5826ae333b19ed7e3a58a0c12c18ce92315e19fd
[pandora-kernel.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/slab.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/time.h>
43
44 #include <asm/byteorder.h>
45 #include <asm/page.h>
46 #include <asm/system.h>
47
48 #ifdef CONFIG_PPC_PMAC
49 #include <asm/pmac_feature.h>
50 #endif
51
52 #include "core.h"
53 #include "ohci.h"
54
55 #define DESCRIPTOR_OUTPUT_MORE          0
56 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
57 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
58 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
59 #define DESCRIPTOR_STATUS               (1 << 11)
60 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
61 #define DESCRIPTOR_PING                 (1 << 7)
62 #define DESCRIPTOR_YY                   (1 << 6)
63 #define DESCRIPTOR_NO_IRQ               (0 << 4)
64 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
65 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
66 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
67 #define DESCRIPTOR_WAIT                 (3 << 0)
68
69 struct descriptor {
70         __le16 req_count;
71         __le16 control;
72         __le32 data_address;
73         __le32 branch_address;
74         __le16 res_count;
75         __le16 transfer_status;
76 } __attribute__((aligned(16)));
77
78 #define CONTROL_SET(regs)       (regs)
79 #define CONTROL_CLEAR(regs)     ((regs) + 4)
80 #define COMMAND_PTR(regs)       ((regs) + 12)
81 #define CONTEXT_MATCH(regs)     ((regs) + 16)
82
83 struct ar_buffer {
84         struct descriptor descriptor;
85         struct ar_buffer *next;
86         __le32 data[0];
87 };
88
89 struct ar_context {
90         struct fw_ohci *ohci;
91         struct ar_buffer *current_buffer;
92         struct ar_buffer *last_buffer;
93         void *pointer;
94         u32 regs;
95         struct tasklet_struct tasklet;
96 };
97
98 struct context;
99
100 typedef int (*descriptor_callback_t)(struct context *ctx,
101                                      struct descriptor *d,
102                                      struct descriptor *last);
103
104 /*
105  * A buffer that contains a block of DMA-able coherent memory used for
106  * storing a portion of a DMA descriptor program.
107  */
108 struct descriptor_buffer {
109         struct list_head list;
110         dma_addr_t buffer_bus;
111         size_t buffer_size;
112         size_t used;
113         struct descriptor buffer[0];
114 };
115
116 struct context {
117         struct fw_ohci *ohci;
118         u32 regs;
119         int total_allocation;
120
121         /*
122          * List of page-sized buffers for storing DMA descriptors.
123          * Head of list contains buffers in use and tail of list contains
124          * free buffers.
125          */
126         struct list_head buffer_list;
127
128         /*
129          * Pointer to a buffer inside buffer_list that contains the tail
130          * end of the current DMA program.
131          */
132         struct descriptor_buffer *buffer_tail;
133
134         /*
135          * The descriptor containing the branch address of the first
136          * descriptor that has not yet been filled by the device.
137          */
138         struct descriptor *last;
139
140         /*
141          * The last descriptor in the DMA program.  It contains the branch
142          * address that must be updated upon appending a new descriptor.
143          */
144         struct descriptor *prev;
145
146         descriptor_callback_t callback;
147
148         struct tasklet_struct tasklet;
149 };
150
151 #define IT_HEADER_SY(v)          ((v) <<  0)
152 #define IT_HEADER_TCODE(v)       ((v) <<  4)
153 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
154 #define IT_HEADER_TAG(v)         ((v) << 14)
155 #define IT_HEADER_SPEED(v)       ((v) << 16)
156 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
157
158 struct iso_context {
159         struct fw_iso_context base;
160         struct context context;
161         int excess_bytes;
162         void *header;
163         size_t header_length;
164 };
165
166 #define CONFIG_ROM_SIZE 1024
167
168 struct fw_ohci {
169         struct fw_card card;
170
171         __iomem char *registers;
172         int node_id;
173         int generation;
174         int request_generation; /* for timestamping incoming requests */
175         unsigned quirks;
176         unsigned int pri_req_max;
177         u32 bus_time;
178         bool is_root;
179         bool csr_state_setclear_abdicate;
180
181         /*
182          * Spinlock for accessing fw_ohci data.  Never call out of
183          * this driver with this lock held.
184          */
185         spinlock_t lock;
186
187         struct mutex phy_reg_mutex;
188
189         struct ar_context ar_request_ctx;
190         struct ar_context ar_response_ctx;
191         struct context at_request_ctx;
192         struct context at_response_ctx;
193
194         u32 it_context_mask;     /* unoccupied IT contexts */
195         struct iso_context *it_context_list;
196         u64 ir_context_channels; /* unoccupied channels */
197         u32 ir_context_mask;     /* unoccupied IR contexts */
198         struct iso_context *ir_context_list;
199         u64 mc_channels; /* channels in use by the multichannel IR context */
200         bool mc_allocated;
201
202         __be32    *config_rom;
203         dma_addr_t config_rom_bus;
204         __be32    *next_config_rom;
205         dma_addr_t next_config_rom_bus;
206         __be32     next_header;
207
208         __le32    *self_id_cpu;
209         dma_addr_t self_id_bus;
210         struct tasklet_struct bus_reset_tasklet;
211
212         u32 self_id_buffer[512];
213 };
214
215 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
216 {
217         return container_of(card, struct fw_ohci, card);
218 }
219
220 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
221 #define IR_CONTEXT_BUFFER_FILL          0x80000000
222 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
223 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
224 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
225 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
226
227 #define CONTEXT_RUN     0x8000
228 #define CONTEXT_WAKE    0x1000
229 #define CONTEXT_DEAD    0x0800
230 #define CONTEXT_ACTIVE  0x0400
231
232 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
233 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
234 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
235
236 #define OHCI1394_REGISTER_SIZE          0x800
237 #define OHCI_LOOP_COUNT                 500
238 #define OHCI1394_PCI_HCI_Control        0x40
239 #define SELF_ID_BUF_SIZE                0x800
240 #define OHCI_TCODE_PHY_PACKET           0x0e
241 #define OHCI_VERSION_1_1                0x010010
242
243 static char ohci_driver_name[] = KBUILD_MODNAME;
244
245 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
246 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
247
248 #define QUIRK_CYCLE_TIMER               1
249 #define QUIRK_RESET_PACKET              2
250 #define QUIRK_BE_HEADERS                4
251 #define QUIRK_NO_1394A                  8
252 #define QUIRK_NO_MSI                    16
253
254 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
255 static const struct {
256         unsigned short vendor, device, flags;
257 } ohci_quirks[] = {
258         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
259                                                             QUIRK_RESET_PACKET |
260                                                             QUIRK_NO_1394A},
261         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
262         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
263         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
264         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
265         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
266         {PCI_VENDOR_ID_RICOH,   PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
267         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
268 };
269
270 /* This overrides anything that was found in ohci_quirks[]. */
271 static int param_quirks;
272 module_param_named(quirks, param_quirks, int, 0644);
273 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
274         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
275         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
276         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
277         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
278         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
279         ")");
280
281 #define OHCI_PARAM_DEBUG_AT_AR          1
282 #define OHCI_PARAM_DEBUG_SELFIDS        2
283 #define OHCI_PARAM_DEBUG_IRQS           4
284 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
285
286 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
287
288 static int param_debug;
289 module_param_named(debug, param_debug, int, 0644);
290 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
291         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
292         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
293         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
294         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
295         ", or a combination, or all = -1)");
296
297 static void log_irqs(u32 evt)
298 {
299         if (likely(!(param_debug &
300                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
301                 return;
302
303         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
304             !(evt & OHCI1394_busReset))
305                 return;
306
307         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
308             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
309             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
310             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
311             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
312             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
313             evt & OHCI1394_isochRx              ? " IR"                 : "",
314             evt & OHCI1394_isochTx              ? " IT"                 : "",
315             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
316             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
317             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
318             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
319             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
320             evt & OHCI1394_busReset             ? " busReset"           : "",
321             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
322                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
323                     OHCI1394_respTxComplete | OHCI1394_isochRx |
324                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
325                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
326                     OHCI1394_cycleInconsistent |
327                     OHCI1394_regAccessFail | OHCI1394_busReset)
328                                                 ? " ?"                  : "");
329 }
330
331 static const char *speed[] = {
332         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
333 };
334 static const char *power[] = {
335         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
336         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
337 };
338 static const char port[] = { '.', '-', 'p', 'c', };
339
340 static char _p(u32 *s, int shift)
341 {
342         return port[*s >> shift & 3];
343 }
344
345 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
346 {
347         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
348                 return;
349
350         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
351                   self_id_count, generation, node_id);
352
353         for (; self_id_count--; ++s)
354                 if ((*s & 1 << 23) == 0)
355                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
356                             "%s gc=%d %s %s%s%s\n",
357                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
358                             speed[*s >> 14 & 3], *s >> 16 & 63,
359                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
360                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
361                 else
362                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
363                             *s, *s >> 24 & 63,
364                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
365                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
366 }
367
368 static const char *evts[] = {
369         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
370         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
371         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
372         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
373         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
374         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
375         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
376         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
377         [0x10] = "-reserved-",          [0x11] = "ack_complete",
378         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
379         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
380         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
381         [0x18] = "-reserved-",          [0x19] = "-reserved-",
382         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
383         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
384         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
385         [0x20] = "pending/cancelled",
386 };
387 static const char *tcodes[] = {
388         [0x0] = "QW req",               [0x1] = "BW req",
389         [0x2] = "W resp",               [0x3] = "-reserved-",
390         [0x4] = "QR req",               [0x5] = "BR req",
391         [0x6] = "QR resp",              [0x7] = "BR resp",
392         [0x8] = "cycle start",          [0x9] = "Lk req",
393         [0xa] = "async stream packet",  [0xb] = "Lk resp",
394         [0xc] = "-reserved-",           [0xd] = "-reserved-",
395         [0xe] = "link internal",        [0xf] = "-reserved-",
396 };
397 static const char *phys[] = {
398         [0x0] = "phy config packet",    [0x1] = "link-on packet",
399         [0x2] = "self-id packet",       [0x3] = "-reserved-",
400 };
401
402 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
403 {
404         int tcode = header[0] >> 4 & 0xf;
405         char specific[12];
406
407         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
408                 return;
409
410         if (unlikely(evt >= ARRAY_SIZE(evts)))
411                         evt = 0x1f;
412
413         if (evt == OHCI1394_evt_bus_reset) {
414                 fw_notify("A%c evt_bus_reset, generation %d\n",
415                     dir, (header[2] >> 16) & 0xff);
416                 return;
417         }
418
419         if (header[0] == ~header[1]) {
420                 fw_notify("A%c %s, %s, %08x\n",
421                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
422                 return;
423         }
424
425         switch (tcode) {
426         case 0x0: case 0x6: case 0x8:
427                 snprintf(specific, sizeof(specific), " = %08x",
428                          be32_to_cpu((__force __be32)header[3]));
429                 break;
430         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
431                 snprintf(specific, sizeof(specific), " %x,%x",
432                          header[3] >> 16, header[3] & 0xffff);
433                 break;
434         default:
435                 specific[0] = '\0';
436         }
437
438         switch (tcode) {
439         case 0xe: case 0xa:
440                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
441                 break;
442         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
443                 fw_notify("A%c spd %x tl %02x, "
444                     "%04x -> %04x, %s, "
445                     "%s, %04x%08x%s\n",
446                     dir, speed, header[0] >> 10 & 0x3f,
447                     header[1] >> 16, header[0] >> 16, evts[evt],
448                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
449                 break;
450         default:
451                 fw_notify("A%c spd %x tl %02x, "
452                     "%04x -> %04x, %s, "
453                     "%s%s\n",
454                     dir, speed, header[0] >> 10 & 0x3f,
455                     header[1] >> 16, header[0] >> 16, evts[evt],
456                     tcodes[tcode], specific);
457         }
458 }
459
460 #else
461
462 #define param_debug 0
463 static inline void log_irqs(u32 evt) {}
464 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
465 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
466
467 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
468
469 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
470 {
471         writel(data, ohci->registers + offset);
472 }
473
474 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
475 {
476         return readl(ohci->registers + offset);
477 }
478
479 static inline void flush_writes(const struct fw_ohci *ohci)
480 {
481         /* Do a dummy read to flush writes. */
482         reg_read(ohci, OHCI1394_Version);
483 }
484
485 static int read_phy_reg(struct fw_ohci *ohci, int addr)
486 {
487         u32 val;
488         int i;
489
490         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
491         for (i = 0; i < 3 + 100; i++) {
492                 val = reg_read(ohci, OHCI1394_PhyControl);
493                 if (val & OHCI1394_PhyControl_ReadDone)
494                         return OHCI1394_PhyControl_ReadData(val);
495
496                 /*
497                  * Try a few times without waiting.  Sleeping is necessary
498                  * only when the link/PHY interface is busy.
