245cfe42a8ff2729ef4364e79d05e742aa6e9c04
[pandora-kernel.git] / drivers / crypto / caam / caamalg.c
1 /*
2  * caam - Freescale FSL CAAM support for crypto API
3  *
4  * Copyright 2008-2011 Freescale Semiconductor, Inc.
5  *
6  * Based on talitos crypto API driver.
7  *
8  * relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
9  *
10  * ---------------                     ---------------
11  * | JobDesc #1  |-------------------->|  ShareDesc  |
12  * | *(packet 1) |                     |   (PDB)     |
13  * ---------------      |------------->|  (hashKey)  |
14  *       .              |              | (cipherKey) |
15  *       .              |    |-------->| (operation) |
16  * ---------------      |    |         ---------------
17  * | JobDesc #2  |------|    |
18  * | *(packet 2) |           |
19  * ---------------           |
20  *       .                   |
21  *       .                   |
22  * ---------------           |
23  * | JobDesc #3  |------------
24  * | *(packet 3) |
25  * ---------------
26  *
27  * The SharedDesc never changes for a connection unless rekeyed, but
28  * each packet will likely be in a different place. So all we need
29  * to know to process the packet is where the input is, where the
30  * output goes, and what context we want to process with. Context is
31  * in the SharedDesc, packet references in the JobDesc.
32  *
33  * So, a job desc looks like:
34  *
35  * ---------------------
36  * | Header            |
37  * | ShareDesc Pointer |
38  * | SEQ_OUT_PTR       |
39  * | (output buffer)   |
40  * | SEQ_IN_PTR        |
41  * | (input buffer)    |
42  * | LOAD (to DECO)    |
43  * ---------------------
44  */
45
46 #include "compat.h"
47
48 #include "regs.h"
49 #include "intern.h"
50 #include "desc_constr.h"
51 #include "jr.h"
52 #include "error.h"
53
54 /*
55  * crypto alg
56  */
57 #define CAAM_CRA_PRIORITY               3000
58 /* max key is sum of AES_MAX_KEY_SIZE, max split key size */
59 #define CAAM_MAX_KEY_SIZE               (AES_MAX_KEY_SIZE + \
60                                          SHA512_DIGEST_SIZE * 2)
61 /* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
62 #define CAAM_MAX_IV_LENGTH              16
63
64 #ifdef DEBUG
65 /* for print_hex_dumps with line references */
66 #define xstr(s) str(s)
67 #define str(s) #s
68 #define debug(format, arg...) printk(format, arg)
69 #else
70 #define debug(format, arg...)
71 #endif
72
73 /*
74  * per-session context
75  */
76 struct caam_ctx {
77         struct device *jrdev;
78         u32 *sh_desc;
79         dma_addr_t shared_desc_phys;
80         u32 class1_alg_type;
81         u32 class2_alg_type;
82         u32 alg_op;
83         u8 *key;
84         dma_addr_t key_phys;
85         unsigned int keylen;
86         unsigned int enckeylen;
87         unsigned int authkeylen;
88         unsigned int split_key_len;
89         unsigned int split_key_pad_len;
90         unsigned int authsize;
91 };
92
93 static int aead_authenc_setauthsize(struct crypto_aead *authenc,
94                                     unsigned int authsize)
95 {
96         struct caam_ctx *ctx = crypto_aead_ctx(authenc);
97
98         ctx->authsize = authsize;
99
100         return 0;
101 }
102
103 struct split_key_result {
104         struct completion completion;
105         int err;
106 };
107
108 static void split_key_done(struct device *dev, u32 *desc, u32 err,
109                            void *context)
110 {
111         struct split_key_result *res = context;
112
113 #ifdef DEBUG
114         dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
115 #endif
116         if (err) {
117                 char tmp[256];
118
119                 dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
120         }
121
122         res->err = err;
123
124         complete(&res->completion);
125 }
126
127 /*
128 get a split ipad/opad key
129
130 Split key generation-----------------------------------------------
131
132 [00] 0xb0810008    jobdesc: stidx=1 share=never len=8
133 [01] 0x04000014        key: class2->keyreg len=20
134                         @0xffe01000
135 [03] 0x84410014  operation: cls2-op sha1 hmac init dec
136 [04] 0x24940000     fifold: class2 msgdata-last2 len=0 imm
137 [05] 0xa4000001       jump: class2 local all ->1 [06]
138 [06] 0x64260028    fifostr: class2 mdsplit-jdk len=40
139                         @0xffe04000
140 */
141 static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen)
142 {
143         struct device *jrdev = ctx->jrdev;
144         u32 *desc;
145         struct split_key_result result;
146         dma_addr_t dma_addr_in, dma_addr_out;
147         int ret = 0;
148
149         desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
150
151         init_job_desc(desc, 0);
152
153         dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen,
154                                      DMA_TO_DEVICE);
155         if (dma_mapping_error(jrdev, dma_addr_in)) {
156                 dev_err(jrdev, "unable to map key input memory\n");
157                 kfree(desc);
158                 return -ENOMEM;
159         }
160         append_key(desc, dma_addr_in, authkeylen, CLASS_2 |
161                        KEY_DEST_CLASS_REG);
162
163         /* Sets MDHA up into an HMAC-INIT */
164         append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT |
165                              OP_ALG_AS_INIT);
166
167         /*
168          * do a FIFO_LOAD of zero, this will trigger the internal key expansion
169            into both pads inside MDHA
170          */
171         append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB |
172                                 FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2);
173
174         /*
175          * FIFO_STORE with the explicit split-key content store
176          * (0x26 output type)
177          */
178         dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
