6a27a0ef3b63f994e871c49f47513af8ea557b1c
[pandora-kernel.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172         unsigned quirks;
173
174         /*
175          * Spinlock for accessing fw_ohci data.  Never call out of
176          * this driver with this lock held.
177          */
178         spinlock_t lock;
179
180         struct ar_context ar_request_ctx;
181         struct ar_context ar_response_ctx;
182         struct context at_request_ctx;
183         struct context at_response_ctx;
184
185         u32 it_context_mask;
186         struct iso_context *it_context_list;
187         u64 ir_context_channels;
188         u32 ir_context_mask;
189         struct iso_context *ir_context_list;
190
191         __be32    *config_rom;
192         dma_addr_t config_rom_bus;
193         __be32    *next_config_rom;
194         dma_addr_t next_config_rom_bus;
195         __be32     next_header;
196
197         __le32    *self_id_cpu;
198         dma_addr_t self_id_bus;
199         struct tasklet_struct bus_reset_tasklet;
200
201         u32 self_id_buffer[512];
202 };
203
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206         return container_of(card, struct fw_ohci, card);
207 }
208
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
210 #define IR_CONTEXT_BUFFER_FILL          0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
215
216 #define CONTEXT_RUN     0x8000
217 #define CONTEXT_WAKE    0x1000
218 #define CONTEXT_DEAD    0x0800
219 #define CONTEXT_ACTIVE  0x0400
220
221 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
224
225 #define OHCI1394_REGISTER_SIZE          0x800
226 #define OHCI_LOOP_COUNT                 500
227 #define OHCI1394_PCI_HCI_Control        0x40
228 #define SELF_ID_BUF_SIZE                0x800
229 #define OHCI_TCODE_PHY_PACKET           0x0e
230 #define OHCI_VERSION_1_1                0x010010
231
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233
234 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
235
236 #define QUIRK_CYCLE_TIMER               1
237 #define QUIRK_RESET_PACKET              2
238 #define QUIRK_BE_HEADERS                4
239 #define QUIRK_NO_1394A                  8
240
241 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
242 static const struct {
243         unsigned short vendor, device, flags;
244 } ohci_quirks[] = {
245         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
246                                                             QUIRK_RESET_PACKET |
247                                                             QUIRK_NO_1394A},
248         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
249         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
250         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
251         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
252         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
253 };
254
255 /* This overrides anything that was found in ohci_quirks[]. */
256 static int param_quirks;
257 module_param_named(quirks, param_quirks, int, 0644);
258 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
259         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
260         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
261         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
262         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
263         ")");
264
265 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
266
267 #define OHCI_PARAM_DEBUG_AT_AR          1
268 #define OHCI_PARAM_DEBUG_SELFIDS        2
269 #define OHCI_PARAM_DEBUG_IRQS           4
270 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
271
272 static int param_debug;
273 module_param_named(debug, param_debug, int, 0644);
274 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
275         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
276         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
277         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
278         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
279         ", or a combination, or all = -1)");
280
281 static void log_irqs(u32 evt)
282 {
283         if (likely(!(param_debug &
284                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
285                 return;
286
287         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
288             !(evt & OHCI1394_busReset))
289                 return;
290
291         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
292             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
293             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
294             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
295             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
296             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
297             evt & OHCI1394_isochRx              ? " IR"                 : "",
298             evt & OHCI1394_isochTx              ? " IT"                 : "",
299             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
300             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
301             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
302             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
303             evt & OHCI1394_busReset             ? " busReset"           : "",
304             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
305                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
306                     OHCI1394_respTxComplete | OHCI1394_isochRx |
307                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
308                     OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
309                     OHCI1394_regAccessFail | OHCI1394_busReset)
310                                                 ? " ?"                  : "");
311 }
312
313 static const char *speed[] = {
314         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
315 };
316 static const char *power[] = {
317         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
318         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
319 };
320 static const char port[] = { '.', '-', 'p', 'c', };
321
322 static char _p(u32 *s, int shift)
323 {
324         return port[*s >> shift & 3];
325 }
326
327 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
328 {
329         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
330                 return;
331
332         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
333                   self_id_count, generation, node_id);
334
335         for (; self_id_count--; ++s)
336                 if ((*s & 1 << 23) == 0)
337                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
338                             "%s gc=%d %s %s%s%s\n",
339                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
340                             speed[*s >> 14 & 3], *s >> 16 & 63,
341                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
342                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
343                 else
344                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
345                             *s, *s >> 24 & 63,
346                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
347                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
348 }
349
350 static const char *evts[] = {
351         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
352         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
353         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
354         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
355         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
356         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
357         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
358         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
359         [0x10] = "-reserved-",          [0x11] = "ack_complete",
360         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
361         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
362         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
363         [0x18] = "-reserved-",          [0x19] = "-reserved-",
364         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
365         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
366         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
367         [0x20] = "pending/cancelled",
368 };
369 static const char *tcodes[] = {
370         [0x0] = "QW req",               [0x1] = "BW req",
371         [0x2] = "W resp",               [0x3] = "-reserved-",
372         [0x4] = "QR req",               [0x5] = "BR req",
373         [0x6] = "QR resp",              [0x7] = "BR resp",
374         [0x8] = "cycle start",          [0x9] = "Lk req",
375         [0xa] = "async stream packet",  [0xb] = "Lk resp",
376         [0xc] = "-reserved-",           [0xd] = "-reserved-",
377         [0xe] = "link internal",        [0xf] = "-reserved-",
378 };
379 static const char *phys[] = {
380         [0x0] = "phy config packet",    [0x1] = "link-on packet",
381         [0x2] = "self-id packet",       [0x3] = "-reserved-",
382 };
383
384 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
385 {
386         int tcode = header[0] >> 4 & 0xf;
387         char specific[12];
388
389         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
390                 return;
391
392         if (unlikely(evt >= ARRAY_SIZE(evts)))
393                         evt = 0x1f;
394
395         if (evt == OHCI1394_evt_bus_reset) {
396                 fw_notify("A%c evt_bus_reset, generation %d\n",
397                     dir, (header[2] >> 16) & 0xff);
398                 return;
399         }
400
401         if (header[0] == ~header[1]) {
402                 fw_notify("A%c %s, %s, %08x\n",
403                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
404                 return;
405         }
406
407         switch (tcode) {
408         case 0x0: case 0x6: case 0x8:
409                 snprintf(specific, sizeof(specific), " = %08x",
410                          be32_to_cpu((__force __be32)header[3]));
411                 break;
412         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
413                 snprintf(specific, sizeof(specific), " %x,%x",
414                          header[3] >> 16, header[3] & 0xffff);
415                 break;
416         default:
417                 specific[0] = '\0';
418         }
419
420         switch (tcode) {
421         case 0xe: case 0xa:
422                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
423                 break;
424         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
425                 fw_notify("A%c spd %x tl %02x, "
426                     "%04x -> %04x, %s, "
427                     "%s, %04x%08x%s\n",
428                     dir, speed, header[0] >> 10 & 0x3f,
429                     header[1] >> 16, header[0] >> 16, evts[evt],
430                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
431                 break;
432         default:
433                 fw_notify("A%c spd %x tl %02x, "
434                     "%04x -> %04x, %s, "
435                     "%s%s\n",
436                     dir, speed, header[0] >> 10 & 0x3f,
437                     header[1] >> 16, header[0] >> 16, evts[evt],
438                     tcodes[tcode], specific);
439         }
440 }
441
442 #else
443
444 #define log_irqs(evt)
445 #define log_selfids(node_id, generation, self_id_count, sid)
446 #define log_ar_at_event(dir, speed, header, evt)
447
448 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
449
450 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
451 {
452         writel(data, ohci->registers + offset);
453 }
454
455 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
456 {
457         return readl(ohci->registers + offset);
458 }
459
460 static inline void flush_writes(const struct fw_ohci *ohci)
461 {
462         /* Do a dummy read to flush writes. */
463         reg_read(ohci, OHCI1394_Version);
464 }
465
466 static int read_phy_reg(struct fw_card *card, int addr, u32 *value)
467 {
468         struct fw_ohci *ohci = fw_ohci(card);
469         u32 val;
470
471         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
472         flush_writes(ohci);
473         msleep(2);
474         val = reg_read(ohci, OHCI1394_PhyControl);
475         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
476                 fw_error("failed to read phy reg bits\n");
477                 return -EBUSY;
478         }
479
480         *value = OHCI1394_PhyControl_ReadData(val);
481
482         return 0;
483 }
484
485 static int ohci_update_phy_reg(struct fw_card *card, int addr,
486                                int clear_bits, int set_bits)
487 {
488         struct fw_ohci *ohci = fw_ohci(card);
489         u32 old;
490         int err;
491
492         err = read_phy_reg(card, addr, &old);
493         if (err < 0)
494                 return err;
495
496         /*
497          * The interrupt status bits are cleared by writing a one bit.
498          * Avoid clearing them unless explicitly requested in set_bits.
