aaf756047a201d3553de584827a38687c1068be4
[pandora-kernel.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (i915_gem_obj_is_pinned(obj))
100                 return "p";
101         else
102                 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107         switch (obj->tiling_mode) {
108         default:
109         case I915_TILING_NONE: return " ";
110         case I915_TILING_X: return "X";
111         case I915_TILING_Y: return "Y";
112         }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123         struct i915_vma *vma;
124         int pin_count = 0;
125
126         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %x %x %x%s%s%s",
127                    &obj->base,
128                    get_pin_flag(obj),
129                    get_tiling_flag(obj),
130                    get_global_flag(obj),
131                    obj->base.size / 1024,
132                    obj->base.read_domains,
133                    obj->base.write_domain,
134                    i915_gem_request_get_seqno(obj->last_read_req),
135                    i915_gem_request_get_seqno(obj->last_write_req),
136                    i915_gem_request_get_seqno(obj->last_fenced_req),
137                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
138                    obj->dirty ? " dirty" : "",
139                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140         if (obj->base.name)
141                 seq_printf(m, " (name: %d)", obj->base.name);
142         list_for_each_entry(vma, &obj->vma_list, vma_link) {
143                 if (vma->pin_count > 0)
144                         pin_count++;
145         }
146         seq_printf(m, " (pinned x %d)", pin_count);
147         if (obj->pin_display)
148                 seq_printf(m, " (display)");
149         if (obj->fence_reg != I915_FENCE_REG_NONE)
150                 seq_printf(m, " (fence: %d)", obj->fence_reg);
151         list_for_each_entry(vma, &obj->vma_list, vma_link) {
152                 if (!i915_is_ggtt(vma->vm))
153                         seq_puts(m, " (pp");
154                 else
155                         seq_puts(m, " (g");
156                 seq_printf(m, "gtt offset: %08llx, size: %08llx, type: %u)",
157                            vma->node.start, vma->node.size,
158                            vma->ggtt_view.type);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->last_read_req != NULL)
172                 seq_printf(m, " (%s)",
173                            i915_gem_request_get_ring(obj->last_read_req)->name);
174         if (obj->frontbuffer_bits)
175                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
176 }
177
178 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
179 {
180         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
181         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
182         seq_putc(m, ' ');
183 }
184
185 static int i915_gem_object_list_info(struct seq_file *m, void *data)
186 {
187         struct drm_info_node *node = m->private;
188         uintptr_t list = (uintptr_t) node->info_ent->data;
189         struct list_head *head;
190         struct drm_device *dev = node->minor->dev;
191         struct drm_i915_private *dev_priv = dev->dev_private;
192         struct i915_address_space *vm = &dev_priv->gtt.base;
193         struct i915_vma *vma;
194         size_t total_obj_size, total_gtt_size;
195         int count, ret;
196
197         ret = mutex_lock_interruptible(&dev->struct_mutex);
198         if (ret)
199                 return ret;
200
201         /* FIXME: the user of this interface might want more than just GGTT */
202         switch (list) {
203         case ACTIVE_LIST:
204                 seq_puts(m, "Active:\n");
205                 head = &vm->active_list;
206                 break;
207         case INACTIVE_LIST:
208                 seq_puts(m, "Inactive:\n");
209                 head = &vm->inactive_list;
210                 break;
211         default:
212                 mutex_unlock(&dev->struct_mutex);
213                 return -EINVAL;
214         }
215
216         total_obj_size = total_gtt_size = count = 0;
217         list_for_each_entry(vma, head, mm_list) {
218                 seq_printf(m, "   ");
219                 describe_obj(m, vma->obj);
220                 seq_printf(m, "\n");
221                 total_obj_size += vma->obj->base.size;
222                 total_gtt_size += vma->node.size;
223                 count++;
224         }
225         mutex_unlock(&dev->struct_mutex);
226
227         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
228                    count, total_obj_size, total_gtt_size);
229         return 0;
230 }
231
232 static int obj_rank_by_stolen(void *priv,
233                               struct list_head *A, struct list_head *B)
234 {
235         struct drm_i915_gem_object *a =
236                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
237         struct drm_i915_gem_object *b =
238                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
239
240         return a->stolen->start - b->stolen->start;
241 }
242
243 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
244 {
245         struct drm_info_node *node = m->private;
246         struct drm_device *dev = node->minor->dev;
247         struct drm_i915_private *dev_priv = dev->dev_private;
248         struct drm_i915_gem_object *obj;
249         size_t total_obj_size, total_gtt_size;
250         LIST_HEAD(stolen);
251         int count, ret;
252
253         ret = mutex_lock_interruptible(&dev->struct_mutex);
254         if (ret)
255                 return ret;
256
257         total_obj_size = total_gtt_size = count = 0;
258         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
259                 if (obj->stolen == NULL)
260                         continue;
261
262                 list_add(&obj->obj_exec_link, &stolen);
263
264                 total_obj_size += obj->base.size;
265                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
266                 count++;
267         }
268         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
269                 if (obj->stolen == NULL)
270                         continue;
271
272                 list_add(&obj->obj_exec_link, &stolen);
273
274                 total_obj_size += obj->base.size;
275                 count++;
276         }
277         list_sort(NULL, &stolen, obj_rank_by_stolen);
278         seq_puts(m, "Stolen:\n");
279         while (!list_empty(&stolen)) {
280                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
281                 seq_puts(m, "   ");
282                 describe_obj(m, obj);
283                 seq_putc(m, '\n');
284                 list_del_init(&obj->obj_exec_link);
285         }
286         mutex_unlock(&dev->struct_mutex);
287
288         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
289                    count, total_obj_size, total_gtt_size);
290         return 0;
291 }
292
293 #define count_objects(list, member) do { \
294         list_for_each_entry(obj, list, member) { \
295                 size += i915_gem_obj_ggtt_size(obj); \
296                 ++count; \
297                 if (obj->map_and_fenceable) { \
298                         mappable_size += i915_gem_obj_ggtt_size(obj); \
299                         ++mappable_count; \
300                 } \
301         } \
302 } while (0)
303
304 struct file_stats {
305         struct drm_i915_file_private *file_priv;
306         int count;
307         size_t total, unbound;
308         size_t global, shared;
309         size_t active, inactive;
310 };
311
312 static int per_file_stats(int id, void *ptr, void *data)
313 {
314         struct drm_i915_gem_object *obj = ptr;
315         struct file_stats *stats = data;
316         struct i915_vma *vma;
317
318         stats->count++;
319         stats->total += obj->base.size;
320
321         if (obj->base.name || obj->base.dma_buf)
322                 stats->shared += obj->base.size;
323
324         if (USES_FULL_PPGTT(obj->base.dev)) {
325                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
326                         struct i915_hw_ppgtt *ppgtt;
327
328                         if (!drm_mm_node_allocated(&vma->node))
329                                 continue;
330
331                         if (i915_is_ggtt(vma->vm)) {
332                                 stats->global += obj->base.size;
333                                 continue;
334                         }
335
336                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
337                         if (ppgtt->file_priv != stats->file_priv)
338                                 continue;
339
340                         if (obj->active) /* XXX per-vma statistic */
341                                 stats->active += obj->base.size;
342                         else
343                                 stats->inactive += obj->base.size;
344
345                         return 0;
346                 }
347         } else {
348                 if (i915_gem_obj_ggtt_bound(obj)) {
349                         stats->global += obj->base.size;
350                         if (obj->active)
351                                 stats->active += obj->base.size;
352                         else
353                                 stats->inactive += obj->base.size;
354                         return 0;
355                 }
356         }
357
358         if (!list_empty(&obj->global_list))
359                 stats->unbound += obj->base.size;
360
361         return 0;
362 }
363
364 #define print_file_stats(m, name, stats) \
365         seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
366                    name, \
367                    stats.count, \
368                    stats.total, \
369                    stats.active, \
370                    stats.inactive, \
371                    stats.global, \
372                    stats.shared, \
373                    stats.unbound)
374
375 static void print_batch_pool_stats(struct seq_file *m,
376                                    struct drm_i915_private *dev_priv)
377 {
378         struct drm_i915_gem_object *obj;
379         struct file_stats stats;
380
381         memset(&stats, 0, sizeof(stats));
382
383         list_for_each_entry(obj,
384                             &dev_priv->mm.batch_pool.cache_list,
385                             batch_pool_list)
386                 per_file_stats(0, obj, &stats);
387
388         print_file_stats(m, "batch pool", stats);
389 }
390
391 #define count_vmas(list, member) do { \
392         list_for_each_entry(vma, list, member) { \
393                 size += i915_gem_obj_ggtt_size(vma->obj); \
394                 ++count; \
395                 if (vma->obj->map_and_fenceable) { \
396                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
397                         ++mappable_count; \
398                 } \
399         } \
400 } while (0)
401
402 static int i915_gem_object_info(struct seq_file *m, void* data)
403 {
404         struct drm_info_node *node = m->private;
405         struct drm_device *dev = node->minor->dev;
406         struct drm_i915_private *dev_priv = dev->dev_private;
407         u32 count, mappable_count, purgeable_count;
408         size_t size, mappable_size, purgeable_size;
409         struct drm_i915_gem_object *obj;
410         struct i915_address_space *vm = &dev_priv->gtt.base;
411         struct drm_file *file;
412         struct i915_vma *vma;
413         int ret;
414
415         ret = mutex_lock_interruptible(&dev->struct_mutex);
416         if (ret)
417                 return ret;
418
419         seq_printf(m, "%u objects, %zu bytes\n",
420                    dev_priv->mm.object_count,
421                    dev_priv->mm.object_memory);
422
423         size = count = mappable_size = mappable_count = 0;
424         count_objects(&dev_priv->mm.bound_list, global_list);
425         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
426                    count, mappable_count, size, mappable_size);
427
428         size = count = mappable_size = mappable_count = 0;
429         count_vmas(&vm->active_list, mm_list);
430         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
431                    count, mappable_count, size, mappable_size);
432
433         size = count = mappable_size = mappable_count = 0;
434         count_vmas(&vm->inactive_list, mm_list);
435         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
436                    count, mappable_count, size, mappable_size);
437
438         size = count = purgeable_size = purgeable_count = 0;
439         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
440                 size += obj->base.size, ++count;
441                 if (obj->madv == I915_MADV_DONTNEED)
442                         purgeable_size += obj->base.size, ++purgeable_count;
443         }
444         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
445
446         size = count = mappable_size = mappable_count = 0;
447         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
448                 if (obj->fault_mappable) {
449                         size += i915_gem_obj_ggtt_size(obj);
450                         ++count;
451                 }
452                 if (obj->pin_mappable) {
453                         mappable_size += i915_gem_obj_ggtt_size(obj);
454                         ++mappable_count;
455                 }
456                 if (obj->madv == I915_MADV_DONTNEED) {
457                         purgeable_size += obj->base.size;
458                         ++purgeable_count;
459                 }
460         }
461         seq_printf(m, "%u purgeable objects, %zu bytes\n",
462                    purgeable_count, purgeable_size);
463         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
464                    mappable_count, mappable_size);
465         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
466                    count, size);
467
468         seq_printf(m, "%zu [%lu] gtt total\n",
469                    dev_priv->gtt.base.total,
470                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
471
472         seq_putc(m, '\n');
473         print_batch_pool_stats(m, dev_priv);
474
475         seq_putc(m, '\n');
476         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
477                 struct file_stats stats;
478                 struct task_struct *task;
479
480                 memset(&stats, 0, sizeof(stats));
481                 stats.file_priv = file->driver_priv;
482                 spin_lock(&file->table_lock);
483                 idr_for_each(&file->object_idr, per_file_stats, &stats);
484                 spin_unlock(&file->table_lock);
485                 /*
486                  * Although we have a valid reference on file->pid, that does
487                  * not guarantee that the task_struct who called get_pid() is
488                  * still alive (e.g. get_pid(current) => fork() => exit()).
489                  * Therefore, we need to protect this ->comm access using RCU.
490                  */
491                 rcu_read_lock();
492                 task = pid_task(file->pid, PIDTYPE_PID);
493                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
494                 rcu_read_unlock();
495         }
496
497         mutex_unlock(&dev->struct_mutex);
498
499         return 0;
500 }
501
502 static int i915_gem_gtt_info(struct seq_file *m, void *data)
503 {
504         struct drm_info_node *node = m->private;
505         struct drm_device *dev = node->minor->dev;
506         uintptr_t list = (uintptr_t) node->info_ent->data;
507         struct drm_i915_private *dev_priv = dev->dev_private;
508         struct drm_i915_gem_object *obj;
509         size_t total_obj_size, total_gtt_size;
510         int count, ret;
511
512         ret = mutex_lock_interruptible(&dev->struct_mutex);
513         if (ret)
514                 return ret;
515
516         total_obj_size = total_gtt_size = count = 0;
517         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
518                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
519                         continue;
520
521                 seq_puts(m, "   ");
522                 describe_obj(m, obj);
523                 seq_putc(m, '\n');
524                 total_obj_size += obj->base.size;
525                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
526                 count++;
527         }
528
529         mutex_unlock(&dev->struct_mutex);
530
531         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
532                    count, total_obj_size, total_gtt_size);
533
534         return 0;
535 }
536
537 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
538 {
539         struct drm_info_node *node = m->private;
540         struct drm_device *dev = node->minor->dev;
541         struct drm_i915_private *dev_priv = dev->dev_private;
542         struct intel_crtc *crtc;
543         int ret;
544
545         ret = mutex_lock_interruptible(&dev->struct_mutex);
546         if (ret)
547                 return ret;
548
549         for_each_intel_crtc(dev, crtc) {
550                 const char pipe = pipe_name(crtc->pipe);
551                 const char plane = plane_name(crtc->plane);
552                 struct intel_unpin_work *work;
553
554                 spin_lock_irq(&dev->event_lock);
555                 work = crtc->unpin_work;
556                 if (work == NULL) {
557                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
558                                    pipe, plane);
559                 } else {
560                         u32 addr;
561
562                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
563                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
564                                            pipe, plane);
565                         } else {
566                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
567                                            pipe, plane);
568                         }
569                         if (work->flip_queued_req) {
570                                 struct intel_engine_cs *ring =
571                                         i915_gem_request_get_ring(work->flip_queued_req);
572
573                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
574                                            ring->name,
575                                            i915_gem_request_get_seqno(work->flip_queued_req),
576                                            dev_priv->next_seqno,
577                                            ring->get_seqno(ring, true),
578                                            i915_gem_request_completed(work->flip_queued_req, true));
579                         } else
580                                 seq_printf(m, "Flip not associated with any ring\n");
581                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
582                                    work->flip_queued_vblank,
583                                    work->flip_ready_vblank,
584                                    drm_crtc_vblank_count(&crtc->base));
585                         if (work->enable_stall_check)
586                                 seq_puts(m, "Stall check enabled, ");
587                         else
588                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
589                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
590
591                         if (INTEL_INFO(dev)->gen >= 4)
592                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
593                         else
594                                 addr = I915_READ(DSPADDR(crtc->plane));
595                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
596
597                         if (work->pending_flip_obj) {
598                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
599                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
600                         }
601                 }
602                 spin_unlock_irq(&dev->event_lock);
603         }
604
605         mutex_unlock(&dev->struct_mutex);
606
607         return 0;
608 }
609
610 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
611 {
612         struct drm_info_node *node = m->private;
613         struct drm_device *dev = node->minor->dev;
614         struct drm_i915_private *dev_priv = dev->dev_private;
615         struct drm_i915_gem_object *obj;
616         int count = 0;
617         int ret;
618
619         ret = mutex_lock_interruptible(&dev->struct_mutex);
620         if (ret)
621                 return ret;
622
623         seq_puts(m, "cache:\n");
624         list_for_each_entry(obj,
625                             &dev_priv->mm.batch_pool.cache_list,
626                             batch_pool_list) {
627                 seq_puts(m, "   ");
628                 describe_obj(m, obj);
629                 seq_putc(m, '\n');
630                 count++;
631         }
632
633         seq_printf(m, "total: %d\n", count);
634
635         mutex_unlock(&dev->struct_mutex);
636
637         return 0;
638 }
639
640 static int i915_gem_request_info(struct seq_file *m, void *data)
641 {
642         struct drm_info_node *node = m->private;
643         struct drm_device *dev = node->minor->dev;
644         struct drm_i915_private *dev_priv = dev->dev_private;
645         struct intel_engine_cs *ring;
646         struct drm_i915_gem_request *gem_request;
647         int ret, count, i;
648
649         ret = mutex_lock_interruptible(&dev->struct_mutex);
650         if (ret)
651                 return ret;
652
653         count = 0;
654         for_each_ring(ring, dev_priv, i) {
655                 if (list_empty(&ring->request_list))
656                         continue;
657
658                 seq_printf(m, "%s requests:\n", ring->name);
659                 list_for_each_entry(gem_request,
660                                     &ring->request_list,
661                                     list) {
662                         seq_printf(m, "    %x @ %d\n",
663                                    gem_request->seqno,
664                                    (int) (jiffies - gem_request->emitted_jiffies));
665                 }
666                 count++;
667         }
668         mutex_unlock(&dev->struct_mutex);
669
670         if (count == 0)
671                 seq_puts(m, "No requests\n");
672
673         return 0;
674 }
675
676 static void i915_ring_seqno_info(struct seq_file *m,
677                                  struct intel_engine_cs *ring)
678 {
679         if (ring->get_seqno) {
680                 seq_printf(m, "Current sequence (%s): %x\n",
681                            ring->name, ring->get_seqno(ring, false));
682         }
683 }
684
685 static int i915_gem_seqno_info(struct seq_file *m, void *data)
686 {
687         struct drm_info_node *node = m->private;
688         struct drm_device *dev = node->minor->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         struct intel_engine_cs *ring;
691         int ret, i;
692
693         ret = mutex_lock_interruptible(&dev->struct_mutex);
694         if (ret)
695                 return ret;
696         intel_runtime_pm_get(dev_priv);
697
698         for_each_ring(ring, dev_priv, i)
699                 i915_ring_seqno_info(m, ring);
700
701         intel_runtime_pm_put(dev_priv);
702         mutex_unlock(&dev->struct_mutex);
703
704         return 0;
705 }
706
707
708 static int i915_interrupt_info(struct seq_file *m, void *data)
709 {
710         struct drm_info_node *node = m->private;
711         struct drm_device *dev = node->minor->dev;
712         struct drm_i915_private *dev_priv = dev->dev_private;
713         struct intel_engine_cs *ring;
714         int ret, i, pipe;
715
716         ret = mutex_lock_interruptible(&dev->struct_mutex);
717         if (ret)
718                 return ret;
719         intel_runtime_pm_get(dev_priv);
720
721         if (IS_CHERRYVIEW(dev)) {
722                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
723                            I915_READ(GEN8_MASTER_IRQ));
724
725                 seq_printf(m, "Display IER:\t%08x\n",
726                            I915_READ(VLV_IER));
727                 seq_printf(m, "Display IIR:\t%08x\n",