499                  */
500                 if (i >= 3)
501                         msleep(1);
502         }
503         fw_error("failed to read phy reg\n");
504
505         return -EBUSY;
506 }
507
508 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
509 {
510         int i;
511
512         reg_write(ohci, OHCI1394_PhyControl,
513                   OHCI1394_PhyControl_Write(addr, val));
514         for (i = 0; i < 3 + 100; i++) {
515                 val = reg_read(ohci, OHCI1394_PhyControl);
516                 if (!(val & OHCI1394_PhyControl_WritePending))
517                         return 0;
518
519                 if (i >= 3)
520                         msleep(1);
521         }
522         fw_error("failed to write phy reg\n");
523
524         return -EBUSY;
525 }
526
527 static int update_phy_reg(struct fw_ohci *ohci, int addr,
528                           int clear_bits, int set_bits)
529 {
530         int ret = read_phy_reg(ohci, addr);
531         if (ret < 0)
532                 return ret;
533
534         /*
535          * The interrupt status bits are cleared by writing a one bit.
536          * Avoid clearing them unless explicitly requested in set_bits.
537          */
538         if (addr == 5)
539                 clear_bits |= PHY_INT_STATUS_BITS;
540
541         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
542 }
543
544 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
545 {
546         int ret;
547
548         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
549         if (ret < 0)
550                 return ret;
551
552         return read_phy_reg(ohci, addr);
553 }
554
555 static int ohci_read_phy_reg(struct fw_card *card, int addr)
556 {
557         struct fw_ohci *ohci = fw_ohci(card);
558         int ret;
559
560         mutex_lock(&ohci->phy_reg_mutex);
561         ret = read_phy_reg(ohci, addr);
562         mutex_unlock(&ohci->phy_reg_mutex);
563
564         return ret;
565 }
566
567 static int ohci_update_phy_reg(struct fw_card *card, int addr,
568                                int clear_bits, int set_bits)
569 {
570         struct fw_ohci *ohci = fw_ohci(card);
571         int ret;
572
573         mutex_lock(&ohci->phy_reg_mutex);
574         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
575         mutex_unlock(&ohci->phy_reg_mutex);
576
577         return ret;
578 }
579
580 static int ar_context_add_page(struct ar_context *ctx)
581 {
582         struct device *dev = ctx->ohci->card.device;
583         struct ar_buffer *ab;
584         dma_addr_t uninitialized_var(ab_bus);
585         size_t offset;
586
587         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
588         if (ab == NULL)
589                 return -ENOMEM;
590
591         ab->next = NULL;
592         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
593         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
594                                                     DESCRIPTOR_STATUS |
595                                                     DESCRIPTOR_BRANCH_ALWAYS);
596         offset = offsetof(struct ar_buffer, data);
597         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
598         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
599         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
600         ab->descriptor.branch_address = 0;
601
602         wmb(); /* finish init of new descriptors before branch_address update */
603         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
604         ctx->last_buffer->next = ab;
605         ctx->last_buffer = ab;
606
607         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
608         flush_writes(ctx->ohci);
609
610         return 0;
611 }
612
613 static void ar_context_release(struct ar_context *ctx)
614 {
615         struct ar_buffer *ab, *ab_next;
616         size_t offset;
617         dma_addr_t ab_bus;
618
619         for (ab = ctx->current_buffer; ab; ab = ab_next) {
620                 ab_next = ab->next;
621                 offset = offsetof(struct ar_buffer, data);
622                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
623                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
624                                   ab, ab_bus);
625         }
626 }
627
628 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
629 #define cond_le32_to_cpu(v) \
630         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
631 #else
632 #define cond_le32_to_cpu(v) le32_to_cpu(v)
633 #endif
634
635 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
636 {
637         struct fw_ohci *ohci = ctx->ohci;
638         struct fw_packet p;
639         u32 status, length, tcode;
640         int evt;
641
642         p.header[0] = cond_le32_to_cpu(buffer[0]);
643         p.header[1] = cond_le32_to_cpu(buffer[1]);
644         p.header[2] = cond_le32_to_cpu(buffer[2]);
645
646         tcode = (p.header[0] >> 4) & 0x0f;
647         switch (tcode) {
648         case TCODE_WRITE_QUADLET_REQUEST:
649         case TCODE_READ_QUADLET_RESPONSE:
650                 p.header[3] = (__force __u32) buffer[3];
651                 p.header_length = 16;
652                 p.payload_length = 0;
653                 break;
654
655         case TCODE_READ_BLOCK_REQUEST :
656                 p.header[3] = cond_le32_to_cpu(buffer[3]);
657                 p.header_length = 16;
658                 p.payload_length = 0;
659                 break;
660
661         case TCODE_WRITE_BLOCK_REQUEST:
662         case TCODE_READ_BLOCK_RESPONSE:
663         case TCODE_LOCK_REQUEST:
664         case TCODE_LOCK_RESPONSE:
665                 p.header[3] = cond_le32_to_cpu(buffer[3]);
666                 p.header_length = 16;
667                 p.payload_length = p.header[3] >> 16;
668                 break;
669
670         case TCODE_WRITE_RESPONSE:
671         case TCODE_READ_QUADLET_REQUEST:
672         case OHCI_TCODE_PHY_PACKET:
673                 p.header_length = 12;
674                 p.payload_length = 0;
675                 break;
676
677         default:
678                 /* FIXME: Stop context, discard everything, and restart? */
679                 p.header_length = 0;
680                 p.payload_length = 0;
681         }
682
683         p.payload = (void *) buffer + p.header_length;
684
685         /* FIXME: What to do about evt_* errors? */
686         length = (p.header_length + p.payload_length + 3) / 4;
687         status = cond_le32_to_cpu(buffer[length]);
688         evt    = (status >> 16) & 0x1f;
689
690         p.ack        = evt - 16;
691         p.speed      = (status >> 21) & 0x7;
692         p.timestamp  = status & 0xffff;
693         p.generation = ohci->request_generation;
694
695         log_ar_at_event('R', p.speed, p.header, evt);
696
697         /*
698          * Several controllers, notably from NEC and VIA, forget to
699          * write ack_complete status at PHY packet reception.
700          */
701         if (evt == OHCI1394_evt_no_status &&
702             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
703                 p.ack = ACK_COMPLETE;
704
705         /*
706          * The OHCI bus reset handler synthesizes a PHY packet with
707          * the new generation number when a bus reset happens (see
708          * section 8.4.2.3).  This helps us determine when a request
709          * was received and make sure we send the response in the same
710          * generation.  We only need this for requests; for responses
711          * we use the unique tlabel for finding the matching
712          * request.
713          *
714          * Alas some chips sometimes emit bus reset packets with a
715          * wrong generation.  We set the correct generation for these
716          * at a slightly incorrect time (in bus_reset_tasklet).
717          */
718         if (evt == OHCI1394_evt_bus_reset) {
719                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
720                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
721         } else if (ctx == &ohci->ar_request_ctx) {
722                 fw_core_handle_request(&ohci->card, &p);
723         } else {
724                 fw_core_handle_response(&ohci->card, &p);
725         }
726
727         return buffer + length + 1;
728 }
729
730 static void ar_context_tasklet(unsigned long data)
731 {
732         struct ar_context *ctx = (struct ar_context *)data;
733         struct fw_ohci *ohci = ctx->ohci;
734         struct ar_buffer *ab;
735         struct descriptor *d;
736         void *buffer, *end;
737
738         ab = ctx->current_buffer;
739         d = &ab->descriptor;
740
741         if (d->res_count == 0) {
742                 size_t size, size2, rest, pktsize, size3, offset;
743                 dma_addr_t start_bus;
744                 void *start;
745
746                 /*
747                  * This descriptor is finished and we may have a
748                  * packet split across this and the next buffer. We
749                  * reuse the page for reassembling the split packet.
750                  */
751
752                 offset = offsetof(struct ar_buffer, data);
753                 start = buffer = ab;
754                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
755
756                 ab = ab->next;
757                 d = &ab->descriptor;
758                 size = buffer + PAGE_SIZE - ctx->pointer;
759                 /* valid buffer data in the next page */
760                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
761                 /* what actually fits in this page */
762                 size2 = min(rest, (size_t)PAGE_SIZE - size);
763                 memmove(buffer, ctx->pointer, size);
764                 memcpy(buffer + size, ab->data, size2);
765                 ctx->current_buffer = ab;
766                 ctx->pointer = (void *) ab->data + rest;
767
768                 while (size > 0) {
769                         void *next = handle_ar_packet(ctx, buffer);
770                         pktsize = next - buffer;
771                         if (pktsize >= size) {
772                                 /*
773                                  * We have handled all the data that was
774                                  * originally in this page, so we can now
775                                  * continue in the next page.
776                                  */
777                                 buffer = next;
778                                 break;
779                         }
780                         /* move the next packet to the start of the buffer */
781                         memmove(buffer, next, size + size2 - pktsize);
782                         size -= pktsize;
783                         /* fill up this page again */
784                         size3 = min(rest - size2,
785                                     (size_t)PAGE_SIZE - size - size2);
786                         memcpy(buffer + size + size2,
787                                (void *) ab->data + size2, size3);
788                         size2 += size3;
789                 }
790
791                 /* handle the packets that are fully in the next page */
792                 buffer = (void *) ab->data + (buffer - (start + size));
793                 end = (void *) ab->data + rest;
794
795                 while (buffer < end)
796                         buffer = handle_ar_packet(ctx, buffer);
797
798                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
799                                   start, start_bus);
800                 ar_context_add_page(ctx);
801         } else {
802                 buffer = ctx->pointer;
803                 ctx->pointer = end =
804                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
805
806                 while (buffer < end)
807                         buffer = handle_ar_packet(ctx, buffer);
808         }
809 }
810
811 static int ar_context_init(struct ar_context *ctx,
812                            struct fw_ohci *ohci, u32 regs)
813 {
814         struct ar_buffer ab;
815
816         ctx->regs        = regs;
817         ctx->ohci        = ohci;
818         ctx->last_buffer = &ab;
819         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
820
821         ar_context_add_page(ctx);
822         ar_context_add_page(ctx);
823         ctx->current_buffer = ab.next;
824         ctx->pointer = ctx->current_buffer->data;
825
826         return 0;
827 }
828
829 static void ar_context_run(struct ar_context *ctx)
830 {
831         struct ar_buffer *ab = ctx->current_buffer;
832         dma_addr_t ab_bus;
833         size_t offset;
834
835         offset = offsetof(struct ar_buffer, data);
836         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
837
838         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
839         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
840         flush_writes(ctx->ohci);
841 }
842
843 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
844 {
845         int b, key;
846
847         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
848         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
849
850         /* figure out which descriptor the branch address goes in */
851         if (z == 2 && (b == 3 || key == 2))
852                 return d;
853         else
854                 return d + z - 1;
855 }
856
857 static void context_tasklet(unsigned long data)
858 {
859         struct context *ctx = (struct context *) data;
860         struct descriptor *d, *last;
861         u32 address;
862         int z;
863         struct descriptor_buffer *desc;
864
865         desc = list_entry(ctx->buffer_list.next,
866                         struct descriptor_buffer, list);
867         last = ctx->last;
868         while (last->branch_address != 0) {
869                 struct descriptor_buffer *old_desc = desc;
870                 address = le32_to_cpu(last->branch_address);
871                 z = address & 0xf;
872                 address &= ~0xf;
873
874                 /* If the branch address points to a buffer outside of the
875                  * current buffer, advance to the next buffer. */
876                 if (address < desc->buffer_bus ||
877                                 address >= desc->buffer_bus + desc->used)
878                         desc = list_entry(desc->list.next,
879                                         struct descriptor_buffer, list);
880                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
881                 last = find_branch_descriptor(d, z);
882
883                 if (!ctx->callback(ctx, d, last))
884                         break;
885
886                 if (old_desc != desc) {
887                         /* If we've advanced to the next buffer, move the
888                          * previous buffer to the free list. */
889                         unsigned long flags;
890                         old_desc->used = 0;
891                         spin_lock_irqsave(&ctx->ohci->lock, flags);
892                         list_move_tail(&old_desc->list, &ctx->buffer_list);
893                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
894                 }
895                 ctx->last = last;
896         }
897 }
898
899 /*
900  * Allocate a new buffer and add it to the list of free buffers for this
901  * context.  Must be called with ohci->lock held.
