ef7ed5e95d6d7587c0b69ce36f0e91d4b2bef31a
[pandora-kernel.git] / block / blk-mq.c
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
17
18 #include <trace/events/block.h>
19
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
24
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
27
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31                                            unsigned int cpu)
32 {
33         return per_cpu_ptr(q->queue_ctx, cpu);
34 }
35
36 /*
37  * This assumes per-cpu software queueing queues. They could be per-node
38  * as well, for instance. For now this is hardcoded as-is. Note that we don't
39  * care about preemption, since we know the ctx's are persistent. This does
40  * mean that we can't rely on ctx always matching the currently running CPU.
41  */
42 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43 {
44         return __blk_mq_get_ctx(q, get_cpu());
45 }
46
47 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48 {
49         put_cpu();
50 }
51
52 /*
53  * Check if any of the ctx's have pending work in this hardware queue
54  */
55 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56 {
57         unsigned int i;
58
59         for (i = 0; i < hctx->ctx_map.map_size; i++)
60                 if (hctx->ctx_map.map[i].word)
61                         return true;
62
63         return false;
64 }
65
66 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
67                                               struct blk_mq_ctx *ctx)
68 {
69         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
70 }
71
72 #define CTX_TO_BIT(hctx, ctx)   \
73         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
74
75 /*
76  * Mark this ctx as having pending work in this hardware queue
77  */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79                                      struct blk_mq_ctx *ctx)
80 {
81         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
82
83         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
84                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88                                       struct blk_mq_ctx *ctx)
89 {
90         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
91
92         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
93 }
94
95 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
96                                               struct blk_mq_ctx *ctx,
97                                               gfp_t gfp, bool reserved)
98 {
99         struct request *rq;
100         unsigned int tag;
101
102         tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
103         if (tag != BLK_MQ_TAG_FAIL) {
104                 rq = hctx->tags->rqs[tag];
105
106                 rq->cmd_flags = 0;
107                 if (blk_mq_tag_busy(hctx)) {
108                         rq->cmd_flags = REQ_MQ_INFLIGHT;
109                         atomic_inc(&hctx->nr_active);
110                 }
111
112                 rq->tag = tag;
113                 return rq;
114         }
115
116         return NULL;
117 }
118
119 static int blk_mq_queue_enter(struct request_queue *q)
120 {
121         int ret;
122
123         __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
124         smp_wmb();
125         /* we have problems to freeze the queue if it's initializing */
126         if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
127                 return 0;
128
129         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130
131         spin_lock_irq(q->queue_lock);
132         ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
133                 !blk_queue_bypass(q) || blk_queue_dying(q),
134                 *q->queue_lock);
135         /* inc usage with lock hold to avoid freeze_queue runs here */
136         if (!ret && !blk_queue_dying(q))
137                 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
138         else if (blk_queue_dying(q))
139                 ret = -ENODEV;
140         spin_unlock_irq(q->queue_lock);
141
142         return ret;
143 }
144
145 static void blk_mq_queue_exit(struct request_queue *q)
146 {
147         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
148 }
149
150 static void __blk_mq_drain_queue(struct request_queue *q)
151 {
152         while (true) {
153                 s64 count;
154
155                 spin_lock_irq(q->queue_lock);
156                 count = percpu_counter_sum(&q->mq_usage_counter);
157                 spin_unlock_irq(q->queue_lock);
158
159                 if (count == 0)
160                         break;
161                 blk_mq_run_queues(q, false);
162                 msleep(10);
163         }
164 }
165
166 /*
167  * Guarantee no request is in use, so we can change any data structure of
168  * the queue afterward.
169  */
170 static void blk_mq_freeze_queue(struct request_queue *q)
171 {
172         bool drain;
173
174         spin_lock_irq(q->queue_lock);
175         drain = !q->bypass_depth++;
176         queue_flag_set(QUEUE_FLAG_BYPASS, q);
177         spin_unlock_irq(q->queue_lock);
178
179         if (drain)
180                 __blk_mq_drain_queue(q);
181 }
182
183 void blk_mq_drain_queue(struct request_queue *q)
184 {
185         __blk_mq_drain_queue(q);
186 }
187
188 static void blk_mq_unfreeze_queue(struct request_queue *q)
189 {
190         bool wake = false;
191
192         spin_lock_irq(q->queue_lock);
193         if (!--q->bypass_depth) {
194                 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
195                 wake = true;
196         }
197         WARN_ON_ONCE(q->bypass_depth < 0);
198         spin_unlock_irq(q->queue_lock);
199         if (wake)
200                 wake_up_all(&q->mq_freeze_wq);
201 }
202
203 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
204 {
205         return blk_mq_has_free_tags(hctx->tags);
206 }
207 EXPORT_SYMBOL(blk_mq_can_queue);
208
209 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
210                                struct request *rq, unsigned int rw_flags)
211 {
212         if (blk_queue_io_stat(q))
213                 rw_flags |= REQ_IO_STAT;
214
215         INIT_LIST_HEAD(&rq->queuelist);
216         /* csd/requeue_work/fifo_time is initialized before use */
217         rq->q = q;
218         rq->mq_ctx = ctx;
219         rq->cmd_flags |= rw_flags;
220         rq->cmd_type = 0;
221         /* do not touch atomic flags, it needs atomic ops against the timer */
222         rq->cpu = -1;
223         rq->__data_len = 0;
224         rq->__sector = (sector_t) -1;
225         rq->bio = NULL;
226         rq->biotail = NULL;
227         INIT_HLIST_NODE(&rq->hash);
228         RB_CLEAR_NODE(&rq->rb_node);
229         memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
230         rq->rq_disk = NULL;
231         rq->part = NULL;
232         rq->start_time = jiffies;
233 #ifdef CONFIG_BLK_CGROUP
234         rq->rl = NULL;
235         set_start_time_ns(rq);
236         rq->io_start_time_ns = 0;
237 #endif
238         rq->nr_phys_segments = 0;
239 #if defined(CONFIG_BLK_DEV_INTEGRITY)
240         rq->nr_integrity_segments = 0;
241 #endif
242         rq->ioprio = 0;
243         rq->special = NULL;
244         /* tag was already set */
245         rq->errors = 0;
246         memset(rq->__cmd, 0, sizeof(rq->__cmd));
247         rq->cmd = rq->__cmd;
248         rq->cmd_len = BLK_MAX_CDB;
249
250         rq->extra_len = 0;
251         rq->sense_len = 0;
252         rq->resid_len = 0;
253         rq->sense = NULL;
254
255         rq->deadline = 0;
256         INIT_LIST_HEAD(&rq->timeout_list);
257         rq->timeout = 0;
258         rq->retries = 0;
259         rq->end_io = NULL;
260         rq->end_io_data = NULL;
261         rq->next_rq = NULL;
262
