG_KMS("Disabling package C8+\n");
7960
7961         hsw_restore_lcpll(dev_priv);
7962         lpt_init_pch_refclk(dev);
7963
7964         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7965                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7966                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7967                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7968         }
7969
7970         intel_prepare_ddi(dev);
7971 }
7972
7973 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
7974 {
7975         if (!intel_ddi_pll_select(crtc))
7976                 return -EINVAL;
7977
7978         crtc->lowfreq_avail = false;
7979
7980         return 0;
7981 }
7982
7983 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
7984                                 enum port port,
7985                                 struct intel_crtc_config *pipe_config)
7986 {
7987         u32 temp, dpll_ctl1;
7988
7989         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
7990         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
7991
7992         switch (pipe_config->ddi_pll_sel) {
7993         case SKL_DPLL0:
7994                 /*
7995                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
7996                  * of the shared DPLL framework and thus needs to be read out
7997                  * separately
7998                  */
7999                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8000                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8001                 break;
8002         case SKL_DPLL1:
8003                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8004                 break;
8005         case SKL_DPLL2:
8006                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8007                 break;
8008         case SKL_DPLL3:
8009                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8010                 break;
8011         }
8012 }
8013
8014 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8015                                 enum port port,
8016                                 struct intel_crtc_config *pipe_config)
8017 {
8018         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8019
8020         switch (pipe_config->ddi_pll_sel) {
8021         case PORT_CLK_SEL_WRPLL1:
8022                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8023                 break;
8024         case PORT_CLK_SEL_WRPLL2:
8025                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8026                 break;
8027         }
8028 }
8029
8030 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8031                                        struct intel_crtc_config *pipe_config)
8032 {
8033         struct drm_device *dev = crtc->base.dev;
8034         struct drm_i915_private *dev_priv = dev->dev_private;
8035         struct intel_shared_dpll *pll;
8036         enum port port;
8037         uint32_t tmp;
8038
8039         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8040
8041         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8042
8043         if (IS_SKYLAKE(dev))
8044                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8045         else
8046                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8047
8048         if (pipe_config->shared_dpll >= 0) {
8049                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8050
8051                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8052                                            &pipe_config->dpll_hw_state));
8053         }
8054
8055         /*
8056          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8057          * DDI E. So just check whether this pipe is wired to DDI E and whether
8058          * the PCH transcoder is on.
8059          */
8060         if (INTEL_INFO(dev)->gen < 9 &&
8061             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8062                 pipe_config->has_pch_encoder = true;
8063
8064                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8065                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8066                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8067
8068                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8069         }
8070 }
8071
8072 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8073                                     struct intel_crtc_config *pipe_config)
8074 {
8075         struct drm_device *dev = crtc->base.dev;
8076         struct drm_i915_private *dev_priv = dev->dev_private;
8077         enum intel_display_power_domain pfit_domain;
8078         uint32_t tmp;
8079
8080         if (!intel_display_power_is_enabled(dev_priv,
8081                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8082                 return false;
8083
8084         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8085         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8086
8087         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8088         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8089                 enum pipe trans_edp_pipe;
8090                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8091                 default:
8092                         WARN(1, "unknown pipe linked to edp transcoder\n");
8093                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8094                 case TRANS_DDI_EDP_INPUT_A_ON:
8095                         trans_edp_pipe = PIPE_A;
8096                         break;
8097                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8098                         trans_edp_pipe = PIPE_B;
8099                         break;
8100                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8101                         trans_edp_pipe = PIPE_C;
8102                         break;
8103                 }
8104
8105                 if (trans_edp_pipe == crtc->pipe)
8106                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8107         }
8108
8109         if (!intel_display_power_is_enabled(dev_priv,
8110                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8111                 return false;
8112
8113         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8114         if (!(tmp & PIPECONF_ENABLE))
8115                 return false;
8116
8117         haswell_get_ddi_port_state(crtc, pipe_config);
8118
8119         intel_get_pipe_timings(crtc, pipe_config);
8120
8121         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8122         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8123                 if (IS_SKYLAKE(dev))
8124                         skylake_get_pfit_config(crtc, pipe_config);
8125                 else
8126                         ironlake_get_pfit_config(crtc, pipe_config);
8127         }
8128
8129         if (IS_HASWELL(dev))
8130                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8131                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8132
8133         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8134                 pipe_config->pixel_multiplier =
8135                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8136         } else {
8137                 pipe_config->pixel_multiplier = 1;
8138         }
8139
8140         return true;
8141 }
8142
8143 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8144 {
8145         struct drm_device *dev = crtc->dev;
8146         struct drm_i915_private *dev_priv = dev->dev_private;
8147         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8148         uint32_t cntl = 0, size = 0;
8149
8150         if (base) {
8151                 unsigned int width = intel_crtc->cursor_width;
8152                 unsigned int height = intel_crtc->cursor_height;
8153                 unsigned int stride = roundup_pow_of_two(width) * 4;
8154
8155                 switch (stride) {
8156                 default:
8157                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8158                                   width, stride);
8159                         stride = 256;
8160                         /* fallthrough */
8161                 case 256:
8162                 case 512:
8163                 case 1024:
8164                 case 2048:
8165                         break;
8166                 }
8167
8168                 cntl |= CURSOR_ENABLE |
8169                         CURSOR_GAMMA_ENABLE |
8170                         CURSOR_FORMAT_ARGB |
8171                         CURSOR_STRIDE(stride);
8172
8173                 size = (height << 12) | width;
8174         }
8175
8176         if (intel_crtc->cursor_cntl != 0 &&
8177             (intel_crtc->cursor_base != base ||
8178              intel_crtc->cursor_size != size ||
8179              intel_crtc->cursor_cntl != cntl)) {
8180                 /* On these chipsets we can only modify the base/size/stride
8181                  * whilst the cursor is disabled.
8182                  */
8183                 I915_WRITE(_CURACNTR, 0);
8184                 POSTING_READ(_CURACNTR);
8185                 intel_crtc->cursor_cntl = 0;
8186         }
8187
8188         if (intel_crtc->cursor_base != base) {
8189                 I915_WRITE(_CURABASE, base);
8190                 intel_crtc->cursor_base = base;
8191         }
8192
8193         if (intel_crtc->cursor_size != size) {
8194                 I915_WRITE(CURSIZE, size);
8195                 intel_crtc->cursor_size = size;
8196         }
8197
8198         if (intel_crtc->cursor_cntl != cntl) {
8199                 I915_WRITE(_CURACNTR, cntl);
8200                 POSTING_READ(_CURACNTR);
8201                 intel_crtc->cursor_cntl = cntl;
8202         }
8203 }
8204
8205 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8206 {
8207         struct drm_device *dev = crtc->dev;
8208         struct drm_i915_private *dev_priv = dev->dev_private;
8209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8210         int pipe = intel_crtc->pipe;
8211         uint32_t cntl;
8212
8213         cntl = 0;
8214         if (base) {
8215                 cntl = MCURSOR_GAMMA_ENABLE;
8216                 switch (intel_crtc->cursor_width) {
8217                         case 64:
8218                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8219                                 break;
8220                         case 128:
8221                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8222                                 break;
8223                         case 256:
8224                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8225                                 break;
8226                         default:
8227                                 WARN_ON(1);
8228                                 return;
8229                 }
8230                 cntl |= pipe << 28; /* Connect to correct pipe */
8231
8232                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8233                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8234         }
8235
8236         if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8237                 cntl |= CURSOR_ROTATE_180;
8238
8239         if (intel_crtc->cursor_cntl != cntl) {
8240                 I915_WRITE(CURCNTR(pipe), cntl);
8241                 POSTING_READ(CURCNTR(pipe));
8242                 intel_crtc->cursor_cntl = cntl;
8243         }
8244
8245         /* and commit changes on next vblank */
8246         I915_WRITE(CURBASE(pipe), base);
8247         POSTING_READ(CURBASE(pipe));
8248
8249         intel_crtc->cursor_base = base;
8250 }
8251
8252 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8253 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8254                                      bool on)
8255 {
8256         struct drm_device *dev = crtc->dev;
8257         struct drm_i915_private *dev_priv = dev->dev_private;
8258         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8259         int pipe = intel_crtc->pipe;
8260         int x = crtc->cursor_x;
8261         int y = crtc->cursor_y;
8262         u32 base = 0, pos = 0;
8263
8264         if (on)
8265                 base = intel_crtc->cursor_addr;
8266
8267         if (x >= intel_crtc->config.pipe_src_w)
8268                 base = 0;
8269
8270         if (y >= intel_crtc->config.pipe_src_h)
8271                 base = 0;
8272
8273         if (x < 0) {
8274                 if (x + intel_crtc->cursor_width <= 0)
8275                         base = 0;
8276
8277                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8278                 x = -x;
8279         }
8280         pos |= x << CURSOR_X_SHIFT;
8281
8282         if (y < 0) {
8283                 if (y + intel_crtc->cursor_height <= 0)
8284                         base = 0;
8285
8286                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8287                 y = -y;
8288         }
8289         pos |= y << CURSOR_Y_SHIFT;
8290
8291         if (base == 0 && intel_crtc->cursor_base == 0)
8292                 return;
8293
8294         I915_WRITE(CURPOS(pipe), pos);
8295
8296         /* ILK+ do this automagically */
8297         if (HAS_GMCH_DISPLAY(dev) &&
8298                 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8299                 base += (intel_crtc->cursor_height *
8300                         intel_crtc->cursor_width - 1) * 4;
8301         }
8302
8303         if (IS_845G(dev) || IS_I865G(dev))
8304                 i845_update_cursor(crtc, base);
8305         else
8306                 i9xx_update_cursor(crtc, base);
8307 }
8308
8309 static bool cursor_size_ok(struct drm_device *dev,
8310                            uint32_t width, uint32_t height)
8311 {
8312         if (width == 0 || height == 0)
8313                 return false;
8314
8315         /*
8316          * 845g/865g are special in that they are only limited by
8317          * the width of their cursors, the height is arbitrary up to
8318          * the precision of the register. Everything else requires
8319          * square cursors, limited to a few power-of-two sizes.
8320          */
8321         if (IS_845G(dev) || IS_I865G(dev)) {
8322                 if ((width & 63) != 0)
8323                         return false;
8324
8325                 if (width > (IS_845G(dev) ? 64 : 512))
8326                         return false;
8327
8328                 if (height > 1023)
8329                         return false;
8330         } else {
8331                 switch (width | height) {
8332                 case 256:
8333                 case 128:
8334                         if (IS_GEN2(dev))
8335                                 return false;
8336                 case 64:
8337                         break;
8338                 default:
8339                         return false;
8340                 }
8341         }
8342
8343         return true;
8344 }
8345
8346 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8347                                  u16 *blue, uint32_t start, uint32_t size)
8348 {
8349         int end = (start + size > 256) ? 256 : start + size, i;
8350         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8351
8352         for (i = start; i < end; i++) {
8353                 intel_crtc->lut_r[i] = red[i] >> 8;
8354                 intel_crtc->lut_g[i] = green[i] >> 8;
8355                 intel_crtc->lut_b[i] = blue[i] >> 8;
8356         }
8357
8358         intel_crtc_load_lut(crtc);
8359 }
8360
8361 /* VESA 640x480x72Hz mode to set on the pipe */
8362 static struct drm_display_mode load_detect_mode = {
8363         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8364                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8365 };
8366
8367 struct drm_framebuffer *
8368 __intel_framebuffer_create(struct drm_device *dev,
8369                            struct drm_mode_fb_cmd2 *mode_cmd,
8370                            struct drm_i915_gem_object *obj)
8371 {
8372         struct intel_framebuffer *intel_fb;
8373         int ret;
8374
8375         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8376         if (!intel_fb) {
8377                 drm_gem_object_unreference(&obj->base);
8378                 return ERR_PTR(-ENOMEM);
8379         }
8380
8381         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8382         if (ret)
8383                 goto err;
8384
8385         return &intel_fb->base;
8386 err:
8387         drm_gem_object_unreference(&obj->base);
8388         kfree(intel_fb);
8389
8390         return ERR_PTR(ret);
8391 }
8392
8393 static struct drm_framebuffer *
8394 intel_framebuffer_create(struct drm_device *dev,
8395                          struct drm_mode_fb_cmd2 *mode_cmd,
8396                          struct drm_i915_gem_object *obj)
8397 {
8398         struct drm_framebuffer *fb;
8399         int ret;
8400
8401         ret = i915_mutex_lock_interruptible(dev);
8402         if (ret)
8403                 return ERR_PTR(ret);
8404         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8405         mutex_unlock(&dev->struct_mutex);
8406
8407         return fb;
8408 }
8409
8410 static u32
8411 intel_framebuffer_pitch_for_width(int width, int bpp)
8412 {
8413         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8414         return ALIGN(pitch, 64);
8415 }
8416
8417 static u32
8418 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8419 {
8420         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8421         return PAGE_ALIGN(pitch * mode->vdisplay);
8422 }
8423
8424 static struct drm_framebuffer *
8425 intel_framebuffer_create_for_mode(struct drm_device *dev,
8426                                   struct drm_display_mode *mode,
8427                                   int depth, int bpp)
8428 {
8429         struct drm_i915_gem_object *obj;
8430         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8431
8432         obj = i915_gem_alloc_object(dev,
8433                                     intel_framebuffer_size_for_mode(mode, bpp));
8434         if (obj == NULL)
8435                 return ERR_PTR(-ENOMEM);
8436
8437         mode_cmd.width = mode->hdisplay;
8438         mode_cmd.height = mode->vdisplay;
8439         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8440                                                                 bpp);
8441         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8442
8443         return intel_framebuffer_create(dev, &mode_cmd, obj);
8444 }
8445
8446 static struct drm_framebuffer *
8447 mode_fits_in_fbdev(struct drm_device *dev,
8448                    struct drm_display_mode *mode)
8449 {
8450 #ifdef CONFIG_DRM_I915_FBDEV
8451         struct drm_i915_private *dev_priv = dev->dev_private;
8452         struct drm_i915_gem_object *obj;
8453         struct drm_framebuffer *fb;
8454
8455         if (!dev_priv->fbdev)
8456                 return NULL;
8457
8458         if (!dev_priv->fbdev->fb)
8459                 return NULL;
8460
8461         obj = dev_priv->fbdev->fb->obj;
8462         BUG_ON(!obj);
8463
8464         fb = &dev_priv->fbdev->fb->base;
8465         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8466                                                                fb->bits_per_pixel))
8467                 return NULL;
8468
8469         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8470                 return NULL;
8471
8472         return fb;
8473 #else
8474         return NULL;
8475 #endif
8476 }
8477
8478 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8479                                 struct drm_display_mode *mode,
8480                                 struct intel_load_detect_pipe *old,
8481                                 struct drm_modeset_acquire_ctx *ctx)
8482 {
8483         struct intel_crtc *intel_crtc;
8484         struct intel_encoder *intel_encoder =
8485                 intel_attached_encoder(connector);
8486         struct drm_crtc *possible_crtc;
8487         struct drm_encoder *encoder = &intel_encoder->base;
8488         struct drm_crtc *crtc = NULL;
8489         struct drm_device *dev = encoder->dev;
8490         struct drm_framebuffer *fb;
8491         struct drm_mode_config *config = &dev->mode_config;
8492         int ret, i = -1;
8493
8494         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8495                       connector->base.id, connector->name,
8496                       encoder->base.id, encoder->name);
8497
8498 retry:
8499         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8500         if (ret)
8501                 goto fail_unlock;
8502
8503         /*
8504          * Algorithm gets a little messy:
8505          *
8506          *   - if the connector already has an assigned crtc, use it (but make
8507          *     sure it's on first)
8508          *
8509          *   - try to find the first unused crtc that can drive this connector,
8510          *     and use that if we find one
8511          */
8512
8513         /* See if we already have a CRTC for this connector */
8514         if (encoder->crtc) {
8515                 crtc = encoder->crtc;
8516
8517                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8518                 if (ret)
8519                         goto fail_unlock;
8520                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8521                 if (ret)
8522                         goto fail_unlock;
8523
8524                 old->dpms_mode = connector->dpms;
8525                 old->load_detect_temp = false;
8526
8527                 /* Make sure the crtc and connector are running */
8528                 if (connector->dpms != DRM_MODE_DPMS_ON)
8529                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8530
8531                 return true;
8532         }
8533
8534         /* Find an unused one (if possible) */
8535         for_each_crtc(dev, possible_crtc) {
8536                 i++;
8537                 if (!(encoder->possible_crtcs & (1 << i)))
8538                         continue;
8539                 if (possible_crtc->enabled)
8540                         continue;
8541                 /* This can occur when applying the pipe A quirk on resume. */
8542                 if (to_intel_crtc(possible_crtc)->new_enabled)
8543                         continue;
8544
8545                 crtc = possible_crtc;
8546                 break;
8547         }
8548
8549         /*
8550          * If we didn't find an unused CRTC, don't use any.
8551          */
8552         if (!crtc) {
8553                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8554                 goto fail_unlock;
8555         }
8556
8557         ret = drm_modeset_lock(&crtc->mutex, ctx);
8558         if (ret)
8559                 goto fail_unlock;
8560         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8561         if (ret)
8562                 goto fail_unlock;
8563         intel_encoder->new_crtc = to_intel_crtc(crtc);
8564         to_intel_connector(connector)->new_encoder = intel_encoder;
8565
8566         intel_crtc = to_intel_crtc(crtc);
8567         intel_crtc->new_enabled = true;
8568         intel_crtc->new_config = &intel_crtc->config;
8569         old->dpms_mode = connector->dpms;
8570         old->load_detect_temp = true;
8571         old->release_fb = NULL;
8572
8573         if (!mode)
8574                 mode = &load_detect_mode;
8575
8576         /* We need a framebuffer large enough to accommodate all accesses
8577          * that the plane may generate whilst we perform load detection.
8578          * We can not rely on the fbcon either being present (we get called
8579          * during its initialisation to detect all boot displays, or it may
8580          * not even exist) or that it is large enough to satisfy the
8581          * requested mode.
8582          */
8583         fb = mode_fits_in_fbdev(dev, mode);
8584         if (fb == NULL) {
8585                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8586                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8587                 old->release_fb = fb;
8588         } else
8589                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8590         if (IS_ERR(fb)) {
8591                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8592                 goto fail;
8593         }
8594
8595         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8596                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8597                 if (old->release_fb)
8598                         old->release_fb->funcs->destroy(old->release_fb);
8599                 goto fail;
8600         }
8601
8602         /* let the connector get through one full cycle before testing */
8603         intel_wait_for_vblank(dev, intel_crtc->pipe);
8604         return true;
8605
8606  fail:
8607         intel_crtc->new_enabled = crtc->enabled;
8608         if (intel_crtc->new_enabled)
8609                 intel_crtc->new_config = &intel_crtc->config;
8610         else
8611                 intel_crtc->new_config = NULL;
8612 fail_unlock:
8613         if (ret == -EDEADLK) {
8614                 drm_modeset_backoff(ctx);
8615                 goto retry;
8616         }
8617
8618         return false;
8619 }
8620
8621 void intel_release_load_detect_pipe(struct drm_connector *connector,
8622                                     struct intel_load_detect_pipe *old)
8623 {
8624         struct intel_encoder *intel_encoder =
8625                 intel_attached_encoder(connector);
8626         struct drm_encoder *encoder = &intel_encoder->base;
8627         struct drm_crtc *crtc = encoder->crtc;
8628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8629
8630         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8631                       connector->base.id, connector->name,
8632                       encoder->base.id, encoder->name);
8633
8634         if (old->load_detect_temp) {
8635                 to_intel_connector(connector)->new_encoder = NULL;
8636                 intel_encoder->new_crtc = NULL;
8637                 intel_crtc->new_enabled = false;
8638                 intel_crtc->new_config = NULL;
8639                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8640
8641                 if (old->release_fb) {
8642                         drm_framebuffer_unregister_private(old->release_fb);
8643                         drm_framebuffer_unreference(old->release_fb);
8644                 }
8645
8646                 return;
8647         }
8648
8649         /* Switch crtc and encoder back off if necessary */
8650         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8651                 connector->funcs->dpms(connector, old->dpms_mode);
8652 }
8653
8654 static int i9xx_pll_refclk(struct drm_device *dev,
8655                            const struct intel_crtc_config *pipe_config)
8656 {
8657         struct drm_i915_private *dev_priv = dev->dev_private;
8658         u32 dpll = pipe_config->dpll_hw_state.dpll;
8659
8660         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8661                 return dev_priv->vbt.lvds_ssc_freq;
8662         else if (HAS_PCH_SPLIT(dev))
8663                 return 120000;
8664         else if (!IS_GEN2(dev))
8665                 return 96000;
8666         else
8667                 return 48000;
8668 }
8669
8670 /* Returns the clock of the currently programmed mode of the given pipe. */
8671 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8672                                 struct intel_crtc_config *pipe_config)
8673 {
8674         struct drm_device *dev = crtc->base.dev;
8675         struct drm_i915_private *dev_priv = dev->dev_private;
8676         int pipe = pipe_config->cpu_transcoder;
8677         u32 dpll = pipe_config->dpll_hw_state.dpll;
8678         u32 fp;
8679         intel_clock_t clock;
8680         int refclk = i9xx_pll_refclk(dev, pipe_config);
8681
8682         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8683                 fp = pipe_config->dpll_hw_state.fp0;
8684         else
8685                 fp = pipe_config->dpll_hw_state.fp1;
8686
8687         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8688         if (IS_PINEVIEW(dev)) {
8689                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8690                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8691         } else {
8692                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8693                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8694         }
8695
8696         if (!IS_GEN2(dev)) {
8697                 if (IS_PINEVIEW(dev))
8698                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8699                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8700                 else
8701                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8702                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8703
8704                 switch (dpll & DPLL_MODE_MASK) {
8705                 case DPLLB_MODE_DAC_SERIAL:
8706                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8707                                 5 : 10;
8708                         break;
8709                 case DPLLB_MODE_LVDS:
8710                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8711                                 7 : 14;
8712                         break;
8713                 default:
8714                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8715                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8716                         return;
8717                 }
8718
8719                 if (IS_PINEVIEW(dev))
8720                         pineview_clock(refclk, &clock);
8721                 else
8722                         i9xx_clock(refclk, &clock);
8723         } else {
8724                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8725                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8726
8727                 if (is_lvds) {
8728                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8729                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8730
8731                         if (lvds & LVDS_CLKB_POWER_UP)
8732                                 clock.p2 = 7;
8733                         else
8734                                 clock.p2 = 14;
8735                 } else {
8736                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8737                                 clock.p1 = 2;
8738                         else {
8739                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8740                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8741                         }
8742                         if (dpll & PLL_P2_DIVIDE_BY_4)
8743                                 clock.p2 = 4;
8744                         else
8745                                 clock.p2 = 2;
8746                 }
8747
8748                 i9xx_clock(refclk, &clock);
8749         }
8750
8751         /*
8752          * This value includes pixel_multiplier. We will use
8753          * port_clock to compute adjusted_mode.crtc_clock in the
8754          * encoder's get_config() function.
