d721e2d81a53a0f84580e4f93e40fb05c2c18ffb
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affilates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
50
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58
59 #define MAX_IO_MSRS 256
60 #define CR0_RESERVED_BITS                                               \
61         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
62                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
63                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
64 #define CR4_RESERVED_BITS                                               \
65         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
66                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
67                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
68                           | X86_CR4_OSXSAVE \
69                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
70
71 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
72
73 #define KVM_MAX_MCE_BANKS 32
74 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
75
76 /* EFER defaults:
77  * - enable syscall per default because its emulated by KVM
78  * - enable LME and LMA per default on 64 bit KVM
79  */
80 #ifdef CONFIG_X86_64
81 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
82 #else
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
91                                     struct kvm_cpuid_entry2 __user *entries);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 int ignore_msrs = 0;
97 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 #define KVM_NR_SHARED_MSRS 16
100
101 struct kvm_shared_msrs_global {
102         int nr;
103         u32 msrs[KVM_NR_SHARED_MSRS];
104 };
105
106 struct kvm_shared_msrs {
107         struct user_return_notifier urn;
108         bool registered;
109         struct kvm_shared_msr_values {
110                 u64 host;
111                 u64 curr;
112         } values[KVM_NR_SHARED_MSRS];
113 };
114
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117
118 struct kvm_stats_debugfs_item debugfs_entries[] = {
119         { "pf_fixed", VCPU_STAT(pf_fixed) },
120         { "pf_guest", VCPU_STAT(pf_guest) },
121         { "tlb_flush", VCPU_STAT(tlb_flush) },
122         { "invlpg", VCPU_STAT(invlpg) },
123         { "exits", VCPU_STAT(exits) },
124         { "io_exits", VCPU_STAT(io_exits) },
125         { "mmio_exits", VCPU_STAT(mmio_exits) },
126         { "signal_exits", VCPU_STAT(signal_exits) },
127         { "irq_window", VCPU_STAT(irq_window_exits) },
128         { "nmi_window", VCPU_STAT(nmi_window_exits) },
129         { "halt_exits", VCPU_STAT(halt_exits) },
130         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
131         { "hypercalls", VCPU_STAT(hypercalls) },
132         { "request_irq", VCPU_STAT(request_irq_exits) },
133         { "irq_exits", VCPU_STAT(irq_exits) },
134         { "host_state_reload", VCPU_STAT(host_state_reload) },
135         { "efer_reload", VCPU_STAT(efer_reload) },
136         { "fpu_reload", VCPU_STAT(fpu_reload) },
137         { "insn_emulation", VCPU_STAT(insn_emulation) },
138         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
139         { "irq_injections", VCPU_STAT(irq_injections) },
140         { "nmi_injections", VCPU_STAT(nmi_injections) },
141         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
142         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
143         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
144         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
145         { "mmu_flooded", VM_STAT(mmu_flooded) },
146         { "mmu_recycled", VM_STAT(mmu_recycled) },
147         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
148         { "mmu_unsync", VM_STAT(mmu_unsync) },
149         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
150         { "largepages", VM_STAT(lpages) },
151         { NULL }
152 };
153
154 u64 __read_mostly host_xcr0;
155
156 static inline u32 bit(int bitno)
157 {
158         return 1 << (bitno & 31);
159 }
160
161 static void kvm_on_user_return(struct user_return_notifier *urn)
162 {
163         unsigned slot;
164         struct kvm_shared_msrs *locals
165                 = container_of(urn, struct kvm_shared_msrs, urn);
166         struct kvm_shared_msr_values *values;
167
168         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
169                 values = &locals->values[slot];
170                 if (values->host != values->curr) {
171                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
172                         values->curr = values->host;
173                 }
174         }
175         locals->registered = false;
176         user_return_notifier_unregister(urn);
177 }
178
179 static void shared_msr_update(unsigned slot, u32 msr)
180 {
181         struct kvm_shared_msrs *smsr;
182         u64 value;
183
184         smsr = &__get_cpu_var(shared_msrs);
185         /* only read, and nobody should modify it at this time,
186          * so don't need lock */
187         if (slot >= shared_msrs_global.nr) {
188                 printk(KERN_ERR "kvm: invalid MSR slot!");
189                 return;
190         }
191         rdmsrl_safe(msr, &value);
192         smsr->values[slot].host = value;
193         smsr->values[slot].curr = value;
194 }
195
196 void kvm_define_shared_msr(unsigned slot, u32 msr)
197 {
198         if (slot >= shared_msrs_global.nr)
199                 shared_msrs_global.nr = slot + 1;
200         shared_msrs_global.msrs[slot] = msr;
201         /* we need ensured the shared_msr_global have been updated */
202         smp_wmb();
203 }
204 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
205
206 static void kvm_shared_msr_cpu_online(void)
207 {
208         unsigned i;
209
210         for (i = 0; i < shared_msrs_global.nr; ++i)
211                 shared_msr_update(i, shared_msrs_global.msrs[i]);
212 }
213
214 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
215 {
216         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
217
218         if (((value ^ smsr->values[slot].curr) & mask) == 0)
219                 return;
220         smsr->values[slot].curr = value;
221         wrmsrl(shared_msrs_global.msrs[slot], value);
222         if (!smsr->registered) {
223                 smsr->urn.on_user_return = kvm_on_user_return;
224                 user_return_notifier_register(&smsr->urn);
225                 smsr->registered = true;
226         }
227 }
228 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
229
230 static void drop_user_return_notifiers(void *ignore)
231 {
232         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
233
234         if (smsr->registered)
235                 kvm_on_user_return(&smsr->urn);
236 }
237
238 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
239 {
240         if (irqchip_in_kernel(vcpu->kvm))
241                 return vcpu->arch.apic_base;
242         else
243                 return vcpu->arch.apic_base;
244 }
245 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
246
247 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
248 {
249         /* TODO: reserve bits check */
250         if (irqchip_in_kernel(vcpu->kvm))
251                 kvm_lapic_set_base(vcpu, data);
252         else
253                 vcpu->arch.apic_base = data;
254 }
255 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
256
257 #define EXCPT_BENIGN            0
258 #define EXCPT_CONTRIBUTORY      1
259 #define EXCPT_PF                2
260
261 static int exception_class(int vector)
262 {
263         switch (vector) {
264         case PF_VECTOR:
265                 return EXCPT_PF;
266         case DE_VECTOR:
267         case TS_VECTOR:
268         case NP_VECTOR:
269         case SS_VECTOR:
270         case GP_VECTOR:
271                 return EXCPT_CONTRIBUTORY;
272         default:
273                 break;
274         }
275         return EXCPT_BENIGN;
276 }
277
278 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
279                 unsigned nr, bool has_error, u32 error_code,
280                 bool reinject)
281 {
282         u32 prev_nr;
283         int class1, class2;
284
285         if (!vcpu->arch.exception.pending) {
286         queue:
287                 vcpu->arch.exception.pending = true;
288                 vcpu->arch.exception.has_error_code = has_error;
289                 vcpu->arch.exception.nr = nr;
290                 vcpu->arch.exception.error_code = error_code;
291                 vcpu->arch.exception.reinject = reinject;
292                 return;
293         }
294
295         /* to check exception */
296         prev_nr = vcpu->arch.exception.nr;
297         if (prev_nr == DF_VECTOR) {
298                 /* triple fault -> shutdown */
299                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
300                 return;
301         }
302         class1 = exception_class(prev_nr);
303         class2 = exception_class(nr);
304         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
305                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
306                 /* generate double fault per SDM Table 5-5 */
307                 vcpu->arch.exception.pending = true;
308                 vcpu->arch.exception.has_error_code = true;
309                 vcpu->arch.exception.nr = DF_VECTOR;
310                 vcpu->arch.exception.error_code = 0;
311         } else
312                 /* replace previous exception with a new one in a hope
313                    that instruction re-execution will regenerate lost
314                    exception */
315                 goto queue;
316 }
317
318 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
319 {
320         kvm_multiple_exception(vcpu, nr, false, 0, false);
321 }
322 EXPORT_SYMBOL_GPL(kvm_queue_exception);
323
324 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 {
326         kvm_multiple_exception(vcpu, nr, false, 0, true);
327 }
328 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
329
330 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
331                            u32 error_code)
332 {
333         ++vcpu->stat.pf_guest;
334         vcpu->arch.cr2 = addr;
335         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
336 }
337
338 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
339 {
340         vcpu->arch.nmi_pending = 1;
341 }
342 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
343
344 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
345 {
346         kvm_multiple_exception(vcpu, nr, true, error_code, false);
347 }
348 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
349
350 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
351 {
352         kvm_multiple_exception(vcpu, nr, true, error_code, true);
353 }
354 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
355
356 /*
357  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
358  * a #GP and return false.
359  */
360 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
361 {
362         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
363                 return true;
364         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
365         return false;
366 }
367 EXPORT_SYMBOL_GPL(kvm_require_cpl);
368
369 /*
370  * Load the pae pdptrs.  Return true is they are all valid.
371  */
372 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
373 {
374         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
375         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
376         int i;
377         int ret;
378         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
379
380         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
381                                   offset * sizeof(u64), sizeof(pdpte));
382         if (ret < 0) {
383                 ret = 0;
384                 goto out;
385         }
386         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
387                 if (is_present_gpte(pdpte[i]) &&
388                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
389                         ret = 0;
390                         goto out;
391                 }
392         }
393         ret = 1;
394
395         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
396         __set_bit(VCPU_EXREG_PDPTR,
397                   (unsigned long *)&vcpu->arch.regs_avail);
398         __set_bit(VCPU_EXREG_PDPTR,
399                   (unsigned long *)&vcpu->arch.regs_dirty);
400 out:
401
402         return ret;
403 }
404 EXPORT_SYMBOL_GPL(load_pdptrs);
405
406 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
407 {
408         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
409         bool changed = true;
410         int r;
411
412         if (is_long_mode(vcpu) || !is_pae(vcpu))
413                 return false;
414
415         if (!test_bit(VCPU_EXREG_PDPTR,
416                       (unsigned long *)&vcpu->arch.regs_avail))
417                 return true;
418
419         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
420         if (r < 0)
421                 goto out;
422         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
423 out:
424
425         return changed;
426 }
427
428 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
429 {
430         unsigned long old_cr0 = kvm_read_cr0(vcpu);
431         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
432                                     X86_CR0_CD | X86_CR0_NW;
433
434         cr0 |= X86_CR0_ET;
435
436 #ifdef CONFIG_X86_64
437         if (cr0 & 0xffffffff00000000UL)
438                 return 1;
439 #endif
440
441         cr0 &= ~CR0_RESERVED_BITS;
442
443         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
444                 return 1;
445
446         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
447                 return 1;
448
449         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
450 #ifdef CONFIG_X86_64
451                 if ((vcpu->arch.efer & EFER_LME)) {
452                         int cs_db, cs_l;
453
454                         if (!is_pae(vcpu))
455                                 return 1;
456                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
457                         if (cs_l)
458                                 return 1;
459                 } else
460 #endif
461                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
462                         return 1;
463         }
464
465         kvm_x86_ops->set_cr0(vcpu, cr0);
466
467         if ((cr0 ^ old_cr0) & update_bits)
468                 kvm_mmu_reset_context(vcpu);
469         return 0;
470 }
471 EXPORT_SYMBOL_GPL(kvm_set_cr0);
472
473 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
474 {
475         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
476 }
477 EXPORT_SYMBOL_GPL(kvm_lmsw);
478
479 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
480 {
481         u64 xcr0;
482
483         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
484         if (index != XCR_XFEATURE_ENABLED_MASK)
485                 return 1;
486         xcr0 = xcr;
487         if (kvm_x86_ops->get_cpl(vcpu) != 0)
488                 return 1;
489         if (!(xcr0 & XSTATE_FP))
490                 return 1;
491         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
492                 return 1;
493         if (xcr0 & ~host_xcr0)
494                 return 1;
495         vcpu->arch.xcr0 = xcr0;
496         vcpu->guest_xcr0_loaded = 0;
497         return 0;
498 }
499
500 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
501 {
502         if (__kvm_set_xcr(vcpu, index, xcr)) {
503                 kvm_inject_gp(vcpu, 0);
504                 return 1;
505         }
506         return 0;
507 }
508 EXPORT_SYMBOL_GPL(kvm_set_xcr);
509
510 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
511 {
512         struct kvm_cpuid_entry2 *best;
513
514         best = kvm_find_cpuid_entry(vcpu, 1, 0);
515         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
516 }
517
518 static void update_cpuid(struct kvm_vcpu *vcpu)
519 {
520         struct kvm_cpuid_entry2 *best;
521
522         best = kvm_find_cpuid_entry(vcpu, 1, 0);
523         if (!best)
524                 return;
525
526         /* Update OSXSAVE bit */
527         if (cpu_has_xsave && best->function == 0x1) {
528                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
529                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
530                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
531         }
532 }
533
534 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
535 {
536         unsigned long old_cr4 = kvm_read_cr4(vcpu);
537         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
538
539         if (cr4 & CR4_RESERVED_BITS)
540                 return 1;
541
542         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
543                 return 1;
544
545         if (is_long_mode(vcpu)) {
546                 if (!(cr4 & X86_CR4_PAE))
547                         return 1;
548         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
549                    && ((cr4 ^ old_cr4) & pdptr_bits)
550                    && !load_pdptrs(vcpu, vcpu->arch.cr3))
551                 return 1;
552
553         if (cr4 & X86_CR4_VMXE)
554                 return 1;
555
556         kvm_x86_ops->set_cr4(vcpu, cr4);
557
558         if ((cr4 ^ old_cr4) & pdptr_bits)
559                 kvm_mmu_reset_context(vcpu);
560
561         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
562                 update_cpuid(vcpu);
563
564         return 0;
565 }
566 EXPORT_SYMBOL_GPL(kvm_set_cr4);
567
568 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
569 {
570         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
571                 kvm_mmu_sync_roots(vcpu);
572                 kvm_mmu_flush_tlb(vcpu);
573                 return 0;
574         }
575
576         if (is_long_mode(vcpu)) {
577                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
578                         return 1;
579         } else {
580                 if (is_pae(vcpu)) {
581                         if (cr3 & CR3_PAE_RESERVED_BITS)
582                                 return 1;
583                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
584                                 return 1;
585                 }
586                 /*
587                  * We don't check reserved bits in nonpae mode, because
588                  * this isn't enforced, and VMware depends on this.
589                  */
590         }
591
592         /*
593          * Does the new cr3 value map to physical memory? (Note, we
594          * catch an invalid cr3 even in real-mode, because it would
595          * cause trouble later on when we turn on paging anyway.)
596          *
597          * A real CPU would silently accept an invalid cr3 and would
598          * attempt to use it - with largely undefined (and often hard
599          * to debug) behavior on the guest side.
600          */
601         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
602                 return 1;
603         vcpu->arch.cr3 = cr3;
604         vcpu->arch.mmu.new_cr3(vcpu);
605         return 0;
606 }
607 EXPORT_SYMBOL_GPL(kvm_set_cr3);
608
609 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
610 {
611         if (cr8 & CR8_RESERVED_BITS)
612                 return 1;
613         if (irqchip_in_kernel(vcpu->kvm))
614                 kvm_lapic_set_tpr(vcpu, cr8);
615         else
616                 vcpu->arch.cr8 = cr8;
617         return 0;
618 }
619
620 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
621 {
622         if (__kvm_set_cr8(vcpu, cr8))
623                 kvm_inject_gp(vcpu, 0);
624 }
625 EXPORT_SYMBOL_GPL(kvm_set_cr8);
626
627 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
628 {
629         if (irqchip_in_kernel(vcpu->kvm))
630                 return kvm_lapic_get_cr8(vcpu);
631         else
632                 return vcpu->arch.cr8;
633 }
634 EXPORT_SYMBOL_GPL(kvm_get_cr8);
635
636 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
637 {
638         switch (dr) {
639         case 0 ... 3:
640                 vcpu->arch.db[dr] = val;
641                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
642                         vcpu->arch.eff_db[dr] = val;
643                 break;
644         case 4:
645                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
646                         return 1; /* #UD */
647                 /* fall through */
648         case 6:
649                 if (val & 0xffffffff00000000ULL)
650                         return -1; /* #GP */
651                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
652                 break;
653         case 5:
654                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
655                         return 1; /* #UD */
656                 /* fall through */
657         default: /* 7 */
658                 if (val & 0xffffffff00000000ULL)
659                         return -1; /* #GP */
660                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
661                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
662                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
663                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
664                 }
665                 break;
666         }
667
668         return 0;
669 }
670
671 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
672 {
673         int res;
674
675         res = __kvm_set_dr(vcpu, dr, val);
676         if (res > 0)
677                 kvm_queue_exception(vcpu, UD_VECTOR);
678         else if (res < 0)
679                 kvm_inject_gp(vcpu, 0);
680
681         return res;
682 }
683 EXPORT_SYMBOL_GPL(kvm_set_dr);
684
685 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
686 {
687         switch (dr) {
688         case 0 ... 3:
689                 *val = vcpu->arch.db[dr];
690                 break;
691         case 4:
692                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
693                         return 1;
694                 /* fall through */
695         case 6:
696                 *val = vcpu->arch.dr6;
697                 break;
698         case 5:
699                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
700                         return 1;
701                 /* fall through */
702         default: /* 7 */
703                 *val = vcpu->arch.dr7;
704                 break;
705         }
706
707         return 0;
708 }
709
710 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
711 {
712         if (_kvm_get_dr(vcpu, dr, val)) {
713                 kvm_queue_exception(vcpu, UD_VECTOR);
714                 return 1;
715         }
716         return 0;
717 }
718 EXPORT_SYMBOL_GPL(kvm_get_dr);
719
720 /*
721  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
722  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
723  *
724  * This list is modified at module load time to reflect the
725  * capabilities of the host cpu. This capabilities test skips MSRs that are
726  * kvm-specific. Those are put in the beginning of the list.