263         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
264 }
265
266 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
267                                                    int rw, gfp_t gfp,
268                                                    bool reserved)
269 {
270         struct request *rq;
271
272         do {
273                 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
274                 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
275
276                 rq = __blk_mq_alloc_request(hctx, ctx, gfp & ~__GFP_WAIT,
277                                                 reserved);
278                 if (rq) {
279                         blk_mq_rq_ctx_init(q, ctx, rq, rw);
280                         break;
281                 }
282
283                 if (gfp & __GFP_WAIT) {
284                         __blk_mq_run_hw_queue(hctx);
285                         blk_mq_put_ctx(ctx);
286                 } else {
287                         blk_mq_put_ctx(ctx);
288                         break;
289                 }
290
291                 blk_mq_wait_for_tags(hctx, reserved);
292         } while (1);
293
294         return rq;
295 }
296
297 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
298 {
299         struct request *rq;
300
301         if (blk_mq_queue_enter(q))
302                 return NULL;
303
304         rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
305         if (rq)
306                 blk_mq_put_ctx(rq->mq_ctx);
307         return rq;
308 }
309 EXPORT_SYMBOL(blk_mq_alloc_request);
310
311 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
312                                               gfp_t gfp)
313 {
314         struct request *rq;
315
316         if (blk_mq_queue_enter(q))
317                 return NULL;
318
319         rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
320         if (rq)
321                 blk_mq_put_ctx(rq->mq_ctx);
322         return rq;
323 }
324 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
325
326 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
327                                   struct blk_mq_ctx *ctx, struct request *rq)
328 {
329         const int tag = rq->tag;
330         struct request_queue *q = rq->q;
331
332         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
333                 atomic_dec(&hctx->nr_active);
334
335         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
336         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
337         blk_mq_queue_exit(q);
338 }
339
340 void blk_mq_free_request(struct request *rq)
341 {
342         struct blk_mq_ctx *ctx = rq->mq_ctx;
343         struct blk_mq_hw_ctx *hctx;
344         struct request_queue *q = rq->q;
345
346         ctx->rq_completed[rq_is_sync(rq)]++;
347
348         hctx = q->mq_ops->map_queue(q, ctx->cpu);
349         __blk_mq_free_request(hctx, ctx, rq);
350 }
351
352 /*
353  * Clone all relevant state from a request that has been put on hold in
354  * the flush state machine into the preallocated flush request that hangs
355  * off the request queue.
356  *
357  * For a driver the flush request should be invisible, that's why we are
358  * impersonating the original request here.
359  */
360 void blk_mq_clone_flush_request(struct request *flush_rq,
361                 struct request *orig_rq)
362 {
363         struct blk_mq_hw_ctx *hctx =
364                 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
365
366         flush_rq->mq_ctx = orig_rq->mq_ctx;
367         flush_rq->tag = orig_rq->tag;
368         memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
369                 hctx->cmd_size);
370 }
371
372 inline void __blk_mq_end_io(struct request *rq, int error)
373 {
374         blk_account_io_done(rq);
375
376         if (rq->end_io) {
377                 rq->end_io(rq, error);
378         } else {
379                 if (unlikely(blk_bidi_rq(rq)))
380                         blk_mq_free_request(rq->next_rq);
381                 blk_mq_free_request(rq);
382         }
383 }
384 EXPORT_SYMBOL(__blk_mq_end_io);
385
386 void blk_mq_end_io(struct request *rq, int error)
387 {
388         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
389                 BUG();
390         __blk_mq_end_io(rq, error);
391 }
392 EXPORT_SYMBOL(blk_mq_end_io);
393
394 static void __blk_mq_complete_request_remote(void *data)
395 {
396         struct request *rq = data;
397
398         rq->q->softirq_done_fn(rq);
399 }
400
401 void __blk_mq_complete_request(struct request *rq)
402 {
403         struct blk_mq_ctx *ctx = rq->mq_ctx;
404         bool shared = false;
405         int cpu;
406
407         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
408                 rq->q->softirq_done_fn(rq);
409                 return;
410         }
411
412         cpu = get_cpu();
413         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
414                 shared = cpus_share_cache(cpu, ctx->cpu);
415
416         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
417                 rq->csd.func = __blk_mq_complete_request_remote;
418                 rq->csd.info = rq;
419                 rq->csd.flags = 0;
420                 smp_call_function_single_async(ctx->cpu, &rq->csd);
421         } else {
422                 rq->q->softirq_done_fn(rq);
423         }
424         put_cpu();
425 }
426
427 /**
428  * blk_mq_complete_request - end I/O on a request
429  * @rq:         the request being processed
430  *
431  * Description:
432  *      Ends all I/O on a request. It does not handle partial completions.
433  *      The actual completion happens out-of-order, through a IPI handler.
434  **/
435 void blk_mq_complete_request(struct request *rq)
436 {
437         if (unlikely(blk_should_fake_timeout(rq->q)))
438                 return;
439         if (!blk_mark_rq_complete(rq))
440                 __blk_mq_complete_request(rq);
441 }
442 EXPORT_SYMBOL(blk_mq_complete_request);
443
444 static void blk_mq_start_request(struct request *rq, bool last)
445 {
446         struct request_queue *q = rq->q;
447
448         trace_block_rq_issue(q, rq);
449
450         rq->resid_len = blk_rq_bytes(rq);
451         if (unlikely(blk_bidi_rq(rq)))
452                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
453
454         /*
455          * Just mark start time and set the started bit. Due to memory
456          * ordering, we know we'll see the correct deadline as long as
457          * REQ_ATOMIC_STARTED is seen.
458          */
459         rq->deadline = jiffies + q->rq_timeout;
460
461         /*
462          * Mark us as started and clear complete. Complete might have been
463          * set if requeue raced with timeout, which then marked it as
464          * complete. So be sure to clear complete again when we start
465          * the request, otherwise we'll ignore the completion event.
466          */
467         set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
468         clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
469
470         if (q->dma_drain_size && blk_rq_bytes(rq)) {
471                 /*
472                  * Make sure space for the drain appears.  We know we can do
473                  * this because max_hw_segments has been adjusted to be one
474                  * fewer than the device can handle.
475                  */
476                 rq->nr_phys_segments++;
477         }
478
479         /*
480          * Flag the last request in the series so that drivers know when IO
481          * should be kicked off, if they don't do it on a per-request basis.
482          *
483          * Note: the flag isn't the only condition drivers should do kick off.
484          * If drive is busy, the last request might not have the bit set.