902  */
903 static int context_add_buffer(struct context *ctx)
904 {
905         struct descriptor_buffer *desc;
906         dma_addr_t uninitialized_var(bus_addr);
907         int offset;
908
909         /*
910          * 16MB of descriptors should be far more than enough for any DMA
911          * program.  This will catch run-away userspace or DoS attacks.
912          */
913         if (ctx->total_allocation >= 16*1024*1024)
914                 return -ENOMEM;
915
916         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
917                         &bus_addr, GFP_ATOMIC);
918         if (!desc)
919                 return -ENOMEM;
920
921         offset = (void *)&desc->buffer - (void *)desc;
922         desc->buffer_size = PAGE_SIZE - offset;
923         desc->buffer_bus = bus_addr + offset;
924         desc->used = 0;
925
926         list_add_tail(&desc->list, &ctx->buffer_list);
927         ctx->total_allocation += PAGE_SIZE;
928
929         return 0;
930 }
931
932 static int context_init(struct context *ctx, struct fw_ohci *ohci,
933                         u32 regs, descriptor_callback_t callback)
934 {
935         ctx->ohci = ohci;
936         ctx->regs = regs;
937         ctx->total_allocation = 0;
938
939         INIT_LIST_HEAD(&ctx->buffer_list);
940         if (context_add_buffer(ctx) < 0)
941                 return -ENOMEM;
942
943         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
944                         struct descriptor_buffer, list);
945
946         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
947         ctx->callback = callback;
948
949         /*
950          * We put a dummy descriptor in the buffer that has a NULL
951          * branch address and looks like it's been sent.  That way we
952          * have a descriptor to append DMA programs to.
953          */
954         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
955         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
956         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
957         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
958         ctx->last = ctx->buffer_tail->buffer;
959         ctx->prev = ctx->buffer_tail->buffer;
960
961         return 0;
962 }
963
964 static void context_release(struct context *ctx)
965 {
966         struct fw_card *card = &ctx->ohci->card;
967         struct descriptor_buffer *desc, *tmp;
968
969         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
970                 dma_free_coherent(card->device, PAGE_SIZE, desc,
971                         desc->buffer_bus -
972                         ((void *)&desc->buffer - (void *)desc));
973 }
974
975 /* Must be called with ohci->lock held */
976 static struct descriptor *context_get_descriptors(struct context *ctx,
977                                                   int z, dma_addr_t *d_bus)
978 {
979         struct descriptor *d = NULL;
980         struct descriptor_buffer *desc = ctx->buffer_tail;
981
982         if (z * sizeof(*d) > desc->buffer_size)
983                 return NULL;
984
985         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
986                 /* No room for the descriptor in this buffer, so advance to the
987                  * next one. */
988
989                 if (desc->list.next == &ctx->buffer_list) {
990                         /* If there is no free buffer next in the list,
991                          * allocate one. */
992                         if (context_add_buffer(ctx) < 0)
993                                 return NULL;
994                 }
995                 desc = list_entry(desc->list.next,
996                                 struct descriptor_buffer, list);
997                 ctx->buffer_tail = desc;
998         }
999
1000         d = desc->buffer + desc->used / sizeof(*d);
1001         memset(d, 0, z * sizeof(*d));
1002         *d_bus = desc->buffer_bus + desc->used;
1003
1004         return d;
1005 }
1006
1007 static void context_run(struct context *ctx, u32 extra)
1008 {
1009         struct fw_ohci *ohci = ctx->ohci;
1010
1011         reg_write(ohci, COMMAND_PTR(ctx->regs),
1012                   le32_to_cpu(ctx->last->branch_address));
1013         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1014         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1015         flush_writes(ohci);
1016 }
1017
1018 static void context_append(struct context *ctx,
1019                            struct descriptor *d, int z, int extra)
1020 {
1021         dma_addr_t d_bus;
1022         struct descriptor_buffer *desc = ctx->buffer_tail;
1023
1024         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1025
1026         desc->used += (z + extra) * sizeof(*d);
1027
1028         wmb(); /* finish init of new descriptors before branch_address update */
1029         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1030         ctx->prev = find_branch_descriptor(d, z);
1031
1032         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1033         flush_writes(ctx->ohci);
1034 }
1035
1036 static void context_stop(struct context *ctx)
1037 {
1038         u32 reg;
1039         int i;
1040
1041         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1042         flush_writes(ctx->ohci);
1043
1044         for (i = 0; i < 10; i++) {
1045                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1046                 if ((reg & CONTEXT_ACTIVE) == 0)
1047                         return;
1048
1049                 mdelay(1);
1050         }
1051         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1052 }
1053
1054 struct driver_data {
1055         struct fw_packet *packet;
1056 };
1057
1058 /*
1059  * This function apppends a packet to the DMA queue for transmission.
1060  * Must always be called with the ochi->lock held to ensure proper
1061  * generation handling and locking around packet queue manipulation.
1062  */
1063 static int at_context_queue_packet(struct context *ctx,
1064                                    struct fw_packet *packet)
1065 {
1066         struct fw_ohci *ohci = ctx->ohci;
1067         dma_addr_t d_bus, uninitialized_var(payload_bus);
1068         struct driver_data *driver_data;
1069         struct descriptor *d, *last;
1070         __le32 *header;
1071         int z, tcode;
1072         u32 reg;
1073
1074         d = context_get_descriptors(ctx, 4, &d_bus);
1075         if (d == NULL) {
1076                 packet->ack = RCODE_SEND_ERROR;
1077                 return -1;
1078         }
1079
1080         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1081         d[0].res_count = cpu_to_le16(packet->timestamp);
1082
1083         /*
1084          * The DMA format for asyncronous link packets is different
1085          * from the IEEE1394 layout, so shift the fields around
1086          * accordingly.  If header_length is 8, it's a PHY packet, to
1087          * which we need to prepend an extra quadlet.
1088          */
1089
1090         header = (__le32 *) &d[1];
1091         switch (packet->header_length) {
1092         case 16:
1093         case 12:
1094                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1095                                         (packet->speed << 16));
1096                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1097                                         (packet->header[0] & 0xffff0000));
1098                 header[2] = cpu_to_le32(packet->header[2]);
1099
1100                 tcode = (packet->header[0] >> 4) & 0x0f;
1101                 if (TCODE_IS_BLOCK_PACKET(tcode))
1102                         header[3] = cpu_to_le32(packet->header[3]);
1103                 else
1104                         header[3] = (__force __le32) packet->header[3];
1105
1106                 d[0].req_count = cpu_to_le16(packet->header_length);
1107                 break;
1108
1109         case 8:
1110                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1111                                         (packet->speed << 16));
1112                 header[1] = cpu_to_le32(packet->header[0]);
1113                 header[2] = cpu_to_le32(packet->header[1]);
1114                 d[0].req_count = cpu_to_le16(12);
1115
1116                 if (is_ping_packet(packet->header))
1117                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1118                 break;
1119
1120         case 4:
1121                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1122                                         (packet->speed << 16));
1123                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1124                 d[0].req_count = cpu_to_le16(8);
1125                 break;
1126
1127         default:
1128                 /* BUG(); */
1129                 packet->ack = RCODE_SEND_ERROR;
1130                 return -1;
1131         }
1132
1133         driver_data = (struct driver_data *) &d[3];
1134         driver_data->packet = packet;
1135         packet->driver_data = driver_data;
1136
1137         if (packet->payload_length > 0) {
1138                 payload_bus =
1139                         dma_map_single(ohci->card.device, packet->payload,
1140                                        packet->payload_length, DMA_TO_DEVICE);
1141                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1142                         packet->ack = RCODE_SEND_ERROR;
1143                         return -1;
1144                 }
1145                 packet->payload_bus     = payload_bus;
1146                 packet->payload_mapped  = true;
1147
1148                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1149                 d[2].data_address = cpu_to_le32(payload_bus);
1150                 last = &d[2];
1151                 z = 3;
1152         } else {
1153                 last = &d[0];
1154                 z = 2;
1155         }
1156
1157         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1158                                      DESCRIPTOR_IRQ_ALWAYS |
1159                                      DESCRIPTOR_BRANCH_ALWAYS);
1160
1161         /*
1162          * If the controller and packet generations don't match, we need to
1163          * bail out and try again.  If IntEvent.busReset is set, the AT context
1164          * is halted, so appending to the context and trying to run it is
1165          * futile.  Most controllers do the right thing and just flush the AT
1166          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1167          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1168          * up stalling out.  So we just bail out in software and try again
1169          * later, and everyone is happy.
1170          * FIXME: Document how the locking works.
1171          */
1172         if (ohci->generation != packet->generation ||
1173             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1174                 if (packet->payload_mapped)
1175                         dma_unmap_single(ohci->card.device, payload_bus,
1176                                          packet->payload_length, DMA_TO_DEVICE);
1177                 packet->ack = RCODE_GENERATION;
1178                 return -1;
1179         }
1180
1181         context_append(ctx, d, z, 4 - z);
1182
1183         /* If the context isn't already running, start it up. */
1184         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1185         if ((reg & CONTEXT_RUN) == 0)
1186                 context_run(ctx, 0);
1187
1188         return 0;
1189 }
1190
1191 static int handle_at_packet(struct context *context,
1192                             struct descriptor *d,
1193                             struct descriptor *last)
1194 {
1195         struct driver_data *driver_data;
1196         struct fw_packet *packet;
1197         struct fw_ohci *ohci = context->ohci;
1198         int evt;
1199
1200         if (last->transfer_status == 0)
1201                 /* This descriptor isn't done yet, stop iteration. */
1202                 return 0;
1203
1204         driver_data = (struct driver_data *) &d[3];
1205         packet = driver_data->packet;
1206         if (packet == NULL)
1207                 /* This packet was cancelled, just continue. */
1208                 return 1;
1209
1210         if (packet->payload_mapped)
1211                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1212                                  packet->payload_length, DMA_TO_DEVICE);
1213
1214         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1215         packet->timestamp = le16_to_cpu(last->res_count);
1216
1217         log_ar_at_event('T', packet->speed, packet->header, evt);
1218
1219         switch (evt) {
1220         case OHCI1394_evt_timeout:
1221                 /* Async response transmit timed out. */
1222                 packet->ack = RCODE_CANCELLED;
1223                 break;
1224
1225         case OHCI1394_evt_flushed:
1226                 /*
1227                  * The packet was flushed should give same error as
1228                  * when we try to use a stale generation count.
1229                  */
1230                 packet->ack = RCODE_GENERATION;
1231                 break;
1232
1233         case OHCI1394_evt_missing_ack:
1234                 /*
1235                  * Using a valid (current) generation count, but the
1236                  * node is not on the bus or not sending acks.