727  */
728
729 #define KVM_SAVE_MSRS_BEGIN     7
730 static u32 msrs_to_save[] = {
731         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
732         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
733         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
734         HV_X64_MSR_APIC_ASSIST_PAGE,
735         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
736         MSR_K6_STAR,
737 #ifdef CONFIG_X86_64
738         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
739 #endif
740         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
741 };
742
743 static unsigned num_msrs_to_save;
744
745 static u32 emulated_msrs[] = {
746         MSR_IA32_MISC_ENABLE,
747 };
748
749 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
750 {
751         u64 old_efer = vcpu->arch.efer;
752
753         if (efer & efer_reserved_bits)
754                 return 1;
755
756         if (is_paging(vcpu)
757             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
758                 return 1;
759
760         if (efer & EFER_FFXSR) {
761                 struct kvm_cpuid_entry2 *feat;
762
763                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
764                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
765                         return 1;
766         }
767
768         if (efer & EFER_SVME) {
769                 struct kvm_cpuid_entry2 *feat;
770
771                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
772                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
773                         return 1;
774         }
775
776         efer &= ~EFER_LMA;
777         efer |= vcpu->arch.efer & EFER_LMA;
778
779         kvm_x86_ops->set_efer(vcpu, efer);
780
781         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
782         kvm_mmu_reset_context(vcpu);
783
784         /* Update reserved bits */
785         if ((efer ^ old_efer) & EFER_NX)
786                 kvm_mmu_reset_context(vcpu);
787
788         return 0;
789 }
790
791 void kvm_enable_efer_bits(u64 mask)
792 {
793        efer_reserved_bits &= ~mask;
794 }
795 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
796
797
798 /*
799  * Writes msr value into into the appropriate "register".
800  * Returns 0 on success, non-0 otherwise.
801  * Assumes vcpu_load() was already called.
802  */
803 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
804 {
805         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
806 }
807
808 /*
809  * Adapt set_msr() to msr_io()'s calling convention
810  */
811 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
812 {
813         return kvm_set_msr(vcpu, index, *data);
814 }
815
816 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
817 {
818         int version;
819         int r;
820         struct pvclock_wall_clock wc;
821         struct timespec boot;
822
823         if (!wall_clock)
824                 return;
825
826         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
827         if (r)
828                 return;
829
830         if (version & 1)
831                 ++version;  /* first time write, random junk */
832
833         ++version;
834
835         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
836
837         /*
838          * The guest calculates current wall clock time by adding
839          * system time (updated by kvm_write_guest_time below) to the
840          * wall clock specified here.  guest system time equals host
841          * system time for us, thus we must fill in host boot time here.
842          */
843         getboottime(&boot);
844
845         wc.sec = boot.tv_sec;
846         wc.nsec = boot.tv_nsec;
847         wc.version = version;
848
849         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
850
851         version++;
852         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
853 }
854
855 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
856 {
857         uint32_t quotient, remainder;
858
859         /* Don't try to replace with do_div(), this one calculates
860          * "(dividend << 32) / divisor" */
861         __asm__ ( "divl %4"
862                   : "=a" (quotient), "=d" (remainder)
863                   : "0" (0), "1" (dividend), "r" (divisor) );
864         return quotient;
865 }
866
867 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
868 {
869         uint64_t nsecs = 1000000000LL;
870         int32_t  shift = 0;
871         uint64_t tps64;
872         uint32_t tps32;
873
874         tps64 = tsc_khz * 1000LL;
875         while (tps64 > nsecs*2) {
876                 tps64 >>= 1;
877                 shift--;
878         }
879
880         tps32 = (uint32_t)tps64;
881         while (tps32 <= (uint32_t)nsecs) {
882                 tps32 <<= 1;
883                 shift++;
884         }
885
886         hv_clock->tsc_shift = shift;
887         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
888
889         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
890                  __func__, tsc_khz, hv_clock->tsc_shift,
891                  hv_clock->tsc_to_system_mul);
892 }
893
894 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
895
896 static void kvm_write_guest_time(struct kvm_vcpu *v)
897 {
898         struct timespec ts;
899         unsigned long flags;
900         struct kvm_vcpu_arch *vcpu = &v->arch;
901         void *shared_kaddr;
902         unsigned long this_tsc_khz;
903
904         if ((!vcpu->time_page))
905                 return;
906
907         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
908         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
909                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
910                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
911         }
912         put_cpu_var(cpu_tsc_khz);
913
914         /* Keep irq disabled to prevent changes to the clock */
915         local_irq_save(flags);
916         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
917         ktime_get_ts(&ts);
918         monotonic_to_bootbased(&ts);
919         local_irq_restore(flags);
920
921         /* With all the info we got, fill in the values */
922
923         vcpu->hv_clock.system_time = ts.tv_nsec +
924                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
925
926         vcpu->hv_clock.flags = 0;
927
928         /*
929          * The interface expects us to write an even number signaling that the
930          * update is finished. Since the guest won't see the intermediate
931          * state, we just increase by 2 at the end.
932          */
933         vcpu->hv_clock.version += 2;
934
935         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
936
937         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
938                sizeof(vcpu->hv_clock));
939
940         kunmap_atomic(shared_kaddr, KM_USER0);
941
942         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
943 }
944
945 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
946 {
947         struct kvm_vcpu_arch *vcpu = &v->arch;
948
949         if (!vcpu->time_page)
950                 return 0;
951         kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
952         return 1;
953 }
954
955 static bool msr_mtrr_valid(unsigned msr)
956 {
957         switch (msr) {
958         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
959         case MSR_MTRRfix64K_00000:
960         case MSR_MTRRfix16K_80000:
961         case MSR_MTRRfix16K_A0000:
962         case MSR_MTRRfix4K_C0000:
963         case MSR_MTRRfix4K_C8000:
964         case MSR_MTRRfix4K_D0000:
965         case MSR_MTRRfix4K_D8000:
966         case MSR_MTRRfix4K_E0000:
967         case MSR_MTRRfix4K_E8000:
968         case MSR_MTRRfix4K_F0000:
969         case MSR_MTRRfix4K_F8000:
970         case MSR_MTRRdefType:
971         case MSR_IA32_CR_PAT:
972                 return true;
973         case 0x2f8:
974                 return true;
975         }
976         return false;
977 }
978
979 static bool valid_pat_type(unsigned t)
980 {
981         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
982 }
983
984 static bool valid_mtrr_type(unsigned t)
985 {
986         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
987 }
988
989 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
990 {
991         int i;
992
993         if (!msr_mtrr_valid(msr))
994                 return false;
995
996         if (msr == MSR_IA32_CR_PAT) {
997                 for (i = 0; i < 8; i++)
998                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
999                                 return false;
1000                 return true;
1001         } else if (msr == MSR_MTRRdefType) {
1002                 if (data & ~0xcff)
1003                         return false;
1004                 return valid_mtrr_type(data & 0xff);
1005         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1006                 for (i = 0; i < 8 ; i++)
1007                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1008                                 return false;
1009                 return true;
1010         }
1011
1012         /* variable MTRRs */
1013         return valid_mtrr_type(data & 0xff);
1014 }
1015
1016 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1017 {
1018         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1019
1020         if (!mtrr_valid(vcpu, msr, data))
1021                 return 1;
1022
1023         if (msr == MSR_MTRRdefType) {
1024                 vcpu->arch.mtrr_state.def_type = data;
1025                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1026         } else if (msr == MSR_MTRRfix64K_00000)
1027                 p[0] = data;
1028         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1029                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1030         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1031                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1032         else if (msr == MSR_IA32_CR_PAT)
1033                 vcpu->arch.pat = data;
1034         else {  /* Variable MTRRs */
1035                 int idx, is_mtrr_mask;
1036                 u64 *pt;
1037
1038                 idx = (msr - 0x200) / 2;
1039                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1040                 if (!is_mtrr_mask)
1041                         pt =
1042                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1043                 else
1044                         pt =
1045                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1046                 *pt = data;
1047         }
1048
1049         kvm_mmu_reset_context(vcpu);
1050         return 0;
1051 }
1052
1053 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1054 {
1055         u64 mcg_cap = vcpu->arch.mcg_cap;
1056         unsigned bank_num = mcg_cap & 0xff;
1057
1058         switch (msr) {
1059         case MSR_IA32_MCG_STATUS:
1060                 vcpu->arch.mcg_status = data;
1061                 break;
1062         case MSR_IA32_MCG_CTL:
1063                 if (!(mcg_cap & MCG_CTL_P))
1064                         return 1;
1065                 if (data != 0 && data != ~(u64)0)
1066                         return -1;
1067                 vcpu->arch.mcg_ctl = data;
1068                 break;
1069         default:
1070                 if (msr >= MSR_IA32_MC0_CTL &&
1071                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1072                         u32 offset = msr - MSR_IA32_MC0_CTL;
1073                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1074                          * some Linux kernels though clear bit 10 in bank 4 to
1075                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1076                          * this to avoid an uncatched #GP in the guest
1077                          */
1078                         if ((offset & 0x3) == 0 &&
1079                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1080                                 return -1;
1081                         vcpu->arch.mce_banks[offset] = data;
1082                         break;
1083                 }
1084                 return 1;
1085         }
1086         return 0;
1087 }
1088
1089 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1090 {
1091         struct kvm *kvm = vcpu->kvm;
1092         int lm = is_long_mode(vcpu);
1093         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1094                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1095         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1096                 : kvm->arch.xen_hvm_config.blob_size_32;
1097         u32 page_num = data & ~PAGE_MASK;
1098         u64 page_addr = data & PAGE_MASK;
1099         u8 *page;
1100         int r;
1101
1102         r = -E2BIG;
1103         if (page_num >= blob_size)
1104                 goto out;
1105         r = -ENOMEM;
1106         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1107         if (!page)
1108                 goto out;
1109         r = -EFAULT;
1110         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1111                 goto out_free;
1112         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1113                 goto out_free;
1114         r = 0;
1115 out_free:
1116         kfree(page);
1117 out:
1118         return r;
1119 }
1120
1121 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1122 {
1123         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1124 }
1125
1126 static bool kvm_hv_msr_partition_wide(u32 msr)
1127 {
1128         bool r = false;
1129         switch (msr) {
1130         case HV_X64_MSR_GUEST_OS_ID:
1131         case HV_X64_MSR_HYPERCALL:
1132                 r = true;
1133                 break;
1134         }
1135
1136         return r;
1137 }
1138
1139 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1140 {
1141         struct kvm *kvm = vcpu->kvm;
1142
1143         switch (msr) {
1144         case HV_X64_MSR_GUEST_OS_ID:
1145                 kvm->arch.hv_guest_os_id = data;
1146                 /* setting guest os id to zero disables hypercall page */
1147                 if (!kvm->arch.hv_guest_os_id)
1148                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1149                 break;
1150         case HV_X64_MSR_HYPERCALL: {
1151                 u64 gfn;
1152                 unsigned long addr;
1153                 u8 instructions[4];
1154
1155                 /* if guest os id is not set hypercall should remain disabled */
1156                 if (!kvm->arch.hv_guest_os_id)
1157                         break;
1158                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1159                         kvm->arch.hv_hypercall = data;
1160                         break;
1161                 }
1162                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1163                 addr = gfn_to_hva(kvm, gfn);
1164                 if (kvm_is_error_hva(addr))
1165                         return 1;
1166                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1167                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1168                 if (copy_to_user((void __user *)addr, instructions, 4))
1169                         return 1;
1170                 kvm->arch.hv_hypercall = data;
1171                 break;
1172         }
1173         default:
1174                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1175                           "data 0x%llx\n", msr, data);
1176                 return 1;
1177         }
1178         return 0;
1179 }
1180
1181 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1182 {
1183         switch (msr) {
1184         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1185                 unsigned long addr;
1186
1187                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1188                         vcpu->arch.hv_vapic = data;
1189                         break;
1190                 }
1191                 addr = gfn_to_hva(vcpu->kvm, data >>
1192                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1193                 if (kvm_is_error_hva(addr))
1194                         return 1;
1195                 if (clear_user((void __user *)addr, PAGE_SIZE))
1196                         return 1;
1197                 vcpu->arch.hv_vapic = data;
1198                 break;
1199         }
1200         case HV_X64_MSR_EOI:
1201                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1202         case HV_X64_MSR_ICR:
1203                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1204         case HV_X64_MSR_TPR:
1205                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1206         default:
1207                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1208                           "data 0x%llx\n", msr, data);
1209                 return 1;
1210         }
1211
1212         return 0;
1213 }
1214
1215 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1216 {
1217         switch (msr) {
1218         case MSR_EFER:
1219                 return set_efer(vcpu, data);
1220         case MSR_K7_HWCR:
1221                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1222                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1223                 if (data != 0) {
1224                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1225                                 data);
1226                         return 1;
1227                 }
1228                 break;
1229         case MSR_FAM10H_MMIO_CONF_BASE:
1230                 if (data != 0) {
1231                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1232                                 "0x%llx\n", data);
1233                         return 1;
1234                 }
1235                 break;
1236         case MSR_AMD64_NB_CFG:
1237                 break;
1238         case MSR_IA32_DEBUGCTLMSR:
1239                 if (!data) {
1240                         /* We support the non-activated case already */
1241                         break;
1242                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1243                         /* Values other than LBR and BTF are vendor-specific,
1244                            thus reserved and should throw a #GP */
1245                         return 1;
1246                 }
1247                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1248                         __func__, data);
1249                 break;
1250         case MSR_IA32_UCODE_REV:
1251         case MSR_IA32_UCODE_WRITE:
1252         case MSR_VM_HSAVE_PA:
1253         case MSR_AMD64_PATCH_LOADER:
1254                 break;
1255         case 0x200 ... 0x2ff:
1256                 return set_msr_mtrr(vcpu, msr, data);
1257         case MSR_IA32_APICBASE:
1258                 kvm_set_apic_base(vcpu, data);
1259                 break;
1260         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1261                 return kvm_x2apic_msr_write(vcpu, msr, data);
1262         case MSR_IA32_MISC_ENABLE:
1263                 vcpu->arch.ia32_misc_enable_msr = data;
1264                 break;
1265         case MSR_KVM_WALL_CLOCK_NEW:
1266         case MSR_KVM_WALL_CLOCK:
1267                 vcpu->kvm->arch.wall_clock = data;
1268                 kvm_write_wall_clock(vcpu->kvm, data);
1269                 break;
1270         case MSR_KVM_SYSTEM_TIME_NEW:
1271         case MSR_KVM_SYSTEM_TIME: {
1272                 if (vcpu->arch.time_page) {
1273                         kvm_release_page_dirty(vcpu->arch.time_page);
1274                         vcpu->arch.time_page = NULL;
1275                 }
1276
1277                 vcpu->arch.time = data;
1278
1279                 /* we verify if the enable bit is set... */
1280                 if (!(data & 1))
1281                         break;
1282
1283                 /* ...but clean it before doing the actual write */
1284                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1285
1286                 vcpu->arch.time_page =
1287                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1288
1289                 if (is_error_page(vcpu->arch.time_page)) {
1290                         kvm_release_page_clean(vcpu->arch.time_page);
1291                         vcpu->arch.time_page = NULL;
1292                 }
1293
1294                 kvm_request_guest_time_update(vcpu);
1295                 break;
1296         }
1297         case MSR_IA32_MCG_CTL:
1298         case MSR_IA32_MCG_STATUS:
1299         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1300                 return set_msr_mce(vcpu, msr, data);
1301
1302         /* Performance counters are not protected by a CPUID bit,
1303          * so we should check all of them in the generic path for the sake of
1304          * cross vendor migration.
1305          * Writing a zero into the event select MSRs disables them,
1306          * which we perfectly emulate ;-). Any other value should be at least
1307          * reported, some guests depend on them.
1308          */
1309         case MSR_P6_EVNTSEL0:
1310         case MSR_P6_EVNTSEL1:
1311         case MSR_K7_EVNTSEL0:
1312         case MSR_K7_EVNTSEL1:
1313         case MSR_K7_EVNTSEL2:
1314         case MSR_K7_EVNTSEL3:
1315                 if (data != 0)
1316                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1317                                 "0x%x data 0x%llx\n", msr, data);
1318                 break;
1319         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1320          * so we ignore writes to make it happy.
1321          */
1322         case MSR_P6_PERFCTR0:
1323         case MSR_P6_PERFCTR1:
1324         case MSR_K7_PERFCTR0:
1325         case MSR_K7_PERFCTR1:
1326         case MSR_K7_PERFCTR2:
1327         case MSR_K7_PERFCTR3:
1328                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1329                         "0x%x data 0x%llx\n", msr, data);
1330                 break;
1331         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1332                 if (kvm_hv_msr_partition_wide(msr)) {
1333                         int r;
1334                         mutex_lock(&vcpu->kvm->lock);
1335                         r = set_msr_hyperv_pw(vcpu, msr, data);
1336                         mutex_unlock(&vcpu->kvm->lock);
1337                         return r;
1338                 } else
1339                         return set_msr_hyperv(vcpu, msr, data);
1340                 break;
1341         default:
1342                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1343                         return xen_hvm_config(vcpu, data);
1344                 if (!ignore_msrs) {
1345                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1346                                 msr, data);
1347                         return 1;
1348                 } else {
1349                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1350                                 msr, data);
1351                         break;
1352                 }
1353         }
1354         return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1357
1358
1359 /*
1360  * Reads an msr value (of 'msr_index') into 'pdata'.
1361  * Returns 0 on success, non-0 otherwise.
1362  * Assumes vcpu_load() was already called.