485          */
486         if (last)
487                 rq->cmd_flags |= REQ_END;
488 }
489
490 static void __blk_mq_requeue_request(struct request *rq)
491 {
492         struct request_queue *q = rq->q;
493
494         trace_block_rq_requeue(q, rq);
495         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
496
497         rq->cmd_flags &= ~REQ_END;
498
499         if (q->dma_drain_size && blk_rq_bytes(rq))
500                 rq->nr_phys_segments--;
501 }
502
503 void blk_mq_requeue_request(struct request *rq)
504 {
505         __blk_mq_requeue_request(rq);
506         blk_clear_rq_complete(rq);
507
508         BUG_ON(blk_queued_rq(rq));
509         blk_mq_insert_request(rq, true, true, false);
510 }
511 EXPORT_SYMBOL(blk_mq_requeue_request);
512
513 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
514 {
515         return tags->rqs[tag];
516 }
517 EXPORT_SYMBOL(blk_mq_tag_to_rq);
518
519 struct blk_mq_timeout_data {
520         struct blk_mq_hw_ctx *hctx;
521         unsigned long *next;
522         unsigned int *next_set;
523 };
524
525 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
526 {
527         struct blk_mq_timeout_data *data = __data;
528         struct blk_mq_hw_ctx *hctx = data->hctx;
529         unsigned int tag;
530
531          /* It may not be in flight yet (this is where
532          * the REQ_ATOMIC_STARTED flag comes in). The requests are
533          * statically allocated, so we know it's always safe to access the
534          * memory associated with a bit offset into ->rqs[].
535          */
536         tag = 0;
537         do {
538                 struct request *rq;
539
540                 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
541                 if (tag >= hctx->tags->nr_tags)
542                         break;
543
544                 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
545                 if (rq->q != hctx->queue)
546                         continue;
547                 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
548                         continue;
549
550                 blk_rq_check_expired(rq, data->next, data->next_set);
551         } while (1);
552 }
553
554 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
555                                         unsigned long *next,
556                                         unsigned int *next_set)
557 {
558         struct blk_mq_timeout_data data = {
559                 .hctx           = hctx,
560                 .next           = next,
561                 .next_set       = next_set,
562         };
563
564         /*
565          * Ask the tagging code to iterate busy requests, so we can
566          * check them for timeout.
567          */
568         blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
569 }
570
571 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
572 {
573         struct request_queue *q = rq->q;
574
575         /*
576          * We know that complete is set at this point. If STARTED isn't set
577          * anymore, then the request isn't active and the "timeout" should
578          * just be ignored. This can happen due to the bitflag ordering.
579          * Timeout first checks if STARTED is set, and if it is, assumes
580          * the request is active. But if we race with completion, then
581          * we both flags will get cleared. So check here again, and ignore
582          * a timeout event with a request that isn't active.
583          */
584         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
585                 return BLK_EH_NOT_HANDLED;
586
587         if (!q->mq_ops->timeout)
588                 return BLK_EH_RESET_TIMER;
589
590         return q->mq_ops->timeout(rq);
591 }
592
593 static void blk_mq_rq_timer(unsigned long data)
594 {
595         struct request_queue *q = (struct request_queue *) data;
596         struct blk_mq_hw_ctx *hctx;
597         unsigned long next = 0;
598         int i, next_set = 0;
599
600         queue_for_each_hw_ctx(q, hctx, i)
601                 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
602
603         if (next_set) {
604                 next = blk_rq_timeout(round_jiffies_up(next));
605                 mod_timer(&q->timeout, next);
606         } else {
607                 queue_for_each_hw_ctx(q, hctx, i)
608                         blk_mq_tag_idle(hctx);
609         }
610 }
611
612 /*
613  * Reverse check our software queue for entries that we could potentially
614  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
615  * too much time checking for merges.
616  */
617 static bool blk_mq_attempt_merge(struct request_queue *q,
618                                  struct blk_mq_ctx *ctx, struct bio *bio)
619 {
620         struct request *rq;
621         int checked = 8;
622
623         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
624                 int el_ret;
625
626                 if (!checked--)
627                         break;
628
629                 if (!blk_rq_merge_ok(rq, bio))
630                         continue;
631
632                 el_ret = blk_try_merge(rq, bio);
633                 if (el_ret == ELEVATOR_BACK_MERGE) {
634                         if (bio_attempt_back_merge(q, rq, bio)) {
635                                 ctx->rq_merged++;
636                                 return true;
637                         }
638                         break;
639                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
640                         if (bio_attempt_front_merge(q, rq, bio)) {
641                                 ctx->rq_merged++;
642                                 return true;
643                         }
644                         break;
645                 }
646         }
647
648         return false;
649 }
650
651 /*
652  * Process software queues that have been marked busy, splicing them
653  * to the for-dispatch
654  */
655 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
656 {
657         struct blk_mq_ctx *ctx;
658         int i;
659
660         for (i = 0; i < hctx->ctx_map.map_size; i++) {
661                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
662                 unsigned int off, bit;
663
664                 if (!bm->word)
665                         continue;
666
667                 bit = 0;
668                 off = i * hctx->ctx_map.bits_per_word;
669                 do {
670                         bit = find_next_bit(&bm->word, bm->depth, bit);
671                         if (bit >= bm->depth)
672                                 break;
673
674                         ctx = hctx->ctxs[bit + off];
675                         clear_bit(bit, &bm->word);
676                         spin_lock(&ctx->lock);
677                         list_splice_tail_init(&ctx->rq_list, list);
678                         spin_unlock(&ctx->lock);
679
680                         bit++;
681                 } while (1);
682         }
683 }
684
685 /*
686  * Run this hardware queue, pulling any software queues mapped to it in.
687  * Note that this function currently has various problems around ordering
688  * of IO. In particular, we'd like FIFO behaviour on handling existing
689  * items on the hctx->dispatch list. Ignore that for now.
690  */
691 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
692 {
693         struct request_queue *q = hctx->queue;
694         struct request *rq;
695         LIST_HEAD(rq_list);
696         int queued;
697
698         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
699
700         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
701                 return;
702
703         hctx->run++;
704
705         /*
706          * Touch any software queue that has pending entries.
707          */
708         flush_busy_ctxs(hctx, &rq_list);
709
710         /*
711          * If we have previous entries on our dispatch list, grab them
712          * and stuff them at the front for more fair dispatch.
713          */
714         if (!list_empty_careful(&hctx->dispatch)) {
715                 spin_lock(&hctx->lock);
716                 if (!list_empty(&hctx->dispatch))
717                         list_splice_init(&hctx->dispatch, &rq_list);
718                 spin_unlock(&hctx->lock);
719         }
720
721         /*
722          * Now process all the entries, sending them to the driver.