728                            I915_READ(VLV_IIR));
729                 seq_printf(m, "Display IIR_RW:\t%08x\n",
730                            I915_READ(VLV_IIR_RW));
731                 seq_printf(m, "Display IMR:\t%08x\n",
732                            I915_READ(VLV_IMR));
733                 for_each_pipe(dev_priv, pipe)
734                         seq_printf(m, "Pipe %c stat:\t%08x\n",
735                                    pipe_name(pipe),
736                                    I915_READ(PIPESTAT(pipe)));
737
738                 seq_printf(m, "Port hotplug:\t%08x\n",
739                            I915_READ(PORT_HOTPLUG_EN));
740                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
741                            I915_READ(VLV_DPFLIPSTAT));
742                 seq_printf(m, "DPINVGTT:\t%08x\n",
743                            I915_READ(DPINVGTT));
744
745                 for (i = 0; i < 4; i++) {
746                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
747                                    i, I915_READ(GEN8_GT_IMR(i)));
748                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
749                                    i, I915_READ(GEN8_GT_IIR(i)));
750                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
751                                    i, I915_READ(GEN8_GT_IER(i)));
752                 }
753
754                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
755                            I915_READ(GEN8_PCU_IMR));
756                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
757                            I915_READ(GEN8_PCU_IIR));
758                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
759                            I915_READ(GEN8_PCU_IER));
760         } else if (INTEL_INFO(dev)->gen >= 8) {
761                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
762                            I915_READ(GEN8_MASTER_IRQ));
763
764                 for (i = 0; i < 4; i++) {
765                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
766                                    i, I915_READ(GEN8_GT_IMR(i)));
767                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
768                                    i, I915_READ(GEN8_GT_IIR(i)));
769                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
770                                    i, I915_READ(GEN8_GT_IER(i)));
771                 }
772
773                 for_each_pipe(dev_priv, pipe) {
774                         if (!intel_display_power_is_enabled(dev_priv,
775                                                 POWER_DOMAIN_PIPE(pipe))) {
776                                 seq_printf(m, "Pipe %c power disabled\n",
777                                            pipe_name(pipe));
778                                 continue;
779                         }
780                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
781                                    pipe_name(pipe),
782                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
783                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
784                                    pipe_name(pipe),
785                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
786                         seq_printf(m, "Pipe %c IER:\t%08x\n",
787                                    pipe_name(pipe),
788                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
789                 }
790
791                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
792                            I915_READ(GEN8_DE_PORT_IMR));
793                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
794                            I915_READ(GEN8_DE_PORT_IIR));
795                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
796                            I915_READ(GEN8_DE_PORT_IER));
797
798                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
799                            I915_READ(GEN8_DE_MISC_IMR));
800                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
801                            I915_READ(GEN8_DE_MISC_IIR));
802                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
803                            I915_READ(GEN8_DE_MISC_IER));
804
805                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
806                            I915_READ(GEN8_PCU_IMR));
807                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
808                            I915_READ(GEN8_PCU_IIR));
809                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
810                            I915_READ(GEN8_PCU_IER));
811         } else if (IS_VALLEYVIEW(dev)) {
812                 seq_printf(m, "Display IER:\t%08x\n",
813                            I915_READ(VLV_IER));
814                 seq_printf(m, "Display IIR:\t%08x\n",
815                            I915_READ(VLV_IIR));
816                 seq_printf(m, "Display IIR_RW:\t%08x\n",
817                            I915_READ(VLV_IIR_RW));
818                 seq_printf(m, "Display IMR:\t%08x\n",
819                            I915_READ(VLV_IMR));
820                 for_each_pipe(dev_priv, pipe)
821                         seq_printf(m, "Pipe %c stat:\t%08x\n",
822                                    pipe_name(pipe),
823                                    I915_READ(PIPESTAT(pipe)));
824
825                 seq_printf(m, "Master IER:\t%08x\n",
826                            I915_READ(VLV_MASTER_IER));
827
828                 seq_printf(m, "Render IER:\t%08x\n",
829                            I915_READ(GTIER));
830                 seq_printf(m, "Render IIR:\t%08x\n",
831                            I915_READ(GTIIR));
832                 seq_printf(m, "Render IMR:\t%08x\n",
833                            I915_READ(GTIMR));
834
835                 seq_printf(m, "PM IER:\t\t%08x\n",
836                            I915_READ(GEN6_PMIER));
837                 seq_printf(m, "PM IIR:\t\t%08x\n",
838                            I915_READ(GEN6_PMIIR));
839                 seq_printf(m, "PM IMR:\t\t%08x\n",
840                            I915_READ(GEN6_PMIMR));
841
842                 seq_printf(m, "Port hotplug:\t%08x\n",
843                            I915_READ(PORT_HOTPLUG_EN));
844                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
845                            I915_READ(VLV_DPFLIPSTAT));
846                 seq_printf(m, "DPINVGTT:\t%08x\n",
847                            I915_READ(DPINVGTT));
848
849         } else if (!HAS_PCH_SPLIT(dev)) {
850                 seq_printf(m, "Interrupt enable:    %08x\n",
851                            I915_READ(IER));
852                 seq_printf(m, "Interrupt identity:  %08x\n",
853                            I915_READ(IIR));
854                 seq_printf(m, "Interrupt mask:      %08x\n",
855                            I915_READ(IMR));
856                 for_each_pipe(dev_priv, pipe)
857                         seq_printf(m, "Pipe %c stat:         %08x\n",
858                                    pipe_name(pipe),
859                                    I915_READ(PIPESTAT(pipe)));
860         } else {
861                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
862                            I915_READ(DEIER));
863                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
864                            I915_READ(DEIIR));
865                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
866                            I915_READ(DEIMR));
867                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
868                            I915_READ(SDEIER));
869                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
870                            I915_READ(SDEIIR));
871                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
872                            I915_READ(SDEIMR));
873                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
874                            I915_READ(GTIER));
875                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
876                            I915_READ(GTIIR));
877                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
878                            I915_READ(GTIMR));
879         }
880         for_each_ring(ring, dev_priv, i) {
881                 if (INTEL_INFO(dev)->gen >= 6) {
882                         seq_printf(m,
883                                    "Graphics Interrupt mask (%s):       %08x\n",
884                                    ring->name, I915_READ_IMR(ring));
885                 }
886                 i915_ring_seqno_info(m, ring);
887         }
888         intel_runtime_pm_put(dev_priv);
889         mutex_unlock(&dev->struct_mutex);
890
891         return 0;
892 }
893
894 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
895 {
896         struct drm_info_node *node = m->private;
897         struct drm_device *dev = node->minor->dev;
898         struct drm_i915_private *dev_priv = dev->dev_private;
899         int i, ret;
900
901         ret = mutex_lock_interruptible(&dev->struct_mutex);
902         if (ret)
903                 return ret;
904
905         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
906         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
907         for (i = 0; i < dev_priv->num_fence_regs; i++) {
908                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
909
910                 seq_printf(m, "Fence %d, pin count = %d, object = ",
911                            i, dev_priv->fence_regs[i].pin_count);
912                 if (obj == NULL)
913                         seq_puts(m, "unused");
914                 else
915                         describe_obj(m, obj);
916                 seq_putc(m, '\n');
917         }
918
919         mutex_unlock(&dev->struct_mutex);
920         return 0;
921 }
922
923 static int i915_hws_info(struct seq_file *m, void *data)
924 {
925         struct drm_info_node *node = m->private;
926         struct drm_device *dev = node->minor->dev;
927         struct drm_i915_private *dev_priv = dev->dev_private;
928         struct intel_engine_cs *ring;
929         const u32 *hws;
930         int i;
931
932         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
933         hws = ring->status_page.page_addr;
934         if (hws == NULL)
935                 return 0;
936
937         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
938                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
939                            i * 4,
940                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
941         }
942         return 0;
943 }
944
945 static ssize_t
946 i915_error_state_write(struct file *filp,
947                        const char __user *ubuf,
948                        size_t cnt,
949                        loff_t *ppos)
950 {
951         struct i915_error_state_file_priv *error_priv = filp->private_data;
952         struct drm_device *dev = error_priv->dev;
953         int ret;
954
955         DRM_DEBUG_DRIVER("Resetting error state\n");
956
957         ret = mutex_lock_interruptible(&dev->struct_mutex);
958         if (ret)
959                 return ret;
960
961         i915_destroy_error_state(dev);
962         mutex_unlock(&dev->struct_mutex);
963
964         return cnt;
965 }
966
967 static int i915_error_state_open(struct inode *inode, struct file *file)
968 {
969         struct drm_device *dev = inode->i_private;
970         struct i915_error_state_file_priv *error_priv;
971
972         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
973         if (!error_priv)
974                 return -ENOMEM;
975
976         error_priv->dev = dev;
977
978         i915_error_state_get(dev, error_priv);
979
980         file->private_data = error_priv;
981
982         return 0;
983 }
984
985 static int i915_error_state_release(struct inode *inode, struct file *file)
986 {
987         struct i915_error_state_file_priv *error_priv = file->private_data;
988
989         i915_error_state_put(error_priv);
990         kfree(error_priv);
991
992         return 0;
993 }
994
995 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
996                                      size_t count, loff_t *pos)
997 {
998         struct i915_error_state_file_priv *error_priv = file->private_data;
999         struct drm_i915_error_state_buf error_str;
1000         loff_t tmp_pos = 0;
1001         ssize_t ret_count = 0;
1002         int ret;
1003
1004         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1005         if (ret)
1006                 return ret;
1007
1008         ret = i915_error_state_to_str(&error_str, error_priv);
1009         if (ret)
1010                 goto out;
1011
1012         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1013                                             error_str.buf,
1014                                             error_str.bytes);
1015
1016         if (ret_count < 0)
1017                 ret = ret_count;
1018         else
1019                 *pos = error_str.start + ret_count;
1020 out:
1021         i915_error_state_buf_release(&error_str);
1022         return ret ?: ret_count;
1023 }
1024
1025 static const struct file_operations i915_error_state_fops = {
1026         .owner = THIS_MODULE,
1027         .open = i915_error_state_open,
1028         .read = i915_error_state_read,
1029         .write = i915_error_state_write,
1030         .llseek = default_llseek,
1031         .release = i915_error_state_release,
1032 };
1033
1034 static int
1035 i915_next_seqno_get(void *data, u64 *val)
1036 {
1037         struct drm_device *dev = data;
1038         struct drm_i915_private *dev_priv = dev->dev_private;
1039         int ret;
1040
1041         ret = mutex_lock_interruptible(&dev->struct_mutex);
1042         if (ret)
1043                 return ret;
1044
1045         *val = dev_priv->next_seqno;
1046         mutex_unlock(&dev->struct_mutex);
1047
1048         return 0;
1049 }
1050
1051 static int
1052 i915_next_seqno_set(void *data, u64 val)
1053 {
1054         struct drm_device *dev = data;
1055         int ret;
1056
1057         ret = mutex_lock_interruptible(&dev->struct_mutex);
1058         if (ret)
1059                 return ret;
1060
1061         ret = i915_gem_set_seqno(dev, val);
1062         mutex_unlock(&dev->struct_mutex);
1063
1064         return ret;
1065 }
1066
1067 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1068                         i915_next_seqno_get, i915_next_seqno_set,
1069                         "0x%llx\n");
1070
1071 static int i915_frequency_info(struct seq_file *m, void *unused)
1072 {
1073         struct drm_info_node *node = m->private;
1074         struct drm_device *dev = node->minor->dev;
1075         struct drm_i915_private *dev_priv = dev->dev_private;
1076         int ret = 0;
1077
1078         intel_runtime_pm_get(dev_priv);
1079
1080         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1081
1082         if (IS_GEN5(dev)) {
1083                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1084                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1085
1086                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1087                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1088                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1089                            MEMSTAT_VID_SHIFT);
1090                 seq_printf(m, "Current P-state: %d\n",
1091                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1092         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1093                    IS_BROADWELL(dev) || IS_GEN9(dev)) {
1094                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1095                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1096                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1097                 u32 rpmodectl, rpinclimit, rpdeclimit;
1098                 u32 rpstat, cagf, reqf;
1099                 u32 rpupei, rpcurup, rpprevup;
1100                 u32 rpdownei, rpcurdown, rpprevdown;
1101                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1102                 int max_freq;
1103
1104                 /* RPSTAT1 is in the GT power well */
1105                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1106                 if (ret)
1107                         goto out;
1108
1109                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1110
1111                 reqf = I915_READ(GEN6_RPNSWREQ);
1112                 if (IS_GEN9(dev))
1113                         reqf >>= 23;
1114                 else {
1115                         reqf &= ~GEN6_TURBO_DISABLE;
1116                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1117                                 reqf >>= 24;
1118                         else
1119                                 reqf >>= 25;
1120                 }
1121                 reqf = intel_gpu_freq(dev_priv, reqf);
1122
1123                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1124                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1125                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1126
1127                 rpstat = I915_READ(GEN6_RPSTAT1);
1128                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1129                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1130                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1131                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1132                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1133                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1134                 if (IS_GEN9(dev))
1135                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1136                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1137                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1138                 else
1139                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1140                 cagf = intel_gpu_freq(dev_priv, cagf);
1141
1142                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1143                 mutex_unlock(&dev->struct_mutex);
1144
1145                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1146                         pm_ier = I915_READ(GEN6_PMIER);
1147                         pm_imr = I915_READ(GEN6_PMIMR);
1148                         pm_isr = I915_READ(GEN6_PMISR);
1149                         pm_iir = I915_READ(GEN6_PMIIR);
1150                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1151                 } else {
1152                         pm_ier = I915_READ(GEN8_GT_IER(2));
1153                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1154                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1155                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1156                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1157                 }
1158                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1159                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1160                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1161                 seq_printf(m, "Render p-state ratio: %d\n",
1162                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1163                 seq_printf(m, "Render p-state VID: %d\n",
1164                            gt_perf_status & 0xff);
1165                 seq_printf(m, "Render p-state limit: %d\n",
1166                            rp_state_limits & 0xff);
1167                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1168                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1169                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1170                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1171                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1172                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1173                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1174                            GEN6_CURICONT_MASK);
1175                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1176                            GEN6_CURBSYTAVG_MASK);
1177                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1178                            GEN6_CURBSYTAVG_MASK);
1179                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1180                            GEN6_CURIAVG_MASK);
1181                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1182                            GEN6_CURBSYTAVG_MASK);
1183                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1184                            GEN6_CURBSYTAVG_MASK);
1185
1186                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1187                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1188                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1189                            intel_gpu_freq(dev_priv, max_freq));
1190
1191                 max_freq = (rp_state_cap & 0xff00) >> 8;
1192                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1193                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1194                            intel_gpu_freq(dev_priv, max_freq));
1195
1196                 max_freq = rp_state_cap & 0xff;
1197                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1198                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1199                            intel_gpu_freq(dev_priv, max_freq));
1200
1201                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1202                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1203         } else if (IS_VALLEYVIEW(dev)) {
1204                 u32 freq_sts;
1205
1206                 mutex_lock(&dev_priv->rps.hw_lock);
1207                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1208                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1209                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1210
1211                 seq_printf(m, "max GPU freq: %d MHz\n",
1212                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1213
1214                 seq_printf(m, "min GPU freq: %d MHz\n",
1215                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1216
1217                 seq_printf(m,
1218                            "efficient (RPe) frequency: %d MHz\n",
1219                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1220
1221                 seq_printf(m, "current GPU freq: %d MHz\n",
1222                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1223                 mutex_unlock(&dev_priv->rps.hw_lock);
1224         } else {
1225                 seq_puts(m, "no P-state info available\n");
1226         }
1227
1228 out:
1229         intel_runtime_pm_put(dev_priv);
1230         return ret;
1231 }
1232
1233 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1234 {
1235         struct drm_info_node *node = m->private;
1236         struct drm_device *dev = node->minor->dev;
1237         struct drm_i915_private *dev_priv = dev->dev_private;
1238         struct intel_engine_cs *ring;
1239         u64 acthd[I915_NUM_RINGS];
1240         u32 seqno[I915_NUM_RINGS];
1241         int i;
1242
1243         if (!i915.enable_hangcheck) {
1244                 seq_printf(m, "Hangcheck disabled\n");
1245                 return 0;
1246         }
1247
1248         intel_runtime_pm_get(dev_priv);
1249
1250         for_each_ring(ring, dev_priv, i) {
1251                 seqno[i] = ring->get_seqno(ring, false);
1252                 acthd[i] = intel_ring_get_active_head(ring);
1253         }
1254
1255         intel_runtime_pm_put(dev_priv);
1256
1257         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1258                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1259                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1260                                             jiffies));
1261         } else
1262                 seq_printf(m, "Hangcheck inactive\n");
1263
1264         for_each_ring(ring, dev_priv, i) {