499          */
500         if (addr == 5)
501                 clear_bits |= PHY_INT_STATUS_BITS;
502
503         old = (old & ~clear_bits) | set_bits;
504         reg_write(ohci, OHCI1394_PhyControl,
505                   OHCI1394_PhyControl_Write(addr, old));
506
507         return 0;
508 }
509
510 static int read_paged_phy_reg(struct fw_card *card,
511                               int page, int addr, u32 *value)
512 {
513         struct fw_ohci *ohci = fw_ohci(card);
514         u32 reg;
515         int err;
516
517         err = ohci_update_phy_reg(card, 7, PHY_PAGE_SELECT, page << 5);
518         if (err < 0)
519                 return err;
520         flush_writes(ohci);
521         msleep(2);
522         reg = reg_read(ohci, OHCI1394_PhyControl);
523         if ((reg & OHCI1394_PhyControl_WritePending) != 0) {
524                 fw_error("failed to write phy reg bits\n");
525                 return -EBUSY;
526         }
527
528         return read_phy_reg(card, addr, value);
529 }
530
531 static int ar_context_add_page(struct ar_context *ctx)
532 {
533         struct device *dev = ctx->ohci->card.device;
534         struct ar_buffer *ab;
535         dma_addr_t uninitialized_var(ab_bus);
536         size_t offset;
537
538         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
539         if (ab == NULL)
540                 return -ENOMEM;
541
542         ab->next = NULL;
543         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
544         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
545                                                     DESCRIPTOR_STATUS |
546                                                     DESCRIPTOR_BRANCH_ALWAYS);
547         offset = offsetof(struct ar_buffer, data);
548         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
549         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
550         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
551         ab->descriptor.branch_address = 0;
552
553         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
554         ctx->last_buffer->next = ab;
555         ctx->last_buffer = ab;
556
557         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
558         flush_writes(ctx->ohci);
559
560         return 0;
561 }
562
563 static void ar_context_release(struct ar_context *ctx)
564 {
565         struct ar_buffer *ab, *ab_next;
566         size_t offset;
567         dma_addr_t ab_bus;
568
569         for (ab = ctx->current_buffer; ab; ab = ab_next) {
570                 ab_next = ab->next;
571                 offset = offsetof(struct ar_buffer, data);
572                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
573                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
574                                   ab, ab_bus);
575         }
576 }
577
578 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
579 #define cond_le32_to_cpu(v) \
580         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
581 #else
582 #define cond_le32_to_cpu(v) le32_to_cpu(v)
583 #endif
584
585 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
586 {
587         struct fw_ohci *ohci = ctx->ohci;
588         struct fw_packet p;
589         u32 status, length, tcode;
590         int evt;
591
592         p.header[0] = cond_le32_to_cpu(buffer[0]);
593         p.header[1] = cond_le32_to_cpu(buffer[1]);
594         p.header[2] = cond_le32_to_cpu(buffer[2]);
595
596         tcode = (p.header[0] >> 4) & 0x0f;
597         switch (tcode) {
598         case TCODE_WRITE_QUADLET_REQUEST:
599         case TCODE_READ_QUADLET_RESPONSE:
600                 p.header[3] = (__force __u32) buffer[3];
601                 p.header_length = 16;
602                 p.payload_length = 0;
603                 break;
604
605         case TCODE_READ_BLOCK_REQUEST :
606                 p.header[3] = cond_le32_to_cpu(buffer[3]);
607                 p.header_length = 16;
608                 p.payload_length = 0;
609                 break;
610
611         case TCODE_WRITE_BLOCK_REQUEST:
612         case TCODE_READ_BLOCK_RESPONSE:
613         case TCODE_LOCK_REQUEST:
614         case TCODE_LOCK_RESPONSE:
615                 p.header[3] = cond_le32_to_cpu(buffer[3]);
616                 p.header_length = 16;
617                 p.payload_length = p.header[3] >> 16;
618                 break;
619
620         case TCODE_WRITE_RESPONSE:
621         case TCODE_READ_QUADLET_REQUEST:
622         case OHCI_TCODE_PHY_PACKET:
623                 p.header_length = 12;
624                 p.payload_length = 0;
625                 break;
626
627         default:
628                 /* FIXME: Stop context, discard everything, and restart? */
629                 p.header_length = 0;
630                 p.payload_length = 0;
631         }
632
633         p.payload = (void *) buffer + p.header_length;
634
635         /* FIXME: What to do about evt_* errors? */
636         length = (p.header_length + p.payload_length + 3) / 4;
637         status = cond_le32_to_cpu(buffer[length]);
638         evt    = (status >> 16) & 0x1f;
639
640         p.ack        = evt - 16;
641         p.speed      = (status >> 21) & 0x7;
642         p.timestamp  = status & 0xffff;
643         p.generation = ohci->request_generation;
644
645         log_ar_at_event('R', p.speed, p.header, evt);
646
647         /*
648          * The OHCI bus reset handler synthesizes a phy packet with
649          * the new generation number when a bus reset happens (see
650          * section 8.4.2.3).  This helps us determine when a request
651          * was received and make sure we send the response in the same
652          * generation.  We only need this for requests; for responses
653          * we use the unique tlabel for finding the matching
654          * request.
655          *
656          * Alas some chips sometimes emit bus reset packets with a
657          * wrong generation.  We set the correct generation for these
658          * at a slightly incorrect time (in bus_reset_tasklet).
659          */
660         if (evt == OHCI1394_evt_bus_reset) {
661                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
662                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
663         } else if (ctx == &ohci->ar_request_ctx) {
664                 fw_core_handle_request(&ohci->card, &p);
665         } else {
666                 fw_core_handle_response(&ohci->card, &p);
667         }
668
669         return buffer + length + 1;
670 }
671
672 static void ar_context_tasklet(unsigned long data)
673 {
674         struct ar_context *ctx = (struct ar_context *)data;
675         struct fw_ohci *ohci = ctx->ohci;
676         struct ar_buffer *ab;
677         struct descriptor *d;
678         void *buffer, *end;
679
680         ab = ctx->current_buffer;
681         d = &ab->descriptor;
682
683         if (d->res_count == 0) {
684                 size_t size, rest, offset;
685                 dma_addr_t start_bus;
686                 void *start;
687
688                 /*
689                  * This descriptor is finished and we may have a
690                  * packet split across this and the next buffer. We
691                  * reuse the page for reassembling the split packet.
692                  */
693
694                 offset = offsetof(struct ar_buffer, data);
695                 start = buffer = ab;
696                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
697
698                 ab = ab->next;
699                 d = &ab->descriptor;
700                 size = buffer + PAGE_SIZE - ctx->pointer;
701                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
702                 memmove(buffer, ctx->pointer, size);
703                 memcpy(buffer + size, ab->data, rest);
704                 ctx->current_buffer = ab;
705                 ctx->pointer = (void *) ab->data + rest;
706                 end = buffer + size + rest;
707
708                 while (buffer < end)
709                         buffer = handle_ar_packet(ctx, buffer);
710
711                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
712                                   start, start_bus);
713                 ar_context_add_page(ctx);
714         } else {
715                 buffer = ctx->pointer;
716                 ctx->pointer = end =
717                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
718
719                 while (buffer < end)
720                         buffer = handle_ar_packet(ctx, buffer);
721         }
722 }
723
724 static int ar_context_init(struct ar_context *ctx,
725                            struct fw_ohci *ohci, u32 regs)
726 {
727         struct ar_buffer ab;
728
729         ctx->regs        = regs;
730         ctx->ohci        = ohci;
731         ctx->last_buffer = &ab;
732         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
733
734         ar_context_add_page(ctx);
735         ar_context_add_page(ctx);
736         ctx->current_buffer = ab.next;
737         ctx->pointer = ctx->current_buffer->data;
738
739         return 0;
740 }
741
742 static void ar_context_run(struct ar_context *ctx)
743 {
744         struct ar_buffer *ab = ctx->current_buffer;
745         dma_addr_t ab_bus;
746         size_t offset;
747
748         offset = offsetof(struct ar_buffer, data);
749         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
750
751         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
752         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
753         flush_writes(ctx->ohci);
754 }
755
756 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
757 {
758         int b, key;
759
760         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
761         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
762
763         /* figure out which descriptor the branch address goes in */
764         if (z == 2 && (b == 3 || key == 2))
765                 return d;
766         else
767                 return d + z - 1;
768 }
769
770 static void context_tasklet(unsigned long data)
771 {
772         struct context *ctx = (struct context *) data;
773         struct descriptor *d, *last;
774         u32 address;
775         int z;
776         struct descriptor_buffer *desc;
777
778         desc = list_entry(ctx->buffer_list.next,
779                         struct descriptor_buffer, list);
780         last = ctx->last;
781         while (last->branch_address != 0) {
782                 struct descriptor_buffer *old_desc = desc;
783                 address = le32_to_cpu(last->branch_address);
784                 z = address & 0xf;
785                 address &= ~0xf;
786
787                 /* If the branch address points to a buffer outside of the
788                  * current buffer, advance to the next buffer. */
789                 if (address < desc->buffer_bus ||
790                                 address >= desc->buffer_bus + desc->used)
791                         desc = list_entry(desc->list.next,
792                                         struct descriptor_buffer, list);
793                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
794                 last = find_branch_descriptor(d, z);
795
796                 if (!ctx->callback(ctx, d, last))
797                         break;
798
799                 if (old_desc != desc) {
800                         /* If we've advanced to the next buffer, move the
801                          * previous buffer to the free list. */
802                         unsigned long flags;
803                         old_desc->used = 0;
804                         spin_lock_irqsave(&ctx->ohci->lock, flags);
805                         list_move_tail(&old_desc->list, &ctx->buffer_list);
806                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
807                 }
808                 ctx->last = last;
809         }
810 }
811
812 /*
813  * Allocate a new buffer and add it to the list of free buffers for this
814  * context.  Must be called with ohci->lock held.
815  */
816 static int context_add_buffer(struct context *ctx)
817 {
818         struct descriptor_buffer *desc;
819         dma_addr_t uninitialized_var(bus_addr);
820         int offset;
821
822         /*
823          * 16MB of descriptors should be far more than enough for any DMA
824          * program.  This will catch run-away userspace or DoS attacks.
825          */
826         if (ctx->total_allocation >= 16*1024*1024)
827                 return -ENOMEM;
828
829         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
830                         &bus_addr, GFP_ATOMIC);
831         if (!desc)
832                 return -ENOMEM;
833
834         offset = (void *)&desc->buffer - (void *)desc;
835         desc->buffer_size = PAGE_SIZE - offset;
836         desc->buffer_bus = bus_addr + offset;
837         desc->used = 0;
838
839         list_add_tail(&desc->list, &ctx->buffer_list);
840         ctx->total_allocation += PAGE_SIZE;
841
842         return 0;
843 }
844
845 static int context_init(struct context *ctx, struct fw_ohci *ohci,
846                         u32 regs, descriptor_callback_t callback)
847 {
848         ctx->ohci = ohci;
849         ctx->regs = regs;
850         ctx->total_allocation = 0;
851
852         INIT_LIST_HEAD(&ctx->buffer_list);
853         if (context_add_buffer(ctx) < 0)
854                 return -ENOMEM;
855
856         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
857                         struct descriptor_buffer, list);
858
859         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
860         ctx->callback = callback;
861
862         /*
863          * We put a dummy descriptor in the buffer that has a NULL
864          * branch address and looks like it's been sent.  That way we
865          * have a descriptor to append DMA programs to.