723          */
724         queued = 0;
725         while (!list_empty(&rq_list)) {
726                 int ret;
727
728                 rq = list_first_entry(&rq_list, struct request, queuelist);
729                 list_del_init(&rq->queuelist);
730
731                 blk_mq_start_request(rq, list_empty(&rq_list));
732
733                 ret = q->mq_ops->queue_rq(hctx, rq);
734                 switch (ret) {
735                 case BLK_MQ_RQ_QUEUE_OK:
736                         queued++;
737                         continue;
738                 case BLK_MQ_RQ_QUEUE_BUSY:
739                         list_add(&rq->queuelist, &rq_list);
740                         __blk_mq_requeue_request(rq);
741                         break;
742                 default:
743                         pr_err("blk-mq: bad return on queue: %d\n", ret);
744                 case BLK_MQ_RQ_QUEUE_ERROR:
745                         rq->errors = -EIO;
746                         blk_mq_end_io(rq, rq->errors);
747                         break;
748                 }
749
750                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
751                         break;
752         }
753
754         if (!queued)
755                 hctx->dispatched[0]++;
756         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
757                 hctx->dispatched[ilog2(queued) + 1]++;
758
759         /*
760          * Any items that need requeuing? Stuff them into hctx->dispatch,
761          * that is where we will continue on next queue run.
762          */
763         if (!list_empty(&rq_list)) {
764                 spin_lock(&hctx->lock);
765                 list_splice(&rq_list, &hctx->dispatch);
766                 spin_unlock(&hctx->lock);
767         }
768 }
769
770 /*
771  * It'd be great if the workqueue API had a way to pass
772  * in a mask and had some smarts for more clever placement.
773  * For now we just round-robin here, switching for every
774  * BLK_MQ_CPU_WORK_BATCH queued items.
775  */
776 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
777 {
778         int cpu = hctx->next_cpu;
779
780         if (--hctx->next_cpu_batch <= 0) {
781                 int next_cpu;
782
783                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
784                 if (next_cpu >= nr_cpu_ids)
785                         next_cpu = cpumask_first(hctx->cpumask);
786
787                 hctx->next_cpu = next_cpu;
788                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
789         }
790
791         return cpu;
792 }
793
794 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
795 {
796         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
797                 return;
798
799         if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
800                 __blk_mq_run_hw_queue(hctx);
801         else if (hctx->queue->nr_hw_queues == 1)
802                 kblockd_schedule_delayed_work(&hctx->run_work, 0);
803         else {
804                 unsigned int cpu;
805
806                 cpu = blk_mq_hctx_next_cpu(hctx);
807                 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
808         }
809 }
810
811 void blk_mq_run_queues(struct request_queue *q, bool async)
812 {
813         struct blk_mq_hw_ctx *hctx;
814         int i;
815
816         queue_for_each_hw_ctx(q, hctx, i) {
817                 if ((!blk_mq_hctx_has_pending(hctx) &&
818                     list_empty_careful(&hctx->dispatch)) ||
819                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
820                         continue;
821
822                 preempt_disable();
823                 blk_mq_run_hw_queue(hctx, async);
824                 preempt_enable();
825         }
826 }
827 EXPORT_SYMBOL(blk_mq_run_queues);
828
829 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
830 {
831         cancel_delayed_work(&hctx->run_work);
832         cancel_delayed_work(&hctx->delay_work);
833         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
834 }
835 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
836
837 void blk_mq_stop_hw_queues(struct request_queue *q)
838 {
839         struct blk_mq_hw_ctx *hctx;
840         int i;
841
842         queue_for_each_hw_ctx(q, hctx, i)
843                 blk_mq_stop_hw_queue(hctx);
844 }
845 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
846
847 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
848 {
849         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
850
851         preempt_disable();
852         __blk_mq_run_hw_queue(hctx);
853         preempt_enable();
854 }
855 EXPORT_SYMBOL(blk_mq_start_hw_queue);
856
857 void blk_mq_start_hw_queues(struct request_queue *q)
858 {
859         struct blk_mq_hw_ctx *hctx;
860         int i;
861
862         queue_for_each_hw_ctx(q, hctx, i)
863                 blk_mq_start_hw_queue(hctx);
864 }
865 EXPORT_SYMBOL(blk_mq_start_hw_queues);
866
867
868 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
869 {
870         struct blk_mq_hw_ctx *hctx;
871         int i;
872
873         queue_for_each_hw_ctx(q, hctx, i) {
874                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
875                         continue;
876
877                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
878                 preempt_disable();
879                 blk_mq_run_hw_queue(hctx, async);
880                 preempt_enable();
881         }
882 }
883 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
884
885 static void blk_mq_run_work_fn(struct work_struct *work)
886 {
887         struct blk_mq_hw_ctx *hctx;
888
889         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
890
891         __blk_mq_run_hw_queue(hctx);
892 }
893
894 static void blk_mq_delay_work_fn(struct work_struct *work)
895 {
896         struct blk_mq_hw_ctx *hctx;
897
898         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
899
900         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
901                 __blk_mq_run_hw_queue(hctx);
902 }
903
904 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
905 {
906         unsigned long tmo = msecs_to_jiffies(msecs);
907
908         if (hctx->queue->nr_hw_queues == 1)
909                 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
910         else {
911                 unsigned int cpu;
912
913                 cpu = blk_mq_hctx_next_cpu(hctx);
914                 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
915         }
916 }
917 EXPORT_SYMBOL(blk_mq_delay_queue);
918
919 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
920                                     struct request *rq, bool at_head)
921 {
922         struct blk_mq_ctx *ctx = rq->mq_ctx;
923
924         trace_block_rq_insert(hctx->queue, rq);
925
926         if (at_head)
927                 list_add(&rq->queuelist, &ctx->rq_list);
928         else
929                 list_add_tail(&rq->queuelist, &ctx->rq_list);
930
931         blk_mq_hctx_mark_pending(hctx, ctx);
932
933         /*
934          * We do this early, to ensure we are on the right CPU.