1265                 seq_printf(m, "%s:\n", ring->name);
1266                 seq_printf(m, "\tseqno = %x [current %x]\n",
1267                            ring->hangcheck.seqno, seqno[i]);
1268                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1269                            (long long)ring->hangcheck.acthd,
1270                            (long long)acthd[i]);
1271                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1272                            (long long)ring->hangcheck.max_acthd);
1273                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1274                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1275         }
1276
1277         return 0;
1278 }
1279
1280 static int ironlake_drpc_info(struct seq_file *m)
1281 {
1282         struct drm_info_node *node = m->private;
1283         struct drm_device *dev = node->minor->dev;
1284         struct drm_i915_private *dev_priv = dev->dev_private;
1285         u32 rgvmodectl, rstdbyctl;
1286         u16 crstandvid;
1287         int ret;
1288
1289         ret = mutex_lock_interruptible(&dev->struct_mutex);
1290         if (ret)
1291                 return ret;
1292         intel_runtime_pm_get(dev_priv);
1293
1294         rgvmodectl = I915_READ(MEMMODECTL);
1295         rstdbyctl = I915_READ(RSTDBYCTL);
1296         crstandvid = I915_READ16(CRSTANDVID);
1297
1298         intel_runtime_pm_put(dev_priv);
1299         mutex_unlock(&dev->struct_mutex);
1300
1301         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1302                    "yes" : "no");
1303         seq_printf(m, "Boost freq: %d\n",
1304                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1305                    MEMMODE_BOOST_FREQ_SHIFT);
1306         seq_printf(m, "HW control enabled: %s\n",
1307                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1308         seq_printf(m, "SW control enabled: %s\n",
1309                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1310         seq_printf(m, "Gated voltage change: %s\n",
1311                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1312         seq_printf(m, "Starting frequency: P%d\n",
1313                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1314         seq_printf(m, "Max P-state: P%d\n",
1315                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1316         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1317         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1318         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1319         seq_printf(m, "Render standby enabled: %s\n",
1320                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1321         seq_puts(m, "Current RS state: ");
1322         switch (rstdbyctl & RSX_STATUS_MASK) {
1323         case RSX_STATUS_ON:
1324                 seq_puts(m, "on\n");
1325                 break;
1326         case RSX_STATUS_RC1:
1327                 seq_puts(m, "RC1\n");
1328                 break;
1329         case RSX_STATUS_RC1E:
1330                 seq_puts(m, "RC1E\n");
1331                 break;
1332         case RSX_STATUS_RS1:
1333                 seq_puts(m, "RS1\n");
1334                 break;
1335         case RSX_STATUS_RS2:
1336                 seq_puts(m, "RS2 (RC6)\n");
1337                 break;
1338         case RSX_STATUS_RS3:
1339                 seq_puts(m, "RC3 (RC6+)\n");
1340                 break;
1341         default:
1342                 seq_puts(m, "unknown\n");
1343                 break;
1344         }
1345
1346         return 0;
1347 }
1348
1349 static int i915_forcewake_domains(struct seq_file *m, void *data)
1350 {
1351         struct drm_info_node *node = m->private;
1352         struct drm_device *dev = node->minor->dev;
1353         struct drm_i915_private *dev_priv = dev->dev_private;
1354         struct intel_uncore_forcewake_domain *fw_domain;
1355         int i;
1356
1357         spin_lock_irq(&dev_priv->uncore.lock);
1358         for_each_fw_domain(fw_domain, dev_priv, i) {
1359                 seq_printf(m, "%s.wake_count = %u\n",
1360                            intel_uncore_forcewake_domain_to_str(i),
1361                            fw_domain->wake_count);
1362         }
1363         spin_unlock_irq(&dev_priv->uncore.lock);
1364
1365         return 0;
1366 }
1367
1368 static int vlv_drpc_info(struct seq_file *m)
1369 {
1370         struct drm_info_node *node = m->private;
1371         struct drm_device *dev = node->minor->dev;
1372         struct drm_i915_private *dev_priv = dev->dev_private;
1373         u32 rpmodectl1, rcctl1, pw_status;
1374
1375         intel_runtime_pm_get(dev_priv);
1376
1377         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1378         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1379         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1380
1381         intel_runtime_pm_put(dev_priv);
1382
1383         seq_printf(m, "Video Turbo Mode: %s\n",
1384                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1385         seq_printf(m, "Turbo enabled: %s\n",
1386                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1387         seq_printf(m, "HW control enabled: %s\n",
1388                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1389         seq_printf(m, "SW control enabled: %s\n",
1390                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1391                           GEN6_RP_MEDIA_SW_MODE));
1392         seq_printf(m, "RC6 Enabled: %s\n",
1393                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1394                                         GEN6_RC_CTL_EI_MODE(1))));
1395         seq_printf(m, "Render Power Well: %s\n",
1396                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1397         seq_printf(m, "Media Power Well: %s\n",
1398                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1399
1400         seq_printf(m, "Render RC6 residency since boot: %u\n",
1401                    I915_READ(VLV_GT_RENDER_RC6));
1402         seq_printf(m, "Media RC6 residency since boot: %u\n",
1403                    I915_READ(VLV_GT_MEDIA_RC6));
1404
1405         return i915_forcewake_domains(m, NULL);
1406 }
1407
1408 static int gen6_drpc_info(struct seq_file *m)
1409 {
1410         struct drm_info_node *node = m->private;
1411         struct drm_device *dev = node->minor->dev;
1412         struct drm_i915_private *dev_priv = dev->dev_private;
1413         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1414         unsigned forcewake_count;
1415         int count = 0, ret;
1416
1417         ret = mutex_lock_interruptible(&dev->struct_mutex);
1418         if (ret)
1419                 return ret;
1420         intel_runtime_pm_get(dev_priv);
1421
1422         spin_lock_irq(&dev_priv->uncore.lock);
1423         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1424         spin_unlock_irq(&dev_priv->uncore.lock);
1425
1426         if (forcewake_count) {
1427                 seq_puts(m, "RC information inaccurate because somebody "
1428                             "holds a forcewake reference \n");
1429         } else {
1430                 /* NB: we cannot use forcewake, else we read the wrong values */
1431                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1432                         udelay(10);
1433                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1434         }
1435
1436         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1437         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1438
1439         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1440         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1441         mutex_unlock(&dev->struct_mutex);
1442         mutex_lock(&dev_priv->rps.hw_lock);
1443         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1444         mutex_unlock(&dev_priv->rps.hw_lock);
1445
1446         intel_runtime_pm_put(dev_priv);
1447
1448         seq_printf(m, "Video Turbo Mode: %s\n",
1449                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1450         seq_printf(m, "HW control enabled: %s\n",
1451                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1452         seq_printf(m, "SW control enabled: %s\n",
1453                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1454                           GEN6_RP_MEDIA_SW_MODE));
1455         seq_printf(m, "RC1e Enabled: %s\n",
1456                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1457         seq_printf(m, "RC6 Enabled: %s\n",
1458                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1459         seq_printf(m, "Deep RC6 Enabled: %s\n",
1460                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1461         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1462                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1463         seq_puts(m, "Current RC state: ");
1464         switch (gt_core_status & GEN6_RCn_MASK) {
1465         case GEN6_RC0:
1466                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1467                         seq_puts(m, "Core Power Down\n");
1468                 else
1469                         seq_puts(m, "on\n");
1470                 break;
1471         case GEN6_RC3:
1472                 seq_puts(m, "RC3\n");
1473                 break;
1474         case GEN6_RC6:
1475                 seq_puts(m, "RC6\n");
1476                 break;
1477         case GEN6_RC7:
1478                 seq_puts(m, "RC7\n");
1479                 break;
1480         default:
1481                 seq_puts(m, "Unknown\n");
1482                 break;
1483         }
1484
1485         seq_printf(m, "Core Power Down: %s\n",
1486                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1487
1488         /* Not exactly sure what this is */
1489         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1490                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1491         seq_printf(m, "RC6 residency since boot: %u\n",
1492                    I915_READ(GEN6_GT_GFX_RC6));
1493         seq_printf(m, "RC6+ residency since boot: %u\n",
1494                    I915_READ(GEN6_GT_GFX_RC6p));
1495         seq_printf(m, "RC6++ residency since boot: %u\n",
1496                    I915_READ(GEN6_GT_GFX_RC6pp));
1497
1498         seq_printf(m, "RC6   voltage: %dmV\n",
1499                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1500         seq_printf(m, "RC6+  voltage: %dmV\n",
1501                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1502         seq_printf(m, "RC6++ voltage: %dmV\n",
1503                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1504         return 0;
1505 }
1506
1507 static int i915_drpc_info(struct seq_file *m, void *unused)
1508 {
1509         struct drm_info_node *node = m->private;
1510         struct drm_device *dev = node->minor->dev;
1511
1512         if (IS_VALLEYVIEW(dev))
1513                 return vlv_drpc_info(m);
1514         else if (INTEL_INFO(dev)->gen >= 6)
1515                 return gen6_drpc_info(m);
1516         else
1517                 return ironlake_drpc_info(m);
1518 }
1519
1520 static int i915_fbc_status(struct seq_file *m, void *unused)
1521 {
1522         struct drm_info_node *node = m->private;
1523         struct drm_device *dev = node->minor->dev;
1524         struct drm_i915_private *dev_priv = dev->dev_private;
1525
1526         if (!HAS_FBC(dev)) {
1527                 seq_puts(m, "FBC unsupported on this chipset\n");
1528                 return 0;
1529         }
1530
1531         intel_runtime_pm_get(dev_priv);
1532
1533         if (intel_fbc_enabled(dev)) {
1534                 seq_puts(m, "FBC enabled\n");
1535         } else {
1536                 seq_puts(m, "FBC disabled: ");
1537                 switch (dev_priv->fbc.no_fbc_reason) {
1538                 case FBC_OK:
1539                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1540                         break;
1541                 case FBC_UNSUPPORTED:
1542                         seq_puts(m, "unsupported by this chipset");
1543                         break;
1544                 case FBC_NO_OUTPUT:
1545                         seq_puts(m, "no outputs");
1546                         break;
1547                 case FBC_STOLEN_TOO_SMALL:
1548                         seq_puts(m, "not enough stolen memory");
1549                         break;
1550                 case FBC_UNSUPPORTED_MODE:
1551                         seq_puts(m, "mode not supported");
1552                         break;
1553                 case FBC_MODE_TOO_LARGE:
1554                         seq_puts(m, "mode too large");
1555                         break;
1556                 case FBC_BAD_PLANE:
1557                         seq_puts(m, "FBC unsupported on plane");
1558                         break;
1559                 case FBC_NOT_TILED:
1560                         seq_puts(m, "scanout buffer not tiled");
1561                         break;
1562                 case FBC_MULTIPLE_PIPES:
1563                         seq_puts(m, "multiple pipes are enabled");
1564                         break;
1565                 case FBC_MODULE_PARAM:
1566                         seq_puts(m, "disabled per module param (default off)");
1567                         break;
1568                 case FBC_CHIP_DEFAULT:
1569                         seq_puts(m, "disabled per chip default");
1570                         break;
1571                 default:
1572                         seq_puts(m, "unknown reason");
1573                 }
1574                 seq_putc(m, '\n');
1575         }
1576
1577         intel_runtime_pm_put(dev_priv);
1578
1579         return 0;
1580 }
1581
1582 static int i915_fbc_fc_get(void *data, u64 *val)
1583 {
1584         struct drm_device *dev = data;
1585         struct drm_i915_private *dev_priv = dev->dev_private;
1586
1587         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1588                 return -ENODEV;
1589
1590         drm_modeset_lock_all(dev);
1591         *val = dev_priv->fbc.false_color;
1592         drm_modeset_unlock_all(dev);
1593
1594         return 0;
1595 }
1596
1597 static int i915_fbc_fc_set(void *data, u64 val)
1598 {
1599         struct drm_device *dev = data;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         u32 reg;
1602
1603         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1604                 return -ENODEV;
1605
1606         drm_modeset_lock_all(dev);
1607
1608         reg = I915_READ(ILK_DPFC_CONTROL);
1609         dev_priv->fbc.false_color = val;
1610
1611         I915_WRITE(ILK_DPFC_CONTROL, val ?
1612                    (reg | FBC_CTL_FALSE_COLOR) :
1613                    (reg & ~FBC_CTL_FALSE_COLOR));
1614
1615         drm_modeset_unlock_all(dev);
1616         return 0;
1617 }
1618
1619 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1620                         i915_fbc_fc_get, i915_fbc_fc_set,
1621                         "%llu\n");
1622
1623 static int i915_ips_status(struct seq_file *m, void *unused)
1624 {
1625         struct drm_info_node *node = m->private;
1626         struct drm_device *dev = node->minor->dev;
1627         struct drm_i915_private *dev_priv = dev->dev_private;
1628
1629         if (!HAS_IPS(dev)) {
1630                 seq_puts(m, "not supported\n");
1631                 return 0;
1632         }
1633
1634         intel_runtime_pm_get(dev_priv);
1635
1636         seq_printf(m, "Enabled by kernel parameter: %s\n",
1637                    yesno(i915.enable_ips));
1638
1639         if (INTEL_INFO(dev)->gen >= 8) {
1640                 seq_puts(m, "Currently: unknown\n");
1641         } else {
1642                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1643                         seq_puts(m, "Currently: enabled\n");
1644                 else
1645                         seq_puts(m, "Currently: disabled\n");
1646         }
1647
1648         intel_runtime_pm_put(dev_priv);
1649
1650         return 0;
1651 }
1652
1653 static int i915_sr_status(struct seq_file *m, void *unused)
1654 {
1655         struct drm_info_node *node = m->private;
1656         struct drm_device *dev = node->minor->dev;
1657         struct drm_i915_private *dev_priv = dev->dev_private;
1658         bool sr_enabled = false;
1659
1660         intel_runtime_pm_get(dev_priv);
1661
1662         if (HAS_PCH_SPLIT(dev))
1663                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1664         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1665                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1666         else if (IS_I915GM(dev))
1667                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1668         else if (IS_PINEVIEW(dev))
1669                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1670
1671         intel_runtime_pm_put(dev_priv);
1672
1673         seq_printf(m, "self-refresh: %s\n",
1674                    sr_enabled ? "enabled" : "disabled");
1675
1676         return 0;
1677 }
1678
1679 static int i915_emon_status(struct seq_file *m, void *unused)
1680 {
1681         struct drm_info_node *node = m->private;
1682         struct drm_device *dev = node->minor->dev;
1683         struct drm_i915_private *dev_priv = dev->dev_private;
1684         unsigned long temp, chipset, gfx;
1685         int ret;
1686
1687         if (!IS_GEN5(dev))
1688                 return -ENODEV;
1689
1690         ret = mutex_lock_interruptible(&dev->struct_mutex);
1691         if (ret)
1692                 return ret;
1693
1694         temp = i915_mch_val(dev_priv);
1695         chipset = i915_chipset_val(dev_priv);
1696         gfx = i915_gfx_val(dev_priv);
1697         mutex_unlock(&dev->struct_mutex);
1698
1699         seq_printf(m, "GMCH temp: %ld\n", temp);
1700         seq_printf(m, "Chipset power: %ld\n", chipset);
1701         seq_printf(m, "GFX power: %ld\n", gfx);
1702         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1703
1704         return 0;
1705 }
1706
1707 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1708 {
1709         struct drm_info_node *node = m->private;
1710         struct drm_device *dev = node->minor->dev;
1711         struct drm_i915_private *dev_priv = dev->dev_private;
1712         int ret = 0;
1713         int gpu_freq, ia_freq;
1714
1715         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1716                 seq_puts(m, "unsupported on this chipset\n");
1717                 return 0;
1718         }
1719
1720         intel_runtime_pm_get(dev_priv);
1721
1722         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1723
1724         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1725         if (ret)
1726                 goto out;
1727
1728         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1729
1730         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1731              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1732              gpu_freq++) {
1733                 ia_freq = gpu_freq;
1734                 sandybridge_pcode_read(dev_priv,
1735                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1736                                        &ia_freq);
1737                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1738                            intel_gpu_freq(dev_priv, gpu_freq),
1739                            ((ia_freq >> 0) & 0xff) * 100,
1740                            ((ia_freq >> 8) & 0xff) * 100);
1741         }
1742
1743         mutex_unlock(&dev_priv->rps.hw_lock);
1744
1745 out:
1746         intel_runtime_pm_put(dev_priv);
1747         return ret;
1748 }
1749
1750 static int i915_opregion(struct seq_file *m, void *unused)
1751 {
1752         struct drm_info_node *node = m->private;
1753         struct drm_device *dev = node->minor->dev;
1754         struct drm_i915_private *dev_priv = dev->dev_private;
1755         struct intel_opregion *opregion = &dev_priv->opregion;
1756         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1757         int ret;
1758
1759         if (data == NULL)
1760                 return -ENOMEM;
1761
1762         ret = mutex_lock_interruptible(&dev->struct_mutex);
1763         if (ret)
1764                 goto out;
1765
1766         if (opregion->header) {
1767                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1768                 seq_write(m, data, OPREGION_SIZE);
1769         }
1770
1771         mutex_unlock(&dev->struct_mutex);
1772
1773 out:
1774         kfree(data);
1775         return 0;
1776 }
1777
1778 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1779 {
1780         struct drm_info_node *node = m->private;
1781         struct drm_device *dev = node->minor->dev;
1782         struct intel_fbdev *ifbdev = NULL;
1783         struct intel_framebuffer *fb;
1784
1785 #ifdef CONFIG_DRM_I915_FBDEV
1786         struct drm_i915_private *dev_priv = dev->dev_private;
1787
1788         ifbdev = dev_priv->fbdev;
1789         fb = to_intel_framebuffer(ifbdev->helper.fb);
1790
1791         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1792                    fb->base.width,
1793                    fb->base.height,
1794                    fb->base.depth,
1795                    fb->base.bits_per_pixel,
1796                    fb->base.modifier[0],
1797                    atomic_read(&fb->base.refcount.refcount));
1798         describe_obj(m, fb->obj);
1799         seq_putc(m, '\n');
1800 #endif
1801
1802         mutex_lock(&dev->mode_config.fb_lock);
1803         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1804                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1805                         continue;
1806
1807                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1808                            fb->base.width,
1809                            fb->base.height,
1810                            fb->base.depth,
1811                            fb->base.bits_per_pixel,
1812                            fb->base.modifier[0],
1813                            atomic_read(&fb->base.refcount.refcount));
1814                 describe_obj(m, fb->obj);
1815                 seq_putc(m, '\n');
1816         }
1817         mutex_unlock(&dev->mode_config.fb_lock);
1818
1819         return 0;
1820 }
1821
1822 static void describe_ctx_ringbuf(struct seq_file *m,
1823                                  struct intel_ringbuffer *ringbuf)
1824 {
1825         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1826                    ringbuf->space, ringbuf->head, ringbuf->tail,
1827                    ringbuf->last_retired_head);
1828 }
1829
1830 static int i915_context_status(struct seq_file *m, void *unused)
1831 {
1832         struct drm_info_node *node = m->private;
1833         struct drm_device *dev = node->minor->dev;
1834         struct drm_i915_private *dev_priv = dev->dev_private;
1835         struct intel_engine_cs *ring;
1836         struct intel_context *ctx;
1837         int ret, i;
1838
1839         ret = mutex_lock_interruptible(&dev->struct_mutex);
1840         if (ret)
1841                 return ret;
1842
1843         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1844                 if (!i915.enable_execlists &&
1845                     ctx->legacy_hw_ctx.rcs_state == NULL)
1846                         continue;
1847
1848                 seq_puts(m, "HW context ");
1849                 describe_ctx(m, ctx);
1850                 for_each_ring(ring, dev_priv, i) {
1851                         if (ring->default_context == ctx)
1852                                 seq_printf(m, "(default context %s) ",
1853                                            ring->name);
1854                 }
1855
1856                 if (i915.enable_execlists) {
1857                         seq_putc(m, '\n');
1858                         for_each_ring(ring, dev_priv, i) {
1859                                 struct drm_i915_gem_object *ctx_obj =
1860                                         ctx->engine[i].state;
1861                                 struct intel_ringbuffer *ringbuf =
1862                                         ctx->engine[i].ringbuf;
1863
1864                                 seq_printf(m, "%s: ", ring->name);
1865                                 if (ctx_obj)
