7171a0736071bc32c6d7c8428b70ce50b998934b
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/smp.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36
37 #include <asm/paravirt.h>
38 #include <asm/page.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/setup.h>
44 #include <asm/desc.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/reboot.h>
48
49 #include "xen-ops.h"
50 #include "mmu.h"
51 #include "multicalls.h"
52
53 EXPORT_SYMBOL_GPL(hypercall_page);
54
55 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
56 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
57 DEFINE_PER_CPU(unsigned long, xen_cr3);
58
59 struct start_info *xen_start_info;
60 EXPORT_SYMBOL_GPL(xen_start_info);
61
62 static /* __initdata */ struct shared_info dummy_shared_info;
63
64 /*
65  * Point at some empty memory to start with. We map the real shared_info
66  * page as soon as fixmap is up and running.
67  */
68 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
69
70 /*
71  * Flag to determine whether vcpu info placement is available on all
72  * VCPUs.  We assume it is to start with, and then set it to zero on
73  * the first failure.  This is because it can succeed on some VCPUs
74  * and not others, since it can involve hypervisor memory allocation,
75  * or because the guest failed to guarantee all the appropriate
76  * constraints on all VCPUs (ie buffer can't cross a page boundary).
77  *
78  * Note that any particular CPU may be using a placed vcpu structure,
79  * but we can only optimise if the all are.
80  *
81  * 0: not available, 1: available
82  */
83 static int have_vcpu_info_placement = 1;
84
85 static void __init xen_vcpu_setup(int cpu)
86 {
87         struct vcpu_register_vcpu_info info;
88         int err;
89         struct vcpu_info *vcpup;
90
91         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
92
93         if (!have_vcpu_info_placement)
94                 return;         /* already tested, not available */
95
96         vcpup = &per_cpu(xen_vcpu_info, cpu);
97
98         info.mfn = virt_to_mfn(vcpup);
99         info.offset = offset_in_page(vcpup);
100
101         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %x, offset %d\n",
102                cpu, vcpup, info.mfn, info.offset);
103
104         /* Check to see if the hypervisor will put the vcpu_info
105            structure where we want it, which allows direct access via
106            a percpu-variable. */
107         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
108
109         if (err) {
110                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
111                 have_vcpu_info_placement = 0;
112         } else {
113                 /* This cpu is using the registered vcpu info, even if
114                    later ones fail to. */
115                 per_cpu(xen_vcpu, cpu) = vcpup;
116
117                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
118                        cpu, vcpup);
119         }
120 }
121
122 static void __init xen_banner(void)
123 {
124         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
125                pv_info.name);
126         printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
127 }
128
129 static void xen_cpuid(unsigned int *eax, unsigned int *ebx,
130                       unsigned int *ecx, unsigned int *edx)
131 {
132         unsigned maskedx = ~0;
133
134         /*
135          * Mask out inconvenient features, to try and disable as many
136          * unsupported kernel subsystems as possible.
137          */
138         if (*eax == 1)
139                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
140                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
141                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
142
143         asm(XEN_EMULATE_PREFIX "cpuid"
144                 : "=a" (*eax),
145                   "=b" (*ebx),
146                   "=c" (*ecx),
147                   "=d" (*edx)
148                 : "0" (*eax), "2" (*ecx));
149         *edx &= maskedx;
150 }
151
152 static void xen_set_debugreg(int reg, unsigned long val)
153 {
154         HYPERVISOR_set_debugreg(reg, val);
155 }
156
157 static unsigned long xen_get_debugreg(int reg)
158 {
159         return HYPERVISOR_get_debugreg(reg);
160 }
161
162 static unsigned long xen_save_fl(void)
163 {
164         struct vcpu_info *vcpu;
165         unsigned long flags;
166
167         vcpu = x86_read_percpu(xen_vcpu);
168
169         /* flag has opposite sense of mask */
170         flags = !vcpu->evtchn_upcall_mask;
171
172         /* convert to IF type flag
173            -0 -> 0x00000000
174            -1 -> 0xffffffff
175         */
176         return (-flags) & X86_EFLAGS_IF;
177 }
178
179 static void xen_restore_fl(unsigned long flags)
180 {
181         struct vcpu_info *vcpu;
182
183         /* convert from IF type flag */
184         flags = !(flags & X86_EFLAGS_IF);
185
186         /* There's a one instruction preempt window here.  We need to
187            make sure we're don't switch CPUs between getting the vcpu
188            pointer and updating the mask. */