935          */
936         blk_add_timer(rq);
937 }
938
939 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
940                 bool async)
941 {
942         struct request_queue *q = rq->q;
943         struct blk_mq_hw_ctx *hctx;
944         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
945
946         current_ctx = blk_mq_get_ctx(q);
947         if (!cpu_online(ctx->cpu))
948                 rq->mq_ctx = ctx = current_ctx;
949
950         hctx = q->mq_ops->map_queue(q, ctx->cpu);
951
952         if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
953             !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
954                 blk_insert_flush(rq);
955         } else {
956                 spin_lock(&ctx->lock);
957                 __blk_mq_insert_request(hctx, rq, at_head);
958                 spin_unlock(&ctx->lock);
959         }
960
961         if (run_queue)
962                 blk_mq_run_hw_queue(hctx, async);
963
964         blk_mq_put_ctx(current_ctx);
965 }
966
967 static void blk_mq_insert_requests(struct request_queue *q,
968                                      struct blk_mq_ctx *ctx,
969                                      struct list_head *list,
970                                      int depth,
971                                      bool from_schedule)
972
973 {
974         struct blk_mq_hw_ctx *hctx;
975         struct blk_mq_ctx *current_ctx;
976
977         trace_block_unplug(q, depth, !from_schedule);
978
979         current_ctx = blk_mq_get_ctx(q);
980
981         if (!cpu_online(ctx->cpu))
982                 ctx = current_ctx;
983         hctx = q->mq_ops->map_queue(q, ctx->cpu);
984
985         /*
986          * preemption doesn't flush plug list, so it's possible ctx->cpu is
987          * offline now
988          */
989         spin_lock(&ctx->lock);
990         while (!list_empty(list)) {
991                 struct request *rq;
992
993                 rq = list_first_entry(list, struct request, queuelist);
994                 list_del_init(&rq->queuelist);
995                 rq->mq_ctx = ctx;
996                 __blk_mq_insert_request(hctx, rq, false);
997         }
998         spin_unlock(&ctx->lock);
999
1000         blk_mq_run_hw_queue(hctx, from_schedule);
1001         blk_mq_put_ctx(current_ctx);
1002 }
1003
1004 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1005 {
1006         struct request *rqa = container_of(a, struct request, queuelist);
1007         struct request *rqb = container_of(b, struct request, queuelist);
1008
1009         return !(rqa->mq_ctx < rqb->mq_ctx ||
1010                  (rqa->mq_ctx == rqb->mq_ctx &&
1011                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1012 }
1013
1014 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1015 {
1016         struct blk_mq_ctx *this_ctx;
1017         struct request_queue *this_q;
1018         struct request *rq;
1019         LIST_HEAD(list);
1020         LIST_HEAD(ctx_list);
1021         unsigned int depth;
1022
1023         list_splice_init(&plug->mq_list, &list);
1024
1025         list_sort(NULL, &list, plug_ctx_cmp);
1026
1027         this_q = NULL;
1028         this_ctx = NULL;
1029         depth = 0;
1030
1031         while (!list_empty(&list)) {
1032                 rq = list_entry_rq(list.next);
1033                 list_del_init(&rq->queuelist);
1034                 BUG_ON(!rq->q);
1035                 if (rq->mq_ctx != this_ctx) {
1036                         if (this_ctx) {
1037                                 blk_mq_insert_requests(this_q, this_ctx,
1038                                                         &ctx_list, depth,
1039                                                         from_schedule);
1040                         }
1041
1042                         this_ctx = rq->mq_ctx;
1043                         this_q = rq->q;
1044                         depth = 0;
1045                 }
1046
1047                 depth++;
1048                 list_add_tail(&rq->queuelist, &ctx_list);
1049         }
1050
1051         /*
1052          * If 'this_ctx' is set, we know we have entries to complete
1053          * on 'ctx_list'. Do those.
1054          */
1055         if (this_ctx) {
1056                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1057                                        from_schedule);
1058         }
1059 }
1060
1061 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1062 {
1063         init_request_from_bio(rq, bio);
1064         blk_account_io_start(rq, 1);
1065 }
1066
1067 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1068 {
1069         struct blk_mq_hw_ctx *hctx;
1070         struct blk_mq_ctx *ctx;
1071         const int is_sync = rw_is_sync(bio->bi_rw);
1072         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1073         int rw = bio_data_dir(bio);
1074         struct request *rq;
1075         unsigned int use_plug, request_count = 0;
1076
1077         /*
1078          * If we have multiple hardware queues, just go directly to
1079          * one of those for sync IO.
1080          */
1081         use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
1082
1083         blk_queue_bounce(q, &bio);
1084
1085         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1086                 bio_endio(bio, -EIO);
1087                 return;
1088         }
1089
1090         if (use_plug && !blk_queue_nomerges(q) &&
1091             blk_attempt_plug_merge(q, bio, &request_count))
1092                 return;
1093
1094         if (blk_mq_queue_enter(q)) {
1095                 bio_endio(bio, -EIO);
1096                 return;
1097         }
1098
1099         ctx = blk_mq_get_ctx(q);
1100         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1101
1102         if (is_sync)
1103                 rw |= REQ_SYNC;
1104         trace_block_getrq(q, bio, rw);
1105         rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
1106         if (likely(rq))
1107                 blk_mq_rq_ctx_init(q, ctx, rq, rw);
1108         else {
1109                 blk_mq_put_ctx(ctx);
1110                 trace_block_sleeprq(q, bio, rw);
1111                 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1112                                                         false);
1113                 ctx = rq->mq_ctx;
1114                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1115         }
1116
1117         hctx->queued++;
1118
1119         if (unlikely(is_flush_fua)) {
1120                 blk_mq_bio_to_request(rq, bio);
1121                 blk_insert_flush(rq);
1122                 goto run_queue;
1123         }
1124
1125         /*
1126          * A task plug currently exists. Since this is completely lockless,
1127          * utilize that to temporarily store requests until the task is
1128          * either done or scheduled away.
1129          */
1130         if (use_plug) {
1131                 struct blk_plug *plug = current->plug;
1132
1133                 if (plug) {
1134                         blk_mq_bio_to_request(rq, bio);
1135                         if (list_empty(&plug->mq_list))
1136                                 trace_block_plug(q);
1137                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1138                                 blk_flush_plug_list(plug, false);
1139                                 trace_block_plug(q);
1140                         }
1141                         list_add_tail(&rq->queuelist, &plug->mq_list);
1142                         blk_mq_put_ctx(ctx);
1143                         return;
1144                 }
1145         }
1146
1147         if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1148                 blk_mq_bio_to_request(rq, bio);
1149                 spin_lock(&ctx->lock);
1150 insert_rq:
1151                 __blk_mq_insert_request(hctx, rq, false);
1152                 spin_unlock(&ctx->lock);
1153         } else {
1154                 spin_lock(&ctx->lock);
1155                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1156                         blk_mq_bio_to_request(rq, bio);
1157                         goto insert_rq;
1158                 }
1159
1160                 spin_unlock(&ctx->lock);
1161                 __blk_mq_free_request(hctx, ctx, rq);
1162         }
1163
1164
1165         /*
1166          * For a SYNC request, send it to the hardware immediately. For an
1167          * ASYNC request, just ensure that we run it later on. The latter
1168          * allows for merging opportunities and more efficient dispatching.