1363  */
1364 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1365 {
1366         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1367 }
1368
1369 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1370 {
1371         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1372
1373         if (!msr_mtrr_valid(msr))
1374                 return 1;
1375
1376         if (msr == MSR_MTRRdefType)
1377                 *pdata = vcpu->arch.mtrr_state.def_type +
1378                          (vcpu->arch.mtrr_state.enabled << 10);
1379         else if (msr == MSR_MTRRfix64K_00000)
1380                 *pdata = p[0];
1381         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1382                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1383         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1384                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1385         else if (msr == MSR_IA32_CR_PAT)
1386                 *pdata = vcpu->arch.pat;
1387         else {  /* Variable MTRRs */
1388                 int idx, is_mtrr_mask;
1389                 u64 *pt;
1390
1391                 idx = (msr - 0x200) / 2;
1392                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1393                 if (!is_mtrr_mask)
1394                         pt =
1395                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1396                 else
1397                         pt =
1398                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1399                 *pdata = *pt;
1400         }
1401
1402         return 0;
1403 }
1404
1405 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1406 {
1407         u64 data;
1408         u64 mcg_cap = vcpu->arch.mcg_cap;
1409         unsigned bank_num = mcg_cap & 0xff;
1410
1411         switch (msr) {
1412         case MSR_IA32_P5_MC_ADDR:
1413         case MSR_IA32_P5_MC_TYPE:
1414                 data = 0;
1415                 break;
1416         case MSR_IA32_MCG_CAP:
1417                 data = vcpu->arch.mcg_cap;
1418                 break;
1419         case MSR_IA32_MCG_CTL:
1420                 if (!(mcg_cap & MCG_CTL_P))
1421                         return 1;
1422                 data = vcpu->arch.mcg_ctl;
1423                 break;
1424         case MSR_IA32_MCG_STATUS:
1425                 data = vcpu->arch.mcg_status;
1426                 break;
1427         default:
1428                 if (msr >= MSR_IA32_MC0_CTL &&
1429                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1430                         u32 offset = msr - MSR_IA32_MC0_CTL;
1431                         data = vcpu->arch.mce_banks[offset];
1432                         break;
1433                 }
1434                 return 1;
1435         }
1436         *pdata = data;
1437         return 0;
1438 }
1439
1440 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1441 {
1442         u64 data = 0;
1443         struct kvm *kvm = vcpu->kvm;
1444
1445         switch (msr) {
1446         case HV_X64_MSR_GUEST_OS_ID:
1447                 data = kvm->arch.hv_guest_os_id;
1448                 break;
1449         case HV_X64_MSR_HYPERCALL:
1450                 data = kvm->arch.hv_hypercall;
1451                 break;
1452         default:
1453                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1454                 return 1;
1455         }
1456
1457         *pdata = data;
1458         return 0;
1459 }
1460
1461 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1462 {
1463         u64 data = 0;
1464
1465         switch (msr) {
1466         case HV_X64_MSR_VP_INDEX: {
1467                 int r;
1468                 struct kvm_vcpu *v;
1469                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1470                         if (v == vcpu)
1471                                 data = r;
1472                 break;
1473         }
1474         case HV_X64_MSR_EOI:
1475                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1476         case HV_X64_MSR_ICR:
1477                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1478         case HV_X64_MSR_TPR:
1479                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1480         default:
1481                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1482                 return 1;
1483         }
1484         *pdata = data;
1485         return 0;
1486 }
1487
1488 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1489 {
1490         u64 data;
1491
1492         switch (msr) {
1493         case MSR_IA32_PLATFORM_ID:
1494         case MSR_IA32_UCODE_REV:
1495         case MSR_IA32_EBL_CR_POWERON:
1496         case MSR_IA32_DEBUGCTLMSR:
1497         case MSR_IA32_LASTBRANCHFROMIP:
1498         case MSR_IA32_LASTBRANCHTOIP:
1499         case MSR_IA32_LASTINTFROMIP:
1500         case MSR_IA32_LASTINTTOIP:
1501         case MSR_K8_SYSCFG:
1502         case MSR_K7_HWCR:
1503         case MSR_VM_HSAVE_PA:
1504         case MSR_P6_PERFCTR0:
1505         case MSR_P6_PERFCTR1:
1506         case MSR_P6_EVNTSEL0:
1507         case MSR_P6_EVNTSEL1:
1508         case MSR_K7_EVNTSEL0:
1509         case MSR_K7_PERFCTR0:
1510         case MSR_K8_INT_PENDING_MSG:
1511         case MSR_AMD64_NB_CFG:
1512         case MSR_FAM10H_MMIO_CONF_BASE:
1513                 data = 0;
1514                 break;
1515         case MSR_MTRRcap:
1516                 data = 0x500 | KVM_NR_VAR_MTRR;
1517                 break;
1518         case 0x200 ... 0x2ff:
1519                 return get_msr_mtrr(vcpu, msr, pdata);
1520         case 0xcd: /* fsb frequency */
1521                 data = 3;
1522                 break;
1523         case MSR_IA32_APICBASE:
1524                 data = kvm_get_apic_base(vcpu);
1525                 break;
1526         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1527                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1528                 break;
1529         case MSR_IA32_MISC_ENABLE:
1530                 data = vcpu->arch.ia32_misc_enable_msr;
1531                 break;
1532         case MSR_IA32_PERF_STATUS:
1533                 /* TSC increment by tick */
1534                 data = 1000ULL;
1535                 /* CPU multiplier */
1536                 data |= (((uint64_t)4ULL) << 40);
1537                 break;
1538         case MSR_EFER:
1539                 data = vcpu->arch.efer;
1540                 break;
1541         case MSR_KVM_WALL_CLOCK:
1542         case MSR_KVM_WALL_CLOCK_NEW:
1543                 data = vcpu->kvm->arch.wall_clock;
1544                 break;
1545         case MSR_KVM_SYSTEM_TIME:
1546         case MSR_KVM_SYSTEM_TIME_NEW:
1547                 data = vcpu->arch.time;
1548                 break;
1549         case MSR_IA32_P5_MC_ADDR:
1550         case MSR_IA32_P5_MC_TYPE:
1551         case MSR_IA32_MCG_CAP:
1552         case MSR_IA32_MCG_CTL:
1553         case MSR_IA32_MCG_STATUS:
1554         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1555                 return get_msr_mce(vcpu, msr, pdata);
1556         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1557                 if (kvm_hv_msr_partition_wide(msr)) {
1558                         int r;
1559                         mutex_lock(&vcpu->kvm->lock);
1560                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1561                         mutex_unlock(&vcpu->kvm->lock);
1562                         return r;
1563                 } else
1564                         return get_msr_hyperv(vcpu, msr, pdata);
1565                 break;
1566         default:
1567                 if (!ignore_msrs) {
1568                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1569                         return 1;
1570                 } else {
1571                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1572                         data = 0;
1573                 }
1574                 break;
1575         }
1576         *pdata = data;
1577         return 0;
1578 }
1579 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1580
1581 /*
1582  * Read or write a bunch of msrs. All parameters are kernel addresses.
1583  *
1584  * @return number of msrs set successfully.
1585  */
1586 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1587                     struct kvm_msr_entry *entries,
1588                     int (*do_msr)(struct kvm_vcpu *vcpu,
1589                                   unsigned index, u64 *data))
1590 {
1591         int i, idx;
1592
1593         idx = srcu_read_lock(&vcpu->kvm->srcu);
1594         for (i = 0; i < msrs->nmsrs; ++i)
1595                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1596                         break;
1597         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1598
1599         return i;
1600 }
1601
1602 /*
1603  * Read or write a bunch of msrs. Parameters are user addresses.
1604  *
1605  * @return number of msrs set successfully.
1606  */
1607 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1608                   int (*do_msr)(struct kvm_vcpu *vcpu,
1609                                 unsigned index, u64 *data),
1610                   int writeback)
1611 {
1612         struct kvm_msrs msrs;
1613         struct kvm_msr_entry *entries;
1614         int r, n;
1615         unsigned size;
1616
1617         r = -EFAULT;
1618         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1619                 goto out;
1620
1621         r = -E2BIG;
1622         if (msrs.nmsrs >= MAX_IO_MSRS)
1623                 goto out;
1624
1625         r = -ENOMEM;
1626         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1627         entries = kmalloc(size, GFP_KERNEL);
1628         if (!entries)
1629                 goto out;
1630
1631         r = -EFAULT;
1632         if (copy_from_user(entries, user_msrs->entries, size))
1633                 goto out_free;
1634
1635         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1636         if (r < 0)
1637                 goto out_free;
1638
1639         r = -EFAULT;
1640         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1641                 goto out_free;
1642
1643         r = n;
1644
1645 out_free:
1646         kfree(entries);
1647 out:
1648         return r;
1649 }
1650
1651 int kvm_dev_ioctl_check_extension(long ext)
1652 {
1653         int r;
1654
1655         switch (ext) {
1656         case KVM_CAP_IRQCHIP:
1657         case KVM_CAP_HLT:
1658         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1659         case KVM_CAP_SET_TSS_ADDR:
1660         case KVM_CAP_EXT_CPUID:
1661         case KVM_CAP_CLOCKSOURCE:
1662         case KVM_CAP_PIT:
1663         case KVM_CAP_NOP_IO_DELAY:
1664         case KVM_CAP_MP_STATE:
1665         case KVM_CAP_SYNC_MMU:
1666         case KVM_CAP_REINJECT_CONTROL:
1667         case KVM_CAP_IRQ_INJECT_STATUS:
1668         case KVM_CAP_ASSIGN_DEV_IRQ:
1669         case KVM_CAP_IRQFD:
1670         case KVM_CAP_IOEVENTFD:
1671         case KVM_CAP_PIT2:
1672         case KVM_CAP_PIT_STATE2:
1673         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1674         case KVM_CAP_XEN_HVM:
1675         case KVM_CAP_ADJUST_CLOCK:
1676         case KVM_CAP_VCPU_EVENTS:
1677         case KVM_CAP_HYPERV:
1678         case KVM_CAP_HYPERV_VAPIC:
1679         case KVM_CAP_HYPERV_SPIN:
1680         case KVM_CAP_PCI_SEGMENT:
1681         case KVM_CAP_DEBUGREGS:
1682         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1683         case KVM_CAP_XSAVE:
1684                 r = 1;
1685                 break;
1686         case KVM_CAP_COALESCED_MMIO:
1687                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1688                 break;
1689         case KVM_CAP_VAPIC:
1690                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1691                 break;
1692         case KVM_CAP_NR_VCPUS:
1693                 r = KVM_MAX_VCPUS;
1694                 break;
1695         case KVM_CAP_NR_MEMSLOTS:
1696                 r = KVM_MEMORY_SLOTS;
1697                 break;
1698         case KVM_CAP_PV_MMU:    /* obsolete */
1699                 r = 0;
1700                 break;
1701         case KVM_CAP_IOMMU:
1702                 r = iommu_found();
1703                 break;
1704         case KVM_CAP_MCE:
1705                 r = KVM_MAX_MCE_BANKS;
1706                 break;
1707         case KVM_CAP_XCRS:
1708                 r = cpu_has_xsave;
1709                 break;
1710         default:
1711                 r = 0;
1712                 break;
1713         }
1714         return r;
1715
1716 }
1717
1718 long kvm_arch_dev_ioctl(struct file *filp,
1719                         unsigned int ioctl, unsigned long arg)
1720 {
1721         void __user *argp = (void __user *)arg;
1722         long r;
1723
1724         switch (ioctl) {
1725         case KVM_GET_MSR_INDEX_LIST: {
1726                 struct kvm_msr_list __user *user_msr_list = argp;
1727                 struct kvm_msr_list msr_list;
1728                 unsigned n;
1729
1730                 r = -EFAULT;
1731                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1732                         goto out;
1733                 n = msr_list.nmsrs;
1734                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1735                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1736                         goto out;
1737                 r = -E2BIG;
1738                 if (n < msr_list.nmsrs)
1739                         goto out;
1740                 r = -EFAULT;
1741                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1742                                  num_msrs_to_save * sizeof(u32)))
1743                         goto out;
1744                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1745                                  &emulated_msrs,
1746                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1747                         goto out;
1748                 r = 0;
1749                 break;
1750         }
1751         case KVM_GET_SUPPORTED_CPUID: {
1752                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1753                 struct kvm_cpuid2 cpuid;
1754
1755                 r = -EFAULT;
1756                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1757                         goto out;
1758                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1759                                                       cpuid_arg->entries);
1760                 if (r)
1761                         goto out;
1762
1763                 r = -EFAULT;
1764                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1765                         goto out;
1766                 r = 0;
1767                 break;
1768         }
1769         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1770                 u64 mce_cap;
1771
1772                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1773                 r = -EFAULT;
1774                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1775                         goto out;
1776                 r = 0;
1777                 break;
1778         }
1779         default:
1780                 r = -EINVAL;
1781         }
1782 out:
1783         return r;
1784 }
1785
1786 static void wbinvd_ipi(void *garbage)
1787 {
1788         wbinvd();
1789 }
1790
1791 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
1792 {
1793         return vcpu->kvm->arch.iommu_domain &&
1794                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
1795 }
1796
1797 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1798 {
1799         /* Address WBINVD may be executed by guest */
1800         if (need_emulate_wbinvd(vcpu)) {
1801                 if (kvm_x86_ops->has_wbinvd_exit())
1802                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
1803                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
1804                         smp_call_function_single(vcpu->cpu,
1805                                         wbinvd_ipi, NULL, 1);
1806         }
1807
1808         kvm_x86_ops->vcpu_load(vcpu, cpu);
1809         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1810                 unsigned long khz = cpufreq_quick_get(cpu);
1811                 if (!khz)
1812                         khz = tsc_khz;
1813                 per_cpu(cpu_tsc_khz, cpu) = khz;
1814         }
1815         kvm_request_guest_time_update(vcpu);
1816 }
1817
1818 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1819 {
1820         kvm_x86_ops->vcpu_put(vcpu);
1821         kvm_put_guest_fpu(vcpu);
1822 }
1823
1824 static int is_efer_nx(void)
1825 {
1826         unsigned long long efer = 0;
1827
1828         rdmsrl_safe(MSR_EFER, &efer);
1829         return efer & EFER_NX;
1830 }
1831
1832 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1833 {
1834         int i;
1835         struct kvm_cpuid_entry2 *e, *entry;
1836
1837         entry = NULL;
1838         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1839                 e = &vcpu->arch.cpuid_entries[i];
1840                 if (e->function == 0x80000001) {
1841                         entry = e;
1842                         break;
1843                 }
1844         }
1845         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1846                 entry->edx &= ~(1 << 20);
1847                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1848         }
1849 }
1850
1851 /* when an old userspace process fills a new kernel module */
1852 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1853                                     struct kvm_cpuid *cpuid,
1854                                     struct kvm_cpuid_entry __user *entries)
1855 {
1856         int r, i;
1857         struct kvm_cpuid_entry *cpuid_entries;
1858
1859         r = -E2BIG;
1860         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1861                 goto out;
1862         r = -ENOMEM;
1863         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1864         if (!cpuid_entries)
1865                 goto out;
1866         r = -EFAULT;
1867         if (copy_from_user(cpuid_entries, entries,
1868                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1869                 goto out_free;
1870         for (i = 0; i < cpuid->nent; i++) {
1871                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1872                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1873                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1874                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1875                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1876                 vcpu->arch.cpuid_entries[i].index = 0;
1877                 vcpu->arch.cpuid_entries[i].flags = 0;
1878                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1879                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1880                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1881         }
1882         vcpu->arch.cpuid_nent = cpuid->nent;
1883         cpuid_fix_nx_cap(vcpu);
1884         r = 0;
1885         kvm_apic_set_version(vcpu);
1886         kvm_x86_ops->cpuid_update(vcpu);
1887         update_cpuid(vcpu);
1888
1889 out_free:
1890         vfree(cpuid_entries);
1891 out:
1892         return r;
1893 }
1894
1895 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1896                                      struct kvm_cpuid2 *cpuid,
1897                                      struct kvm_cpuid_entry2 __user *entries)
1898 {
1899         int r;
1900
1901         r = -E2BIG;
1902         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1903                 goto out;
1904         r = -EFAULT;
1905         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1906                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1907                 goto out;
1908         vcpu->arch.cpuid_nent = cpuid->nent;
1909         kvm_apic_set_version(vcpu);
1910         kvm_x86_ops->cpuid_update(vcpu);
1911         update_cpuid(vcpu);
1912         return 0;
1913
1914 out:
1915         return r;
1916 }
1917
1918 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1919                                      struct kvm_cpuid2 *cpuid,
1920                                      struct kvm_cpuid_entry2 __user *entries)
1921 {
1922         int r;
1923
1924         r = -E2BIG;
1925         if (cpuid->nent < vcpu->arch.cpuid_nent)
1926                 goto out;
1927         r = -EFAULT;
1928         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1929                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1930                 goto out;
1931         return 0;
1932
1933 out:
1934         cpuid->nent = vcpu->arch.cpuid_nent;
1935         return r;
1936 }
1937
1938 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1939                            u32 index)
1940 {
1941         entry->function = function;
1942         entry->index = index;
1943         cpuid_count(entry->function, entry->index,
1944                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1945         entry->flags = 0;
1946 }
1947
1948 #define F(x) bit(X86_FEATURE_##x)
1949
1950 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1951                          u32 index, int *nent, int maxnent)
1952 {
1953         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1954 #ifdef CONFIG_X86_64
1955         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1956                                 ? F(GBPAGES) : 0;
1957         unsigned f_lm = F(LM);
1958 #else
1959         unsigned f_gbpages = 0;
1960         unsigned f_lm = 0;
1961 #endif
1962         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1963
1964         /* cpuid 1.edx */
1965         const u32 kvm_supported_word0_x86_features =
1966                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1967                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1968                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1969                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1970                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1971                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1972                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1973                 0 /* HTT, TM, Reserved, PBE */;
1974         /* cpuid 0x80000001.edx */
1975         const u32 kvm_supported_word1_x86_features =
1976                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1977                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1978                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1979                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1980                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1981                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1982                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1983                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1984         /* cpuid 1.ecx */
1985         const u32 kvm_supported_word4_x86_features =
1986                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
1987                 0 /* DS-CPL, VMX, SMX, EST */ |
1988                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1989                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1990                 0 /* Reserved, DCA */ | F(XMM4_1) |
1991                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1992                 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
1993         /* cpuid 0x80000001.ecx */
1994         const u32 kvm_supported_word6_x86_features =
1995                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1996                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1997                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1998                 0 /* SKINIT */ | 0 /* WDT */;
1999
2000         /* all calls to cpuid_count() should be made on the same cpu */
2001         get_cpu();
2002         do_cpuid_1_ent(entry, function, index);
2003         ++*nent;
2004
2005         switch (function) {
2006         case 0:
2007                 entry->eax = min(entry->eax, (u32)0xd);
2008                 break;
2009         case 1:
2010                 entry->edx &= kvm_supported_word0_x86_features;
2011                 entry->ecx &= kvm_supported_word4_x86_features;
2012                 /* we support x2apic emulation even if host does not support
2013                  * it since we emulate x2apic in software */
2014                 entry->ecx |= F(X2APIC);
2015                 break;
2016         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2017          * may return different values. This forces us to get_cpu() before
2018          * issuing the first command, and also to emulate this annoying behavior
2019          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2020         case 2: {
2021                 int t, times = entry->eax & 0xff;
2022
2023                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2024                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2025                 for (t = 1; t < times && *nent < maxnent; ++t) {
2026                         do_cpuid_1_ent(&entry[t], function, 0);
2027                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2028                         ++*nent;
2029                 }
2030                 break;
2031         }
2032         /* function 4 and 0xb have additional index. */
2033         case 4: {
2034                 int i, cache_type;
2035
2036                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2037                 /* read more entries until cache_type is zero */
2038                 for (i = 1; *nent < maxnent; ++i) {
2039                         cache_type = entry[i - 1].eax & 0x1f;
2040                         if (!cache_type)
2041                                 break;
2042                         do_cpuid_1_ent(&entry[i], function, i);
2043                         entry[i].flags |=
2044                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2045                         ++*nent;
2046                 }
2047                 break;
2048         }
2049         case 0xb: {
2050                 int i, level_type;
2051
2052                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2053                 /* read more entries until level_type is zero */
2054                 for (i = 1; *nent < maxnent; ++i) {
2055                         level_type = entry[i - 1].ecx & 0xff00;
2056                         if (!level_type)
2057                                 break;
2058                         do_cpuid_1_ent(&entry[i], function, i);
2059                         entry[i].flags |=
2060                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2061                         ++*nent;
2062                 }
2063                 break;
2064         }
2065         case 0xd: {
2066                 int i;
2067
2068                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2069                 for (i = 1; *nent < maxnent; ++i) {
2070                         if (entry[i - 1].eax == 0 && i != 2)
2071                                 break;
2072                         do_cpuid_1_ent(&entry[i], function, i);
2073                         entry[i].flags |=
2074                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2075                         ++*nent;
2076                 }
2077                 break;
2078         }
2079         case KVM_CPUID_SIGNATURE: {
2080                 char signature[12] = "KVMKVMKVM\0\0";
2081                 u32 *sigptr = (u32 *)signature;
2082                 entry->eax = 0;
2083                 entry->ebx = sigptr[0];
2084                 entry->ecx = sigptr[1];
2085                 entry->edx = sigptr[2];
2086                 break;
2087         }
2088         case KVM_CPUID_FEATURES:
2089                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2090                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2091                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2092                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2093                 entry->ebx = 0;
2094                 entry->ecx = 0;
2095                 entry->edx = 0;
2096                 break;
2097         case 0x80000000:
2098                 entry->eax = min(entry->eax, 0x8000001a);
2099                 break;
2100         case 0x80000001:
2101                 entry->edx &= kvm_supported_word1_x86_features;
2102                 entry->ecx &= kvm_supported_word6_x86_features;
2103                 break;
2104         }
2105
2106         kvm_x86_ops->set_supported_cpuid(function, entry);
2107
2108         put_cpu();
2109 }
2110
2111 #undef F
2112
2113 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2114                                      struct kvm_cpuid_entry2 __user *entries)