8755          */
8756         pipe_config->port_clock = clock.dot;
8757 }
8758
8759 int intel_dotclock_calculate(int link_freq,
8760                              const struct intel_link_m_n *m_n)
8761 {
8762         /*
8763          * The calculation for the data clock is:
8764          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8765          * But we want to avoid losing precison if possible, so:
8766          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8767          *
8768          * and the link clock is simpler:
8769          * link_clock = (m * link_clock) / n
8770          */
8771
8772         if (!m_n->link_n)
8773                 return 0;
8774
8775         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8776 }
8777
8778 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8779                                    struct intel_crtc_config *pipe_config)
8780 {
8781         struct drm_device *dev = crtc->base.dev;
8782
8783         /* read out port_clock from the DPLL */
8784         i9xx_crtc_clock_get(crtc, pipe_config);
8785
8786         /*
8787          * This value does not include pixel_multiplier.
8788          * We will check that port_clock and adjusted_mode.crtc_clock
8789          * agree once we know their relationship in the encoder's
8790          * get_config() function.
8791          */
8792         pipe_config->adjusted_mode.crtc_clock =
8793                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8794                                          &pipe_config->fdi_m_n);
8795 }
8796
8797 /** Returns the currently programmed mode of the given pipe. */
8798 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8799                                              struct drm_crtc *crtc)
8800 {
8801         struct drm_i915_private *dev_priv = dev->dev_private;
8802         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8803         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8804         struct drm_display_mode *mode;
8805         struct intel_crtc_config pipe_config;
8806         int htot = I915_READ(HTOTAL(cpu_transcoder));
8807         int hsync = I915_READ(HSYNC(cpu_transcoder));
8808         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8809         int vsync = I915_READ(VSYNC(cpu_transcoder));
8810         enum pipe pipe = intel_crtc->pipe;
8811
8812         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8813         if (!mode)
8814                 return NULL;
8815
8816         /*
8817          * Construct a pipe_config sufficient for getting the clock info
8818          * back out of crtc_clock_get.
8819          *
8820          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8821          * to use a real value here instead.
8822          */
8823         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8824         pipe_config.pixel_multiplier = 1;
8825         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8826         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8827         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8828         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8829
8830         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8831         mode->hdisplay = (htot & 0xffff) + 1;
8832         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8833         mode->hsync_start = (hsync & 0xffff) + 1;
8834         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8835         mode->vdisplay = (vtot & 0xffff) + 1;
8836         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8837         mode->vsync_start = (vsync & 0xffff) + 1;
8838         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8839
8840         drm_mode_set_name(mode);
8841
8842         return mode;
8843 }
8844
8845 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8846 {
8847         struct drm_device *dev = crtc->dev;
8848         struct drm_i915_private *dev_priv = dev->dev_private;
8849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8850
8851         if (!HAS_GMCH_DISPLAY(dev))
8852                 return;
8853
8854         if (!dev_priv->lvds_downclock_avail)
8855                 return;
8856
8857         /*
8858          * Since this is called by a timer, we should never get here in
8859          * the manual case.
8860          */
8861         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8862                 int pipe = intel_crtc->pipe;
8863                 int dpll_reg = DPLL(pipe);
8864                 int dpll;
8865
8866                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8867
8868                 assert_panel_unlocked(dev_priv, pipe);
8869
8870                 dpll = I915_READ(dpll_reg);
8871                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8872                 I915_WRITE(dpll_reg, dpll);
8873                 intel_wait_for_vblank(dev, pipe);
8874                 dpll = I915_READ(dpll_reg);
8875                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8876                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8877         }
8878
8879 }
8880
8881 void intel_mark_busy(struct drm_device *dev)
8882 {
8883         struct drm_i915_private *dev_priv = dev->dev_private;
8884
8885         if (dev_priv->mm.busy)
8886                 return;
8887
8888         intel_runtime_pm_get(dev_priv);
8889         i915_update_gfx_val(dev_priv);
8890         dev_priv->mm.busy = true;
8891 }
8892
8893 void intel_mark_idle(struct drm_device *dev)
8894 {
8895         struct drm_i915_private *dev_priv = dev->dev_private;
8896         struct drm_crtc *crtc;
8897
8898         if (!dev_priv->mm.busy)
8899                 return;
8900
8901         dev_priv->mm.busy = false;
8902
8903         if (!i915.powersave)
8904                 goto out;
8905
8906         for_each_crtc(dev, crtc) {
8907                 if (!crtc->primary->fb)
8908                         continue;
8909
8910                 intel_decrease_pllclock(crtc);
8911         }
8912
8913         if (INTEL_INFO(dev)->gen >= 6)
8914                 gen6_rps_idle(dev->dev_private);
8915
8916 out:
8917         intel_runtime_pm_put(dev_priv);
8918 }
8919
8920 static void intel_crtc_destroy(struct drm_crtc *crtc)
8921 {
8922         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8923         struct drm_device *dev = crtc->dev;
8924         struct intel_unpin_work *work;
8925
8926         spin_lock_irq(&dev->event_lock);
8927         work = intel_crtc->unpin_work;
8928         intel_crtc->unpin_work = NULL;
8929         spin_unlock_irq(&dev->event_lock);
8930
8931         if (work) {
8932                 cancel_work_sync(&work->work);
8933                 kfree(work);
8934         }
8935
8936         drm_crtc_cleanup(crtc);
8937
8938         kfree(intel_crtc);
8939 }
8940
8941 static void intel_unpin_work_fn(struct work_struct *__work)
8942 {
8943         struct intel_unpin_work *work =
8944                 container_of(__work, struct intel_unpin_work, work);
8945         struct drm_device *dev = work->crtc->dev;
8946         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
8947
8948         mutex_lock(&dev->struct_mutex);
8949         intel_unpin_fb_obj(work->old_fb_obj);
8950         drm_gem_object_unreference(&work->pending_flip_obj->base);
8951         drm_gem_object_unreference(&work->old_fb_obj->base);
8952
8953         intel_update_fbc(dev);
8954
8955         if (work->flip_queued_req)
8956                 i915_gem_request_unreference(work->flip_queued_req);
8957         work->flip_queued_req  = NULL;
8958         mutex_unlock(&dev->struct_mutex);
8959
8960         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
8961
8962         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8963         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8964
8965         kfree(work);
8966 }
8967
8968 static void do_intel_finish_page_flip(struct drm_device *dev,
8969                                       struct drm_crtc *crtc)
8970 {
8971         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8972         struct intel_unpin_work *work;
8973         unsigned long flags;
8974
8975         /* Ignore early vblank irqs */
8976         if (intel_crtc == NULL)
8977                 return;
8978
8979         /*
8980          * This is called both by irq handlers and the reset code (to complete
8981          * lost pageflips) so needs the full irqsave spinlocks.
8982          */
8983         spin_lock_irqsave(&dev->event_lock, flags);
8984         work = intel_crtc->unpin_work;
8985
8986         /* Ensure we don't miss a work->pending update ... */
8987         smp_rmb();
8988
8989         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8990                 spin_unlock_irqrestore(&dev->event_lock, flags);
8991                 return;
8992         }
8993
8994         page_flip_completed(intel_crtc);
8995
8996         spin_unlock_irqrestore(&dev->event_lock, flags);
8997 }
8998
8999 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9000 {
9001         struct drm_i915_private *dev_priv = dev->dev_private;
9002         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9003
9004         do_intel_finish_page_flip(dev, crtc);
9005 }
9006
9007 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9008 {
9009         struct drm_i915_private *dev_priv = dev->dev_private;
9010         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9011
9012         do_intel_finish_page_flip(dev, crtc);
9013 }
9014
9015 /* Is 'a' after or equal to 'b'? */
9016 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9017 {
9018         return !((a - b) & 0x80000000);
9019 }
9020
9021 static bool page_flip_finished(struct intel_crtc *crtc)
9022 {
9023         struct drm_device *dev = crtc->base.dev;
9024         struct drm_i915_private *dev_priv = dev->dev_private;
9025
9026         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9027             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9028                 return true;
9029
9030         /*
9031          * The relevant registers doen't exist on pre-ctg.
9032          * As the flip done interrupt doesn't trigger for mmio
9033          * flips on gmch platforms, a flip count check isn't
9034          * really needed there. But since ctg has the registers,
9035          * include it in the check anyway.
9036          */
9037         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9038                 return true;
9039
9040         /*
9041          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9042          * used the same base address. In that case the mmio flip might
9043          * have completed, but the CS hasn't even executed the flip yet.
9044          *
9045          * A flip count check isn't enough as the CS might have updated
9046          * the base address just after start of vblank, but before we
9047          * managed to process the interrupt. This means we'd complete the
9048          * CS flip too soon.
9049          *
9050          * Combining both checks should get us a good enough result. It may
9051          * still happen that the CS flip has been executed, but has not
9052          * yet actually completed. But in case the base address is the same
9053          * anyway, we don't really care.
9054          */
9055         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9056                 crtc->unpin_work->gtt_offset &&
9057                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9058                                     crtc->unpin_work->flip_count);
9059 }
9060
9061 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9062 {
9063         struct drm_i915_private *dev_priv = dev->dev_private;
9064         struct intel_crtc *intel_crtc =
9065                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9066         unsigned long flags;
9067
9068
9069         /*
9070          * This is called both by irq handlers and the reset code (to complete
9071          * lost pageflips) so needs the full irqsave spinlocks.
9072          *
9073          * NB: An MMIO update of the plane base pointer will also
9074          * generate a page-flip completion irq, i.e. every modeset
9075          * is also accompanied by a spurious intel_prepare_page_flip().
9076          */
9077         spin_lock_irqsave(&dev->event_lock, flags);
9078         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9079                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9080         spin_unlock_irqrestore(&dev->event_lock, flags);
9081 }
9082
9083 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9084 {
9085         /* Ensure that the work item is consistent when activating it ... */
9086         smp_wmb();
9087         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9088         /* and that it is marked active as soon as the irq could fire. */
9089         smp_wmb();
9090 }
9091
9092 static int intel_gen2_queue_flip(struct drm_device *dev,
9093                                  struct drm_crtc *crtc,
9094                                  struct drm_framebuffer *fb,
9095                                  struct drm_i915_gem_object *obj,
9096                                  struct intel_engine_cs *ring,
9097                                  uint32_t flags)
9098 {
9099         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9100         u32 flip_mask;
9101         int ret;
9102
9103         ret = intel_ring_begin(ring, 6);
9104         if (ret)
9105                 return ret;
9106
9107         /* Can't queue multiple flips, so wait for the previous
9108          * one to finish before executing the next.
9109          */
9110         if (intel_crtc->plane)
9111                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9112         else
9113                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9114         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9115         intel_ring_emit(ring, MI_NOOP);
9116         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9117                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9118         intel_ring_emit(ring, fb->pitches[0]);
9119         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9120         intel_ring_emit(ring, 0); /* aux display base address, unused */
9121
9122         intel_mark_page_flip_active(intel_crtc);
9123         __intel_ring_advance(ring);
9124         return 0;
9125 }
9126
9127 static int intel_gen3_queue_flip(struct drm_device *dev,
9128                                  struct drm_crtc *crtc,
9129                                  struct drm_framebuffer *fb,
9130                                  struct drm_i915_gem_object *obj,
9131                                  struct intel_engine_cs *ring,
9132                                  uint32_t flags)
9133 {
9134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9135         u32 flip_mask;
9136         int ret;
9137
9138         ret = intel_ring_begin(ring, 6);
9139         if (ret)
9140                 return ret;
9141
9142         if (intel_crtc->plane)
9143                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9144         else
9145                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9146         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9147         intel_ring_emit(ring, MI_NOOP);
9148         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9149                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9150         intel_ring_emit(ring, fb->pitches[0]);
9151         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9152         intel_ring_emit(ring, MI_NOOP);
9153
9154         intel_mark_page_flip_active(intel_crtc);
9155         __intel_ring_advance(ring);
9156         return 0;
9157 }
9158
9159 static int intel_gen4_queue_flip(struct drm_device *dev,
9160                                  struct drm_crtc *crtc,
9161                                  struct drm_framebuffer *fb,
9162                                  struct drm_i915_gem_object *obj,
9163                                  struct intel_engine_cs *ring,
9164                                  uint32_t flags)
9165 {
9166         struct drm_i915_private *dev_priv = dev->dev_private;
9167         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9168         uint32_t pf, pipesrc;
9169         int ret;
9170
9171         ret = intel_ring_begin(ring, 4);
9172         if (ret)
9173                 return ret;
9174
9175         /* i965+ uses the linear or tiled offsets from the
9176          * Display Registers (which do not change across a page-flip)
9177          * so we need only reprogram the base address.
9178          */
9179         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9180                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9181         intel_ring_emit(ring, fb->pitches[0]);
9182         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9183                         obj->tiling_mode);
9184
9185         /* XXX Enabling the panel-fitter across page-flip is so far
9186          * untested on non-native modes, so ignore it for now.
9187          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9188          */
9189         pf = 0;
9190         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9191         intel_ring_emit(ring, pf | pipesrc);
9192
9193         intel_mark_page_flip_active(intel_crtc);
9194         __intel_ring_advance(ring);
9195         return 0;
9196 }
9197
9198 static int intel_gen6_queue_flip(struct drm_device *dev,
9199                                  struct drm_crtc *crtc,
9200                                  struct drm_framebuffer *fb,
9201                                  struct drm_i915_gem_object *obj,
9202                                  struct intel_engine_cs *ring,
9203                                  uint32_t flags)
9204 {
9205         struct drm_i915_private *dev_priv = dev->dev_private;
9206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9207         uint32_t pf, pipesrc;
9208         int ret;
9209
9210         ret = intel_ring_begin(ring, 4);
9211         if (ret)
9212                 return ret;
9213
9214         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9215                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9216         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9217         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9218
9219         /* Contrary to the suggestions in the documentation,
9220          * "Enable Panel Fitter" does not seem to be required when page
9221          * flipping with a non-native mode, and worse causes a normal
9222          * modeset to fail.
9223          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9224          */
9225         pf = 0;
9226         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9227         intel_ring_emit(ring, pf | pipesrc);
9228
9229         intel_mark_page_flip_active(intel_crtc);
9230         __intel_ring_advance(ring);
9231         return 0;
9232 }
9233
9234 static int intel_gen7_queue_flip(struct drm_device *dev,
9235                                  struct drm_crtc *crtc,
9236                                  struct drm_framebuffer *fb,
9237                                  struct drm_i915_gem_object *obj,
9238                                  struct intel_engine_cs *ring,
9239                                  uint32_t flags)
9240 {
9241         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9242         uint32_t plane_bit = 0;
9243         int len, ret;
9244
9245         switch (intel_crtc->plane) {
9246         case PLANE_A:
9247                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9248                 break;
9249         case PLANE_B:
9250                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9251                 break;
9252         case PLANE_C:
9253                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9254                 break;
9255         default:
9256                 WARN_ONCE(1, "unknown plane in flip command\n");
9257                 return -ENODEV;
9258         }
9259
9260         len = 4;
9261         if (ring->id == RCS) {
9262                 len += 6;
9263                 /*
9264                  * On Gen 8, SRM is now taking an extra dword to accommodate
9265                  * 48bits addresses, and we need a NOOP for the batch size to
9266                  * stay even.
9267                  */
9268                 if (IS_GEN8(dev))
9269                         len += 2;
9270         }
9271
9272         /*
9273          * BSpec MI_DISPLAY_FLIP for IVB:
9274          * "The full packet must be contained within the same cache line."
9275          *
9276          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9277          * cacheline, if we ever start emitting more commands before
9278          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9279          * then do the cacheline alignment, and finally emit the
9280          * MI_DISPLAY_FLIP.
9281          */
9282         ret = intel_ring_cacheline_align(ring);
9283         if (ret)
9284                 return ret;
9285
9286         ret = intel_ring_begin(ring, len);
9287         if (ret)
9288                 return ret;
9289
9290         /* Unmask the flip-done completion message. Note that the bspec says that
9291          * we should do this for both the BCS and RCS, and that we must not unmask
9292          * more than one flip event at any time (or ensure that one flip message
9293          * can be sent by waiting for flip-done prior to queueing new flips).
9294          * Experimentation says that BCS works despite DERRMR masking all
9295          * flip-done completion events and that unmasking all planes at once
9296          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9297          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9298          */
9299         if (ring->id == RCS) {
9300                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9301                 intel_ring_emit(ring, DERRMR);
9302                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9303                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9304                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9305                 if (IS_GEN8(dev))
9306                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9307                                               MI_SRM_LRM_GLOBAL_GTT);
9308                 else
9309                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9310                                               MI_SRM_LRM_GLOBAL_GTT);
9311                 intel_ring_emit(ring, DERRMR);
9312                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9313                 if (IS_GEN8(dev)) {
9314                         intel_ring_emit(ring, 0);
9315                         intel_ring_emit(ring, MI_NOOP);
9316                 }
9317         }
9318
9319         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9320         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9321         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9322         intel_ring_emit(ring, (MI_NOOP));
9323
9324         intel_mark_page_flip_active(intel_crtc);
9325         __intel_ring_advance(ring);
9326         return 0;
9327 }
9328
9329 static bool use_mmio_flip(struct intel_engine_cs *ring,
9330                           struct drm_i915_gem_object *obj)
9331 {
9332         /*
9333          * This is not being used for older platforms, because
9334          * non-availability of flip done interrupt forces us to use
9335          * CS flips. Older platforms derive flip done using some clever
9336          * tricks involving the flip_pending status bits and vblank irqs.
9337          * So using MMIO flips there would disrupt this mechanism.
9338          */
9339
9340         if (ring == NULL)
9341                 return true;
9342
9343         if (INTEL_INFO(ring->dev)->gen < 5)
9344                 return false;
9345
9346         if (i915.use_mmio_flip < 0)
9347                 return false;
9348         else if (i915.use_mmio_flip > 0)
9349                 return true;
9350         else if (i915.enable_execlists)
9351                 return true;
9352         else
9353                 return ring != i915_gem_request_get_ring(obj->last_read_req);
9354 }
9355
9356 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9357 {
9358         struct drm_device *dev = intel_crtc->base.dev;
9359         struct drm_i915_private *dev_priv = dev->dev_private;
9360         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9361         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9362         struct drm_i915_gem_object *obj = intel_fb->obj;
9363         const enum pipe pipe = intel_crtc->pipe;
9364         u32 ctl, stride;
9365
9366         ctl = I915_READ(PLANE_CTL(pipe, 0));
9367         ctl &= ~PLANE_CTL_TILED_MASK;
9368         if (obj->tiling_mode == I915_TILING_X)
9369                 ctl |= PLANE_CTL_TILED_X;
9370
9371         /*
9372          * The stride is either expressed as a multiple of 64 bytes chunks for
9373          * linear buffers or in number of tiles for tiled buffers.
9374          */
9375         stride = fb->pitches[0] >> 6;
9376         if (obj->tiling_mode == I915_TILING_X)
9377                 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9378
9379         /*
9380          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9381          * PLANE_SURF updates, the update is then guaranteed to be atomic.
9382          */
9383         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9384         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9385
9386         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9387         POSTING_READ(PLANE_SURF(pipe, 0));
9388 }
9389
9390 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9391 {
9392         struct drm_device *dev = intel_crtc->base.dev;
9393         struct drm_i915_private *dev_priv = dev->dev_private;
9394         struct intel_framebuffer *intel_fb =
9395                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9396         struct drm_i915_gem_object *obj = intel_fb->obj;
9397         u32 dspcntr;
9398         u32 reg;
9399
9400         reg = DSPCNTR(intel_crtc->plane);
9401         dspcntr = I915_READ(reg);
9402
9403         if (obj->tiling_mode != I915_TILING_NONE)
9404                 dspcntr |= DISPPLANE_TILED;
9405         else
9406                 dspcntr &= ~DISPPLANE_TILED;
9407
9408         I915_WRITE(reg, dspcntr);
9409
9410         I915_WRITE(DSPSURF(intel_crtc->plane),
9411                    intel_crtc->unpin_work->gtt_offset);
9412         POSTING_READ(DSPSURF(intel_crtc->plane));
9413
9414 }
9415
9416 /*
9417  * XXX: This is the temporary way to update the plane registers until we get
9418  * around to using the usual plane update functions for MMIO flips
9419  */
9420 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9421 {
9422         struct drm_device *dev = intel_crtc->base.dev;
9423         bool atomic_update;
9424         u32 start_vbl_count;
9425
9426         intel_mark_page_flip_active(intel_crtc);
9427
9428         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9429
9430         if (INTEL_INFO(dev)->gen >= 9)
9431                 skl_do_mmio_flip(intel_crtc);
9432         else
9433                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9434                 ilk_do_mmio_flip(intel_crtc);
9435
9436         if (atomic_update)
9437                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9438 }
9439
9440 static void intel_mmio_flip_work_func(struct work_struct *work)
9441 {
9442         struct intel_crtc *crtc =
9443                 container_of(work, struct intel_crtc, mmio_flip.work);
9444         struct intel_mmio_flip *mmio_flip;
9445
9446         mmio_flip = &crtc->mmio_flip;
9447         if (mmio_flip->req)
9448                 WARN_ON(__i915_wait_request(mmio_flip->req,
9449                                             crtc->reset_counter,
9450                                             false, NULL, NULL) != 0);
9451
9452         intel_do_mmio_flip(crtc);
9453         if (mmio_flip->req) {
9454                 mutex_lock(&crtc->base.dev->struct_mutex);
9455                 i915_gem_request_unreference(mmio_flip->req);
9456                 mutex_unlock(&crtc->base.dev->struct_mutex);
9457         }
9458         mmio_flip->req = NULL;
9459 }
9460
9461 static int intel_queue_mmio_flip(struct drm_device *dev,
9462                                  struct drm_crtc *crtc,
9463                                  struct drm_framebuffer *fb,
9464                                  struct drm_i915_gem_object *obj,
9465                                  struct intel_engine_cs *ring,
9466                                  uint32_t flags)
9467 {
9468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9469
9470         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9471                                 obj->last_write_req);
9472
9473         schedule_work(&intel_crtc->mmio_flip.work);
9474
9475         return 0;
9476 }
9477
9478 static int intel_gen9_queue_flip(struct drm_device *dev,
9479                                  struct drm_crtc *crtc,
9480                                  struct drm_framebuffer *fb,
9481                                  struct drm_i915_gem_object *obj,
9482                                  struct intel_engine_cs *ring,
9483                                  uint32_t flags)
9484 {
9485         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9486         uint32_t plane = 0, stride;
9487         int ret;
9488
9489         switch(intel_crtc->pipe) {
9490         case PIPE_A:
9491                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9492                 break;
9493         case PIPE_B:
9494                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9495                 break;
9496         case PIPE_C:
9497                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9498                 break;
9499         default:
9500                 WARN_ONCE(1, "unknown plane in flip command\n");
9501                 return -ENODEV;
9502         }
9503
9504         switch (obj->tiling_mode) {
9505         case I915_TILING_NONE:
9506                 stride = fb->pitches[0] >> 6;
9507                 break;
9508         case I915_TILING_X:
9509                 stride = fb->pitches[0] >> 9;
9510                 break;
9511         default:
9512                 WARN_ONCE(1, "unknown tiling in flip command\n");
9513                 return -ENODEV;
9514         }
9515
9516         ret = intel_ring_begin(ring, 10);
9517         if (ret)
9518                 return ret;
9519
9520         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9521         intel_ring_emit(ring, DERRMR);
9522         intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9523                                 DERRMR_PIPEB_PRI_FLIP_DONE |
9524                                 DERRMR_PIPEC_PRI_FLIP_DONE));
9525         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9526                               MI_SRM_LRM_GLOBAL_GTT);
9527         intel_ring_emit(ring, DERRMR);
9528         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9529         intel_ring_emit(ring, 0);
9530
9531         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9532         intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9533         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9534
9535         intel_mark_page_flip_active(intel_crtc);
9536         __intel_ring_advance(ring);
9537
9538         return 0;
9539 }
9540
9541 static int intel_default_queue_flip(struct drm_device *dev,
9542                                     struct drm_crtc *crtc,
9543                                     struct drm_framebuffer *fb,
9544                                     struct drm_i915_gem_object *obj,
9545                                     struct intel_engine_cs *ring,
9546                                     uint32_t flags)
9547 {
9548         return -ENODEV;
9549 }
9550
9551 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9552                                          struct drm_crtc *crtc)
9553 {
9554         struct drm_i915_private *dev_priv = dev->dev_private;
9555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9556         struct intel_unpin_work *work = intel_crtc->unpin_work;
9557         u32 addr;
9558
9559         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9560                 return true;
9561
9562         if (!work->enable_stall_check)
9563                 return false;
9564
9565         if (work->flip_ready_vblank == 0) {
9566                 if (work->flip_queued_req &&
9567                     !i915_gem_request_completed(work->flip_queued_req, true))
9568                         return false;
9569
9570                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9571         }
9572
9573         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9574                 return false;
9575
9576         /* Potential stall - if we see that the flip has happened,
9577          * assume a missed interrupt. */
9578         if (INTEL_INFO(dev)->gen >= 4)
9579                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9580         else
9581                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9582
9583         /* There is a potential issue here with a false positive after a flip
9584          * to the same address. We could address this by checking for a
9585          * non-incrementing frame counter.