189         preempt_disable();
190         vcpu = x86_read_percpu(xen_vcpu);
191         vcpu->evtchn_upcall_mask = flags;
192         preempt_enable_no_resched();
193
194         /* Doesn't matter if we get preempted here, because any
195            pending event will get dealt with anyway. */
196
197         if (flags == 0) {
198                 preempt_check_resched();
199                 barrier(); /* unmask then check (avoid races) */
200                 if (unlikely(vcpu->evtchn_upcall_pending))
201                         force_evtchn_callback();
202         }
203 }
204
205 static void xen_irq_disable(void)
206 {
207         /* There's a one instruction preempt window here.  We need to
208            make sure we're don't switch CPUs between getting the vcpu
209            pointer and updating the mask. */
210         preempt_disable();
211         x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
212         preempt_enable_no_resched();
213 }
214
215 static void xen_irq_enable(void)
216 {
217         struct vcpu_info *vcpu;
218
219         /* There's a one instruction preempt window here.  We need to
220            make sure we're don't switch CPUs between getting the vcpu
221            pointer and updating the mask. */
222         preempt_disable();
223         vcpu = x86_read_percpu(xen_vcpu);
224         vcpu->evtchn_upcall_mask = 0;
225         preempt_enable_no_resched();
226
227         /* Doesn't matter if we get preempted here, because any
228            pending event will get dealt with anyway. */
229
230         barrier(); /* unmask then check (avoid races) */
231         if (unlikely(vcpu->evtchn_upcall_pending))
232                 force_evtchn_callback();
233 }
234
235 static void xen_safe_halt(void)
236 {
237         /* Blocking includes an implicit local_irq_enable(). */
238         if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
239                 BUG();
240 }
241
242 static void xen_halt(void)
243 {
244         if (irqs_disabled())
245                 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
246         else
247                 xen_safe_halt();
248 }
249
250 static void xen_leave_lazy(void)
251 {
252         paravirt_leave_lazy(paravirt_get_lazy_mode());
253         xen_mc_flush();
254 }
255
256 static unsigned long xen_store_tr(void)
257 {
258         return 0;
259 }
260
261 static void xen_set_ldt(const void *addr, unsigned entries)
262 {
263         unsigned long linear_addr = (unsigned long)addr;
264         struct mmuext_op *op;
265         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
266
267         op = mcs.args;
268         op->cmd = MMUEXT_SET_LDT;
269         if (linear_addr) {
270                 /* ldt my be vmalloced, use arbitrary_virt_to_machine */
271                 xmaddr_t maddr;
272                 maddr = arbitrary_virt_to_machine((unsigned long)addr);
273                 linear_addr = (unsigned long)maddr.maddr;
274         }
275         op->arg1.linear_addr = linear_addr;
276         op->arg2.nr_ents = entries;
277
278         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
279
280         xen_mc_issue(PARAVIRT_LAZY_CPU);
281 }
282
283 static void xen_load_gdt(const struct Xgt_desc_struct *dtr)
284 {
285         unsigned long *frames;
286         unsigned long va = dtr->address;
287         unsigned int size = dtr->size + 1;
288         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
289         int f;
290         struct multicall_space mcs;
291
292         /* A GDT can be up to 64k in size, which corresponds to 8192
293            8-byte entries, or 16 4k pages.. */
294
295         BUG_ON(size > 65536);
296         BUG_ON(va & ~PAGE_MASK);
297
298         mcs = xen_mc_entry(sizeof(*frames) * pages);
299         frames = mcs.args;
300
301         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
302                 frames[f] = virt_to_mfn(va);
303                 make_lowmem_page_readonly((void *)va);
304         }
305
306         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
307
308         xen_mc_issue(PARAVIRT_LAZY_CPU);
309 }
310
311 static void load_TLS_descriptor(struct thread_struct *t,
312                                 unsigned int cpu, unsigned int i)
313 {
314         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
315         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
316         struct multicall_space mc = __xen_mc_entry(0);
317
318         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
319 }
320
321 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
322 {
323         xen_mc_batch();
324
325         load_TLS_descriptor(t, cpu, 0);
326         load_TLS_descriptor(t, cpu, 1);
327         load_TLS_descriptor(t, cpu, 2);
328
329         xen_mc_issue(PARAVIRT_LAZY_CPU);
330
331         /*
332          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
333          * it means we're in a context switch, and %gs has just been
334          * saved.  This means we can zero it out to prevent faults on
335          * exit from the hypervisor if the next process has no %gs.