2115 {
2116         struct kvm_cpuid_entry2 *cpuid_entries;
2117         int limit, nent = 0, r = -E2BIG;
2118         u32 func;
2119
2120         if (cpuid->nent < 1)
2121                 goto out;
2122         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2123                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2124         r = -ENOMEM;
2125         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2126         if (!cpuid_entries)
2127                 goto out;
2128
2129         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2130         limit = cpuid_entries[0].eax;
2131         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2132                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2133                              &nent, cpuid->nent);
2134         r = -E2BIG;
2135         if (nent >= cpuid->nent)
2136                 goto out_free;
2137
2138         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2139         limit = cpuid_entries[nent - 1].eax;
2140         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2141                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2142                              &nent, cpuid->nent);
2143
2144
2145
2146         r = -E2BIG;
2147         if (nent >= cpuid->nent)
2148                 goto out_free;
2149
2150         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2151                      cpuid->nent);
2152
2153         r = -E2BIG;
2154         if (nent >= cpuid->nent)
2155                 goto out_free;
2156
2157         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2158                      cpuid->nent);
2159
2160         r = -E2BIG;
2161         if (nent >= cpuid->nent)
2162                 goto out_free;
2163
2164         r = -EFAULT;
2165         if (copy_to_user(entries, cpuid_entries,
2166                          nent * sizeof(struct kvm_cpuid_entry2)))
2167                 goto out_free;
2168         cpuid->nent = nent;
2169         r = 0;
2170
2171 out_free:
2172         vfree(cpuid_entries);
2173 out:
2174         return r;
2175 }
2176
2177 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2178                                     struct kvm_lapic_state *s)
2179 {
2180         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2181
2182         return 0;
2183 }
2184
2185 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2186                                     struct kvm_lapic_state *s)
2187 {
2188         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2189         kvm_apic_post_state_restore(vcpu);
2190         update_cr8_intercept(vcpu);
2191
2192         return 0;
2193 }
2194
2195 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2196                                     struct kvm_interrupt *irq)
2197 {
2198         if (irq->irq < 0 || irq->irq >= 256)
2199                 return -EINVAL;
2200         if (irqchip_in_kernel(vcpu->kvm))
2201                 return -ENXIO;
2202
2203         kvm_queue_interrupt(vcpu, irq->irq, false);
2204
2205         return 0;
2206 }
2207
2208 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2209 {
2210         kvm_inject_nmi(vcpu);
2211
2212         return 0;
2213 }
2214
2215 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2216                                            struct kvm_tpr_access_ctl *tac)
2217 {
2218         if (tac->flags)
2219                 return -EINVAL;
2220         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2221         return 0;
2222 }
2223
2224 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2225                                         u64 mcg_cap)
2226 {
2227         int r;
2228         unsigned bank_num = mcg_cap & 0xff, bank;
2229
2230         r = -EINVAL;
2231         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2232                 goto out;
2233         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2234                 goto out;
2235         r = 0;
2236         vcpu->arch.mcg_cap = mcg_cap;
2237         /* Init IA32_MCG_CTL to all 1s */
2238         if (mcg_cap & MCG_CTL_P)
2239                 vcpu->arch.mcg_ctl = ~(u64)0;
2240         /* Init IA32_MCi_CTL to all 1s */
2241         for (bank = 0; bank < bank_num; bank++)
2242                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2243 out:
2244         return r;
2245 }
2246
2247 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2248                                       struct kvm_x86_mce *mce)
2249 {
2250         u64 mcg_cap = vcpu->arch.mcg_cap;
2251         unsigned bank_num = mcg_cap & 0xff;
2252         u64 *banks = vcpu->arch.mce_banks;
2253
2254         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2255                 return -EINVAL;
2256         /*
2257          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2258          * reporting is disabled
2259          */
2260         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2261             vcpu->arch.mcg_ctl != ~(u64)0)
2262                 return 0;
2263         banks += 4 * mce->bank;
2264         /*
2265          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2266          * reporting is disabled for the bank
2267          */
2268         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2269                 return 0;
2270         if (mce->status & MCI_STATUS_UC) {
2271                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2272                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2273                         printk(KERN_DEBUG "kvm: set_mce: "
2274                                "injects mce exception while "
2275                                "previous one is in progress!\n");
2276                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2277                         return 0;
2278                 }
2279                 if (banks[1] & MCI_STATUS_VAL)
2280                         mce->status |= MCI_STATUS_OVER;
2281                 banks[2] = mce->addr;
2282                 banks[3] = mce->misc;
2283                 vcpu->arch.mcg_status = mce->mcg_status;
2284                 banks[1] = mce->status;
2285                 kvm_queue_exception(vcpu, MC_VECTOR);
2286         } else if (!(banks[1] & MCI_STATUS_VAL)
2287                    || !(banks[1] & MCI_STATUS_UC)) {
2288                 if (banks[1] & MCI_STATUS_VAL)
2289                         mce->status |= MCI_STATUS_OVER;
2290                 banks[2] = mce->addr;
2291                 banks[3] = mce->misc;
2292                 banks[1] = mce->status;
2293         } else
2294                 banks[1] |= MCI_STATUS_OVER;
2295         return 0;
2296 }
2297
2298 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2299                                                struct kvm_vcpu_events *events)
2300 {
2301         events->exception.injected =
2302                 vcpu->arch.exception.pending &&
2303                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2304         events->exception.nr = vcpu->arch.exception.nr;
2305         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2306         events->exception.error_code = vcpu->arch.exception.error_code;
2307
2308         events->interrupt.injected =
2309                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2310         events->interrupt.nr = vcpu->arch.interrupt.nr;
2311         events->interrupt.soft = 0;
2312         events->interrupt.shadow =
2313                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2314                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2315
2316         events->nmi.injected = vcpu->arch.nmi_injected;
2317         events->nmi.pending = vcpu->arch.nmi_pending;
2318         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2319
2320         events->sipi_vector = vcpu->arch.sipi_vector;
2321
2322         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2323                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2324                          | KVM_VCPUEVENT_VALID_SHADOW);
2325 }
2326
2327 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2328                                               struct kvm_vcpu_events *events)
2329 {
2330         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2331                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2332                               | KVM_VCPUEVENT_VALID_SHADOW))
2333                 return -EINVAL;
2334
2335         vcpu->arch.exception.pending = events->exception.injected;
2336         vcpu->arch.exception.nr = events->exception.nr;
2337         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2338         vcpu->arch.exception.error_code = events->exception.error_code;
2339
2340         vcpu->arch.interrupt.pending = events->interrupt.injected;
2341         vcpu->arch.interrupt.nr = events->interrupt.nr;
2342         vcpu->arch.interrupt.soft = events->interrupt.soft;
2343         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2344                 kvm_pic_clear_isr_ack(vcpu->kvm);
2345         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2346                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2347                                                   events->interrupt.shadow);
2348
2349         vcpu->arch.nmi_injected = events->nmi.injected;
2350         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2351                 vcpu->arch.nmi_pending = events->nmi.pending;
2352         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2353
2354         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2355                 vcpu->arch.sipi_vector = events->sipi_vector;
2356
2357         return 0;
2358 }
2359
2360 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2361                                              struct kvm_debugregs *dbgregs)
2362 {
2363         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2364         dbgregs->dr6 = vcpu->arch.dr6;
2365         dbgregs->dr7 = vcpu->arch.dr7;
2366         dbgregs->flags = 0;
2367 }
2368
2369 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2370                                             struct kvm_debugregs *dbgregs)
2371 {
2372         if (dbgregs->flags)
2373                 return -EINVAL;
2374
2375         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2376         vcpu->arch.dr6 = dbgregs->dr6;
2377         vcpu->arch.dr7 = dbgregs->dr7;
2378
2379         return 0;
2380 }
2381
2382 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2383                                          struct kvm_xsave *guest_xsave)
2384 {
2385         if (cpu_has_xsave)
2386                 memcpy(guest_xsave->region,
2387                         &vcpu->arch.guest_fpu.state->xsave,
2388                         sizeof(struct xsave_struct));
2389         else {
2390                 memcpy(guest_xsave->region,
2391                         &vcpu->arch.guest_fpu.state->fxsave,
2392                         sizeof(struct i387_fxsave_struct));
2393                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2394                         XSTATE_FPSSE;
2395         }
2396 }
2397
2398 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2399                                         struct kvm_xsave *guest_xsave)
2400 {
2401         u64 xstate_bv =
2402                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2403
2404         if (cpu_has_xsave)
2405                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2406                         guest_xsave->region, sizeof(struct xsave_struct));
2407         else {
2408                 if (xstate_bv & ~XSTATE_FPSSE)
2409                         return -EINVAL;
2410                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2411                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2412         }
2413         return 0;
2414 }
2415
2416 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2417                                         struct kvm_xcrs *guest_xcrs)
2418 {
2419         if (!cpu_has_xsave) {
2420                 guest_xcrs->nr_xcrs = 0;
2421                 return;
2422         }
2423
2424         guest_xcrs->nr_xcrs = 1;
2425         guest_xcrs->flags = 0;
2426         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2427         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2428 }
2429
2430 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2431                                        struct kvm_xcrs *guest_xcrs)
2432 {
2433         int i, r = 0;
2434
2435         if (!cpu_has_xsave)
2436                 return -EINVAL;
2437
2438         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2439                 return -EINVAL;
2440
2441         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2442                 /* Only support XCR0 currently */
2443                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2444                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2445                                 guest_xcrs->xcrs[0].value);
2446                         break;
2447                 }
2448         if (r)
2449                 r = -EINVAL;
2450         return r;
2451 }
2452
2453 long kvm_arch_vcpu_ioctl(struct file *filp,
2454                          unsigned int ioctl, unsigned long arg)
2455 {
2456         struct kvm_vcpu *vcpu = filp->private_data;
2457         void __user *argp = (void __user *)arg;
2458         int r;
2459         union {
2460                 struct kvm_lapic_state *lapic;
2461                 struct kvm_xsave *xsave;
2462                 struct kvm_xcrs *xcrs;
2463                 void *buffer;
2464         } u;
2465
2466         u.buffer = NULL;
2467         switch (ioctl) {
2468         case KVM_GET_LAPIC: {
2469                 r = -EINVAL;
2470                 if (!vcpu->arch.apic)
2471                         goto out;
2472                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2473
2474                 r = -ENOMEM;
2475                 if (!u.lapic)
2476                         goto out;
2477                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2478                 if (r)
2479                         goto out;
2480                 r = -EFAULT;
2481                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2482                         goto out;
2483                 r = 0;
2484                 break;
2485         }
2486         case KVM_SET_LAPIC: {
2487                 r = -EINVAL;
2488                 if (!vcpu->arch.apic)
2489                         goto out;
2490                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2491                 r = -ENOMEM;
2492                 if (!u.lapic)
2493                         goto out;
2494                 r = -EFAULT;
2495                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2496                         goto out;
2497                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2498                 if (r)
2499                         goto out;
2500                 r = 0;
2501                 break;
2502         }
2503         case KVM_INTERRUPT: {
2504                 struct kvm_interrupt irq;
2505
2506                 r = -EFAULT;
2507                 if (copy_from_user(&irq, argp, sizeof irq))
2508                         goto out;
2509                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2510                 if (r)
2511                         goto out;
2512                 r = 0;
2513                 break;
2514         }
2515         case KVM_NMI: {
2516                 r = kvm_vcpu_ioctl_nmi(vcpu);
2517                 if (r)
2518                         goto out;
2519                 r = 0;
2520                 break;
2521         }
2522         case KVM_SET_CPUID: {
2523                 struct kvm_cpuid __user *cpuid_arg = argp;
2524                 struct kvm_cpuid cpuid;
2525
2526                 r = -EFAULT;
2527                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2528                         goto out;
2529                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2530                 if (r)
2531                         goto out;
2532                 break;
2533         }
2534         case KVM_SET_CPUID2: {
2535                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2536                 struct kvm_cpuid2 cpuid;
2537
2538                 r = -EFAULT;
2539                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2540                         goto out;
2541                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2542                                               cpuid_arg->entries);
2543                 if (r)
2544                         goto out;
2545                 break;
2546         }
2547         case KVM_GET_CPUID2: {
2548                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2549                 struct kvm_cpuid2 cpuid;
2550
2551                 r = -EFAULT;
2552                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2553                         goto out;
2554                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2555                                               cpuid_arg->entries);
2556                 if (r)
2557                         goto out;
2558                 r = -EFAULT;
2559                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2560                         goto out;
2561                 r = 0;
2562                 break;
2563         }
2564         case KVM_GET_MSRS:
2565                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2566                 break;
2567         case KVM_SET_MSRS:
2568                 r = msr_io(vcpu, argp, do_set_msr, 0);
2569                 break;
2570         case KVM_TPR_ACCESS_REPORTING: {
2571                 struct kvm_tpr_access_ctl tac;
2572
2573                 r = -EFAULT;
2574                 if (copy_from_user(&tac, argp, sizeof tac))
2575                         goto out;
2576                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2577                 if (r)
2578                         goto out;
2579                 r = -EFAULT;
2580                 if (copy_to_user(argp, &tac, sizeof tac))
2581                         goto out;
2582                 r = 0;
2583                 break;
2584         };
2585         case KVM_SET_VAPIC_ADDR: {
2586                 struct kvm_vapic_addr va;
2587
2588                 r = -EINVAL;
2589                 if (!irqchip_in_kernel(vcpu->kvm))
2590                         goto out;
2591                 r = -EFAULT;
2592                 if (copy_from_user(&va, argp, sizeof va))
2593                         goto out;
2594                 r = 0;
2595                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2596                 break;
2597         }
2598         case KVM_X86_SETUP_MCE: {
2599                 u64 mcg_cap;
2600
2601                 r = -EFAULT;
2602                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2603                         goto out;
2604                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2605                 break;
2606         }
2607         case KVM_X86_SET_MCE: {
2608                 struct kvm_x86_mce mce;
2609
2610                 r = -EFAULT;
2611                 if (copy_from_user(&mce, argp, sizeof mce))
2612                         goto out;
2613                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2614                 break;
2615         }
2616         case KVM_GET_VCPU_EVENTS: {
2617                 struct kvm_vcpu_events events;
2618
2619                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2620
2621                 r = -EFAULT;
2622                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2623                         break;
2624                 r = 0;
2625                 break;
2626         }
2627         case KVM_SET_VCPU_EVENTS: {
2628                 struct kvm_vcpu_events events;
2629
2630                 r = -EFAULT;
2631                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2632                         break;
2633
2634                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2635                 break;
2636         }
2637         case KVM_GET_DEBUGREGS: {
2638                 struct kvm_debugregs dbgregs;
2639
2640                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2641
2642                 r = -EFAULT;
2643                 if (copy_to_user(argp, &dbgregs,
2644                                  sizeof(struct kvm_debugregs)))
2645                         break;
2646                 r = 0;
2647                 break;
2648         }
2649         case KVM_SET_DEBUGREGS: {
2650                 struct kvm_debugregs dbgregs;
2651
2652                 r = -EFAULT;
2653                 if (copy_from_user(&dbgregs, argp,
2654                                    sizeof(struct kvm_debugregs)))
2655                         break;
2656
2657                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2658                 break;
2659         }
2660         case KVM_GET_XSAVE: {
2661                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2662                 r = -ENOMEM;
2663                 if (!u.xsave)
2664                         break;
2665
2666                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2667
2668                 r = -EFAULT;
2669                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2670                         break;
2671                 r = 0;
2672                 break;
2673         }
2674         case KVM_SET_XSAVE: {
2675                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2676                 r = -ENOMEM;
2677                 if (!u.xsave)
2678                         break;
2679
2680                 r = -EFAULT;
2681                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2682                         break;
2683
2684                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2685                 break;
2686         }
2687         case KVM_GET_XCRS: {
2688                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2689                 r = -ENOMEM;
2690                 if (!u.xcrs)
2691                         break;
2692
2693                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2694
2695                 r = -EFAULT;
2696                 if (copy_to_user(argp, u.xcrs,
2697                                  sizeof(struct kvm_xcrs)))
2698                         break;
2699                 r = 0;
2700                 break;
2701         }
2702         case KVM_SET_XCRS: {
2703                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2704                 r = -ENOMEM;
2705                 if (!u.xcrs)
2706                         break;
2707
2708                 r = -EFAULT;
2709                 if (copy_from_user(u.xcrs, argp,
2710                                    sizeof(struct kvm_xcrs)))
2711                         break;
2712
2713                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2714                 break;
2715         }
2716         default:
2717                 r = -EINVAL;
2718         }
2719 out:
2720         kfree(u.buffer);
2721         return r;
2722 }
2723
2724 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2725 {
2726         int ret;
2727
2728         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2729                 return -1;
2730         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2731         return ret;
2732 }
2733
2734 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2735                                               u64 ident_addr)
2736 {
2737         kvm->arch.ept_identity_map_addr = ident_addr;
2738         return 0;
2739 }
2740
2741 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2742                                           u32 kvm_nr_mmu_pages)
2743 {
2744         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2745                 return -EINVAL;
2746
2747         mutex_lock(&kvm->slots_lock);
2748         spin_lock(&kvm->mmu_lock);
2749
2750         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2751         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2752
2753         spin_unlock(&kvm->mmu_lock);
2754         mutex_unlock(&kvm->slots_lock);
2755         return 0;
2756 }
2757
2758 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2759 {
2760         return kvm->arch.n_alloc_mmu_pages;
2761 }
2762
2763 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2764 {
2765         int r;
2766
2767         r = 0;
2768         switch (chip->chip_id) {
2769         case KVM_IRQCHIP_PIC_MASTER:
2770                 memcpy(&chip->chip.pic,
2771                         &pic_irqchip(kvm)->pics[0],
2772                         sizeof(struct kvm_pic_state));
2773                 break;
2774         case KVM_IRQCHIP_PIC_SLAVE:
2775                 memcpy(&chip->chip.pic,
2776                         &pic_irqchip(kvm)->pics[1],
2777                         sizeof(struct kvm_pic_state));
2778                 break;
2779         case KVM_IRQCHIP_IOAPIC:
2780                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2781                 break;
2782         default:
2783                 r = -EINVAL;
2784                 break;
2785         }
2786         return r;
2787 }
2788
2789 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2790 {
2791         int r;
2792
2793         r = 0;
2794         switch (chip->chip_id) {
2795         case KVM_IRQCHIP_PIC_MASTER:
2796                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2797                 memcpy(&pic_irqchip(kvm)->pics[0],
2798                         &chip->chip.pic,
2799                         sizeof(struct kvm_pic_state));
2800                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2801                 break;
2802         case KVM_IRQCHIP_PIC_SLAVE:
2803                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2804                 memcpy(&pic_irqchip(kvm)->pics[1],
2805                         &chip->chip.pic,
2806                         sizeof(struct kvm_pic_state));
2807                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2808                 break;
2809         case KVM_IRQCHIP_IOAPIC:
2810                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2811                 break;
2812         default:
2813                 r = -EINVAL;
2814                 break;
2815         }
2816         kvm_pic_update_irq(pic_irqchip(kvm));
2817         return r;
2818 }
2819
2820 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2821 {
2822         int r = 0;
2823
2824         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2825         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2826         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2827         return r;
2828 }
2829
2830 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2831 {
2832         int r = 0;
2833
2834         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2835         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2836         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2837         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2838         return r;
2839 }
2840
2841 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2842 {
2843         int r = 0;
2844
2845         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2846         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2847                 sizeof(ps->channels));
2848         ps->flags = kvm->arch.vpit->pit_state.flags;
2849         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2850         return r;
2851 }
2852
2853 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2854 {
2855         int r = 0, start = 0;
2856         u32 prev_legacy, cur_legacy;
2857         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2858         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2859         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2860         if (!prev_legacy && cur_legacy)
2861                 start = 1;
2862         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2863                sizeof(kvm->arch.vpit->pit_state.channels));
2864         kvm->arch.vpit->pit_state.flags = ps->flags;
2865         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2866         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2867         return r;
2868 }
2869
2870 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2871                                  struct kvm_reinject_control *control)
2872 {
2873         if (!kvm->arch.vpit)
2874                 return -ENXIO;
2875         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2876         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2877         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2878         return 0;
2879 }
2880
2881 /*
2882  * Get (and clear) the dirty memory log for a memory slot.
