34874c2f188533bce24e0499db852da860c1dfeb
[pandora-kernel.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21
22 /*
23  * dbs is used in this file as a shortform for demandbased switching
24  * It helps to keep variable names smaller, simpler
25  */
26
27 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
30
31 /*
32  * The polling frequency of this governor depends on the capability of
33  * the processor. Default polling frequency is 1000 times the transition
34  * latency of the processor. The governor will work on any processor with
35  * transition latency <= 10mS, using appropriate sampling
36  * rate.
37  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38  * this governor will not work.
39  * All times here are in uS.
40  */
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO                 (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE                  (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
45 #define MIN_SAMPLING_RATE                       (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
46 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
47 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
48 #define TRANSITION_LATENCY_LIMIT                (10 * 1000)
49
50 static void do_dbs_timer(void *data);
51
52 struct cpu_dbs_info_s {
53         cputime64_t prev_cpu_idle;
54         cputime64_t prev_cpu_wall;
55         struct cpufreq_policy *cur_policy;
56         struct work_struct work;
57         unsigned int enable;
58         struct cpufreq_frequency_table *freq_table;
59         unsigned int freq_lo;
60         unsigned int freq_lo_jiffies;
61         unsigned int freq_hi_jiffies;
62 };
63 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
64
65 static unsigned int dbs_enable; /* number of CPUs using this policy */
66
67 /*
68  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
69  * lock and dbs_mutex. cpu_hotplug lock should always be held before
70  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
71  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
72  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
73  * is recursive for the same process. -Venki
74  */
75 static DEFINE_MUTEX(dbs_mutex);
76
77 static struct workqueue_struct  *kondemand_wq;
78
79 static struct dbs_tuners {
80         unsigned int sampling_rate;
81         unsigned int up_threshold;
82         unsigned int ignore_nice;
83         unsigned int powersave_bias;
84 } dbs_tuners_ins = {
85         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
86         .ignore_nice = 0,
87         .powersave_bias = 0,
88 };
89
90 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
91 {
92         cputime64_t retval;
93
94         retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
95                         kstat_cpu(cpu).cpustat.iowait);
96
97         if (dbs_tuners_ins.ignore_nice)
98                 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
99
100         return retval;
101 }
102
103 /*
104  * Find right freq to be set now with powersave_bias on.
105  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
106  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
107  */
108 unsigned int powersave_bias_target(struct cpufreq_policy *policy,
109                 unsigned int freq_next, unsigned int relation)
110 {
111         unsigned int freq_req, freq_reduc, freq_avg;
112         unsigned int freq_hi, freq_lo;
113         unsigned int index = 0;
114         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
115         struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
116
117         if (!dbs_info->freq_table) {
118                 dbs_info->freq_lo = 0;
119                 dbs_info->freq_lo_jiffies = 0;
120                 return freq_next;
121         }
122
123         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
124                         relation, &index);
125         freq_req = dbs_info->freq_table[index].frequency;
126         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
127         freq_avg = freq_req - freq_reduc;
128
129         /* Find freq bounds for freq_avg in freq_table */
130         index = 0;
131         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
132                         CPUFREQ_RELATION_H, &index);
133         freq_lo = dbs_info->freq_table[index].frequency;
134         index = 0;
135         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
136                         CPUFREQ_RELATION_L, &index);
137         freq_hi = dbs_info->freq_table[index].frequency;
138
139         /* Find out how long we have to be in hi and lo freqs */
140         if (freq_hi == freq_lo) {
141                 dbs_info->freq_lo = 0;
142                 dbs_info->freq_lo_jiffies = 0;
143                 return freq_lo;
144         }
145         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
146         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
147         jiffies_hi += ((freq_hi - freq_lo) / 2);
148         jiffies_hi /= (freq_hi - freq_lo);
149         jiffies_lo = jiffies_total - jiffies_hi;
150         dbs_info->freq_lo = freq_lo;
151         dbs_info->freq_lo_jiffies = jiffies_lo;
152         dbs_info->freq_hi_jiffies = jiffies_hi;
153         return freq_hi;
154 }
155
156 static void ondemand_powersave_bias_init(void)
157 {
158         int i;
159         for_each_online_cpu(i) {
160                 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
161                 dbs_info->freq_table = cpufreq_frequency_get_table(i);
162                 dbs_info->freq_lo = 0;
163         }
164 }
165
166 /************************** sysfs interface ************************/
167 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