1866                                         describe_obj(m, ctx_obj);
1867                                 if (ringbuf)
1868                                         describe_ctx_ringbuf(m, ringbuf);
1869                                 seq_putc(m, '\n');
1870                         }
1871                 } else {
1872                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1873                 }
1874
1875                 seq_putc(m, '\n');
1876         }
1877
1878         mutex_unlock(&dev->struct_mutex);
1879
1880         return 0;
1881 }
1882
1883 static void i915_dump_lrc_obj(struct seq_file *m,
1884                               struct intel_engine_cs *ring,
1885                               struct drm_i915_gem_object *ctx_obj)
1886 {
1887         struct page *page;
1888         uint32_t *reg_state;
1889         int j;
1890         unsigned long ggtt_offset = 0;
1891
1892         if (ctx_obj == NULL) {
1893                 seq_printf(m, "Context on %s with no gem object\n",
1894                            ring->name);
1895                 return;
1896         }
1897
1898         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1899                    intel_execlists_ctx_id(ctx_obj));
1900
1901         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1902                 seq_puts(m, "\tNot bound in GGTT\n");
1903         else
1904                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1905
1906         if (i915_gem_object_get_pages(ctx_obj)) {
1907                 seq_puts(m, "\tFailed to get pages for context object\n");
1908                 return;
1909         }
1910
1911         page = i915_gem_object_get_page(ctx_obj, 1);
1912         if (!WARN_ON(page == NULL)) {
1913                 reg_state = kmap_atomic(page);
1914
1915                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1916                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1917                                    ggtt_offset + 4096 + (j * 4),
1918                                    reg_state[j], reg_state[j + 1],
1919                                    reg_state[j + 2], reg_state[j + 3]);
1920                 }
1921                 kunmap_atomic(reg_state);
1922         }
1923
1924         seq_putc(m, '\n');
1925 }
1926
1927 static int i915_dump_lrc(struct seq_file *m, void *unused)
1928 {
1929         struct drm_info_node *node = (struct drm_info_node *) m->private;
1930         struct drm_device *dev = node->minor->dev;
1931         struct drm_i915_private *dev_priv = dev->dev_private;
1932         struct intel_engine_cs *ring;
1933         struct intel_context *ctx;
1934         int ret, i;
1935
1936         if (!i915.enable_execlists) {
1937                 seq_printf(m, "Logical Ring Contexts are disabled\n");
1938                 return 0;
1939         }
1940
1941         ret = mutex_lock_interruptible(&dev->struct_mutex);
1942         if (ret)
1943                 return ret;
1944
1945         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1946                 for_each_ring(ring, dev_priv, i) {
1947                         if (ring->default_context != ctx)
1948                                 i915_dump_lrc_obj(m, ring,
1949                                                   ctx->engine[i].state);
1950                 }
1951         }
1952
1953         mutex_unlock(&dev->struct_mutex);
1954
1955         return 0;
1956 }
1957
1958 static int i915_execlists(struct seq_file *m, void *data)
1959 {
1960         struct drm_info_node *node = (struct drm_info_node *)m->private;
1961         struct drm_device *dev = node->minor->dev;
1962         struct drm_i915_private *dev_priv = dev->dev_private;
1963         struct intel_engine_cs *ring;
1964         u32 status_pointer;
1965         u8 read_pointer;
1966         u8 write_pointer;
1967         u32 status;
1968         u32 ctx_id;
1969         struct list_head *cursor;
1970         int ring_id, i;
1971         int ret;
1972
1973         if (!i915.enable_execlists) {
1974                 seq_puts(m, "Logical Ring Contexts are disabled\n");
1975                 return 0;
1976         }
1977
1978         ret = mutex_lock_interruptible(&dev->struct_mutex);
1979         if (ret)
1980                 return ret;
1981
1982         intel_runtime_pm_get(dev_priv);
1983
1984         for_each_ring(ring, dev_priv, ring_id) {
1985                 struct drm_i915_gem_request *head_req = NULL;
1986                 int count = 0;
1987                 unsigned long flags;
1988
1989                 seq_printf(m, "%s\n", ring->name);
1990
1991                 status = I915_READ(RING_EXECLIST_STATUS(ring));
1992                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1993                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1994                            status, ctx_id);
1995
1996                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1997                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1998
1999                 read_pointer = ring->next_context_status_buffer;
2000                 write_pointer = status_pointer & 0x07;
2001                 if (read_pointer > write_pointer)
2002                         write_pointer += 6;
2003                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2004                            read_pointer, write_pointer);
2005
2006                 for (i = 0; i < 6; i++) {
2007                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2008                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2009
2010                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2011                                    i, status, ctx_id);
2012                 }
2013
2014                 spin_lock_irqsave(&ring->execlist_lock, flags);
2015                 list_for_each(cursor, &ring->execlist_queue)
2016                         count++;
2017                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2018                                 struct drm_i915_gem_request, execlist_link);
2019                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2020
2021                 seq_printf(m, "\t%d requests in queue\n", count);
2022                 if (head_req) {
2023                         struct drm_i915_gem_object *ctx_obj;
2024
2025                         ctx_obj = head_req->ctx->engine[ring_id].state;
2026                         seq_printf(m, "\tHead request id: %u\n",
2027                                    intel_execlists_ctx_id(ctx_obj));
2028                         seq_printf(m, "\tHead request tail: %u\n",
2029                                    head_req->tail);
2030                 }
2031
2032                 seq_putc(m, '\n');
2033         }
2034
2035         intel_runtime_pm_put(dev_priv);
2036         mutex_unlock(&dev->struct_mutex);
2037
2038         return 0;
2039 }
2040
2041 static const char *swizzle_string(unsigned swizzle)
2042 {
2043         switch (swizzle) {
2044         case I915_BIT_6_SWIZZLE_NONE:
2045                 return "none";
2046         case I915_BIT_6_SWIZZLE_9:
2047                 return "bit9";
2048         case I915_BIT_6_SWIZZLE_9_10:
2049                 return "bit9/bit10";
2050         case I915_BIT_6_SWIZZLE_9_11:
2051                 return "bit9/bit11";
2052         case I915_BIT_6_SWIZZLE_9_10_11:
2053                 return "bit9/bit10/bit11";
2054         case I915_BIT_6_SWIZZLE_9_17:
2055                 return "bit9/bit17";
2056         case I915_BIT_6_SWIZZLE_9_10_17:
2057                 return "bit9/bit10/bit17";
2058         case I915_BIT_6_SWIZZLE_UNKNOWN:
2059                 return "unknown";
2060         }
2061
2062         return "bug";
2063 }
2064
2065 static int i915_swizzle_info(struct seq_file *m, void *data)
2066 {
2067         struct drm_info_node *node = m->private;
2068         struct drm_device *dev = node->minor->dev;
2069         struct drm_i915_private *dev_priv = dev->dev_private;
2070         int ret;
2071
2072         ret = mutex_lock_interruptible(&dev->struct_mutex);
2073         if (ret)
2074                 return ret;
2075         intel_runtime_pm_get(dev_priv);
2076
2077         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2078                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2079         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2080                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2081
2082         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2083                 seq_printf(m, "DDC = 0x%08x\n",
2084                            I915_READ(DCC));
2085                 seq_printf(m, "DDC2 = 0x%08x\n",
2086                            I915_READ(DCC2));
2087                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2088                            I915_READ16(C0DRB3));
2089                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2090                            I915_READ16(C1DRB3));
2091         } else if (INTEL_INFO(dev)->gen >= 6) {
2092                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2093                            I915_READ(MAD_DIMM_C0));
2094                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2095                            I915_READ(MAD_DIMM_C1));
2096                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2097                            I915_READ(MAD_DIMM_C2));
2098                 seq_printf(m, "TILECTL = 0x%08x\n",
2099                            I915_READ(TILECTL));
2100                 if (INTEL_INFO(dev)->gen >= 8)
2101                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2102                                    I915_READ(GAMTARBMODE));
2103                 else
2104                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2105                                    I915_READ(ARB_MODE));
2106                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2107                            I915_READ(DISP_ARB_CTL));
2108         }
2109
2110         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2111                 seq_puts(m, "L-shaped memory detected\n");
2112
2113         intel_runtime_pm_put(dev_priv);
2114         mutex_unlock(&dev->struct_mutex);
2115
2116         return 0;
2117 }
2118
2119 static int per_file_ctx(int id, void *ptr, void *data)
2120 {
2121         struct intel_context *ctx = ptr;
2122         struct seq_file *m = data;
2123         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2124
2125         if (!ppgtt) {
2126                 seq_printf(m, "  no ppgtt for context %d\n",
2127                            ctx->user_handle);
2128                 return 0;
2129         }
2130
2131         if (i915_gem_context_is_default(ctx))
2132                 seq_puts(m, "  default context:\n");
2133         else
2134                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2135         ppgtt->debug_dump(ppgtt, m);
2136
2137         return 0;
2138 }
2139
2140 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2141 {
2142         struct drm_i915_private *dev_priv = dev->dev_private;
2143         struct intel_engine_cs *ring;
2144         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2145         int unused, i;
2146
2147         if (!ppgtt)
2148                 return;
2149
2150         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2151         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2152         for_each_ring(ring, dev_priv, unused) {
2153                 seq_printf(m, "%s\n", ring->name);
2154                 for (i = 0; i < 4; i++) {
2155                         u32 offset = 0x270 + i * 8;
2156                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2157                         pdp <<= 32;
2158                         pdp |= I915_READ(ring->mmio_base + offset);
2159                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2160                 }
2161         }
2162 }
2163
2164 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2165 {
2166         struct drm_i915_private *dev_priv = dev->dev_private;
2167         struct intel_engine_cs *ring;
2168         struct drm_file *file;
2169         int i;
2170
2171         if (INTEL_INFO(dev)->gen == 6)
2172                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2173
2174         for_each_ring(ring, dev_priv, i) {
2175                 seq_printf(m, "%s\n", ring->name);
2176                 if (INTEL_INFO(dev)->gen == 7)
2177                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2178                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2179                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2180                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2181         }
2182         if (dev_priv->mm.aliasing_ppgtt) {
2183                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2184
2185                 seq_puts(m, "aliasing PPGTT:\n");
2186                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.pd_offset);
2187
2188                 ppgtt->debug_dump(ppgtt, m);
2189         }
2190
2191         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2192                 struct drm_i915_file_private *file_priv = file->driver_priv;
2193
2194                 seq_printf(m, "proc: %s\n",
2195                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2196                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2197         }
2198         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2199 }
2200
2201 static int i915_ppgtt_info(struct seq_file *m, void *data)
2202 {
2203         struct drm_info_node *node = m->private;
2204         struct drm_device *dev = node->minor->dev;
2205         struct drm_i915_private *dev_priv = dev->dev_private;
2206
2207         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2208         if (ret)
2209                 return ret;
2210         intel_runtime_pm_get(dev_priv);
2211
2212         if (INTEL_INFO(dev)->gen >= 8)
2213                 gen8_ppgtt_info(m, dev);
2214         else if (INTEL_INFO(dev)->gen >= 6)
2215                 gen6_ppgtt_info(m, dev);
2216
2217         intel_runtime_pm_put(dev_priv);
2218         mutex_unlock(&dev->struct_mutex);
2219
2220         return 0;
2221 }
2222
2223 static int i915_llc(struct seq_file *m, void *data)
2224 {
2225         struct drm_info_node *node = m->private;
2226         struct drm_device *dev = node->minor->dev;
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2230         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2231         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2232
2233         return 0;
2234 }
2235
2236 static int i915_edp_psr_status(struct seq_file *m, void *data)
2237 {
2238         struct drm_info_node *node = m->private;
2239         struct drm_device *dev = node->minor->dev;
2240         struct drm_i915_private *dev_priv = dev->dev_private;
2241         u32 psrperf = 0;
2242         u32 stat[3];
2243         enum pipe pipe;
2244         bool enabled = false;
2245
2246         if (!HAS_PSR(dev)) {
2247                 seq_puts(m, "PSR not supported\n");
2248                 return 0;
2249         }
2250
2251         intel_runtime_pm_get(dev_priv);
2252
2253         mutex_lock(&dev_priv->psr.lock);
2254         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2255         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2256         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2257         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2258         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2259                    dev_priv->psr.busy_frontbuffer_bits);
2260         seq_printf(m, "Re-enable work scheduled: %s\n",
2261                    yesno(work_busy(&dev_priv->psr.work.work)));
2262
2263         if (HAS_DDI(dev))
2264                 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2265         else {
2266                 for_each_pipe(dev_priv, pipe) {
2267                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2268                                 VLV_EDP_PSR_CURR_STATE_MASK;
2269                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2270                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2271                                 enabled = true;
2272                 }
2273         }
2274         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2275
2276         if (!HAS_DDI(dev))
2277                 for_each_pipe(dev_priv, pipe) {
2278                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2279                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2280                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2281                 }
2282         seq_puts(m, "\n");
2283
2284         seq_printf(m, "Link standby: %s\n",
2285                    yesno((bool)dev_priv->psr.link_standby));
2286
2287         /* CHV PSR has no kind of performance counter */
2288         if (HAS_DDI(dev)) {
2289                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2290                         EDP_PSR_PERF_CNT_MASK;
2291
2292                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2293         }
2294         mutex_unlock(&dev_priv->psr.lock);
2295
2296         intel_runtime_pm_put(dev_priv);
2297         return 0;
2298 }
2299
2300 static int i915_sink_crc(struct seq_file *m, void *data)
2301 {
2302         struct drm_info_node *node = m->private;
2303         struct drm_device *dev = node->minor->dev;
2304         struct intel_encoder *encoder;
2305         struct intel_connector *connector;
2306         struct intel_dp *intel_dp = NULL;
2307         int ret;
2308         u8 crc[6];
2309
2310         drm_modeset_lock_all(dev);
2311         for_each_intel_connector(dev, connector) {
2312
2313                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2314                         continue;
2315
2316                 if (!connector->base.encoder)
2317                         continue;
2318
2319                 encoder = to_intel_encoder(connector->base.encoder);
2320                 if (encoder->type != INTEL_OUTPUT_EDP)
2321                         continue;
2322
2323                 intel_dp = enc_to_intel_dp(&encoder->base);
2324
2325                 ret = intel_dp_sink_crc(intel_dp, crc);
2326                 if (ret)
2327                         goto out;
2328
2329                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2330                            crc[0], crc[1], crc[2],
2331                            crc[3], crc[4], crc[5]);
2332                 goto out;
2333         }
2334         ret = -ENODEV;
2335 out:
2336         drm_modeset_unlock_all(dev);
2337         return ret;
2338 }
2339
2340 static int i915_energy_uJ(struct seq_file *m, void *data)
2341 {
2342         struct drm_info_node *node = m->private;
2343         struct drm_device *dev = node->minor->dev;
2344         struct drm_i915_private *dev_priv = dev->dev_private;
2345         u64 power;
2346         u32 units;
2347
2348         if (INTEL_INFO(dev)->gen < 6)
2349                 return -ENODEV;
2350
2351         intel_runtime_pm_get(dev_priv);
2352
2353         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2354         power = (power & 0x1f00) >> 8;
2355         units = 1000000 / (1 << power); /* convert to uJ */
2356         power = I915_READ(MCH_SECP_NRG_STTS);
2357         power *= units;
2358
2359         intel_runtime_pm_put(dev_priv);
2360
2361         seq_printf(m, "%llu", (long long unsigned)power);
2362
2363         return 0;
2364 }
2365
2366 static int i915_pc8_status(struct seq_file *m, void *unused)
2367 {
2368         struct drm_info_node *node = m->private;
2369         struct drm_device *dev = node->minor->dev;
2370         struct drm_i915_private *dev_priv = dev->dev_private;
2371
2372         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2373                 seq_puts(m, "not supported\n");
2374                 return 0;
2375         }
2376
2377         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2378         seq_printf(m, "IRQs disabled: %s\n",
2379                    yesno(!intel_irqs_enabled(dev_priv)));
2380
2381         return 0;
2382 }
2383
2384 static const char *power_domain_str(enum intel_display_power_domain domain)
2385 {
2386         switch (domain) {
2387         case POWER_DOMAIN_PIPE_A:
2388                 return "PIPE_A";
2389         case POWER_DOMAIN_PIPE_B:
2390                 return "PIPE_B";
2391         case POWER_DOMAIN_PIPE_C:
2392                 return "PIPE_C";
2393         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2394                 return "PIPE_A_PANEL_FITTER";
2395         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2396                 return "PIPE_B_PANEL_FITTER";
2397         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2398                 return "PIPE_C_PANEL_FITTER";
2399         case POWER_DOMAIN_TRANSCODER_A:
2400                 return "TRANSCODER_A";
2401         case POWER_DOMAIN_TRANSCODER_B:
2402                 return "TRANSCODER_B";
2403         case POWER_DOMAIN_TRANSCODER_C:
2404                 return "TRANSCODER_C";
2405         case POWER_DOMAIN_TRANSCODER_EDP:
2406                 return "TRANSCODER_EDP";
2407         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2408                 return "PORT_DDI_A_2_LANES";
2409         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2410                 return "PORT_DDI_A_4_LANES";
2411         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2412                 return "PORT_DDI_B_2_LANES";
2413         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2414                 return "PORT_DDI_B_4_LANES";
2415         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2416                 return "PORT_DDI_C_2_LANES";
2417         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2418                 return "PORT_DDI_C_4_LANES";
2419         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2420                 return "PORT_DDI_D_2_LANES";
2421         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2422                 return "PORT_DDI_D_4_LANES";
2423         case POWER_DOMAIN_PORT_DSI:
2424                 return "PORT_DSI";
2425         case POWER_DOMAIN_PORT_CRT:
2426                 return "PORT_CRT";
2427         case POWER_DOMAIN_PORT_OTHER:
2428                 return "PORT_OTHER";
2429         case POWER_DOMAIN_VGA:
2430                 return "VGA";
2431         case POWER_DOMAIN_AUDIO:
2432                 return "AUDIO";
2433         case POWER_DOMAIN_PLLS:
2434                 return "PLLS";
2435         case POWER_DOMAIN_AUX_A:
2436                 return "AUX_A";
2437         case POWER_DOMAIN_AUX_B:
2438                 return "AUX_B";
2439         case POWER_DOMAIN_AUX_C:
2440                 return "AUX_C";
2441         case POWER_DOMAIN_AUX_D:
2442                 return "AUX_D";
2443         case POWER_DOMAIN_INIT:
2444                 return "INIT";
2445         default:
2446                 MISSING_CASE(domain);
2447                 return "?";
2448         }
2449 }
2450
2451 static int i915_power_domain_info(struct seq_file *m, void *unused)
2452 {
2453         struct drm_info_node *node = m->private;
2454         struct drm_device *dev = node->minor->dev;
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2457         int i;
2458
2459         mutex_lock(&power_domains->lock);
2460
2461         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2462         for (i = 0; i < power_domains->power_well_count; i++) {
2463                 struct i915_power_well *power_well;
2464                 enum intel_display_power_domain power_domain;
2465
2466                 power_well = &power_domains->power_wells[i];
2467                 seq_printf(m, "%-25s %d\n", power_well->name,
2468                            power_well->count);
2469
2470                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2471                      power_domain++) {
2472                         if (!(BIT(power_domain) & power_well->domains))
2473                                 continue;
2474
2475                         seq_printf(m, "  %-23s %d\n",
2476                                  power_domain_str(power_domain),
2477                                  power_domains->domain_use_count[power_domain]);
2478                 }