2883  */
2884 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2885                                       struct kvm_dirty_log *log)
2886 {
2887         int r, i;
2888         struct kvm_memory_slot *memslot;
2889         unsigned long n;
2890         unsigned long is_dirty = 0;
2891
2892         mutex_lock(&kvm->slots_lock);
2893
2894         r = -EINVAL;
2895         if (log->slot >= KVM_MEMORY_SLOTS)
2896                 goto out;
2897
2898         memslot = &kvm->memslots->memslots[log->slot];
2899         r = -ENOENT;
2900         if (!memslot->dirty_bitmap)
2901                 goto out;
2902
2903         n = kvm_dirty_bitmap_bytes(memslot);
2904
2905         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2906                 is_dirty = memslot->dirty_bitmap[i];
2907
2908         /* If nothing is dirty, don't bother messing with page tables. */
2909         if (is_dirty) {
2910                 struct kvm_memslots *slots, *old_slots;
2911                 unsigned long *dirty_bitmap;
2912
2913                 spin_lock(&kvm->mmu_lock);
2914                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2915                 spin_unlock(&kvm->mmu_lock);
2916
2917                 r = -ENOMEM;
2918                 dirty_bitmap = vmalloc(n);
2919                 if (!dirty_bitmap)
2920                         goto out;
2921                 memset(dirty_bitmap, 0, n);
2922
2923                 r = -ENOMEM;
2924                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2925                 if (!slots) {
2926                         vfree(dirty_bitmap);
2927                         goto out;
2928                 }
2929                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2930                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2931
2932                 old_slots = kvm->memslots;
2933                 rcu_assign_pointer(kvm->memslots, slots);
2934                 synchronize_srcu_expedited(&kvm->srcu);
2935                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2936                 kfree(old_slots);
2937
2938                 r = -EFAULT;
2939                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
2940                         vfree(dirty_bitmap);
2941                         goto out;
2942                 }
2943                 vfree(dirty_bitmap);
2944         } else {
2945                 r = -EFAULT;
2946                 if (clear_user(log->dirty_bitmap, n))
2947                         goto out;
2948         }
2949
2950         r = 0;
2951 out:
2952         mutex_unlock(&kvm->slots_lock);
2953         return r;
2954 }
2955
2956 long kvm_arch_vm_ioctl(struct file *filp,
2957                        unsigned int ioctl, unsigned long arg)
2958 {
2959         struct kvm *kvm = filp->private_data;
2960         void __user *argp = (void __user *)arg;
2961         int r = -ENOTTY;
2962         /*
2963          * This union makes it completely explicit to gcc-3.x
2964          * that these two variables' stack usage should be
2965          * combined, not added together.
2966          */
2967         union {
2968                 struct kvm_pit_state ps;
2969                 struct kvm_pit_state2 ps2;
2970                 struct kvm_pit_config pit_config;
2971         } u;
2972
2973         switch (ioctl) {
2974         case KVM_SET_TSS_ADDR:
2975                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2976                 if (r < 0)
2977                         goto out;
2978                 break;
2979         case KVM_SET_IDENTITY_MAP_ADDR: {
2980                 u64 ident_addr;
2981
2982                 r = -EFAULT;
2983                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2984                         goto out;
2985                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2986                 if (r < 0)
2987                         goto out;
2988                 break;
2989         }
2990         case KVM_SET_NR_MMU_PAGES:
2991                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2992                 if (r)
2993                         goto out;
2994                 break;
2995         case KVM_GET_NR_MMU_PAGES:
2996                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2997                 break;
2998         case KVM_CREATE_IRQCHIP: {
2999                 struct kvm_pic *vpic;
3000
3001                 mutex_lock(&kvm->lock);
3002                 r = -EEXIST;
3003                 if (kvm->arch.vpic)
3004                         goto create_irqchip_unlock;
3005                 r = -ENOMEM;
3006                 vpic = kvm_create_pic(kvm);
3007                 if (vpic) {
3008                         r = kvm_ioapic_init(kvm);
3009                         if (r) {
3010                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3011                                                           &vpic->dev);
3012                                 kfree(vpic);
3013                                 goto create_irqchip_unlock;
3014                         }
3015                 } else
3016                         goto create_irqchip_unlock;
3017                 smp_wmb();
3018                 kvm->arch.vpic = vpic;
3019                 smp_wmb();
3020                 r = kvm_setup_default_irq_routing(kvm);
3021                 if (r) {
3022                         mutex_lock(&kvm->irq_lock);
3023                         kvm_ioapic_destroy(kvm);
3024                         kvm_destroy_pic(kvm);
3025                         mutex_unlock(&kvm->irq_lock);
3026                 }
3027         create_irqchip_unlock:
3028                 mutex_unlock(&kvm->lock);
3029                 break;
3030         }
3031         case KVM_CREATE_PIT:
3032                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3033                 goto create_pit;
3034         case KVM_CREATE_PIT2:
3035                 r = -EFAULT;
3036                 if (copy_from_user(&u.pit_config, argp,
3037                                    sizeof(struct kvm_pit_config)))
3038                         goto out;
3039         create_pit:
3040                 mutex_lock(&kvm->slots_lock);
3041                 r = -EEXIST;
3042                 if (kvm->arch.vpit)
3043                         goto create_pit_unlock;
3044                 r = -ENOMEM;
3045                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3046                 if (kvm->arch.vpit)
3047                         r = 0;
3048         create_pit_unlock:
3049                 mutex_unlock(&kvm->slots_lock);
3050                 break;
3051         case KVM_IRQ_LINE_STATUS:
3052         case KVM_IRQ_LINE: {
3053                 struct kvm_irq_level irq_event;
3054
3055                 r = -EFAULT;
3056                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3057                         goto out;
3058                 r = -ENXIO;
3059                 if (irqchip_in_kernel(kvm)) {
3060                         __s32 status;
3061                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3062                                         irq_event.irq, irq_event.level);
3063                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3064                                 r = -EFAULT;
3065                                 irq_event.status = status;
3066                                 if (copy_to_user(argp, &irq_event,
3067                                                         sizeof irq_event))
3068                                         goto out;
3069                         }
3070                         r = 0;
3071                 }
3072                 break;
3073         }
3074         case KVM_GET_IRQCHIP: {
3075                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3076                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3077
3078                 r = -ENOMEM;
3079                 if (!chip)
3080                         goto out;
3081                 r = -EFAULT;
3082                 if (copy_from_user(chip, argp, sizeof *chip))
3083                         goto get_irqchip_out;
3084                 r = -ENXIO;
3085                 if (!irqchip_in_kernel(kvm))
3086                         goto get_irqchip_out;
3087                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3088                 if (r)
3089                         goto get_irqchip_out;
3090                 r = -EFAULT;
3091                 if (copy_to_user(argp, chip, sizeof *chip))
3092                         goto get_irqchip_out;
3093                 r = 0;
3094         get_irqchip_out:
3095                 kfree(chip);
3096                 if (r)
3097                         goto out;
3098                 break;
3099         }
3100         case KVM_SET_IRQCHIP: {
3101                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3102                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3103
3104                 r = -ENOMEM;
3105                 if (!chip)
3106                         goto out;
3107                 r = -EFAULT;
3108                 if (copy_from_user(chip, argp, sizeof *chip))
3109                         goto set_irqchip_out;
3110                 r = -ENXIO;
3111                 if (!irqchip_in_kernel(kvm))
3112                         goto set_irqchip_out;
3113                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3114                 if (r)
3115                         goto set_irqchip_out;
3116                 r = 0;
3117         set_irqchip_out:
3118                 kfree(chip);
3119                 if (r)
3120                         goto out;
3121                 break;
3122         }
3123         case KVM_GET_PIT: {
3124                 r = -EFAULT;
3125                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3126                         goto out;
3127                 r = -ENXIO;
3128                 if (!kvm->arch.vpit)
3129                         goto out;
3130                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3131                 if (r)
3132                         goto out;
3133                 r = -EFAULT;
3134                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3135                         goto out;
3136                 r = 0;
3137                 break;
3138         }
3139         case KVM_SET_PIT: {
3140                 r = -EFAULT;
3141                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3142                         goto out;
3143                 r = -ENXIO;
3144                 if (!kvm->arch.vpit)
3145                         goto out;
3146                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3147                 if (r)
3148                         goto out;
3149                 r = 0;
3150                 break;
3151         }
3152         case KVM_GET_PIT2: {
3153                 r = -ENXIO;
3154                 if (!kvm->arch.vpit)
3155                         goto out;
3156                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3157                 if (r)
3158                         goto out;
3159                 r = -EFAULT;
3160                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3161                         goto out;
3162                 r = 0;
3163                 break;
3164         }
3165         case KVM_SET_PIT2: {
3166                 r = -EFAULT;
3167                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3168                         goto out;
3169                 r = -ENXIO;
3170                 if (!kvm->arch.vpit)
3171                         goto out;
3172                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3173                 if (r)
3174                         goto out;
3175                 r = 0;
3176                 break;
3177         }
3178         case KVM_REINJECT_CONTROL: {
3179                 struct kvm_reinject_control control;
3180                 r =  -EFAULT;
3181                 if (copy_from_user(&control, argp, sizeof(control)))
3182                         goto out;
3183                 r = kvm_vm_ioctl_reinject(kvm, &control);
3184                 if (r)
3185                         goto out;
3186                 r = 0;
3187                 break;
3188         }
3189         case KVM_XEN_HVM_CONFIG: {
3190                 r = -EFAULT;
3191                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3192                                    sizeof(struct kvm_xen_hvm_config)))
3193                         goto out;
3194                 r = -EINVAL;
3195                 if (kvm->arch.xen_hvm_config.flags)
3196                         goto out;
3197                 r = 0;
3198                 break;
3199         }
3200         case KVM_SET_CLOCK: {
3201                 struct timespec now;
3202                 struct kvm_clock_data user_ns;
3203                 u64 now_ns;
3204                 s64 delta;
3205
3206                 r = -EFAULT;
3207                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3208                         goto out;
3209
3210                 r = -EINVAL;
3211                 if (user_ns.flags)
3212                         goto out;
3213
3214                 r = 0;
3215                 ktime_get_ts(&now);
3216                 now_ns = timespec_to_ns(&now);
3217                 delta = user_ns.clock - now_ns;
3218                 kvm->arch.kvmclock_offset = delta;
3219                 break;
3220         }
3221         case KVM_GET_CLOCK: {
3222                 struct timespec now;
3223                 struct kvm_clock_data user_ns;
3224                 u64 now_ns;
3225
3226                 ktime_get_ts(&now);
3227                 now_ns = timespec_to_ns(&now);
3228                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3229                 user_ns.flags = 0;
3230
3231                 r = -EFAULT;
3232                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3233                         goto out;
3234                 r = 0;
3235                 break;
3236         }
3237
3238         default:
3239                 ;
3240         }
3241 out:
3242         return r;
3243 }
3244
3245 static void kvm_init_msr_list(void)
3246 {
3247         u32 dummy[2];
3248         unsigned i, j;
3249
3250         /* skip the first msrs in the list. KVM-specific */
3251         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3252                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3253                         continue;
3254                 if (j < i)
3255                         msrs_to_save[j] = msrs_to_save[i];
3256                 j++;
3257         }
3258         num_msrs_to_save = j;
3259 }
3260
3261 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3262                            const void *v)
3263 {
3264         if (vcpu->arch.apic &&
3265             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3266                 return 0;
3267
3268         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3269 }
3270
3271 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3272 {
3273         if (vcpu->arch.apic &&
3274             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3275                 return 0;
3276
3277         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3278 }
3279
3280 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3281                         struct kvm_segment *var, int seg)
3282 {
3283         kvm_x86_ops->set_segment(vcpu, var, seg);
3284 }
3285
3286 void kvm_get_segment(struct kvm_vcpu *vcpu,
3287                      struct kvm_segment *var, int seg)
3288 {
3289         kvm_x86_ops->get_segment(vcpu, var, seg);
3290 }
3291
3292 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3293 {
3294         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3295         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3296 }
3297
3298  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3299 {
3300         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3301         access |= PFERR_FETCH_MASK;
3302         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3303 }
3304
3305 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3306 {
3307         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3308         access |= PFERR_WRITE_MASK;
3309         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3310 }
3311
3312 /* uses this to access any guest's mapped memory without checking CPL */
3313 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3314 {
3315         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3316 }
3317
3318 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3319                                       struct kvm_vcpu *vcpu, u32 access,
3320                                       u32 *error)
3321 {
3322         void *data = val;
3323         int r = X86EMUL_CONTINUE;
3324
3325         while (bytes) {
3326                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3327                 unsigned offset = addr & (PAGE_SIZE-1);
3328                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3329                 int ret;
3330
3331                 if (gpa == UNMAPPED_GVA) {
3332                         r = X86EMUL_PROPAGATE_FAULT;
3333                         goto out;
3334                 }
3335                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3336                 if (ret < 0) {
3337                         r = X86EMUL_IO_NEEDED;
3338                         goto out;
3339                 }
3340
3341                 bytes -= toread;
3342                 data += toread;
3343                 addr += toread;
3344         }
3345 out:
3346         return r;
3347 }
3348
3349 /* used for instruction fetching */
3350 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3351                                 struct kvm_vcpu *vcpu, u32 *error)
3352 {
3353         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3354         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3355                                           access | PFERR_FETCH_MASK, error);
3356 }
3357
3358 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3359                                struct kvm_vcpu *vcpu, u32 *error)
3360 {
3361         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3362         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3363                                           error);
3364 }
3365
3366 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3367                                struct kvm_vcpu *vcpu, u32 *error)
3368 {
3369         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3370 }
3371
3372 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3373                                        unsigned int bytes,
3374                                        struct kvm_vcpu *vcpu,
3375                                        u32 *error)
3376 {
3377         void *data = val;
3378         int r = X86EMUL_CONTINUE;
3379
3380         while (bytes) {
3381                 gpa_t gpa =  vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3382                                                        PFERR_WRITE_MASK, error);
3383                 unsigned offset = addr & (PAGE_SIZE-1);
3384                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3385                 int ret;
3386
3387                 if (gpa == UNMAPPED_GVA) {
3388                         r = X86EMUL_PROPAGATE_FAULT;
3389                         goto out;
3390                 }
3391                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3392                 if (ret < 0) {
3393                         r = X86EMUL_IO_NEEDED;
3394                         goto out;
3395                 }
3396
3397                 bytes -= towrite;
3398                 data += towrite;
3399                 addr += towrite;
3400         }
3401 out:
3402         return r;
3403 }
3404
3405 static int emulator_read_emulated(unsigned long addr,
3406                                   void *val,
3407                                   unsigned int bytes,
3408                                   unsigned int *error_code,
3409                                   struct kvm_vcpu *vcpu)
3410 {
3411         gpa_t                 gpa;
3412
3413         if (vcpu->mmio_read_completed) {
3414                 memcpy(val, vcpu->mmio_data, bytes);
3415                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3416                                vcpu->mmio_phys_addr, *(u64 *)val);
3417                 vcpu->mmio_read_completed = 0;
3418                 return X86EMUL_CONTINUE;
3419         }
3420
3421         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3422
3423         if (gpa == UNMAPPED_GVA)
3424                 return X86EMUL_PROPAGATE_FAULT;
3425
3426         /* For APIC access vmexit */
3427         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3428                 goto mmio;
3429
3430         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3431                                 == X86EMUL_CONTINUE)
3432                 return X86EMUL_CONTINUE;
3433
3434 mmio:
3435         /*
3436          * Is this MMIO handled locally?