336          * Either way, it has been saved, and the new value will get
337          * loaded properly.  This will go away as soon as Xen has been
338          * modified to not save/restore %gs for normal hypercalls.
339          */
340         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
341                 loadsegment(gs, 0);
342 }
343
344 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
345                                 u32 low, u32 high)
346 {
347         unsigned long lp = (unsigned long)&dt[entrynum];
348         xmaddr_t mach_lp = virt_to_machine(lp);
349         u64 entry = (u64)high << 32 | low;
350
351         preempt_disable();
352
353         xen_mc_flush();
354         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
355                 BUG();
356
357         preempt_enable();
358 }
359
360 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
361                             struct trap_info *info)
362 {
363         u8 type, dpl;
364
365         type = (high >> 8) & 0x1f;
366         dpl = (high >> 13) & 3;
367
368         if (type != 0xf && type != 0xe)
369                 return 0;
370
371         info->vector = vector;
372         info->address = (high & 0xffff0000) | (low & 0x0000ffff);
373         info->cs = low >> 16;
374         info->flags = dpl;
375         /* interrupt gates clear IF */
376         if (type == 0xe)
377                 info->flags |= 4;
378
379         return 1;
380 }
381
382 /* Locations of each CPU's IDT */
383 static DEFINE_PER_CPU(struct Xgt_desc_struct, idt_desc);
384
385 /* Set an IDT entry.  If the entry is part of the current IDT, then
386    also update Xen. */
387 static void xen_write_idt_entry(struct desc_struct *dt, int entrynum,
388                                 u32 low, u32 high)
389 {
390         unsigned long p = (unsigned long)&dt[entrynum];
391         unsigned long start, end;
392
393         preempt_disable();
394
395         start = __get_cpu_var(idt_desc).address;
396         end = start + __get_cpu_var(idt_desc).size + 1;
397
398         xen_mc_flush();
399
400         write_dt_entry(dt, entrynum, low, high);
401
402         if (p >= start && (p + 8) <= end) {
403                 struct trap_info info[2];
404
405                 info[1].address = 0;
406
407                 if (cvt_gate_to_trap(entrynum, low, high, &info[0]))
408                         if (HYPERVISOR_set_trap_table(info))
409                                 BUG();
410         }
411
412         preempt_enable();
413 }
414
415 static void xen_convert_trap_info(const struct Xgt_desc_struct *desc,
416                                   struct trap_info *traps)
417 {
418         unsigned in, out, count;
419
420         count = (desc->size+1) / 8;
421         BUG_ON(count > 256);
422
423         for (in = out = 0; in < count; in++) {
424                 const u32 *entry = (u32 *)(desc->address + in * 8);
425
426                 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
427                         out++;
428         }
429         traps[out].address = 0;
430 }
431
432 void xen_copy_trap_info(struct trap_info *traps)
433 {
434         const struct Xgt_desc_struct *desc = &__get_cpu_var(idt_desc);
435
436         xen_convert_trap_info(desc, traps);
437 }
438
439 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
440    hold a spinlock to protect the static traps[] array (static because
441    it avoids allocation, and saves stack space). */
442 static void xen_load_idt(const struct Xgt_desc_struct *desc)
443 {
444         static DEFINE_SPINLOCK(lock);
445         static struct trap_info traps[257];
446
447         spin_lock(&lock);
448
449         __get_cpu_var(idt_desc) = *desc;
450
451         xen_convert_trap_info(desc, traps);
452
453         xen_mc_flush();
454         if (HYPERVISOR_set_trap_table(traps))
455                 BUG();
456
457         spin_unlock(&lock);
458 }
459
460 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
461    they're handled differently. */
462 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
463                                 u32 low, u32 high)
464 {
465         preempt_disable();
466
467         switch ((high >> 8) & 0xff) {
468         case DESCTYPE_LDT:
469         case DESCTYPE_TSS:
470                 /* ignore */
471                 break;
472
473         default: {
474                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
475                 u64 desc = (u64)high << 32 | low;
476
477                 xen_mc_flush();
478                 if (HYPERVISOR_update_descriptor(maddr.maddr, desc))
479                         BUG();
480         }
481
482         }
483
484         preempt_enable();
485 }
486
487 static void xen_load_esp0(struct tss_struct *tss,
488                           struct thread_struct *thread)