179                                       DMA_FROM_DEVICE);
180         if (dma_mapping_error(jrdev, dma_addr_out)) {
181                 dev_err(jrdev, "unable to map key output memory\n");
182                 kfree(desc);
183                 return -ENOMEM;
184         }
185         append_fifo_store(desc, dma_addr_out, ctx->split_key_len,
186                           LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);
187
188 #ifdef DEBUG
189         print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
190                        DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1);
191         print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
192                        DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
193 #endif
194
195         result.err = 0;
196         init_completion(&result.completion);
197
198         ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
199         if (!ret) {
200                 /* in progress */
201                 wait_for_completion_interruptible(&result.completion);
202                 ret = result.err;
203 #ifdef DEBUG
204                 print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
205                                DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
206                                ctx->split_key_pad_len, 1);
207 #endif
208         }
209
210         dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len,
211                          DMA_FROM_DEVICE);
212         dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE);
213
214         kfree(desc);
215
216         return ret;
217 }
218
219 static int build_sh_desc_ipsec(struct caam_ctx *ctx)
220 {
221         struct device *jrdev = ctx->jrdev;
222         u32 *sh_desc;
223         u32 *jump_cmd;
224
225         /* build shared descriptor for this session */
226         sh_desc = kmalloc(CAAM_CMD_SZ * 4 + ctx->split_key_pad_len +
227                           ctx->enckeylen, GFP_DMA | GFP_KERNEL);
228         if (!sh_desc) {
229                 dev_err(jrdev, "could not allocate shared descriptor\n");
230                 return -ENOMEM;
231         }
232
233         init_sh_desc(sh_desc, HDR_SAVECTX | HDR_SHARE_SERIAL);
234
235         jump_cmd = append_jump(sh_desc, CLASS_BOTH | JUMP_TEST_ALL |
236                                JUMP_COND_SHRD | JUMP_COND_SELF);
237
238         /* process keys, starting with class 2/authentication */
239         append_key_as_imm(sh_desc, ctx->key, ctx->split_key_pad_len,
240                           ctx->split_key_len,
241                           CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC);
242
243         append_key_as_imm(sh_desc, (void *)ctx->key + ctx->split_key_pad_len,
244                           ctx->enckeylen, ctx->enckeylen,
245                           CLASS_1 | KEY_DEST_CLASS_REG);
246
247         /* update jump cmd now that we are at the jump target */
248         set_jump_tgt_here(sh_desc, jump_cmd);
249
250         ctx->shared_desc_phys = dma_map_single(jrdev, sh_desc,
251                                                desc_bytes(sh_desc),
252                                                DMA_TO_DEVICE);
253         if (dma_mapping_error(jrdev, ctx->shared_desc_phys)) {
254                 dev_err(jrdev, "unable to map shared descriptor\n");
255                 kfree(sh_desc);
256                 return -ENOMEM;
257         }
258
259         ctx->sh_desc = sh_desc;
260
261         return 0;
262 }
263
264 static int aead_authenc_setkey(struct crypto_aead *aead,
265                                const u8 *key, unsigned int keylen)
266 {
267         /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
268         static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
269         struct caam_ctx *ctx = crypto_aead_ctx(aead);
270         struct device *jrdev = ctx->jrdev;
271         struct rtattr *rta = (void *)key;
272         struct crypto_authenc_key_param *param;
273         unsigned int authkeylen;
274         unsigned int enckeylen;
275         int ret = 0;
276
277         param = RTA_DATA(rta);
278         enckeylen = be32_to_cpu(param->enckeylen);
279
280         key += RTA_ALIGN(rta->rta_len);
281         keylen -= RTA_ALIGN(rta->rta_len);
282
283         if (keylen < enckeylen)
284                 goto badkey;
285
286         authkeylen = keylen - enckeylen;
287
288         if (keylen > CAAM_MAX_KEY_SIZE)
289                 goto badkey;
290
291         /* Pick class 2 key length from algorithm submask */
292         ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
293                                       OP_ALG_ALGSEL_SHIFT] * 2;
294         ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
295
296 #ifdef DEBUG
297         printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
298                keylen, enckeylen, authkeylen);
299         printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
300                ctx->split_key_len, ctx->split_key_pad_len);
301         print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
302                        DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
303 #endif
304         ctx->key = kmalloc(ctx->split_key_pad_len + enckeylen,
305                            GFP_KERNEL | GFP_DMA);
306         if (!ctx->key) {
307                 dev_err(jrdev, "could not allocate key output memory\n");
308                 return -ENOMEM;
309         }
310
311         ret = gen_split_key(ctx, key, authkeylen);
312         if (ret) {
313                 kfree(ctx->key);
314                 goto badkey;
315         }
316
317         /* postpend encryption key to auth split key */
318         memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);
319
320         ctx->key_phys = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
321                                        enckeylen, DMA_TO_DEVICE);