168 {
169         return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
170 }
171
172 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
173 {
174         return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
175 }
176
177 #define define_one_ro(_name)            \
178 static struct freq_attr _name =         \
179 __ATTR(_name, 0444, show_##_name, NULL)
180
181 define_one_ro(sampling_rate_max);
182 define_one_ro(sampling_rate_min);
183
184 /* cpufreq_ondemand Governor Tunables */
185 #define show_one(file_name, object)                                     \
186 static ssize_t show_##file_name                                         \
187 (struct cpufreq_policy *unused, char *buf)                              \
188 {                                                                       \
189         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
190 }
191 show_one(sampling_rate, sampling_rate);
192 show_one(up_threshold, up_threshold);
193 show_one(ignore_nice_load, ignore_nice);
194 show_one(powersave_bias, powersave_bias);
195
196 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
197                 const char *buf, size_t count)
198 {
199         unsigned int input;
200         int ret;
201         ret = sscanf(buf, "%u", &input);
202
203         mutex_lock(&dbs_mutex);
204         if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
205                 mutex_unlock(&dbs_mutex);
206                 return -EINVAL;
207         }
208
209         dbs_tuners_ins.sampling_rate = input;
210         mutex_unlock(&dbs_mutex);
211
212         return count;
213 }
214
215 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
216                 const char *buf, size_t count)
217 {
218         unsigned int input;
219         int ret;
220         ret = sscanf(buf, "%u", &input);
221
222         mutex_lock(&dbs_mutex);
223         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
224                         input < MIN_FREQUENCY_UP_THRESHOLD) {
225                 mutex_unlock(&dbs_mutex);
226                 return -EINVAL;
227         }
228
229         dbs_tuners_ins.up_threshold = input;
230         mutex_unlock(&dbs_mutex);
231
232         return count;
233 }
234
235 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
236                 const char *buf, size_t count)
237 {
238         unsigned int input;
239         int ret;
240
241         unsigned int j;
242
243         ret = sscanf(buf, "%u", &input);
244         if ( ret != 1 )
245                 return -EINVAL;
246
247         if ( input > 1 )
248                 input = 1;
249
250         mutex_lock(&dbs_mutex);
251         if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
252                 mutex_unlock(&dbs_mutex);
253                 return count;
254         }
255         dbs_tuners_ins.ignore_nice = input;
256
257         /* we need to re-evaluate prev_cpu_idle */
258         for_each_online_cpu(j) {
259                 struct cpu_dbs_info_s *dbs_info;
260                 dbs_info = &per_cpu(cpu_dbs_info, j);
261                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
262                 dbs_info->prev_cpu_wall = get_jiffies_64();
263         }
264         mutex_unlock(&dbs_mutex);
265
266         return count;
267 }
268
269 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
270                 const char *buf, size_t count)
271 {
272         unsigned int input;
273         int ret;
274         ret = sscanf(buf, "%u", &input);
275
276         if (ret != 1)
277                 return -EINVAL;
278
279         if (input > 1000)
280                 input = 1000;
281
282         mutex_lock(&dbs_mutex);
283         dbs_tuners_ins.powersave_bias = input;
284         ondemand_powersave_bias_init();
285         mutex_unlock(&dbs_mutex);
286
287         return count;
288 }
289
290 #define define_one_rw(_name) \
291 static struct freq_attr _name = \
292 __ATTR(_name, 0644, show_##_name, store_##_name)
293
294 define_one_rw(sampling_rate);
295 define_one_rw(up_threshold);
296 define_one_rw(ignore_nice_load);
297 define_one_rw(powersave_bias);
298
299 static struct attribute * dbs_attributes[] = {
300         &sampling_rate_max.attr,
301         &sampling_rate_min.attr,
302         &sampling_rate.attr,
303         &up_threshold.attr,
304         &ignore_nice_load.attr,
305         &powersave_bias.attr,
306         NULL
307 };
308
309 static struct attribute_group dbs_attr_group = {
310         .attrs = dbs_attributes,
311         .name = "ondemand",
312 };
313
314 /************************** sysfs end ************************/
315
316 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
317 {
318         unsigned int idle_ticks, total_ticks;
319         unsigned int load;
320         cputime64_t cur_jiffies;
321
322         struct cpufreq_policy *policy;
323         unsigned int j;
324
325         if (!this_dbs_info->enable)
326                 return;
327
328         this_dbs_info->freq_lo = 0;
329         policy = this_dbs_info->cur_policy;
330         cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
331         total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
332                         this_dbs_info->prev_cpu_wall);
333         this_dbs_info->prev_cpu_wall = cur_jiffies;
334         if (!total_ticks)
335                 return;
336         /*
337          * Every sampling_rate, we check, if current idle time is less
338          * than 20% (default), then we try to increase frequency
339          * Every sampling_rate, we look for a the lowest
340          * frequency which can sustain the load while keeping idle time over
341          * 30%. If such a frequency exist, we try to decrease to this frequency.