866          */
867         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
868         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
869         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
870         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
871         ctx->last = ctx->buffer_tail->buffer;
872         ctx->prev = ctx->buffer_tail->buffer;
873
874         return 0;
875 }
876
877 static void context_release(struct context *ctx)
878 {
879         struct fw_card *card = &ctx->ohci->card;
880         struct descriptor_buffer *desc, *tmp;
881
882         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
883                 dma_free_coherent(card->device, PAGE_SIZE, desc,
884                         desc->buffer_bus -
885                         ((void *)&desc->buffer - (void *)desc));
886 }
887
888 /* Must be called with ohci->lock held */
889 static struct descriptor *context_get_descriptors(struct context *ctx,
890                                                   int z, dma_addr_t *d_bus)
891 {
892         struct descriptor *d = NULL;
893         struct descriptor_buffer *desc = ctx->buffer_tail;
894
895         if (z * sizeof(*d) > desc->buffer_size)
896                 return NULL;
897
898         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
899                 /* No room for the descriptor in this buffer, so advance to the
900                  * next one. */
901
902                 if (desc->list.next == &ctx->buffer_list) {
903                         /* If there is no free buffer next in the list,
904                          * allocate one. */
905                         if (context_add_buffer(ctx) < 0)
906                                 return NULL;
907                 }
908                 desc = list_entry(desc->list.next,
909                                 struct descriptor_buffer, list);
910                 ctx->buffer_tail = desc;
911         }
912
913         d = desc->buffer + desc->used / sizeof(*d);
914         memset(d, 0, z * sizeof(*d));
915         *d_bus = desc->buffer_bus + desc->used;
916
917         return d;
918 }
919
920 static void context_run(struct context *ctx, u32 extra)
921 {
922         struct fw_ohci *ohci = ctx->ohci;
923
924         reg_write(ohci, COMMAND_PTR(ctx->regs),
925                   le32_to_cpu(ctx->last->branch_address));
926         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
927         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
928         flush_writes(ohci);
929 }
930
931 static void context_append(struct context *ctx,
932                            struct descriptor *d, int z, int extra)
933 {
934         dma_addr_t d_bus;
935         struct descriptor_buffer *desc = ctx->buffer_tail;
936
937         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
938
939         desc->used += (z + extra) * sizeof(*d);
940         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
941         ctx->prev = find_branch_descriptor(d, z);
942
943         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
944         flush_writes(ctx->ohci);
945 }
946
947 static void context_stop(struct context *ctx)
948 {
949         u32 reg;
950         int i;
951
952         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
953         flush_writes(ctx->ohci);
954
955         for (i = 0; i < 10; i++) {
956                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
957                 if ((reg & CONTEXT_ACTIVE) == 0)
958                         return;
959
960                 mdelay(1);
961         }
962         fw_error("Error: DMA context still active (0x%08x)\n", reg);
963 }
964
965 struct driver_data {
966         struct fw_packet *packet;
967 };
968
969 /*
970  * This function apppends a packet to the DMA queue for transmission.
971  * Must always be called with the ochi->lock held to ensure proper
972  * generation handling and locking around packet queue manipulation.
973  */
974 static int at_context_queue_packet(struct context *ctx,
975                                    struct fw_packet *packet)
976 {
977         struct fw_ohci *ohci = ctx->ohci;
978         dma_addr_t d_bus, uninitialized_var(payload_bus);
979         struct driver_data *driver_data;
980         struct descriptor *d, *last;
981         __le32 *header;
982         int z, tcode;
983         u32 reg;
984
985         d = context_get_descriptors(ctx, 4, &d_bus);
986         if (d == NULL) {
987                 packet->ack = RCODE_SEND_ERROR;
988                 return -1;
989         }
990
991         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
992         d[0].res_count = cpu_to_le16(packet->timestamp);
993
994         /*
995          * The DMA format for asyncronous link packets is different
996          * from the IEEE1394 layout, so shift the fields around
997          * accordingly.  If header_length is 8, it's a PHY packet, to
998          * which we need to prepend an extra quadlet.
999          */
1000
1001         header = (__le32 *) &d[1];
1002         switch (packet->header_length) {
1003         case 16:
1004         case 12:
1005                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1006                                         (packet->speed << 16));
1007                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1008                                         (packet->header[0] & 0xffff0000));
1009                 header[2] = cpu_to_le32(packet->header[2]);
1010
1011                 tcode = (packet->header[0] >> 4) & 0x0f;
1012                 if (TCODE_IS_BLOCK_PACKET(tcode))
1013                         header[3] = cpu_to_le32(packet->header[3]);
1014                 else
1015                         header[3] = (__force __le32) packet->header[3];
1016
1017                 d[0].req_count = cpu_to_le16(packet->header_length);
1018                 break;
1019
1020         case 8:
1021                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1022                                         (packet->speed << 16));
1023                 header[1] = cpu_to_le32(packet->header[0]);
1024                 header[2] = cpu_to_le32(packet->header[1]);
1025                 d[0].req_count = cpu_to_le16(12);
1026                 break;
1027
1028         case 4:
1029                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1030                                         (packet->speed << 16));
1031                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1032                 d[0].req_count = cpu_to_le16(8);
1033                 break;
1034
1035         default:
1036                 /* BUG(); */
1037                 packet->ack = RCODE_SEND_ERROR;
1038                 return -1;
1039         }
1040
1041         driver_data = (struct driver_data *) &d[3];
1042         driver_data->packet = packet;
1043         packet->driver_data = driver_data;
1044
1045         if (packet->payload_length > 0) {
1046                 payload_bus =
1047                         dma_map_single(ohci->card.device, packet->payload,
1048                                        packet->payload_length, DMA_TO_DEVICE);
1049                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1050                         packet->ack = RCODE_SEND_ERROR;
1051                         return -1;
1052                 }
1053                 packet->payload_bus     = payload_bus;
1054                 packet->payload_mapped  = true;
1055
1056                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1057                 d[2].data_address = cpu_to_le32(payload_bus);
1058                 last = &d[2];
1059                 z = 3;
1060         } else {
1061                 last = &d[0];
1062                 z = 2;
1063         }
1064
1065         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1066                                      DESCRIPTOR_IRQ_ALWAYS |
1067                                      DESCRIPTOR_BRANCH_ALWAYS);
1068
1069         /*
1070          * If the controller and packet generations don't match, we need to
1071          * bail out and try again.  If IntEvent.busReset is set, the AT context
1072          * is halted, so appending to the context and trying to run it is
1073          * futile.  Most controllers do the right thing and just flush the AT
1074          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1075          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1076          * up stalling out.  So we just bail out in software and try again
1077          * later, and everyone is happy.
1078          * FIXME: Document how the locking works.
1079          */
1080         if (ohci->generation != packet->generation ||
1081             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1082                 if (packet->payload_mapped)
1083                         dma_unmap_single(ohci->card.device, payload_bus,
1084                                          packet->payload_length, DMA_TO_DEVICE);
1085                 packet->ack = RCODE_GENERATION;
1086                 return -1;
1087         }
1088
1089         context_append(ctx, d, z, 4 - z);
1090
1091         /* If the context isn't already running, start it up. */
1092         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1093         if ((reg & CONTEXT_RUN) == 0)
1094                 context_run(ctx, 0);
1095
1096         return 0;
1097 }
1098
1099 static int handle_at_packet(struct context *context,
1100                             struct descriptor *d,
1101                             struct descriptor *last)
1102 {
1103         struct driver_data *driver_data;
1104         struct fw_packet *packet;
1105         struct fw_ohci *ohci = context->ohci;
1106         int evt;
1107
1108         if (last->transfer_status == 0)
1109                 /* This descriptor isn't done yet, stop iteration. */
1110                 return 0;
1111
1112         driver_data = (struct driver_data *) &d[3];
1113         packet = driver_data->packet;
1114         if (packet == NULL)
1115                 /* This packet was cancelled, just continue. */
1116                 return 1;
1117
1118         if (packet->payload_mapped)
1119                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1120                                  packet->payload_length, DMA_TO_DEVICE);
1121
1122         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1123         packet->timestamp = le16_to_cpu(last->res_count);
1124
1125         log_ar_at_event('T', packet->speed, packet->header, evt);
1126
1127         switch (evt) {
1128         case OHCI1394_evt_timeout:
1129                 /* Async response transmit timed out. */
1130                 packet->ack = RCODE_CANCELLED;
1131                 break;
1132
1133         case OHCI1394_evt_flushed:
1134                 /*
1135                  * The packet was flushed should give same error as
1136                  * when we try to use a stale generation count.
1137                  */
1138                 packet->ack = RCODE_GENERATION;
1139                 break;
1140
1141         case OHCI1394_evt_missing_ack:
1142                 /*
1143                  * Using a valid (current) generation count, but the
1144                  * node is not on the bus or not sending acks.