1237                  */
1238                 packet->ack = RCODE_NO_ACK;
1239                 break;
1240
1241         case ACK_COMPLETE + 0x10:
1242         case ACK_PENDING + 0x10:
1243         case ACK_BUSY_X + 0x10:
1244         case ACK_BUSY_A + 0x10:
1245         case ACK_BUSY_B + 0x10:
1246         case ACK_DATA_ERROR + 0x10:
1247         case ACK_TYPE_ERROR + 0x10:
1248                 packet->ack = evt - 0x10;
1249                 break;
1250
1251         default:
1252                 packet->ack = RCODE_SEND_ERROR;
1253                 break;
1254         }
1255
1256         packet->callback(packet, &ohci->card, packet->ack);
1257
1258         return 1;
1259 }
1260
1261 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1262 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1263 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1264 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1265 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1266
1267 static void handle_local_rom(struct fw_ohci *ohci,
1268                              struct fw_packet *packet, u32 csr)
1269 {
1270         struct fw_packet response;
1271         int tcode, length, i;
1272
1273         tcode = HEADER_GET_TCODE(packet->header[0]);
1274         if (TCODE_IS_BLOCK_PACKET(tcode))
1275                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1276         else
1277                 length = 4;
1278
1279         i = csr - CSR_CONFIG_ROM;
1280         if (i + length > CONFIG_ROM_SIZE) {
1281                 fw_fill_response(&response, packet->header,
1282                                  RCODE_ADDRESS_ERROR, NULL, 0);
1283         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1284                 fw_fill_response(&response, packet->header,
1285                                  RCODE_TYPE_ERROR, NULL, 0);
1286         } else {
1287                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1288                                  (void *) ohci->config_rom + i, length);
1289         }
1290
1291         fw_core_handle_response(&ohci->card, &response);
1292 }
1293
1294 static void handle_local_lock(struct fw_ohci *ohci,
1295                               struct fw_packet *packet, u32 csr)
1296 {
1297         struct fw_packet response;
1298         int tcode, length, ext_tcode, sel, try;
1299         __be32 *payload, lock_old;
1300         u32 lock_arg, lock_data;
1301
1302         tcode = HEADER_GET_TCODE(packet->header[0]);
1303         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1304         payload = packet->payload;
1305         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1306
1307         if (tcode == TCODE_LOCK_REQUEST &&
1308             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1309                 lock_arg = be32_to_cpu(payload[0]);
1310                 lock_data = be32_to_cpu(payload[1]);
1311         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1312                 lock_arg = 0;
1313                 lock_data = 0;
1314         } else {
1315                 fw_fill_response(&response, packet->header,
1316                                  RCODE_TYPE_ERROR, NULL, 0);
1317                 goto out;
1318         }
1319
1320         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1321         reg_write(ohci, OHCI1394_CSRData, lock_data);
1322         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1323         reg_write(ohci, OHCI1394_CSRControl, sel);
1324
1325         for (try = 0; try < 20; try++)
1326                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1327                         lock_old = cpu_to_be32(reg_read(ohci,
1328                                                         OHCI1394_CSRData));
1329                         fw_fill_response(&response, packet->header,
1330                                          RCODE_COMPLETE,
1331                                          &lock_old, sizeof(lock_old));
1332                         goto out;
1333                 }
1334
1335         fw_error("swap not done (CSR lock timeout)\n");
1336         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1337
1338  out:
1339         fw_core_handle_response(&ohci->card, &response);
1340 }
1341
1342 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1343 {
1344         u64 offset, csr;
1345
1346         if (ctx == &ctx->ohci->at_request_ctx) {
1347                 packet->ack = ACK_PENDING;
1348                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1349         }
1350
1351         offset =
1352                 ((unsigned long long)
1353                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1354                 packet->header[2];
1355         csr = offset - CSR_REGISTER_BASE;
1356
1357         /* Handle config rom reads. */
1358         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1359                 handle_local_rom(ctx->ohci, packet, csr);
1360         else switch (csr) {
1361         case CSR_BUS_MANAGER_ID:
1362         case CSR_BANDWIDTH_AVAILABLE:
1363         case CSR_CHANNELS_AVAILABLE_HI:
1364         case CSR_CHANNELS_AVAILABLE_LO:
1365                 handle_local_lock(ctx->ohci, packet, csr);
1366                 break;
1367         default:
1368                 if (ctx == &ctx->ohci->at_request_ctx)
1369                         fw_core_handle_request(&ctx->ohci->card, packet);
1370                 else
1371                         fw_core_handle_response(&ctx->ohci->card, packet);
1372                 break;
1373         }
1374
1375         if (ctx == &ctx->ohci->at_response_ctx) {
1376                 packet->ack = ACK_COMPLETE;
1377                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1378         }
1379 }
1380
1381 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1382 {
1383         unsigned long flags;
1384         int ret;
1385
1386         spin_lock_irqsave(&ctx->ohci->lock, flags);
1387
1388         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1389             ctx->ohci->generation == packet->generation) {
1390                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1391                 handle_local_request(ctx, packet);
1392                 return;
1393         }
1394
1395         ret = at_context_queue_packet(ctx, packet);
1396         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1397
1398         if (ret < 0)
1399                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1400
1401 }
1402
1403 static u32 cycle_timer_ticks(u32 cycle_timer)
1404 {
1405         u32 ticks;
1406
1407         ticks = cycle_timer & 0xfff;
1408         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1409         ticks += (3072 * 8000) * (cycle_timer >> 25);
1410
1411         return ticks;
1412 }
1413
1414 /*
1415  * Some controllers exhibit one or more of the following bugs when updating the
1416  * iso cycle timer register:
1417  *  - When the lowest six bits are wrapping around to zero, a read that happens
1418  *    at the same time will return garbage in the lowest ten bits.
1419  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1420  *    not incremented for about 60 ns.
1421  *  - Occasionally, the entire register reads zero.
1422  *
1423  * To catch these, we read the register three times and ensure that the
1424  * difference between each two consecutive reads is approximately the same, i.e.
1425  * less than twice the other.  Furthermore, any negative difference indicates an
1426  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1427  * execute, so we have enough precision to compute the ratio of the differences.)
1428  */
1429 static u32 get_cycle_time(struct fw_ohci *ohci)
1430 {
1431         u32 c0, c1, c2;
1432         u32 t0, t1, t2;
1433         s32 diff01, diff12;
1434         int i;
1435
1436         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1437
1438         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1439                 i = 0;
1440                 c1 = c2;
1441                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1442                 do {
1443                         c0 = c1;
1444                         c1 = c2;
1445                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1446                         t0 = cycle_timer_ticks(c0);
1447                         t1 = cycle_timer_ticks(c1);
1448                         t2 = cycle_timer_ticks(c2);
1449                         diff01 = t1 - t0;
1450                         diff12 = t2 - t1;
1451                 } while ((diff01 <= 0 || diff12 <= 0 ||
1452                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1453                          && i++ < 20);
1454         }
1455
1456         return c2;
1457 }
1458
1459 /*
1460  * This function has to be called at least every 64 seconds.  The bus_time
1461  * field stores not only the upper 25 bits of the BUS_TIME register but also
1462  * the most significant bit of the cycle timer in bit 6 so that we can detect
1463  * changes in this bit.
1464  */
1465 static u32 update_bus_time(struct fw_ohci *ohci)
1466 {
1467         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1468
1469         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1470                 ohci->bus_time += 0x40;
1471
1472         return ohci->bus_time | cycle_time_seconds;
1473 }
1474
1475 static void bus_reset_tasklet(unsigned long data)
1476 {
1477         struct fw_ohci *ohci = (struct fw_ohci *)data;
1478         int self_id_count, i, j, reg;
1479         int generation, new_generation;
1480         unsigned long flags;
1481         void *free_rom = NULL;
1482         dma_addr_t free_rom_bus = 0;
1483         bool is_new_root;
1484
1485         reg = reg_read(ohci, OHCI1394_NodeID);
1486         if (!(reg & OHCI1394_NodeID_idValid)) {
1487                 fw_notify("node ID not valid, new bus reset in progress\n");
1488                 return;
1489         }
1490         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1491                 fw_notify("malconfigured bus\n");
1492                 return;
1493         }
1494         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1495                                OHCI1394_NodeID_nodeNumber);
1496
1497         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1498         if (!(ohci->is_root && is_new_root))
1499                 reg_write(ohci, OHCI1394_LinkControlSet,
1500                           OHCI1394_LinkControl_cycleMaster);
1501         ohci->is_root = is_new_root;
1502
1503         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1504         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1505                 fw_notify("inconsistent self IDs\n");
1506                 return;
1507         }
1508         /*
1509          * The count in the SelfIDCount register is the number of
1510          * bytes in the self ID receive buffer.  Since we also receive
1511          * the inverted quadlets and a header quadlet, we shift one
1512          * bit extra to get the actual number of self IDs.
1513          */
1514         self_id_count = (reg >> 3) & 0xff;
1515         if (self_id_count == 0 || self_id_count > 252) {
1516                 fw_notify("inconsistent self IDs\n");
1517                 return;
1518         }
1519         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1520         rmb();
1521
1522         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1523                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1524                         fw_notify("inconsistent self IDs\n");
1525                         return;
1526                 }
1527                 ohci->self_id_buffer[j] =
1528                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1529         }
1530         rmb();
1531
1532         /*
1533          * Check the consistency of the self IDs we just read.  The
1534          * problem we face is that a new bus reset can start while we
1535          * read out the self IDs from the DMA buffer. If this happens,
1536          * the DMA buffer will be overwritten with new self IDs and we
1537          * will read out inconsistent data.  The OHCI specification
1538          * (section 11.2) recommends a technique similar to
1539          * linux/seqlock.h, where we remember the generation of the
1540          * self IDs in the buffer before reading them out and compare
1541          * it to the current generation after reading them out.  If
1542          * the two generations match we know we have a consistent set
1543          * of self IDs.
1544          */
1545
1546         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1547         if (new_generation != generation) {
1548                 fw_notify("recursive bus reset detected, "
1549                           "discarding self ids\n");
1550                 return;
1551         }
1552
1553         /* FIXME: Document how the locking works. */
1554         spin_lock_irqsave(&ohci->lock, flags);
1555
1556         ohci->generation = generation;
1557         context_stop(&ohci->at_request_ctx);
1558         context_stop(&ohci->at_response_ctx);
1559         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1560
1561         if (ohci->quirks & QUIRK_RESET_PACKET)
1562                 ohci->request_generation = generation;
1563
1564         /*
1565          * This next bit is unrelated to the AT context stuff but we
1566          * have to do it under the spinlock also.  If a new config rom
1567          * was set up before this reset, the old one is now no longer
1568          * in use and we can free it. Update the config rom pointers
1569          * to point to the current config rom and clear the
1570          * next_config_rom pointer so a new update can take place.
1571          */
1572
1573         if (ohci->next_config_rom != NULL) {
1574                 if (ohci->next_config_rom != ohci->config_rom) {
1575                         free_rom      = ohci->config_rom;
1576                         free_rom_bus  = ohci->config_rom_bus;
1577                 }
1578                 ohci->config_rom      = ohci->next_config_rom;
1579                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1580                 ohci->next_config_rom = NULL;
1581
1582                 /*
1583                  * Restore config_rom image and manually update
1584                  * config_rom registers.  Writing the header quadlet
1585                  * will indicate that the config rom is ready, so we
1586                  * do that last.