342          *
343          * Any frequency increase takes it to the maximum frequency.
344          * Frequency reduction happens at minimum steps of
345          * 5% (default) of current frequency
346          */
347
348         /* Get Idle Time */
349         idle_ticks = UINT_MAX;
350         for_each_cpu_mask(j, policy->cpus) {
351                 cputime64_t total_idle_ticks;
352                 unsigned int tmp_idle_ticks;
353                 struct cpu_dbs_info_s *j_dbs_info;
354
355                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
356                 total_idle_ticks = get_cpu_idle_time(j);
357                 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
358                                 j_dbs_info->prev_cpu_idle);
359                 j_dbs_info->prev_cpu_idle = total_idle_ticks;
360
361                 if (tmp_idle_ticks < idle_ticks)
362                         idle_ticks = tmp_idle_ticks;
363         }
364         load = (100 * (total_ticks - idle_ticks)) / total_ticks;
365
366         /* Check for frequency increase */
367         if (load > dbs_tuners_ins.up_threshold) {
368                 /* if we are already at full speed then break out early */
369                 if (!dbs_tuners_ins.powersave_bias) {
370                         if (policy->cur == policy->max)
371                                 return;
372
373                         __cpufreq_driver_target(policy, policy->max,
374                                 CPUFREQ_RELATION_H);
375                 } else {
376                         int freq = powersave_bias_target(policy, policy->max,
377                                         CPUFREQ_RELATION_H);
378                         __cpufreq_driver_target(policy, freq,
379                                 CPUFREQ_RELATION_L);
380                 }
381                 return;
382         }
383
384         /* Check for frequency decrease */
385         /* if we cannot reduce the frequency anymore, break out early */
386         if (policy->cur == policy->min)
387                 return;
388
389         /*
390          * The optimal frequency is the frequency that is the lowest that
391          * can support the current CPU usage without triggering the up
392          * policy. To be safe, we focus 10 points under the threshold.
393          */
394         if (load < (dbs_tuners_ins.up_threshold - 10)) {
395                 unsigned int freq_next = (policy->cur * load) /
396                         (dbs_tuners_ins.up_threshold - 10);
397                 if (!dbs_tuners_ins.powersave_bias) {
398                         __cpufreq_driver_target(policy, freq_next,
399                                         CPUFREQ_RELATION_L);
400                 } else {
401                         int freq = powersave_bias_target(policy, freq_next,
402                                         CPUFREQ_RELATION_L);
403                         __cpufreq_driver_target(policy, freq,
404                                 CPUFREQ_RELATION_L);
405                 }
406         }
407 }
408
409 /* Sampling types */
410 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
411
412 static void do_dbs_timer(void *data)
413 {
414         unsigned int cpu = smp_processor_id();
415         struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
416         /* We want all CPUs to do sampling nearly on same jiffy */
417         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
418         delay -= jiffies % delay;
419
420         if (!dbs_info->enable)
421                 return;
422         /* Common NORMAL_SAMPLE setup */
423         INIT_WORK(&dbs_info->work, do_dbs_timer, (void *)DBS_NORMAL_SAMPLE);
424         if (!dbs_tuners_ins.powersave_bias ||
425             (unsigned long) data == DBS_NORMAL_SAMPLE) {
426                 lock_cpu_hotplug();
427                 dbs_check_cpu(dbs_info);
428                 unlock_cpu_hotplug();
429                 if (dbs_info->freq_lo) {
430                         /* Setup timer for SUB_SAMPLE */
431                         INIT_WORK(&dbs_info->work, do_dbs_timer,
432                                         (void *)DBS_SUB_SAMPLE);
433                         delay = dbs_info->freq_hi_jiffies;
434                 }
435         } else {
436                 __cpufreq_driver_target(dbs_info->cur_policy,
437                                         dbs_info->freq_lo,
438                                         CPUFREQ_RELATION_H);
439         }
440         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
441 }
442
443 static inline void dbs_timer_init(unsigned int cpu)
444 {
445         struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
446         /* We want all CPUs to do sampling nearly on same jiffy */
447         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
448         delay -= jiffies % delay;
449
450         ondemand_powersave_bias_init();
451         INIT_WORK(&dbs_info->work, do_dbs_timer, 0);
452         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
453 }
454
455 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
456 {
457         dbs_info->enable = 0;
458         cancel_delayed_work(&dbs_info->work);