1145                  */
1146                 packet->ack = RCODE_NO_ACK;
1147                 break;
1148
1149         case ACK_COMPLETE + 0x10:
1150         case ACK_PENDING + 0x10:
1151         case ACK_BUSY_X + 0x10:
1152         case ACK_BUSY_A + 0x10:
1153         case ACK_BUSY_B + 0x10:
1154         case ACK_DATA_ERROR + 0x10:
1155         case ACK_TYPE_ERROR + 0x10:
1156                 packet->ack = evt - 0x10;
1157                 break;
1158
1159         default:
1160                 packet->ack = RCODE_SEND_ERROR;
1161                 break;
1162         }
1163
1164         packet->callback(packet, &ohci->card, packet->ack);
1165
1166         return 1;
1167 }
1168
1169 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1170 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1171 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1172 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1173 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1174
1175 static void handle_local_rom(struct fw_ohci *ohci,
1176                              struct fw_packet *packet, u32 csr)
1177 {
1178         struct fw_packet response;
1179         int tcode, length, i;
1180
1181         tcode = HEADER_GET_TCODE(packet->header[0]);
1182         if (TCODE_IS_BLOCK_PACKET(tcode))
1183                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1184         else
1185                 length = 4;
1186
1187         i = csr - CSR_CONFIG_ROM;
1188         if (i + length > CONFIG_ROM_SIZE) {
1189                 fw_fill_response(&response, packet->header,
1190                                  RCODE_ADDRESS_ERROR, NULL, 0);
1191         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1192                 fw_fill_response(&response, packet->header,
1193                                  RCODE_TYPE_ERROR, NULL, 0);
1194         } else {
1195                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1196                                  (void *) ohci->config_rom + i, length);
1197         }
1198
1199         fw_core_handle_response(&ohci->card, &response);
1200 }
1201
1202 static void handle_local_lock(struct fw_ohci *ohci,
1203                               struct fw_packet *packet, u32 csr)
1204 {
1205         struct fw_packet response;
1206         int tcode, length, ext_tcode, sel;
1207         __be32 *payload, lock_old;
1208         u32 lock_arg, lock_data;
1209
1210         tcode = HEADER_GET_TCODE(packet->header[0]);
1211         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1212         payload = packet->payload;
1213         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1214
1215         if (tcode == TCODE_LOCK_REQUEST &&
1216             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1217                 lock_arg = be32_to_cpu(payload[0]);
1218                 lock_data = be32_to_cpu(payload[1]);
1219         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1220                 lock_arg = 0;
1221                 lock_data = 0;
1222         } else {
1223                 fw_fill_response(&response, packet->header,
1224                                  RCODE_TYPE_ERROR, NULL, 0);
1225                 goto out;
1226         }
1227
1228         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1229         reg_write(ohci, OHCI1394_CSRData, lock_data);
1230         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1231         reg_write(ohci, OHCI1394_CSRControl, sel);
1232
1233         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1234                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1235         else
1236                 fw_notify("swap not done yet\n");
1237
1238         fw_fill_response(&response, packet->header,
1239                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1240  out:
1241         fw_core_handle_response(&ohci->card, &response);
1242 }
1243
1244 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1245 {
1246         u64 offset;
1247         u32 csr;
1248
1249         if (ctx == &ctx->ohci->at_request_ctx) {
1250                 packet->ack = ACK_PENDING;
1251                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1252         }
1253
1254         offset =
1255                 ((unsigned long long)
1256                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1257                 packet->header[2];
1258         csr = offset - CSR_REGISTER_BASE;
1259
1260         /* Handle config rom reads. */
1261         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1262                 handle_local_rom(ctx->ohci, packet, csr);
1263         else switch (csr) {
1264         case CSR_BUS_MANAGER_ID:
1265         case CSR_BANDWIDTH_AVAILABLE:
1266         case CSR_CHANNELS_AVAILABLE_HI:
1267         case CSR_CHANNELS_AVAILABLE_LO:
1268                 handle_local_lock(ctx->ohci, packet, csr);
1269                 break;
1270         default:
1271                 if (ctx == &ctx->ohci->at_request_ctx)
1272                         fw_core_handle_request(&ctx->ohci->card, packet);
1273                 else
1274                         fw_core_handle_response(&ctx->ohci->card, packet);
1275                 break;
1276         }
1277
1278         if (ctx == &ctx->ohci->at_response_ctx) {
1279                 packet->ack = ACK_COMPLETE;
1280                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1281         }
1282 }
1283
1284 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1285 {
1286         unsigned long flags;
1287         int ret;
1288
1289         spin_lock_irqsave(&ctx->ohci->lock, flags);
1290
1291         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1292             ctx->ohci->generation == packet->generation) {
1293                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1294                 handle_local_request(ctx, packet);
1295                 return;
1296         }
1297
1298         ret = at_context_queue_packet(ctx, packet);
1299         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1300
1301         if (ret < 0)
1302                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1303
1304 }
1305
1306 static void bus_reset_tasklet(unsigned long data)
1307 {
1308         struct fw_ohci *ohci = (struct fw_ohci *)data;
1309         int self_id_count, i, j, reg;
1310         int generation, new_generation;
1311         unsigned long flags;
1312         void *free_rom = NULL;
1313         dma_addr_t free_rom_bus = 0;
1314
1315         reg = reg_read(ohci, OHCI1394_NodeID);
1316         if (!(reg & OHCI1394_NodeID_idValid)) {
1317                 fw_notify("node ID not valid, new bus reset in progress\n");
1318                 return;
1319         }
1320         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1321                 fw_notify("malconfigured bus\n");
1322                 return;
1323         }
1324         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1325                                OHCI1394_NodeID_nodeNumber);
1326
1327         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1328         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1329                 fw_notify("inconsistent self IDs\n");
1330                 return;
1331         }
1332         /*
1333          * The count in the SelfIDCount register is the number of
1334          * bytes in the self ID receive buffer.  Since we also receive
1335          * the inverted quadlets and a header quadlet, we shift one
1336          * bit extra to get the actual number of self IDs.
1337          */
1338         self_id_count = (reg >> 3) & 0xff;
1339         if (self_id_count == 0 || self_id_count > 252) {
1340                 fw_notify("inconsistent self IDs\n");
1341                 return;
1342         }
1343         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1344         rmb();
1345
1346         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1347                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1348                         fw_notify("inconsistent self IDs\n");
1349                         return;
1350                 }
1351                 ohci->self_id_buffer[j] =
1352                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1353         }
1354         rmb();
1355
1356         /*
1357          * Check the consistency of the self IDs we just read.  The
1358          * problem we face is that a new bus reset can start while we
1359          * read out the self IDs from the DMA buffer. If this happens,
1360          * the DMA buffer will be overwritten with new self IDs and we
1361          * will read out inconsistent data.  The OHCI specification
1362          * (section 11.2) recommends a technique similar to
1363          * linux/seqlock.h, where we remember the generation of the
1364          * self IDs in the buffer before reading them out and compare
1365          * it to the current generation after reading them out.  If
1366          * the two generations match we know we have a consistent set
1367          * of self IDs.
1368          */
1369
1370         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1371         if (new_generation != generation) {
1372                 fw_notify("recursive bus reset detected, "
1373                           "discarding self ids\n");
1374                 return;
1375         }
1376
1377         /* FIXME: Document how the locking works. */
1378         spin_lock_irqsave(&ohci->lock, flags);
1379
1380         ohci->generation = generation;
1381         context_stop(&ohci->at_request_ctx);
1382         context_stop(&ohci->at_response_ctx);
1383         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1384
1385         if (ohci->quirks & QUIRK_RESET_PACKET)
1386                 ohci->request_generation = generation;
1387
1388         /*
1389          * This next bit is unrelated to the AT context stuff but we
1390          * have to do it under the spinlock also.  If a new config rom
1391          * was set up before this reset, the old one is now no longer
1392          * in use and we can free it. Update the config rom pointers
1393          * to point to the current config rom and clear the
1394          * next_config_rom pointer so a new udpate can take place.
1395          */
1396
1397         if (ohci->next_config_rom != NULL) {
1398                 if (ohci->next_config_rom != ohci->config_rom) {
1399                         free_rom      = ohci->config_rom;
1400                         free_rom_bus  = ohci->config_rom_bus;
1401                 }
1402                 ohci->config_rom      = ohci->next_config_rom;
1403                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1404                 ohci->next_config_rom = NULL;
1405
1406                 /*
1407                  * Restore config_rom image and manually update
1408                  * config_rom registers.  Writing the header quadlet
1409                  * will indicate that the config rom is ready, so we
1410                  * do that last.
1411                  */
1412                 reg_write(ohci, OHCI1394_BusOptions,
1413                           be32_to_cpu(ohci->config_rom[2]));
1414                 ohci->config_rom[0] = ohci->next_header;
1415                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1416                           be32_to_cpu(ohci->next_header));
1417         }
1418
1419 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1420         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1421         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1422 #endif
1423
1424         spin_unlock_irqrestore(&ohci->lock, flags);
1425
1426         if (free_rom)
1427                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1428                                   free_rom, free_rom_bus);
1429
1430         log_selfids(ohci->node_id, generation,
1431                     self_id_count, ohci->self_id_buffer);
1432
1433         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1434                                  self_id_count, ohci->self_id_buffer);
1435 }
1436
1437 static irqreturn_t irq_handler(int irq, void *data)
1438 {
1439         struct fw_ohci *ohci = data;
1440         u32 event, iso_event;
1441         int i;
1442
1443         event = reg_read(ohci, OHCI1394_IntEventClear);
1444
1445         if (!event || !~event)
1446                 return IRQ_NONE;
1447
1448         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1449         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1450         log_irqs(event);
1451
1452         if (event & OHCI1394_selfIDComplete)
1453                 tasklet_schedule(&ohci->bus_reset_tasklet);
1454
1455         if (event & OHCI1394_RQPkt)
1456                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1457
1458         if (event & OHCI1394_RSPkt)
1459                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1460
1461         if (event & OHCI1394_reqTxComplete)
1462                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1463
1464         if (event & OHCI1394_respTxComplete)
1465                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1466
1467         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1468         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1469
1470         while (iso_event) {
1471                 i = ffs(iso_event) - 1;
1472                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1473                 iso_event &= ~(1 << i);
1474         }
1475
1476         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1477         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1478
1479         while (iso_event) {
1480                 i = ffs(iso_event) - 1;
1481                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1482                 iso_event &= ~(1 << i);
1483         }
1484
1485         if (unlikely(event & OHCI1394_regAccessFail))
1486                 fw_error("Register access failure - "
1487                          "please notify linux1394-devel@lists.sf.net\n");
1488
1489         if (unlikely(event & OHCI1394_postedWriteErr))
1490                 fw_error("PCI posted write error\n");
1491
1492         if (unlikely(event & OHCI1394_cycleTooLong)) {
1493                 if (printk_ratelimit())
1494                         fw_notify("isochronous cycle too long\n");
1495                 reg_write(ohci, OHCI1394_LinkControlSet,
1496                           OHCI1394_LinkControl_cycleMaster);
1497         }
1498
1499         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1500                 /*
1501                  * We need to clear this event bit in order to make
1502                  * cycleMatch isochronous I/O work.  In theory we should
1503                  * stop active cycleMatch iso contexts now and restart
1504                  * them at least two cycles later.  (FIXME?)