3437          */
3438         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3439                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3440                 return X86EMUL_CONTINUE;
3441         }
3442
3443         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3444
3445         vcpu->mmio_needed = 1;
3446         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3447         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3448         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3449         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3450
3451         return X86EMUL_IO_NEEDED;
3452 }
3453
3454 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3455                           const void *val, int bytes)
3456 {
3457         int ret;
3458
3459         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3460         if (ret < 0)
3461                 return 0;
3462         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3463         return 1;
3464 }
3465
3466 static int emulator_write_emulated_onepage(unsigned long addr,
3467                                            const void *val,
3468                                            unsigned int bytes,
3469                                            unsigned int *error_code,
3470                                            struct kvm_vcpu *vcpu)
3471 {
3472         gpa_t                 gpa;
3473
3474         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3475
3476         if (gpa == UNMAPPED_GVA)
3477                 return X86EMUL_PROPAGATE_FAULT;
3478
3479         /* For APIC access vmexit */
3480         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3481                 goto mmio;
3482
3483         if (emulator_write_phys(vcpu, gpa, val, bytes))
3484                 return X86EMUL_CONTINUE;
3485
3486 mmio:
3487         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3488         /*
3489          * Is this MMIO handled locally?
3490          */
3491         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3492                 return X86EMUL_CONTINUE;
3493
3494         vcpu->mmio_needed = 1;
3495         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3496         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3497         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3498         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3499         memcpy(vcpu->run->mmio.data, val, bytes);
3500
3501         return X86EMUL_CONTINUE;
3502 }
3503
3504 int emulator_write_emulated(unsigned long addr,
3505                             const void *val,
3506                             unsigned int bytes,
3507                             unsigned int *error_code,
3508                             struct kvm_vcpu *vcpu)
3509 {
3510         /* Crossing a page boundary? */
3511         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3512                 int rc, now;
3513
3514                 now = -addr & ~PAGE_MASK;
3515                 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3516                                                      vcpu);
3517                 if (rc != X86EMUL_CONTINUE)
3518                         return rc;
3519                 addr += now;
3520                 val += now;
3521                 bytes -= now;
3522         }
3523         return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3524                                                vcpu);
3525 }
3526
3527 #define CMPXCHG_TYPE(t, ptr, old, new) \
3528         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3529
3530 #ifdef CONFIG_X86_64
3531 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3532 #else
3533 #  define CMPXCHG64(ptr, old, new) \
3534         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3535 #endif
3536
3537 static int emulator_cmpxchg_emulated(unsigned long addr,
3538                                      const void *old,
3539                                      const void *new,
3540                                      unsigned int bytes,
3541                                      unsigned int *error_code,
3542                                      struct kvm_vcpu *vcpu)
3543 {
3544         gpa_t gpa;
3545         struct page *page;
3546         char *kaddr;
3547         bool exchanged;
3548
3549         /* guests cmpxchg8b have to be emulated atomically */
3550         if (bytes > 8 || (bytes & (bytes - 1)))
3551                 goto emul_write;
3552
3553         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3554
3555         if (gpa == UNMAPPED_GVA ||
3556             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3557                 goto emul_write;
3558
3559         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3560                 goto emul_write;
3561
3562         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3563
3564         kaddr = kmap_atomic(page, KM_USER0);
3565         kaddr += offset_in_page(gpa);
3566         switch (bytes) {
3567         case 1:
3568                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3569                 break;
3570         case 2:
3571                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3572                 break;
3573         case 4:
3574                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3575                 break;
3576         case 8:
3577                 exchanged = CMPXCHG64(kaddr, old, new);
3578                 break;
3579         default:
3580                 BUG();
3581         }
3582         kunmap_atomic(kaddr, KM_USER0);
3583         kvm_release_page_dirty(page);
3584
3585         if (!exchanged)
3586                 return X86EMUL_CMPXCHG_FAILED;
3587
3588         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3589
3590         return X86EMUL_CONTINUE;
3591
3592 emul_write:
3593         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3594
3595         return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3596 }
3597
3598 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3599 {
3600         /* TODO: String I/O for in kernel device */
3601         int r;
3602
3603         if (vcpu->arch.pio.in)
3604                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3605                                     vcpu->arch.pio.size, pd);
3606         else
3607                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3608                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3609                                      pd);
3610         return r;
3611 }
3612
3613
3614 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3615                              unsigned int count, struct kvm_vcpu *vcpu)
3616 {
3617         if (vcpu->arch.pio.count)
3618                 goto data_avail;
3619
3620         trace_kvm_pio(1, port, size, 1);
3621
3622         vcpu->arch.pio.port = port;
3623         vcpu->arch.pio.in = 1;
3624         vcpu->arch.pio.count  = count;
3625         vcpu->arch.pio.size = size;
3626
3627         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3628         data_avail:
3629                 memcpy(val, vcpu->arch.pio_data, size * count);
3630                 vcpu->arch.pio.count = 0;
3631                 return 1;
3632         }
3633
3634         vcpu->run->exit_reason = KVM_EXIT_IO;
3635         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3636         vcpu->run->io.size = size;
3637         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3638         vcpu->run->io.count = count;
3639         vcpu->run->io.port = port;
3640
3641         return 0;
3642 }
3643
3644 static int emulator_pio_out_emulated(int size, unsigned short port,
3645                               const void *val, unsigned int count,
3646                               struct kvm_vcpu *vcpu)
3647 {
3648         trace_kvm_pio(0, port, size, 1);
3649
3650         vcpu->arch.pio.port = port;
3651         vcpu->arch.pio.in = 0;
3652         vcpu->arch.pio.count = count;
3653         vcpu->arch.pio.size = size;
3654
3655         memcpy(vcpu->arch.pio_data, val, size * count);
3656
3657         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3658                 vcpu->arch.pio.count = 0;
3659                 return 1;
3660         }
3661
3662         vcpu->run->exit_reason = KVM_EXIT_IO;
3663         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3664         vcpu->run->io.size = size;
3665         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3666         vcpu->run->io.count = count;
3667         vcpu->run->io.port = port;
3668
3669         return 0;
3670 }
3671
3672 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3673 {
3674         return kvm_x86_ops->get_segment_base(vcpu, seg);
3675 }
3676
3677 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3678 {
3679         kvm_mmu_invlpg(vcpu, address);
3680         return X86EMUL_CONTINUE;
3681 }
3682
3683 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3684 {
3685         if (!need_emulate_wbinvd(vcpu))
3686                 return X86EMUL_CONTINUE;
3687
3688         if (kvm_x86_ops->has_wbinvd_exit()) {
3689                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3690                                 wbinvd_ipi, NULL, 1);
3691                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3692         }
3693         wbinvd();
3694         return X86EMUL_CONTINUE;
3695 }
3696 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3697
3698 int emulate_clts(struct kvm_vcpu *vcpu)
3699 {
3700         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3701         kvm_x86_ops->fpu_activate(vcpu);
3702         return X86EMUL_CONTINUE;
3703 }
3704
3705 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3706 {
3707         return _kvm_get_dr(vcpu, dr, dest);
3708 }
3709
3710 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3711 {
3712
3713         return __kvm_set_dr(vcpu, dr, value);
3714 }
3715
3716 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3717 {
3718         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3719 }
3720
3721 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3722 {
3723         unsigned long value;
3724
3725         switch (cr) {
3726         case 0:
3727                 value = kvm_read_cr0(vcpu);
3728                 break;
3729         case 2:
3730                 value = vcpu->arch.cr2;
3731                 break;
3732         case 3:
3733                 value = vcpu->arch.cr3;
3734                 break;
3735         case 4:
3736                 value = kvm_read_cr4(vcpu);
3737                 break;
3738         case 8:
3739                 value = kvm_get_cr8(vcpu);
3740                 break;
3741         default:
3742                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3743                 return 0;
3744         }
3745
3746         return value;
3747 }
3748
3749 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3750 {
3751         int res = 0;
3752
3753         switch (cr) {
3754         case 0:
3755                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3756                 break;
3757         case 2:
3758                 vcpu->arch.cr2 = val;
3759                 break;
3760         case 3:
3761                 res = kvm_set_cr3(vcpu, val);
3762                 break;
3763         case 4:
3764                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3765                 break;
3766         case 8:
3767                 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3768                 break;
3769         default:
3770                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3771                 res = -1;
3772         }
3773
3774         return res;
3775 }
3776
3777 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3778 {
3779         return kvm_x86_ops->get_cpl(vcpu);
3780 }
3781
3782 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3783 {
3784         kvm_x86_ops->get_gdt(vcpu, dt);
3785 }
3786
3787 static unsigned long emulator_get_cached_segment_base(int seg,
3788                                                       struct kvm_vcpu *vcpu)
3789 {
3790         return get_segment_base(vcpu, seg);
3791 }
3792
3793 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3794                                            struct kvm_vcpu *vcpu)
3795 {
3796         struct kvm_segment var;
3797
3798         kvm_get_segment(vcpu, &var, seg);
3799
3800         if (var.unusable)
3801                 return false;
3802
3803         if (var.g)
3804                 var.limit >>= 12;
3805         set_desc_limit(desc, var.limit);
3806         set_desc_base(desc, (unsigned long)var.base);
3807         desc->type = var.type;
3808         desc->s = var.s;
3809         desc->dpl = var.dpl;
3810         desc->p = var.present;
3811         desc->avl = var.avl;
3812         desc->l = var.l;
3813         desc->d = var.db;
3814         desc->g = var.g;
3815
3816         return true;
3817 }
3818
3819 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3820                                            struct kvm_vcpu *vcpu)
3821 {
3822         struct kvm_segment var;
3823
3824         /* needed to preserve selector */
3825         kvm_get_segment(vcpu, &var, seg);
3826
3827         var.base = get_desc_base(desc);
3828         var.limit = get_desc_limit(desc);
3829         if (desc->g)
3830                 var.limit = (var.limit << 12) | 0xfff;
3831         var.type = desc->type;
3832         var.present = desc->p;
3833         var.dpl = desc->dpl;
3834         var.db = desc->d;
3835         var.s = desc->s;
3836         var.l = desc->l;
3837         var.g = desc->g;
3838         var.avl = desc->avl;
3839         var.present = desc->p;
3840         var.unusable = !var.present;
3841         var.padding = 0;
3842
3843         kvm_set_segment(vcpu, &var, seg);
3844         return;
3845 }
3846
3847 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3848 {
3849         struct kvm_segment kvm_seg;
3850
3851         kvm_get_segment(vcpu, &kvm_seg, seg);
3852         return kvm_seg.selector;
3853 }
3854
3855 static void emulator_set_segment_selector(u16 sel, int seg,
3856                                           struct kvm_vcpu *vcpu)
3857 {
3858         struct kvm_segment kvm_seg;
3859
3860         kvm_get_segment(vcpu, &kvm_seg, seg);
3861         kvm_seg.selector = sel;
3862         kvm_set_segment(vcpu, &kvm_seg, seg);
3863 }
3864
3865 static struct x86_emulate_ops emulate_ops = {
3866         .read_std            = kvm_read_guest_virt_system,
3867         .write_std           = kvm_write_guest_virt_system,
3868         .fetch               = kvm_fetch_guest_virt,
3869         .read_emulated       = emulator_read_emulated,
3870         .write_emulated      = emulator_write_emulated,
3871         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3872         .pio_in_emulated     = emulator_pio_in_emulated,
3873         .pio_out_emulated    = emulator_pio_out_emulated,
3874         .get_cached_descriptor = emulator_get_cached_descriptor,
3875         .set_cached_descriptor = emulator_set_cached_descriptor,
3876         .get_segment_selector = emulator_get_segment_selector,
3877         .set_segment_selector = emulator_set_segment_selector,
3878         .get_cached_segment_base = emulator_get_cached_segment_base,
3879         .get_gdt             = emulator_get_gdt,
3880         .get_cr              = emulator_get_cr,
3881         .set_cr              = emulator_set_cr,
3882         .cpl                 = emulator_get_cpl,
3883         .get_dr              = emulator_get_dr,
3884         .set_dr              = emulator_set_dr,
3885         .set_msr             = kvm_set_msr,
3886         .get_msr             = kvm_get_msr,
3887 };
3888
3889 static void cache_all_regs(struct kvm_vcpu *vcpu)
3890 {
3891         kvm_register_read(vcpu, VCPU_REGS_RAX);
3892         kvm_register_read(vcpu, VCPU_REGS_RSP);
3893         kvm_register_read(vcpu, VCPU_REGS_RIP);
3894         vcpu->arch.regs_dirty = ~0;
3895 }
3896
3897 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
3898 {
3899         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
3900         /*
3901          * an sti; sti; sequence only disable interrupts for the first
3902          * instruction. So, if the last instruction, be it emulated or
3903          * not, left the system with the INT_STI flag enabled, it
3904          * means that the last instruction is an sti. We should not
3905          * leave the flag on in this case. The same goes for mov ss
3906          */
3907         if (!(int_shadow & mask))
3908                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
3909 }
3910
3911 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
3912 {
3913         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
3914         if (ctxt->exception == PF_VECTOR)
3915                 kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
3916         else if (ctxt->error_code_valid)
3917                 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
3918         else
3919                 kvm_queue_exception(vcpu, ctxt->exception);
3920 }
3921
3922 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
3923 {
3924         ++vcpu->stat.insn_emulation_fail;
3925         trace_kvm_emulate_insn_failed(vcpu);
3926         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3927         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3928         vcpu->run->internal.ndata = 0;
3929         kvm_queue_exception(vcpu, UD_VECTOR);
3930         return EMULATE_FAIL;
3931 }
3932
3933 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
3934 {
3935         gpa_t gpa;
3936
3937         /*
3938          * if emulation was due to access to shadowed page table
3939          * and it failed try to unshadow page and re-entetr the
3940          * guest to let CPU execute the instruction.
3941          */
3942         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
3943                 return true;
3944
3945         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
3946
3947         if (gpa == UNMAPPED_GVA)
3948                 return true; /* let cpu generate fault */
3949
3950         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
3951                 return true;
3952
3953         return false;
3954 }
3955
3956 int emulate_instruction(struct kvm_vcpu *vcpu,
3957                         unsigned long cr2,
3958                         u16 error_code,
3959                         int emulation_type)
3960 {
3961         int r;
3962         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
3963
3964         kvm_clear_exception_queue(vcpu);
3965         vcpu->arch.mmio_fault_cr2 = cr2;
3966         /*
3967          * TODO: fix emulate.c to use guest_read/write_register
3968          * instead of direct ->regs accesses, can save hundred cycles
3969          * on Intel for instructions that don't read/change RSP, for
3970          * for example.