9586          */
9587         return addr == work->gtt_offset;
9588 }
9589
9590 void intel_check_page_flip(struct drm_device *dev, int pipe)
9591 {
9592         struct drm_i915_private *dev_priv = dev->dev_private;
9593         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9595
9596         WARN_ON(!in_irq());
9597
9598         if (crtc == NULL)
9599                 return;
9600
9601         spin_lock(&dev->event_lock);
9602         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9603                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9604                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9605                 page_flip_completed(intel_crtc);
9606         }
9607         spin_unlock(&dev->event_lock);
9608 }
9609
9610 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9611                                 struct drm_framebuffer *fb,
9612                                 struct drm_pending_vblank_event *event,
9613                                 uint32_t page_flip_flags)
9614 {
9615         struct drm_device *dev = crtc->dev;
9616         struct drm_i915_private *dev_priv = dev->dev_private;
9617         struct drm_framebuffer *old_fb = crtc->primary->fb;
9618         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9619         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9620         struct drm_plane *primary = crtc->primary;
9621         struct intel_plane *intel_plane = to_intel_plane(primary);
9622         enum pipe pipe = intel_crtc->pipe;
9623         struct intel_unpin_work *work;
9624         struct intel_engine_cs *ring;
9625         int ret;
9626
9627         /*
9628          * drm_mode_page_flip_ioctl() should already catch this, but double
9629          * check to be safe.  In the future we may enable pageflipping from
9630          * a disabled primary plane.
9631          */
9632         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9633                 return -EBUSY;
9634
9635         /* Can't change pixel format via MI display flips. */
9636         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9637                 return -EINVAL;
9638
9639         /*
9640          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9641          * Note that pitch changes could also affect these register.
9642          */
9643         if (INTEL_INFO(dev)->gen > 3 &&
9644             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9645              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9646                 return -EINVAL;
9647
9648         if (i915_terminally_wedged(&dev_priv->gpu_error))
9649                 goto out_hang;
9650
9651         work = kzalloc(sizeof(*work), GFP_KERNEL);
9652         if (work == NULL)
9653                 return -ENOMEM;
9654
9655         work->event = event;
9656         work->crtc = crtc;
9657         work->old_fb_obj = intel_fb_obj(old_fb);
9658         INIT_WORK(&work->work, intel_unpin_work_fn);
9659
9660         ret = drm_crtc_vblank_get(crtc);
9661         if (ret)
9662                 goto free_work;
9663
9664         /* We borrow the event spin lock for protecting unpin_work */
9665         spin_lock_irq(&dev->event_lock);
9666         if (intel_crtc->unpin_work) {
9667                 /* Before declaring the flip queue wedged, check if
9668                  * the hardware completed the operation behind our backs.
9669                  */
9670                 if (__intel_pageflip_stall_check(dev, crtc)) {
9671                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9672                         page_flip_completed(intel_crtc);
9673                 } else {
9674                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9675                         spin_unlock_irq(&dev->event_lock);
9676
9677                         drm_crtc_vblank_put(crtc);
9678                         kfree(work);
9679                         return -EBUSY;
9680                 }
9681         }
9682         intel_crtc->unpin_work = work;
9683         spin_unlock_irq(&dev->event_lock);
9684
9685         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9686                 flush_workqueue(dev_priv->wq);
9687
9688         ret = i915_mutex_lock_interruptible(dev);
9689         if (ret)
9690                 goto cleanup;
9691
9692         /* Reference the objects for the scheduled work. */
9693         drm_gem_object_reference(&work->old_fb_obj->base);
9694         drm_gem_object_reference(&obj->base);
9695
9696         crtc->primary->fb = fb;
9697
9698         work->pending_flip_obj = obj;
9699
9700         atomic_inc(&intel_crtc->unpin_work_count);
9701         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9702
9703         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9704                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9705
9706         if (IS_VALLEYVIEW(dev)) {
9707                 ring = &dev_priv->ring[BCS];
9708                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9709                         /* vlv: DISPLAY_FLIP fails to change tiling */
9710                         ring = NULL;
9711         } else if (IS_IVYBRIDGE(dev)) {
9712                 ring = &dev_priv->ring[BCS];
9713         } else if (INTEL_INFO(dev)->gen >= 7) {
9714                 ring = i915_gem_request_get_ring(obj->last_read_req);
9715                 if (ring == NULL || ring->id != RCS)
9716                         ring = &dev_priv->ring[BCS];
9717         } else {
9718                 ring = &dev_priv->ring[RCS];
9719         }
9720
9721         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9722         if (ret)
9723                 goto cleanup_pending;
9724
9725         work->gtt_offset =
9726                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9727
9728         if (use_mmio_flip(ring, obj)) {
9729                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9730                                             page_flip_flags);
9731                 if (ret)
9732                         goto cleanup_unpin;
9733
9734                 i915_gem_request_assign(&work->flip_queued_req,
9735                                         obj->last_write_req);
9736         } else {
9737                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9738                                                    page_flip_flags);
9739                 if (ret)
9740                         goto cleanup_unpin;
9741
9742                 i915_gem_request_assign(&work->flip_queued_req,
9743                                         intel_ring_get_request(ring));
9744         }
9745
9746         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9747         work->enable_stall_check = true;
9748
9749         i915_gem_track_fb(work->old_fb_obj, obj,
9750                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9751
9752         intel_disable_fbc(dev);
9753         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9754         mutex_unlock(&dev->struct_mutex);
9755
9756         trace_i915_flip_request(intel_crtc->plane, obj);
9757
9758         return 0;
9759
9760 cleanup_unpin:
9761         intel_unpin_fb_obj(obj);
9762 cleanup_pending:
9763         atomic_dec(&intel_crtc->unpin_work_count);
9764         crtc->primary->fb = old_fb;
9765         drm_gem_object_unreference(&work->old_fb_obj->base);
9766         drm_gem_object_unreference(&obj->base);
9767         mutex_unlock(&dev->struct_mutex);
9768
9769 cleanup:
9770         spin_lock_irq(&dev->event_lock);
9771         intel_crtc->unpin_work = NULL;
9772         spin_unlock_irq(&dev->event_lock);
9773
9774         drm_crtc_vblank_put(crtc);
9775 free_work:
9776         kfree(work);
9777
9778         if (ret == -EIO) {
9779 out_hang:
9780                 ret = primary->funcs->update_plane(primary, crtc, fb,
9781                                                    intel_plane->crtc_x,
9782                                                    intel_plane->crtc_y,
9783                                                    intel_plane->crtc_h,
9784                                                    intel_plane->crtc_w,
9785                                                    intel_plane->src_x,
9786                                                    intel_plane->src_y,
9787                                                    intel_plane->src_h,
9788                                                    intel_plane->src_w);
9789                 if (ret == 0 && event) {
9790                         spin_lock_irq(&dev->event_lock);
9791                         drm_send_vblank_event(dev, pipe, event);
9792                         spin_unlock_irq(&dev->event_lock);
9793                 }
9794         }
9795         return ret;
9796 }
9797
9798 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9799         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9800         .load_lut = intel_crtc_load_lut,
9801 };
9802
9803 /**
9804  * intel_modeset_update_staged_output_state
9805  *
9806  * Updates the staged output configuration state, e.g. after we've read out the
9807  * current hw state.
9808  */
9809 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9810 {
9811         struct intel_crtc *crtc;
9812         struct intel_encoder *encoder;
9813         struct intel_connector *connector;
9814
9815         list_for_each_entry(connector, &dev->mode_config.connector_list,
9816                             base.head) {
9817                 connector->new_encoder =
9818                         to_intel_encoder(connector->base.encoder);
9819         }
9820
9821         for_each_intel_encoder(dev, encoder) {
9822                 encoder->new_crtc =
9823                         to_intel_crtc(encoder->base.crtc);
9824         }
9825
9826         for_each_intel_crtc(dev, crtc) {
9827                 crtc->new_enabled = crtc->base.enabled;
9828
9829                 if (crtc->new_enabled)
9830                         crtc->new_config = &crtc->config;
9831                 else
9832                         crtc->new_config = NULL;
9833         }
9834 }
9835
9836 /**
9837  * intel_modeset_commit_output_state
9838  *
9839  * This function copies the stage display pipe configuration to the real one.
9840  */
9841 static void intel_modeset_commit_output_state(struct drm_device *dev)
9842 {
9843         struct intel_crtc *crtc;
9844         struct intel_encoder *encoder;
9845         struct intel_connector *connector;
9846
9847         list_for_each_entry(connector, &dev->mode_config.connector_list,
9848                             base.head) {
9849                 connector->base.encoder = &connector->new_encoder->base;
9850         }
9851
9852         for_each_intel_encoder(dev, encoder) {
9853                 encoder->base.crtc = &encoder->new_crtc->base;
9854         }
9855
9856         for_each_intel_crtc(dev, crtc) {
9857                 crtc->base.enabled = crtc->new_enabled;
9858         }
9859 }
9860
9861 static void
9862 connected_sink_compute_bpp(struct intel_connector *connector,
9863                            struct intel_crtc_config *pipe_config)
9864 {
9865         int bpp = pipe_config->pipe_bpp;
9866
9867         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9868                 connector->base.base.id,
9869                 connector->base.name);
9870
9871         /* Don't use an invalid EDID bpc value */
9872         if (connector->base.display_info.bpc &&
9873             connector->base.display_info.bpc * 3 < bpp) {
9874                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9875                               bpp, connector->base.display_info.bpc*3);
9876                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9877         }
9878
9879         /* Clamp bpp to 8 on screens without EDID 1.4 */
9880         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9881                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9882                               bpp);
9883                 pipe_config->pipe_bpp = 24;
9884         }
9885 }
9886
9887 static int
9888 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9889                           struct drm_framebuffer *fb,
9890                           struct intel_crtc_config *pipe_config)
9891 {
9892         struct drm_device *dev = crtc->base.dev;
9893         struct intel_connector *connector;
9894         int bpp;
9895
9896         switch (fb->pixel_format) {
9897         case DRM_FORMAT_C8:
9898                 bpp = 8*3; /* since we go through a colormap */
9899                 break;
9900         case DRM_FORMAT_XRGB1555:
9901         case DRM_FORMAT_ARGB1555:
9902                 /* checked in intel_framebuffer_init already */
9903                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9904                         return -EINVAL;
9905         case DRM_FORMAT_RGB565:
9906                 bpp = 6*3; /* min is 18bpp */
9907                 break;
9908         case DRM_FORMAT_XBGR8888:
9909         case DRM_FORMAT_ABGR8888:
9910                 /* checked in intel_framebuffer_init already */
9911                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9912                         return -EINVAL;
9913         case DRM_FORMAT_XRGB8888:
9914         case DRM_FORMAT_ARGB8888:
9915                 bpp = 8*3;
9916                 break;
9917         case DRM_FORMAT_XRGB2101010:
9918         case DRM_FORMAT_ARGB2101010:
9919         case DRM_FORMAT_XBGR2101010:
9920         case DRM_FORMAT_ABGR2101010:
9921                 /* checked in intel_framebuffer_init already */
9922                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9923                         return -EINVAL;
9924                 bpp = 10*3;
9925                 break;
9926         /* TODO: gen4+ supports 16 bpc floating point, too. */
9927         default:
9928                 DRM_DEBUG_KMS("unsupported depth\n");
9929                 return -EINVAL;
9930         }
9931
9932         pipe_config->pipe_bpp = bpp;
9933
9934         /* Clamp display bpp to EDID value */
9935         list_for_each_entry(connector, &dev->mode_config.connector_list,
9936                             base.head) {
9937                 if (!connector->new_encoder ||
9938                     connector->new_encoder->new_crtc != crtc)
9939                         continue;
9940
9941                 connected_sink_compute_bpp(connector, pipe_config);
9942         }
9943
9944         return bpp;
9945 }
9946
9947 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9948 {
9949         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9950                         "type: 0x%x flags: 0x%x\n",
9951                 mode->crtc_clock,
9952                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9953                 mode->crtc_hsync_end, mode->crtc_htotal,
9954                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9955                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9956 }
9957
9958 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9959                                    struct intel_crtc_config *pipe_config,
9960                                    const char *context)
9961 {
9962         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9963                       context, pipe_name(crtc->pipe));
9964
9965         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9966         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9967                       pipe_config->pipe_bpp, pipe_config->dither);
9968         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9969                       pipe_config->has_pch_encoder,
9970                       pipe_config->fdi_lanes,
9971                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9972                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9973                       pipe_config->fdi_m_n.tu);
9974         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9975                       pipe_config->has_dp_encoder,
9976                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9977                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9978                       pipe_config->dp_m_n.tu);
9979
9980         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9981                       pipe_config->has_dp_encoder,
9982                       pipe_config->dp_m2_n2.gmch_m,
9983                       pipe_config->dp_m2_n2.gmch_n,
9984                       pipe_config->dp_m2_n2.link_m,
9985                       pipe_config->dp_m2_n2.link_n,
9986                       pipe_config->dp_m2_n2.tu);
9987
9988         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
9989                       pipe_config->has_audio,
9990                       pipe_config->has_infoframe);
9991
9992         DRM_DEBUG_KMS("requested mode:\n");
9993         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9994         DRM_DEBUG_KMS("adjusted mode:\n");
9995         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9996         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9997         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9998         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9999                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10000         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10001                       pipe_config->gmch_pfit.control,
10002                       pipe_config->gmch_pfit.pgm_ratios,
10003                       pipe_config->gmch_pfit.lvds_border_bits);
10004         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10005                       pipe_config->pch_pfit.pos,
10006                       pipe_config->pch_pfit.size,
10007                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10008         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10009         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10010 }
10011
10012 static bool encoders_cloneable(const struct intel_encoder *a,
10013                                const struct intel_encoder *b)
10014 {
10015         /* masks could be asymmetric, so check both ways */
10016         return a == b || (a->cloneable & (1 << b->type) &&
10017                           b->cloneable & (1 << a->type));
10018 }
10019
10020 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10021                                          struct intel_encoder *encoder)
10022 {
10023         struct drm_device *dev = crtc->base.dev;
10024         struct intel_encoder *source_encoder;
10025
10026         for_each_intel_encoder(dev, source_encoder) {
10027                 if (source_encoder->new_crtc != crtc)
10028                         continue;
10029
10030                 if (!encoders_cloneable(encoder, source_encoder))
10031                         return false;
10032         }
10033
10034         return true;
10035 }
10036
10037 static bool check_encoder_cloning(struct intel_crtc *crtc)
10038 {
10039         struct drm_device *dev = crtc->base.dev;
10040         struct intel_encoder *encoder;
10041
10042         for_each_intel_encoder(dev, encoder) {
10043                 if (encoder->new_crtc != crtc)
10044                         continue;
10045
10046                 if (!check_single_encoder_cloning(crtc, encoder))
10047                         return false;
10048         }
10049
10050         return true;
10051 }
10052
10053 static bool check_digital_port_conflicts(struct drm_device *dev)
10054 {
10055         struct intel_connector *connector;
10056         unsigned int used_ports = 0;
10057
10058         /*
10059          * Walk the connector list instead of the encoder
10060          * list to detect the problem on ddi platforms
10061          * where there's just one encoder per digital port.
10062          */
10063         list_for_each_entry(connector,
10064                             &dev->mode_config.connector_list, base.head) {
10065                 struct intel_encoder *encoder = connector->new_encoder;
10066
10067                 if (!encoder)
10068                         continue;
10069
10070                 WARN_ON(!encoder->new_crtc);
10071
10072                 switch (encoder->type) {
10073                         unsigned int port_mask;
10074                 case INTEL_OUTPUT_UNKNOWN:
10075                         if (WARN_ON(!HAS_DDI(dev)))
10076                                 break;
10077                 case INTEL_OUTPUT_DISPLAYPORT:
10078                 case INTEL_OUTPUT_HDMI:
10079                 case INTEL_OUTPUT_EDP:
10080                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10081
10082                         /* the same port mustn't appear more than once */
10083                         if (used_ports & port_mask)
10084                                 return false;
10085
10086                         used_ports |= port_mask;
10087                 default:
10088                         break;
10089                 }
10090         }
10091
10092         return true;
10093 }
10094
10095 static struct intel_crtc_config *
10096 intel_modeset_pipe_config(struct drm_crtc *crtc,
10097                           struct drm_framebuffer *fb,
10098                           struct drm_display_mode *mode)
10099 {
10100         struct drm_device *dev = crtc->dev;
10101         struct intel_encoder *encoder;
10102         struct intel_crtc_config *pipe_config;
10103         int plane_bpp, ret = -EINVAL;
10104         bool retry = true;
10105
10106         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10107                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10108                 return ERR_PTR(-EINVAL);
10109         }
10110
10111         if (!check_digital_port_conflicts(dev)) {
10112                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10113                 return ERR_PTR(-EINVAL);
10114         }
10115
10116         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10117         if (!pipe_config)
10118                 return ERR_PTR(-ENOMEM);
10119
10120         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10121         drm_mode_copy(&pipe_config->requested_mode, mode);
10122
10123         pipe_config->cpu_transcoder =
10124                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10125         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10126
10127         /*
10128          * Sanitize sync polarity flags based on requested ones. If neither
10129          * positive or negative polarity is requested, treat this as meaning
10130          * negative polarity.
10131          */
10132         if (!(pipe_config->adjusted_mode.flags &
10133               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10134                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10135
10136         if (!(pipe_config->adjusted_mode.flags &
10137               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10138                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10139
10140         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10141          * plane pixel format and any sink constraints into account. Returns the
10142          * source plane bpp so that dithering can be selected on mismatches
10143          * after encoders and crtc also have had their say. */
10144         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10145                                               fb, pipe_config);
10146         if (plane_bpp < 0)
10147                 goto fail;
10148
10149         /*
10150          * Determine the real pipe dimensions. Note that stereo modes can
10151          * increase the actual pipe size due to the frame doubling and
10152          * insertion of additional space for blanks between the frame. This
10153          * is stored in the crtc timings. We use the requested mode to do this
10154          * computation to clearly distinguish it from the adjusted mode, which
10155          * can be changed by the connectors in the below retry loop.
10156          */
10157         drm_crtc_get_hv_timing(&pipe_config->requested_mode,
10158                                &pipe_config->pipe_src_w,
10159                                &pipe_config->pipe_src_h);
10160
10161 encoder_retry:
10162         /* Ensure the port clock defaults are reset when retrying. */
10163         pipe_config->port_clock = 0;
10164         pipe_config->pixel_multiplier = 1;
10165
10166         /* Fill in default crtc timings, allow encoders to overwrite them. */
10167         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10168
10169         /* Pass our mode to the connectors and the CRTC to give them a chance to
10170          * adjust it according to limitations or connector properties, and also
10171          * a chance to reject the mode entirely.