1505                  */
1506                 if (printk_ratelimit())
1507                         fw_notify("isochronous cycle inconsistent\n");
1508         }
1509
1510         return IRQ_HANDLED;
1511 }
1512
1513 static int software_reset(struct fw_ohci *ohci)
1514 {
1515         int i;
1516
1517         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1518
1519         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1520                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1521                      OHCI1394_HCControl_softReset) == 0)
1522                         return 0;
1523                 msleep(1);
1524         }
1525
1526         return -EBUSY;
1527 }
1528
1529 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1530 {
1531         size_t size = length * 4;
1532
1533         memcpy(dest, src, size);
1534         if (size < CONFIG_ROM_SIZE)
1535                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1536 }
1537
1538 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1539 {
1540         bool enable_1394a;
1541         u32 reg, phy_compliance;
1542         int clear, set, offset;
1543
1544         /* Check if the driver should configure link and PHY. */
1545         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1546               OHCI1394_HCControl_programPhyEnable))
1547                 return 0;
1548
1549         /* Paranoia: check whether the PHY supports 1394a, too. */
1550         enable_1394a = false;
1551         if (read_phy_reg(&ohci->card, 2, &reg) < 0)
1552                 return -EIO;
1553         if ((reg & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1554                 if (read_paged_phy_reg(&ohci->card, 1, 8, &phy_compliance) < 0)
1555                         return -EIO;
1556                 if (phy_compliance >= 1)
1557                         enable_1394a = true;
1558         }
1559
1560         if (ohci->quirks & QUIRK_NO_1394A)
1561                 enable_1394a = false;
1562
1563         /* Configure PHY and link consistently. */
1564         if (enable_1394a) {
1565                 clear = 0;
1566                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1567         } else {
1568                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1569                 set = 0;
1570         }
1571         if (ohci_update_phy_reg(&ohci->card, 5, clear, set) < 0)
1572                 return -EIO;
1573         flush_writes(ohci);
1574         msleep(2);
1575
1576         if (enable_1394a)
1577                 offset = OHCI1394_HCControlSet;
1578         else
1579                 offset = OHCI1394_HCControlClear;
1580         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1581
1582         /* Clean up: configuration has been taken care of. */
1583         reg_write(ohci, OHCI1394_HCControlClear,
1584                   OHCI1394_HCControl_programPhyEnable);
1585
1586         return 0;
1587 }
1588
1589 static int ohci_enable(struct fw_card *card,
1590                        const __be32 *config_rom, size_t length)
1591 {
1592         struct fw_ohci *ohci = fw_ohci(card);
1593         struct pci_dev *dev = to_pci_dev(card->device);
1594         u32 lps;
1595         int i, err;
1596
1597         if (software_reset(ohci)) {
1598                 fw_error("Failed to reset ohci card.\n");
1599                 return -EBUSY;
1600         }
1601
1602         /*
1603          * Now enable LPS, which we need in order to start accessing
1604          * most of the registers.  In fact, on some cards (ALI M5251),
1605          * accessing registers in the SClk domain without LPS enabled
1606          * will lock up the machine.  Wait 50msec to make sure we have
1607          * full link enabled.  However, with some cards (well, at least
1608          * a JMicron PCIe card), we have to try again sometimes.
1609          */
1610         reg_write(ohci, OHCI1394_HCControlSet,
1611                   OHCI1394_HCControl_LPS |
1612                   OHCI1394_HCControl_postedWriteEnable);
1613         flush_writes(ohci);
1614
1615         for (lps = 0, i = 0; !lps && i < 3; i++) {
1616                 msleep(50);
1617                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1618                       OHCI1394_HCControl_LPS;
1619         }
1620
1621         if (!lps) {
1622                 fw_error("Failed to set Link Power Status\n");
1623                 return -EIO;
1624         }
1625
1626         reg_write(ohci, OHCI1394_HCControlClear,
1627                   OHCI1394_HCControl_noByteSwapData);
1628
1629         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1630         reg_write(ohci, OHCI1394_LinkControlClear,
1631                   OHCI1394_LinkControl_rcvPhyPkt);
1632         reg_write(ohci, OHCI1394_LinkControlSet,
1633                   OHCI1394_LinkControl_rcvSelfID |
1634                   OHCI1394_LinkControl_cycleTimerEnable |
1635                   OHCI1394_LinkControl_cycleMaster);
1636
1637         reg_write(ohci, OHCI1394_ATRetries,
1638                   OHCI1394_MAX_AT_REQ_RETRIES |
1639                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1640                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1641
1642         ar_context_run(&ohci->ar_request_ctx);
1643         ar_context_run(&ohci->ar_response_ctx);
1644
1645         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1646         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1647         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1648         reg_write(ohci, OHCI1394_IntMaskSet,
1649                   OHCI1394_selfIDComplete |
1650                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1651                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1652                   OHCI1394_isochRx | OHCI1394_isochTx |
1653                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1654                   OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1655                   OHCI1394_masterIntEnable);
1656         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1657                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1658
1659         err = configure_1394a_enhancements(ohci);
1660         if (err < 0)
1661                 return err;
1662
1663         /* Activate link_on bit and contender bit in our self ID packets.*/
1664         if (ohci_update_phy_reg(card, 4, 0,
1665                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1666                 return -EIO;
1667
1668         /*
1669          * When the link is not yet enabled, the atomic config rom
1670          * update mechanism described below in ohci_set_config_rom()
1671          * is not active.  We have to update ConfigRomHeader and
1672          * BusOptions manually, and the write to ConfigROMmap takes
1673          * effect immediately.  We tie this to the enabling of the
1674          * link, so we have a valid config rom before enabling - the
1675          * OHCI requires that ConfigROMhdr and BusOptions have valid
1676          * values before enabling.
1677          *
1678          * However, when the ConfigROMmap is written, some controllers
1679          * always read back quadlets 0 and 2 from the config rom to
1680          * the ConfigRomHeader and BusOptions registers on bus reset.
1681          * They shouldn't do that in this initial case where the link
1682          * isn't enabled.  This means we have to use the same
1683          * workaround here, setting the bus header to 0 and then write
1684          * the right values in the bus reset tasklet.
1685          */
1686
1687         if (config_rom) {
1688                 ohci->next_config_rom =
1689                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1690                                            &ohci->next_config_rom_bus,
1691                                            GFP_KERNEL);
1692                 if (ohci->next_config_rom == NULL)
1693                         return -ENOMEM;
1694
1695                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1696         } else {
1697                 /*
1698                  * In the suspend case, config_rom is NULL, which
1699                  * means that we just reuse the old config rom.
1700                  */
1701                 ohci->next_config_rom = ohci->config_rom;
1702                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1703         }
1704
1705         ohci->next_header = ohci->next_config_rom[0];
1706         ohci->next_config_rom[0] = 0;
1707         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1708         reg_write(ohci, OHCI1394_BusOptions,
1709                   be32_to_cpu(ohci->next_config_rom[2]));
1710         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1711
1712         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1713
1714         if (request_irq(dev->irq, irq_handler,
1715                         IRQF_SHARED, ohci_driver_name, ohci)) {
1716                 fw_error("Failed to allocate shared interrupt %d.\n",
1717                          dev->irq);
1718                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1719                                   ohci->config_rom, ohci->config_rom_bus);
1720                 return -EIO;
1721         }
1722
1723         reg_write(ohci, OHCI1394_HCControlSet,
1724                   OHCI1394_HCControl_linkEnable |
1725                   OHCI1394_HCControl_BIBimageValid);
1726         flush_writes(ohci);
1727
1728         /*
1729          * We are ready to go, initiate bus reset to finish the
1730          * initialization.
1731          */
1732
1733         fw_core_initiate_bus_reset(&ohci->card, 1);
1734
1735         return 0;
1736 }
1737
1738 static int ohci_set_config_rom(struct fw_card *card,
1739                                const __be32 *config_rom, size_t length)
1740 {
1741         struct fw_ohci *ohci;
1742         unsigned long flags;
1743         int ret = -EBUSY;
1744         __be32 *next_config_rom;
1745         dma_addr_t uninitialized_var(next_config_rom_bus);
1746
1747         ohci = fw_ohci(card);
1748
1749         /*
1750          * When the OHCI controller is enabled, the config rom update
1751          * mechanism is a bit tricky, but easy enough to use.  See
1752          * section 5.5.6 in the OHCI specification.
1753          *
1754          * The OHCI controller caches the new config rom address in a
1755          * shadow register (ConfigROMmapNext) and needs a bus reset
1756          * for the changes to take place.  When the bus reset is
1757          * detected, the controller loads the new values for the
1758          * ConfigRomHeader and BusOptions registers from the specified
1759          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1760          * shadow register. All automatically and atomically.