322         if (dma_mapping_error(jrdev, ctx->key_phys)) {
323                 dev_err(jrdev, "unable to map key i/o memory\n");
324                 kfree(ctx->key);
325                 return -ENOMEM;
326         }
327 #ifdef DEBUG
328         print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
329                        DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
330                        ctx->split_key_pad_len + enckeylen, 1);
331 #endif
332
333         ctx->keylen = keylen;
334         ctx->enckeylen = enckeylen;
335         ctx->authkeylen = authkeylen;
336
337         ret = build_sh_desc_ipsec(ctx);
338         if (ret) {
339                 dma_unmap_single(jrdev, ctx->key_phys, ctx->split_key_pad_len +
340                                  enckeylen, DMA_TO_DEVICE);
341                 kfree(ctx->key);
342         }
343
344         return ret;
345 badkey:
346         crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
347         return -EINVAL;
348 }
349
350 struct link_tbl_entry {
351         u64 ptr;
352         u32 len;
353         u8 reserved;
354         u8 buf_pool_id;
355         u16 offset;
356 };
357
358 /*
359  * ipsec_esp_edesc - s/w-extended ipsec_esp descriptor
360  * @src_nents: number of segments in input scatterlist
361  * @dst_nents: number of segments in output scatterlist
362  * @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist
363  * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
364  * @link_tbl_bytes: length of dma mapped link_tbl space
365  * @link_tbl_dma: bus physical mapped address of h/w link table
366  * @hw_desc: the h/w job descriptor followed by any referenced link tables
367  */
368 struct ipsec_esp_edesc {
369         int assoc_nents;
370         int src_nents;
371         int dst_nents;
372         int link_tbl_bytes;
373         dma_addr_t link_tbl_dma;
374         struct link_tbl_entry *link_tbl;
375         u32 hw_desc[0];
376 };
377
378 static void ipsec_esp_unmap(struct device *dev,
379                             struct ipsec_esp_edesc *edesc,
380                             struct aead_request *areq)
381 {
382         dma_unmap_sg(dev, areq->assoc, edesc->assoc_nents, DMA_TO_DEVICE);
383
384         if (unlikely(areq->dst != areq->src)) {
385                 dma_unmap_sg(dev, areq->src, edesc->src_nents,
386                              DMA_TO_DEVICE);
387                 dma_unmap_sg(dev, areq->dst, edesc->dst_nents,
388                              DMA_FROM_DEVICE);
389         } else {
390                 dma_unmap_sg(dev, areq->src, edesc->src_nents,
391                              DMA_BIDIRECTIONAL);
392         }
393
394         if (edesc->link_tbl_bytes)
395                 dma_unmap_single(dev, edesc->link_tbl_dma,
396                                  edesc->link_tbl_bytes,
397                                  DMA_TO_DEVICE);
398 }
399
400 /*
401  * ipsec_esp descriptor callbacks
402  */
403 static void ipsec_esp_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
404                                    void *context)
405 {
406         struct aead_request *areq = context;
407         struct ipsec_esp_edesc *edesc;
408 #ifdef DEBUG
409         struct crypto_aead *aead = crypto_aead_reqtfm(areq);
410         int ivsize = crypto_aead_ivsize(aead);
411         struct caam_ctx *ctx = crypto_aead_ctx(aead);
412
413         dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
414 #endif
415         edesc = (struct ipsec_esp_edesc *)((char *)desc -
416                  offsetof(struct ipsec_esp_edesc, hw_desc));
417
418         if (err) {
419                 char tmp[256];
420
421                 dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
422         }
423
424         ipsec_esp_unmap(jrdev, edesc, areq);
425
426 #ifdef DEBUG
427         print_hex_dump(KERN_ERR, "assoc  @"xstr(__LINE__)": ",
428                        DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
429                        areq->assoclen , 1);
430         print_hex_dump(KERN_ERR, "dstiv  @"xstr(__LINE__)": ",
431                        DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
432                        edesc->src_nents ? 100 : ivsize, 1);
433         print_hex_dump(KERN_ERR, "dst    @"xstr(__LINE__)": ",
434                        DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
435                        edesc->src_nents ? 100 : areq->cryptlen +
436                        ctx->authsize + 4, 1);
437 #endif
438
439         kfree(edesc);
440
441         aead_request_complete(areq, err);
442 }
443
444 static void ipsec_esp_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
445                                    void *context)
446 {
447         struct aead_request *areq = context;
448         struct ipsec_esp_edesc *edesc;
449 #ifdef DEBUG
450         struct crypto_aead *aead = crypto_aead_reqtfm(areq);
451         struct caam_ctx *ctx = crypto_aead_ctx(aead);
452
453         dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
454 #endif
455         edesc = (struct ipsec_esp_edesc *)((char *)desc -
456                  offsetof(struct ipsec_esp_edesc, hw_desc));
457
458         if (err) {
459                 char tmp[256];
460
461                 dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
462         }
463
464         ipsec_esp_unmap(jrdev, edesc, areq);
465
466         /*
467          * verify hw auth check passed else return -EBADMSG
468          */
469         if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
470                 err = -EBADMSG;
471
472 #ifdef DEBUG
473         print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
474                        DUMP_PREFIX_ADDRESS, 16, 4,
475                        ((char *)sg_virt(areq->assoc) - sizeof(struct iphdr)),
476                        sizeof(struct iphdr) + areq->assoclen +