489 {
490         struct multicall_space mcs = xen_mc_entry(0);
491         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->esp0);
492         xen_mc_issue(PARAVIRT_LAZY_CPU);
493 }
494
495 static void xen_set_iopl_mask(unsigned mask)
496 {
497         struct physdev_set_iopl set_iopl;
498
499         /* Force the change at ring 0. */
500         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
501         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
502 }
503
504 static void xen_io_delay(void)
505 {
506 }
507
508 #ifdef CONFIG_X86_LOCAL_APIC
509 static unsigned long xen_apic_read(unsigned long reg)
510 {
511         return 0;
512 }
513
514 static void xen_apic_write(unsigned long reg, unsigned long val)
515 {
516         /* Warn to see if there's any stray references */
517         WARN_ON(1);
518 }
519 #endif
520
521 static void xen_flush_tlb(void)
522 {
523         struct mmuext_op *op;
524         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
525
526         op = mcs.args;
527         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
528         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
529
530         xen_mc_issue(PARAVIRT_LAZY_MMU);
531 }
532
533 static void xen_flush_tlb_single(unsigned long addr)
534 {
535         struct mmuext_op *op;
536         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
537
538         op = mcs.args;
539         op->cmd = MMUEXT_INVLPG_LOCAL;
540         op->arg1.linear_addr = addr & PAGE_MASK;
541         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
542
543         xen_mc_issue(PARAVIRT_LAZY_MMU);
544 }
545
546 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
547                                  unsigned long va)
548 {
549         struct {
550                 struct mmuext_op op;
551                 cpumask_t mask;
552         } *args;
553         cpumask_t cpumask = *cpus;
554         struct multicall_space mcs;
555
556         /*
557          * A couple of (to be removed) sanity checks:
558          *
559          * - current CPU must not be in mask
560          * - mask must exist :)
561          */
562         BUG_ON(cpus_empty(cpumask));
563         BUG_ON(cpu_isset(smp_processor_id(), cpumask));
564         BUG_ON(!mm);
565
566         /* If a CPU which we ran on has gone down, OK. */
567         cpus_and(cpumask, cpumask, cpu_online_map);
568         if (cpus_empty(cpumask))
569                 return;
570
571         mcs = xen_mc_entry(sizeof(*args));
572         args = mcs.args;
573         args->mask = cpumask;
574         args->op.arg2.vcpumask = &args->mask;
575
576         if (va == TLB_FLUSH_ALL) {
577                 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
578         } else {
579                 args->op.cmd = MMUEXT_INVLPG_MULTI;
580                 args->op.arg1.linear_addr = va;
581         }
582
583         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
584
585         xen_mc_issue(PARAVIRT_LAZY_MMU);
586 }
587
588 static void xen_write_cr2(unsigned long cr2)
589 {
590         x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
591 }
592
593 static unsigned long xen_read_cr2(void)
594 {
595         return x86_read_percpu(xen_vcpu)->arch.cr2;
596 }
597
598 static unsigned long xen_read_cr2_direct(void)
599 {
600         return x86_read_percpu(xen_vcpu_info.arch.cr2);
601 }
602
603 static void xen_write_cr4(unsigned long cr4)
604 {
605         /* Just ignore cr4 changes; Xen doesn't allow us to do
606            anything anyway. */
607 }
608
609 static unsigned long xen_read_cr3(void)
610 {
611         return x86_read_percpu(xen_cr3);
612 }
613
614 static void xen_write_cr3(unsigned long cr3)
615 {
616         BUG_ON(preemptible());
617
618         if (cr3 == x86_read_percpu(xen_cr3)) {
619                 /* just a simple tlb flush */
620                 xen_flush_tlb();
621                 return;
622         }
623
624         x86_write_percpu(xen_cr3, cr3);
625
626
627         {
628                 struct mmuext_op *op;
629                 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
630                 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
631
632                 op = mcs.args;
633                 op->cmd = MMUEXT_NEW_BASEPTR;
634                 op->arg1.mfn = mfn;
635
636                 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
637
638                 xen_mc_issue(PARAVIRT_LAZY_CPU);
639         }
640 }
641
642 /* Early in boot, while setting up the initial pagetable, assume
643    everything is pinned. */
644 static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
645 {
646         BUG_ON(mem_map);        /* should only be used early */
647         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
648 }
649