3971          */
3972         cache_all_regs(vcpu);
3973
3974         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3975                 int cs_db, cs_l;
3976                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3977
3978                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3979                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3980                 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3981                 vcpu->arch.emulate_ctxt.mode =
3982                         (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3983                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3984                         ? X86EMUL_MODE_VM86 : cs_l
3985                         ? X86EMUL_MODE_PROT64 : cs_db
3986                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3987                 memset(c, 0, sizeof(struct decode_cache));
3988                 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
3989                 vcpu->arch.emulate_ctxt.interruptibility = 0;
3990                 vcpu->arch.emulate_ctxt.exception = -1;
3991
3992                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3993                 trace_kvm_emulate_insn_start(vcpu);
3994
3995                 /* Only allow emulation of specific instructions on #UD
3996                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
3997                 if (emulation_type & EMULTYPE_TRAP_UD) {
3998                         if (!c->twobyte)
3999                                 return EMULATE_FAIL;
4000                         switch (c->b) {
4001                         case 0x01: /* VMMCALL */
4002                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4003                                         return EMULATE_FAIL;
4004                                 break;
4005                         case 0x34: /* sysenter */
4006                         case 0x35: /* sysexit */
4007                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4008                                         return EMULATE_FAIL;
4009                                 break;
4010                         case 0x05: /* syscall */
4011                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4012                                         return EMULATE_FAIL;
4013                                 break;
4014                         default:
4015                                 return EMULATE_FAIL;
4016                         }
4017
4018                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4019                                 return EMULATE_FAIL;
4020                 }
4021
4022                 ++vcpu->stat.insn_emulation;
4023                 if (r)  {
4024                         if (reexecute_instruction(vcpu, cr2))
4025                                 return EMULATE_DONE;
4026                         if (emulation_type & EMULTYPE_SKIP)
4027                                 return EMULATE_FAIL;
4028                         return handle_emulation_failure(vcpu);
4029                 }
4030         }
4031
4032         if (emulation_type & EMULTYPE_SKIP) {
4033                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4034                 return EMULATE_DONE;
4035         }
4036
4037         /* this is needed for vmware backdor interface to work since it
4038            changes registers values  during IO operation */
4039         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4040
4041 restart:
4042         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
4043
4044         if (r) { /* emulation failed */
4045                 if (reexecute_instruction(vcpu, cr2))
4046                         return EMULATE_DONE;
4047
4048                 return handle_emulation_failure(vcpu);
4049         }
4050
4051         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4052         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4053         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4054         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4055
4056         if (vcpu->arch.emulate_ctxt.exception >= 0) {
4057                 inject_emulated_exception(vcpu);
4058                 return EMULATE_DONE;
4059         }
4060
4061         if (vcpu->arch.pio.count) {
4062                 if (!vcpu->arch.pio.in)
4063                         vcpu->arch.pio.count = 0;
4064                 return EMULATE_DO_MMIO;
4065         }
4066
4067         if (vcpu->mmio_needed) {
4068                 if (vcpu->mmio_is_write)
4069                         vcpu->mmio_needed = 0;
4070                 return EMULATE_DO_MMIO;
4071         }
4072
4073         if (vcpu->arch.emulate_ctxt.restart)
4074                 goto restart;
4075
4076         return EMULATE_DONE;
4077 }
4078 EXPORT_SYMBOL_GPL(emulate_instruction);
4079
4080 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4081 {
4082         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4083         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4084         /* do not return to emulator after return from userspace */
4085         vcpu->arch.pio.count = 0;
4086         return ret;
4087 }
4088 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4089
4090 static void bounce_off(void *info)
4091 {
4092         /* nothing */
4093 }
4094
4095 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4096                                      void *data)
4097 {
4098         struct cpufreq_freqs *freq = data;
4099         struct kvm *kvm;
4100         struct kvm_vcpu *vcpu;
4101         int i, send_ipi = 0;
4102
4103         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4104                 return 0;
4105         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4106                 return 0;
4107         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
4108
4109         spin_lock(&kvm_lock);
4110         list_for_each_entry(kvm, &vm_list, vm_list) {
4111                 kvm_for_each_vcpu(i, vcpu, kvm) {
4112                         if (vcpu->cpu != freq->cpu)
4113                                 continue;
4114                         if (!kvm_request_guest_time_update(vcpu))
4115                                 continue;
4116                         if (vcpu->cpu != smp_processor_id())
4117                                 send_ipi++;
4118                 }
4119         }
4120         spin_unlock(&kvm_lock);
4121
4122         if (freq->old < freq->new && send_ipi) {
4123                 /*
4124                  * We upscale the frequency.  Must make the guest
4125                  * doesn't see old kvmclock values while running with
4126                  * the new frequency, otherwise we risk the guest sees
4127                  * time go backwards.
4128                  *
4129                  * In case we update the frequency for another cpu
4130                  * (which might be in guest context) send an interrupt
4131                  * to kick the cpu out of guest context.  Next time
4132                  * guest context is entered kvmclock will be updated,
4133                  * so the guest will not see stale values.
4134                  */
4135                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
4136         }
4137         return 0;
4138 }
4139
4140 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4141         .notifier_call  = kvmclock_cpufreq_notifier
4142 };
4143
4144 static void kvm_timer_init(void)
4145 {
4146         int cpu;
4147
4148         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4149                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4150                                           CPUFREQ_TRANSITION_NOTIFIER);
4151                 for_each_online_cpu(cpu) {
4152                         unsigned long khz = cpufreq_get(cpu);
4153                         if (!khz)
4154                                 khz = tsc_khz;
4155                         per_cpu(cpu_tsc_khz, cpu) = khz;
4156                 }
4157         } else {
4158                 for_each_possible_cpu(cpu)
4159                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
4160         }
4161 }
4162
4163 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4164
4165 static int kvm_is_in_guest(void)
4166 {
4167         return percpu_read(current_vcpu) != NULL;
4168 }
4169
4170 static int kvm_is_user_mode(void)
4171 {
4172         int user_mode = 3;
4173
4174         if (percpu_read(current_vcpu))
4175                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4176
4177         return user_mode != 0;
4178 }
4179
4180 static unsigned long kvm_get_guest_ip(void)
4181 {
4182         unsigned long ip = 0;
4183
4184         if (percpu_read(current_vcpu))
4185                 ip = kvm_rip_read(percpu_read(current_vcpu));
4186
4187         return ip;
4188 }
4189
4190 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4191         .is_in_guest            = kvm_is_in_guest,
4192         .is_user_mode           = kvm_is_user_mode,
4193         .get_guest_ip           = kvm_get_guest_ip,
4194 };
4195
4196 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4197 {
4198         percpu_write(current_vcpu, vcpu);
4199 }
4200 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4201
4202 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4203 {
4204         percpu_write(current_vcpu, NULL);
4205 }
4206 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4207
4208 int kvm_arch_init(void *opaque)
4209 {
4210         int r;
4211         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4212
4213         if (kvm_x86_ops) {
4214                 printk(KERN_ERR "kvm: already loaded the other module\n");
4215                 r = -EEXIST;
4216                 goto out;
4217         }
4218
4219         if (!ops->cpu_has_kvm_support()) {
4220                 printk(KERN_ERR "kvm: no hardware support\n");
4221                 r = -EOPNOTSUPP;
4222                 goto out;
4223         }
4224         if (ops->disabled_by_bios()) {
4225                 printk(KERN_ERR "kvm: disabled by bios\n");
4226                 r = -EOPNOTSUPP;
4227                 goto out;
4228         }
4229
4230         r = kvm_mmu_module_init();
4231         if (r)
4232                 goto out;
4233
4234         kvm_init_msr_list();
4235
4236         kvm_x86_ops = ops;
4237         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4238         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4239         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4240                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4241
4242         kvm_timer_init();
4243
4244         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4245
4246         if (cpu_has_xsave)
4247                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4248
4249         return 0;
4250
4251 out:
4252         return r;
4253 }
4254
4255 void kvm_arch_exit(void)
4256 {
4257         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4258
4259         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4260                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4261                                             CPUFREQ_TRANSITION_NOTIFIER);
4262         kvm_x86_ops = NULL;
4263         kvm_mmu_module_exit();
4264 }
4265
4266 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4267 {
4268         ++vcpu->stat.halt_exits;
4269         if (irqchip_in_kernel(vcpu->kvm)) {
4270                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4271                 return 1;
4272         } else {
4273                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4274                 return 0;
4275         }
4276 }
4277 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4278
4279 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4280                            unsigned long a1)
4281 {
4282         if (is_long_mode(vcpu))
4283                 return a0;
4284         else
4285                 return a0 | ((gpa_t)a1 << 32);
4286 }
4287
4288 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4289 {
4290         u64 param, ingpa, outgpa, ret;
4291         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4292         bool fast, longmode;
4293         int cs_db, cs_l;
4294
4295         /*
4296          * hypercall generates UD from non zero cpl and real mode
4297          * per HYPER-V spec
4298          */
4299         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4300                 kvm_queue_exception(vcpu, UD_VECTOR);
4301                 return 0;
4302         }
4303
4304         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4305         longmode = is_long_mode(vcpu) && cs_l == 1;
4306
4307         if (!longmode) {
4308                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4309                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4310                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4311                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4312                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4313                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4314         }
4315 #ifdef CONFIG_X86_64
4316         else {
4317                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4318                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4319                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4320         }
4321 #endif
4322
4323         code = param & 0xffff;
4324         fast = (param >> 16) & 0x1;
4325         rep_cnt = (param >> 32) & 0xfff;
4326         rep_idx = (param >> 48) & 0xfff;
4327
4328         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4329
4330         switch (code) {
4331         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4332                 kvm_vcpu_on_spin(vcpu);
4333                 break;
4334         default:
4335                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4336                 break;
4337         }
4338
4339         ret = res | (((u64)rep_done & 0xfff) << 32);
4340         if (longmode) {
4341                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4342         } else {
4343                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4344                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4345         }
4346
4347         return 1;
4348 }
4349
4350 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4351 {
4352         unsigned long nr, a0, a1, a2, a3, ret;
4353         int r = 1;
4354
4355         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4356                 return kvm_hv_hypercall(vcpu);
4357
4358         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4359         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4360         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4361         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4362         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4363
4364         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4365
4366         if (!is_long_mode(vcpu)) {
4367                 nr &= 0xFFFFFFFF;
4368                 a0 &= 0xFFFFFFFF;
4369                 a1 &= 0xFFFFFFFF;
4370                 a2 &= 0xFFFFFFFF;
4371                 a3 &= 0xFFFFFFFF;
4372         }
4373
4374         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4375                 ret = -KVM_EPERM;
4376                 goto out;
4377         }
4378
4379         switch (nr) {
4380         case KVM_HC_VAPIC_POLL_IRQ:
4381                 ret = 0;
4382                 break;
4383         case KVM_HC_MMU_OP:
4384                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4385                 break;
4386         default:
4387                 ret = -KVM_ENOSYS;
4388                 break;
4389         }
4390 out:
4391         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4392         ++vcpu->stat.hypercalls;
4393         return r;
4394 }
4395 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4396
4397 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4398 {
4399         char instruction[3];
4400         unsigned long rip = kvm_rip_read(vcpu);
4401
4402         /*
4403          * Blow out the MMU to ensure that no other VCPU has an active mapping
4404          * to ensure that the updated hypercall appears atomically across all
4405          * VCPUs.
4406          */
4407         kvm_mmu_zap_all(vcpu->kvm);
4408
4409         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4410
4411         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4412 }
4413
4414 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4415 {
4416         struct desc_ptr dt = { limit, base };
4417
4418         kvm_x86_ops->set_gdt(vcpu, &dt);
4419 }
4420
4421 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4422 {
4423         struct desc_ptr dt = { limit, base };
4424
4425         kvm_x86_ops->set_idt(vcpu, &dt);
4426 }
4427
4428 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4429 {
4430         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4431         int j, nent = vcpu->arch.cpuid_nent;
4432
4433         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4434         /* when no next entry is found, the current entry[i] is reselected */
4435         for (j = i + 1; ; j = (j + 1) % nent) {
4436                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4437                 if (ej->function == e->function) {
4438                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4439                         return j;
4440                 }
4441         }
4442         return 0; /* silence gcc, even though control never reaches here */
4443 }
4444
4445 /* find an entry with matching function, matching index (if needed), and that
4446  * should be read next (if it's stateful) */
4447 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4448         u32 function, u32 index)
4449 {
4450         if (e->function != function)
4451                 return 0;
4452         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4453                 return 0;
4454         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4455             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4456                 return 0;
4457         return 1;
4458 }
4459
4460 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4461                                               u32 function, u32 index)
4462 {
4463         int i;
4464         struct kvm_cpuid_entry2 *best = NULL;
4465
4466         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4467                 struct kvm_cpuid_entry2 *e;
4468
4469                 e = &vcpu->arch.cpuid_entries[i];
4470                 if (is_matching_cpuid_entry(e, function, index)) {
4471                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4472                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4473                         best = e;
4474                         break;
4475                 }
4476                 /*
4477                  * Both basic or both extended?
4478                  */
4479                 if (((e->function ^ function) & 0x80000000) == 0)
4480                         if (!best || e->function > best->function)
4481                                 best = e;
4482         }
4483         return best;
4484 }
4485 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4486
4487 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4488 {
4489         struct kvm_cpuid_entry2 *best;
4490
4491         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4492         if (!best || best->eax < 0x80000008)
4493                 goto not_found;
4494         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4495         if (best)
4496                 return best->eax & 0xff;
4497 not_found:
4498         return 36;
4499 }
4500
4501 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4502 {
4503         u32 function, index;
4504         struct kvm_cpuid_entry2 *best;
4505
4506         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4507         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4508         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4509         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4510         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4511         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4512         best = kvm_find_cpuid_entry(vcpu, function, index);
4513         if (best) {
4514                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4515                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4516                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4517                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4518         }
4519         kvm_x86_ops->skip_emulated_instruction(vcpu);
4520         trace_kvm_cpuid(function,
4521                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4522                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4523                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4524                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4525 }
4526 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4527
4528 /*
4529  * Check if userspace requested an interrupt window, and that the
4530  * interrupt window is open.
4531  *
4532  * No need to exit to userspace if we already have an interrupt queued.
4533  */
4534 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4535 {
4536         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4537                 vcpu->run->request_interrupt_window &&
4538                 kvm_arch_interrupt_allowed(vcpu));
4539 }
4540
4541 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4542 {
4543         struct kvm_run *kvm_run = vcpu->run;
4544
4545         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4546         kvm_run->cr8 = kvm_get_cr8(vcpu);
4547         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4548         if (irqchip_in_kernel(vcpu->kvm))
4549                 kvm_run->ready_for_interrupt_injection = 1;
4550         else
4551                 kvm_run->ready_for_interrupt_injection =
4552                         kvm_arch_interrupt_allowed(vcpu) &&
4553                         !kvm_cpu_has_interrupt(vcpu) &&
4554                         !kvm_event_needs_reinjection(vcpu);
4555 }
4556
4557 static void vapic_enter(struct kvm_vcpu *vcpu)
4558 {
4559         struct kvm_lapic *apic = vcpu->arch.apic;
4560         struct page *page;
4561
4562         if (!apic || !apic->vapic_addr)
4563                 return;
4564
4565         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4566
4567         vcpu->arch.apic->vapic_page = page;
4568 }
4569
4570 static void vapic_exit(struct kvm_vcpu *vcpu)
4571 {
4572         struct kvm_lapic *apic = vcpu->arch.apic;
4573         int idx;
4574
4575         if (!apic || !apic->vapic_addr)
4576                 return;
4577
4578         idx = srcu_read_lock(&vcpu->kvm->srcu);
4579         kvm_release_page_dirty(apic->vapic_page);
4580         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4581         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4582 }
4583
4584 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4585 {
4586         int max_irr, tpr;
4587
4588         if (!kvm_x86_ops->update_cr8_intercept)
4589                 return;
4590
4591         if (!vcpu->arch.apic)
4592                 return;
4593
4594         if (!vcpu->arch.apic->vapic_addr)
4595                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4596         else
4597                 max_irr = -1;
4598
4599         if (max_irr != -1)
4600                 max_irr >>= 4;
4601
4602         tpr = kvm_lapic_get_cr8(vcpu);
4603
4604         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4605 }
4606
4607 static void inject_pending_event(struct kvm_vcpu *vcpu)
4608 {
4609         /* try to reinject previous events if any */
4610         if (vcpu->arch.exception.pending) {
4611                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4612                                         vcpu->arch.exception.has_error_code,
4613                                         vcpu->arch.exception.error_code);
4614                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4615                                           vcpu->arch.exception.has_error_code,
4616                                           vcpu->arch.exception.error_code,
4617                                           vcpu->arch.exception.reinject);
4618                 return;
4619         }
4620
4621         if (vcpu->arch.nmi_injected) {
4622                 kvm_x86_ops->set_nmi(vcpu);
4623                 return;
4624         }
4625
4626         if (vcpu->arch.interrupt.pending) {
4627                 kvm_x86_ops->set_irq(vcpu);
4628                 return;
4629         }
4630
4631         /* try to inject new event if pending */
4632         if (vcpu->arch.nmi_pending) {
4633                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4634                         vcpu->arch.nmi_pending = false;
4635                         vcpu->arch.nmi_injected = true;
4636                         kvm_x86_ops->set_nmi(vcpu);
4637                 }
4638         } else if (kvm_cpu_has_interrupt(vcpu)) {
4639                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4640                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4641                                             false);
4642                         kvm_x86_ops->set_irq(vcpu);
4643                 }
4644         }
4645 }
4646
4647 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4648 {
4649         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4650                         !vcpu->guest_xcr0_loaded) {
4651                 /* kvm_set_xcr() also depends on this */
4652                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4653                 vcpu->guest_xcr0_loaded = 1;
4654         }
4655 }
4656
4657 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4658 {
4659         if (vcpu->guest_xcr0_loaded) {
4660                 if (vcpu->arch.xcr0 != host_xcr0)
4661                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4662                 vcpu->guest_xcr0_loaded = 0;
4663         }
4664 }
4665
4666 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4667 {
4668         int r;
4669         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4670                 vcpu->run->request_interrupt_window;
4671
4672         if (vcpu->requests) {
4673                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
4674                         kvm_mmu_unload(vcpu);
4675                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
4676                         __kvm_migrate_timers(vcpu);
4677                 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu))
4678                         kvm_write_guest_time(vcpu);
4679                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4680                         kvm_mmu_sync_roots(vcpu);
4681                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
4682                         kvm_x86_ops->tlb_flush(vcpu);
4683                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
4684                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4685                         r = 0;
4686                         goto out;
4687                 }
4688                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
4689                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4690                         r = 0;
4691                         goto out;
4692                 }
4693                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
4694                         vcpu->fpu_active = 0;
4695                         kvm_x86_ops->fpu_deactivate(vcpu);
4696                 }
4697         }
4698
4699         r = kvm_mmu_reload(vcpu);
4700         if (unlikely(r))
4701                 goto out;
4702
4703         preempt_disable();
4704
4705         kvm_x86_ops->prepare_guest_switch(vcpu);
4706         if (vcpu->fpu_active)
4707                 kvm_load_guest_fpu(vcpu);
4708         kvm_load_guest_xcr0(vcpu);
4709
4710         atomic_set(&vcpu->guest_mode, 1);
4711         smp_wmb();
4712
4713         local_irq_disable();
4714
4715         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
4716             || need_resched() || signal_pending(current)) {
4717                 atomic_set(&vcpu->guest_mode, 0);
4718                 smp_wmb();
4719                 local_irq_enable();
4720                 preempt_enable();
4721                 r = 1;
4722                 goto out;
4723         }
4724
4725         inject_pending_event(vcpu);
4726
4727         /* enable NMI/IRQ window open exits if needed */
4728         if (vcpu->arch.nmi_pending)
4729                 kvm_x86_ops->enable_nmi_window(vcpu);
4730         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4731                 kvm_x86_ops->enable_irq_window(vcpu);
4732
4733         if (kvm_lapic_enabled(vcpu)) {
4734                 update_cr8_intercept(vcpu);
4735                 kvm_lapic_sync_to_vapic(vcpu);
4736         }
4737
4738         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4739
4740         kvm_guest_enter();
4741
4742         if (unlikely(vcpu->arch.switch_db_regs)) {
4743                 set_debugreg(0, 7);
4744                 set_debugreg(vcpu->arch.eff_db[0], 0);
4745                 set_debugreg(vcpu->arch.eff_db[1], 1);
4746                 set_debugreg(vcpu->arch.eff_db[2], 2);
4747                 set_debugreg(vcpu->arch.eff_db[3], 3);
4748         }
4749
4750         trace_kvm_entry(vcpu->vcpu_id);
4751         kvm_x86_ops->run(vcpu);
4752
4753         /*
4754          * If the guest has used debug registers, at least dr7
4755          * will be disabled while returning to the host.