477                        ((areq->cryptlen > 1500) ? 1500 : areq->cryptlen) +
478                        ctx->authsize + 36, 1);
479         if (!err && edesc->link_tbl_bytes) {
480                 struct scatterlist *sg = sg_last(areq->src, edesc->src_nents);
481                 print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
482                                DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
483                         sg->length + ctx->authsize + 16, 1);
484         }
485 #endif
486         kfree(edesc);
487
488         aead_request_complete(areq, err);
489 }
490
491 /*
492  * convert scatterlist to h/w link table format
493  * scatterlist must have been previously dma mapped
494  */
495 static void sg_to_link_tbl(struct scatterlist *sg, int sg_count,
496                            struct link_tbl_entry *link_tbl_ptr, u32 offset)
497 {
498         while (sg_count) {
499                 link_tbl_ptr->ptr = sg_dma_address(sg);
500                 link_tbl_ptr->len = sg_dma_len(sg);
501                 link_tbl_ptr->reserved = 0;
502                 link_tbl_ptr->buf_pool_id = 0;
503                 link_tbl_ptr->offset = offset;
504                 link_tbl_ptr++;
505                 sg = sg_next(sg);
506                 sg_count--;
507         }
508
509         /* set Final bit (marks end of link table) */
510         link_tbl_ptr--;
511         link_tbl_ptr->len |= 0x40000000;
512 }
513
514 /*
515  * fill in and submit ipsec_esp job descriptor
516  */
517 static int ipsec_esp(struct ipsec_esp_edesc *edesc, struct aead_request *areq,
518                      u32 encrypt,
519                      void (*callback) (struct device *dev, u32 *desc,
520                                        u32 err, void *context))
521 {
522         struct crypto_aead *aead = crypto_aead_reqtfm(areq);
523         struct caam_ctx *ctx = crypto_aead_ctx(aead);
524         struct device *jrdev = ctx->jrdev;
525         u32 *desc = edesc->hw_desc, options;
526         int ret, sg_count, assoc_sg_count;
527         int ivsize = crypto_aead_ivsize(aead);
528         int authsize = ctx->authsize;
529         dma_addr_t ptr, dst_dma, src_dma;
530 #ifdef DEBUG
531         u32 *sh_desc = ctx->sh_desc;
532
533         debug("assoclen %d cryptlen %d authsize %d\n",
534               areq->assoclen, areq->cryptlen, authsize);
535         print_hex_dump(KERN_ERR, "assoc  @"xstr(__LINE__)": ",
536                        DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
537                        areq->assoclen , 1);
538         print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
539                        DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
540                        edesc->src_nents ? 100 : ivsize, 1);
541         print_hex_dump(KERN_ERR, "src    @"xstr(__LINE__)": ",
542                        DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
543                         edesc->src_nents ? 100 : areq->cryptlen + authsize, 1);
544         print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
545                        DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
546                        desc_bytes(sh_desc), 1);
547 #endif
548         assoc_sg_count = dma_map_sg(jrdev, areq->assoc, edesc->assoc_nents ?: 1,
549                                     DMA_TO_DEVICE);
550         if (areq->src == areq->dst)
551                 sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
552                                       DMA_BIDIRECTIONAL);
553         else
554                 sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
555                                       DMA_TO_DEVICE);
556
557         /* start auth operation */
558         append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL |
559                          (encrypt ? : OP_ALG_ICV_ON));
560
561         /* Load FIFO with data for Class 2 CHA */
562         options = FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG;
563         if (!edesc->assoc_nents) {
564                 ptr = sg_dma_address(areq->assoc);
565         } else {
566                 sg_to_link_tbl(areq->assoc, edesc->assoc_nents,
567                                edesc->link_tbl, 0);
568                 ptr = edesc->link_tbl_dma;
569                 options |= LDST_SGF;
570         }
571         append_fifo_load(desc, ptr, areq->assoclen, options);
572
573         /* copy iv from cipher/class1 input context to class2 infifo */
574         append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize);
575
576         /* start class 1 (cipher) operation */
577         append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL |
578                          encrypt);
579
580         /* load payload & instruct to class2 to snoop class 1 if encrypting */
581         options = 0;
582         if (!edesc->src_nents) {
583                 src_dma = sg_dma_address(areq->src);
584         } else {
585                 sg_to_link_tbl(areq->src, edesc->src_nents, edesc->link_tbl +
586                                edesc->assoc_nents, 0);
587                 src_dma = edesc->link_tbl_dma + edesc->assoc_nents *
588                           sizeof(struct link_tbl_entry);
589                 options |= LDST_SGF;
590         }
591         append_seq_in_ptr(desc, src_dma, areq->cryptlen + authsize, options);
592         append_seq_fifo_load(desc, areq->cryptlen, FIFOLD_CLASS_BOTH |
593                              FIFOLD_TYPE_LASTBOTH |
594                              (encrypt ? FIFOLD_TYPE_MSG1OUT2
595                                       : FIFOLD_TYPE_MSG));
596
597         /* specify destination */
598         if (areq->src == areq->dst) {
599                 dst_dma = src_dma;
600         } else {
601                 sg_count = dma_map_sg(jrdev, areq->dst, edesc->dst_nents ? : 1,
602                                       DMA_FROM_DEVICE);