650 /* This needs to make sure the new pte page is pinned iff its being
651    attached to a pinned pagetable. */
652 static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
653 {
654         struct page *page = pfn_to_page(pfn);
655
656         if (PagePinned(virt_to_page(mm->pgd))) {
657                 SetPagePinned(page);
658
659                 if (!PageHighMem(page))
660                         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
661                 else
662                         /* make sure there are no stray mappings of
663                            this page */
664                         kmap_flush_unused();
665         }
666 }
667
668 /* This should never happen until we're OK to use struct page */
669 static void xen_release_pt(u32 pfn)
670 {
671         struct page *page = pfn_to_page(pfn);
672
673         if (PagePinned(page)) {
674                 if (!PageHighMem(page))
675                         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
676         }
677 }
678
679 #ifdef CONFIG_HIGHPTE
680 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
681 {
682         pgprot_t prot = PAGE_KERNEL;
683
684         if (PagePinned(page))
685                 prot = PAGE_KERNEL_RO;
686
687         if (0 && PageHighMem(page))
688                 printk("mapping highpte %lx type %d prot %s\n",
689                        page_to_pfn(page), type,
690                        (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
691
692         return kmap_atomic_prot(page, type, prot);
693 }
694 #endif
695
696 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
697 {
698         /* If there's an existing pte, then don't allow _PAGE_RW to be set */
699         if (pte_val_ma(*ptep) & _PAGE_PRESENT)
700                 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
701                                pte_val_ma(pte));
702
703         return pte;
704 }
705
706 /* Init-time set_pte while constructing initial pagetables, which
707    doesn't allow RO pagetable pages to be remapped RW */
708 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
709 {
710         pte = mask_rw_pte(ptep, pte);
711
712         xen_set_pte(ptep, pte);
713 }
714
715 static __init void xen_pagetable_setup_start(pgd_t *base)
716 {
717         pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
718
719         /* special set_pte for pagetable initialization */
720         pv_mmu_ops.set_pte = xen_set_pte_init;
721
722         init_mm.pgd = base;
723         /*
724          * copy top-level of Xen-supplied pagetable into place.  For
725          * !PAE we can use this as-is, but for PAE it is a stand-in
726          * while we copy the pmd pages.
727          */
728         memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
729
730         if (PTRS_PER_PMD > 1) {
731                 int i;
732                 /*
733                  * For PAE, need to allocate new pmds, rather than
734                  * share Xen's, since Xen doesn't like pmd's being
735                  * shared between address spaces.
736                  */
737                 for (i = 0; i < PTRS_PER_PGD; i++) {
738                         if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
739                                 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
740
741                                 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
742                                        PAGE_SIZE);
743
744                                 make_lowmem_page_readonly(pmd);
745
746                                 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
747                         } else
748                                 pgd_clear(&base[i]);
749                 }
750         }
751
752         /* make sure zero_page is mapped RO so we can use it in pagetables */
753         make_lowmem_page_readonly(empty_zero_page);
754         make_lowmem_page_readonly(base);
755         /*
756          * Switch to new pagetable.  This is done before
757          * pagetable_init has done anything so that the new pages
758          * added to the table can be prepared properly for Xen.
759          */
760         xen_write_cr3(__pa(base));
761 }
762
763 static __init void xen_pagetable_setup_done(pgd_t *base)
764 {
765         /* This will work as long as patching hasn't happened yet
766            (which it hasn't) */
767         pv_mmu_ops.alloc_pt = xen_alloc_pt;
768         pv_mmu_ops.set_pte = xen_set_pte;
769
770         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
771                 /*
772                  * Create a mapping for the shared info page.
773                  * Should be set_fixmap(), but shared_info is a machine
774                  * address with no corresponding pseudo-phys address.