1587                  */
1588                 reg_write(ohci, OHCI1394_BusOptions,
1589                           be32_to_cpu(ohci->config_rom[2]));
1590                 ohci->config_rom[0] = ohci->next_header;
1591                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1592                           be32_to_cpu(ohci->next_header));
1593         }
1594
1595 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1596         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1597         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1598 #endif
1599
1600         spin_unlock_irqrestore(&ohci->lock, flags);
1601
1602         if (free_rom)
1603                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1604                                   free_rom, free_rom_bus);
1605
1606         log_selfids(ohci->node_id, generation,
1607                     self_id_count, ohci->self_id_buffer);
1608
1609         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1610                                  self_id_count, ohci->self_id_buffer,
1611                                  ohci->csr_state_setclear_abdicate);
1612         ohci->csr_state_setclear_abdicate = false;
1613 }
1614
1615 static irqreturn_t irq_handler(int irq, void *data)
1616 {
1617         struct fw_ohci *ohci = data;
1618         u32 event, iso_event;
1619         int i;
1620
1621         event = reg_read(ohci, OHCI1394_IntEventClear);
1622
1623         if (!event || !~event)
1624                 return IRQ_NONE;
1625
1626         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1627         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1628         log_irqs(event);
1629
1630         if (event & OHCI1394_selfIDComplete)
1631                 tasklet_schedule(&ohci->bus_reset_tasklet);
1632
1633         if (event & OHCI1394_RQPkt)
1634                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1635
1636         if (event & OHCI1394_RSPkt)
1637                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1638
1639         if (event & OHCI1394_reqTxComplete)
1640                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1641
1642         if (event & OHCI1394_respTxComplete)
1643                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1644
1645         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1646         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1647
1648         while (iso_event) {
1649                 i = ffs(iso_event) - 1;
1650                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1651                 iso_event &= ~(1 << i);
1652         }
1653
1654         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1655         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1656
1657         while (iso_event) {
1658                 i = ffs(iso_event) - 1;
1659                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1660                 iso_event &= ~(1 << i);
1661         }
1662
1663         if (unlikely(event & OHCI1394_regAccessFail))
1664                 fw_error("Register access failure - "
1665                          "please notify linux1394-devel@lists.sf.net\n");
1666
1667         if (unlikely(event & OHCI1394_postedWriteErr))
1668                 fw_error("PCI posted write error\n");
1669
1670         if (unlikely(event & OHCI1394_cycleTooLong)) {
1671                 if (printk_ratelimit())
1672                         fw_notify("isochronous cycle too long\n");
1673                 reg_write(ohci, OHCI1394_LinkControlSet,
1674                           OHCI1394_LinkControl_cycleMaster);
1675         }
1676
1677         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1678                 /*
1679                  * We need to clear this event bit in order to make
1680                  * cycleMatch isochronous I/O work.  In theory we should
1681                  * stop active cycleMatch iso contexts now and restart
1682                  * them at least two cycles later.  (FIXME?)
1683                  */
1684                 if (printk_ratelimit())
1685                         fw_notify("isochronous cycle inconsistent\n");
1686         }
1687
1688         if (event & OHCI1394_cycle64Seconds) {
1689                 spin_lock(&ohci->lock);
1690                 update_bus_time(ohci);
1691                 spin_unlock(&ohci->lock);
1692         }
1693
1694         return IRQ_HANDLED;
1695 }
1696
1697 static int software_reset(struct fw_ohci *ohci)
1698 {
1699         int i;
1700
1701         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1702
1703         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1704                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1705                      OHCI1394_HCControl_softReset) == 0)
1706                         return 0;
1707                 msleep(1);
1708         }
1709
1710         return -EBUSY;
1711 }
1712
1713 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1714 {
1715         size_t size = length * 4;
1716
1717         memcpy(dest, src, size);
1718         if (size < CONFIG_ROM_SIZE)
1719                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1720 }
1721
1722 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1723 {
1724         bool enable_1394a;
1725         int ret, clear, set, offset;
1726
1727         /* Check if the driver should configure link and PHY. */
1728         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1729               OHCI1394_HCControl_programPhyEnable))
1730                 return 0;
1731
1732         /* Paranoia: check whether the PHY supports 1394a, too. */
1733         enable_1394a = false;
1734         ret = read_phy_reg(ohci, 2);
1735         if (ret < 0)
1736                 return ret;
1737         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1738                 ret = read_paged_phy_reg(ohci, 1, 8);
1739                 if (ret < 0)
1740                         return ret;
1741                 if (ret >= 1)
1742                         enable_1394a = true;
1743         }
1744
1745         if (ohci->quirks & QUIRK_NO_1394A)
1746                 enable_1394a = false;
1747
1748         /* Configure PHY and link consistently. */
1749         if (enable_1394a) {
1750                 clear = 0;
1751                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1752         } else {
1753                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1754                 set = 0;
1755         }
1756         ret = update_phy_reg(ohci, 5, clear, set);
1757         if (ret < 0)
1758                 return ret;
1759
1760         if (enable_1394a)
1761                 offset = OHCI1394_HCControlSet;
1762         else
1763                 offset = OHCI1394_HCControlClear;
1764         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1765
1766         /* Clean up: configuration has been taken care of. */
1767         reg_write(ohci, OHCI1394_HCControlClear,
1768                   OHCI1394_HCControl_programPhyEnable);
1769
1770         return 0;
1771 }
1772
1773 static int ohci_enable(struct fw_card *card,
1774                        const __be32 *config_rom, size_t length)
1775 {
1776         struct fw_ohci *ohci = fw_ohci(card);
1777         struct pci_dev *dev = to_pci_dev(card->device);
1778         u32 lps, seconds, version, irqs;
1779         int i, ret;
1780
1781         if (software_reset(ohci)) {
1782                 fw_error("Failed to reset ohci card.\n");
1783                 return -EBUSY;
1784         }
1785
1786         /*
1787          * Now enable LPS, which we need in order to start accessing
1788          * most of the registers.  In fact, on some cards (ALI M5251),
1789          * accessing registers in the SClk domain without LPS enabled
1790          * will lock up the machine.  Wait 50msec to make sure we have
1791          * full link enabled.  However, with some cards (well, at least
1792          * a JMicron PCIe card), we have to try again sometimes.
1793          */
1794         reg_write(ohci, OHCI1394_HCControlSet,
1795                   OHCI1394_HCControl_LPS |
1796                   OHCI1394_HCControl_postedWriteEnable);
1797         flush_writes(ohci);
1798
1799         for (lps = 0, i = 0; !lps && i < 3; i++) {
1800                 msleep(50);
1801                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1802                       OHCI1394_HCControl_LPS;
1803         }
1804
1805         if (!lps) {
1806                 fw_error("Failed to set Link Power Status\n");
1807                 return -EIO;
1808         }
1809
1810         reg_write(ohci, OHCI1394_HCControlClear,
1811                   OHCI1394_HCControl_noByteSwapData);
1812
1813         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1814         reg_write(ohci, OHCI1394_LinkControlSet,
1815                   OHCI1394_LinkControl_rcvSelfID |
1816                   OHCI1394_LinkControl_rcvPhyPkt |
1817                   OHCI1394_LinkControl_cycleTimerEnable |
1818                   OHCI1394_LinkControl_cycleMaster);
1819
1820         reg_write(ohci, OHCI1394_ATRetries,
1821                   OHCI1394_MAX_AT_REQ_RETRIES |
1822                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1823                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1824                   (200 << 16));
1825
1826         seconds = lower_32_bits(get_seconds());
1827         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1828         ohci->bus_time = seconds & ~0x3f;
1829
1830         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1831         if (version >= OHCI_VERSION_1_1) {
1832                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1833                           0xfffffffe);
1834                 card->broadcast_channel_auto_allocated = true;
1835         }
1836
1837         /* Get implemented bits of the priority arbitration request counter. */
1838         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1839         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1840         reg_write(ohci, OHCI1394_FairnessControl, 0);
1841         card->priority_budget_implemented = ohci->pri_req_max != 0;
1842
1843         ar_context_run(&ohci->ar_request_ctx);
1844         ar_context_run(&ohci->ar_response_ctx);
1845
1846         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1847         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1848         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1849
1850         ret = configure_1394a_enhancements(ohci);
1851         if (ret < 0)
1852                 return ret;
1853
1854         /* Activate link_on bit and contender bit in our self ID packets.*/
1855         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1856         if (ret < 0)
1857                 return ret;
1858
1859         /*
1860          * When the link is not yet enabled, the atomic config rom
1861          * update mechanism described below in ohci_set_config_rom()
1862          * is not active.  We have to update ConfigRomHeader and
1863          * BusOptions manually, and the write to ConfigROMmap takes
1864          * effect immediately.  We tie this to the enabling of the
1865          * link, so we have a valid config rom before enabling - the
1866          * OHCI requires that ConfigROMhdr and BusOptions have valid
1867          * values before enabling.
1868          *
1869          * However, when the ConfigROMmap is written, some controllers
1870          * always read back quadlets 0 and 2 from the config rom to
1871          * the ConfigRomHeader and BusOptions registers on bus reset.
1872          * They shouldn't do that in this initial case where the link
1873          * isn't enabled.  This means we have to use the same
1874          * workaround here, setting the bus header to 0 and then write
1875          * the right values in the bus reset tasklet.
1876          */
1877
1878         if (config_rom) {
1879                 ohci->next_config_rom =
1880                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1881                                            &ohci->next_config_rom_bus,
1882                                            GFP_KERNEL);
1883                 if (ohci->next_config_rom == NULL)
1884                         return -ENOMEM;
1885
1886                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1887         } else {
1888                 /*
1889                  * In the suspend case, config_rom is NULL, which
1890                  * means that we just reuse the old config rom.
1891                  */
1892                 ohci->next_config_rom = ohci->config_rom;
1893                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1894         }
1895
1896         ohci->next_header = ohci->next_config_rom[0];
1897         ohci->next_config_rom[0] = 0;
1898         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1899         reg_write(ohci, OHCI1394_BusOptions,
1900                   be32_to_cpu(ohci->next_config_rom[2]));
1901         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1902
1903         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1904
1905         if (!(ohci->quirks & QUIRK_NO_MSI))
1906                 pci_enable_msi(dev);
1907         if (request_irq(dev->irq, irq_handler,
1908                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1909                         ohci_driver_name, ohci)) {
1910                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1911                 pci_disable_msi(dev);
1912                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1913                                   ohci->config_rom, ohci->config_rom_bus);
1914                 return -EIO;
1915         }
1916
1917         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1918                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1919                 OHCI1394_isochTx | OHCI1394_isochRx |
1920                 OHCI1394_postedWriteErr |
1921                 OHCI1394_selfIDComplete |
1922                 OHCI1394_regAccessFail |
1923                 OHCI1394_cycle64Seconds |
1924                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1925                 OHCI1394_masterIntEnable;
1926         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1927                 irqs |= OHCI1394_busReset;
1928         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1929
1930         reg_write(ohci, OHCI1394_HCControlSet,
1931                   OHCI1394_HCControl_linkEnable |
1932                   OHCI1394_HCControl_BIBimageValid);
1933         flush_writes(ohci);
1934
1935         /* We are ready to go, reset bus to finish initialization. */
1936         fw_schedule_bus_reset(&ohci->card, false, true);
1937
1938         return 0;
1939 }
1940
1941 static int ohci_set_config_rom(struct fw_card *card,
1942                                const __be32 *config_rom, size_t length)
1943 {
1944         struct fw_ohci *ohci;
1945         unsigned long flags;
1946         int ret = -EBUSY;
1947         __be32 *next_config_rom;
1948         dma_addr_t uninitialized_var(next_config_rom_bus);
1949
1950         ohci = fw_ohci(card);
1951
1952         /*
1953          * When the OHCI controller is enabled, the config rom update
1954          * mechanism is a bit tricky, but easy enough to use.  See
1955          * section 5.5.6 in the OHCI specification.
1956          *
1957          * The OHCI controller caches the new config rom address in a
1958          * shadow register (ConfigROMmapNext) and needs a bus reset
1959          * for the changes to take place.  When the bus reset is
1960          * detected, the controller loads the new values for the
1961          * ConfigRomHeader and BusOptions registers from the specified
1962          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1963          * shadow register. All automatically and atomically.
1964          *
1965          * Now, there's a twist to this story.  The automatic load of
1966          * ConfigRomHeader and BusOptions doesn't honor the
1967          * noByteSwapData bit, so with a be32 config rom, the
1968          * controller will load be32 values in to these registers
1969          * during the atomic update, even on litte endian
1970          * architectures.  The workaround we use is to put a 0 in the
1971          * header quadlet; 0 is endian agnostic and means that the
1972          * config rom isn't ready yet.  In the bus reset tasklet we
1973          * then set up the real values for the two registers.