1761          *
1762          * Now, there's a twist to this story.  The automatic load of
1763          * ConfigRomHeader and BusOptions doesn't honor the
1764          * noByteSwapData bit, so with a be32 config rom, the
1765          * controller will load be32 values in to these registers
1766          * during the atomic update, even on litte endian
1767          * architectures.  The workaround we use is to put a 0 in the
1768          * header quadlet; 0 is endian agnostic and means that the
1769          * config rom isn't ready yet.  In the bus reset tasklet we
1770          * then set up the real values for the two registers.
1771          *
1772          * We use ohci->lock to avoid racing with the code that sets
1773          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1774          */
1775
1776         next_config_rom =
1777                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1778                                    &next_config_rom_bus, GFP_KERNEL);
1779         if (next_config_rom == NULL)
1780                 return -ENOMEM;
1781
1782         spin_lock_irqsave(&ohci->lock, flags);
1783
1784         if (ohci->next_config_rom == NULL) {
1785                 ohci->next_config_rom = next_config_rom;
1786                 ohci->next_config_rom_bus = next_config_rom_bus;
1787
1788                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1789
1790                 ohci->next_header = config_rom[0];
1791                 ohci->next_config_rom[0] = 0;
1792
1793                 reg_write(ohci, OHCI1394_ConfigROMmap,
1794                           ohci->next_config_rom_bus);
1795                 ret = 0;
1796         }
1797
1798         spin_unlock_irqrestore(&ohci->lock, flags);
1799
1800         /*
1801          * Now initiate a bus reset to have the changes take
1802          * effect. We clean up the old config rom memory and DMA
1803          * mappings in the bus reset tasklet, since the OHCI
1804          * controller could need to access it before the bus reset
1805          * takes effect.
1806          */
1807         if (ret == 0)
1808                 fw_core_initiate_bus_reset(&ohci->card, 1);
1809         else
1810                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1811                                   next_config_rom, next_config_rom_bus);
1812
1813         return ret;
1814 }
1815
1816 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1817 {
1818         struct fw_ohci *ohci = fw_ohci(card);
1819
1820         at_context_transmit(&ohci->at_request_ctx, packet);
1821 }
1822
1823 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1824 {
1825         struct fw_ohci *ohci = fw_ohci(card);
1826
1827         at_context_transmit(&ohci->at_response_ctx, packet);
1828 }
1829
1830 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1831 {
1832         struct fw_ohci *ohci = fw_ohci(card);
1833         struct context *ctx = &ohci->at_request_ctx;
1834         struct driver_data *driver_data = packet->driver_data;
1835         int ret = -ENOENT;
1836
1837         tasklet_disable(&ctx->tasklet);
1838
1839         if (packet->ack != 0)
1840                 goto out;
1841
1842         if (packet->payload_mapped)
1843                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1844                                  packet->payload_length, DMA_TO_DEVICE);
1845
1846         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1847         driver_data->packet = NULL;
1848         packet->ack = RCODE_CANCELLED;
1849         packet->callback(packet, &ohci->card, packet->ack);
1850         ret = 0;
1851  out:
1852         tasklet_enable(&ctx->tasklet);
1853
1854         return ret;
1855 }
1856
1857 static int ohci_enable_phys_dma(struct fw_card *card,
1858                                 int node_id, int generation)
1859 {
1860 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1861         return 0;
1862 #else
1863         struct fw_ohci *ohci = fw_ohci(card);
1864         unsigned long flags;
1865         int n, ret = 0;
1866
1867         /*
1868          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1869          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1870          */
1871
1872         spin_lock_irqsave(&ohci->lock, flags);
1873
1874         if (ohci->generation != generation) {
1875                 ret = -ESTALE;
1876                 goto out;
1877         }
1878
1879         /*
1880          * Note, if the node ID contains a non-local bus ID, physical DMA is
1881          * enabled for _all_ nodes on remote buses.
1882          */
1883
1884         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1885         if (n < 32)
1886                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1887         else
1888                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1889
1890         flush_writes(ohci);
1891  out:
1892         spin_unlock_irqrestore(&ohci->lock, flags);
1893
1894         return ret;
1895 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1896 }
1897
1898 static u32 cycle_timer_ticks(u32 cycle_timer)
1899 {
1900         u32 ticks;
1901
1902         ticks = cycle_timer & 0xfff;
1903         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1904         ticks += (3072 * 8000) * (cycle_timer >> 25);
1905
1906         return ticks;
1907 }
1908
1909 /*
1910  * Some controllers exhibit one or more of the following bugs when updating the
1911  * iso cycle timer register:
1912  *  - When the lowest six bits are wrapping around to zero, a read that happens
1913  *    at the same time will return garbage in the lowest ten bits.
1914  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1915  *    not incremented for about 60 ns.
1916  *  - Occasionally, the entire register reads zero.
1917  *
1918  * To catch these, we read the register three times and ensure that the
1919  * difference between each two consecutive reads is approximately the same, i.e.
1920  * less than twice the other.  Furthermore, any negative difference indicates an
1921  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1922  * execute, so we have enough precision to compute the ratio of the differences.)
1923  */
1924 static u32 ohci_get_cycle_time(struct fw_card *card)
1925 {
1926         struct fw_ohci *ohci = fw_ohci(card);
1927         u32 c0, c1, c2;
1928         u32 t0, t1, t2;
1929         s32 diff01, diff12;
1930         int i;
1931
1932         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1933
1934         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1935                 i = 0;
1936                 c1 = c2;
1937                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1938                 do {
1939                         c0 = c1;
1940                         c1 = c2;
1941                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1942                         t0 = cycle_timer_ticks(c0);
1943                         t1 = cycle_timer_ticks(c1);
1944                         t2 = cycle_timer_ticks(c2);
1945                         diff01 = t1 - t0;
1946                         diff12 = t2 - t1;
1947                 } while ((diff01 <= 0 || diff12 <= 0 ||
1948                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1949                          && i++ < 20);
1950         }
1951
1952         return c2;
1953 }
1954
1955 static void copy_iso_headers(struct iso_context *ctx, void *p)
1956 {
1957         int i = ctx->header_length;
1958
1959         if (i + ctx->base.header_size > PAGE_SIZE)
1960                 return;
1961
1962         /*
1963          * The iso header is byteswapped to little endian by
1964          * the controller, but the remaining header quadlets
1965          * are big endian.  We want to present all the headers
1966          * as big endian, so we have to swap the first quadlet.
1967          */
1968         if (ctx->base.header_size > 0)
1969                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1970         if (ctx->base.header_size > 4)
1971                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1972         if (ctx->base.header_size > 8)
1973                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1974         ctx->header_length += ctx->base.header_size;
1975 }
1976
1977 static int handle_ir_packet_per_buffer(struct context *context,
1978                                        struct descriptor *d,
1979                                        struct descriptor *last)
1980 {
1981         struct iso_context *ctx =
1982                 container_of(context, struct iso_context, context);
1983         struct descriptor *pd;
1984         __le32 *ir_header;
1985         void *p;
1986
1987         for (pd = d; pd <= last; pd++) {
1988                 if (pd->transfer_status)
1989                         break;
1990         }
1991         if (pd > last)
1992                 /* Descriptor(s) not done yet, stop iteration */
1993                 return 0;
1994
1995         p = last + 1;
1996         copy_iso_headers(ctx, p);
1997
1998         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1999                 ir_header = (__le32 *) p;
2000                 ctx->base.callback(&ctx->base,
2001                                    le32_to_cpu(ir_header[0]) & 0xffff,
2002                                    ctx->header_length, ctx->header,
2003                                    ctx->base.callback_data);
2004                 ctx->header_length = 0;
2005         }
2006
2007         return 1;
2008 }
2009
2010 static int handle_it_packet(struct context *context,
2011                             struct descriptor *d,
2012                             struct descriptor *last)
2013 {
2014         struct iso_context *ctx =
2015                 container_of(context, struct iso_context, context);
2016         int i;
2017         struct descriptor *pd;
2018
2019         for (pd = d; pd <= last; pd++)
2020                 if (pd->transfer_status)
2021                         break;
2022         if (pd > last)
2023                 /* Descriptor(s) not done yet, stop iteration */
2024                 return 0;
2025
2026         i = ctx->header_length;
2027         if (i + 4 < PAGE_SIZE) {
2028                 /* Present this value as big-endian to match the receive code */
2029                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2030                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2031                                 le16_to_cpu(pd->res_count));
2032                 ctx->header_length += 4;
2033         }
2034         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2035                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2036                                    ctx->header_length, ctx->header,
2037                                    ctx->base.callback_data);