775                  */
776                 set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
777                             PFN_DOWN(xen_start_info->shared_info),
778                             PAGE_KERNEL);
779
780                 HYPERVISOR_shared_info =
781                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
782
783         } else
784                 HYPERVISOR_shared_info =
785                         (struct shared_info *)__va(xen_start_info->shared_info);
786
787         /* Actually pin the pagetable down, but we can't set PG_pinned
788            yet because the page structures don't exist yet. */
789         {
790                 struct mmuext_op op;
791 #ifdef CONFIG_X86_PAE
792                 op.cmd = MMUEXT_PIN_L3_TABLE;
793 #else
794                 op.cmd = MMUEXT_PIN_L3_TABLE;
795 #endif
796                 op.arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(base)));
797                 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
798                         BUG();
799         }
800 }
801
802 /* This is called once we have the cpu_possible_map */
803 void __init xen_setup_vcpu_info_placement(void)
804 {
805         int cpu;
806
807         for_each_possible_cpu(cpu)
808                 xen_vcpu_setup(cpu);
809
810         /* xen_vcpu_setup managed to place the vcpu_info within the
811            percpu area for all cpus, so make use of it */
812         if (have_vcpu_info_placement) {
813                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
814
815                 pv_irq_ops.save_fl = xen_save_fl_direct;
816                 pv_irq_ops.restore_fl = xen_restore_fl_direct;
817                 pv_irq_ops.irq_disable = xen_irq_disable_direct;
818                 pv_irq_ops.irq_enable = xen_irq_enable_direct;
819                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
820                 pv_cpu_ops.iret = xen_iret_direct;
821         }
822 }
823
824 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
825                           unsigned long addr, unsigned len)
826 {
827         char *start, *end, *reloc;
828         unsigned ret;
829
830         start = end = reloc = NULL;
831
832 #define SITE(op, x)                                                     \
833         case PARAVIRT_PATCH(op.x):                                      \
834         if (have_vcpu_info_placement) {                                 \
835                 start = (char *)xen_##x##_direct;                       \
836                 end = xen_##x##_direct_end;                             \
837                 reloc = xen_##x##_direct_reloc;                         \
838         }                                                               \
839         goto patch_site
840
841         switch (type) {
842                 SITE(pv_irq_ops, irq_enable);
843                 SITE(pv_irq_ops, irq_disable);
844                 SITE(pv_irq_ops, save_fl);
845                 SITE(pv_irq_ops, restore_fl);
846 #undef SITE
847
848         patch_site:
849                 if (start == NULL || (end-start) > len)
850                         goto default_patch;
851
852                 ret = paravirt_patch_insns(insnbuf, len, start, end);
853
854                 /* Note: because reloc is assigned from something that
855                    appears to be an array, gcc assumes it's non-null,
856                    but doesn't know its relationship with start and
857                    end. */
858                 if (reloc > start && reloc < end) {
859                         int reloc_off = reloc - start;
860                         long *relocp = (long *)(insnbuf + reloc_off);
861                         long delta = start - (char *)addr;
862
863                         *relocp += delta;
864                 }
865                 break;
866
867         default_patch:
868         default:
869                 ret = paravirt_patch_default(type, clobbers, insnbuf,
870                                              addr, len);
871                 break;
872         }
873
874         return ret;
875 }
876
877 static const struct pv_info xen_info __initdata = {
878         .paravirt_enabled = 1,
879         .shared_kernel_pmd = 0,
880
881         .name = "Xen",
882 };
883
884 static const struct pv_init_ops xen_init_ops __initdata = {
885         .patch = xen_patch,