10172          */
10173         for_each_intel_encoder(dev, encoder) {
10174
10175                 if (&encoder->new_crtc->base != crtc)
10176                         continue;
10177
10178                 if (!(encoder->compute_config(encoder, pipe_config))) {
10179                         DRM_DEBUG_KMS("Encoder config failure\n");
10180                         goto fail;
10181                 }
10182         }
10183
10184         /* Set default port clock if not overwritten by the encoder. Needs to be
10185          * done afterwards in case the encoder adjusts the mode. */
10186         if (!pipe_config->port_clock)
10187                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10188                         * pipe_config->pixel_multiplier;
10189
10190         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10191         if (ret < 0) {
10192                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10193                 goto fail;
10194         }
10195
10196         if (ret == RETRY) {
10197                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10198                         ret = -EINVAL;
10199                         goto fail;
10200                 }
10201
10202                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10203                 retry = false;
10204                 goto encoder_retry;
10205         }
10206
10207         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10208         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10209                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10210
10211         return pipe_config;
10212 fail:
10213         kfree(pipe_config);
10214         return ERR_PTR(ret);
10215 }
10216
10217 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10218  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10219 static void
10220 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10221                              unsigned *prepare_pipes, unsigned *disable_pipes)
10222 {
10223         struct intel_crtc *intel_crtc;
10224         struct drm_device *dev = crtc->dev;
10225         struct intel_encoder *encoder;
10226         struct intel_connector *connector;
10227         struct drm_crtc *tmp_crtc;
10228
10229         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10230
10231         /* Check which crtcs have changed outputs connected to them, these need
10232          * to be part of the prepare_pipes mask. We don't (yet) support global
10233          * modeset across multiple crtcs, so modeset_pipes will only have one
10234          * bit set at most. */
10235         list_for_each_entry(connector, &dev->mode_config.connector_list,
10236                             base.head) {
10237                 if (connector->base.encoder == &connector->new_encoder->base)
10238                         continue;
10239
10240                 if (connector->base.encoder) {
10241                         tmp_crtc = connector->base.encoder->crtc;
10242
10243                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10244                 }
10245
10246                 if (connector->new_encoder)
10247                         *prepare_pipes |=
10248                                 1 << connector->new_encoder->new_crtc->pipe;
10249         }
10250
10251         for_each_intel_encoder(dev, encoder) {
10252                 if (encoder->base.crtc == &encoder->new_crtc->base)
10253                         continue;
10254
10255                 if (encoder->base.crtc) {
10256                         tmp_crtc = encoder->base.crtc;
10257
10258                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10259                 }
10260
10261                 if (encoder->new_crtc)
10262                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10263         }
10264
10265         /* Check for pipes that will be enabled/disabled ... */
10266         for_each_intel_crtc(dev, intel_crtc) {
10267                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10268                         continue;
10269
10270                 if (!intel_crtc->new_enabled)
10271                         *disable_pipes |= 1 << intel_crtc->pipe;
10272                 else
10273                         *prepare_pipes |= 1 << intel_crtc->pipe;
10274         }
10275
10276
10277         /* set_mode is also used to update properties on life display pipes. */
10278         intel_crtc = to_intel_crtc(crtc);
10279         if (intel_crtc->new_enabled)
10280                 *prepare_pipes |= 1 << intel_crtc->pipe;
10281
10282         /*
10283          * For simplicity do a full modeset on any pipe where the output routing
10284          * changed. We could be more clever, but that would require us to be
10285          * more careful with calling the relevant encoder->mode_set functions.
10286          */
10287         if (*prepare_pipes)
10288                 *modeset_pipes = *prepare_pipes;
10289
10290         /* ... and mask these out. */
10291         *modeset_pipes &= ~(*disable_pipes);
10292         *prepare_pipes &= ~(*disable_pipes);
10293
10294         /*
10295          * HACK: We don't (yet) fully support global modesets. intel_set_config
10296          * obies this rule, but the modeset restore mode of
10297          * intel_modeset_setup_hw_state does not.
10298          */
10299         *modeset_pipes &= 1 << intel_crtc->pipe;
10300         *prepare_pipes &= 1 << intel_crtc->pipe;
10301
10302         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10303                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10304 }
10305
10306 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10307 {
10308         struct drm_encoder *encoder;
10309         struct drm_device *dev = crtc->dev;
10310
10311         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10312                 if (encoder->crtc == crtc)
10313                         return true;
10314
10315         return false;
10316 }
10317
10318 static void
10319 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10320 {
10321         struct drm_i915_private *dev_priv = dev->dev_private;
10322         struct intel_encoder *intel_encoder;
10323         struct intel_crtc *intel_crtc;
10324         struct drm_connector *connector;
10325
10326         intel_shared_dpll_commit(dev_priv);
10327
10328         for_each_intel_encoder(dev, intel_encoder) {
10329                 if (!intel_encoder->base.crtc)
10330                         continue;
10331
10332                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10333
10334                 if (prepare_pipes & (1 << intel_crtc->pipe))
10335                         intel_encoder->connectors_active = false;
10336         }
10337
10338         intel_modeset_commit_output_state(dev);
10339
10340         /* Double check state. */
10341         for_each_intel_crtc(dev, intel_crtc) {
10342                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10343                 WARN_ON(intel_crtc->new_config &&
10344                         intel_crtc->new_config != &intel_crtc->config);
10345                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10346         }
10347
10348         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10349                 if (!connector->encoder || !connector->encoder->crtc)
10350                         continue;
10351
10352                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10353
10354                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10355                         struct drm_property *dpms_property =
10356                                 dev->mode_config.dpms_property;
10357
10358                         connector->dpms = DRM_MODE_DPMS_ON;
10359                         drm_object_property_set_value(&connector->base,
10360                                                          dpms_property,
10361                                                          DRM_MODE_DPMS_ON);
10362
10363                         intel_encoder = to_intel_encoder(connector->encoder);
10364                         intel_encoder->connectors_active = true;
10365                 }
10366         }
10367
10368 }
10369
10370 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10371 {
10372         int diff;
10373
10374         if (clock1 == clock2)
10375                 return true;
10376
10377         if (!clock1 || !clock2)
10378                 return false;
10379
10380         diff = abs(clock1 - clock2);
10381
10382         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10383                 return true;
10384
10385         return false;
10386 }
10387
10388 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10389         list_for_each_entry((intel_crtc), \
10390                             &(dev)->mode_config.crtc_list, \
10391                             base.head) \
10392                 if (mask & (1 <<(intel_crtc)->pipe))
10393
10394 static bool
10395 intel_pipe_config_compare(struct drm_device *dev,
10396                           struct intel_crtc_config *current_config,
10397                           struct intel_crtc_config *pipe_config)
10398 {
10399 #define PIPE_CONF_CHECK_X(name) \
10400         if (current_config->name != pipe_config->name) { \
10401                 DRM_ERROR("mismatch in " #name " " \
10402                           "(expected 0x%08x, found 0x%08x)\n", \
10403                           current_config->name, \
10404                           pipe_config->name); \
10405                 return false; \
10406         }
10407
10408 #define PIPE_CONF_CHECK_I(name) \
10409         if (current_config->name != pipe_config->name) { \
10410                 DRM_ERROR("mismatch in " #name " " \
10411                           "(expected %i, found %i)\n", \
10412                           current_config->name, \
10413                           pipe_config->name); \
10414                 return false; \
10415         }
10416
10417 /* This is required for BDW+ where there is only one set of registers for
10418  * switching between high and low RR.
10419  * This macro can be used whenever a comparison has to be made between one
10420  * hw state and multiple sw state variables.
10421  */
10422 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10423         if ((current_config->name != pipe_config->name) && \
10424                 (current_config->alt_name != pipe_config->name)) { \
10425                         DRM_ERROR("mismatch in " #name " " \
10426                                   "(expected %i or %i, found %i)\n", \
10427                                   current_config->name, \
10428                                   current_config->alt_name, \
10429                                   pipe_config->name); \
10430                         return false; \
10431         }
10432
10433 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10434         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10435                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10436                           "(expected %i, found %i)\n", \
10437                           current_config->name & (mask), \
10438                           pipe_config->name & (mask)); \
10439                 return false; \
10440         }
10441
10442 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10443         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10444                 DRM_ERROR("mismatch in " #name " " \
10445                           "(expected %i, found %i)\n", \
10446                           current_config->name, \
10447                           pipe_config->name); \
10448                 return false; \
10449         }
10450
10451 #define PIPE_CONF_QUIRK(quirk)  \
10452         ((current_config->quirks | pipe_config->quirks) & (quirk))
10453
10454         PIPE_CONF_CHECK_I(cpu_transcoder);
10455
10456         PIPE_CONF_CHECK_I(has_pch_encoder);
10457         PIPE_CONF_CHECK_I(fdi_lanes);
10458         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10459         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10460         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10461         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10462         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10463
10464         PIPE_CONF_CHECK_I(has_dp_encoder);
10465
10466         if (INTEL_INFO(dev)->gen < 8) {
10467                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10468                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10469                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10470                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10471                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10472
10473                 if (current_config->has_drrs) {
10474                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10475                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10476                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10477                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10478                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10479                 }
10480         } else {
10481                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10482                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10483                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10484                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10485                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10486         }
10487
10488         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10489         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10490         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10491         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10492         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10493         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10494
10495         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10496         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10497         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10498         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10499         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10500         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10501
10502         PIPE_CONF_CHECK_I(pixel_multiplier);
10503         PIPE_CONF_CHECK_I(has_hdmi_sink);
10504         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10505             IS_VALLEYVIEW(dev))
10506                 PIPE_CONF_CHECK_I(limited_color_range);
10507         PIPE_CONF_CHECK_I(has_infoframe);
10508
10509         PIPE_CONF_CHECK_I(has_audio);
10510
10511         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10512                               DRM_MODE_FLAG_INTERLACE);
10513
10514         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10515                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10516                                       DRM_MODE_FLAG_PHSYNC);
10517                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10518                                       DRM_MODE_FLAG_NHSYNC);
10519                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10520                                       DRM_MODE_FLAG_PVSYNC);
10521                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10522                                       DRM_MODE_FLAG_NVSYNC);
10523         }
10524
10525         PIPE_CONF_CHECK_I(pipe_src_w);
10526         PIPE_CONF_CHECK_I(pipe_src_h);
10527
10528         /*
10529          * FIXME: BIOS likes to set up a cloned config with lvds+external
10530          * screen. Since we don't yet re-compute the pipe config when moving
10531          * just the lvds port away to another pipe the sw tracking won't match.
10532          *
10533          * Proper atomic modesets with recomputed global state will fix this.
10534          * Until then just don't check gmch state for inherited modes.
10535          */
10536         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10537                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10538                 /* pfit ratios are autocomputed by the hw on gen4+ */
10539                 if (INTEL_INFO(dev)->gen < 4)
10540                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10541                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10542         }
10543
10544         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10545         if (current_config->pch_pfit.enabled) {
10546                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10547                 PIPE_CONF_CHECK_I(pch_pfit.size);
10548         }
10549
10550         /* BDW+ don't expose a synchronous way to read the state */
10551         if (IS_HASWELL(dev))
10552                 PIPE_CONF_CHECK_I(ips_enabled);
10553
10554         PIPE_CONF_CHECK_I(double_wide);
10555
10556         PIPE_CONF_CHECK_X(ddi_pll_sel);
10557
10558         PIPE_CONF_CHECK_I(shared_dpll);
10559         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10560         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10561         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10562         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10563         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10564         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10565         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10566         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10567
10568         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10569                 PIPE_CONF_CHECK_I(pipe_bpp);
10570
10571         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10572         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10573
10574 #undef PIPE_CONF_CHECK_X
10575 #undef PIPE_CONF_CHECK_I
10576 #undef PIPE_CONF_CHECK_I_ALT
10577 #undef PIPE_CONF_CHECK_FLAGS
10578 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10579 #undef PIPE_CONF_QUIRK
10580
10581         return true;
10582 }
10583
10584 static void check_wm_state(struct drm_device *dev)
10585 {
10586         struct drm_i915_private *dev_priv = dev->dev_private;
10587         struct skl_ddb_allocation hw_ddb, *sw_ddb;
10588         struct intel_crtc *intel_crtc;
10589         int plane;
10590
10591         if (INTEL_INFO(dev)->gen < 9)
10592                 return;
10593
10594         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10595         sw_ddb = &dev_priv->wm.skl_hw.ddb;
10596
10597         for_each_intel_crtc(dev, intel_crtc) {
10598                 struct skl_ddb_entry *hw_entry, *sw_entry;
10599                 const enum pipe pipe = intel_crtc->pipe;
10600
10601                 if (!intel_crtc->active)
10602                         continue;
10603
10604                 /* planes */
10605                 for_each_plane(pipe, plane) {
10606                         hw_entry = &hw_ddb.plane[pipe][plane];
10607                         sw_entry = &sw_ddb->plane[pipe][plane];
10608
10609                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
10610                                 continue;
10611
10612                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10613                                   "(expected (%u,%u), found (%u,%u))\n",
10614                                   pipe_name(pipe), plane + 1,
10615                                   sw_entry->start, sw_entry->end,
10616                                   hw_entry->start, hw_entry->end);
10617                 }
10618
10619                 /* cursor */
10620                 hw_entry = &hw_ddb.cursor[pipe];
10621                 sw_entry = &sw_ddb->cursor[pipe];
10622
10623                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10624                         continue;
10625
10626                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10627                           "(expected (%u,%u), found (%u,%u))\n",
10628                           pipe_name(pipe),
10629                           sw_entry->start, sw_entry->end,
10630                           hw_entry->start, hw_entry->end);
10631         }
10632 }
10633
10634 static void
10635 check_connector_state(struct drm_device *dev)
10636 {
10637         struct intel_connector *connector;
10638
10639         list_for_each_entry(connector, &dev->mode_config.connector_list,
10640                             base.head) {
10641                 /* This also checks the encoder/connector hw state with the
10642                  * ->get_hw_state callbacks. */
10643                 intel_connector_check_state(connector);
10644
10645                 WARN(&connector->new_encoder->base != connector->base.encoder,
10646                      "connector's staged encoder doesn't match current encoder\n");
10647         }
10648 }
10649
10650 static void
10651 check_encoder_state(struct drm_device *dev)
10652 {
10653         struct intel_encoder *encoder;
10654         struct intel_connector *connector;
10655
10656         for_each_intel_encoder(dev, encoder) {
10657                 bool enabled = false;
10658                 bool active = false;
10659                 enum pipe pipe, tracked_pipe;
10660
10661                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10662                               encoder->base.base.id,
10663                               encoder->base.name);
10664
10665                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10666                      "encoder's stage crtc doesn't match current crtc\n");
10667                 WARN(encoder->connectors_active && !encoder->base.crtc,
10668                      "encoder's active_connectors set, but no crtc\n");
10669
10670                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10671                                     base.head) {
10672                         if (connector->base.encoder != &encoder->base)
10673                                 continue;
10674                         enabled = true;
10675                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10676                                 active = true;
10677                 }
10678                 /*
10679                  * for MST connectors if we unplug the connector is gone
10680                  * away but the encoder is still connected to a crtc
10681                  * until a modeset happens in response to the hotplug.
10682                  */
10683                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10684                         continue;
10685
10686                 WARN(!!encoder->base.crtc != enabled,
10687                      "encoder's enabled state mismatch "
10688                      "(expected %i, found %i)\n",
10689                      !!encoder->base.crtc, enabled);
10690                 WARN(active && !encoder->base.crtc,
10691                      "active encoder with no crtc\n");
10692
10693                 WARN(encoder->connectors_active != active,
10694                      "encoder's computed active state doesn't match tracked active state "
10695                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10696
10697                 active = encoder->get_hw_state(encoder, &pipe);
10698                 WARN(active != encoder->connectors_active,
10699                      "encoder's hw state doesn't match sw tracking "
10700                      "(expected %i, found %i)\n",
10701                      encoder->connectors_active, active);
10702
10703                 if (!encoder->base.crtc)
10704                         continue;
10705
10706                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10707                 WARN(active && pipe != tracked_pipe,
10708                      "active encoder's pipe doesn't match"
10709                      "(expected %i, found %i)\n",
10710                      tracked_pipe, pipe);
10711
10712         }
10713 }
10714
10715 static void
10716 check_crtc_state(struct drm_device *dev)
10717 {
10718         struct drm_i915_private *dev_priv = dev->dev_private;
10719         struct intel_crtc *crtc;
10720         struct intel_encoder *encoder;
10721         struct intel_crtc_config pipe_config;
10722
10723         for_each_intel_crtc(dev, crtc) {
10724                 bool enabled = false;
10725                 bool active = false;
10726
10727                 memset(&pipe_config, 0, sizeof(pipe_config));
10728
10729                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10730                               crtc->base.base.id);
10731
10732                 WARN(crtc->active && !crtc->base.enabled,
10733                      "active crtc, but not enabled in sw tracking\n");
10734
10735                 for_each_intel_encoder(dev, encoder) {
10736                         if (encoder->base.crtc != &crtc->base)
10737                                 continue;
10738                         enabled = true;
10739                         if (encoder->connectors_active)
10740                                 active = true;
10741                 }
10742
10743                 WARN(active != crtc->active,
10744                      "crtc's computed active state doesn't match tracked active state "
10745                      "(expected %i, found %i)\n", active, crtc->active);
10746                 WARN(enabled != crtc->base.enabled,
10747                      "crtc's computed enabled state doesn't match tracked enabled state "
10748                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10749
10750                 active = dev_priv->display.get_pipe_config(crtc,
10751                                                            &pipe_config);
10752
10753                 /* hw state is inconsistent with the pipe quirk */
10754                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10755                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10756                         active = crtc->active;
10757
10758                 for_each_intel_encoder(dev, encoder) {
10759                         enum pipe pipe;
10760                         if (encoder->base.crtc != &crtc->base)
10761                                 continue;
10762                         if (encoder->get_hw_state(encoder, &pipe))
10763                                 encoder->get_config(encoder, &pipe_config);
10764                 }
10765
10766                 WARN(crtc->active != active,
10767                      "crtc active state doesn't match with hw state "
10768                      "(expected %i, found %i)\n", crtc->active, active);
10769
10770                 if (active &&
10771                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10772                         WARN(1, "pipe state doesn't match!\n");
10773                         intel_dump_pipe_config(crtc, &pipe_config,
10774                                                "[hw state]");
10775                         intel_dump_pipe_config(crtc, &crtc->config,
10776                                                "[sw state]");
10777                 }
10778         }
10779 }
10780
10781 static void
10782 check_shared_dpll_state(struct drm_device *dev)
10783 {
10784         struct drm_i915_private *dev_priv = dev->dev_private;
10785         struct intel_crtc *crtc;
10786         struct intel_dpll_hw_state dpll_hw_state;
10787         int i;
10788
10789         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10790                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10791                 int enabled_crtcs = 0, active_crtcs = 0;
10792                 bool active;
10793
10794                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10795
10796                 DRM_DEBUG_KMS("%s\n", pll->name);
10797
10798                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10799
10800                 WARN(pll->active > hweight32(pll->config.crtc_mask),
10801                      "more active pll users than references: %i vs %i\n",
10802                      pll->active, hweight32(pll->config.crtc_mask));
10803                 WARN(pll->active && !pll->on,
10804                      "pll in active use but not on in sw tracking\n");
10805                 WARN(pll->on && !pll->active,
10806                      "pll in on but not on in use in sw tracking\n");
10807                 WARN(pll->on != active,
10808                      "pll on state mismatch (expected %i, found %i)\n",
10809                      pll->on, active);
10810
10811                 for_each_intel_crtc(dev, crtc) {
10812                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10813                                 enabled_crtcs++;
10814                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10815                                 active_crtcs++;
10816                 }
10817                 WARN(pll->active != active_crtcs,
10818                      "pll active crtcs mismatch (expected %i, found %i)\n",
10819                      pll->active, active_crtcs);
10820                 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10821                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10822                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10823
10824                 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10825                                        sizeof(dpll_hw_state)),
10826                      "pll hw state mismatch\n");
10827         }
10828 }
10829
10830 void
10831 intel_modeset_check_state(struct drm_device *dev)
10832 {
10833         check_wm_state(dev);
10834         check_connector_state(dev);
10835         check_encoder_state(dev);
10836         check_crtc_state(dev);
10837         check_shared_dpll_state(dev);
10838 }
10839
10840 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10841                                      int dotclock)
10842 {
10843         /*
10844          * FDI already provided one idea for the dotclock.
10845          * Yell if the encoder disagrees.
10846          */
10847         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10848              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10849              pipe_config->adjusted_mode.crtc_clock, dotclock);
10850 }
10851
10852 static void update_scanline_offset(struct intel_crtc *crtc)
10853 {
10854         struct drm_device *dev = crtc->base.dev;
10855
10856         /*
10857          * The scanline counter increments at the leading edge of hsync.
10858          *
10859          * On most platforms it starts counting from vtotal-1 on the
10860          * first active line. That means the scanline counter value is
10861          * always one less than what we would expect. Ie. just after
10862          * start of vblank, which also occurs at start of hsync (on the
10863          * last active line), the scanline counter will read vblank_start-1.
10864          *
10865          * On gen2 the scanline counter starts counting from 1 instead
10866          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10867          * to keep the value positive), instead of adding one.
10868          *
10869          * On HSW+ the behaviour of the scanline counter depends on the output
10870          * type. For DP ports it behaves like most other platforms, but on HDMI
10871          * there's an extra 1 line difference. So we need to add two instead of
10872          * one to the value.
10873          */
10874         if (IS_GEN2(dev)) {
10875                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10876                 int vtotal;
10877
10878                 vtotal = mode->crtc_vtotal;
10879                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10880                         vtotal /= 2;
10881
10882                 crtc->scanline_offset = vtotal - 1;
10883         } else if (HAS_DDI(dev) &&
10884                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10885                 crtc->scanline_offset = 2;
10886         } else
10887                 crtc->scanline_offset = 1;
10888 }
10889
10890 static struct intel_crtc_config *
10891 intel_modeset_compute_config(struct drm_crtc *crtc,
10892                              struct drm_display_mode *mode,
10893                              struct drm_framebuffer *fb,
10894                              unsigned *modeset_pipes,
10895                              unsigned *prepare_pipes,
10896                              unsigned *disable_pipes)
10897 {
10898         struct intel_crtc_config *pipe_config = NULL;
10899
10900         intel_modeset_affected_pipes(crtc, modeset_pipes,
10901                                      prepare_pipes, disable_pipes);
10902
10903         if ((*modeset_pipes) == 0)
10904                 goto out;
10905
10906         /*
10907          * Note this needs changes when we start tracking multiple modes
10908          * and crtcs.  At that point we'll need to compute the whole config
10909          * (i.e. one pipe_config for each crtc) rather than just the one
10910          * for this crtc.
10911          */
10912         pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10913         if (IS_ERR(pipe_config)) {
10914                 goto out;
10915         }
10916         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10917                                "[modeset]");
10918
10919 out:
10920         return pipe_config;
10921 }
10922
10923 static int __intel_set_mode(struct drm_crtc *crtc,
10924                             struct drm_display_mode *mode,
10925                             int x, int y, struct drm_framebuffer *fb,
10926                             struct intel_crtc_config *pipe_config,
10927                             unsigned modeset_pipes,
10928                             unsigned prepare_pipes,
10929                             unsigned disable_pipes)
10930 {
10931         struct drm_device *dev = crtc->dev;
10932         struct drm_i915_private *dev_priv = dev->dev_private;
10933         struct drm_display_mode *saved_mode;
10934         struct intel_crtc *intel_crtc;
10935         int ret = 0;
10936
10937         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10938         if (!saved_mode)
10939                 return -ENOMEM;
10940
10941         *saved_mode = crtc->mode;
10942
10943         if (modeset_pipes)
10944                 to_intel_crtc(crtc)->new_config = pipe_config;
10945
10946         /*
10947          * See if the config requires any additional preparation, e.g.
10948          * to adjust global state with pipes off.  We need to do this
10949          * here so we can get the modeset_pipe updated config for the new
10950          * mode set on this crtc.  For other crtcs we need to use the
10951          * adjusted_mode bits in the crtc directly.