2479         }
2480
2481         mutex_unlock(&power_domains->lock);
2482
2483         return 0;
2484 }
2485
2486 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2487                                  struct drm_display_mode *mode)
2488 {
2489         int i;
2490
2491         for (i = 0; i < tabs; i++)
2492                 seq_putc(m, '\t');
2493
2494         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2495                    mode->base.id, mode->name,
2496                    mode->vrefresh, mode->clock,
2497                    mode->hdisplay, mode->hsync_start,
2498                    mode->hsync_end, mode->htotal,
2499                    mode->vdisplay, mode->vsync_start,
2500                    mode->vsync_end, mode->vtotal,
2501                    mode->type, mode->flags);
2502 }
2503
2504 static void intel_encoder_info(struct seq_file *m,
2505                                struct intel_crtc *intel_crtc,
2506                                struct intel_encoder *intel_encoder)
2507 {
2508         struct drm_info_node *node = m->private;
2509         struct drm_device *dev = node->minor->dev;
2510         struct drm_crtc *crtc = &intel_crtc->base;
2511         struct intel_connector *intel_connector;
2512         struct drm_encoder *encoder;
2513
2514         encoder = &intel_encoder->base;
2515         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2516                    encoder->base.id, encoder->name);
2517         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2518                 struct drm_connector *connector = &intel_connector->base;
2519                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2520                            connector->base.id,
2521                            connector->name,
2522                            drm_get_connector_status_name(connector->status));
2523                 if (connector->status == connector_status_connected) {
2524                         struct drm_display_mode *mode = &crtc->mode;
2525                         seq_printf(m, ", mode:\n");
2526                         intel_seq_print_mode(m, 2, mode);
2527                 } else {
2528                         seq_putc(m, '\n');
2529                 }
2530         }
2531 }
2532
2533 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2534 {
2535         struct drm_info_node *node = m->private;
2536         struct drm_device *dev = node->minor->dev;
2537         struct drm_crtc *crtc = &intel_crtc->base;
2538         struct intel_encoder *intel_encoder;
2539
2540         if (crtc->primary->fb)
2541                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2542                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2543                            crtc->primary->fb->width, crtc->primary->fb->height);
2544         else
2545                 seq_puts(m, "\tprimary plane disabled\n");
2546         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2547                 intel_encoder_info(m, intel_crtc, intel_encoder);
2548 }
2549
2550 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2551 {
2552         struct drm_display_mode *mode = panel->fixed_mode;
2553
2554         seq_printf(m, "\tfixed mode:\n");
2555         intel_seq_print_mode(m, 2, mode);
2556 }
2557
2558 static void intel_dp_info(struct seq_file *m,
2559                           struct intel_connector *intel_connector)
2560 {
2561         struct intel_encoder *intel_encoder = intel_connector->encoder;
2562         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2563
2564         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2565         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2566                    "no");
2567         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2568                 intel_panel_info(m, &intel_connector->panel);
2569 }
2570
2571 static void intel_hdmi_info(struct seq_file *m,
2572                             struct intel_connector *intel_connector)
2573 {
2574         struct intel_encoder *intel_encoder = intel_connector->encoder;
2575         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2576
2577         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2578                    "no");
2579 }
2580
2581 static void intel_lvds_info(struct seq_file *m,
2582                             struct intel_connector *intel_connector)
2583 {
2584         intel_panel_info(m, &intel_connector->panel);
2585 }
2586
2587 static void intel_connector_info(struct seq_file *m,
2588                                  struct drm_connector *connector)
2589 {
2590         struct intel_connector *intel_connector = to_intel_connector(connector);
2591         struct intel_encoder *intel_encoder = intel_connector->encoder;
2592         struct drm_display_mode *mode;
2593
2594         seq_printf(m, "connector %d: type %s, status: %s\n",
2595                    connector->base.id, connector->name,
2596                    drm_get_connector_status_name(connector->status));
2597         if (connector->status == connector_status_connected) {
2598                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2599                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2600                            connector->display_info.width_mm,
2601                            connector->display_info.height_mm);
2602                 seq_printf(m, "\tsubpixel order: %s\n",
2603                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2604                 seq_printf(m, "\tCEA rev: %d\n",
2605                            connector->display_info.cea_rev);
2606         }
2607         if (intel_encoder) {
2608                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2609                     intel_encoder->type == INTEL_OUTPUT_EDP)
2610                         intel_dp_info(m, intel_connector);
2611                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2612                         intel_hdmi_info(m, intel_connector);
2613                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2614                         intel_lvds_info(m, intel_connector);
2615         }
2616
2617         seq_printf(m, "\tmodes:\n");
2618         list_for_each_entry(mode, &connector->modes, head)
2619                 intel_seq_print_mode(m, 2, mode);
2620 }
2621
2622 static bool cursor_active(struct drm_device *dev, int pipe)
2623 {
2624         struct drm_i915_private *dev_priv = dev->dev_private;
2625         u32 state;
2626
2627         if (IS_845G(dev) || IS_I865G(dev))
2628                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2629         else
2630                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2631
2632         return state;
2633 }
2634
2635 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2636 {
2637         struct drm_i915_private *dev_priv = dev->dev_private;
2638         u32 pos;
2639
2640         pos = I915_READ(CURPOS(pipe));
2641
2642         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2643         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2644                 *x = -*x;
2645
2646         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2647         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2648                 *y = -*y;
2649
2650         return cursor_active(dev, pipe);
2651 }
2652
2653 static int i915_display_info(struct seq_file *m, void *unused)
2654 {
2655         struct drm_info_node *node = m->private;
2656         struct drm_device *dev = node->minor->dev;
2657         struct drm_i915_private *dev_priv = dev->dev_private;
2658         struct intel_crtc *crtc;
2659         struct drm_connector *connector;
2660
2661         intel_runtime_pm_get(dev_priv);
2662         drm_modeset_lock_all(dev);
2663         seq_printf(m, "CRTC info\n");
2664         seq_printf(m, "---------\n");
2665         for_each_intel_crtc(dev, crtc) {
2666                 bool active;
2667                 int x, y;
2668
2669                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2670                            crtc->base.base.id, pipe_name(crtc->pipe),
2671                            yesno(crtc->active), crtc->config->pipe_src_w,
2672                            crtc->config->pipe_src_h);
2673                 if (crtc->active) {
2674                         intel_crtc_info(m, crtc);
2675
2676                         active = cursor_position(dev, crtc->pipe, &x, &y);
2677                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2678                                    yesno(crtc->cursor_base),
2679                                    x, y, crtc->base.cursor->state->crtc_w,
2680                                    crtc->base.cursor->state->crtc_h,
2681                                    crtc->cursor_addr, yesno(active));
2682                 }
2683
2684                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2685                            yesno(!crtc->cpu_fifo_underrun_disabled),
2686                            yesno(!crtc->pch_fifo_underrun_disabled));
2687         }
2688
2689         seq_printf(m, "\n");
2690         seq_printf(m, "Connector info\n");
2691         seq_printf(m, "--------------\n");
2692         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2693                 intel_connector_info(m, connector);
2694         }
2695         drm_modeset_unlock_all(dev);
2696         intel_runtime_pm_put(dev_priv);
2697
2698         return 0;
2699 }
2700
2701 static int i915_semaphore_status(struct seq_file *m, void *unused)
2702 {
2703         struct drm_info_node *node = (struct drm_info_node *) m->private;
2704         struct drm_device *dev = node->minor->dev;
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         struct intel_engine_cs *ring;
2707         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2708         int i, j, ret;
2709
2710         if (!i915_semaphore_is_enabled(dev)) {
2711                 seq_puts(m, "Semaphores are disabled\n");
2712                 return 0;
2713         }
2714
2715         ret = mutex_lock_interruptible(&dev->struct_mutex);
2716         if (ret)
2717                 return ret;
2718         intel_runtime_pm_get(dev_priv);
2719
2720         if (IS_BROADWELL(dev)) {
2721                 struct page *page;
2722                 uint64_t *seqno;
2723
2724                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2725
2726                 seqno = (uint64_t *)kmap_atomic(page);
2727                 for_each_ring(ring, dev_priv, i) {
2728                         uint64_t offset;
2729
2730                         seq_printf(m, "%s\n", ring->name);
2731
2732                         seq_puts(m, "  Last signal:");
2733                         for (j = 0; j < num_rings; j++) {
2734                                 offset = i * I915_NUM_RINGS + j;
2735                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2736                                            seqno[offset], offset * 8);
2737                         }
2738                         seq_putc(m, '\n');
2739
2740                         seq_puts(m, "  Last wait:  ");
2741                         for (j = 0; j < num_rings; j++) {
2742                                 offset = i + (j * I915_NUM_RINGS);
2743                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2744                                            seqno[offset], offset * 8);
2745                         }
2746                         seq_putc(m, '\n');
2747
2748                 }
2749                 kunmap_atomic(seqno);
2750         } else {
2751                 seq_puts(m, "  Last signal:");
2752                 for_each_ring(ring, dev_priv, i)
2753                         for (j = 0; j < num_rings; j++)
2754                                 seq_printf(m, "0x%08x\n",
2755                                            I915_READ(ring->semaphore.mbox.signal[j]));
2756                 seq_putc(m, '\n');
2757         }
2758
2759         seq_puts(m, "\nSync seqno:\n");
2760         for_each_ring(ring, dev_priv, i) {
2761                 for (j = 0; j < num_rings; j++) {
2762                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2763                 }
2764                 seq_putc(m, '\n');
2765         }
2766         seq_putc(m, '\n');
2767
2768         intel_runtime_pm_put(dev_priv);
2769         mutex_unlock(&dev->struct_mutex);
2770         return 0;
2771 }
2772
2773 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2774 {
2775         struct drm_info_node *node = (struct drm_info_node *) m->private;
2776         struct drm_device *dev = node->minor->dev;
2777         struct drm_i915_private *dev_priv = dev->dev_private;
2778         int i;
2779
2780         drm_modeset_lock_all(dev);
2781         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2782                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2783
2784                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2785                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2786                            pll->config.crtc_mask, pll->active, yesno(pll->on));
2787                 seq_printf(m, " tracked hardware state:\n");
2788                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2789                 seq_printf(m, " dpll_md: 0x%08x\n",
2790                            pll->config.hw_state.dpll_md);
2791                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2792                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2793                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2794         }
2795         drm_modeset_unlock_all(dev);
2796
2797         return 0;
2798 }
2799
2800 static int i915_wa_registers(struct seq_file *m, void *unused)
2801 {
2802         int i;
2803         int ret;
2804         struct drm_info_node *node = (struct drm_info_node *) m->private;
2805         struct drm_device *dev = node->minor->dev;
2806         struct drm_i915_private *dev_priv = dev->dev_private;
2807
2808         ret = mutex_lock_interruptible(&dev->struct_mutex);
2809         if (ret)
2810                 return ret;
2811
2812         intel_runtime_pm_get(dev_priv);
2813
2814         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2815         for (i = 0; i < dev_priv->workarounds.count; ++i) {
2816                 u32 addr, mask, value, read;
2817                 bool ok;
2818
2819                 addr = dev_priv->workarounds.reg[i].addr;
2820                 mask = dev_priv->workarounds.reg[i].mask;
2821                 value = dev_priv->workarounds.reg[i].value;
2822                 read = I915_READ(addr);
2823                 ok = (value & mask) == (read & mask);
2824                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2825                            addr, value, mask, read, ok ? "OK" : "FAIL");
2826         }
2827
2828         intel_runtime_pm_put(dev_priv);
2829         mutex_unlock(&dev->struct_mutex);
2830
2831         return 0;
2832 }
2833
2834 static int i915_ddb_info(struct seq_file *m, void *unused)
2835 {
2836         struct drm_info_node *node = m->private;
2837         struct drm_device *dev = node->minor->dev;
2838         struct drm_i915_private *dev_priv = dev->dev_private;
2839         struct skl_ddb_allocation *ddb;
2840         struct skl_ddb_entry *entry;
2841         enum pipe pipe;
2842         int plane;
2843
2844         if (INTEL_INFO(dev)->gen < 9)
2845                 return 0;
2846
2847         drm_modeset_lock_all(dev);
2848
2849         ddb = &dev_priv->wm.skl_hw.ddb;
2850
2851         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2852
2853         for_each_pipe(dev_priv, pipe) {
2854                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2855
2856                 for_each_plane(dev_priv, pipe, plane) {
2857                         entry = &ddb->plane[pipe][plane];
2858                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
2859                                    entry->start, entry->end,
2860                                    skl_ddb_entry_size(entry));
2861                 }
2862
2863                 entry = &ddb->cursor[pipe];
2864                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
2865                            entry->end, skl_ddb_entry_size(entry));
2866         }
2867
2868         drm_modeset_unlock_all(dev);
2869
2870         return 0;
2871 }
2872
2873 static void drrs_status_per_crtc(struct seq_file *m,
2874                 struct drm_device *dev, struct intel_crtc *intel_crtc)
2875 {
2876         struct intel_encoder *intel_encoder;
2877         struct drm_i915_private *dev_priv = dev->dev_private;
2878         struct i915_drrs *drrs = &dev_priv->drrs;
2879         int vrefresh = 0;
2880
2881         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
2882                 /* Encoder connected on this CRTC */
2883                 switch (intel_encoder->type) {
2884                 case INTEL_OUTPUT_EDP:
2885                         seq_puts(m, "eDP:\n");
2886                         break;
2887                 case INTEL_OUTPUT_DSI:
2888                         seq_puts(m, "DSI:\n");
2889                         break;
2890                 case INTEL_OUTPUT_HDMI:
2891                         seq_puts(m, "HDMI:\n");
2892                         break;
2893                 case INTEL_OUTPUT_DISPLAYPORT:
2894                         seq_puts(m, "DP:\n");
2895                         break;
2896                 default:
2897                         seq_printf(m, "Other encoder (id=%d).\n",
2898                                                 intel_encoder->type);
2899                         return;
2900                 }
2901         }
2902
2903         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
2904                 seq_puts(m, "\tVBT: DRRS_type: Static");
2905         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
2906                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
2907         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
2908                 seq_puts(m, "\tVBT: DRRS_type: None");
2909         else
2910                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
2911
2912         seq_puts(m, "\n\n");
2913
2914         if (intel_crtc->config->has_drrs) {
2915                 struct intel_panel *panel;
2916
2917                 mutex_lock(&drrs->mutex);
2918                 /* DRRS Supported */
2919                 seq_puts(m, "\tDRRS Supported: Yes\n");
2920
2921                 /* disable_drrs() will make drrs->dp NULL */
2922                 if (!drrs->dp) {
2923                         seq_puts(m, "Idleness DRRS: Disabled");
2924                         mutex_unlock(&drrs->mutex);
2925                         return;
2926                 }
2927
2928                 panel = &drrs->dp->attached_connector->panel;
2929                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
2930                                         drrs->busy_frontbuffer_bits);
2931
2932                 seq_puts(m, "\n\t\t");
2933                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
2934                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
2935                         vrefresh = panel->fixed_mode->vrefresh;
2936                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
2937                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
2938                         vrefresh = panel->downclock_mode->vrefresh;
2939                 } else {
2940                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
2941                                                 drrs->refresh_rate_type);
2942                         mutex_unlock(&drrs->mutex);
2943                         return;
2944                 }
2945                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
2946
2947                 seq_puts(m, "\n\t\t");
2948                 mutex_unlock(&drrs->mutex);
2949         } else {
2950                 /* DRRS not supported. Print the VBT parameter*/
2951                 seq_puts(m, "\tDRRS Supported : No");
2952         }
2953         seq_puts(m, "\n");
2954 }
2955
2956 static int i915_drrs_status(struct seq_file *m, void *unused)
2957 {
2958         struct drm_info_node *node = m->private;
2959         struct drm_device *dev = node->minor->dev;
2960         struct intel_crtc *intel_crtc;
2961         int active_crtc_cnt = 0;
2962
2963         for_each_intel_crtc(dev, intel_crtc) {
2964                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
2965
2966                 if (intel_crtc->active) {
2967                         active_crtc_cnt++;
2968                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
2969
2970                         drrs_status_per_crtc(m, dev, intel_crtc);
2971                 }
2972
2973                 drm_modeset_unlock(&intel_crtc->base.mutex);
2974         }
2975
2976         if (!active_crtc_cnt)
2977                 seq_puts(m, "No active crtc found\n");
2978
2979         return 0;
2980 }
2981
2982 struct pipe_crc_info {
2983         const char *name;
2984         struct drm_device *dev;
2985         enum pipe pipe;
2986 };
2987
2988 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2989 {
2990         struct drm_info_node *node = (struct drm_info_node *) m->private;
2991         struct drm_device *dev = node->minor->dev;
2992         struct drm_encoder *encoder;
2993         struct intel_encoder *intel_encoder;
2994         struct intel_digital_port *intel_dig_port;
2995         drm_modeset_lock_all(dev);
2996         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2997                 intel_encoder = to_intel_encoder(encoder);
2998                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2999                         continue;
3000                 intel_dig_port = enc_to_dig_port(encoder);
3001                 if (!intel_dig_port->dp.can_mst)
3002                         continue;
3003
3004                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3005         }
3006         drm_modeset_unlock_all(dev);
3007         return 0;
3008 }
3009
3010 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3011 {
3012         struct pipe_crc_info *info = inode->i_private;
3013         struct drm_i915_private *dev_priv = info->dev->dev_private;
3014         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3015
3016         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3017                 return -ENODEV;
3018
3019         spin_lock_irq(&pipe_crc->lock);
3020
3021         if (pipe_crc->opened) {
3022                 spin_unlock_irq(&pipe_crc->lock);
3023                 return -EBUSY; /* already open */
3024         }
3025
3026         pipe_crc->opened = true;
3027         filep->private_data = inode->i_private;
3028
3029         spin_unlock_irq(&pipe_crc->lock);
3030
3031         return 0;
3032 }
3033
3034 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3035 {
3036         struct pipe_crc_info *info = inode->i_private;
3037         struct drm_i915_private *dev_priv = info->dev->dev_private;
3038         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3039
3040         spin_lock_irq(&pipe_crc->lock);
3041         pipe_crc->opened = false;
3042         spin_unlock_irq(&pipe_crc->lock);
3043
3044         return 0;
3045 }
3046
3047 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3048 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3049 /* account for \'0' */
3050 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3051
3052 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3053 {
3054         assert_spin_locked(&pipe_crc->lock);
3055         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3056                         INTEL_PIPE_CRC_ENTRIES_NR);
3057 }
3058
3059 static ssize_t
3060 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3061                    loff_t *pos)
3062 {
3063         struct pipe_crc_info *info = filep->private_data;
3064         struct drm_device *dev = info->dev;
3065         struct drm_i915_private *dev_priv = dev->dev_private;
3066         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3067         char buf[PIPE_CRC_BUFFER_LEN];
3068         int n_entries;
3069         ssize_t bytes_read;
3070
3071         /*
3072          * Don't allow user space to provide buffers not big enough to hold
3073          * a line of data.