603                 if (!edesc->dst_nents) {
604                         dst_dma = sg_dma_address(areq->dst);
605                         options = 0;
606                 } else {
607                         sg_to_link_tbl(areq->dst, edesc->dst_nents,
608                                        edesc->link_tbl + edesc->assoc_nents +
609                                        edesc->src_nents, 0);
610                         dst_dma = edesc->link_tbl_dma + (edesc->assoc_nents +
611                                   edesc->src_nents) *
612                                   sizeof(struct link_tbl_entry);
613                         options = LDST_SGF;
614                 }
615         }
616         append_seq_out_ptr(desc, dst_dma, areq->cryptlen + authsize, options);
617         append_seq_fifo_store(desc, areq->cryptlen, FIFOST_TYPE_MESSAGE_DATA);
618
619         /* ICV */
620         if (encrypt)
621                 append_seq_store(desc, authsize, LDST_CLASS_2_CCB |
622                                  LDST_SRCDST_BYTE_CONTEXT);
623         else
624                 append_seq_fifo_load(desc, authsize, FIFOLD_CLASS_CLASS2 |
625                                      FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
626
627 #ifdef DEBUG
628         debug("job_desc_len %d\n", desc_len(desc));
629         print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
630                        DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc) , 1);
631         print_hex_dump(KERN_ERR, "jdlinkt@"xstr(__LINE__)": ",
632                        DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl,
633                         edesc->link_tbl_bytes, 1);
634 #endif
635
636         ret = caam_jr_enqueue(jrdev, desc, callback, areq);
637         if (!ret)
638                 ret = -EINPROGRESS;
639         else {
640                 ipsec_esp_unmap(jrdev, edesc, areq);
641                 kfree(edesc);
642         }
643
644         return ret;
645 }
646
647 /*
648  * derive number of elements in scatterlist
649  */
650 static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained)
651 {
652         struct scatterlist *sg = sg_list;
653         int sg_nents = 0;
654
655         *chained = 0;
656         while (nbytes > 0) {
657                 sg_nents++;
658                 nbytes -= sg->length;
659                 if (!sg_is_last(sg) && (sg + 1)->length == 0)
660                         *chained = 1;
661                 sg = scatterwalk_sg_next(sg);
662         }
663
664         return sg_nents;
665 }
666
667 /*
668  * allocate and map the ipsec_esp extended descriptor
669  */
670 static struct ipsec_esp_edesc *ipsec_esp_edesc_alloc(struct aead_request *areq,
671                                                      int desc_bytes)
672 {
673         struct crypto_aead *aead = crypto_aead_reqtfm(areq);
674         struct caam_ctx *ctx = crypto_aead_ctx(aead);
675         struct device *jrdev = ctx->jrdev;
676         gfp_t flags = areq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
677                       GFP_ATOMIC;
678         int assoc_nents, src_nents, dst_nents = 0, chained, link_tbl_bytes;
679         struct ipsec_esp_edesc *edesc;
680
681         assoc_nents = sg_count(areq->assoc, areq->assoclen, &chained);
682         BUG_ON(chained);
683         if (likely(assoc_nents == 1))
684                 assoc_nents = 0;
685
686         src_nents = sg_count(areq->src, areq->cryptlen + ctx->authsize,
687                              &chained);
688         BUG_ON(chained);
689         if (src_nents == 1)
690                 src_nents = 0;
691
692         if (unlikely(areq->dst != areq->src)) {
693                 dst_nents = sg_count(areq->dst, areq->cryptlen + ctx->authsize,
694                                      &chained);
695                 BUG_ON(chained);
696                 if (dst_nents == 1)
697                         dst_nents = 0;
698         }
699
700         link_tbl_bytes = (assoc_nents + src_nents + dst_nents) *
701                          sizeof(struct link_tbl_entry);
702         debug("link_tbl_bytes %d\n", link_tbl_bytes);
703
704         /* allocate space for base edesc and hw desc commands, link tables */
705         edesc = kmalloc(sizeof(struct ipsec_esp_edesc) + desc_bytes +
706                         link_tbl_bytes, GFP_DMA | flags);
707         if (!edesc) {
708                 dev_err(jrdev, "could not allocate extended descriptor\n");
709                 return ERR_PTR(-ENOMEM);
710         }
711
712         edesc->assoc_nents = assoc_nents;
713         edesc->src_nents = src_nents;
714         edesc->dst_nents = dst_nents;
715         edesc->link_tbl = (void *)edesc + sizeof(struct ipsec_esp_edesc) +
716                           desc_bytes;
717         edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
718                                              link_tbl_bytes, DMA_TO_DEVICE);
719         edesc->link_tbl_bytes = link_tbl_bytes;
720
721         return edesc;
722 }
723
724 static int aead_authenc_encrypt(struct aead_request *areq)
725 {
726         struct ipsec_esp_edesc *edesc;
727         struct crypto_aead *aead = crypto_aead_reqtfm(areq);
728         struct caam_ctx *ctx = crypto_aead_ctx(aead);
729         struct device *jrdev = ctx->jrdev;
730         int ivsize = crypto_aead_ivsize(aead);
731         u32 *desc;
732         dma_addr_t iv_dma;
733
734         /* allocate extended descriptor */
735         edesc = ipsec_esp_edesc_alloc(areq, 21 * sizeof(u32));
736         if (IS_ERR(edesc))
737                 return PTR_ERR(edesc);
738
739         desc = edesc->hw_desc;
740
741         /* insert shared descriptor pointer */
742         init_job_desc_shared(desc, ctx->shared_desc_phys,
743                              desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
744
745         iv_dma = dma_map_single(jrdev, areq->iv, ivsize, DMA_TO_DEVICE);