1169          */
1170 run_queue:
1171         blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1172         blk_mq_put_ctx(ctx);
1173 }
1174
1175 /*
1176  * Default mapping to a software queue, since we use one per CPU.
1177  */
1178 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1179 {
1180         return q->queue_hw_ctx[q->mq_map[cpu]];
1181 }
1182 EXPORT_SYMBOL(blk_mq_map_queue);
1183
1184 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
1185                                                    unsigned int hctx_index)
1186 {
1187         return kzalloc_node(sizeof(struct blk_mq_hw_ctx), GFP_KERNEL,
1188                                 set->numa_node);
1189 }
1190 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1191
1192 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1193                                  unsigned int hctx_index)
1194 {
1195         kfree(hctx);
1196 }
1197 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1198
1199 static void blk_mq_hctx_notify(void *data, unsigned long action,
1200                                unsigned int cpu)
1201 {
1202         struct blk_mq_hw_ctx *hctx = data;
1203         struct request_queue *q = hctx->queue;
1204         struct blk_mq_ctx *ctx;
1205         LIST_HEAD(tmp);
1206
1207         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1208                 return;
1209
1210         /*
1211          * Move ctx entries to new CPU, if this one is going away.
1212          */
1213         ctx = __blk_mq_get_ctx(q, cpu);
1214
1215         spin_lock(&ctx->lock);
1216         if (!list_empty(&ctx->rq_list)) {
1217                 list_splice_init(&ctx->rq_list, &tmp);
1218                 blk_mq_hctx_clear_pending(hctx, ctx);
1219         }
1220         spin_unlock(&ctx->lock);
1221
1222         if (list_empty(&tmp))
1223                 return;
1224
1225         ctx = blk_mq_get_ctx(q);
1226         spin_lock(&ctx->lock);
1227
1228         while (!list_empty(&tmp)) {
1229                 struct request *rq;
1230
1231                 rq = list_first_entry(&tmp, struct request, queuelist);
1232                 rq->mq_ctx = ctx;
1233                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1234         }
1235
1236         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1237         blk_mq_hctx_mark_pending(hctx, ctx);
1238
1239         spin_unlock(&ctx->lock);
1240
1241         blk_mq_run_hw_queue(hctx, true);
1242         blk_mq_put_ctx(ctx);
1243 }
1244
1245 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1246                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1247 {
1248         struct page *page;
1249
1250         if (tags->rqs && set->ops->exit_request) {
1251                 int i;
1252
1253                 for (i = 0; i < tags->nr_tags; i++) {
1254                         if (!tags->rqs[i])
1255                                 continue;
1256                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1257                                                 hctx_idx, i);
1258                 }
1259         }
1260
1261         while (!list_empty(&tags->page_list)) {
1262                 page = list_first_entry(&tags->page_list, struct page, lru);
1263                 list_del_init(&page->lru);
1264                 __free_pages(page, page->private);
1265         }
1266
1267         kfree(tags->rqs);
1268
1269         blk_mq_free_tags(tags);
1270 }
1271
1272 static size_t order_to_size(unsigned int order)
1273 {
1274         return (size_t)PAGE_SIZE << order;
1275 }
1276
1277 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1278                 unsigned int hctx_idx)
1279 {
1280         struct blk_mq_tags *tags;
1281         unsigned int i, j, entries_per_page, max_order = 4;
1282         size_t rq_size, left;
1283
1284         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1285                                 set->numa_node);
1286         if (!tags)
1287                 return NULL;
1288
1289         INIT_LIST_HEAD(&tags->page_list);
1290
1291         tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1292                                         GFP_KERNEL, set->numa_node);
1293         if (!tags->rqs) {
1294                 blk_mq_free_tags(tags);
1295                 return NULL;
1296         }
1297
1298         /*
1299          * rq_size is the size of the request plus driver payload, rounded
1300          * to the cacheline size
1301          */
1302         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1303                                 cache_line_size());
1304         left = rq_size * set->queue_depth;
1305
1306         for (i = 0; i < set->queue_depth; ) {
1307                 int this_order = max_order;
1308                 struct page *page;
1309                 int to_do;
1310                 void *p;
1311
1312                 while (left < order_to_size(this_order - 1) && this_order)
1313                         this_order--;
1314
1315                 do {
1316                         page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1317                                                 this_order);
1318                         if (page)
1319                                 break;
1320                         if (!this_order--)
1321                                 break;
1322                         if (order_to_size(this_order) < rq_size)
1323                                 break;
1324                 } while (1);
1325
1326                 if (!page)
1327                         goto fail;
1328
1329                 page->private = this_order;
1330                 list_add_tail(&page->lru, &tags->page_list);
1331
1332                 p = page_address(page);
1333                 entries_per_page = order_to_size(this_order) / rq_size;
1334                 to_do = min(entries_per_page, set->queue_depth - i);
1335                 left -= to_do * rq_size;
1336                 for (j = 0; j < to_do; j++) {
1337                         tags->rqs[i] = p;
1338                         if (set->ops->init_request) {
1339                                 if (set->ops->init_request(set->driver_data,
1340                                                 tags->rqs[i], hctx_idx, i,
1341                                                 set->numa_node))
1342                                         goto fail;
1343                         }
1344
1345                         p += rq_size;
1346                         i++;
1347                 }
1348         }
1349
1350         return tags;
1351
1352 fail:
1353         pr_warn("%s: failed to allocate requests\n", __func__);
1354         blk_mq_free_rq_map(set, tags, hctx_idx);
1355         return NULL;
1356 }
1357
1358 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1359 {
1360         kfree(bitmap->map);
1361 }
1362
1363 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1364 {
1365         unsigned int bpw = 8, total, num_maps, i;
1366
1367         bitmap->bits_per_word = bpw;
1368
1369         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1370         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1371                                         GFP_KERNEL, node);
1372         if (!bitmap->map)
1373                 return -ENOMEM;
1374
1375         bitmap->map_size = num_maps;
1376
1377         total = nr_cpu_ids;
1378         for (i = 0; i < num_maps; i++) {
1379                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1380                 total -= bitmap->map[i].depth;
1381         }
1382
1383         return 0;
1384 }
1385
1386 static int blk_mq_init_hw_queues(struct request_queue *q,
1387                 struct blk_mq_tag_set *set)
1388 {
1389         struct blk_mq_hw_ctx *hctx;
1390         unsigned int i, j;
1391
1392         /*
1393          * Initialize hardware queues
1394          */
1395         queue_for_each_hw_ctx(q, hctx, i) {
1396                 int node;
1397
1398                 node = hctx->numa_node;
1399                 if (node == NUMA_NO_NODE)
1400                         node = hctx->numa_node = set->numa_node;