3074          */
3075         if (count < PIPE_CRC_LINE_LEN)
3076                 return -EINVAL;
3077
3078         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3079                 return 0;
3080
3081         /* nothing to read */
3082         spin_lock_irq(&pipe_crc->lock);
3083         while (pipe_crc_data_count(pipe_crc) == 0) {
3084                 int ret;
3085
3086                 if (filep->f_flags & O_NONBLOCK) {
3087                         spin_unlock_irq(&pipe_crc->lock);
3088                         return -EAGAIN;
3089                 }
3090
3091                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3092                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3093                 if (ret) {
3094                         spin_unlock_irq(&pipe_crc->lock);
3095                         return ret;
3096                 }
3097         }
3098
3099         /* We now have one or more entries to read */
3100         n_entries = count / PIPE_CRC_LINE_LEN;
3101
3102         bytes_read = 0;
3103         while (n_entries > 0) {
3104                 struct intel_pipe_crc_entry *entry =
3105                         &pipe_crc->entries[pipe_crc->tail];
3106                 int ret;
3107
3108                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3109                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3110                         break;
3111
3112                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3113                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3114
3115                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3116                                        "%8u %8x %8x %8x %8x %8x\n",
3117                                        entry->frame, entry->crc[0],
3118                                        entry->crc[1], entry->crc[2],
3119                                        entry->crc[3], entry->crc[4]);
3120
3121                 spin_unlock_irq(&pipe_crc->lock);
3122
3123                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3124                 if (ret == PIPE_CRC_LINE_LEN)
3125                         return -EFAULT;
3126
3127                 user_buf += PIPE_CRC_LINE_LEN;
3128                 n_entries--;
3129
3130                 spin_lock_irq(&pipe_crc->lock);
3131         }
3132
3133         spin_unlock_irq(&pipe_crc->lock);
3134
3135         return bytes_read;
3136 }
3137
3138 static const struct file_operations i915_pipe_crc_fops = {
3139         .owner = THIS_MODULE,
3140         .open = i915_pipe_crc_open,
3141         .read = i915_pipe_crc_read,
3142         .release = i915_pipe_crc_release,
3143 };
3144
3145 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3146         {
3147                 .name = "i915_pipe_A_crc",
3148                 .pipe = PIPE_A,
3149         },
3150         {
3151                 .name = "i915_pipe_B_crc",
3152                 .pipe = PIPE_B,
3153         },
3154         {
3155                 .name = "i915_pipe_C_crc",
3156                 .pipe = PIPE_C,
3157         },
3158 };
3159
3160 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3161                                 enum pipe pipe)
3162 {
3163         struct drm_device *dev = minor->dev;
3164         struct dentry *ent;
3165         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3166
3167         info->dev = dev;
3168         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3169                                   &i915_pipe_crc_fops);
3170         if (!ent)
3171                 return -ENOMEM;
3172
3173         return drm_add_fake_info_node(minor, ent, info);
3174 }
3175
3176 static const char * const pipe_crc_sources[] = {
3177         "none",
3178         "plane1",
3179         "plane2",
3180         "pf",
3181         "pipe",
3182         "TV",
3183         "DP-B",
3184         "DP-C",
3185         "DP-D",
3186         "auto",
3187 };
3188
3189 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3190 {
3191         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3192         return pipe_crc_sources[source];
3193 }
3194
3195 static int display_crc_ctl_show(struct seq_file *m, void *data)
3196 {
3197         struct drm_device *dev = m->private;
3198         struct drm_i915_private *dev_priv = dev->dev_private;
3199         int i;
3200
3201         for (i = 0; i < I915_MAX_PIPES; i++)
3202                 seq_printf(m, "%c %s\n", pipe_name(i),
3203                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3204
3205         return 0;
3206 }
3207
3208 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3209 {
3210         struct drm_device *dev = inode->i_private;
3211
3212         return single_open(file, display_crc_ctl_show, dev);
3213 }
3214
3215 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3216                                  uint32_t *val)
3217 {
3218         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3219                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3220
3221         switch (*source) {
3222         case INTEL_PIPE_CRC_SOURCE_PIPE:
3223                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3224                 break;
3225         case INTEL_PIPE_CRC_SOURCE_NONE:
3226                 *val = 0;
3227                 break;
3228         default:
3229                 return -EINVAL;
3230         }
3231
3232         return 0;
3233 }
3234
3235 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3236                                      enum intel_pipe_crc_source *source)
3237 {
3238         struct intel_encoder *encoder;
3239         struct intel_crtc *crtc;
3240         struct intel_digital_port *dig_port;
3241         int ret = 0;
3242
3243         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3244
3245         drm_modeset_lock_all(dev);
3246         for_each_intel_encoder(dev, encoder) {
3247                 if (!encoder->base.crtc)
3248                         continue;
3249
3250                 crtc = to_intel_crtc(encoder->base.crtc);
3251
3252                 if (crtc->pipe != pipe)
3253                         continue;
3254
3255                 switch (encoder->type) {
3256                 case INTEL_OUTPUT_TVOUT:
3257                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3258                         break;
3259                 case INTEL_OUTPUT_DISPLAYPORT:
3260                 case INTEL_OUTPUT_EDP:
3261                         dig_port = enc_to_dig_port(&encoder->base);
3262                         switch (dig_port->port) {
3263                         case PORT_B:
3264                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3265                                 break;
3266                         case PORT_C:
3267                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3268                                 break;
3269                         case PORT_D:
3270                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3271                                 break;
3272                         default:
3273                                 WARN(1, "nonexisting DP port %c\n",
3274                                      port_name(dig_port->port));
3275                                 break;
3276                         }
3277                         break;
3278                 default:
3279                         break;
3280                 }
3281         }
3282         drm_modeset_unlock_all(dev);
3283
3284         return ret;
3285 }
3286
3287 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3288                                 enum pipe pipe,
3289                                 enum intel_pipe_crc_source *source,
3290                                 uint32_t *val)
3291 {
3292         struct drm_i915_private *dev_priv = dev->dev_private;
3293         bool need_stable_symbols = false;
3294
3295         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3296                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3297                 if (ret)
3298                         return ret;
3299         }
3300
3301         switch (*source) {
3302         case INTEL_PIPE_CRC_SOURCE_PIPE:
3303                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3304                 break;
3305         case INTEL_PIPE_CRC_SOURCE_DP_B:
3306                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3307                 need_stable_symbols = true;
3308                 break;
3309         case INTEL_PIPE_CRC_SOURCE_DP_C:
3310                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3311                 need_stable_symbols = true;
3312                 break;
3313         case INTEL_PIPE_CRC_SOURCE_DP_D:
3314                 if (!IS_CHERRYVIEW(dev))
3315                         return -EINVAL;
3316                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3317                 need_stable_symbols = true;
3318                 break;
3319         case INTEL_PIPE_CRC_SOURCE_NONE:
3320                 *val = 0;
3321                 break;
3322         default:
3323                 return -EINVAL;
3324         }
3325
3326         /*
3327          * When the pipe CRC tap point is after the transcoders we need
3328          * to tweak symbol-level features to produce a deterministic series of
3329          * symbols for a given frame. We need to reset those features only once
3330          * a frame (instead of every nth symbol):
3331          *   - DC-balance: used to ensure a better clock recovery from the data
3332          *     link (SDVO)
3333          *   - DisplayPort scrambling: used for EMI reduction
3334          */
3335         if (need_stable_symbols) {
3336                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3337
3338                 tmp |= DC_BALANCE_RESET_VLV;
3339                 switch (pipe) {
3340                 case PIPE_A:
3341                         tmp |= PIPE_A_SCRAMBLE_RESET;
3342                         break;
3343                 case PIPE_B:
3344                         tmp |= PIPE_B_SCRAMBLE_RESET;
3345                         break;
3346                 case PIPE_C:
3347                         tmp |= PIPE_C_SCRAMBLE_RESET;
3348                         break;
3349                 default:
3350                         return -EINVAL;
3351                 }
3352                 I915_WRITE(PORT_DFT2_G4X, tmp);
3353         }
3354
3355         return 0;
3356 }
3357
3358 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3359                                  enum pipe pipe,
3360                                  enum intel_pipe_crc_source *source,
3361                                  uint32_t *val)
3362 {
3363         struct drm_i915_private *dev_priv = dev->dev_private;
3364         bool need_stable_symbols = false;
3365
3366         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3367                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3368                 if (ret)
3369                         return ret;
3370         }
3371
3372         switch (*source) {
3373         case INTEL_PIPE_CRC_SOURCE_PIPE:
3374                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3375                 break;
3376         case INTEL_PIPE_CRC_SOURCE_TV:
3377                 if (!SUPPORTS_TV(dev))
3378                         return -EINVAL;
3379                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3380                 break;
3381         case INTEL_PIPE_CRC_SOURCE_DP_B:
3382                 if (!IS_G4X(dev))
3383                         return -EINVAL;
3384                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3385                 need_stable_symbols = true;
3386                 break;
3387         case INTEL_PIPE_CRC_SOURCE_DP_C:
3388                 if (!IS_G4X(dev))
3389                         return -EINVAL;
3390                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3391                 need_stable_symbols = true;
3392                 break;
3393         case INTEL_PIPE_CRC_SOURCE_DP_D:
3394                 if (!IS_G4X(dev))
3395                         return -EINVAL;
3396                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3397                 need_stable_symbols = true;
3398                 break;
3399         case INTEL_PIPE_CRC_SOURCE_NONE:
3400                 *val = 0;
3401                 break;
3402         default:
3403                 return -EINVAL;
3404         }
3405
3406         /*
3407          * When the pipe CRC tap point is after the transcoders we need
3408          * to tweak symbol-level features to produce a deterministic series of
3409          * symbols for a given frame. We need to reset those features only once
3410          * a frame (instead of every nth symbol):
3411          *   - DC-balance: used to ensure a better clock recovery from the data
3412          *     link (SDVO)
3413          *   - DisplayPort scrambling: used for EMI reduction
3414          */
3415         if (need_stable_symbols) {
3416                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3417
3418                 WARN_ON(!IS_G4X(dev));
3419
3420                 I915_WRITE(PORT_DFT_I9XX,
3421                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3422
3423                 if (pipe == PIPE_A)
3424                         tmp |= PIPE_A_SCRAMBLE_RESET;
3425                 else
3426                         tmp |= PIPE_B_SCRAMBLE_RESET;
3427
3428                 I915_WRITE(PORT_DFT2_G4X, tmp);
3429         }
3430
3431         return 0;
3432 }
3433
3434 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3435                                          enum pipe pipe)
3436 {
3437         struct drm_i915_private *dev_priv = dev->dev_private;
3438         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3439
3440         switch (pipe) {
3441         case PIPE_A:
3442                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3443                 break;
3444         case PIPE_B:
3445                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3446                 break;
3447         case PIPE_C:
3448                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3449                 break;
3450         default:
3451                 return;
3452         }
3453         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3454                 tmp &= ~DC_BALANCE_RESET_VLV;
3455         I915_WRITE(PORT_DFT2_G4X, tmp);
3456
3457 }
3458
3459 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3460                                          enum pipe pipe)
3461 {
3462         struct drm_i915_private *dev_priv = dev->dev_private;
3463         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3464
3465         if (pipe == PIPE_A)
3466                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3467         else
3468                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3469         I915_WRITE(PORT_DFT2_G4X, tmp);
3470
3471         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3472                 I915_WRITE(PORT_DFT_I9XX,
3473                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3474         }
3475 }
3476
3477 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3478                                 uint32_t *val)
3479 {
3480         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3481                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3482
3483         switch (*source) {
3484         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3485                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3486                 break;
3487         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3488                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3489                 break;
3490         case INTEL_PIPE_CRC_SOURCE_PIPE:
3491                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3492                 break;
3493         case INTEL_PIPE_CRC_SOURCE_NONE:
3494                 *val = 0;
3495                 break;
3496         default:
3497                 return -EINVAL;
3498         }
3499
3500         return 0;
3501 }
3502
3503 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3504 {
3505         struct drm_i915_private *dev_priv = dev->dev_private;
3506         struct intel_crtc *crtc =
3507                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3508
3509         drm_modeset_lock_all(dev);
3510         /*
3511          * If we use the eDP transcoder we need to make sure that we don't
3512          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3513          * relevant on hsw with pipe A when using the always-on power well
3514          * routing.
3515          */
3516         if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3517             !crtc->config->pch_pfit.enabled) {
3518                 crtc->config->pch_pfit.force_thru = true;
3519
3520                 intel_display_power_get(dev_priv,
3521                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3522
3523                 dev_priv->display.crtc_disable(&crtc->base);
3524                 dev_priv->display.crtc_enable(&crtc->base);
3525         }
3526         drm_modeset_unlock_all(dev);
3527 }
3528
3529 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3530 {
3531         struct drm_i915_private *dev_priv = dev->dev_private;
3532         struct intel_crtc *crtc =
3533                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3534
3535         drm_modeset_lock_all(dev);
3536         /*
3537          * If we use the eDP transcoder we need to make sure that we don't
3538          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3539          * relevant on hsw with pipe A when using the always-on power well
3540          * routing.