886
887         .banner = xen_banner,
888         .memory_setup = xen_memory_setup,
889         .arch_setup = xen_arch_setup,
890         .post_allocator_init = xen_mark_init_mm_pinned,
891 };
892
893 static const struct pv_time_ops xen_time_ops __initdata = {
894         .time_init = xen_time_init,
895
896         .set_wallclock = xen_set_wallclock,
897         .get_wallclock = xen_get_wallclock,
898         .get_cpu_khz = xen_cpu_khz,
899         .sched_clock = xen_sched_clock,
900 };
901
902 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
903         .cpuid = xen_cpuid,
904
905         .set_debugreg = xen_set_debugreg,
906         .get_debugreg = xen_get_debugreg,
907
908         .clts = native_clts,
909
910         .read_cr0 = native_read_cr0,
911         .write_cr0 = native_write_cr0,
912
913         .read_cr4 = native_read_cr4,
914         .read_cr4_safe = native_read_cr4_safe,
915         .write_cr4 = xen_write_cr4,
916
917         .wbinvd = native_wbinvd,
918
919         .read_msr = native_read_msr_safe,
920         .write_msr = native_write_msr_safe,
921         .read_tsc = native_read_tsc,
922         .read_pmc = native_read_pmc,
923
924         .iret = (void *)&hypercall_page[__HYPERVISOR_iret],
925         .irq_enable_sysexit = NULL,  /* never called */
926
927         .load_tr_desc = paravirt_nop,
928         .set_ldt = xen_set_ldt,
929         .load_gdt = xen_load_gdt,
930         .load_idt = xen_load_idt,
931         .load_tls = xen_load_tls,
932
933         .store_gdt = native_store_gdt,
934         .store_idt = native_store_idt,
935         .store_tr = xen_store_tr,
936
937         .write_ldt_entry = xen_write_ldt_entry,
938         .write_gdt_entry = xen_write_gdt_entry,
939         .write_idt_entry = xen_write_idt_entry,
940         .load_esp0 = xen_load_esp0,
941
942         .set_iopl_mask = xen_set_iopl_mask,
943         .io_delay = xen_io_delay,
944
945         .lazy_mode = {
946                 .enter = paravirt_enter_lazy_cpu,
947                 .leave = xen_leave_lazy,
948         },
949 };
950
951 static const struct pv_irq_ops xen_irq_ops __initdata = {
952         .init_IRQ = xen_init_IRQ,
953         .save_fl = xen_save_fl,
954         .restore_fl = xen_restore_fl,
955         .irq_disable = xen_irq_disable,
956         .irq_enable = xen_irq_enable,
957         .safe_halt = xen_safe_halt,
958         .halt = xen_halt,
959 };
960
961 static const struct pv_apic_ops xen_apic_ops __initdata = {
962 #ifdef CONFIG_X86_LOCAL_APIC
963         .apic_write = xen_apic_write,
964         .apic_write_atomic = xen_apic_write,
965         .apic_read = xen_apic_read,
966         .setup_boot_clock = paravirt_nop,
967         .setup_secondary_clock = paravirt_nop,
968         .startup_ipi_hook = paravirt_nop,
969 #endif
970 };
971
972 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
973         .pagetable_setup_start = xen_pagetable_setup_start,
974         .pagetable_setup_done = xen_pagetable_setup_done,
975
976         .read_cr2 = xen_read_cr2,
977         .write_cr2 = xen_write_cr2,
978
979         .read_cr3 = xen_read_cr3,
980         .write_cr3 = xen_write_cr3,
981
982         .flush_tlb_user = xen_flush_tlb,
983         .flush_tlb_kernel = xen_flush_tlb,
984         .flush_tlb_single = xen_flush_tlb_single,
985         .flush_tlb_others = xen_flush_tlb_others,
986
987         .pte_update = paravirt_nop,
988         .pte_update_defer = paravirt_nop,
989
990         .alloc_pt = xen_alloc_pt_init,
991         .release_pt = xen_release_pt,
992         .alloc_pd = paravirt_nop,
993         .alloc_pd_clone = paravirt_nop,
994         .release_pd = paravirt_nop,
995
996 #ifdef CONFIG_HIGHPTE
997         .kmap_atomic_pte = xen_kmap_atomic_pte,
998 #endif
999
1000         .set_pte = NULL,        /* see xen_pagetable_setup_* */
1001         .set_pte_at = xen_set_pte_at,
1002         .set_pmd = xen_set_pmd,
1003
1004         .pte_val = xen_pte_val,
1005         .pgd_val = xen_pgd_val,
1006
1007         .make_pte = xen_make_pte,
1008         .make_pgd = xen_make_pgd,
1009
1010 #ifdef CONFIG_X86_PAE
1011         .set_pte_atomic = xen_set_pte_atomic,
1012         .set_pte_present = xen_set_pte_at,
1013         .set_pud = xen_set_pud,
1014         .pte_clear = xen_pte_clear,
1015         .pmd_clear = xen_pmd_clear,
1016
1017         .make_pmd = xen_make_pmd,