1974          *
1975          * We use ohci->lock to avoid racing with the code that sets
1976          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1977          */
1978
1979         next_config_rom =
1980                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1981                                    &next_config_rom_bus, GFP_KERNEL);
1982         if (next_config_rom == NULL)
1983                 return -ENOMEM;
1984
1985         spin_lock_irqsave(&ohci->lock, flags);
1986
1987         if (ohci->next_config_rom == NULL) {
1988                 ohci->next_config_rom = next_config_rom;
1989                 ohci->next_config_rom_bus = next_config_rom_bus;
1990
1991                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1992
1993                 ohci->next_header = config_rom[0];
1994                 ohci->next_config_rom[0] = 0;
1995
1996                 reg_write(ohci, OHCI1394_ConfigROMmap,
1997                           ohci->next_config_rom_bus);
1998                 ret = 0;
1999         }
2000
2001         spin_unlock_irqrestore(&ohci->lock, flags);
2002
2003         /*
2004          * Now initiate a bus reset to have the changes take
2005          * effect. We clean up the old config rom memory and DMA
2006          * mappings in the bus reset tasklet, since the OHCI
2007          * controller could need to access it before the bus reset
2008          * takes effect.
2009          */
2010         if (ret == 0)
2011                 fw_schedule_bus_reset(&ohci->card, true, true);
2012         else
2013                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2014                                   next_config_rom, next_config_rom_bus);
2015
2016         return ret;
2017 }
2018
2019 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2020 {
2021         struct fw_ohci *ohci = fw_ohci(card);
2022
2023         at_context_transmit(&ohci->at_request_ctx, packet);
2024 }
2025
2026 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2027 {
2028         struct fw_ohci *ohci = fw_ohci(card);
2029
2030         at_context_transmit(&ohci->at_response_ctx, packet);
2031 }
2032
2033 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2034 {
2035         struct fw_ohci *ohci = fw_ohci(card);
2036         struct context *ctx = &ohci->at_request_ctx;
2037         struct driver_data *driver_data = packet->driver_data;
2038         int ret = -ENOENT;
2039
2040         tasklet_disable(&ctx->tasklet);
2041
2042         if (packet->ack != 0)
2043                 goto out;
2044
2045         if (packet->payload_mapped)
2046                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2047                                  packet->payload_length, DMA_TO_DEVICE);
2048
2049         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2050         driver_data->packet = NULL;
2051         packet->ack = RCODE_CANCELLED;
2052         packet->callback(packet, &ohci->card, packet->ack);
2053         ret = 0;
2054  out:
2055         tasklet_enable(&ctx->tasklet);
2056
2057         return ret;
2058 }
2059
2060 static int ohci_enable_phys_dma(struct fw_card *card,
2061                                 int node_id, int generation)
2062 {
2063 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2064         return 0;
2065 #else
2066         struct fw_ohci *ohci = fw_ohci(card);
2067         unsigned long flags;
2068         int n, ret = 0;
2069
2070         /*
2071          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2072          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2073          */
2074
2075         spin_lock_irqsave(&ohci->lock, flags);
2076
2077         if (ohci->generation != generation) {
2078                 ret = -ESTALE;
2079                 goto out;
2080         }
2081
2082         /*
2083          * Note, if the node ID contains a non-local bus ID, physical DMA is
2084          * enabled for _all_ nodes on remote buses.
2085          */
2086
2087         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2088         if (n < 32)
2089                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2090         else
2091                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2092
2093         flush_writes(ohci);
2094  out:
2095         spin_unlock_irqrestore(&ohci->lock, flags);
2096
2097         return ret;
2098 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2099 }
2100
2101 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2102 {
2103         struct fw_ohci *ohci = fw_ohci(card);
2104         unsigned long flags;
2105         u32 value;
2106
2107         switch (csr_offset) {
2108         case CSR_STATE_CLEAR:
2109         case CSR_STATE_SET:
2110                 if (ohci->is_root &&
2111                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2112                      OHCI1394_LinkControl_cycleMaster))
2113                         value = CSR_STATE_BIT_CMSTR;
2114                 else
2115                         value = 0;
2116                 if (ohci->csr_state_setclear_abdicate)
2117                         value |= CSR_STATE_BIT_ABDICATE;
2118
2119                 return value;
2120
2121         case CSR_NODE_IDS:
2122                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2123
2124         case CSR_CYCLE_TIME:
2125                 return get_cycle_time(ohci);
2126
2127         case CSR_BUS_TIME:
2128                 /*
2129                  * We might be called just after the cycle timer has wrapped
2130                  * around but just before the cycle64Seconds handler, so we
2131                  * better check here, too, if the bus time needs to be updated.
2132                  */
2133                 spin_lock_irqsave(&ohci->lock, flags);
2134                 value = update_bus_time(ohci);
2135                 spin_unlock_irqrestore(&ohci->lock, flags);
2136                 return value;
2137
2138         case CSR_BUSY_TIMEOUT:
2139                 value = reg_read(ohci, OHCI1394_ATRetries);
2140                 return (value >> 4) & 0x0ffff00f;
2141
2142         case CSR_PRIORITY_BUDGET:
2143                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2144                         (ohci->pri_req_max << 8);
2145
2146         default:
2147                 WARN_ON(1);
2148                 return 0;
2149         }
2150 }
2151
2152 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2153 {
2154         struct fw_ohci *ohci = fw_ohci(card);
2155         unsigned long flags;
2156
2157         switch (csr_offset) {
2158         case CSR_STATE_CLEAR:
2159                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2160                         reg_write(ohci, OHCI1394_LinkControlClear,
2161                                   OHCI1394_LinkControl_cycleMaster);
2162                         flush_writes(ohci);
2163                 }
2164                 if (value & CSR_STATE_BIT_ABDICATE)
2165                         ohci->csr_state_setclear_abdicate = false;
2166                 break;
2167
2168         case CSR_STATE_SET:
2169                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2170                         reg_write(ohci, OHCI1394_LinkControlSet,
2171                                   OHCI1394_LinkControl_cycleMaster);
2172                         flush_writes(ohci);
2173                 }
2174                 if (value & CSR_STATE_BIT_ABDICATE)
2175                         ohci->csr_state_setclear_abdicate = true;
2176                 break;
2177
2178         case CSR_NODE_IDS:
2179                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2180                 flush_writes(ohci);
2181                 break;
2182
2183         case CSR_CYCLE_TIME:
2184                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2185                 reg_write(ohci, OHCI1394_IntEventSet,
2186                           OHCI1394_cycleInconsistent);
2187                 flush_writes(ohci);
2188                 break;
2189
2190         case CSR_BUS_TIME:
2191                 spin_lock_irqsave(&ohci->lock, flags);
2192                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2193                 spin_unlock_irqrestore(&ohci->lock, flags);
2194                 break;
2195
2196         case CSR_BUSY_TIMEOUT:
2197                 value = (value & 0xf) | ((value & 0xf) << 4) |
2198                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2199                 reg_write(ohci, OHCI1394_ATRetries, value);
2200                 flush_writes(ohci);
2201                 break;
2202
2203         case CSR_PRIORITY_BUDGET:
2204                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2205                 flush_writes(ohci);
2206                 break;
2207
2208         default:
2209                 WARN_ON(1);
2210                 break;
2211         }
2212 }
2213
2214 static void copy_iso_headers(struct iso_context *ctx, void *p)
2215 {
2216         int i = ctx->header_length;
2217
2218         if (i + ctx->base.header_size > PAGE_SIZE)
2219                 return;
2220
2221         /*
2222          * The iso header is byteswapped to little endian by
2223          * the controller, but the remaining header quadlets
2224          * are big endian.  We want to present all the headers
2225          * as big endian, so we have to swap the first quadlet.
2226          */
2227         if (ctx->base.header_size > 0)
2228                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2229         if (ctx->base.header_size > 4)
2230                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2231         if (ctx->base.header_size > 8)
2232                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2233         ctx->header_length += ctx->base.header_size;
2234 }
2235
2236 static int handle_ir_packet_per_buffer(struct context *context,
2237                                        struct descriptor *d,
2238                                        struct descriptor *last)
2239 {
2240         struct iso_context *ctx =
2241                 container_of(context, struct iso_context, context);
2242         struct descriptor *pd;
2243         __le32 *ir_header;
2244         void *p;
2245
2246         for (pd = d; pd <= last; pd++)
2247                 if (pd->transfer_status)
2248                         break;
2249         if (pd > last)
2250                 /* Descriptor(s) not done yet, stop iteration */
2251                 return 0;
2252
2253         p = last + 1;
2254         copy_iso_headers(ctx, p);
2255
2256         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2257                 ir_header = (__le32 *) p;
2258                 ctx->base.callback.sc(&ctx->base,
2259                                       le32_to_cpu(ir_header[0]) & 0xffff,
2260                                       ctx->header_length, ctx->header,
2261                                       ctx->base.callback_data);
2262                 ctx->header_length = 0;
2263         }
2264
2265         return 1;
2266 }
2267
2268 /* d == last because each descriptor block is only a single descriptor. */
2269 static int handle_ir_buffer_fill(struct context *context,
2270                                  struct descriptor *d,
2271                                  struct descriptor *last)
2272 {
2273         struct iso_context *ctx =
2274                 container_of(context, struct iso_context, context);
2275
2276         if (!last->transfer_status)
2277                 /* Descriptor(s) not done yet, stop iteration */
2278                 return 0;
2279
2280         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2281                 ctx->base.callback.mc(&ctx->base,
2282                                       le32_to_cpu(last->data_address) +
2283                                       le16_to_cpu(last->req_count) -
2284                                       le16_to_cpu(last->res_count),
2285                                       ctx->base.callback_data);
2286
2287         return 1;
2288 }
2289
2290 static int handle_it_packet(struct context *context,
2291                             struct descriptor *d,
2292                             struct descriptor *last)
2293 {
2294         struct iso_context *ctx =
2295                 container_of(context, struct iso_context, context);
2296         int i;
2297         struct descriptor *pd;
2298
2299         for (pd = d; pd <= last; pd++)
2300                 if (pd->transfer_status)
2301                         break;
2302         if (pd > last)
2303                 /* Descriptor(s) not done yet, stop iteration */
2304                 return 0;
2305
2306         i = ctx->header_length;
2307         if (i + 4 < PAGE_SIZE) {
2308                 /* Present this value as big-endian to match the receive code */
2309                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2310                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2311                                 le16_to_cpu(pd->res_count));
2312                 ctx->header_length += 4;
2313         }
2314         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2315                 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2316                                       ctx->header_length, ctx->header,
2317                                       ctx->base.callback_data);
2318                 ctx->header_length = 0;
2319         }
2320         return 1;
2321 }
2322
2323 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2324 {
2325         u32 hi = channels >> 32, lo = channels;
2326
2327         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2328         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2329         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2330         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2331         mmiowb();
2332         ohci->mc_channels = channels;