746         /* check dma error */
747
748         append_load(desc, iv_dma, ivsize,
749                     LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
750
751         return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
752 }
753
754 static int aead_authenc_decrypt(struct aead_request *req)
755 {
756         struct crypto_aead *aead = crypto_aead_reqtfm(req);
757         int ivsize = crypto_aead_ivsize(aead);
758         struct caam_ctx *ctx = crypto_aead_ctx(aead);
759         struct device *jrdev = ctx->jrdev;
760         struct ipsec_esp_edesc *edesc;
761         u32 *desc;
762         dma_addr_t iv_dma;
763
764         req->cryptlen -= ctx->authsize;
765
766         /* allocate extended descriptor */
767         edesc = ipsec_esp_edesc_alloc(req, 21 * sizeof(u32));
768         if (IS_ERR(edesc))
769                 return PTR_ERR(edesc);
770
771         desc = edesc->hw_desc;
772
773         /* insert shared descriptor pointer */
774         init_job_desc_shared(desc, ctx->shared_desc_phys,
775                              desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
776
777         iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE);
778         /* check dma error */
779
780         append_load(desc, iv_dma, ivsize,
781                     LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
782
783         return ipsec_esp(edesc, req, !OP_ALG_ENCRYPT, ipsec_esp_decrypt_done);
784 }
785
786 static int aead_authenc_givencrypt(struct aead_givcrypt_request *req)
787 {
788         struct aead_request *areq = &req->areq;
789         struct ipsec_esp_edesc *edesc;
790         struct crypto_aead *aead = crypto_aead_reqtfm(areq);
791         struct caam_ctx *ctx = crypto_aead_ctx(aead);
792         struct device *jrdev = ctx->jrdev;
793         int ivsize = crypto_aead_ivsize(aead);
794         dma_addr_t iv_dma;
795         u32 *desc;
796
797         iv_dma = dma_map_single(jrdev, req->giv, ivsize, DMA_FROM_DEVICE);
798
799         debug("%s: giv %p\n", __func__, req->giv);
800
801         /* allocate extended descriptor */
802         edesc = ipsec_esp_edesc_alloc(areq, 27 * sizeof(u32));
803         if (IS_ERR(edesc))
804                 return PTR_ERR(edesc);
805
806         desc = edesc->hw_desc;
807
808         /* insert shared descriptor pointer */
809         init_job_desc_shared(desc, ctx->shared_desc_phys,
810                              desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
811
812         /*
813          * LOAD IMM Info FIFO
814          * to DECO, Last, Padding, Random, Message, 16 bytes
815          */
816         append_load_imm_u32(desc, NFIFOENTRY_DEST_DECO | NFIFOENTRY_LC1 |
817                             NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DTYPE_MSG |
818                             NFIFOENTRY_PTYPE_RND | ivsize,
819                             LDST_SRCDST_WORD_INFO_FIFO);
820
821         /*
822          * disable info fifo entries since the above serves as the entry
823          * this way, the MOVE command won't generate an entry.
824          * Note that this isn't required in more recent versions of
825          * SEC as a MOVE that doesn't do info FIFO entries is available.
826          */
827         append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
828
829         /* MOVE DECO Alignment -> C1 Context 16 bytes */
830         append_move(desc, MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX | ivsize);
831
832         /* re-enable info fifo entries */
833         append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
834
835         /* MOVE C1 Context -> OFIFO 16 bytes */
836         append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO | ivsize);
837
838         append_fifo_store(desc, iv_dma, ivsize, FIFOST_TYPE_MESSAGE_DATA);
839
840         return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
841 }
842
843 struct caam_alg_template {
844         char name[CRYPTO_MAX_ALG_NAME];
845         char driver_name[CRYPTO_MAX_ALG_NAME];
846         unsigned int blocksize;
847         struct aead_alg aead;
848         u32 class1_alg_type;
849         u32 class2_alg_type;
850         u32 alg_op;
851 };
852
853 static struct caam_alg_template driver_algs[] = {
854         /* single-pass ipsec_esp descriptor */
855         {
856                 .name = "authenc(hmac(sha1),cbc(aes))",
857                 .driver_name = "authenc-hmac-sha1-cbc-aes-caam",
858                 .blocksize = AES_BLOCK_SIZE,
859                 .aead = {
860                         .setkey = aead_authenc_setkey,
861                         .setauthsize = aead_authenc_setauthsize,
862                         .encrypt = aead_authenc_encrypt,
863                         .decrypt = aead_authenc_decrypt,
864                         .givencrypt = aead_authenc_givencrypt,
865                         .geniv = "<built-in>",
866                         .ivsize = AES_BLOCK_SIZE,
867                         .maxauthsize = SHA1_DIGEST_SIZE,
868                         },
869                 .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
870                 .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
871                 .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
872         },
873         {
874                 .name = "authenc(hmac(sha256),cbc(aes))",
875                 .driver_name = "authenc-hmac-sha256-cbc-aes-caam",
876                 .blocksize = AES_BLOCK_SIZE,
877                 .aead = {
878                         .setkey = aead_authenc_setkey,
879                         .setauthsize = aead_authenc_setauthsize,
880                         .encrypt = aead_authenc_encrypt,
881                         .decrypt = aead_authenc_decrypt,
882                         .givencrypt = aead_authenc_givencrypt,
883                         .geniv = "<built-in>",