459         flush_workqueue(kondemand_wq);
460 }
461
462 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
463                                    unsigned int event)
464 {
465         unsigned int cpu = policy->cpu;
466         struct cpu_dbs_info_s *this_dbs_info;
467         unsigned int j;
468
469         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
470
471         switch (event) {
472         case CPUFREQ_GOV_START:
473                 if ((!cpu_online(cpu)) || (!policy->cur))
474                         return -EINVAL;
475
476                 if (policy->cpuinfo.transition_latency >
477                                 (TRANSITION_LATENCY_LIMIT * 1000)) {
478                         printk(KERN_WARNING "ondemand governor failed to load "
479                                "due to too long transition latency\n");
480                         return -EINVAL;
481                 }
482                 if (this_dbs_info->enable) /* Already enabled */
483                         break;
484
485                 mutex_lock(&dbs_mutex);
486                 dbs_enable++;
487                 if (dbs_enable == 1) {
488                         kondemand_wq = create_workqueue("kondemand");
489                         if (!kondemand_wq) {
490                                 printk(KERN_ERR "Creation of kondemand failed\n");
491                                 dbs_enable--;
492                                 mutex_unlock(&dbs_mutex);
493                                 return -ENOSPC;
494                         }
495                 }
496                 for_each_cpu_mask(j, policy->cpus) {
497                         struct cpu_dbs_info_s *j_dbs_info;
498                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
499                         j_dbs_info->cur_policy = policy;
500
501                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
502                         j_dbs_info->prev_cpu_wall = get_jiffies_64();
503                 }
504                 this_dbs_info->enable = 1;
505                 sysfs_create_group(&policy->kobj, &dbs_attr_group);
506                 /*
507                  * Start the timerschedule work, when this governor
508                  * is used for first time
509                  */
510                 if (dbs_enable == 1) {
511                         unsigned int latency;
512                         /* policy latency is in nS. Convert it to uS first */
513                         latency = policy->cpuinfo.transition_latency / 1000;
514                         if (latency == 0)
515                                 latency = 1;
516
517                         def_sampling_rate = latency *
518                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
519
520                         if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
521                                 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
522
523                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
524                 }
525                 dbs_timer_init(policy->cpu);
526
527                 mutex_unlock(&dbs_mutex);
528                 break;
529
530         case CPUFREQ_GOV_STOP:
531                 mutex_lock(&dbs_mutex);
532                 dbs_timer_exit(this_dbs_info);
533                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
534                 dbs_enable--;
535                 if (dbs_enable == 0)
536                         destroy_workqueue(kondemand_wq);
537
538                 mutex_unlock(&dbs_mutex);
539
540                 break;
541
542         case CPUFREQ_GOV_LIMITS:
543                 mutex_lock(&dbs_mutex);
544                 if (policy->max < this_dbs_info->cur_policy->cur)
545                         __cpufreq_driver_target(this_dbs_info->cur_policy,
546                                                 policy->max,
547                                                 CPUFREQ_RELATION_H);
548                 else if (policy->min > this_dbs_info->cur_policy->cur)
549                         __cpufreq_driver_target(this_dbs_info->cur_policy,
550                                                 policy->min,
551                                                 CPUFREQ_RELATION_L);
552                 mutex_unlock(&dbs_mutex);
553                 break;
554         }
555         return 0;
556 }
557
558 static struct cpufreq_governor cpufreq_gov_dbs = {
559         .name = "ondemand",
560         .governor = cpufreq_governor_dbs,
561         .owner = THIS_MODULE,
562 };
563
564 static int __init cpufreq_gov_dbs_init(void)
565 {
566         return cpufreq_register_governor(&cpufreq_gov_dbs);
567 }
568
569 static void __exit cpufreq_gov_dbs_exit(void)
570 {
571         cpufreq_unregister_governor(&cpufreq_gov_dbs);
572 }
573
574
575 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
576 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
577 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
578                    "Low Latency Frequency Transition capable processors");
579 MODULE_LICENSE("GPL");
580
581 module_init(cpufreq_gov_dbs_init);
582 module_exit(cpufreq_gov_dbs_exit);