3541          */
3542         if (crtc->config->pch_pfit.force_thru) {
3543                 crtc->config->pch_pfit.force_thru = false;
3544
3545                 dev_priv->display.crtc_disable(&crtc->base);
3546                 dev_priv->display.crtc_enable(&crtc->base);
3547
3548                 intel_display_power_put(dev_priv,
3549                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3550         }
3551         drm_modeset_unlock_all(dev);
3552 }
3553
3554 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3555                                 enum pipe pipe,
3556                                 enum intel_pipe_crc_source *source,
3557                                 uint32_t *val)
3558 {
3559         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3560                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3561
3562         switch (*source) {
3563         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3564                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3565                 break;
3566         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3567                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3568                 break;
3569         case INTEL_PIPE_CRC_SOURCE_PF:
3570                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3571                         hsw_trans_edp_pipe_A_crc_wa(dev);
3572
3573                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3574                 break;
3575         case INTEL_PIPE_CRC_SOURCE_NONE:
3576                 *val = 0;
3577                 break;
3578         default:
3579                 return -EINVAL;
3580         }
3581
3582         return 0;
3583 }
3584
3585 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3586                                enum intel_pipe_crc_source source)
3587 {
3588         struct drm_i915_private *dev_priv = dev->dev_private;
3589         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3590         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3591                                                                         pipe));
3592         u32 val = 0; /* shut up gcc */
3593         int ret;
3594
3595         if (pipe_crc->source == source)
3596                 return 0;
3597
3598         /* forbid changing the source without going back to 'none' */
3599         if (pipe_crc->source && source)
3600                 return -EINVAL;
3601
3602         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3603                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3604                 return -EIO;
3605         }
3606
3607         if (IS_GEN2(dev))
3608                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3609         else if (INTEL_INFO(dev)->gen < 5)
3610                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3611         else if (IS_VALLEYVIEW(dev))
3612                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3613         else if (IS_GEN5(dev) || IS_GEN6(dev))
3614                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3615         else
3616                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3617
3618         if (ret != 0)
3619                 return ret;
3620
3621         /* none -> real source transition */
3622         if (source) {
3623                 struct intel_pipe_crc_entry *entries;
3624
3625                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3626                                  pipe_name(pipe), pipe_crc_source_name(source));
3627
3628                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3629                                   sizeof(pipe_crc->entries[0]),
3630                                   GFP_KERNEL);
3631                 if (!entries)
3632                         return -ENOMEM;
3633
3634                 /*
3635                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3636                  * enabled and disabled dynamically based on package C states,
3637                  * user space can't make reliable use of the CRCs, so let's just
3638                  * completely disable it.
3639                  */
3640                 hsw_disable_ips(crtc);
3641
3642                 spin_lock_irq(&pipe_crc->lock);
3643                 kfree(pipe_crc->entries);
3644                 pipe_crc->entries = entries;
3645                 pipe_crc->head = 0;
3646                 pipe_crc->tail = 0;
3647                 spin_unlock_irq(&pipe_crc->lock);
3648         }
3649
3650         pipe_crc->source = source;
3651
3652         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3653         POSTING_READ(PIPE_CRC_CTL(pipe));
3654
3655         /* real source -> none transition */
3656         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3657                 struct intel_pipe_crc_entry *entries;
3658                 struct intel_crtc *crtc =
3659                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3660
3661                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3662                                  pipe_name(pipe));
3663
3664                 drm_modeset_lock(&crtc->base.mutex, NULL);
3665                 if (crtc->active)
3666                         intel_wait_for_vblank(dev, pipe);
3667                 drm_modeset_unlock(&crtc->base.mutex);
3668
3669                 spin_lock_irq(&pipe_crc->lock);
3670                 entries = pipe_crc->entries;
3671                 pipe_crc->entries = NULL;
3672                 pipe_crc->head = 0;
3673                 pipe_crc->tail = 0;
3674                 spin_unlock_irq(&pipe_crc->lock);
3675
3676                 kfree(entries);
3677
3678                 if (IS_G4X(dev))
3679                         g4x_undo_pipe_scramble_reset(dev, pipe);
3680                 else if (IS_VALLEYVIEW(dev))
3681                         vlv_undo_pipe_scramble_reset(dev, pipe);
3682                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3683                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3684
3685                 hsw_enable_ips(crtc);
3686         }
3687
3688         return 0;
3689 }
3690
3691 /*
3692  * Parse pipe CRC command strings:
3693  *   command: wsp* object wsp+ name wsp+ source wsp*
3694  *   object: 'pipe'
3695  *   name: (A | B | C)
3696  *   source: (none | plane1 | plane2 | pf)
3697  *   wsp: (#0x20 | #0x9 | #0xA)+
3698  *
3699  * eg.:
3700  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3701  *  "pipe A none"    ->  Stop CRC
3702  */
3703 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3704 {
3705         int n_words = 0;
3706
3707         while (*buf) {
3708                 char *end;
3709
3710                 /* skip leading white space */
3711                 buf = skip_spaces(buf);
3712                 if (!*buf)
3713                         break;  /* end of buffer */
3714
3715                 /* find end of word */
3716                 for (end = buf; *end && !isspace(*end); end++)
3717                         ;
3718
3719                 if (n_words == max_words) {
3720                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3721                                          max_words);
3722                         return -EINVAL; /* ran out of words[] before bytes */
3723                 }
3724
3725                 if (*end)
3726                         *end++ = '\0';
3727                 words[n_words++] = buf;
3728                 buf = end;
3729         }
3730
3731         return n_words;
3732 }
3733
3734 enum intel_pipe_crc_object {
3735         PIPE_CRC_OBJECT_PIPE,
3736 };
3737
3738 static const char * const pipe_crc_objects[] = {
3739         "pipe",
3740 };
3741
3742 static int
3743 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3744 {
3745         int i;
3746
3747         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3748                 if (!strcmp(buf, pipe_crc_objects[i])) {
3749                         *o = i;
3750                         return 0;
3751                     }
3752
3753         return -EINVAL;
3754 }
3755
3756 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3757 {
3758         const char name = buf[0];
3759
3760         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3761                 return -EINVAL;
3762
3763         *pipe = name - 'A';
3764
3765         return 0;
3766 }
3767
3768 static int
3769 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3770 {
3771         int i;
3772
3773         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3774                 if (!strcmp(buf, pipe_crc_sources[i])) {
3775                         *s = i;
3776                         return 0;
3777                     }
3778
3779         return -EINVAL;
3780 }
3781
3782 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3783 {
3784 #define N_WORDS 3
3785         int n_words;
3786         char *words[N_WORDS];
3787         enum pipe pipe;
3788         enum intel_pipe_crc_object object;
3789         enum intel_pipe_crc_source source;
3790
3791         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3792         if (n_words != N_WORDS) {
3793                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3794                                  N_WORDS);
3795                 return -EINVAL;
3796         }
3797
3798         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3799                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3800                 return -EINVAL;
3801         }
3802
3803         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3804                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3805                 return -EINVAL;
3806         }
3807
3808         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3809                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3810                 return -EINVAL;
3811         }
3812
3813         return pipe_crc_set_source(dev, pipe, source);
3814 }
3815
3816 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3817                                      size_t len, loff_t *offp)
3818 {
3819         struct seq_file *m = file->private_data;
3820         struct drm_device *dev = m->private;
3821         char *tmpbuf;
3822         int ret;
3823
3824         if (len == 0)
3825                 return 0;
3826
3827         if (len > PAGE_SIZE - 1) {
3828                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3829                                  PAGE_SIZE);
3830                 return -E2BIG;
3831         }
3832
3833         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3834         if (!tmpbuf)
3835                 return -ENOMEM;
3836
3837         if (copy_from_user(tmpbuf, ubuf, len)) {
3838                 ret = -EFAULT;
3839                 goto out;
3840         }
3841         tmpbuf[len] = '\0';
3842
3843         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3844
3845 out:
3846         kfree(tmpbuf);
3847         if (ret < 0)
3848                 return ret;
3849
3850         *offp += len;
3851         return len;
3852 }
3853
3854 static const struct file_operations i915_display_crc_ctl_fops = {
3855         .owner = THIS_MODULE,
3856         .open = display_crc_ctl_open,
3857         .read = seq_read,
3858         .llseek = seq_lseek,
3859         .release = single_release,
3860         .write = display_crc_ctl_write
3861 };
3862
3863 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3864 {
3865         struct drm_device *dev = m->private;
3866         int num_levels = ilk_wm_max_level(dev) + 1;
3867         int level;
3868
3869         drm_modeset_lock_all(dev);
3870
3871         for (level = 0; level < num_levels; level++) {
3872                 unsigned int latency = wm[level];
3873
3874                 /*
3875                  * - WM1+ latency values in 0.5us units
3876                  * - latencies are in us on gen9
3877                  */
3878                 if (INTEL_INFO(dev)->gen >= 9)
3879                         latency *= 10;
3880                 else if (level > 0)
3881                         latency *= 5;
3882
3883                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3884                            level, wm[level], latency / 10, latency % 10);
3885         }
3886
3887         drm_modeset_unlock_all(dev);
3888 }
3889
3890 static int pri_wm_latency_show(struct seq_file *m, void *data)
3891 {
3892         struct drm_device *dev = m->private;
3893         struct drm_i915_private *dev_priv = dev->dev_private;
3894         const uint16_t *latencies;
3895
3896         if (INTEL_INFO(dev)->gen >= 9)
3897                 latencies = dev_priv->wm.skl_latency;
3898         else
3899                 latencies = to_i915(dev)->wm.pri_latency;
3900
3901         wm_latency_show(m, latencies);
3902
3903         return 0;
3904 }
3905
3906 static int spr_wm_latency_show(struct seq_file *m, void *data)
3907 {
3908         struct drm_device *dev = m->private;
3909         struct drm_i915_private *dev_priv = dev->dev_private;
3910         const uint16_t *latencies;
3911
3912         if (INTEL_INFO(dev)->gen >= 9)
3913                 latencies = dev_priv->wm.skl_latency;
3914         else
3915                 latencies = to_i915(dev)->wm.spr_latency;
3916
3917         wm_latency_show(m, latencies);
3918
3919         return 0;
3920 }
3921
3922 static int cur_wm_latency_show(struct seq_file *m, void *data)
3923 {
3924         struct drm_device *dev = m->private;
3925         struct drm_i915_private *dev_priv = dev->dev_private;
3926         const uint16_t *latencies;
3927
3928         if (INTEL_INFO(dev)->gen >= 9)
3929                 latencies = dev_priv->wm.skl_latency;
3930         else
3931                 latencies = to_i915(dev)->wm.cur_latency;
3932
3933         wm_latency_show(m, latencies);
3934
3935         return 0;
3936 }
3937
3938 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3939 {
3940         struct drm_device *dev = inode->i_private;
3941
3942         if (HAS_GMCH_DISPLAY(dev))
3943                 return -ENODEV;
3944
3945         return single_open(file, pri_wm_latency_show, dev);
3946 }
3947
3948 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3949 {
3950         struct drm_device *dev = inode->i_private;
3951
3952         if (HAS_GMCH_DISPLAY(dev))
3953                 return -ENODEV;
3954
3955         return single_open(file, spr_wm_latency_show, dev);
3956 }
3957
3958 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3959 {
3960         struct drm_device *dev = inode->i_private;
3961
3962         if (HAS_GMCH_DISPLAY(dev))
3963                 return -ENODEV;
3964
3965         return single_open(file, cur_wm_latency_show, dev);
3966 }
3967
3968 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3969                                 size_t len, loff_t *offp, uint16_t wm[8])
3970 {
3971         struct seq_file *m = file->private_data;
3972         struct drm_device *dev = m->private;
3973         uint16_t new[8] = { 0 };
3974         int num_levels = ilk_wm_max_level(dev) + 1;
3975         int level;
3976         int ret;
3977         char tmp[32];
3978
3979         if (len >= sizeof(tmp))
3980                 return -EINVAL;
3981
3982         if (copy_from_user(tmp, ubuf, len))
3983                 return -EFAULT;
3984
3985         tmp[len] = '\0';
3986
3987         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3988                      &new[0], &new[1], &new[2], &new[3],
3989                      &new[4], &new[5], &new[6], &new[7]);
3990         if (ret != num_levels)
3991                 return -EINVAL;
3992
3993         drm_modeset_lock_all(dev);
3994
3995         for (level = 0; level < num_levels; level++)
3996                 wm[level] = new[level];
3997
3998         drm_modeset_unlock_all(dev);
3999
4000         return len;
4001 }
4002
4003
4004 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4005                                     size_t len, loff_t *offp)
4006 {
4007         struct seq_file *m = file->private_data;
4008         struct drm_device *dev = m->private;
4009         struct drm_i915_private *dev_priv = dev->dev_private;
4010         uint16_t *latencies;
4011
4012         if (INTEL_INFO(dev)->gen >= 9)
4013                 latencies = dev_priv->wm.skl_latency;
4014         else
4015                 latencies = to_i915(dev)->wm.pri_latency;
4016
4017         return wm_latency_write(file, ubuf, len, offp, latencies);
4018 }
4019
4020 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4021                                     size_t len, loff_t *offp)
4022 {
4023         struct seq_file *m = file->private_data;
4024         struct drm_device *dev = m->private;
4025         struct drm_i915_private *dev_priv = dev->dev_private;
4026         uint16_t *latencies;
4027
4028         if (INTEL_INFO(dev)->gen >= 9)
4029                 latencies = dev_priv->wm.skl_latency;
4030         else
4031                 latencies = to_i915(dev)->wm.spr_latency;
4032
4033         return wm_latency_write(file, ubuf, len, offp, latencies);
4034 }
4035
4036 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4037                                     size_t len, loff_t *offp)
4038 {
4039         struct seq_file *m = file->private_data;
4040         struct drm_device *dev = m->private;
4041         struct drm_i915_private *dev_priv = dev->dev_private;
4042         uint16_t *latencies;
4043
4044         if (INTEL_INFO(dev)->gen >= 9)
4045                 latencies = dev_priv->wm.skl_latency;
4046         else
4047                 latencies = to_i915(dev)->wm.cur_latency;
4048
4049         return wm_latency_write(file, ubuf, len, offp, latencies);
4050 }
4051
4052 static const struct file_operations i915_pri_wm_latency_fops = {
4053         .owner = THIS_MODULE,
4054         .open = pri_wm_latency_open,
4055         .read = seq_read,
4056         .llseek = seq_lseek,
4057         .release = single_release,
4058         .write = pri_wm_latency_write
4059 };
4060
4061 static const struct file_operations i915_spr_wm_latency_fops = {
4062         .owner = THIS_MODULE,
4063         .open = spr_wm_latency_open,
4064         .read = seq_read,
4065         .llseek = seq_lseek,
4066         .release = single_release,
4067         .write = spr_wm_latency_write
4068 };
4069
4070 static const struct file_operations i915_cur_wm_latency_fops = {
4071         .owner = THIS_MODULE,
4072         .open = cur_wm_latency_open,
4073         .read = seq_read,
4074         .llseek = seq_lseek,
4075         .release = single_release,
4076         .write = cur_wm_latency_write
4077 };
4078
4079 static int
4080 i915_wedged_get(void *data, u64 *val)
4081 {
4082         struct drm_device *dev = data;
4083         struct drm_i915_private *dev_priv = dev->dev_private;
4084
4085         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4086
4087         return 0;
4088 }
4089
4090 static int
4091 i915_wedged_set(void *data, u64 val)
4092 {
4093         struct drm_device *dev = data;
4094         struct drm_i915_private *dev_priv = dev->dev_private;
4095
4096         /*
4097          * There is no safeguard against this debugfs entry colliding
4098          * with the hangcheck calling same i915_handle_error() in
4099          * parallel, causing an explosion. For now we assume that the
4100          * test harness is responsible enough not to inject gpu hangs
4101          * while it is writing to 'i915_wedged'
4102          */
4103
4104         if (i915_reset_in_progress(&dev_priv->gpu_error))
4105                 return -EAGAIN;
4106
4107         intel_runtime_pm_get(dev_priv);
4108
4109         i915_handle_error(dev, val,
4110                           "Manually setting wedged to %llu", val);
4111
4112         intel_runtime_pm_put(dev_priv);
4113
4114         return 0;
4115 }
4116
4117 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4118                         i915_wedged_get, i915_wedged_set,
4119                         "%llu\n");
4120
4121 static int
4122 i915_ring_stop_get(void *data, u64 *val)
4123 {
4124         struct drm_device *dev = data;
4125         struct drm_i915_private *dev_priv = dev->dev_private;
4126
4127         *val = dev_priv->gpu_error.stop_rings;
4128
4129         return 0;
4130 }
4131
4132 static int
4133 i915_ring_stop_set(void *data, u64 val)
4134 {
4135         struct drm_device *dev = data;
4136         struct drm_i915_private *dev_priv = dev->dev_private;
4137         int ret;
4138
4139         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4140
4141         ret = mutex_lock_interruptible(&dev->struct_mutex);
4142         if (ret)
4143                 return ret;
4144
4145         dev_priv->gpu_error.stop_rings = val;
4146         mutex_unlock(&dev->struct_mutex);
4147
4148         return 0;
4149 }
4150
4151 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4152                         i915_ring_stop_get, i915_ring_stop_set,
4153                         "0x%08llx\n");
4154
4155 static int
4156 i915_ring_missed_irq_get(void *data, u64 *val)
4157 {
4158         struct drm_device *dev = data;
4159         struct drm_i915_private *dev_priv = dev->dev_private;
4160
4161         *val = dev_priv->gpu_error.missed_irq_rings;
4162         return 0;
4163 }
4164
4165 static int
4166 i915_ring_missed_irq_set(void *data, u64 val)
4167 {
4168         struct drm_device *dev = data;
4169         struct drm_i915_private *dev_priv = dev->dev_private;
4170         int ret;
4171
4172         /* Lock against concurrent debugfs callers */
4173         ret = mutex_lock_interruptible(&dev->struct_mutex);
4174         if (ret)
4175                 return ret;
4176         dev_priv->gpu_error.missed_irq_rings = val;
4177         mutex_unlock(&dev->struct_mutex);
4178
4179         return 0;
4180 }
4181
4182 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4183                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4184                         "0x%08llx\n");
4185
4186 static int
4187 i915_ring_test_irq_get(void *data, u64 *val)
4188 {
4189         struct drm_device *dev = data;
4190         struct drm_i915_private *dev_priv = dev->dev_private;
4191
4192         *val = dev_priv->gpu_error.test_irq_rings;
4193
4194         return 0;
4195 }
4196
4197 static int
4198 i915_ring_test_irq_set(void *data, u64 val)
4199 {
4200         struct drm_device *dev = data;
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202         int ret;
4203
4204         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4205
4206         /* Lock against concurrent debugfs callers */
4207         ret = mutex_lock_interruptible(&dev->struct_mutex);
4208         if (ret)
4209                 return ret;
4210
4211         dev_priv->gpu_error.test_irq_rings = val;
4212         mutex_unlock(&dev->struct_mutex);
4213
4214         return 0;
4215 }
4216
4217 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4218                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4219                         "0x%08llx\n");
4220
4221 #define DROP_UNBOUND 0x1
4222 #define DROP_BOUND 0x2
4223 #define DROP_RETIRE 0x4
4224 #define DROP_ACTIVE 0x8
4225 #define DROP_ALL (DROP_UNBOUND | \
4226                   DROP_BOUND | \
4227                   DROP_RETIRE | \
4228                   DROP_ACTIVE)
4229 static int
4230 i915_drop_caches_get(void *data, u64 *val)
4231 {
4232         *val = DROP_ALL;
4233
4234         return 0;
4235 }
4236
4237 static int
4238 i915_drop_caches_set(void *data, u64 val)
4239 {
4240         struct drm_device *dev = data;
4241         struct drm_i915_private *dev_priv = dev->dev_private;
4242         int ret;
4243
4244         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4245
4246         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4247          * on ioctls on -EAGAIN. */
4248         ret = mutex_lock_interruptible(&dev->struct_mutex);
4249         if (ret)
4250                 return ret;
4251
4252         if (val & DROP_ACTIVE) {
4253                 ret = i915_gpu_idle(dev);
4254                 if (ret)
4255                         goto unlock;
4256         }
4257
4258         if (val & (DROP_RETIRE | DROP_ACTIVE))
4259                 i915_gem_retire_requests(dev);
4260
4261         if (val & DROP_BOUND)
4262                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4263
4264         if (val & DROP_UNBOUND)
4265                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4266
4267 unlock:
4268         mutex_unlock(&dev->struct_mutex);
4269
4270         return ret;
4271 }
4272
4273 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4274                         i915_drop_caches_get, i915_drop_caches_set,
4275                         "0x%08llx\n");
4276
4277 static int
4278 i915_max_freq_get(void *data, u64 *val)
4279 {
4280         struct drm_device *dev = data;
4281         struct drm_i915_private *dev_priv = dev->dev_private;
4282         int ret;
4283
4284         if (INTEL_INFO(dev)->gen < 6)
4285                 return -ENODEV;
4286
4287         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4288
4289         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4290         if (ret)
4291                 return ret;
4292
4293         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4294         mutex_unlock(&dev_priv->rps.hw_lock);
4295
4296         return 0;
4297 }
4298
4299 static int
4300 i915_max_freq_set(void *data, u64 val)
4301 {
4302         struct drm_device *dev = data;
4303         struct drm_i915_private *dev_priv = dev->dev_private;
4304         u32 hw_max, hw_min;
4305         int ret;
4306
4307         if (INTEL_INFO(dev)->gen < 6)
4308                 return -ENODEV;
4309
4310         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4311
4312         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4313
4314         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4315         if (ret)
4316                 return ret;
4317
4318         /*
4319          * Turbo will still be enabled, but won't go above the set value.