884                         .ivsize = AES_BLOCK_SIZE,
885                         .maxauthsize = SHA256_DIGEST_SIZE,
886                         },
887                 .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
888                 .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
889                                    OP_ALG_AAI_HMAC_PRECOMP,
890                 .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
891         },
892         {
893                 .name = "authenc(hmac(sha1),cbc(des3_ede))",
894                 .driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam",
895                 .blocksize = DES3_EDE_BLOCK_SIZE,
896                 .aead = {
897                         .setkey = aead_authenc_setkey,
898                         .setauthsize = aead_authenc_setauthsize,
899                         .encrypt = aead_authenc_encrypt,
900                         .decrypt = aead_authenc_decrypt,
901                         .givencrypt = aead_authenc_givencrypt,
902                         .geniv = "<built-in>",
903                         .ivsize = DES3_EDE_BLOCK_SIZE,
904                         .maxauthsize = SHA1_DIGEST_SIZE,
905                         },
906                 .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
907                 .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
908                 .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
909         },
910         {
911                 .name = "authenc(hmac(sha256),cbc(des3_ede))",
912                 .driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam",
913                 .blocksize = DES3_EDE_BLOCK_SIZE,
914                 .aead = {
915                         .setkey = aead_authenc_setkey,
916                         .setauthsize = aead_authenc_setauthsize,
917                         .encrypt = aead_authenc_encrypt,
918                         .decrypt = aead_authenc_decrypt,
919                         .givencrypt = aead_authenc_givencrypt,
920                         .geniv = "<built-in>",
921                         .ivsize = DES3_EDE_BLOCK_SIZE,
922                         .maxauthsize = SHA256_DIGEST_SIZE,
923                         },
924                 .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
925                 .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
926                                    OP_ALG_AAI_HMAC_PRECOMP,
927                 .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
928         },
929         {
930                 .name = "authenc(hmac(sha1),cbc(des))",
931                 .driver_name = "authenc-hmac-sha1-cbc-des-caam",
932                 .blocksize = DES_BLOCK_SIZE,
933                 .aead = {
934                         .setkey = aead_authenc_setkey,
935                         .setauthsize = aead_authenc_setauthsize,
936                         .encrypt = aead_authenc_encrypt,
937                         .decrypt = aead_authenc_decrypt,
938                         .givencrypt = aead_authenc_givencrypt,
939                         .geniv = "<built-in>",
940                         .ivsize = DES_BLOCK_SIZE,
941                         .maxauthsize = SHA1_DIGEST_SIZE,
942                         },
943                 .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
944                 .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
945                 .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
946         },
947         {
948                 .name = "authenc(hmac(sha256),cbc(des))",
949                 .driver_name = "authenc-hmac-sha256-cbc-des-caam",
950                 .blocksize = DES_BLOCK_SIZE,
951                 .aead = {
952                         .setkey = aead_authenc_setkey,
953                         .setauthsize = aead_authenc_setauthsize,
954                         .encrypt = aead_authenc_encrypt,
955                         .decrypt = aead_authenc_decrypt,
956                         .givencrypt = aead_authenc_givencrypt,
957                         .geniv = "<built-in>",
958                         .ivsize = DES_BLOCK_SIZE,
959                         .maxauthsize = SHA256_DIGEST_SIZE,
960                         },
961                 .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
962                 .class2_alg_type = OP_ALG_ALGSEL_SHA256 |
963                                    OP_ALG_AAI_HMAC_PRECOMP,
964                 .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
965         },
966 };
967
968 struct caam_crypto_alg {
969         struct list_head entry;
970         struct device *ctrldev;
971         int class1_alg_type;
972         int class2_alg_type;
973         int alg_op;
974         struct crypto_alg crypto_alg;
975 };
976
977 static int caam_cra_init(struct crypto_tfm *tfm)
978 {
979         struct crypto_alg *alg = tfm->__crt_alg;
980         struct caam_crypto_alg *caam_alg =
981                  container_of(alg, struct caam_crypto_alg, crypto_alg);
982         struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
983         struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev);
984         int tgt_jr = atomic_inc_return(&priv->tfm_count);
985
986         /*
987          * distribute tfms across job rings to ensure in-order
988          * crypto request processing per tfm
989          */
990         ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi];
991
992         /* copy descriptor header template value */
993         ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type;
994         ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type;
995         ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op;
996
997         return 0;
998 }
999
1000 static void caam_cra_exit(struct crypto_tfm *tfm)
1001 {
1002         struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
1003