2038                 ctx->header_length = 0;
2039         }
2040         return 1;
2041 }
2042
2043 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2044                                 int type, int channel, size_t header_size)
2045 {
2046         struct fw_ohci *ohci = fw_ohci(card);
2047         struct iso_context *ctx, *list;
2048         descriptor_callback_t callback;
2049         u64 *channels, dont_care = ~0ULL;
2050         u32 *mask, regs;
2051         unsigned long flags;
2052         int index, ret = -ENOMEM;
2053
2054         if (type == FW_ISO_CONTEXT_TRANSMIT) {
2055                 channels = &dont_care;
2056                 mask = &ohci->it_context_mask;
2057                 list = ohci->it_context_list;
2058                 callback = handle_it_packet;
2059         } else {
2060                 channels = &ohci->ir_context_channels;
2061                 mask = &ohci->ir_context_mask;
2062                 list = ohci->ir_context_list;
2063                 callback = handle_ir_packet_per_buffer;
2064         }
2065
2066         spin_lock_irqsave(&ohci->lock, flags);
2067         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2068         if (index >= 0) {
2069                 *channels &= ~(1ULL << channel);
2070                 *mask &= ~(1 << index);
2071         }
2072         spin_unlock_irqrestore(&ohci->lock, flags);
2073
2074         if (index < 0)
2075                 return ERR_PTR(-EBUSY);
2076
2077         if (type == FW_ISO_CONTEXT_TRANSMIT)
2078                 regs = OHCI1394_IsoXmitContextBase(index);
2079         else
2080                 regs = OHCI1394_IsoRcvContextBase(index);
2081
2082         ctx = &list[index];
2083         memset(ctx, 0, sizeof(*ctx));
2084         ctx->header_length = 0;
2085         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2086         if (ctx->header == NULL)
2087                 goto out;
2088
2089         ret = context_init(&ctx->context, ohci, regs, callback);
2090         if (ret < 0)
2091                 goto out_with_header;
2092
2093         return &ctx->base;
2094
2095  out_with_header:
2096         free_page((unsigned long)ctx->header);
2097  out:
2098         spin_lock_irqsave(&ohci->lock, flags);
2099         *mask |= 1 << index;
2100         spin_unlock_irqrestore(&ohci->lock, flags);
2101
2102         return ERR_PTR(ret);
2103 }
2104
2105 static int ohci_start_iso(struct fw_iso_context *base,
2106                           s32 cycle, u32 sync, u32 tags)
2107 {
2108         struct iso_context *ctx = container_of(base, struct iso_context, base);
2109         struct fw_ohci *ohci = ctx->context.ohci;
2110         u32 control, match;
2111         int index;
2112
2113         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2114                 index = ctx - ohci->it_context_list;
2115                 match = 0;
2116                 if (cycle >= 0)
2117                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2118                                 (cycle & 0x7fff) << 16;
2119
2120                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2121                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2122                 context_run(&ctx->context, match);
2123         } else {
2124                 index = ctx - ohci->ir_context_list;
2125                 control = IR_CONTEXT_ISOCH_HEADER;
2126                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2127                 if (cycle >= 0) {
2128                         match |= (cycle & 0x07fff) << 12;
2129                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2130                 }
2131
2132                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2133                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2134                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2135                 context_run(&ctx->context, control);
2136         }
2137
2138         return 0;
2139 }
2140
2141 static int ohci_stop_iso(struct fw_iso_context *base)
2142 {
2143         struct fw_ohci *ohci = fw_ohci(base->card);
2144         struct iso_context *ctx = container_of(base, struct iso_context, base);
2145         int index;
2146
2147         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2148                 index = ctx - ohci->it_context_list;
2149                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2150         } else {
2151                 index = ctx - ohci->ir_context_list;
2152                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2153         }
2154         flush_writes(ohci);
2155         context_stop(&ctx->context);
2156
2157         return 0;
2158 }
2159
2160 static void ohci_free_iso_context(struct fw_iso_context *base)
2161 {
2162         struct fw_ohci *ohci = fw_ohci(base->card);
2163         struct iso_context *ctx = container_of(base, struct iso_context, base);
2164         unsigned long flags;
2165         int index;
2166
2167         ohci_stop_iso(base);
2168         context_release(&ctx->context);
2169         free_page((unsigned long)ctx->header);
2170
2171         spin_lock_irqsave(&ohci->lock, flags);
2172
2173         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2174                 index = ctx - ohci->it_context_list;
2175                 ohci->it_context_mask |= 1 << index;
2176         } else {
2177                 index = ctx - ohci->ir_context_list;
2178                 ohci->ir_context_mask |= 1 << index;
2179                 ohci->ir_context_channels |= 1ULL << base->channel;
2180         }
2181
2182         spin_unlock_irqrestore(&ohci->lock, flags);
2183 }
2184
2185 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2186                                    struct fw_iso_packet *packet,
2187                                    struct fw_iso_buffer *buffer,
2188                                    unsigned long payload)
2189 {
2190         struct iso_context *ctx = container_of(base, struct iso_context, base);
2191         struct descriptor *d, *last, *pd;
2192         struct fw_iso_packet *p;
2193         __le32 *header;
2194         dma_addr_t d_bus, page_bus;
2195         u32 z, header_z, payload_z, irq;
2196         u32 payload_index, payload_end_index, next_page_index;
2197         int page, end_page, i, length, offset;
2198
2199         p = packet;
2200         payload_index = payload;
2201
2202         if (p->skip)
2203                 z = 1;
2204         else
2205                 z = 2;
2206         if (p->header_length > 0)
2207                 z++;
2208
2209         /* Determine the first page the payload isn't contained in. */
2210         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2211         if (p->payload_length > 0)
2212                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2213         else
2214                 payload_z = 0;
2215
2216         z += payload_z;
2217
2218         /* Get header size in number of descriptors. */
2219         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2220
2221         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2222         if (d == NULL)
2223                 return -ENOMEM;
2224
2225         if (!p->skip) {
2226                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2227                 d[0].req_count = cpu_to_le16(8);
2228                 /*
2229                  * Link the skip address to this descriptor itself.  This causes
2230                  * a context to skip a cycle whenever lost cycles or FIFO
2231                  * overruns occur, without dropping the data.  The application
2232                  * should then decide whether this is an error condition or not.
2233                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2234                  */
2235                 d[0].branch_address = cpu_to_le32(d_bus | z);
2236
2237                 header = (__le32 *) &d[1];
2238                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2239                                         IT_HEADER_TAG(p->tag) |
2240                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2241                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2242                                         IT_HEADER_SPEED(ctx->base.speed));
2243                 header[1] =
2244                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2245                                                           p->payload_length));
2246         }
2247
2248         if (p->header_length > 0) {
2249                 d[2].req_count    = cpu_to_le16(p->header_length);
2250                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2251                 memcpy(&d[z], p->header, p->header_length);
2252         }
2253
2254         pd = d + z - payload_z;
2255         payload_end_index = payload_index + p->payload_length;
2256         for (i = 0; i < payload_z; i++) {
2257                 page               = payload_index >> PAGE_SHIFT;
2258                 offset             = payload_index & ~PAGE_MASK;
2259                 next_page_index    = (page + 1) << PAGE_SHIFT;
2260                 length             =
2261                         min(next_page_index, payload_end_index) - payload_index;
2262                 pd[i].req_count    = cpu_to_le16(length);
2263
2264                 page_bus = page_private(buffer->pages[page]);
2265                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2266
2267                 payload_index += length;
2268         }
2269
2270         if (p->interrupt)
2271                 irq = DESCRIPTOR_IRQ_ALWAYS;
2272         else
2273                 irq = DESCRIPTOR_NO_IRQ;
2274
2275         last = z == 2 ? d : d + z - 1;
2276         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2277                                      DESCRIPTOR_STATUS |
2278                                      DESCRIPTOR_BRANCH_ALWAYS |
2279                                      irq);
2280
2281         context_append(&ctx->context, d, z, header_z);
2282
2283         return 0;
2284 }
2285
2286 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2287                                         struct fw_iso_packet *packet,
2288                                         struct fw_iso_buffer *buffer,
2289                                         unsigned long payload)
2290 {
2291         struct iso_context *ctx = container_of(base, struct iso_context, base);
2292         struct descriptor *d, *pd;
2293         struct fw_iso_packet *p = packet;
2294         dma_addr_t d_bus, page_bus;
2295         u32 z, header_z, rest;
2296         int i, j, length;
2297         int page, offset, packet_count, header_size, payload_per_buffer;
2298
2299         /*
2300          * The OHCI controller puts the isochronous header and trailer in the
2301          * buffer, so we need at least 8 bytes.