10952          */
10953         if (IS_VALLEYVIEW(dev)) {
10954                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10955
10956                 /* may have added more to prepare_pipes than we should */
10957                 prepare_pipes &= ~disable_pipes;
10958         }
10959
10960         if (dev_priv->display.crtc_compute_clock) {
10961                 unsigned clear_pipes = modeset_pipes | disable_pipes;
10962
10963                 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10964                 if (ret)
10965                         goto done;
10966
10967                 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10968                         ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10969                         if (ret) {
10970                                 intel_shared_dpll_abort_config(dev_priv);
10971                                 goto done;
10972                         }
10973                 }
10974         }
10975
10976         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10977                 intel_crtc_disable(&intel_crtc->base);
10978
10979         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10980                 if (intel_crtc->base.enabled)
10981                         dev_priv->display.crtc_disable(&intel_crtc->base);
10982         }
10983
10984         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10985          * to set it here already despite that we pass it down the callchain.
10986          *
10987          * Note we'll need to fix this up when we start tracking multiple
10988          * pipes; here we assume a single modeset_pipe and only track the
10989          * single crtc and mode.
10990          */
10991         if (modeset_pipes) {
10992                 crtc->mode = *mode;
10993                 /* mode_set/enable/disable functions rely on a correct pipe
10994                  * config. */
10995                 to_intel_crtc(crtc)->config = *pipe_config;
10996                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10997
10998                 /*
10999                  * Calculate and store various constants which
11000                  * are later needed by vblank and swap-completion
11001                  * timestamping. They are derived from true hwmode.
11002                  */
11003                 drm_calc_timestamping_constants(crtc,
11004                                                 &pipe_config->adjusted_mode);
11005         }
11006
11007         /* Only after disabling all output pipelines that will be changed can we
11008          * update the the output configuration. */
11009         intel_modeset_update_state(dev, prepare_pipes);
11010
11011         modeset_update_crtc_power_domains(dev);
11012
11013         /* Set up the DPLL and any encoders state that needs to adjust or depend
11014          * on the DPLL.
11015          */
11016         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11017                 struct drm_plane *primary = intel_crtc->base.primary;
11018                 int vdisplay, hdisplay;
11019
11020                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11021                 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11022                                                    fb, 0, 0,
11023                                                    hdisplay, vdisplay,
11024                                                    x << 16, y << 16,
11025                                                    hdisplay << 16, vdisplay << 16);
11026         }
11027
11028         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11029         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11030                 update_scanline_offset(intel_crtc);
11031
11032                 dev_priv->display.crtc_enable(&intel_crtc->base);
11033         }
11034
11035         /* FIXME: add subpixel order */
11036 done:
11037         if (ret && crtc->enabled)
11038                 crtc->mode = *saved_mode;
11039
11040         kfree(pipe_config);
11041         kfree(saved_mode);
11042         return ret;
11043 }
11044
11045 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11046                                 struct drm_display_mode *mode,
11047                                 int x, int y, struct drm_framebuffer *fb,
11048                                 struct intel_crtc_config *pipe_config,
11049                                 unsigned modeset_pipes,
11050                                 unsigned prepare_pipes,
11051                                 unsigned disable_pipes)
11052 {
11053         int ret;
11054
11055         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11056                                prepare_pipes, disable_pipes);
11057
11058         if (ret == 0)
11059                 intel_modeset_check_state(crtc->dev);
11060
11061         return ret;
11062 }
11063
11064 static int intel_set_mode(struct drm_crtc *crtc,
11065                           struct drm_display_mode *mode,
11066                           int x, int y, struct drm_framebuffer *fb)
11067 {
11068         struct intel_crtc_config *pipe_config;
11069         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11070
11071         pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11072                                                    &modeset_pipes,
11073                                                    &prepare_pipes,
11074                                                    &disable_pipes);
11075
11076         if (IS_ERR(pipe_config))
11077                 return PTR_ERR(pipe_config);
11078
11079         return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11080                                     modeset_pipes, prepare_pipes,
11081                                     disable_pipes);
11082 }
11083
11084 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11085 {
11086         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11087 }
11088
11089 #undef for_each_intel_crtc_masked
11090
11091 static void intel_set_config_free(struct intel_set_config *config)
11092 {
11093         if (!config)
11094                 return;
11095
11096         kfree(config->save_connector_encoders);
11097         kfree(config->save_encoder_crtcs);
11098         kfree(config->save_crtc_enabled);
11099         kfree(config);
11100 }
11101
11102 static int intel_set_config_save_state(struct drm_device *dev,
11103                                        struct intel_set_config *config)
11104 {
11105         struct drm_crtc *crtc;
11106         struct drm_encoder *encoder;
11107         struct drm_connector *connector;
11108         int count;
11109
11110         config->save_crtc_enabled =
11111                 kcalloc(dev->mode_config.num_crtc,
11112                         sizeof(bool), GFP_KERNEL);
11113         if (!config->save_crtc_enabled)
11114                 return -ENOMEM;
11115
11116         config->save_encoder_crtcs =
11117                 kcalloc(dev->mode_config.num_encoder,
11118                         sizeof(struct drm_crtc *), GFP_KERNEL);
11119         if (!config->save_encoder_crtcs)
11120                 return -ENOMEM;
11121
11122         config->save_connector_encoders =
11123                 kcalloc(dev->mode_config.num_connector,
11124                         sizeof(struct drm_encoder *), GFP_KERNEL);
11125         if (!config->save_connector_encoders)
11126                 return -ENOMEM;
11127
11128         /* Copy data. Note that driver private data is not affected.
11129          * Should anything bad happen only the expected state is
11130          * restored, not the drivers personal bookkeeping.
11131          */
11132         count = 0;
11133         for_each_crtc(dev, crtc) {
11134                 config->save_crtc_enabled[count++] = crtc->enabled;
11135         }
11136
11137         count = 0;
11138         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11139                 config->save_encoder_crtcs[count++] = encoder->crtc;
11140         }
11141
11142         count = 0;
11143         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11144                 config->save_connector_encoders[count++] = connector->encoder;
11145         }
11146
11147         return 0;
11148 }
11149
11150 static void intel_set_config_restore_state(struct drm_device *dev,
11151                                            struct intel_set_config *config)
11152 {
11153         struct intel_crtc *crtc;
11154         struct intel_encoder *encoder;
11155         struct intel_connector *connector;
11156         int count;
11157
11158         count = 0;
11159         for_each_intel_crtc(dev, crtc) {
11160                 crtc->new_enabled = config->save_crtc_enabled[count++];
11161
11162                 if (crtc->new_enabled)
11163                         crtc->new_config = &crtc->config;
11164                 else
11165                         crtc->new_config = NULL;
11166         }
11167
11168         count = 0;
11169         for_each_intel_encoder(dev, encoder) {
11170                 encoder->new_crtc =
11171                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11172         }
11173
11174         count = 0;
11175         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11176                 connector->new_encoder =
11177                         to_intel_encoder(config->save_connector_encoders[count++]);
11178         }
11179 }
11180
11181 static bool
11182 is_crtc_connector_off(struct drm_mode_set *set)
11183 {
11184         int i;
11185
11186         if (set->num_connectors == 0)
11187                 return false;
11188
11189         if (WARN_ON(set->connectors == NULL))
11190                 return false;
11191
11192         for (i = 0; i < set->num_connectors; i++)
11193                 if (set->connectors[i]->encoder &&
11194                     set->connectors[i]->encoder->crtc == set->crtc &&
11195                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11196                         return true;
11197
11198         return false;
11199 }
11200
11201 static void
11202 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11203                                       struct intel_set_config *config)
11204 {
11205
11206         /* We should be able to check here if the fb has the same properties
11207          * and then just flip_or_move it */
11208         if (is_crtc_connector_off(set)) {
11209                 config->mode_changed = true;
11210         } else if (set->crtc->primary->fb != set->fb) {
11211                 /*
11212                  * If we have no fb, we can only flip as long as the crtc is
11213                  * active, otherwise we need a full mode set.  The crtc may
11214                  * be active if we've only disabled the primary plane, or
11215                  * in fastboot situations.
11216                  */
11217                 if (set->crtc->primary->fb == NULL) {
11218                         struct intel_crtc *intel_crtc =
11219                                 to_intel_crtc(set->crtc);
11220
11221                         if (intel_crtc->active) {
11222                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11223                                 config->fb_changed = true;
11224                         } else {
11225                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11226                                 config->mode_changed = true;
11227                         }
11228                 } else if (set->fb == NULL) {
11229                         config->mode_changed = true;
11230                 } else if (set->fb->pixel_format !=
11231                            set->crtc->primary->fb->pixel_format) {
11232                         config->mode_changed = true;
11233                 } else {
11234                         config->fb_changed = true;
11235                 }
11236         }
11237
11238         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11239                 config->fb_changed = true;
11240
11241         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11242                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11243                 drm_mode_debug_printmodeline(&set->crtc->mode);
11244                 drm_mode_debug_printmodeline(set->mode);
11245                 config->mode_changed = true;
11246         }
11247
11248         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11249                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11250 }
11251
11252 static int
11253 intel_modeset_stage_output_state(struct drm_device *dev,
11254                                  struct drm_mode_set *set,
11255                                  struct intel_set_config *config)
11256 {
11257         struct intel_connector *connector;
11258         struct intel_encoder *encoder;
11259         struct intel_crtc *crtc;
11260         int ro;
11261
11262         /* The upper layers ensure that we either disable a crtc or have a list
11263          * of connectors. For paranoia, double-check this. */
11264         WARN_ON(!set->fb && (set->num_connectors != 0));
11265         WARN_ON(set->fb && (set->num_connectors == 0));
11266
11267         list_for_each_entry(connector, &dev->mode_config.connector_list,
11268                             base.head) {
11269                 /* Otherwise traverse passed in connector list and get encoders
11270                  * for them. */
11271                 for (ro = 0; ro < set->num_connectors; ro++) {
11272                         if (set->connectors[ro] == &connector->base) {
11273                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11274                                 break;
11275                         }
11276                 }
11277
11278                 /* If we disable the crtc, disable all its connectors. Also, if
11279                  * the connector is on the changing crtc but not on the new
11280                  * connector list, disable it. */
11281                 if ((!set->fb || ro == set->num_connectors) &&
11282                     connector->base.encoder &&
11283                     connector->base.encoder->crtc == set->crtc) {
11284                         connector->new_encoder = NULL;
11285
11286                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11287                                 connector->base.base.id,
11288                                 connector->base.name);
11289                 }
11290
11291
11292                 if (&connector->new_encoder->base != connector->base.encoder) {
11293                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11294                         config->mode_changed = true;
11295                 }
11296         }
11297         /* connector->new_encoder is now updated for all connectors. */
11298
11299         /* Update crtc of enabled connectors. */
11300         list_for_each_entry(connector, &dev->mode_config.connector_list,
11301                             base.head) {
11302                 struct drm_crtc *new_crtc;
11303
11304                 if (!connector->new_encoder)
11305                         continue;
11306
11307                 new_crtc = connector->new_encoder->base.crtc;
11308
11309                 for (ro = 0; ro < set->num_connectors; ro++) {
11310                         if (set->connectors[ro] == &connector->base)
11311                                 new_crtc = set->crtc;
11312                 }
11313
11314                 /* Make sure the new CRTC will work with the encoder */
11315                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11316                                          new_crtc)) {
11317                         return -EINVAL;
11318                 }
11319                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11320
11321                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11322                         connector->base.base.id,
11323                         connector->base.name,
11324                         new_crtc->base.id);
11325         }
11326
11327         /* Check for any encoders that needs to be disabled. */
11328         for_each_intel_encoder(dev, encoder) {
11329                 int num_connectors = 0;
11330                 list_for_each_entry(connector,
11331                                     &dev->mode_config.connector_list,
11332                                     base.head) {
11333                         if (connector->new_encoder == encoder) {
11334                                 WARN_ON(!connector->new_encoder->new_crtc);
11335                                 num_connectors++;
11336                         }
11337                 }
11338
11339                 if (num_connectors == 0)
11340                         encoder->new_crtc = NULL;
11341                 else if (num_connectors > 1)
11342                         return -EINVAL;
11343
11344                 /* Only now check for crtc changes so we don't miss encoders
11345                  * that will be disabled. */
11346                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11347                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11348                         config->mode_changed = true;
11349                 }
11350         }
11351         /* Now we've also updated encoder->new_crtc for all encoders. */
11352         list_for_each_entry(connector, &dev->mode_config.connector_list,
11353                             base.head) {
11354                 if (connector->new_encoder)
11355                         if (connector->new_encoder != connector->encoder)
11356                                 connector->encoder = connector->new_encoder;
11357         }
11358         for_each_intel_crtc(dev, crtc) {
11359                 crtc->new_enabled = false;
11360
11361                 for_each_intel_encoder(dev, encoder) {
11362                         if (encoder->new_crtc == crtc) {
11363                                 crtc->new_enabled = true;
11364                                 break;
11365                         }
11366                 }
11367
11368                 if (crtc->new_enabled != crtc->base.enabled) {
11369                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11370                                       crtc->new_enabled ? "en" : "dis");
11371                         config->mode_changed = true;
11372                 }
11373
11374                 if (crtc->new_enabled)
11375                         crtc->new_config = &crtc->config;
11376                 else
11377                         crtc->new_config = NULL;
11378         }
11379
11380         return 0;
11381 }
11382
11383 static void disable_crtc_nofb(struct intel_crtc *crtc)
11384 {
11385         struct drm_device *dev = crtc->base.dev;
11386         struct intel_encoder *encoder;
11387         struct intel_connector *connector;
11388
11389         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11390                       pipe_name(crtc->pipe));
11391
11392         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11393                 if (connector->new_encoder &&
11394                     connector->new_encoder->new_crtc == crtc)
11395                         connector->new_encoder = NULL;
11396         }
11397
11398         for_each_intel_encoder(dev, encoder) {
11399                 if (encoder->new_crtc == crtc)
11400                         encoder->new_crtc = NULL;
11401         }
11402
11403         crtc->new_enabled = false;
11404         crtc->new_config = NULL;
11405 }
11406
11407 static int intel_crtc_set_config(struct drm_mode_set *set)
11408 {
11409         struct drm_device *dev;
11410         struct drm_mode_set save_set;
11411         struct intel_set_config *config;
11412         struct intel_crtc_config *pipe_config;
11413         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11414         int ret;
11415
11416         BUG_ON(!set);
11417         BUG_ON(!set->crtc);
11418         BUG_ON(!set->crtc->helper_private);
11419
11420         /* Enforce sane interface api - has been abused by the fb helper. */
11421         BUG_ON(!set->mode && set->fb);
11422         BUG_ON(set->fb && set->num_connectors == 0);
11423
11424         if (set->fb) {
11425                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11426                                 set->crtc->base.id, set->fb->base.id,
11427                                 (int)set->num_connectors, set->x, set->y);
11428         } else {
11429                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11430         }
11431
11432         dev = set->crtc->dev;
11433
11434         ret = -ENOMEM;
11435         config = kzalloc(sizeof(*config), GFP_KERNEL);
11436         if (!config)
11437                 goto out_config;
11438
11439         ret = intel_set_config_save_state(dev, config);
11440         if (ret)
11441                 goto out_config;
11442
11443         save_set.crtc = set->crtc;
11444         save_set.mode = &set->crtc->mode;
11445         save_set.x = set->crtc->x;
11446         save_set.y = set->crtc->y;
11447         save_set.fb = set->crtc->primary->fb;
11448
11449         /* Compute whether we need a full modeset, only an fb base update or no
11450          * change at all. In the future we might also check whether only the
11451          * mode changed, e.g. for LVDS where we only change the panel fitter in
11452          * such cases. */
11453         intel_set_config_compute_mode_changes(set, config);
11454
11455         ret = intel_modeset_stage_output_state(dev, set, config);
11456         if (ret)
11457                 goto fail;
11458
11459         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11460                                                    set->fb,
11461                                                    &modeset_pipes,
11462                                                    &prepare_pipes,
11463                                                    &disable_pipes);
11464         if (IS_ERR(pipe_config)) {
11465                 ret = PTR_ERR(pipe_config);
11466                 goto fail;
11467         } else if (pipe_config) {
11468                 if (pipe_config->has_audio !=
11469                     to_intel_crtc(set->crtc)->config.has_audio)
11470                         config->mode_changed = true;
11471
11472                 /* Force mode sets for any infoframe stuff */
11473                 if (pipe_config->has_infoframe ||
11474                     to_intel_crtc(set->crtc)->config.has_infoframe)
11475                         config->mode_changed = true;
11476         }
11477
11478         /* set_mode will free it in the mode_changed case */
11479         if (!config->mode_changed)
11480                 kfree(pipe_config);
11481
11482         intel_update_pipe_size(to_intel_crtc(set->crtc));
11483
11484         if (config->mode_changed) {
11485                 ret = intel_set_mode_pipes(set->crtc, set->mode,
11486                                            set->x, set->y, set->fb, pipe_config,
11487                                            modeset_pipes, prepare_pipes,
11488                                            disable_pipes);
11489         } else if (config->fb_changed) {
11490                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11491                 struct drm_plane *primary = set->crtc->primary;
11492                 int vdisplay, hdisplay;
11493
11494                 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11495                 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11496                                                    0, 0, hdisplay, vdisplay,
11497                                                    set->x << 16, set->y << 16,
11498                                                    hdisplay << 16, vdisplay << 16);
11499
11500                 /*
11501                  * We need to make sure the primary plane is re-enabled if it
11502                  * has previously been turned off.
11503                  */
11504                 if (!intel_crtc->primary_enabled && ret == 0) {
11505                         WARN_ON(!intel_crtc->active);
11506                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11507                 }
11508
11509                 /*
11510                  * In the fastboot case this may be our only check of the
11511                  * state after boot.  It would be better to only do it on
11512                  * the first update, but we don't have a nice way of doing that
11513                  * (and really, set_config isn't used much for high freq page
11514                  * flipping, so increasing its cost here shouldn't be a big
11515                  * deal).
11516                  */
11517                 if (i915.fastboot && ret == 0)
11518                         intel_modeset_check_state(set->crtc->dev);
11519         }
11520
11521         if (ret) {
11522                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11523                               set->crtc->base.id, ret);
11524 fail:
11525                 intel_set_config_restore_state(dev, config);
11526
11527                 /*
11528                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11529                  * force the pipe off to avoid oopsing in the modeset code
11530                  * due to fb==NULL. This should only happen during boot since
11531                  * we don't yet reconstruct the FB from the hardware state.
11532                  */
11533                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11534                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11535
11536                 /* Try to restore the config */
11537                 if (config->mode_changed &&
11538                     intel_set_mode(save_set.crtc, save_set.mode,
11539                                    save_set.x, save_set.y, save_set.fb))
11540                         DRM_ERROR("failed to restore config after modeset failure\n");
11541         }
11542
11543 out_config:
11544         intel_set_config_free(config);
11545         return ret;
11546 }
11547
11548 static const struct drm_crtc_funcs intel_crtc_funcs = {
11549         .gamma_set = intel_crtc_gamma_set,
11550         .set_config = intel_crtc_set_config,
11551         .destroy = intel_crtc_destroy,
11552         .page_flip = intel_crtc_page_flip,
11553 };
11554
11555 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11556                                       struct intel_shared_dpll *pll,
11557                                       struct intel_dpll_hw_state *hw_state)
11558 {
11559         uint32_t val;
11560
11561         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11562                 return false;
11563
11564         val = I915_READ(PCH_DPLL(pll->id));
11565         hw_state->dpll = val;
11566         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11567         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11568
11569         return val & DPLL_VCO_ENABLE;
11570 }
11571
11572 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11573                                   struct intel_shared_dpll *pll)
11574 {
11575         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11576         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11577 }
11578
11579 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11580                                 struct intel_shared_dpll *pll)
11581 {
11582         /* PCH refclock must be enabled first */
11583         ibx_assert_pch_refclk_enabled(dev_priv);
11584
11585         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11586
11587         /* Wait for the clocks to stabilize. */
11588         POSTING_READ(PCH_DPLL(pll->id));
11589         udelay(150);
11590
11591         /* The pixel multiplier can only be updated once the
11592          * DPLL is enabled and the clocks are stable.
11593          *
11594          * So write it again.
11595          */
11596         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11597         POSTING_READ(PCH_DPLL(pll->id));
11598         udelay(200);
11599 }
11600
11601 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11602                                  struct intel_shared_dpll *pll)
11603 {
11604         struct drm_device *dev = dev_priv->dev;
11605         struct intel_crtc *crtc;
11606
11607         /* Make sure no transcoder isn't still depending on us. */
11608         for_each_intel_crtc(dev, crtc) {
11609                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11610                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11611         }
11612
11613         I915_WRITE(PCH_DPLL(pll->id), 0);
11614         POSTING_READ(PCH_DPLL(pll->id));
11615         udelay(200);
11616 }
11617
11618 static char *ibx_pch_dpll_names[] = {
11619         "PCH DPLL A",
11620         "PCH DPLL B",
11621 };
11622
11623 static void ibx_pch_dpll_init(struct drm_device *dev)
11624 {
11625         struct drm_i915_private *dev_priv = dev->dev_private;
11626         int i;
11627
11628         dev_priv->num_shared_dpll = 2;
11629
11630         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11631                 dev_priv->shared_dplls[i].id = i;
11632                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11633                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11634                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11635                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11636                 dev_priv->shared_dplls[i].get_hw_state =
11637                         ibx_pch_dpll_get_hw_state;
11638         }
11639 }
11640
11641 static void intel_shared_dpll_init(struct drm_device *dev)
11642 {
11643         struct drm_i915_private *dev_priv = dev->dev_private;
11644
11645         if (HAS_DDI(dev))
11646                 intel_ddi_pll_init(dev);
11647         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11648                 ibx_pch_dpll_init(dev);
11649         else
11650                 dev_priv->num_shared_dpll = 0;
11651
11652         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11653 }
11654
11655 /**
11656  * intel_prepare_plane_fb - Prepare fb for usage on plane
11657  * @plane: drm plane to prepare for
11658  * @fb: framebuffer to prepare for presentation
11659  *
11660  * Prepares a framebuffer for usage on a display plane.  Generally this
11661  * involves pinning the underlying object and updating the frontbuffer tracking
11662  * bits.  Some older platforms need special physical address handling for
11663  * cursor planes.
11664  *
11665  * Returns 0 on success, negative error code on failure.