1004         if (!dma_mapping_error(ctx->jrdev, ctx->shared_desc_phys))
1005                 dma_unmap_single(ctx->jrdev, ctx->shared_desc_phys,
1006                                  desc_bytes(ctx->sh_desc), DMA_TO_DEVICE);
1007         kfree(ctx->sh_desc);
1008 }
1009
1010 static void __exit caam_algapi_exit(void)
1011 {
1012
1013         struct device_node *dev_node;
1014         struct platform_device *pdev;
1015         struct device *ctrldev;
1016         struct caam_drv_private *priv;
1017         struct caam_crypto_alg *t_alg, *n;
1018         int i, err;
1019
1020         dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
1021         if (!dev_node)
1022                 return;
1023
1024         pdev = of_find_device_by_node(dev_node);
1025         if (!pdev)
1026                 return;
1027
1028         ctrldev = &pdev->dev;
1029         of_node_put(dev_node);
1030         priv = dev_get_drvdata(ctrldev);
1031
1032         if (!priv->alg_list.next)
1033                 return;
1034
1035         list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
1036                 crypto_unregister_alg(&t_alg->crypto_alg);
1037                 list_del(&t_alg->entry);
1038                 kfree(t_alg);
1039         }
1040
1041         for (i = 0; i < priv->total_jobrs; i++) {
1042                 err = caam_jr_deregister(priv->algapi_jr[i]);
1043                 if (err < 0)
1044                         break;
1045         }
1046         kfree(priv->algapi_jr);
1047 }
1048
1049 static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev,
1050                                               struct caam_alg_template
1051                                               *template)
1052 {
1053         struct caam_crypto_alg *t_alg;
1054         struct crypto_alg *alg;
1055
1056         t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL);
1057         if (!t_alg) {
1058                 dev_err(ctrldev, "failed to allocate t_alg\n");
1059                 return ERR_PTR(-ENOMEM);
1060         }
1061
1062         alg = &t_alg->crypto_alg;
1063
1064         snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
1065         snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1066                  template->driver_name);
1067         alg->cra_module = THIS_MODULE;
1068         alg->cra_init = caam_cra_init;
1069         alg->cra_exit = caam_cra_exit;
1070         alg->cra_priority = CAAM_CRA_PRIORITY;
1071         alg->cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
1072         alg->cra_blocksize = template->blocksize;
1073         alg->cra_alignmask = 0;
1074         alg->cra_type = &crypto_aead_type;
1075         alg->cra_ctxsize = sizeof(struct caam_ctx);
1076         alg->cra_u.aead = template->aead;
1077
1078         t_alg->class1_alg_type = template->class1_alg_type;
1079         t_alg->class2_alg_type = template->class2_alg_type;
1080         t_alg->alg_op = template->alg_op;
1081         t_alg->ctrldev = ctrldev;
1082
1083         return t_alg;
1084 }
1085
1086 static int __init caam_algapi_init(void)
1087 {
1088         struct device_node *dev_node;
1089         struct platform_device *pdev;
1090         struct device *ctrldev, **jrdev;
1091         struct caam_drv_private *priv;
1092         int i = 0, err = 0;
1093
1094         dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
1095         if (!dev_node)
1096                 return -ENODEV;
1097
1098         pdev = of_find_device_by_node(dev_node);
1099         if (!pdev)
1100                 return -ENODEV;
1101
1102         ctrldev = &pdev->dev;
1103         priv = dev_get_drvdata(ctrldev);
1104         of_node_put(dev_node);
1105
1106         INIT_LIST_HEAD(&priv->alg_list);
1107
1108         jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL);
1109         if (!jrdev)
1110                 return -ENOMEM;
1111
1112         for (i = 0; i < priv->total_jobrs; i++) {
1113                 err = caam_jr_register(ctrldev, &jrdev[i]);
1114                 if (err < 0)
1115                         break;
1116         }
1117         if (err < 0 && i == 0) {
1118                 dev_err(ctrldev, "algapi error in job ring registration: %d\n",
1119                         err);
1120                 kfree(jrdev);
1121                 return err;
1122         }
1123
1124         priv->num_jrs_for_algapi = i;
1125         priv->algapi_jr = jrdev;
1126         atomic_set(&priv->tfm_count, -1);
1127
1128         /* register crypto algorithms the device supports */
1129         for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
1130                 /* TODO: check if h/w supports alg */
1131                 struct caam_crypto_alg *t_alg;
1132
1133                 t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]);
1134                 if (IS_ERR(t_alg)) {
1135                         err = PTR_ERR(t_alg);
1136                         dev_warn(ctrldev, "%s alg allocation failed\n",
1137                                  driver_algs[i].driver_name);
1138                         continue;
1139                 }
1140
1141                 err = crypto_register_alg(&t_alg->crypto_alg);
1142                 if (err) {
1143                         dev_warn(ctrldev, "%s alg registration failed\n",
1144                                 t_alg->crypto_alg.cra_driver_name);
1145                         kfree(t_alg);
1146                 } else {
1147                         list_add_tail(&t_alg->entry, &priv->alg_list);
1148                         dev_info(ctrldev, "%s\n",
1149                                  t_alg->crypto_alg.cra_driver_name);
1150                 }
1151         }
1152
1153         return err;
1154 }
1155
1156 module_init(caam_algapi_init);
1157 module_exit(caam_algapi_exit);
1158
1159 MODULE_LICENSE("GPL");
1160 MODULE_DESCRIPTION("FSL CAAM support for crypto API");
1161 MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");