2333 }
2334
2335 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2336                                 int type, int channel, size_t header_size)
2337 {
2338         struct fw_ohci *ohci = fw_ohci(card);
2339         struct iso_context *uninitialized_var(ctx);
2340         descriptor_callback_t uninitialized_var(callback);
2341         u64 *uninitialized_var(channels);
2342         u32 *uninitialized_var(mask), uninitialized_var(regs);
2343         unsigned long flags;
2344         int index, ret = -EBUSY;
2345
2346         spin_lock_irqsave(&ohci->lock, flags);
2347
2348         switch (type) {
2349         case FW_ISO_CONTEXT_TRANSMIT:
2350                 mask     = &ohci->it_context_mask;
2351                 callback = handle_it_packet;
2352                 index    = ffs(*mask) - 1;
2353                 if (index >= 0) {
2354                         *mask &= ~(1 << index);
2355                         regs = OHCI1394_IsoXmitContextBase(index);
2356                         ctx  = &ohci->it_context_list[index];
2357                 }
2358                 break;
2359
2360         case FW_ISO_CONTEXT_RECEIVE:
2361                 channels = &ohci->ir_context_channels;
2362                 mask     = &ohci->ir_context_mask;
2363                 callback = handle_ir_packet_per_buffer;
2364                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2365                 if (index >= 0) {
2366                         *channels &= ~(1ULL << channel);
2367                         *mask     &= ~(1 << index);
2368                         regs = OHCI1394_IsoRcvContextBase(index);
2369                         ctx  = &ohci->ir_context_list[index];
2370                 }
2371                 break;
2372
2373         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2374                 mask     = &ohci->ir_context_mask;
2375                 callback = handle_ir_buffer_fill;
2376                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2377                 if (index >= 0) {
2378                         ohci->mc_allocated = true;
2379                         *mask &= ~(1 << index);
2380                         regs = OHCI1394_IsoRcvContextBase(index);
2381                         ctx  = &ohci->ir_context_list[index];
2382                 }
2383                 break;
2384
2385         default:
2386                 index = -1;
2387                 ret = -ENOSYS;
2388         }
2389
2390         spin_unlock_irqrestore(&ohci->lock, flags);
2391
2392         if (index < 0)
2393                 return ERR_PTR(ret);
2394
2395         memset(ctx, 0, sizeof(*ctx));
2396         ctx->header_length = 0;
2397         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2398         if (ctx->header == NULL) {
2399                 ret = -ENOMEM;
2400                 goto out;
2401         }
2402         ret = context_init(&ctx->context, ohci, regs, callback);
2403         if (ret < 0)
2404                 goto out_with_header;
2405
2406         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2407                 set_multichannel_mask(ohci, 0);
2408
2409         return &ctx->base;
2410
2411  out_with_header:
2412         free_page((unsigned long)ctx->header);
2413  out:
2414         spin_lock_irqsave(&ohci->lock, flags);
2415
2416         switch (type) {
2417         case FW_ISO_CONTEXT_RECEIVE:
2418                 *channels |= 1ULL << channel;
2419                 break;
2420
2421         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2422                 ohci->mc_allocated = false;
2423                 break;
2424         }
2425         *mask |= 1 << index;
2426
2427         spin_unlock_irqrestore(&ohci->lock, flags);
2428
2429         return ERR_PTR(ret);
2430 }
2431
2432 static int ohci_start_iso(struct fw_iso_context *base,
2433                           s32 cycle, u32 sync, u32 tags)
2434 {
2435         struct iso_context *ctx = container_of(base, struct iso_context, base);
2436         struct fw_ohci *ohci = ctx->context.ohci;
2437         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2438         int index;
2439
2440         switch (ctx->base.type) {
2441         case FW_ISO_CONTEXT_TRANSMIT:
2442                 index = ctx - ohci->it_context_list;
2443                 match = 0;
2444                 if (cycle >= 0)
2445                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2446                                 (cycle & 0x7fff) << 16;
2447
2448                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2449                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2450                 context_run(&ctx->context, match);
2451                 break;
2452
2453         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2454                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2455                 /* fall through */
2456         case FW_ISO_CONTEXT_RECEIVE:
2457                 index = ctx - ohci->ir_context_list;
2458                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2459                 if (cycle >= 0) {
2460                         match |= (cycle & 0x07fff) << 12;
2461                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2462                 }
2463
2464                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2465                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2466                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2467                 context_run(&ctx->context, control);
2468                 break;
2469         }
2470
2471         return 0;
2472 }
2473
2474 static int ohci_stop_iso(struct fw_iso_context *base)
2475 {
2476         struct fw_ohci *ohci = fw_ohci(base->card);
2477         struct iso_context *ctx = container_of(base, struct iso_context, base);
2478         int index;
2479
2480         switch (ctx->base.type) {
2481         case FW_ISO_CONTEXT_TRANSMIT:
2482                 index = ctx - ohci->it_context_list;
2483                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2484                 break;
2485
2486         case FW_ISO_CONTEXT_RECEIVE:
2487         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2488                 index = ctx - ohci->ir_context_list;
2489                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2490                 break;
2491         }
2492         flush_writes(ohci);
2493         context_stop(&ctx->context);
2494
2495         return 0;
2496 }
2497
2498 static void ohci_free_iso_context(struct fw_iso_context *base)
2499 {
2500         struct fw_ohci *ohci = fw_ohci(base->card);
2501         struct iso_context *ctx = container_of(base, struct iso_context, base);
2502         unsigned long flags;
2503         int index;
2504
2505         ohci_stop_iso(base);
2506         context_release(&ctx->context);
2507         free_page((unsigned long)ctx->header);
2508
2509         spin_lock_irqsave(&ohci->lock, flags);
2510
2511         switch (base->type) {
2512         case FW_ISO_CONTEXT_TRANSMIT:
2513                 index = ctx - ohci->it_context_list;
2514                 ohci->it_context_mask |= 1 << index;
2515                 break;
2516
2517         case FW_ISO_CONTEXT_RECEIVE:
2518                 index = ctx - ohci->ir_context_list;
2519                 ohci->ir_context_mask |= 1 << index;
2520                 ohci->ir_context_channels |= 1ULL << base->channel;
2521                 break;
2522
2523         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2524                 index = ctx - ohci->ir_context_list;
2525                 ohci->ir_context_mask |= 1 << index;
2526                 ohci->ir_context_channels |= ohci->mc_channels;
2527                 ohci->mc_channels = 0;
2528                 ohci->mc_allocated = false;
2529                 break;
2530         }
2531
2532         spin_unlock_irqrestore(&ohci->lock, flags);
2533 }
2534
2535 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2536 {
2537         struct fw_ohci *ohci = fw_ohci(base->card);
2538         unsigned long flags;
2539         int ret;
2540
2541         switch (base->type) {
2542         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2543
2544                 spin_lock_irqsave(&ohci->lock, flags);
2545
2546                 /* Don't allow multichannel to grab other contexts' channels. */
2547                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2548                         *channels = ohci->ir_context_channels;
2549                         ret = -EBUSY;
2550                 } else {
2551                         set_multichannel_mask(ohci, *channels);
2552                         ret = 0;
2553                 }
2554
2555                 spin_unlock_irqrestore(&ohci->lock, flags);
2556
2557                 break;
2558         default:
2559                 ret = -EINVAL;
2560         }
2561
2562         return ret;
2563 }
2564
2565 static int queue_iso_transmit(struct iso_context *ctx,
2566                               struct fw_iso_packet *packet,
2567                               struct fw_iso_buffer *buffer,
2568                               unsigned long payload)
2569 {
2570         struct descriptor *d, *last, *pd;
2571         struct fw_iso_packet *p;
2572         __le32 *header;
2573         dma_addr_t d_bus, page_bus;
2574         u32 z, header_z, payload_z, irq;
2575         u32 payload_index, payload_end_index, next_page_index;
2576         int page, end_page, i, length, offset;
2577
2578         p = packet;
2579         payload_index = payload;
2580
2581         if (p->skip)
2582                 z = 1;
2583         else
2584                 z = 2;
2585         if (p->header_length > 0)
2586                 z++;
2587
2588         /* Determine the first page the payload isn't contained in. */
2589         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2590         if (p->payload_length > 0)
2591                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2592         else
2593                 payload_z = 0;
2594
2595         z += payload_z;
2596
2597         /* Get header size in number of descriptors. */
2598         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2599
2600         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2601         if (d == NULL)
2602                 return -ENOMEM;
2603
2604         if (!p->skip) {
2605                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2606                 d[0].req_count = cpu_to_le16(8);
2607                 /*
2608                  * Link the skip address to this descriptor itself.  This causes
2609                  * a context to skip a cycle whenever lost cycles or FIFO
2610                  * overruns occur, without dropping the data.  The application
2611                  * should then decide whether this is an error condition or not.
2612                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2613                  */
2614                 d[0].branch_address = cpu_to_le32(d_bus | z);
2615
2616                 header = (__le32 *) &d[1];
2617                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2618                                         IT_HEADER_TAG(p->tag) |
2619                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2620                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2621                                         IT_HEADER_SPEED(ctx->base.speed));
2622                 header[1] =
2623                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2624                                                           p->payload_length));
2625         }
2626
2627         if (p->header_length > 0) {
2628                 d[2].req_count    = cpu_to_le16(p->header_length);
2629                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2630                 memcpy(&d[z], p->header, p->header_length);
2631         }
2632
2633         pd = d + z - payload_z;
2634         payload_end_index = payload_index + p->payload_length;
2635         for (i = 0; i < payload_z; i++) {
2636                 page               = payload_index >> PAGE_SHIFT;
2637                 offset             = payload_index & ~PAGE_MASK;
2638                 next_page_index    = (page + 1) << PAGE_SHIFT;
2639                 length             =
2640                         min(next_page_index, payload_end_index) - payload_index;
2641                 pd[i].req_count    = cpu_to_le16(length);
2642
2643                 page_bus = page_private(buffer->pages[page]);
2644                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2645
2646                 payload_index += length;
2647         }
2648
2649         if (p->interrupt)
2650                 irq = DESCRIPTOR_IRQ_ALWAYS;
2651         else
2652                 irq = DESCRIPTOR_NO_IRQ;
2653
2654         last = z == 2 ? d : d + z - 1;
2655         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2656                                      DESCRIPTOR_STATUS |
2657                                      DESCRIPTOR_BRANCH_ALWAYS |
2658                                      irq);
2659
2660         context_append(&ctx->context, d, z, header_z);
2661
2662         return 0;
2663 }
2664
2665 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2666                                        struct fw_iso_packet *packet,
2667                                        struct fw_iso_buffer *buffer,
2668                                        unsigned long payload)
2669 {
2670         struct descriptor *d, *pd;
2671         dma_addr_t d_bus, page_bus;
2672         u32 z, header_z, rest;
2673         int i, j, length;
2674         int page, offset, packet_count, header_size, payload_per_buffer;
2675
2676         /*
2677          * The OHCI controller puts the isochronous header and trailer in the
2678          * buffer, so we need at least 8 bytes.