2302          */
2303         packet_count = p->header_length / ctx->base.header_size;
2304         header_size  = max(ctx->base.header_size, (size_t)8);
2305
2306         /* Get header size in number of descriptors. */
2307         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2308         page     = payload >> PAGE_SHIFT;
2309         offset   = payload & ~PAGE_MASK;
2310         payload_per_buffer = p->payload_length / packet_count;
2311
2312         for (i = 0; i < packet_count; i++) {
2313                 /* d points to the header descriptor */
2314                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2315                 d = context_get_descriptors(&ctx->context,
2316                                 z + header_z, &d_bus);
2317                 if (d == NULL)
2318                         return -ENOMEM;
2319
2320                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2321                                               DESCRIPTOR_INPUT_MORE);
2322                 if (p->skip && i == 0)
2323                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2324                 d->req_count    = cpu_to_le16(header_size);
2325                 d->res_count    = d->req_count;
2326                 d->transfer_status = 0;
2327                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2328
2329                 rest = payload_per_buffer;
2330                 pd = d;
2331                 for (j = 1; j < z; j++) {
2332                         pd++;
2333                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2334                                                   DESCRIPTOR_INPUT_MORE);
2335
2336                         if (offset + rest < PAGE_SIZE)
2337                                 length = rest;
2338                         else
2339                                 length = PAGE_SIZE - offset;
2340                         pd->req_count = cpu_to_le16(length);
2341                         pd->res_count = pd->req_count;
2342                         pd->transfer_status = 0;
2343
2344                         page_bus = page_private(buffer->pages[page]);
2345                         pd->data_address = cpu_to_le32(page_bus + offset);
2346
2347                         offset = (offset + length) & ~PAGE_MASK;
2348                         rest -= length;
2349                         if (offset == 0)
2350                                 page++;
2351                 }
2352                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2353                                           DESCRIPTOR_INPUT_LAST |
2354                                           DESCRIPTOR_BRANCH_ALWAYS);
2355                 if (p->interrupt && i == packet_count - 1)
2356                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2357
2358                 context_append(&ctx->context, d, z, header_z);
2359         }
2360
2361         return 0;
2362 }
2363
2364 static int ohci_queue_iso(struct fw_iso_context *base,
2365                           struct fw_iso_packet *packet,
2366                           struct fw_iso_buffer *buffer,
2367                           unsigned long payload)
2368 {
2369         struct iso_context *ctx = container_of(base, struct iso_context, base);
2370         unsigned long flags;
2371         int ret;
2372
2373         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2374         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2375                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2376         else
2377                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2378                                                         buffer, payload);
2379         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2380
2381         return ret;
2382 }
2383
2384 static const struct fw_card_driver ohci_driver = {
2385         .enable                 = ohci_enable,
2386         .update_phy_reg         = ohci_update_phy_reg,
2387         .set_config_rom         = ohci_set_config_rom,
2388         .send_request           = ohci_send_request,
2389         .send_response          = ohci_send_response,
2390         .cancel_packet          = ohci_cancel_packet,
2391         .enable_phys_dma        = ohci_enable_phys_dma,
2392         .get_cycle_time         = ohci_get_cycle_time,
2393
2394         .allocate_iso_context   = ohci_allocate_iso_context,
2395         .free_iso_context       = ohci_free_iso_context,
2396         .queue_iso              = ohci_queue_iso,
2397         .start_iso              = ohci_start_iso,
2398         .stop_iso               = ohci_stop_iso,
2399 };
2400
2401 #ifdef CONFIG_PPC_PMAC
2402 static void ohci_pmac_on(struct pci_dev *dev)
2403 {
2404         if (machine_is(powermac)) {
2405                 struct device_node *ofn = pci_device_to_OF_node(dev);
2406
2407                 if (ofn) {
2408                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2409                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2410                 }
2411         }
2412 }
2413
2414 static void ohci_pmac_off(struct pci_dev *dev)
2415 {
2416         if (machine_is(powermac)) {
2417                 struct device_node *ofn = pci_device_to_OF_node(dev);
2418
2419                 if (ofn) {
2420                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2421                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2422                 }
2423         }
2424 }
2425 #else
2426 #define ohci_pmac_on(dev)
2427 #define ohci_pmac_off(dev)
2428 #endif /* CONFIG_PPC_PMAC */
2429
2430 static int __devinit pci_probe(struct pci_dev *dev,
2431                                const struct pci_device_id *ent)
2432 {
2433         struct fw_ohci *ohci;
2434         u32 bus_options, max_receive, link_speed, version, link_enh;
2435         u64 guid;
2436         int i, err, n_ir, n_it;
2437         size_t size;
2438
2439         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2440         if (ohci == NULL) {
2441                 err = -ENOMEM;
2442                 goto fail;
2443         }
2444
2445         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2446
2447         ohci_pmac_on(dev);
2448
2449         err = pci_enable_device(dev);
2450         if (err) {
2451                 fw_error("Failed to enable OHCI hardware\n");
2452                 goto fail_free;
2453         }
2454
2455         pci_set_master(dev);
2456         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2457         pci_set_drvdata(dev, ohci);
2458
2459         spin_lock_init(&ohci->lock);
2460
2461         tasklet_init(&ohci->bus_reset_tasklet,
2462                      bus_reset_tasklet, (unsigned long)ohci);
2463
2464         err = pci_request_region(dev, 0, ohci_driver_name);
2465         if (err) {
2466                 fw_error("MMIO resource unavailable\n");
2467                 goto fail_disable;
2468         }
2469
2470         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2471         if (ohci->registers == NULL) {
2472                 fw_error("Failed to remap registers\n");
2473                 err = -ENXIO;
2474                 goto fail_iomem;
2475         }
2476
2477         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2478                 if (ohci_quirks[i].vendor == dev->vendor &&
2479                     (ohci_quirks[i].device == dev->device ||
2480                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2481                         ohci->quirks = ohci_quirks[i].flags;
2482                         break;
2483                 }
2484         if (param_quirks)
2485                 ohci->quirks = param_quirks;
2486
2487         /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2488         if (dev->vendor == PCI_VENDOR_ID_TI) {
2489                 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2490
2491                 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2492                 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2493                 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2494
2495                 /* use priority arbitration for asynchronous responses */
2496                 link_enh |= TI_LinkEnh_enab_unfair;
2497
2498                 /* required for aPhyEnhanceEnable to work */
2499                 link_enh |= TI_LinkEnh_enab_accel;
2500
2501                 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2502         }
2503
2504         ar_context_init(&ohci->ar_request_ctx, ohci,
2505                         OHCI1394_AsReqRcvContextControlSet);
2506
2507         ar_context_init(&ohci->ar_response_ctx, ohci,
2508                         OHCI1394_AsRspRcvContextControlSet);
2509
2510         context_init(&ohci->at_request_ctx, ohci,
2511                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2512
2513         context_init(&ohci->at_response_ctx, ohci,
2514                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2515
2516         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2517         ohci->ir_context_channels = ~0ULL;
2518         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2519         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2520         n_ir = hweight32(ohci->ir_context_mask);
2521         size = sizeof(struct iso_context) * n_ir;
2522         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2523
2524         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2525         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2526         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2527         n_it = hweight32(ohci->it_context_mask);
2528         size = sizeof(struct iso_context) * n_it;
2529         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2530
2531         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2532                 err = -ENOMEM;
2533                 goto fail_contexts;
2534         }
2535
2536         /* self-id dma buffer allocation */
2537         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2538                                                SELF_ID_BUF_SIZE,
2539                                                &ohci->self_id_bus,
2540                                                GFP_KERNEL);
2541         if (ohci->self_id_cpu == NULL) {
2542                 err = -ENOMEM;
2543                 goto fail_contexts;
2544         }
2545
2546         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2547         max_receive = (bus_options >> 12) & 0xf;
2548         link_speed = bus_options & 0x7;
2549         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2550                 reg_read(ohci, OHCI1394_GUIDLo);
2551
2552         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2553         if (err)
2554                 goto fail_self_id;
2555
2556         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2557         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2558                   "%d IR + %d IT contexts, quirks 0x%x\n",
2559                   dev_name(&dev->dev), version >> 16, version & 0xff,
2560                   n_ir, n_it, ohci->quirks);
2561
2562         return 0;
2563
2564  fail_self_id:
2565         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2566                           ohci->self_id_cpu, ohci->self_id_bus);
2567  fail_contexts:
2568         kfree(ohci->ir_context_list);
2569         kfree(ohci->it_context_list);
2570         context_release(&ohci->at_response_ctx);
2571         context_release(&ohci->at_request_ctx);
2572         ar_context_release(&ohci->ar_response_ctx);
2573         ar_context_release(&ohci->ar_request_ctx);
2574         pci_iounmap(dev, ohci->registers);
2575  fail_iomem:
2576         pci_release_region(dev, 0);
2577  fail_disable:
2578         pci_disable_device(dev);
2579  fail_free:
2580         kfree(&ohci->card);
2581         ohci_pmac_off(dev);
2582  fail:
2583         if (err == -ENOMEM)
2584                 fw_error("Out of memory\n");
2585
2586         return err;
2587 }
2588
2589 static void pci_remove(struct pci_dev *dev)
2590 {
2591         struct fw_ohci *ohci;
2592
2593         ohci = pci_get_drvdata(dev);
2594         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2595         flush_writes(ohci);
2596         fw_core_remove_card(&ohci->card);
2597
2598         /*
2599          * FIXME: Fail all pending packets here, now that the upper
2600          * layers can't queue any more.
2601          */
2602
2603         software_reset(ohci);
2604         free_irq(dev->irq, ohci);
2605
2606         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2607                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2608                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2609         if (ohci->config_rom)
2610                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2611                                   ohci->config_rom, ohci->config_rom_bus);
2612         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2613                           ohci->self_id_cpu, ohci->self_id_bus);
2614         ar_context_release(&ohci->ar_request_ctx);
2615         ar_context_release(&ohci->ar_response_ctx);
2616         context_release(&ohci->at_request_ctx);
2617         context_release(&ohci->at_response_ctx);
2618         kfree(ohci->it_context_list);
2619         kfree(ohci->ir_context_list);
2620         pci_iounmap(dev, ohci->registers);
2621         pci_release_region(dev, 0);
2622         pci_disable_device(dev);
2623         kfree(&ohci->card);
2624         ohci_pmac_off(dev);
2625
2626         fw_notify("Removed fw-ohci device.\n");
2627 }
2628
2629 #ifdef CONFIG_PM
2630 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2631 {
2632         struct fw_ohci *ohci = pci_get_drvdata(dev);
2633         int err;
2634
2635         software_reset(ohci);
2636         free_irq(dev->irq, ohci);
2637         err = pci_save_state(dev);
2638         if (err) {
2639                 fw_error("pci_save_state failed\n");
2640                 return err;
2641         }
2642         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2643         if (err)
2644                 fw_error("pci_set_power_state failed with %d\n", err);
2645         ohci_pmac_off(dev);
2646
2647         return 0;
2648 }
2649
2650 static int pci_resume(struct pci_dev *dev)
2651 {
2652         struct fw_ohci *ohci = pci_get_drvdata(dev);
2653         int err;
2654
2655         ohci_pmac_on(dev);
2656         pci_set_power_state(dev, PCI_D0);
2657         pci_restore_state(dev);
2658         err = pci_enable_device(dev);
2659         if (err) {
2660                 fw_error("pci_enable_device failed\n");
2661                 return err;
2662         }
2663
2664         return ohci_enable(&ohci->card, NULL, 0);
2665 }
2666 #endif
2667
2668 static const struct pci_device_id pci_table[] = {
2669         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2670         { }
2671 };
2672
2673 MODULE_DEVICE_TABLE(pci, pci_table);
2674
2675 static struct pci_driver fw_ohci_pci_driver = {
2676         .name           = ohci_driver_name,
2677         .id_table       = pci_table,
2678         .probe          = pci_probe,
2679         .remove         = pci_remove,
2680 #ifdef CONFIG_PM
2681         .resume         = pci_resume,
2682         .suspend        = pci_suspend,
2683 #endif
2684 };
2685
2686 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2687 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2688 MODULE_LICENSE("GPL");
2689
2690 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2691 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2692 MODULE_ALIAS("ohci1394");
2693 #endif
2694
2695 static int __init fw_ohci_init(void)
2696 {
2697         return pci_register_driver(&fw_ohci_pci_driver);
2698 }
2699
2700 static void __exit fw_ohci_cleanup(void)
2701 {
2702         pci_unregister_driver(&fw_ohci_pci_driver);
2703 }
2704
2705 module_init(fw_ohci_init);
2706 module_exit(fw_ohci_cleanup);