11666  */
11667 int
11668 intel_prepare_plane_fb(struct drm_plane *plane,
11669                        struct drm_framebuffer *fb)
11670 {
11671         struct drm_device *dev = plane->dev;
11672         struct intel_plane *intel_plane = to_intel_plane(plane);
11673         enum pipe pipe = intel_plane->pipe;
11674         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11675         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11676         unsigned frontbuffer_bits = 0;
11677         int ret = 0;
11678
11679         if (WARN_ON(fb == plane->fb || !obj))
11680                 return 0;
11681
11682         switch (plane->type) {
11683         case DRM_PLANE_TYPE_PRIMARY:
11684                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11685                 break;
11686         case DRM_PLANE_TYPE_CURSOR:
11687                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11688                 break;
11689         case DRM_PLANE_TYPE_OVERLAY:
11690                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11691                 break;
11692         }
11693
11694         mutex_lock(&dev->struct_mutex);
11695
11696         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11697             INTEL_INFO(dev)->cursor_needs_physical) {
11698                 int align = IS_I830(dev) ? 16 * 1024 : 256;
11699                 ret = i915_gem_object_attach_phys(obj, align);
11700                 if (ret)
11701                         DRM_DEBUG_KMS("failed to attach phys object\n");
11702         } else {
11703                 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11704         }
11705
11706         if (ret == 0)
11707                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11708
11709         mutex_unlock(&dev->struct_mutex);
11710
11711         return ret;
11712 }
11713
11714 /**
11715  * intel_cleanup_plane_fb - Cleans up an fb after plane use
11716  * @plane: drm plane to clean up for
11717  * @fb: old framebuffer that was on plane
11718  *
11719  * Cleans up a framebuffer that has just been removed from a plane.
11720  */
11721 void
11722 intel_cleanup_plane_fb(struct drm_plane *plane,
11723                        struct drm_framebuffer *fb)
11724 {
11725         struct drm_device *dev = plane->dev;
11726         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11727
11728         if (WARN_ON(!obj))
11729                 return;
11730
11731         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11732             !INTEL_INFO(dev)->cursor_needs_physical) {
11733                 mutex_lock(&dev->struct_mutex);
11734                 intel_unpin_fb_obj(obj);
11735                 mutex_unlock(&dev->struct_mutex);
11736         }
11737 }
11738
11739 static int
11740 intel_check_primary_plane(struct drm_plane *plane,
11741                           struct intel_plane_state *state)
11742 {
11743         struct drm_crtc *crtc = state->base.crtc;
11744         struct drm_framebuffer *fb = state->base.fb;
11745         struct drm_rect *dest = &state->dst;
11746         struct drm_rect *src = &state->src;
11747         const struct drm_rect *clip = &state->clip;
11748         int ret;
11749
11750         ret = drm_plane_helper_check_update(plane, crtc, fb,
11751                                             src, dest, clip,
11752                                             DRM_PLANE_HELPER_NO_SCALING,
11753                                             DRM_PLANE_HELPER_NO_SCALING,
11754                                             false, true, &state->visible);
11755         if (ret)
11756                 return ret;
11757
11758         intel_crtc_wait_for_pending_flips(crtc);
11759         if (intel_crtc_has_pending_flip(crtc)) {
11760                 DRM_ERROR("pipe is still busy with an old pageflip\n");
11761                 return -EBUSY;
11762         }
11763
11764         return 0;
11765 }
11766
11767 static void
11768 intel_commit_primary_plane(struct drm_plane *plane,
11769                            struct intel_plane_state *state)
11770 {
11771         struct drm_crtc *crtc = state->base.crtc;
11772         struct drm_framebuffer *fb = state->base.fb;
11773         struct drm_device *dev = plane->dev;
11774         struct drm_i915_private *dev_priv = dev->dev_private;
11775         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11776         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11777         struct intel_plane *intel_plane = to_intel_plane(plane);
11778         struct drm_rect *src = &state->src;
11779         enum pipe pipe = intel_plane->pipe;
11780
11781         if (!fb) {
11782                 /*
11783                  * 'prepare' is never called when plane is being disabled, so
11784                  * we need to handle frontbuffer tracking here
11785                  */
11786                 mutex_lock(&dev->struct_mutex);
11787                 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11788                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
11789                 mutex_unlock(&dev->struct_mutex);
11790         }
11791
11792         plane->fb = fb;
11793         crtc->x = src->x1 >> 16;
11794         crtc->y = src->y1 >> 16;
11795
11796         intel_plane->crtc_x = state->orig_dst.x1;
11797         intel_plane->crtc_y = state->orig_dst.y1;
11798         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11799         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11800         intel_plane->src_x = state->orig_src.x1;
11801         intel_plane->src_y = state->orig_src.y1;
11802         intel_plane->src_w = drm_rect_width(&state->orig_src);
11803         intel_plane->src_h = drm_rect_height(&state->orig_src);
11804         intel_plane->obj = obj;
11805
11806         if (intel_crtc->active) {
11807                 /*
11808                  * FBC does not work on some platforms for rotated
11809                  * planes, so disable it when rotation is not 0 and
11810                  * update it when rotation is set back to 0.
11811                  *
11812                  * FIXME: This is redundant with the fbc update done in
11813                  * the primary plane enable function except that that
11814                  * one is done too late. We eventually need to unify
11815                  * this.
11816                  */
11817                 if (intel_crtc->primary_enabled &&
11818                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11819                     dev_priv->fbc.plane == intel_crtc->plane &&
11820                     intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11821                         intel_disable_fbc(dev);
11822                 }
11823
11824                 if (state->visible) {
11825                         bool was_enabled = intel_crtc->primary_enabled;
11826
11827                         /* FIXME: kill this fastboot hack */
11828                         intel_update_pipe_size(intel_crtc);
11829
11830                         intel_crtc->primary_enabled = true;
11831
11832                         dev_priv->display.update_primary_plane(crtc, plane->fb,
11833                                         crtc->x, crtc->y);
11834
11835                         /*
11836                          * BDW signals flip done immediately if the plane
11837                          * is disabled, even if the plane enable is already
11838                          * armed to occur at the next vblank :(
11839                          */
11840                         if (IS_BROADWELL(dev) && !was_enabled)
11841                                 intel_wait_for_vblank(dev, intel_crtc->pipe);
11842                 } else {
11843                         /*
11844                          * If clipping results in a non-visible primary plane,
11845                          * we'll disable the primary plane.  Note that this is
11846                          * a bit different than what happens if userspace
11847                          * explicitly disables the plane by passing fb=0
11848                          * because plane->fb still gets set and pinned.
11849                          */
11850                         intel_disable_primary_hw_plane(plane, crtc);
11851                 }
11852
11853                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11854
11855                 mutex_lock(&dev->struct_mutex);
11856                 intel_update_fbc(dev);
11857                 mutex_unlock(&dev->struct_mutex);
11858         }
11859 }
11860
11861 int
11862 intel_update_plane(struct drm_plane *plane, struct drm_crtc *crtc,
11863                    struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11864                    unsigned int crtc_w, unsigned int crtc_h,
11865                    uint32_t src_x, uint32_t src_y,
11866                    uint32_t src_w, uint32_t src_h)
11867 {
11868         struct drm_device *dev = plane->dev;
11869         struct drm_framebuffer *old_fb = plane->fb;
11870         struct intel_plane_state state;
11871         struct intel_plane *intel_plane = to_intel_plane(plane);
11872         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11873         int ret;
11874
11875         state.base.crtc = crtc ? crtc : plane->crtc;
11876         state.base.fb = fb;
11877
11878         /* sample coordinates in 16.16 fixed point */
11879         state.src.x1 = src_x;
11880         state.src.x2 = src_x + src_w;
11881         state.src.y1 = src_y;
11882         state.src.y2 = src_y + src_h;
11883
11884         /* integer pixels */
11885         state.dst.x1 = crtc_x;
11886         state.dst.x2 = crtc_x + crtc_w;
11887         state.dst.y1 = crtc_y;
11888         state.dst.y2 = crtc_y + crtc_h;
11889
11890         state.clip.x1 = 0;
11891         state.clip.y1 = 0;
11892         state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11893         state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11894
11895         state.orig_src = state.src;
11896         state.orig_dst = state.dst;
11897
11898         ret = intel_plane->check_plane(plane, &state);
11899         if (ret)
11900                 return ret;
11901
11902         if (fb != old_fb && fb) {
11903                 ret = intel_prepare_plane_fb(plane, fb);
11904                 if (ret)
11905                         return ret;
11906         }
11907
11908         intel_plane->commit_plane(plane, &state);
11909
11910         if (fb != old_fb && old_fb) {
11911                 if (intel_crtc->active)
11912                         intel_wait_for_vblank(dev, intel_crtc->pipe);
11913                 intel_cleanup_plane_fb(plane, old_fb);
11914         }
11915
11916         plane->fb = fb;
11917
11918         return 0;
11919 }
11920
11921 /**
11922  * intel_disable_plane - disable a plane
11923  * @plane: plane to disable
11924  *
11925  * General disable handler for all plane types.
11926  */
11927 int
11928 intel_disable_plane(struct drm_plane *plane)
11929 {
11930         if (!plane->fb)
11931                 return 0;
11932
11933         if (WARN_ON(!plane->crtc))
11934                 return -EINVAL;
11935
11936         return plane->funcs->update_plane(plane, plane->crtc, NULL,
11937                                           0, 0, 0, 0, 0, 0, 0, 0);
11938 }
11939
11940 /* Common destruction function for both primary and cursor planes */
11941 static void intel_plane_destroy(struct drm_plane *plane)
11942 {
11943         struct intel_plane *intel_plane = to_intel_plane(plane);
11944         drm_plane_cleanup(plane);
11945         kfree(intel_plane);
11946 }
11947
11948 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11949         .update_plane = intel_update_plane,
11950         .disable_plane = intel_disable_plane,
11951         .destroy = intel_plane_destroy,
11952         .set_property = intel_plane_set_property
11953 };
11954
11955 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11956                                                     int pipe)
11957 {
11958         struct intel_plane *primary;
11959         const uint32_t *intel_primary_formats;
11960         int num_formats;
11961
11962         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11963         if (primary == NULL)
11964                 return NULL;
11965
11966         primary->can_scale = false;
11967         primary->max_downscale = 1;
11968         primary->pipe = pipe;
11969         primary->plane = pipe;
11970         primary->rotation = BIT(DRM_ROTATE_0);
11971         primary->check_plane = intel_check_primary_plane;
11972         primary->commit_plane = intel_commit_primary_plane;
11973         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11974                 primary->plane = !pipe;
11975
11976         if (INTEL_INFO(dev)->gen <= 3) {
11977                 intel_primary_formats = intel_primary_formats_gen2;
11978                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11979         } else {
11980                 intel_primary_formats = intel_primary_formats_gen4;
11981                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11982         }
11983
11984         drm_universal_plane_init(dev, &primary->base, 0,
11985                                  &intel_primary_plane_funcs,
11986                                  intel_primary_formats, num_formats,
11987                                  DRM_PLANE_TYPE_PRIMARY);
11988
11989         if (INTEL_INFO(dev)->gen >= 4) {
11990                 if (!dev->mode_config.rotation_property)
11991                         dev->mode_config.rotation_property =
11992                                 drm_mode_create_rotation_property(dev,
11993                                                         BIT(DRM_ROTATE_0) |
11994                                                         BIT(DRM_ROTATE_180));
11995                 if (dev->mode_config.rotation_property)
11996                         drm_object_attach_property(&primary->base.base,
11997                                 dev->mode_config.rotation_property,
11998                                 primary->rotation);
11999         }
12000
12001         return &primary->base;
12002 }
12003
12004 static int
12005 intel_check_cursor_plane(struct drm_plane *plane,
12006                          struct intel_plane_state *state)
12007 {
12008         struct drm_crtc *crtc = state->base.crtc;
12009         struct drm_device *dev = crtc->dev;
12010         struct drm_framebuffer *fb = state->base.fb;
12011         struct drm_rect *dest = &state->dst;
12012         struct drm_rect *src = &state->src;
12013         const struct drm_rect *clip = &state->clip;
12014         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12015         int crtc_w, crtc_h;
12016         unsigned stride;
12017         int ret;
12018
12019         ret = drm_plane_helper_check_update(plane, crtc, fb,
12020                                             src, dest, clip,
12021                                             DRM_PLANE_HELPER_NO_SCALING,
12022                                             DRM_PLANE_HELPER_NO_SCALING,
12023                                             true, true, &state->visible);
12024         if (ret)
12025                 return ret;
12026
12027
12028         /* if we want to turn off the cursor ignore width and height */
12029         if (!obj)
12030                 return 0;
12031
12032         /* Check for which cursor types we support */
12033         crtc_w = drm_rect_width(&state->orig_dst);
12034         crtc_h = drm_rect_height(&state->orig_dst);
12035         if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
12036                 DRM_DEBUG("Cursor dimension not supported\n");
12037                 return -EINVAL;
12038         }
12039
12040         stride = roundup_pow_of_two(crtc_w) * 4;
12041         if (obj->base.size < stride * crtc_h) {
12042                 DRM_DEBUG_KMS("buffer is too small\n");
12043                 return -ENOMEM;
12044         }
12045
12046         if (fb == crtc->cursor->fb)
12047                 return 0;
12048
12049         /* we only need to pin inside GTT if cursor is non-phy */
12050         mutex_lock(&dev->struct_mutex);
12051         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12052                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12053                 ret = -EINVAL;
12054         }
12055         mutex_unlock(&dev->struct_mutex);
12056
12057         return ret;
12058 }
12059
12060 static void
12061 intel_commit_cursor_plane(struct drm_plane *plane,
12062                           struct intel_plane_state *state)
12063 {
12064         struct drm_crtc *crtc = state->base.crtc;
12065         struct drm_device *dev = crtc->dev;
12066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12067         struct intel_plane *intel_plane = to_intel_plane(plane);
12068         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12069         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12070         enum pipe pipe = intel_crtc->pipe;
12071         unsigned old_width;
12072         uint32_t addr;
12073
12074         plane->fb = state->base.fb;
12075         crtc->cursor_x = state->orig_dst.x1;
12076         crtc->cursor_y = state->orig_dst.y1;
12077
12078         intel_plane->crtc_x = state->orig_dst.x1;
12079         intel_plane->crtc_y = state->orig_dst.y1;
12080         intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
12081         intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
12082         intel_plane->src_x = state->orig_src.x1;
12083         intel_plane->src_y = state->orig_src.y1;
12084         intel_plane->src_w = drm_rect_width(&state->orig_src);
12085         intel_plane->src_h = drm_rect_height(&state->orig_src);
12086         intel_plane->obj = obj;
12087
12088         if (intel_crtc->cursor_bo == obj)
12089                 goto update;
12090
12091         /*
12092          * 'prepare' is only called when fb != NULL; we still need to update
12093          * frontbuffer tracking for the 'disable' case here.
12094          */
12095         if (!obj) {
12096                 mutex_lock(&dev->struct_mutex);
12097                 i915_gem_track_fb(old_obj, NULL,
12098                                   INTEL_FRONTBUFFER_CURSOR(pipe));
12099                 mutex_unlock(&dev->struct_mutex);
12100         }
12101
12102         if (!obj)
12103                 addr = 0;
12104         else if (!INTEL_INFO(dev)->cursor_needs_physical)
12105                 addr = i915_gem_obj_ggtt_offset(obj);
12106         else
12107                 addr = obj->phys_handle->busaddr;
12108
12109         intel_crtc->cursor_addr = addr;
12110         intel_crtc->cursor_bo = obj;
12111 update:
12112         old_width = intel_crtc->cursor_width;
12113
12114         intel_crtc->cursor_width = drm_rect_width(&state->orig_dst);
12115         intel_crtc->cursor_height = drm_rect_height(&state->orig_dst);
12116
12117         if (intel_crtc->active) {
12118                 if (old_width != intel_crtc->cursor_width)
12119                         intel_update_watermarks(crtc);
12120                 intel_crtc_update_cursor(crtc, state->visible);
12121
12122                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
12123         }
12124 }
12125
12126 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12127         .update_plane = intel_update_plane,
12128         .disable_plane = intel_disable_plane,
12129         .destroy = intel_plane_destroy,
12130         .set_property = intel_plane_set_property,
12131 };
12132
12133 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12134                                                    int pipe)
12135 {
12136         struct intel_plane *cursor;
12137
12138         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12139         if (cursor == NULL)
12140                 return NULL;
12141
12142         cursor->can_scale = false;
12143         cursor->max_downscale = 1;
12144         cursor->pipe = pipe;
12145         cursor->plane = pipe;
12146         cursor->rotation = BIT(DRM_ROTATE_0);
12147         cursor->check_plane = intel_check_cursor_plane;
12148         cursor->commit_plane = intel_commit_cursor_plane;
12149
12150         drm_universal_plane_init(dev, &cursor->base, 0,
12151                                  &intel_cursor_plane_funcs,
12152                                  intel_cursor_formats,
12153                                  ARRAY_SIZE(intel_cursor_formats),
12154                                  DRM_PLANE_TYPE_CURSOR);
12155
12156         if (INTEL_INFO(dev)->gen >= 4) {
12157                 if (!dev->mode_config.rotation_property)
12158                         dev->mode_config.rotation_property =
12159                                 drm_mode_create_rotation_property(dev,
12160                                                         BIT(DRM_ROTATE_0) |
12161                                                         BIT(DRM_ROTATE_180));
12162                 if (dev->mode_config.rotation_property)
12163                         drm_object_attach_property(&cursor->base.base,
12164                                 dev->mode_config.rotation_property,
12165                                 cursor->rotation);
12166         }
12167
12168         return &cursor->base;
12169 }
12170
12171 static void intel_crtc_init(struct drm_device *dev, int pipe)
12172 {
12173         struct drm_i915_private *dev_priv = dev->dev_private;
12174         struct intel_crtc *intel_crtc;
12175         struct drm_plane *primary = NULL;
12176         struct drm_plane *cursor = NULL;
12177         int i, ret;
12178
12179         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12180         if (intel_crtc == NULL)
12181                 return;
12182
12183         primary = intel_primary_plane_create(dev, pipe);
12184         if (!primary)
12185                 goto fail;
12186
12187         cursor = intel_cursor_plane_create(dev, pipe);
12188         if (!cursor)
12189                 goto fail;
12190
12191         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12192                                         cursor, &intel_crtc_funcs);
12193         if (ret)
12194                 goto fail;
12195
12196         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12197         for (i = 0; i < 256; i++) {
12198                 intel_crtc->lut_r[i] = i;
12199                 intel_crtc->lut_g[i] = i;
12200                 intel_crtc->lut_b[i] = i;
12201         }
12202
12203         /*
12204          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12205          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12206          */
12207         intel_crtc->pipe = pipe;
12208         intel_crtc->plane = pipe;
12209         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12210                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12211                 intel_crtc->plane = !pipe;
12212         }
12213
12214         intel_crtc->cursor_base = ~0;
12215         intel_crtc->cursor_cntl = ~0;
12216         intel_crtc->cursor_size = ~0;
12217
12218         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12219                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12220         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12221         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12222
12223         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12224
12225         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12226
12227         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12228         return;
12229
12230 fail:
12231         if (primary)
12232                 drm_plane_cleanup(primary);
12233         if (cursor)
12234                 drm_plane_cleanup(cursor);
12235         kfree(intel_crtc);
12236 }
12237
12238 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12239 {
12240         struct drm_encoder *encoder = connector->base.encoder;
12241         struct drm_device *dev = connector->base.dev;
12242
12243         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12244
12245         if (!encoder || WARN_ON(!encoder->crtc))
12246                 return INVALID_PIPE;
12247
12248         return to_intel_crtc(encoder->crtc)->pipe;
12249 }
12250
12251 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12252                                 struct drm_file *file)
12253 {
12254         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12255         struct drm_crtc *drmmode_crtc;
12256         struct intel_crtc *crtc;
12257
12258         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12259                 return -ENODEV;
12260
12261         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12262
12263         if (!drmmode_crtc) {
12264                 DRM_ERROR("no such CRTC id\n");
12265                 return -ENOENT;
12266         }
12267
12268         crtc = to_intel_crtc(drmmode_crtc);
12269         pipe_from_crtc_id->pipe = crtc->pipe;
12270
12271         return 0;
12272 }
12273
12274 static int intel_encoder_clones(struct intel_encoder *encoder)
12275 {
12276         struct drm_device *dev = encoder->base.dev;
12277         struct intel_encoder *source_encoder;
12278         int index_mask = 0;
12279         int entry = 0;
12280
12281         for_each_intel_encoder(dev, source_encoder) {
12282                 if (encoders_cloneable(encoder, source_encoder))
12283                         index_mask |= (1 << entry);
12284
12285                 entry++;
12286         }
12287
12288         return index_mask;
12289 }
12290
12291 static bool has_edp_a(struct drm_device *dev)
12292 {
12293         struct drm_i915_private *dev_priv = dev->dev_private;
12294
12295         if (!IS_MOBILE(dev))
12296                 return false;
12297
12298         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12299                 return false;
12300
12301         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12302                 return false;
12303
12304         return true;
12305 }
12306
12307 const char *intel_output_name(int output)
12308 {
12309         static const char *names[] = {
12310                 [INTEL_OUTPUT_UNUSED] = "Unused",
12311                 [INTEL_OUTPUT_ANALOG] = "Analog",
12312                 [INTEL_OUTPUT_DVO] = "DVO",
12313                 [INTEL_OUTPUT_SDVO] = "SDVO",
12314                 [INTEL_OUTPUT_LVDS] = "LVDS",
12315                 [INTEL_OUTPUT_TVOUT] = "TV",
12316                 [INTEL_OUTPUT_HDMI] = "HDMI",
12317                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12318                 [INTEL_OUTPUT_EDP] = "eDP",
12319                 [INTEL_OUTPUT_DSI] = "DSI",
12320                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12321         };
12322
12323         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12324                 return "Invalid";
12325
12326         return names[output];
12327 }
12328
12329 static bool intel_crt_present(struct drm_device *dev)
12330 {
12331         struct drm_i915_private *dev_priv = dev->dev_private;
12332
12333         if (INTEL_INFO(dev)->gen >= 9)
12334                 return false;
12335
12336         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12337                 return false;
12338
12339         if (IS_CHERRYVIEW(dev))
12340                 return false;
12341
12342         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12343                 return false;
12344
12345         return true;
12346 }
12347
12348 static void intel_setup_outputs(struct drm_device *dev)
12349 {
12350         struct drm_i915_private *dev_priv = dev->dev_private;
12351         struct intel_encoder *encoder;
12352         bool dpd_is_edp = false;
12353
12354         intel_lvds_init(dev);
12355
12356         if (intel_crt_present(dev))
12357                 intel_crt_init(dev);
12358
12359         if (HAS_DDI(dev)) {
12360                 int found;
12361
12362                 /* Haswell uses DDI functions to detect digital outputs */
12363                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12364                 /* DDI A only supports eDP */
12365                 if (found)
12366                         intel_ddi_init(dev, PORT_A);
12367
12368                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12369                  * register */
12370                 found = I915_READ(SFUSE_STRAP);
12371
12372                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12373                         intel_ddi_init(dev, PORT_B);
12374                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12375                         intel_ddi_init(dev, PORT_C);
12376                 if (found & SFUSE_STRAP_DDID_DETECTED)
12377                         intel_ddi_init(dev, PORT_D);
12378         } else if (HAS_PCH_SPLIT(dev)) {
12379                 int found;
12380                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12381
12382                 if (has_edp_a(dev))
12383                         intel_dp_init(dev, DP_A, PORT_A);
12384
12385                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12386                         /* PCH SDVOB multiplex with HDMIB */
12387                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12388                         if (!found)
12389                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12390                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12391                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12392                 }
12393
12394                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12395                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12396
12397                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12398                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12399
12400                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12401                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12402
12403                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12404                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12405         } else if (IS_VALLEYVIEW(dev)) {
12406                 /*
12407                  * The DP_DETECTED bit is the latched state of the DDC
12408                  * SDA pin at boot. However since eDP doesn't require DDC
12409                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12410                  * eDP ports may have been muxed to an alternate function.