2679          */
2680         packet_count = packet->header_length / ctx->base.header_size;
2681         header_size  = max(ctx->base.header_size, (size_t)8);
2682
2683         /* Get header size in number of descriptors. */
2684         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2685         page     = payload >> PAGE_SHIFT;
2686         offset   = payload & ~PAGE_MASK;
2687         payload_per_buffer = packet->payload_length / packet_count;
2688
2689         for (i = 0; i < packet_count; i++) {
2690                 /* d points to the header descriptor */
2691                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2692                 d = context_get_descriptors(&ctx->context,
2693                                 z + header_z, &d_bus);
2694                 if (d == NULL)
2695                         return -ENOMEM;
2696
2697                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2698                                               DESCRIPTOR_INPUT_MORE);
2699                 if (packet->skip && i == 0)
2700                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2701                 d->req_count    = cpu_to_le16(header_size);
2702                 d->res_count    = d->req_count;
2703                 d->transfer_status = 0;
2704                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2705
2706                 rest = payload_per_buffer;
2707                 pd = d;
2708                 for (j = 1; j < z; j++) {
2709                         pd++;
2710                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2711                                                   DESCRIPTOR_INPUT_MORE);
2712
2713                         if (offset + rest < PAGE_SIZE)
2714                                 length = rest;
2715                         else
2716                                 length = PAGE_SIZE - offset;
2717                         pd->req_count = cpu_to_le16(length);
2718                         pd->res_count = pd->req_count;
2719                         pd->transfer_status = 0;
2720
2721                         page_bus = page_private(buffer->pages[page]);
2722                         pd->data_address = cpu_to_le32(page_bus + offset);
2723
2724                         offset = (offset + length) & ~PAGE_MASK;
2725                         rest -= length;
2726                         if (offset == 0)
2727                                 page++;
2728                 }
2729                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2730                                           DESCRIPTOR_INPUT_LAST |
2731                                           DESCRIPTOR_BRANCH_ALWAYS);
2732                 if (packet->interrupt && i == packet_count - 1)
2733                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2734
2735                 context_append(&ctx->context, d, z, header_z);
2736         }
2737
2738         return 0;
2739 }
2740
2741 static int queue_iso_buffer_fill(struct iso_context *ctx,
2742                                  struct fw_iso_packet *packet,
2743                                  struct fw_iso_buffer *buffer,
2744                                  unsigned long payload)
2745 {
2746         struct descriptor *d;
2747         dma_addr_t d_bus, page_bus;
2748         int page, offset, rest, z, i, length;
2749
2750         page   = payload >> PAGE_SHIFT;
2751         offset = payload & ~PAGE_MASK;
2752         rest   = packet->payload_length;
2753
2754         /* We need one descriptor for each page in the buffer. */
2755         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
2756
2757         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
2758                 return -EFAULT;
2759
2760         for (i = 0; i < z; i++) {
2761                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
2762                 if (d == NULL)
2763                         return -ENOMEM;
2764
2765                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
2766                                          DESCRIPTOR_BRANCH_ALWAYS);
2767                 if (packet->skip && i == 0)
2768                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2769                 if (packet->interrupt && i == z - 1)
2770                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2771
2772                 if (offset + rest < PAGE_SIZE)
2773                         length = rest;
2774                 else
2775                         length = PAGE_SIZE - offset;
2776                 d->req_count = cpu_to_le16(length);
2777                 d->res_count = d->req_count;
2778                 d->transfer_status = 0;
2779
2780                 page_bus = page_private(buffer->pages[page]);
2781                 d->data_address = cpu_to_le32(page_bus + offset);
2782
2783                 rest -= length;
2784                 offset = 0;
2785                 page++;
2786
2787                 context_append(&ctx->context, d, 1, 0);
2788         }
2789
2790         return 0;
2791 }
2792
2793 static int ohci_queue_iso(struct fw_iso_context *base,
2794                           struct fw_iso_packet *packet,
2795                           struct fw_iso_buffer *buffer,
2796                           unsigned long payload)
2797 {
2798         struct iso_context *ctx = container_of(base, struct iso_context, base);
2799         unsigned long flags;
2800         int ret = -ENOSYS;
2801
2802         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2803         switch (base->type) {
2804         case FW_ISO_CONTEXT_TRANSMIT:
2805                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
2806                 break;
2807         case FW_ISO_CONTEXT_RECEIVE:
2808                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
2809                 break;
2810         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2811                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
2812                 break;
2813         }
2814         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2815
2816         return ret;
2817 }
2818
2819 static const struct fw_card_driver ohci_driver = {
2820         .enable                 = ohci_enable,
2821         .read_phy_reg           = ohci_read_phy_reg,
2822         .update_phy_reg         = ohci_update_phy_reg,
2823         .set_config_rom         = ohci_set_config_rom,
2824         .send_request           = ohci_send_request,
2825         .send_response          = ohci_send_response,
2826         .cancel_packet          = ohci_cancel_packet,
2827         .enable_phys_dma        = ohci_enable_phys_dma,
2828         .read_csr               = ohci_read_csr,
2829         .write_csr              = ohci_write_csr,
2830
2831         .allocate_iso_context   = ohci_allocate_iso_context,
2832         .free_iso_context       = ohci_free_iso_context,
2833         .set_iso_channels       = ohci_set_iso_channels,
2834         .queue_iso              = ohci_queue_iso,
2835         .start_iso              = ohci_start_iso,
2836         .stop_iso               = ohci_stop_iso,
2837 };
2838
2839 #ifdef CONFIG_PPC_PMAC
2840 static void pmac_ohci_on(struct pci_dev *dev)
2841 {
2842         if (machine_is(powermac)) {
2843                 struct device_node *ofn = pci_device_to_OF_node(dev);
2844
2845                 if (ofn) {
2846                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2847                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2848                 }
2849         }
2850 }
2851
2852 static void pmac_ohci_off(struct pci_dev *dev)
2853 {
2854         if (machine_is(powermac)) {
2855                 struct device_node *ofn = pci_device_to_OF_node(dev);
2856
2857                 if (ofn) {
2858                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2859                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2860                 }
2861         }
2862 }
2863 #else
2864 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2865 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2866 #endif /* CONFIG_PPC_PMAC */
2867
2868 static int __devinit pci_probe(struct pci_dev *dev,
2869                                const struct pci_device_id *ent)
2870 {
2871         struct fw_ohci *ohci;
2872         u32 bus_options, max_receive, link_speed, version;
2873         u64 guid;
2874         int i, err, n_ir, n_it;
2875         size_t size;
2876
2877         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2878         if (ohci == NULL) {
2879                 err = -ENOMEM;
2880                 goto fail;
2881         }
2882
2883         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2884
2885         pmac_ohci_on(dev);
2886
2887         err = pci_enable_device(dev);
2888         if (err) {
2889                 fw_error("Failed to enable OHCI hardware\n");
2890                 goto fail_free;
2891         }
2892
2893         pci_set_master(dev);
2894         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2895         pci_set_drvdata(dev, ohci);
2896
2897         spin_lock_init(&ohci->lock);
2898         mutex_init(&ohci->phy_reg_mutex);
2899
2900         tasklet_init(&ohci->bus_reset_tasklet,
2901                      bus_reset_tasklet, (unsigned long)ohci);
2902
2903         err = pci_request_region(dev, 0, ohci_driver_name);
2904         if (err) {
2905                 fw_error("MMIO resource unavailable\n");
2906                 goto fail_disable;
2907         }
2908
2909         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2910         if (ohci->registers == NULL) {
2911                 fw_error("Failed to remap registers\n");
2912                 err = -ENXIO;
2913                 goto fail_iomem;
2914         }
2915
2916         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2917                 if (ohci_quirks[i].vendor == dev->vendor &&
2918                     (ohci_quirks[i].device == dev->device ||
2919                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2920                         ohci->quirks = ohci_quirks[i].flags;
2921                         break;
2922                 }
2923         if (param_quirks)
2924                 ohci->quirks = param_quirks;
2925
2926         ar_context_init(&ohci->ar_request_ctx, ohci,
2927                         OHCI1394_AsReqRcvContextControlSet);
2928
2929         ar_context_init(&ohci->ar_response_ctx, ohci,
2930                         OHCI1394_AsRspRcvContextControlSet);
2931
2932         context_init(&ohci->at_request_ctx, ohci,
2933                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2934
2935         context_init(&ohci->at_response_ctx, ohci,
2936                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2937
2938         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2939         ohci->ir_context_channels = ~0ULL;
2940         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2941         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2942         n_ir = hweight32(ohci->ir_context_mask);
2943         size = sizeof(struct iso_context) * n_ir;
2944         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2945
2946         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2947         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2948         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2949         n_it = hweight32(ohci->it_context_mask);
2950         size = sizeof(struct iso_context) * n_it;
2951         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2952
2953         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2954                 err = -ENOMEM;
2955                 goto fail_contexts;
2956         }
2957
2958         /* self-id dma buffer allocation */
2959         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2960                                                SELF_ID_BUF_SIZE,
2961                                                &ohci->self_id_bus,
2962                                                GFP_KERNEL);
2963         if (ohci->self_id_cpu == NULL) {
2964                 err = -ENOMEM;
2965                 goto fail_contexts;
2966         }
2967
2968         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2969         max_receive = (bus_options >> 12) & 0xf;
2970         link_speed = bus_options & 0x7;
2971         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2972                 reg_read(ohci, OHCI1394_GUIDLo);
2973
2974         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2975         if (err)
2976                 goto fail_self_id;
2977
2978         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2979         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2980                   "%d IR + %d IT contexts, quirks 0x%x\n",
2981                   dev_name(&dev->dev), version >> 16, version & 0xff,
2982                   n_ir, n_it, ohci->quirks);
2983
2984         return 0;
2985
2986  fail_self_id:
2987         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2988                           ohci->self_id_cpu, ohci->self_id_bus);
2989  fail_contexts:
2990         kfree(ohci->ir_context_list);
2991         kfree(ohci->it_context_list);
2992         context_release(&ohci->at_response_ctx);
2993         context_release(&ohci->at_request_ctx);
2994         ar_context_release(&ohci->ar_response_ctx);
2995         ar_context_release(&ohci->ar_request_ctx);
2996         pci_iounmap(dev, ohci->registers);
2997  fail_iomem:
2998         pci_release_region(dev, 0);
2999  fail_disable:
3000         pci_disable_device(dev);
3001  fail_free:
3002         kfree(&ohci->card);
3003         pmac_ohci_off(dev);
3004  fail:
3005         if (err == -ENOMEM)
3006                 fw_error("Out of memory\n");
3007
3008         return err;
3009 }
3010
3011 static void pci_remove(struct pci_dev *dev)
3012 {
3013         struct fw_ohci *ohci;
3014
3015         ohci = pci_get_drvdata(dev);
3016         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3017         flush_writes(ohci);
3018         fw_core_remove_card(&ohci->card);
3019
3020         /*
3021          * FIXME: Fail all pending packets here, now that the upper
3022          * layers can't queue any more.
3023          */
3024
3025         software_reset(ohci);
3026         free_irq(dev->irq, ohci);
3027
3028         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3029                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3030                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3031         if (ohci->config_rom)
3032                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3033                                   ohci->config_rom, ohci->config_rom_bus);
3034         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
3035                           ohci->self_id_cpu, ohci->self_id_bus);
3036         ar_context_release(&ohci->ar_request_ctx);
3037         ar_context_release(&ohci->ar_response_ctx);
3038         context_release(&ohci->at_request_ctx);
3039         context_release(&ohci->at_response_ctx);
3040         kfree(ohci->it_context_list);
3041         kfree(ohci->ir_context_list);
3042         pci_disable_msi(dev);
3043         pci_iounmap(dev, ohci->registers);
3044         pci_release_region(dev, 0);
3045         pci_disable_device(dev);
3046         kfree(&ohci->card);
3047         pmac_ohci_off(dev);
3048
3049         fw_notify("Removed fw-ohci device.\n");
3050 }
3051
3052 #ifdef CONFIG_PM
3053 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3054 {
3055         struct fw_ohci *ohci = pci_get_drvdata(dev);
3056         int err;
3057
3058         software_reset(ohci);
3059         free_irq(dev->irq, ohci);
3060         pci_disable_msi(dev);
3061         err = pci_save_state(dev);
3062         if (err) {
3063                 fw_error("pci_save_state failed\n");
3064                 return err;
3065         }
3066         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3067         if (err)
3068                 fw_error("pci_set_power_state failed with %d\n", err);
3069         pmac_ohci_off(dev);
3070
3071         return 0;
3072 }
3073
3074 static int pci_resume(struct pci_dev *dev)
3075 {
3076         struct fw_ohci *ohci = pci_get_drvdata(dev);
3077         int err;
3078
3079         pmac_ohci_on(dev);
3080         pci_set_power_state(dev, PCI_D0);
3081         pci_restore_state(dev);
3082         err = pci_enable_device(dev);
3083         if (err) {
3084                 fw_error("pci_enable_device failed\n");
3085                 return err;
3086         }
3087
3088         return ohci_enable(&ohci->card, NULL, 0);
3089 }
3090 #endif
3091
3092 static const struct pci_device_id pci_table[] = {
3093         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3094         { }
3095 };
3096
3097 MODULE_DEVICE_TABLE(pci, pci_table);
3098
3099 static struct pci_driver fw_ohci_pci_driver = {
3100         .name           = ohci_driver_name,
3101         .id_table       = pci_table,
3102         .probe          = pci_probe,
3103         .remove         = pci_remove,
3104 #ifdef CONFIG_PM
3105         .resume         = pci_resume,
3106         .suspend        = pci_suspend,
3107 #endif
3108 };
3109
3110 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3111 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3112 MODULE_LICENSE("GPL");
3113
3114 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3115 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3116 MODULE_ALIAS("ohci1394");
3117 #endif
3118
3119 static int __init fw_ohci_init(void)
3120 {
3121         return pci_register_driver(&fw_ohci_pci_driver);
3122 }
3123
3124 static void __exit fw_ohci_cleanup(void)
3125 {
3126         pci_unregister_driver(&fw_ohci_pci_driver);
3127 }
3128
3129 module_init(fw_ohci_init);
3130 module_exit(fw_ohci_cleanup);