1401
1402                 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1403                 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1404                 spin_lock_init(&hctx->lock);
1405                 INIT_LIST_HEAD(&hctx->dispatch);
1406                 hctx->queue = q;
1407                 hctx->queue_num = i;
1408                 hctx->flags = set->flags;
1409                 hctx->cmd_size = set->cmd_size;
1410
1411                 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1412                                                 blk_mq_hctx_notify, hctx);
1413                 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1414
1415                 hctx->tags = set->tags[i];
1416
1417                 /*
1418                  * Allocate space for all possible cpus to avoid allocation in
1419                  * runtime
1420                  */
1421                 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1422                                                 GFP_KERNEL, node);
1423                 if (!hctx->ctxs)
1424                         break;
1425
1426                 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1427                         break;
1428
1429                 hctx->nr_ctx = 0;
1430
1431                 if (set->ops->init_hctx &&
1432                     set->ops->init_hctx(hctx, set->driver_data, i))
1433                         break;
1434         }
1435
1436         if (i == q->nr_hw_queues)
1437                 return 0;
1438
1439         /*
1440          * Init failed
1441          */
1442         queue_for_each_hw_ctx(q, hctx, j) {
1443                 if (i == j)
1444                         break;
1445
1446                 if (set->ops->exit_hctx)
1447                         set->ops->exit_hctx(hctx, j);
1448
1449                 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1450                 kfree(hctx->ctxs);
1451                 blk_mq_free_bitmap(&hctx->ctx_map);
1452         }
1453
1454         return 1;
1455 }
1456
1457 static void blk_mq_init_cpu_queues(struct request_queue *q,
1458                                    unsigned int nr_hw_queues)
1459 {
1460         unsigned int i;
1461
1462         for_each_possible_cpu(i) {
1463                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1464                 struct blk_mq_hw_ctx *hctx;
1465
1466                 memset(__ctx, 0, sizeof(*__ctx));
1467                 __ctx->cpu = i;
1468                 spin_lock_init(&__ctx->lock);
1469                 INIT_LIST_HEAD(&__ctx->rq_list);
1470                 __ctx->queue = q;
1471
1472                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1473                 if (!cpu_online(i))
1474                         continue;
1475
1476                 hctx = q->mq_ops->map_queue(q, i);
1477                 cpumask_set_cpu(i, hctx->cpumask);
1478                 hctx->nr_ctx++;
1479
1480                 /*
1481                  * Set local node, IFF we have more than one hw queue. If
1482                  * not, we remain on the home node of the device
1483                  */
1484                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1485                         hctx->numa_node = cpu_to_node(i);
1486         }
1487 }
1488
1489 static void blk_mq_map_swqueue(struct request_queue *q)
1490 {
1491         unsigned int i;
1492         struct blk_mq_hw_ctx *hctx;
1493         struct blk_mq_ctx *ctx;
1494
1495         queue_for_each_hw_ctx(q, hctx, i) {
1496                 cpumask_clear(hctx->cpumask);
1497                 hctx->nr_ctx = 0;
1498         }
1499
1500         /*
1501          * Map software to hardware queues
1502          */
1503         queue_for_each_ctx(q, ctx, i) {
1504                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1505                 if (!cpu_online(i))
1506                         continue;
1507
1508                 hctx = q->mq_ops->map_queue(q, i);
1509                 cpumask_set_cpu(i, hctx->cpumask);
1510                 ctx->index_hw = hctx->nr_ctx;
1511                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1512         }
1513
1514         queue_for_each_hw_ctx(q, hctx, i) {
1515                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1516                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1517         }
1518 }
1519
1520 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1521 {
1522         struct blk_mq_hw_ctx *hctx;
1523         struct request_queue *q;
1524         bool shared;
1525         int i;
1526
1527         if (set->tag_list.next == set->tag_list.prev)
1528                 shared = false;
1529         else
1530                 shared = true;
1531
1532         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1533                 blk_mq_freeze_queue(q);
1534
1535                 queue_for_each_hw_ctx(q, hctx, i) {
1536                         if (shared)
1537                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1538                         else
1539                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1540                 }
1541                 blk_mq_unfreeze_queue(q);
1542         }
1543 }
1544
1545 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1546 {
1547         struct blk_mq_tag_set *set = q->tag_set;
1548
1549         blk_mq_freeze_queue(q);
1550
1551         mutex_lock(&set->tag_list_lock);
1552         list_del_init(&q->tag_set_list);
1553         blk_mq_update_tag_set_depth(set);
1554         mutex_unlock(&set->tag_list_lock);
1555
1556         blk_mq_unfreeze_queue(q);
1557 }
1558
1559 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1560                                      struct request_queue *q)
1561 {
1562         q->tag_set = set;
1563
1564         mutex_lock(&set->tag_list_lock);
1565         list_add_tail(&q->tag_set_list, &set->tag_list);
1566         blk_mq_update_tag_set_depth(set);
1567         mutex_unlock(&set->tag_list_lock);
1568 }
1569
1570 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1571 {
1572         struct blk_mq_hw_ctx **hctxs;
1573         struct blk_mq_ctx *ctx;
1574         struct request_queue *q;
1575         int i;
1576
1577         ctx = alloc_percpu(struct blk_mq_ctx);
1578         if (!ctx)
1579                 return ERR_PTR(-ENOMEM);
1580
1581         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1582                         set->numa_node);
1583
1584         if (!hctxs)
1585                 goto err_percpu;
1586
1587         for (i = 0; i < set->nr_hw_queues; i++) {
1588                 hctxs[i] = set->ops->alloc_hctx(set, i);
1589                 if (!hctxs[i])
1590                         goto err_hctxs;
1591
1592                 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1593                         goto err_hctxs;
1594
1595                 atomic_set(&hctxs[i]->nr_active, 0);
1596                 hctxs[i]->numa_node = NUMA_NO_NODE;
1597                 hctxs[i]->queue_num = i;
1598         }
1599
1600         q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1601         if (!q)
1602                 goto err_hctxs;
1603
1604         q->mq_map = blk_mq_make_queue_map(set);
1605         if (!q->mq_map)
1606                 goto err_map;
1607
1608         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1609         blk_queue_rq_timeout(q, 30000);
1610
1611         q->nr_queues = nr_cpu_ids;
1612         q->nr_hw_queues = set->nr_hw_queues;
1613
1614         q->queue_ctx = ctx;
1615         q->queue_hw_ctx = hctxs;
1616
1617         q->mq_ops = set->ops;
1618         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1619
1620         q->sg_reserved_size = INT_MAX;
1621
1622         blk_queue_make_request(q, blk_mq_make_request);
1623         blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1624         if (set->timeout)
1625                 blk_queue_rq_timeout(q, set->timeout);
1626
1627         /*
1628          * Do this after blk_queue_make_request() overrides it...