12411                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12412                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12413                  * detect eDP ports.
12414                  */
12415                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12416                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12417                                         PORT_B);
12418                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12419                     intel_dp_is_edp(dev, PORT_B))
12420                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12421
12422                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12423                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12424                                         PORT_C);
12425                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12426                     intel_dp_is_edp(dev, PORT_C))
12427                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12428
12429                 if (IS_CHERRYVIEW(dev)) {
12430                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12431                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12432                                                 PORT_D);
12433                         /* eDP not supported on port D, so don't check VBT */
12434                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12435                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12436                 }
12437
12438                 intel_dsi_init(dev);
12439         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12440                 bool found = false;
12441
12442                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12443                         DRM_DEBUG_KMS("probing SDVOB\n");
12444                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12445                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12446                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12447                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12448                         }
12449
12450                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12451                                 intel_dp_init(dev, DP_B, PORT_B);
12452                 }
12453
12454                 /* Before G4X SDVOC doesn't have its own detect register */
12455
12456                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12457                         DRM_DEBUG_KMS("probing SDVOC\n");
12458                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12459                 }
12460
12461                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12462
12463                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12464                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12465                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12466                         }
12467                         if (SUPPORTS_INTEGRATED_DP(dev))
12468                                 intel_dp_init(dev, DP_C, PORT_C);
12469                 }
12470
12471                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12472                     (I915_READ(DP_D) & DP_DETECTED))
12473                         intel_dp_init(dev, DP_D, PORT_D);
12474         } else if (IS_GEN2(dev))
12475                 intel_dvo_init(dev);
12476
12477         if (SUPPORTS_TV(dev))
12478                 intel_tv_init(dev);
12479
12480         intel_psr_init(dev);
12481
12482         for_each_intel_encoder(dev, encoder) {
12483                 encoder->base.possible_crtcs = encoder->crtc_mask;
12484                 encoder->base.possible_clones =
12485                         intel_encoder_clones(encoder);
12486         }
12487
12488         intel_init_pch_refclk(dev);
12489
12490         drm_helper_move_panel_connectors_to_head(dev);
12491 }
12492
12493 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12494 {
12495         struct drm_device *dev = fb->dev;
12496         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12497
12498         drm_framebuffer_cleanup(fb);
12499         mutex_lock(&dev->struct_mutex);
12500         WARN_ON(!intel_fb->obj->framebuffer_references--);
12501         drm_gem_object_unreference(&intel_fb->obj->base);
12502         mutex_unlock(&dev->struct_mutex);
12503         kfree(intel_fb);
12504 }
12505
12506 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12507                                                 struct drm_file *file,
12508                                                 unsigned int *handle)
12509 {
12510         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12511         struct drm_i915_gem_object *obj = intel_fb->obj;
12512
12513         return drm_gem_handle_create(file, &obj->base, handle);
12514 }
12515
12516 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12517         .destroy = intel_user_framebuffer_destroy,
12518         .create_handle = intel_user_framebuffer_create_handle,
12519 };
12520
12521 static int intel_framebuffer_init(struct drm_device *dev,
12522                                   struct intel_framebuffer *intel_fb,
12523                                   struct drm_mode_fb_cmd2 *mode_cmd,
12524                                   struct drm_i915_gem_object *obj)
12525 {
12526         int aligned_height;
12527         int pitch_limit;
12528         int ret;
12529
12530         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12531
12532         if (obj->tiling_mode == I915_TILING_Y) {
12533                 DRM_DEBUG("hardware does not support tiling Y\n");
12534                 return -EINVAL;
12535         }
12536
12537         if (mode_cmd->pitches[0] & 63) {
12538                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12539                           mode_cmd->pitches[0]);
12540                 return -EINVAL;
12541         }
12542
12543         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12544                 pitch_limit = 32*1024;
12545         } else if (INTEL_INFO(dev)->gen >= 4) {
12546                 if (obj->tiling_mode)
12547                         pitch_limit = 16*1024;
12548                 else
12549                         pitch_limit = 32*1024;
12550         } else if (INTEL_INFO(dev)->gen >= 3) {
12551                 if (obj->tiling_mode)
12552                         pitch_limit = 8*1024;
12553                 else
12554                         pitch_limit = 16*1024;
12555         } else
12556                 /* XXX DSPC is limited to 4k tiled */
12557                 pitch_limit = 8*1024;
12558
12559         if (mode_cmd->pitches[0] > pitch_limit) {
12560                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12561                           obj->tiling_mode ? "tiled" : "linear",
12562                           mode_cmd->pitches[0], pitch_limit);
12563                 return -EINVAL;
12564         }
12565
12566         if (obj->tiling_mode != I915_TILING_NONE &&
12567             mode_cmd->pitches[0] != obj->stride) {
12568                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12569                           mode_cmd->pitches[0], obj->stride);
12570                 return -EINVAL;
12571         }
12572
12573         /* Reject formats not supported by any plane early. */
12574         switch (mode_cmd->pixel_format) {
12575         case DRM_FORMAT_C8:
12576         case DRM_FORMAT_RGB565:
12577         case DRM_FORMAT_XRGB8888:
12578         case DRM_FORMAT_ARGB8888:
12579                 break;
12580         case DRM_FORMAT_XRGB1555:
12581         case DRM_FORMAT_ARGB1555:
12582                 if (INTEL_INFO(dev)->gen > 3) {
12583                         DRM_DEBUG("unsupported pixel format: %s\n",
12584                                   drm_get_format_name(mode_cmd->pixel_format));
12585                         return -EINVAL;
12586                 }
12587                 break;
12588         case DRM_FORMAT_XBGR8888:
12589         case DRM_FORMAT_ABGR8888:
12590         case DRM_FORMAT_XRGB2101010:
12591         case DRM_FORMAT_ARGB2101010:
12592         case DRM_FORMAT_XBGR2101010:
12593         case DRM_FORMAT_ABGR2101010:
12594                 if (INTEL_INFO(dev)->gen < 4) {
12595                         DRM_DEBUG("unsupported pixel format: %s\n",
12596                                   drm_get_format_name(mode_cmd->pixel_format));
12597                         return -EINVAL;
12598                 }
12599                 break;
12600         case DRM_FORMAT_YUYV:
12601         case DRM_FORMAT_UYVY:
12602         case DRM_FORMAT_YVYU:
12603         case DRM_FORMAT_VYUY:
12604                 if (INTEL_INFO(dev)->gen < 5) {
12605                         DRM_DEBUG("unsupported pixel format: %s\n",
12606                                   drm_get_format_name(mode_cmd->pixel_format));
12607                         return -EINVAL;
12608                 }
12609                 break;
12610         default:
12611                 DRM_DEBUG("unsupported pixel format: %s\n",
12612                           drm_get_format_name(mode_cmd->pixel_format));
12613                 return -EINVAL;
12614         }
12615
12616         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12617         if (mode_cmd->offsets[0] != 0)
12618                 return -EINVAL;
12619
12620         aligned_height = intel_align_height(dev, mode_cmd->height,
12621                                             obj->tiling_mode);
12622         /* FIXME drm helper for size checks (especially planar formats)? */
12623         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12624                 return -EINVAL;
12625
12626         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12627         intel_fb->obj = obj;
12628         intel_fb->obj->framebuffer_references++;
12629
12630         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12631         if (ret) {
12632                 DRM_ERROR("framebuffer init failed %d\n", ret);
12633                 return ret;
12634         }
12635
12636         return 0;
12637 }
12638
12639 static struct drm_framebuffer *
12640 intel_user_framebuffer_create(struct drm_device *dev,
12641                               struct drm_file *filp,
12642                               struct drm_mode_fb_cmd2 *mode_cmd)
12643 {
12644         struct drm_i915_gem_object *obj;
12645
12646         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12647                                                 mode_cmd->handles[0]));
12648         if (&obj->base == NULL)
12649                 return ERR_PTR(-ENOENT);
12650
12651         return intel_framebuffer_create(dev, mode_cmd, obj);
12652 }
12653
12654 #ifndef CONFIG_DRM_I915_FBDEV
12655 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12656 {
12657 }
12658 #endif
12659
12660 static const struct drm_mode_config_funcs intel_mode_funcs = {
12661         .fb_create = intel_user_framebuffer_create,
12662         .output_poll_changed = intel_fbdev_output_poll_changed,
12663 };
12664
12665 /* Set up chip specific display functions */
12666 static void intel_init_display(struct drm_device *dev)
12667 {
12668         struct drm_i915_private *dev_priv = dev->dev_private;
12669
12670         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12671                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12672         else if (IS_CHERRYVIEW(dev))
12673                 dev_priv->display.find_dpll = chv_find_best_dpll;
12674         else if (IS_VALLEYVIEW(dev))
12675                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12676         else if (IS_PINEVIEW(dev))
12677                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12678         else
12679                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12680
12681         if (HAS_DDI(dev)) {
12682                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12683                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12684                 dev_priv->display.crtc_compute_clock =
12685                         haswell_crtc_compute_clock;
12686                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12687                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12688                 dev_priv->display.off = ironlake_crtc_off;
12689                 if (INTEL_INFO(dev)->gen >= 9)
12690                         dev_priv->display.update_primary_plane =
12691                                 skylake_update_primary_plane;
12692                 else
12693                         dev_priv->display.update_primary_plane =
12694                                 ironlake_update_primary_plane;
12695         } else if (HAS_PCH_SPLIT(dev)) {
12696                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12697                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12698                 dev_priv->display.crtc_compute_clock =
12699                         ironlake_crtc_compute_clock;
12700                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12701                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12702                 dev_priv->display.off = ironlake_crtc_off;
12703                 dev_priv->display.update_primary_plane =
12704                         ironlake_update_primary_plane;
12705         } else if (IS_VALLEYVIEW(dev)) {
12706                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12707                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12708                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12709                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12710                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12711                 dev_priv->display.off = i9xx_crtc_off;
12712                 dev_priv->display.update_primary_plane =
12713                         i9xx_update_primary_plane;
12714         } else {
12715                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12716                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12717                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12718                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12719                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12720                 dev_priv->display.off = i9xx_crtc_off;
12721                 dev_priv->display.update_primary_plane =
12722                         i9xx_update_primary_plane;
12723         }
12724
12725         /* Returns the core display clock speed */
12726         if (IS_VALLEYVIEW(dev))
12727                 dev_priv->display.get_display_clock_speed =
12728                         valleyview_get_display_clock_speed;
12729         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12730                 dev_priv->display.get_display_clock_speed =
12731                         i945_get_display_clock_speed;
12732         else if (IS_I915G(dev))
12733                 dev_priv->display.get_display_clock_speed =
12734                         i915_get_display_clock_speed;
12735         else if (IS_I945GM(dev) || IS_845G(dev))
12736                 dev_priv->display.get_display_clock_speed =
12737                         i9xx_misc_get_display_clock_speed;
12738         else if (IS_PINEVIEW(dev))
12739                 dev_priv->display.get_display_clock_speed =
12740                         pnv_get_display_clock_speed;
12741         else if (IS_I915GM(dev))
12742                 dev_priv->display.get_display_clock_speed =
12743                         i915gm_get_display_clock_speed;
12744         else if (IS_I865G(dev))
12745                 dev_priv->display.get_display_clock_speed =
12746                         i865_get_display_clock_speed;
12747         else if (IS_I85X(dev))
12748                 dev_priv->display.get_display_clock_speed =
12749                         i855_get_display_clock_speed;
12750         else /* 852, 830 */
12751                 dev_priv->display.get_display_clock_speed =
12752                         i830_get_display_clock_speed;
12753
12754         if (IS_GEN5(dev)) {
12755                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12756         } else if (IS_GEN6(dev)) {
12757                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12758         } else if (IS_IVYBRIDGE(dev)) {
12759                 /* FIXME: detect B0+ stepping and use auto training */
12760                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12761                 dev_priv->display.modeset_global_resources =
12762                         ivb_modeset_global_resources;
12763         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12764                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12765         } else if (IS_VALLEYVIEW(dev)) {
12766                 dev_priv->display.modeset_global_resources =
12767                         valleyview_modeset_global_resources;
12768         }
12769
12770         /* Default just returns -ENODEV to indicate unsupported */
12771         dev_priv->display.queue_flip = intel_default_queue_flip;
12772
12773         switch (INTEL_INFO(dev)->gen) {
12774         case 2:
12775                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12776                 break;
12777
12778         case 3:
12779                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12780                 break;
12781
12782         case 4:
12783         case 5:
12784                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12785                 break;
12786
12787         case 6:
12788                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12789                 break;
12790         case 7:
12791         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12792                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12793                 break;
12794         case 9:
12795                 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12796                 break;
12797         }
12798
12799         intel_panel_init_backlight_funcs(dev);
12800
12801         mutex_init(&dev_priv->pps_mutex);
12802 }
12803
12804 /*
12805  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12806  * resume, or other times.  This quirk makes sure that's the case for
12807  * affected systems.
12808  */
12809 static void quirk_pipea_force(struct drm_device *dev)
12810 {
12811         struct drm_i915_private *dev_priv = dev->dev_private;
12812
12813         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12814         DRM_INFO("applying pipe a force quirk\n");
12815 }
12816
12817 static void quirk_pipeb_force(struct drm_device *dev)
12818 {
12819         struct drm_i915_private *dev_priv = dev->dev_private;
12820
12821         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12822         DRM_INFO("applying pipe b force quirk\n");
12823 }
12824
12825 /*
12826  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12827  */
12828 static void quirk_ssc_force_disable(struct drm_device *dev)
12829 {
12830         struct drm_i915_private *dev_priv = dev->dev_private;
12831         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12832         DRM_INFO("applying lvds SSC disable quirk\n");
12833 }
12834
12835 /*
12836  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12837  * brightness value
12838  */
12839 static void quirk_invert_brightness(struct drm_device *dev)
12840 {
12841         struct drm_i915_private *dev_priv = dev->dev_private;
12842         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12843         DRM_INFO("applying inverted panel brightness quirk\n");
12844 }
12845
12846 /* Some VBT's incorrectly indicate no backlight is present */
12847 static void quirk_backlight_present(struct drm_device *dev)
12848 {
12849         struct drm_i915_private *dev_priv = dev->dev_private;
12850         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12851         DRM_INFO("applying backlight present quirk\n");
12852 }
12853
12854 struct intel_quirk {
12855         int device;
12856         int subsystem_vendor;
12857         int subsystem_device;
12858         void (*hook)(struct drm_device *dev);
12859 };
12860
12861 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12862 struct intel_dmi_quirk {
12863         void (*hook)(struct drm_device *dev);
12864         const struct dmi_system_id (*dmi_id_list)[];
12865 };
12866
12867 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12868 {
12869         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12870         return 1;
12871 }
12872
12873 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12874         {
12875                 .dmi_id_list = &(const struct dmi_system_id[]) {
12876                         {
12877                                 .callback = intel_dmi_reverse_brightness,
12878                                 .ident = "NCR Corporation",
12879                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12880                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12881                                 },
12882                         },
12883                         { }  /* terminating entry */
12884                 },
12885                 .hook = quirk_invert_brightness,
12886         },
12887 };
12888
12889 static struct intel_quirk intel_quirks[] = {
12890         /* HP Mini needs pipe A force quirk (LP: #322104) */
12891         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12892
12893         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12894         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12895
12896         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12897         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12898
12899         /* 830 needs to leave pipe A & dpll A up */
12900         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12901
12902         /* 830 needs to leave pipe B & dpll B up */
12903         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12904
12905         /* Lenovo U160 cannot use SSC on LVDS */
12906         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12907
12908         /* Sony Vaio Y cannot use SSC on LVDS */
12909         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12910
12911         /* Acer Aspire 5734Z must invert backlight brightness */
12912         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12913
12914         /* Acer/eMachines G725 */
12915         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12916
12917         /* Acer/eMachines e725 */
12918         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12919
12920         /* Acer/Packard Bell NCL20 */
12921         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12922
12923         /* Acer Aspire 4736Z */
12924         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12925
12926         /* Acer Aspire 5336 */
12927         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12928
12929         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12930         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12931
12932         /* Acer C720 Chromebook (Core i3 4005U) */
12933         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12934
12935         /* Apple Macbook 2,1 (Core 2 T7400) */
12936         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
12937
12938         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12939         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12940
12941         /* HP Chromebook 14 (Celeron 2955U) */
12942         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12943 };
12944
12945 static void intel_init_quirks(struct drm_device *dev)
12946 {
12947         struct pci_dev *d = dev->pdev;
12948         int i;
12949
12950         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12951                 struct intel_quirk *q = &intel_quirks[i];
12952
12953                 if (d->device == q->device &&
12954                     (d->subsystem_vendor == q->subsystem_vendor ||
12955                      q->subsystem_vendor == PCI_ANY_ID) &&
12956                     (d->subsystem_device == q->subsystem_device ||
12957                      q->subsystem_device == PCI_ANY_ID))
12958                         q->hook(dev);
12959         }
12960         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12961                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12962                         intel_dmi_quirks[i].hook(dev);
12963         }
12964 }
12965
12966 /* Disable the VGA plane that we never use */
12967 static void i915_disable_vga(struct drm_device *dev)
12968 {
12969         struct drm_i915_private *dev_priv = dev->dev_private;
12970         u8 sr1;
12971         u32 vga_reg = i915_vgacntrl_reg(dev);
12972
12973         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12974         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12975         outb(SR01, VGA_SR_INDEX);
12976         sr1 = inb(VGA_SR_DATA);
12977         outb(sr1 | 1<<5, VGA_SR_DATA);
12978         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12979         udelay(300);
12980
12981         /*
12982          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12983          * from S3 without preserving (some of?) the other bits.
12984          */
12985         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12986         POSTING_READ(vga_reg);
12987 }
12988
12989 void intel_modeset_init_hw(struct drm_device *dev)
12990 {
12991         intel_prepare_ddi(dev);
12992
12993         if (IS_VALLEYVIEW(dev))
12994                 vlv_update_cdclk(dev);
12995
12996         intel_init_clock_gating(dev);
12997
12998         intel_enable_gt_powersave(dev);
12999 }
13000
13001 void intel_modeset_init(struct drm_device *dev)
13002 {
13003         struct drm_i915_private *dev_priv = dev->dev_private;
13004         int sprite, ret;
13005         enum pipe pipe;
13006         struct intel_crtc *crtc;
13007
13008         drm_mode_config_init(dev);
13009
13010         dev->mode_config.min_width = 0;
13011         dev->mode_config.min_height = 0;
13012
13013         dev->mode_config.preferred_depth = 24;
13014         dev->mode_config.prefer_shadow = 1;
13015
13016         dev->mode_config.funcs = &intel_mode_funcs;
13017
13018         intel_init_quirks(dev);
13019
13020         intel_init_pm(dev);
13021
13022         if (INTEL_INFO(dev)->num_pipes == 0)
13023                 return;
13024
13025         intel_init_display(dev);
13026         intel_init_audio(dev);
13027
13028         if (IS_GEN2(dev)) {
13029                 dev->mode_config.max_width = 2048;
13030                 dev->mode_config.max_height = 2048;
13031         } else if (IS_GEN3(dev)) {
13032                 dev->mode_config.max_width = 4096;
13033                 dev->mode_config.max_height = 4096;
13034         } else {
13035                 dev->mode_config.max_width = 8192;
13036                 dev->mode_config.max_height = 8192;
13037         }
13038
13039         if (IS_845G(dev) || IS_I865G(dev)) {
13040                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13041                 dev->mode_config.cursor_height = 1023;
13042         } else if (IS_GEN2(dev)) {
13043                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13044                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13045         } else {
13046                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13047                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13048         }
13049
13050         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13051
13052         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13053                       INTEL_INFO(dev)->num_pipes,
13054                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13055
13056         for_each_pipe(dev_priv, pipe) {
13057                 intel_crtc_init(dev, pipe);
13058                 for_each_sprite(pipe, sprite) {
13059                         ret = intel_plane_init(dev, pipe, sprite);
13060                         if (ret)
13061                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13062                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13063                 }
13064         }
13065
13066         intel_init_dpio(dev);
13067
13068         intel_shared_dpll_init(dev);
13069
13070         /* save the BIOS value before clobbering it */
13071         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13072         /* Just disable it once at startup */
13073         i915_disable_vga(dev);
13074         intel_setup_outputs(dev);
13075
13076         /* Just in case the BIOS is doing something questionable. */
13077         intel_disable_fbc(dev);
13078
13079         drm_modeset_lock_all(dev);
13080         intel_modeset_setup_hw_state(dev, false);
13081         drm_modeset_unlock_all(dev);
13082
13083         for_each_intel_crtc(dev, crtc) {
13084                 if (!crtc->active)
13085                         continue;
13086
13087                 /*
13088                  * Note that reserving the BIOS fb up front prevents us
13089                  * from stuffing other stolen allocations like the ring
13090                  * on top.  This prevents some ugliness at boot time, and
13091                  * can even allow for smooth boot transitions if the BIOS
13092                  * fb is large enough for the active pipe configuration.
13093                  */
13094                 if (dev_priv->display.get_plane_config) {
13095                         dev_priv->display.get_plane_config(crtc,
13096                                                            &crtc->plane_config);
13097                         /*
13098                          * If the fb is shared between multiple heads, we'll
13099                          * just get the first one.