4320          */
4321         val = intel_freq_opcode(dev_priv, val);
4322
4323         hw_max = dev_priv->rps.max_freq;
4324         hw_min = dev_priv->rps.min_freq;
4325
4326         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4327                 mutex_unlock(&dev_priv->rps.hw_lock);
4328                 return -EINVAL;
4329         }
4330
4331         dev_priv->rps.max_freq_softlimit = val;
4332
4333         intel_set_rps(dev, val);
4334
4335         mutex_unlock(&dev_priv->rps.hw_lock);
4336
4337         return 0;
4338 }
4339
4340 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4341                         i915_max_freq_get, i915_max_freq_set,
4342                         "%llu\n");
4343
4344 static int
4345 i915_min_freq_get(void *data, u64 *val)
4346 {
4347         struct drm_device *dev = data;
4348         struct drm_i915_private *dev_priv = dev->dev_private;
4349         int ret;
4350
4351         if (INTEL_INFO(dev)->gen < 6)
4352                 return -ENODEV;
4353
4354         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4355
4356         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4357         if (ret)
4358                 return ret;
4359
4360         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4361         mutex_unlock(&dev_priv->rps.hw_lock);
4362
4363         return 0;
4364 }
4365
4366 static int
4367 i915_min_freq_set(void *data, u64 val)
4368 {
4369         struct drm_device *dev = data;
4370         struct drm_i915_private *dev_priv = dev->dev_private;
4371         u32 hw_max, hw_min;
4372         int ret;
4373
4374         if (INTEL_INFO(dev)->gen < 6)
4375                 return -ENODEV;
4376
4377         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4378
4379         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4380
4381         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4382         if (ret)
4383                 return ret;
4384
4385         /*
4386          * Turbo will still be enabled, but won't go below the set value.
4387          */
4388         val = intel_freq_opcode(dev_priv, val);
4389
4390         hw_max = dev_priv->rps.max_freq;
4391         hw_min = dev_priv->rps.min_freq;
4392
4393         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4394                 mutex_unlock(&dev_priv->rps.hw_lock);
4395                 return -EINVAL;
4396         }
4397
4398         dev_priv->rps.min_freq_softlimit = val;
4399
4400         intel_set_rps(dev, val);
4401
4402         mutex_unlock(&dev_priv->rps.hw_lock);
4403
4404         return 0;
4405 }
4406
4407 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4408                         i915_min_freq_get, i915_min_freq_set,
4409                         "%llu\n");
4410
4411 static int
4412 i915_cache_sharing_get(void *data, u64 *val)
4413 {
4414         struct drm_device *dev = data;
4415         struct drm_i915_private *dev_priv = dev->dev_private;
4416         u32 snpcr;
4417         int ret;
4418
4419         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4420                 return -ENODEV;
4421
4422         ret = mutex_lock_interruptible(&dev->struct_mutex);
4423         if (ret)
4424                 return ret;
4425         intel_runtime_pm_get(dev_priv);
4426
4427         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4428
4429         intel_runtime_pm_put(dev_priv);
4430         mutex_unlock(&dev_priv->dev->struct_mutex);
4431
4432         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4433
4434         return 0;
4435 }
4436
4437 static int
4438 i915_cache_sharing_set(void *data, u64 val)
4439 {
4440         struct drm_device *dev = data;
4441         struct drm_i915_private *dev_priv = dev->dev_private;
4442         u32 snpcr;
4443
4444         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4445                 return -ENODEV;
4446
4447         if (val > 3)
4448                 return -EINVAL;
4449
4450         intel_runtime_pm_get(dev_priv);
4451         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4452
4453         /* Update the cache sharing policy here as well */
4454         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4455         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4456         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4457         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4458
4459         intel_runtime_pm_put(dev_priv);
4460         return 0;
4461 }
4462
4463 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4464                         i915_cache_sharing_get, i915_cache_sharing_set,
4465                         "%llu\n");
4466
4467 static int i915_sseu_status(struct seq_file *m, void *unused)
4468 {
4469         struct drm_info_node *node = (struct drm_info_node *) m->private;
4470         struct drm_device *dev = node->minor->dev;
4471         struct drm_i915_private *dev_priv = dev->dev_private;
4472         unsigned int s_tot = 0, ss_tot = 0, ss_per = 0, eu_tot = 0, eu_per = 0;
4473
4474         if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
4475                 return -ENODEV;
4476
4477         seq_puts(m, "SSEU Device Info\n");
4478         seq_printf(m, "  Available Slice Total: %u\n",
4479                    INTEL_INFO(dev)->slice_total);
4480         seq_printf(m, "  Available Subslice Total: %u\n",
4481                    INTEL_INFO(dev)->subslice_total);
4482         seq_printf(m, "  Available Subslice Per Slice: %u\n",
4483                    INTEL_INFO(dev)->subslice_per_slice);
4484         seq_printf(m, "  Available EU Total: %u\n",
4485                    INTEL_INFO(dev)->eu_total);
4486         seq_printf(m, "  Available EU Per Subslice: %u\n",
4487                    INTEL_INFO(dev)->eu_per_subslice);
4488         seq_printf(m, "  Has Slice Power Gating: %s\n",
4489                    yesno(INTEL_INFO(dev)->has_slice_pg));
4490         seq_printf(m, "  Has Subslice Power Gating: %s\n",
4491                    yesno(INTEL_INFO(dev)->has_subslice_pg));
4492         seq_printf(m, "  Has EU Power Gating: %s\n",
4493                    yesno(INTEL_INFO(dev)->has_eu_pg));
4494
4495         seq_puts(m, "SSEU Device Status\n");
4496         if (IS_CHERRYVIEW(dev)) {
4497                 const int ss_max = 2;
4498                 int ss;
4499                 u32 sig1[ss_max], sig2[ss_max];
4500
4501                 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4502                 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4503                 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4504                 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4505
4506                 for (ss = 0; ss < ss_max; ss++) {
4507                         unsigned int eu_cnt;
4508
4509                         if (sig1[ss] & CHV_SS_PG_ENABLE)
4510                                 /* skip disabled subslice */
4511                                 continue;
4512
4513                         s_tot = 1;
4514                         ss_per++;
4515                         eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4516                                  ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4517                                  ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4518                                  ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4519                         eu_tot += eu_cnt;
4520                         eu_per = max(eu_per, eu_cnt);
4521                 }
4522                 ss_tot = ss_per;
4523         } else if (IS_SKYLAKE(dev)) {
4524                 const int s_max = 3, ss_max = 4;
4525                 int s, ss;
4526                 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4527
4528                 s_reg[0] = I915_READ(GEN9_SLICE0_PGCTL_ACK);
4529                 s_reg[1] = I915_READ(GEN9_SLICE1_PGCTL_ACK);
4530                 s_reg[2] = I915_READ(GEN9_SLICE2_PGCTL_ACK);
4531                 eu_reg[0] = I915_READ(GEN9_SLICE0_SS01_EU_PGCTL_ACK);
4532                 eu_reg[1] = I915_READ(GEN9_SLICE0_SS23_EU_PGCTL_ACK);
4533                 eu_reg[2] = I915_READ(GEN9_SLICE1_SS01_EU_PGCTL_ACK);
4534                 eu_reg[3] = I915_READ(GEN9_SLICE1_SS23_EU_PGCTL_ACK);
4535                 eu_reg[4] = I915_READ(GEN9_SLICE2_SS01_EU_PGCTL_ACK);
4536                 eu_reg[5] = I915_READ(GEN9_SLICE2_SS23_EU_PGCTL_ACK);
4537                 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4538                              GEN9_PGCTL_SSA_EU19_ACK |
4539                              GEN9_PGCTL_SSA_EU210_ACK |
4540                              GEN9_PGCTL_SSA_EU311_ACK;
4541                 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4542                              GEN9_PGCTL_SSB_EU19_ACK |
4543                              GEN9_PGCTL_SSB_EU210_ACK |
4544                              GEN9_PGCTL_SSB_EU311_ACK;
4545
4546                 for (s = 0; s < s_max; s++) {
4547                         if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4548                                 /* skip disabled slice */
4549                                 continue;
4550
4551                         s_tot++;
4552                         ss_per = INTEL_INFO(dev)->subslice_per_slice;
4553                         ss_tot += ss_per;
4554                         for (ss = 0; ss < ss_max; ss++) {
4555                                 unsigned int eu_cnt;
4556
4557                                 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4558                                                        eu_mask[ss%2]);
4559                                 eu_tot += eu_cnt;
4560                                 eu_per = max(eu_per, eu_cnt);
4561                         }
4562                 }
4563         }
4564         seq_printf(m, "  Enabled Slice Total: %u\n", s_tot);
4565         seq_printf(m, "  Enabled Subslice Total: %u\n", ss_tot);
4566         seq_printf(m, "  Enabled Subslice Per Slice: %u\n", ss_per);
4567         seq_printf(m, "  Enabled EU Total: %u\n", eu_tot);
4568         seq_printf(m, "  Enabled EU Per Subslice: %u\n", eu_per);
4569
4570         return 0;
4571 }
4572
4573 static int i915_forcewake_open(struct inode *inode, struct file *file)
4574 {
4575         struct drm_device *dev = inode->i_private;
4576         struct drm_i915_private *dev_priv = dev->dev_private;
4577
4578         if (INTEL_INFO(dev)->gen < 6)
4579                 return 0;
4580
4581         intel_runtime_pm_get(dev_priv);
4582         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4583
4584         return 0;
4585 }
4586
4587 static int i915_forcewake_release(struct inode *inode, struct file *file)
4588 {
4589         struct drm_device *dev = inode->i_private;
4590         struct drm_i915_private *dev_priv = dev->dev_private;
4591
4592         if (INTEL_INFO(dev)->gen < 6)
4593                 return 0;
4594
4595         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4596         intel_runtime_pm_put(dev_priv);
4597
4598         return 0;
4599 }
4600
4601 static const struct file_operations i915_forcewake_fops = {
4602         .owner = THIS_MODULE,
4603         .open = i915_forcewake_open,
4604         .release = i915_forcewake_release,
4605 };
4606
4607 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4608 {
4609         struct drm_device *dev = minor->dev;
4610         struct dentry *ent;
4611
4612         ent = debugfs_create_file("i915_forcewake_user",
4613                                   S_IRUSR,
4614                                   root, dev,
4615                                   &i915_forcewake_fops);
4616         if (!ent)
4617                 return -ENOMEM;
4618
4619         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4620 }
4621
4622 static int i915_debugfs_create(struct dentry *root,
4623                                struct drm_minor *minor,
4624                                const char *name,
4625                                const struct file_operations *fops)
4626 {
4627         struct drm_device *dev = minor->dev;
4628         struct dentry *ent;
4629
4630         ent = debugfs_create_file(name,
4631                                   S_IRUGO | S_IWUSR,
4632                                   root, dev,
4633                                   fops);
4634         if (!ent)
4635                 return -ENOMEM;
4636
4637         return drm_add_fake_info_node(minor, ent, fops);
4638 }
4639
4640 static const struct drm_info_list i915_debugfs_list[] = {
4641         {"i915_capabilities", i915_capabilities, 0},
4642         {"i915_gem_objects", i915_gem_object_info, 0},
4643         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4644         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4645         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4646         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4647         {"i915_gem_stolen", i915_gem_stolen_list_info },
4648         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4649         {"i915_gem_request", i915_gem_request_info, 0},
4650         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4651         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4652         {"i915_gem_interrupt", i915_interrupt_info, 0},
4653         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4654         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4655         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4656         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4657         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4658         {"i915_frequency_info", i915_frequency_info, 0},
4659         {"i915_hangcheck_info", i915_hangcheck_info, 0},
4660         {"i915_drpc_info", i915_drpc_info, 0},
4661         {"i915_emon_status", i915_emon_status, 0},
4662         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4663         {"i915_fbc_status", i915_fbc_status, 0},
4664         {"i915_ips_status", i915_ips_status, 0},
4665         {"i915_sr_status", i915_sr_status, 0},
4666         {"i915_opregion", i915_opregion, 0},
4667         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4668         {"i915_context_status", i915_context_status, 0},
4669         {"i915_dump_lrc", i915_dump_lrc, 0},
4670         {"i915_execlists", i915_execlists, 0},
4671         {"i915_forcewake_domains", i915_forcewake_domains, 0},
4672         {"i915_swizzle_info", i915_swizzle_info, 0},
4673         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4674         {"i915_llc", i915_llc, 0},
4675         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4676         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4677         {"i915_energy_uJ", i915_energy_uJ, 0},
4678         {"i915_pc8_status", i915_pc8_status, 0},
4679         {"i915_power_domain_info", i915_power_domain_info, 0},
4680         {"i915_display_info", i915_display_info, 0},
4681         {"i915_semaphore_status", i915_semaphore_status, 0},
4682         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4683         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4684         {"i915_wa_registers", i915_wa_registers, 0},
4685         {"i915_ddb_info", i915_ddb_info, 0},
4686         {"i915_sseu_status", i915_sseu_status, 0},
4687         {"i915_drrs_status", i915_drrs_status, 0},
4688 };
4689 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4690
4691 static const struct i915_debugfs_files {
4692         const char *name;
4693         const struct file_operations *fops;
4694 } i915_debugfs_files[] = {
4695         {"i915_wedged", &i915_wedged_fops},
4696         {"i915_max_freq", &i915_max_freq_fops},
4697         {"i915_min_freq", &i915_min_freq_fops},
4698         {"i915_cache_sharing", &i915_cache_sharing_fops},
4699         {"i915_ring_stop", &i915_ring_stop_fops},
4700         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4701         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4702         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4703         {"i915_error_state", &i915_error_state_fops},
4704         {"i915_next_seqno", &i915_next_seqno_fops},
4705         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4706         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4707         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4708         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4709         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4710 };
4711
4712 void intel_display_crc_init(struct drm_device *dev)
4713 {
4714         struct drm_i915_private *dev_priv = dev->dev_private;
4715         enum pipe pipe;
4716
4717         for_each_pipe(dev_priv, pipe) {
4718                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4719
4720                 pipe_crc->opened = false;
4721                 spin_lock_init(&pipe_crc->lock);
4722                 init_waitqueue_head(&pipe_crc->wq);
4723         }
4724 }
4725
4726 int i915_debugfs_init(struct drm_minor *minor)
4727 {
4728         int ret, i;
4729
4730         ret = i915_forcewake_create(minor->debugfs_root, minor);
4731         if (ret)
4732                 return ret;
4733
4734         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4735                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4736                 if (ret)
4737                         return ret;
4738         }
4739
4740         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4741                 ret = i915_debugfs_create(minor->debugfs_root, minor,
4742                                           i915_debugfs_files[i].name,
4743                                           i915_debugfs_files[i].fops);
4744                 if (ret)
4745                         return ret;
4746         }
4747
4748         return drm_debugfs_create_files(i915_debugfs_list,
4749                                         I915_DEBUGFS_ENTRIES,
4750                                         minor->debugfs_root, minor);
4751 }
4752
4753 void i915_debugfs_cleanup(struct drm_minor *minor)
4754 {
4755         int i;
4756
4757         drm_debugfs_remove_files(i915_debugfs_list,
4758                                  I915_DEBUGFS_ENTRIES, minor);
4759
4760         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4761                                  1, minor);
4762
4763         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4764                 struct drm_info_list *info_list =
4765                         (struct drm_info_list *)&i915_pipe_crc_data[i];
4766
4767                 drm_debugfs_remove_files(info_list, 1, minor);
4768         }
4769
4770         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4771                 struct drm_info_list *info_list =
4772                         (struct drm_info_list *) i915_debugfs_files[i].fops;
4773
4774                 drm_debugfs_remove_files(info_list, 1, minor);
4775         }
4776 }