1629          */
1630         q->nr_requests = set->queue_depth;
1631
1632         if (set->ops->complete)
1633                 blk_queue_softirq_done(q, set->ops->complete);
1634
1635         blk_mq_init_flush(q);
1636         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1637
1638         q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1639                                 set->cmd_size, cache_line_size()),
1640                                 GFP_KERNEL);
1641         if (!q->flush_rq)
1642                 goto err_hw;
1643
1644         if (blk_mq_init_hw_queues(q, set))
1645                 goto err_flush_rq;
1646
1647         blk_mq_map_swqueue(q);
1648
1649         mutex_lock(&all_q_mutex);
1650         list_add_tail(&q->all_q_node, &all_q_list);
1651         mutex_unlock(&all_q_mutex);
1652
1653         blk_mq_add_queue_tag_set(set, q);
1654
1655         return q;
1656
1657 err_flush_rq:
1658         kfree(q->flush_rq);
1659 err_hw:
1660         kfree(q->mq_map);
1661 err_map:
1662         blk_cleanup_queue(q);
1663 err_hctxs:
1664         for (i = 0; i < set->nr_hw_queues; i++) {
1665                 if (!hctxs[i])
1666                         break;
1667                 free_cpumask_var(hctxs[i]->cpumask);
1668                 set->ops->free_hctx(hctxs[i], i);
1669         }
1670         kfree(hctxs);
1671 err_percpu:
1672         free_percpu(ctx);
1673         return ERR_PTR(-ENOMEM);
1674 }
1675 EXPORT_SYMBOL(blk_mq_init_queue);
1676
1677 void blk_mq_free_queue(struct request_queue *q)
1678 {
1679         struct blk_mq_hw_ctx *hctx;
1680         int i;
1681
1682         blk_mq_del_queue_tag_set(q);
1683
1684         queue_for_each_hw_ctx(q, hctx, i) {
1685                 kfree(hctx->ctxs);
1686                 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1687                 if (q->mq_ops->exit_hctx)
1688                         q->mq_ops->exit_hctx(hctx, i);
1689                 free_cpumask_var(hctx->cpumask);
1690                 q->mq_ops->free_hctx(hctx, i);
1691         }
1692
1693         free_percpu(q->queue_ctx);
1694         kfree(q->queue_hw_ctx);
1695         kfree(q->mq_map);
1696
1697         q->queue_ctx = NULL;
1698         q->queue_hw_ctx = NULL;
1699         q->mq_map = NULL;
1700
1701         mutex_lock(&all_q_mutex);
1702         list_del_init(&q->all_q_node);
1703         mutex_unlock(&all_q_mutex);
1704 }
1705
1706 /* Basically redo blk_mq_init_queue with queue frozen */
1707 static void blk_mq_queue_reinit(struct request_queue *q)
1708 {
1709         blk_mq_freeze_queue(q);
1710
1711         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1712
1713         /*
1714          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1715          * we should change hctx numa_node according to new topology (this
1716          * involves free and re-allocate memory, worthy doing?)
1717          */
1718
1719         blk_mq_map_swqueue(q);
1720
1721         blk_mq_unfreeze_queue(q);
1722 }
1723
1724 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1725                                       unsigned long action, void *hcpu)
1726 {
1727         struct request_queue *q;
1728
1729         /*
1730          * Before new mappings are established, hotadded cpu might already
1731          * start handling requests. This doesn't break anything as we map
1732          * offline CPUs to first hardware queue. We will re-init the queue
1733          * below to get optimal settings.
1734          */
1735         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1736             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1737                 return NOTIFY_OK;
1738
1739         mutex_lock(&all_q_mutex);
1740         list_for_each_entry(q, &all_q_list, all_q_node)
1741                 blk_mq_queue_reinit(q);
1742         mutex_unlock(&all_q_mutex);
1743         return NOTIFY_OK;
1744 }
1745
1746 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1747 {
1748         int i;
1749
1750         if (!set->nr_hw_queues)
1751                 return -EINVAL;
1752         if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1753                 return -EINVAL;
1754         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1755                 return -EINVAL;
1756
1757         if (!set->nr_hw_queues ||
1758             !set->ops->queue_rq || !set->ops->map_queue ||
1759             !set->ops->alloc_hctx || !set->ops->free_hctx)
1760                 return -EINVAL;
1761
1762
1763         set->tags = kmalloc_node(set->nr_hw_queues *
1764                                  sizeof(struct blk_mq_tags *),
1765                                  GFP_KERNEL, set->numa_node);
1766         if (!set->tags)
1767                 goto out;
1768
1769         for (i = 0; i < set->nr_hw_queues; i++) {
1770                 set->tags[i] = blk_mq_init_rq_map(set, i);
1771                 if (!set->tags[i])
1772                         goto out_unwind;
1773         }
1774
1775         mutex_init(&set->tag_list_lock);
1776         INIT_LIST_HEAD(&set->tag_list);
1777
1778         return 0;
1779
1780 out_unwind:
1781         while (--i >= 0)
1782                 blk_mq_free_rq_map(set, set->tags[i], i);
1783 out:
1784         return -ENOMEM;
1785 }
1786 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1787
1788 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1789 {
1790         int i;
1791
1792         for (i = 0; i < set->nr_hw_queues; i++)
1793                 blk_mq_free_rq_map(set, set->tags[i], i);
1794         kfree(set->tags);
1795 }
1796 EXPORT_SYMBOL(blk_mq_free_tag_set);
1797
1798 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
1799 {
1800         struct blk_mq_tag_set *set = q->tag_set;
1801         struct blk_mq_hw_ctx *hctx;
1802         int i, ret;
1803
1804         if (!set || nr > set->queue_depth)
1805                 return -EINVAL;
1806
1807         ret = 0;
1808         queue_for_each_hw_ctx(q, hctx, i) {
1809                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
1810                 if (ret)
1811                         break;
1812         }
1813
1814         if (!ret)
1815                 q->nr_requests = nr;
1816
1817         return ret;
1818 }
1819
1820 void blk_mq_disable_hotplug(void)
1821 {
1822         mutex_lock(&all_q_mutex);
1823 }
1824
1825 void blk_mq_enable_hotplug(void)
1826 {
1827         mutex_unlock(&all_q_mutex);
1828 }
1829
1830 static int __init blk_mq_init(void)
1831 {
1832         blk_mq_cpu_init();
1833
1834         /* Must be called after percpu_counter_hotcpu_callback() */
1835         hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1836
1837         return 0;
1838 }
1839 subsys_initcall(blk_mq_init);