13100                          */
13101                         intel_find_plane_obj(crtc, &crtc->plane_config);
13102                 }
13103         }
13104 }
13105
13106 static void intel_enable_pipe_a(struct drm_device *dev)
13107 {
13108         struct intel_connector *connector;
13109         struct drm_connector *crt = NULL;
13110         struct intel_load_detect_pipe load_detect_temp;
13111         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13112
13113         /* We can't just switch on the pipe A, we need to set things up with a
13114          * proper mode and output configuration. As a gross hack, enable pipe A
13115          * by enabling the load detect pipe once. */
13116         list_for_each_entry(connector,
13117                             &dev->mode_config.connector_list,
13118                             base.head) {
13119                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13120                         crt = &connector->base;
13121                         break;
13122                 }
13123         }
13124
13125         if (!crt)
13126                 return;
13127
13128         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13129                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13130 }
13131
13132 static bool
13133 intel_check_plane_mapping(struct intel_crtc *crtc)
13134 {
13135         struct drm_device *dev = crtc->base.dev;
13136         struct drm_i915_private *dev_priv = dev->dev_private;
13137         u32 reg, val;
13138
13139         if (INTEL_INFO(dev)->num_pipes == 1)
13140                 return true;
13141
13142         reg = DSPCNTR(!crtc->plane);
13143         val = I915_READ(reg);
13144
13145         if ((val & DISPLAY_PLANE_ENABLE) &&
13146             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13147                 return false;
13148
13149         return true;
13150 }
13151
13152 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13153 {
13154         struct drm_device *dev = crtc->base.dev;
13155         struct drm_i915_private *dev_priv = dev->dev_private;
13156         u32 reg;
13157
13158         /* Clear any frame start delays used for debugging left by the BIOS */
13159         reg = PIPECONF(crtc->config.cpu_transcoder);
13160         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13161
13162         /* restore vblank interrupts to correct state */
13163         if (crtc->active) {
13164                 update_scanline_offset(crtc);
13165                 drm_vblank_on(dev, crtc->pipe);
13166         } else
13167                 drm_vblank_off(dev, crtc->pipe);
13168
13169         /* We need to sanitize the plane -> pipe mapping first because this will
13170          * disable the crtc (and hence change the state) if it is wrong. Note
13171          * that gen4+ has a fixed plane -> pipe mapping.  */
13172         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13173                 struct intel_connector *connector;
13174                 bool plane;
13175
13176                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13177                               crtc->base.base.id);
13178
13179                 /* Pipe has the wrong plane attached and the plane is active.
13180                  * Temporarily change the plane mapping and disable everything
13181                  * ...  */
13182                 plane = crtc->plane;
13183                 crtc->plane = !plane;
13184                 crtc->primary_enabled = true;
13185                 dev_priv->display.crtc_disable(&crtc->base);
13186                 crtc->plane = plane;
13187
13188                 /* ... and break all links. */
13189                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13190                                     base.head) {
13191                         if (connector->encoder->base.crtc != &crtc->base)
13192                                 continue;
13193
13194                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13195                         connector->base.encoder = NULL;
13196                 }
13197                 /* multiple connectors may have the same encoder:
13198                  *  handle them and break crtc link separately */
13199                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13200                                     base.head)
13201                         if (connector->encoder->base.crtc == &crtc->base) {
13202                                 connector->encoder->base.crtc = NULL;
13203                                 connector->encoder->connectors_active = false;
13204                         }
13205
13206                 WARN_ON(crtc->active);
13207                 crtc->base.enabled = false;
13208         }
13209
13210         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13211             crtc->pipe == PIPE_A && !crtc->active) {
13212                 /* BIOS forgot to enable pipe A, this mostly happens after
13213                  * resume. Force-enable the pipe to fix this, the update_dpms
13214                  * call below we restore the pipe to the right state, but leave
13215                  * the required bits on. */
13216                 intel_enable_pipe_a(dev);
13217         }
13218
13219         /* Adjust the state of the output pipe according to whether we
13220          * have active connectors/encoders. */
13221         intel_crtc_update_dpms(&crtc->base);
13222
13223         if (crtc->active != crtc->base.enabled) {
13224                 struct intel_encoder *encoder;
13225
13226                 /* This can happen either due to bugs in the get_hw_state
13227                  * functions or because the pipe is force-enabled due to the
13228                  * pipe A quirk. */
13229                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13230                               crtc->base.base.id,
13231                               crtc->base.enabled ? "enabled" : "disabled",
13232                               crtc->active ? "enabled" : "disabled");
13233
13234                 crtc->base.enabled = crtc->active;
13235
13236                 /* Because we only establish the connector -> encoder ->
13237                  * crtc links if something is active, this means the
13238                  * crtc is now deactivated. Break the links. connector
13239                  * -> encoder links are only establish when things are
13240                  *  actually up, hence no need to break them. */
13241                 WARN_ON(crtc->active);
13242
13243                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13244                         WARN_ON(encoder->connectors_active);
13245                         encoder->base.crtc = NULL;
13246                 }
13247         }
13248
13249         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13250                 /*
13251                  * We start out with underrun reporting disabled to avoid races.
13252                  * For correct bookkeeping mark this on active crtcs.
13253                  *
13254                  * Also on gmch platforms we dont have any hardware bits to
13255                  * disable the underrun reporting. Which means we need to start
13256                  * out with underrun reporting disabled also on inactive pipes,
13257                  * since otherwise we'll complain about the garbage we read when
13258                  * e.g. coming up after runtime pm.
13259                  *
13260                  * No protection against concurrent access is required - at
13261                  * worst a fifo underrun happens which also sets this to false.
13262                  */
13263                 crtc->cpu_fifo_underrun_disabled = true;
13264                 crtc->pch_fifo_underrun_disabled = true;
13265         }
13266 }
13267
13268 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13269 {
13270         struct intel_connector *connector;
13271         struct drm_device *dev = encoder->base.dev;
13272
13273         /* We need to check both for a crtc link (meaning that the
13274          * encoder is active and trying to read from a pipe) and the
13275          * pipe itself being active. */
13276         bool has_active_crtc = encoder->base.crtc &&
13277                 to_intel_crtc(encoder->base.crtc)->active;
13278
13279         if (encoder->connectors_active && !has_active_crtc) {
13280                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13281                               encoder->base.base.id,
13282                               encoder->base.name);
13283
13284                 /* Connector is active, but has no active pipe. This is
13285                  * fallout from our resume register restoring. Disable
13286                  * the encoder manually again. */
13287                 if (encoder->base.crtc) {
13288                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13289                                       encoder->base.base.id,
13290                                       encoder->base.name);
13291                         encoder->disable(encoder);
13292                         if (encoder->post_disable)
13293                                 encoder->post_disable(encoder);
13294                 }
13295                 encoder->base.crtc = NULL;
13296                 encoder->connectors_active = false;
13297
13298                 /* Inconsistent output/port/pipe state happens presumably due to
13299                  * a bug in one of the get_hw_state functions. Or someplace else
13300                  * in our code, like the register restore mess on resume. Clamp
13301                  * things to off as a safer default. */
13302                 list_for_each_entry(connector,
13303                                     &dev->mode_config.connector_list,
13304                                     base.head) {
13305                         if (connector->encoder != encoder)
13306                                 continue;
13307                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13308                         connector->base.encoder = NULL;
13309                 }
13310         }
13311         /* Enabled encoders without active connectors will be fixed in
13312          * the crtc fixup. */
13313 }
13314
13315 void i915_redisable_vga_power_on(struct drm_device *dev)
13316 {
13317         struct drm_i915_private *dev_priv = dev->dev_private;
13318         u32 vga_reg = i915_vgacntrl_reg(dev);
13319
13320         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13321                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13322                 i915_disable_vga(dev);
13323         }
13324 }
13325
13326 void i915_redisable_vga(struct drm_device *dev)
13327 {
13328         struct drm_i915_private *dev_priv = dev->dev_private;
13329
13330         /* This function can be called both from intel_modeset_setup_hw_state or
13331          * at a very early point in our resume sequence, where the power well
13332          * structures are not yet restored. Since this function is at a very
13333          * paranoid "someone might have enabled VGA while we were not looking"
13334          * level, just check if the power well is enabled instead of trying to
13335          * follow the "don't touch the power well if we don't need it" policy
13336          * the rest of the driver uses. */
13337         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13338                 return;
13339
13340         i915_redisable_vga_power_on(dev);
13341 }
13342
13343 static bool primary_get_hw_state(struct intel_crtc *crtc)
13344 {
13345         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13346
13347         if (!crtc->active)
13348                 return false;
13349
13350         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13351 }
13352
13353 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13354 {
13355         struct drm_i915_private *dev_priv = dev->dev_private;
13356         enum pipe pipe;
13357         struct intel_crtc *crtc;
13358         struct intel_encoder *encoder;
13359         struct intel_connector *connector;
13360         int i;
13361
13362         for_each_intel_crtc(dev, crtc) {
13363                 memset(&crtc->config, 0, sizeof(crtc->config));
13364
13365                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13366
13367                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13368                                                                  &crtc->config);
13369
13370                 crtc->base.enabled = crtc->active;
13371                 crtc->primary_enabled = primary_get_hw_state(crtc);
13372
13373                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13374                               crtc->base.base.id,
13375                               crtc->active ? "enabled" : "disabled");
13376         }
13377
13378         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13379                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13380
13381                 pll->on = pll->get_hw_state(dev_priv, pll,
13382                                             &pll->config.hw_state);
13383                 pll->active = 0;
13384                 pll->config.crtc_mask = 0;
13385                 for_each_intel_crtc(dev, crtc) {
13386                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13387                                 pll->active++;
13388                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13389                         }
13390                 }
13391
13392                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13393                               pll->name, pll->config.crtc_mask, pll->on);
13394
13395                 if (pll->config.crtc_mask)
13396                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13397         }
13398
13399         for_each_intel_encoder(dev, encoder) {
13400                 pipe = 0;
13401
13402                 if (encoder->get_hw_state(encoder, &pipe)) {
13403                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13404                         encoder->base.crtc = &crtc->base;
13405                         encoder->get_config(encoder, &crtc->config);
13406                 } else {
13407                         encoder->base.crtc = NULL;
13408                 }
13409
13410                 encoder->connectors_active = false;
13411                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13412                               encoder->base.base.id,
13413                               encoder->base.name,
13414                               encoder->base.crtc ? "enabled" : "disabled",
13415                               pipe_name(pipe));
13416         }
13417
13418         list_for_each_entry(connector, &dev->mode_config.connector_list,
13419                             base.head) {
13420                 if (connector->get_hw_state(connector)) {
13421                         connector->base.dpms = DRM_MODE_DPMS_ON;
13422                         connector->encoder->connectors_active = true;
13423                         connector->base.encoder = &connector->encoder->base;
13424                 } else {
13425                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13426                         connector->base.encoder = NULL;
13427                 }
13428                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13429                               connector->base.base.id,
13430                               connector->base.name,
13431                               connector->base.encoder ? "enabled" : "disabled");
13432         }
13433 }
13434
13435 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13436  * and i915 state tracking structures. */
13437 void intel_modeset_setup_hw_state(struct drm_device *dev,
13438                                   bool force_restore)
13439 {
13440         struct drm_i915_private *dev_priv = dev->dev_private;
13441         enum pipe pipe;
13442         struct intel_crtc *crtc;
13443         struct intel_encoder *encoder;
13444         int i;
13445
13446         intel_modeset_readout_hw_state(dev);
13447
13448         /*
13449          * Now that we have the config, copy it to each CRTC struct
13450          * Note that this could go away if we move to using crtc_config
13451          * checking everywhere.
13452          */
13453         for_each_intel_crtc(dev, crtc) {
13454                 if (crtc->active && i915.fastboot) {
13455                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13456                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13457                                       crtc->base.base.id);
13458                         drm_mode_debug_printmodeline(&crtc->base.mode);
13459                 }
13460         }
13461
13462         /* HW state is read out, now we need to sanitize this mess. */
13463         for_each_intel_encoder(dev, encoder) {
13464                 intel_sanitize_encoder(encoder);
13465         }
13466
13467         for_each_pipe(dev_priv, pipe) {
13468                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13469                 intel_sanitize_crtc(crtc);
13470                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13471         }
13472
13473         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13474                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13475
13476                 if (!pll->on || pll->active)
13477                         continue;
13478
13479                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13480
13481                 pll->disable(dev_priv, pll);
13482                 pll->on = false;
13483         }
13484
13485         if (IS_GEN9(dev))
13486                 skl_wm_get_hw_state(dev);
13487         else if (HAS_PCH_SPLIT(dev))
13488                 ilk_wm_get_hw_state(dev);
13489
13490         if (force_restore) {
13491                 i915_redisable_vga(dev);
13492
13493                 /*
13494                  * We need to use raw interfaces for restoring state to avoid
13495                  * checking (bogus) intermediate states.
13496                  */
13497                 for_each_pipe(dev_priv, pipe) {
13498                         struct drm_crtc *crtc =
13499                                 dev_priv->pipe_to_crtc_mapping[pipe];
13500
13501                         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13502                                        crtc->primary->fb);
13503                 }
13504         } else {
13505                 intel_modeset_update_staged_output_state(dev);
13506         }
13507
13508         intel_modeset_check_state(dev);
13509 }
13510
13511 void intel_modeset_gem_init(struct drm_device *dev)
13512 {
13513         struct drm_i915_private *dev_priv = dev->dev_private;
13514         struct drm_crtc *c;
13515         struct drm_i915_gem_object *obj;
13516
13517         mutex_lock(&dev->struct_mutex);
13518         intel_init_gt_powersave(dev);
13519         mutex_unlock(&dev->struct_mutex);
13520
13521         /*
13522          * There may be no VBT; and if the BIOS enabled SSC we can
13523          * just keep using it to avoid unnecessary flicker.  Whereas if the
13524          * BIOS isn't using it, don't assume it will work even if the VBT
13525          * indicates as much.
13526          */
13527         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13528                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13529                                                 DREF_SSC1_ENABLE);
13530
13531         intel_modeset_init_hw(dev);
13532
13533         intel_setup_overlay(dev);
13534
13535         /*
13536          * Make sure any fbs we allocated at startup are properly
13537          * pinned & fenced.  When we do the allocation it's too early
13538          * for this.
13539          */
13540         mutex_lock(&dev->struct_mutex);
13541         for_each_crtc(dev, c) {
13542                 obj = intel_fb_obj(c->primary->fb);
13543                 if (obj == NULL)
13544                         continue;
13545
13546                 if (intel_pin_and_fence_fb_obj(c->primary,
13547                                                c->primary->fb,
13548                                                NULL)) {
13549                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13550                                   to_intel_crtc(c)->pipe);
13551                         drm_framebuffer_unreference(c->primary->fb);
13552                         c->primary->fb = NULL;
13553                 }
13554         }
13555         mutex_unlock(&dev->struct_mutex);
13556
13557         intel_backlight_register(dev);
13558 }
13559
13560 void intel_connector_unregister(struct intel_connector *intel_connector)
13561 {
13562         struct drm_connector *connector = &intel_connector->base;
13563
13564         intel_panel_destroy_backlight(connector);
13565         drm_connector_unregister(connector);
13566 }
13567
13568 void intel_modeset_cleanup(struct drm_device *dev)
13569 {
13570         struct drm_i915_private *dev_priv = dev->dev_private;
13571         struct drm_connector *connector;
13572
13573         intel_disable_gt_powersave(dev);
13574
13575         intel_backlight_unregister(dev);
13576
13577         /*
13578          * Interrupts and polling as the first thing to avoid creating havoc.
13579          * Too much stuff here (turning of connectors, ...) would
13580          * experience fancy races otherwise.
13581          */
13582         intel_irq_uninstall(dev_priv);
13583
13584         /*
13585          * Due to the hpd irq storm handling the hotplug work can re-arm the
13586          * poll handlers. Hence disable polling after hpd handling is shut down.
13587          */
13588         drm_kms_helper_poll_fini(dev);
13589
13590         mutex_lock(&dev->struct_mutex);
13591
13592         intel_unregister_dsm_handler();
13593
13594         intel_disable_fbc(dev);
13595
13596         ironlake_teardown_rc6(dev);
13597
13598         mutex_unlock(&dev->struct_mutex);
13599
13600         /* flush any delayed tasks or pending work */
13601         flush_scheduled_work();
13602
13603         /* destroy the backlight and sysfs files before encoders/connectors */
13604         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13605                 struct intel_connector *intel_connector;
13606
13607                 intel_connector = to_intel_connector(connector);
13608                 intel_connector->unregister(intel_connector);
13609         }
13610
13611         drm_mode_config_cleanup(dev);
13612
13613         intel_cleanup_overlay(dev);
13614
13615         mutex_lock(&dev->struct_mutex);
13616         intel_cleanup_gt_powersave(dev);
13617         mutex_unlock(&dev->struct_mutex);
13618 }
13619
13620 /*
13621  * Return which encoder is currently attached for connector.
13622  */
13623 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13624 {
13625         return &intel_attached_encoder(connector)->base;
13626 }
13627
13628 void intel_connector_attach_encoder(struct intel_connector *connector,
13629                                     struct intel_encoder *encoder)
13630 {
13631         connector->encoder = encoder;
13632         drm_mode_connector_attach_encoder(&connector->base,
13633                                           &encoder->base);
13634 }
13635
13636 /*
13637  * set vga decode state - true == enable VGA decode
13638  */
13639 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13640 {
13641         struct drm_i915_private *dev_priv = dev->dev_private;
13642         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13643         u16 gmch_ctrl;
13644
13645         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13646                 DRM_ERROR("failed to read control word\n");
13647                 return -EIO;
13648         }
13649
13650         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13651                 return 0;
13652
13653         if (state)
13654                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13655         else
13656                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13657
13658         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13659                 DRM_ERROR("failed to write control word\n");
13660                 return -EIO;
13661         }
13662
13663         return 0;
13664 }
13665
13666 struct intel_display_error_state {
13667
13668         u32 power_well_driver;
13669
13670         int num_transcoders;
13671
13672         struct intel_cursor_error_state {
13673                 u32 control;
13674                 u32 position;
13675                 u32 base;
13676                 u32 size;
13677         } cursor[I915_MAX_PIPES];
13678
13679         struct intel_pipe_error_state {
13680                 bool power_domain_on;
13681                 u32 source;
13682                 u32 stat;
13683         } pipe[I915_MAX_PIPES];
13684
13685         struct intel_plane_error_state {
13686                 u32 control;
13687                 u32 stride;
13688                 u32 size;
13689                 u32 pos;
13690                 u32 addr;
13691                 u32 surface;
13692                 u32 tile_offset;
13693         } plane[I915_MAX_PIPES];
13694
13695         struct intel_transcoder_error_state {
13696                 bool power_domain_on;
13697                 enum transcoder cpu_transcoder;
13698
13699                 u32 conf;
13700
13701                 u32 htotal;
13702                 u32 hblank;
13703                 u32 hsync;
13704                 u32 vtotal;
13705                 u32 vblank;
13706                 u32 vsync;
13707         } transcoder[4];
13708 };
13709
13710 struct intel_display_error_state *
13711 intel_display_capture_error_state(struct drm_device *dev)
13712 {
13713         struct drm_i915_private *dev_priv = dev->dev_private;
13714         struct intel_display_error_state *error;
13715         int transcoders[] = {
13716                 TRANSCODER_A,
13717                 TRANSCODER_B,
13718                 TRANSCODER_C,
13719                 TRANSCODER_EDP,
13720         };
13721         int i;
13722
13723         if (INTEL_INFO(dev)->num_pipes == 0)
13724                 return NULL;
13725
13726         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13727         if (error == NULL)
13728                 return NULL;
13729
13730         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13731                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13732
13733         for_each_pipe(dev_priv, i) {
13734                 error->pipe[i].power_domain_on =
13735                         __intel_display_power_is_enabled(dev_priv,
13736                                                          POWER_DOMAIN_PIPE(i));
13737                 if (!error->pipe[i].power_domain_on)
13738                         continue;
13739
13740                 error->cursor[i].control = I915_READ(CURCNTR(i));
13741                 error->cursor[i].position = I915_READ(CURPOS(i));
13742                 error->cursor[i].base = I915_READ(CURBASE(i));
13743
13744                 error->plane[i].control = I915_READ(DSPCNTR(i));
13745                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13746                 if (INTEL_INFO(dev)->gen <= 3) {
13747                         error->plane[i].size = I915_READ(DSPSIZE(i));
13748                         error->plane[i].pos = I915_READ(DSPPOS(i));
13749                 }
13750                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13751                         error->plane[i].addr = I915_READ(DSPADDR(i));
13752                 if (INTEL_INFO(dev)->gen >= 4) {
13753                         error->plane[i].surface = I915_READ(DSPSURF(i));
13754                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13755                 }
13756
13757                 error->pipe[i].source = I915_READ(PIPESRC(i));
13758
13759                 if (HAS_GMCH_DISPLAY(dev))
13760                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13761         }
13762
13763         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13764         if (HAS_DDI(dev_priv->dev))
13765                 error->num_transcoders++; /* Account for eDP. */
13766
13767         for (i = 0; i < error->num_transcoders; i++) {
13768                 enum transcoder cpu_transcoder = transcoders[i];
13769
13770                 error->transcoder[i].power_domain_on =
13771                         __intel_display_power_is_enabled(dev_priv,
13772                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13773                 if (!error->transcoder[i].power_domain_on)
13774                         continue;
13775
13776                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13777
13778                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13779                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13780                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13781                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13782                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13783                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13784                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13785         }
13786
13787         return error;
13788 }
13789
13790 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13791
13792 void
13793 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13794                                 struct drm_device *dev,
13795                                 struct intel_display_error_state *error)
13796 {
13797         struct drm_i915_private *dev_priv = dev->dev_private;
13798         int i;
13799
13800         if (!error)
13801                 return;
13802
13803         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13804         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13805                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13806                            error->power_well_driver);
13807         for_each_pipe(dev_priv, i) {
13808                 err_printf(m, "Pipe [%d]:\n", i);
13809                 err_printf(m, "  Power: %s\n",
13810                            error->pipe[i].power_domain_on ? "on" : "off");
13811                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13812                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13813
13814                 err_printf(m, "Plane [%d]:\n", i);
13815                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13816                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13817                 if (INTEL_INFO(dev)->gen <= 3) {
13818                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13819                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13820                 }
13821                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13822                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13823                 if (INTEL_INFO(dev)->gen >= 4) {
13824                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13825                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13826                 }
13827
13828                 err_printf(m, "Cursor [%d]:\n", i);
13829                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13830                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13831                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13832         }
13833
13834         for (i = 0; i < error->num_transcoders; i++) {
13835                 err_printf(m, "CPU transcoder: %c\n",
13836                            transcoder_name(error->transcoder[i].cpu_transcoder));
13837                 err_printf(m, "  Power: %s\n",
13838                            error->transcoder[i].power_domain_on ? "on" : "off");
13839                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13840                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13841                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13842                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13843                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13844                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13845                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13846         }
13847 }
13848
13849 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13850 {
13851         struct intel_crtc *crtc;
13852
13853         for_each_intel_crtc(dev, crtc) {
13854                 struct intel_unpin_work *work;
13855
13856                 spin_lock_irq(&dev->event_lock);
13857
13858                 work = crtc->unpin_work;
13859
13860                 if (work && work->event &&
13861                     work->event->base.file_priv == file) {
13862                         kfree(work->event);
13863                         work->event = NULL;
13864                 }
13865
13866                 spin_unlock_irq(&dev->event_lock);
13867         }
13868 }