1018         .pmd_val = xen_pmd_val,
1019 #endif  /* PAE */
1020
1021         .activate_mm = xen_activate_mm,
1022         .dup_mmap = xen_dup_mmap,
1023         .exit_mmap = xen_exit_mmap,
1024
1025         .lazy_mode = {
1026                 .enter = paravirt_enter_lazy_mmu,
1027                 .leave = xen_leave_lazy,
1028         },
1029 };
1030
1031 #ifdef CONFIG_SMP
1032 static const struct smp_ops xen_smp_ops __initdata = {
1033         .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1034         .smp_prepare_cpus = xen_smp_prepare_cpus,
1035         .cpu_up = xen_cpu_up,
1036         .smp_cpus_done = xen_smp_cpus_done,
1037
1038         .smp_send_stop = xen_smp_send_stop,
1039         .smp_send_reschedule = xen_smp_send_reschedule,
1040         .smp_call_function_mask = xen_smp_call_function_mask,
1041 };
1042 #endif  /* CONFIG_SMP */
1043
1044 static void xen_reboot(int reason)
1045 {
1046 #ifdef CONFIG_SMP
1047         smp_send_stop();
1048 #endif
1049
1050         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1051                 BUG();
1052 }
1053
1054 static void xen_restart(char *msg)
1055 {
1056         xen_reboot(SHUTDOWN_reboot);
1057 }
1058
1059 static void xen_emergency_restart(void)
1060 {
1061         xen_reboot(SHUTDOWN_reboot);
1062 }
1063
1064 static void xen_machine_halt(void)
1065 {
1066         xen_reboot(SHUTDOWN_poweroff);
1067 }
1068
1069 static void xen_crash_shutdown(struct pt_regs *regs)
1070 {
1071         xen_reboot(SHUTDOWN_crash);
1072 }
1073
1074 static const struct machine_ops __initdata xen_machine_ops = {
1075         .restart = xen_restart,
1076         .halt = xen_machine_halt,
1077         .power_off = xen_machine_halt,
1078         .shutdown = xen_machine_halt,
1079         .crash_shutdown = xen_crash_shutdown,
1080         .emergency_restart = xen_emergency_restart,
1081 };
1082
1083
1084 /* First C function to be called on Xen boot */
1085 asmlinkage void __init xen_start_kernel(void)
1086 {
1087         pgd_t *pgd;
1088
1089         if (!xen_start_info)
1090                 return;
1091
1092         BUG_ON(memcmp(xen_start_info->magic, "xen-3.0", 7) != 0);
1093
1094         /* Install Xen paravirt ops */
1095         pv_info = xen_info;
1096         pv_init_ops = xen_init_ops;
1097         pv_time_ops = xen_time_ops;
1098         pv_cpu_ops = xen_cpu_ops;
1099         pv_irq_ops = xen_irq_ops;
1100         pv_apic_ops = xen_apic_ops;
1101         pv_mmu_ops = xen_mmu_ops;
1102
1103         machine_ops = xen_machine_ops;
1104
1105 #ifdef CONFIG_SMP
1106         smp_ops = xen_smp_ops;
1107 #endif
1108
1109         xen_setup_features();
1110
1111         /* Get mfn list */
1112         if (!xen_feature(XENFEAT_auto_translated_physmap))
1113                 phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1114
1115         pgd = (pgd_t *)xen_start_info->pt_base;
1116
1117         init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1118
1119         init_mm.pgd = pgd; /* use the Xen pagetables to start */
1120
1121         /* keep using Xen gdt for now; no urgent need to change it */
1122
1123         x86_write_percpu(xen_cr3, __pa(pgd));
1124
1125 #ifdef CONFIG_SMP
1126         /* Don't do the full vcpu_info placement stuff until we have a
1127            possible map. */
1128         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1129 #else
1130         /* May as well do it now, since there's no good time to call
1131            it later on UP. */
1132         xen_setup_vcpu_info_placement();
1133 #endif
1134
1135         pv_info.kernel_rpl = 1;
1136         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1137                 pv_info.kernel_rpl = 0;
1138
1139         /* set the limit of our address space */
1140         reserve_top_address(-HYPERVISOR_VIRT_START + 2 * PAGE_SIZE);
1141
1142         /* set up basic CPUID stuff */
1143         cpu_detect(&new_cpu_data);
1144         new_cpu_data.hard_math = 1;
1145         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1146
1147         /* Poke various useful things into boot_params */
1148         LOADER_TYPE = (9 << 4) | 0;
1149         INITRD_START = xen_start_info->mod_start ? __pa(xen_start_info->mod_start) : 0;
1150         INITRD_SIZE = xen_start_info->mod_len;
1151
1152         /* Start the world */
1153         start_kernel();
1154 }