4756          * If we don't have active breakpoints in the host, we don't
4757          * care about the messed up debug address registers. But if
4758          * we have some of them active, restore the old state.
4759          */
4760         if (hw_breakpoint_active())
4761                 hw_breakpoint_restore();
4762
4763         atomic_set(&vcpu->guest_mode, 0);
4764         smp_wmb();
4765         local_irq_enable();
4766
4767         ++vcpu->stat.exits;
4768
4769         /*
4770          * We must have an instruction between local_irq_enable() and
4771          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4772          * the interrupt shadow.  The stat.exits increment will do nicely.
4773          * But we need to prevent reordering, hence this barrier():
4774          */
4775         barrier();
4776
4777         kvm_guest_exit();
4778
4779         preempt_enable();
4780
4781         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4782
4783         /*
4784          * Profile KVM exit RIPs:
4785          */
4786         if (unlikely(prof_on == KVM_PROFILING)) {
4787                 unsigned long rip = kvm_rip_read(vcpu);
4788                 profile_hit(KVM_PROFILING, (void *)rip);
4789         }
4790
4791
4792         kvm_lapic_sync_from_vapic(vcpu);
4793
4794         r = kvm_x86_ops->handle_exit(vcpu);
4795 out:
4796         return r;
4797 }
4798
4799
4800 static int __vcpu_run(struct kvm_vcpu *vcpu)
4801 {
4802         int r;
4803         struct kvm *kvm = vcpu->kvm;
4804
4805         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4806                 pr_debug("vcpu %d received sipi with vector # %x\n",
4807                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4808                 kvm_lapic_reset(vcpu);
4809                 r = kvm_arch_vcpu_reset(vcpu);
4810                 if (r)
4811                         return r;
4812                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4813         }
4814
4815         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4816         vapic_enter(vcpu);
4817
4818         r = 1;
4819         while (r > 0) {
4820                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4821                         r = vcpu_enter_guest(vcpu);
4822                 else {
4823                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4824                         kvm_vcpu_block(vcpu);
4825                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4826                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
4827                         {
4828                                 switch(vcpu->arch.mp_state) {
4829                                 case KVM_MP_STATE_HALTED:
4830                                         vcpu->arch.mp_state =
4831                                                 KVM_MP_STATE_RUNNABLE;
4832                                 case KVM_MP_STATE_RUNNABLE:
4833                                         break;
4834                                 case KVM_MP_STATE_SIPI_RECEIVED:
4835                                 default:
4836                                         r = -EINTR;
4837                                         break;
4838                                 }
4839                         }
4840                 }
4841
4842                 if (r <= 0)
4843                         break;
4844
4845                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4846                 if (kvm_cpu_has_pending_timer(vcpu))
4847                         kvm_inject_pending_timer_irqs(vcpu);
4848
4849                 if (dm_request_for_irq_injection(vcpu)) {
4850                         r = -EINTR;
4851                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4852                         ++vcpu->stat.request_irq_exits;
4853                 }
4854                 if (signal_pending(current)) {
4855                         r = -EINTR;
4856                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4857                         ++vcpu->stat.signal_exits;
4858                 }
4859                 if (need_resched()) {
4860                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4861                         kvm_resched(vcpu);
4862                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4863                 }
4864         }
4865
4866         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4867
4868         vapic_exit(vcpu);
4869
4870         return r;
4871 }
4872
4873 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4874 {
4875         int r;
4876         sigset_t sigsaved;
4877
4878         if (vcpu->sigset_active)
4879                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4880
4881         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4882                 kvm_vcpu_block(vcpu);
4883                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4884                 r = -EAGAIN;
4885                 goto out;
4886         }
4887
4888         /* re-sync apic's tpr */
4889         if (!irqchip_in_kernel(vcpu->kvm))
4890                 kvm_set_cr8(vcpu, kvm_run->cr8);
4891
4892         if (vcpu->arch.pio.count || vcpu->mmio_needed ||
4893             vcpu->arch.emulate_ctxt.restart) {
4894                 if (vcpu->mmio_needed) {
4895                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4896                         vcpu->mmio_read_completed = 1;
4897                         vcpu->mmio_needed = 0;
4898                 }
4899                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4900                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4901                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4902                 if (r != EMULATE_DONE) {
4903                         r = 0;
4904                         goto out;
4905                 }
4906         }
4907         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4908                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4909                                      kvm_run->hypercall.ret);
4910
4911         r = __vcpu_run(vcpu);
4912
4913 out:
4914         post_kvm_run_save(vcpu);
4915         if (vcpu->sigset_active)
4916                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4917
4918         return r;
4919 }
4920
4921 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4922 {
4923         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4924         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4925         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4926         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4927         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4928         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4929         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4930         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4931 #ifdef CONFIG_X86_64
4932         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4933         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4934         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4935         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4936         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4937         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4938         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4939         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4940 #endif
4941
4942         regs->rip = kvm_rip_read(vcpu);
4943         regs->rflags = kvm_get_rflags(vcpu);
4944
4945         return 0;
4946 }
4947
4948 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4949 {
4950         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4951         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4952         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4953         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4954         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4955         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4956         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4957         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4958 #ifdef CONFIG_X86_64
4959         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4960         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4961         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4962         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4963         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4964         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4965         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4966         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4967 #endif
4968
4969         kvm_rip_write(vcpu, regs->rip);
4970         kvm_set_rflags(vcpu, regs->rflags);
4971
4972         vcpu->arch.exception.pending = false;
4973
4974         return 0;
4975 }
4976
4977 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4978 {
4979         struct kvm_segment cs;
4980
4981         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4982         *db = cs.db;
4983         *l = cs.l;
4984 }
4985 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4986
4987 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4988                                   struct kvm_sregs *sregs)
4989 {
4990         struct desc_ptr dt;
4991
4992         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4993         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4994         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4995         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4996         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4997         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4998
4999         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5000         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5001
5002         kvm_x86_ops->get_idt(vcpu, &dt);
5003         sregs->idt.limit = dt.size;
5004         sregs->idt.base = dt.address;
5005         kvm_x86_ops->get_gdt(vcpu, &dt);
5006         sregs->gdt.limit = dt.size;
5007         sregs->gdt.base = dt.address;
5008
5009         sregs->cr0 = kvm_read_cr0(vcpu);
5010         sregs->cr2 = vcpu->arch.cr2;
5011         sregs->cr3 = vcpu->arch.cr3;
5012         sregs->cr4 = kvm_read_cr4(vcpu);
5013         sregs->cr8 = kvm_get_cr8(vcpu);
5014         sregs->efer = vcpu->arch.efer;
5015         sregs->apic_base = kvm_get_apic_base(vcpu);
5016
5017         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5018
5019         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5020                 set_bit(vcpu->arch.interrupt.nr,
5021                         (unsigned long *)sregs->interrupt_bitmap);
5022
5023         return 0;
5024 }
5025
5026 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5027                                     struct kvm_mp_state *mp_state)
5028 {
5029         mp_state->mp_state = vcpu->arch.mp_state;
5030         return 0;
5031 }
5032
5033 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5034                                     struct kvm_mp_state *mp_state)
5035 {
5036         vcpu->arch.mp_state = mp_state->mp_state;
5037         return 0;
5038 }
5039
5040 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5041                     bool has_error_code, u32 error_code)
5042 {
5043         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5044         int cs_db, cs_l, ret;
5045         cache_all_regs(vcpu);
5046
5047         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5048
5049         vcpu->arch.emulate_ctxt.vcpu = vcpu;
5050         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
5051         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
5052         vcpu->arch.emulate_ctxt.mode =
5053                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5054                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
5055                 ? X86EMUL_MODE_VM86 : cs_l
5056                 ? X86EMUL_MODE_PROT64 : cs_db
5057                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
5058         memset(c, 0, sizeof(struct decode_cache));
5059         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
5060
5061         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
5062                                    tss_selector, reason, has_error_code,
5063                                    error_code);
5064
5065         if (ret)
5066                 return EMULATE_FAIL;
5067
5068         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5069         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5070         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5071         return EMULATE_DONE;
5072 }
5073 EXPORT_SYMBOL_GPL(kvm_task_switch);
5074
5075 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5076                                   struct kvm_sregs *sregs)
5077 {
5078         int mmu_reset_needed = 0;
5079         int pending_vec, max_bits;
5080         struct desc_ptr dt;
5081
5082         dt.size = sregs->idt.limit;
5083         dt.address = sregs->idt.base;
5084         kvm_x86_ops->set_idt(vcpu, &dt);
5085         dt.size = sregs->gdt.limit;
5086         dt.address = sregs->gdt.base;
5087         kvm_x86_ops->set_gdt(vcpu, &dt);
5088
5089         vcpu->arch.cr2 = sregs->cr2;
5090         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5091         vcpu->arch.cr3 = sregs->cr3;
5092
5093         kvm_set_cr8(vcpu, sregs->cr8);
5094
5095         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5096         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5097         kvm_set_apic_base(vcpu, sregs->apic_base);
5098
5099         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5100         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5101         vcpu->arch.cr0 = sregs->cr0;
5102
5103         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5104         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5105         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5106                 load_pdptrs(vcpu, vcpu->arch.cr3);
5107                 mmu_reset_needed = 1;
5108         }
5109
5110         if (mmu_reset_needed)
5111                 kvm_mmu_reset_context(vcpu);
5112
5113         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5114         pending_vec = find_first_bit(
5115                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5116         if (pending_vec < max_bits) {
5117                 kvm_queue_interrupt(vcpu, pending_vec, false);
5118                 pr_debug("Set back pending irq %d\n", pending_vec);
5119                 if (irqchip_in_kernel(vcpu->kvm))
5120                         kvm_pic_clear_isr_ack(vcpu->kvm);
5121         }
5122
5123         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5124         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5125         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5126         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5127         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5128         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5129
5130         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5131         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5132
5133         update_cr8_intercept(vcpu);
5134
5135         /* Older userspace won't unhalt the vcpu on reset. */
5136         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5137             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5138             !is_protmode(vcpu))
5139                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5140
5141         return 0;
5142 }
5143
5144 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5145                                         struct kvm_guest_debug *dbg)
5146 {
5147         unsigned long rflags;
5148         int i, r;
5149
5150         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5151                 r = -EBUSY;
5152                 if (vcpu->arch.exception.pending)
5153                         goto out;
5154                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5155                         kvm_queue_exception(vcpu, DB_VECTOR);
5156                 else
5157                         kvm_queue_exception(vcpu, BP_VECTOR);
5158         }
5159
5160         /*
5161          * Read rflags as long as potentially injected trace flags are still
5162          * filtered out.
5163          */
5164         rflags = kvm_get_rflags(vcpu);
5165
5166         vcpu->guest_debug = dbg->control;
5167         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5168                 vcpu->guest_debug = 0;
5169
5170         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5171                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5172                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5173                 vcpu->arch.switch_db_regs =
5174                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5175         } else {
5176                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5177                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5178                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5179         }
5180
5181         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5182                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5183                         get_segment_base(vcpu, VCPU_SREG_CS);
5184
5185         /*
5186          * Trigger an rflags update that will inject or remove the trace
5187          * flags.
5188          */
5189         kvm_set_rflags(vcpu, rflags);
5190
5191         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5192
5193         r = 0;
5194
5195 out:
5196
5197         return r;
5198 }
5199
5200 /*
5201  * Translate a guest virtual address to a guest physical address.
5202  */
5203 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5204                                     struct kvm_translation *tr)
5205 {
5206         unsigned long vaddr = tr->linear_address;
5207         gpa_t gpa;
5208         int idx;
5209
5210         idx = srcu_read_lock(&vcpu->kvm->srcu);
5211         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5212         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5213         tr->physical_address = gpa;
5214         tr->valid = gpa != UNMAPPED_GVA;
5215         tr->writeable = 1;
5216         tr->usermode = 0;
5217
5218         return 0;
5219 }
5220
5221 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5222 {
5223         struct i387_fxsave_struct *fxsave =
5224                         &vcpu->arch.guest_fpu.state->fxsave;
5225
5226         memcpy(fpu->fpr, fxsave->st_space, 128);
5227         fpu->fcw = fxsave->cwd;
5228         fpu->fsw = fxsave->swd;
5229         fpu->ftwx = fxsave->twd;
5230         fpu->last_opcode = fxsave->fop;
5231         fpu->last_ip = fxsave->rip;
5232         fpu->last_dp = fxsave->rdp;
5233         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5234
5235         return 0;
5236 }
5237
5238 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5239 {
5240         struct i387_fxsave_struct *fxsave =
5241                         &vcpu->arch.guest_fpu.state->fxsave;
5242
5243         memcpy(fxsave->st_space, fpu->fpr, 128);
5244         fxsave->cwd = fpu->fcw;
5245         fxsave->swd = fpu->fsw;
5246         fxsave->twd = fpu->ftwx;
5247         fxsave->fop = fpu->last_opcode;
5248         fxsave->rip = fpu->last_ip;
5249         fxsave->rdp = fpu->last_dp;
5250         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5251
5252         return 0;
5253 }
5254
5255 int fx_init(struct kvm_vcpu *vcpu)
5256 {
5257         int err;
5258
5259         err = fpu_alloc(&vcpu->arch.guest_fpu);
5260         if (err)
5261                 return err;
5262
5263         fpu_finit(&vcpu->arch.guest_fpu);
5264
5265         /*
5266          * Ensure guest xcr0 is valid for loading
5267          */
5268         vcpu->arch.xcr0 = XSTATE_FP;
5269
5270         vcpu->arch.cr0 |= X86_CR0_ET;
5271
5272         return 0;
5273 }
5274 EXPORT_SYMBOL_GPL(fx_init);
5275
5276 static void fx_free(struct kvm_vcpu *vcpu)
5277 {
5278         fpu_free(&vcpu->arch.guest_fpu);
5279 }
5280
5281 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5282 {
5283         if (vcpu->guest_fpu_loaded)
5284                 return;
5285
5286         /*
5287          * Restore all possible states in the guest,
5288          * and assume host would use all available bits.
5289          * Guest xcr0 would be loaded later.
5290          */
5291         kvm_put_guest_xcr0(vcpu);
5292         vcpu->guest_fpu_loaded = 1;
5293         unlazy_fpu(current);
5294         fpu_restore_checking(&vcpu->arch.guest_fpu);
5295         trace_kvm_fpu(1);
5296 }
5297
5298 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5299 {
5300         kvm_put_guest_xcr0(vcpu);
5301
5302         if (!vcpu->guest_fpu_loaded)
5303                 return;
5304
5305         vcpu->guest_fpu_loaded = 0;
5306         fpu_save_init(&vcpu->arch.guest_fpu);
5307         ++vcpu->stat.fpu_reload;
5308         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5309         trace_kvm_fpu(0);
5310 }
5311
5312 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5313 {
5314         if (vcpu->arch.time_page) {
5315                 kvm_release_page_dirty(vcpu->arch.time_page);
5316                 vcpu->arch.time_page = NULL;
5317         }
5318
5319         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5320         fx_free(vcpu);
5321         kvm_x86_ops->vcpu_free(vcpu);
5322 }
5323
5324 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5325                                                 unsigned int id)
5326 {
5327         return kvm_x86_ops->vcpu_create(kvm, id);
5328 }
5329
5330 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5331 {
5332         int r;
5333
5334         vcpu->arch.mtrr_state.have_fixed = 1;
5335         vcpu_load(vcpu);
5336         r = kvm_arch_vcpu_reset(vcpu);
5337         if (r == 0)
5338                 r = kvm_mmu_setup(vcpu);
5339         vcpu_put(vcpu);
5340         if (r < 0)
5341                 goto free_vcpu;
5342
5343         return 0;
5344 free_vcpu:
5345         kvm_x86_ops->vcpu_free(vcpu);
5346         return r;
5347 }
5348
5349 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5350 {
5351         vcpu_load(vcpu);
5352         kvm_mmu_unload(vcpu);
5353         vcpu_put(vcpu);
5354
5355         fx_free(vcpu);
5356         kvm_x86_ops->vcpu_free(vcpu);
5357 }
5358
5359 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5360 {
5361         vcpu->arch.nmi_pending = false;
5362         vcpu->arch.nmi_injected = false;
5363
5364         vcpu->arch.switch_db_regs = 0;
5365         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5366         vcpu->arch.dr6 = DR6_FIXED_1;
5367         vcpu->arch.dr7 = DR7_FIXED_1;
5368
5369         return kvm_x86_ops->vcpu_reset(vcpu);
5370 }
5371
5372 int kvm_arch_hardware_enable(void *garbage)
5373 {
5374         /*
5375          * Since this may be called from a hotplug notifcation,
5376          * we can't get the CPU frequency directly.
5377          */
5378         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5379                 int cpu = raw_smp_processor_id();
5380                 per_cpu(cpu_tsc_khz, cpu) = 0;
5381         }
5382
5383         kvm_shared_msr_cpu_online();
5384
5385         return kvm_x86_ops->hardware_enable(garbage);
5386 }
5387
5388 void kvm_arch_hardware_disable(void *garbage)
5389 {
5390         kvm_x86_ops->hardware_disable(garbage);
5391         drop_user_return_notifiers(garbage);
5392 }
5393
5394 int kvm_arch_hardware_setup(void)
5395 {
5396         return kvm_x86_ops->hardware_setup();
5397 }
5398
5399 void kvm_arch_hardware_unsetup(void)
5400 {
5401         kvm_x86_ops->hardware_unsetup();
5402 }
5403
5404 void kvm_arch_check_processor_compat(void *rtn)
5405 {
5406         kvm_x86_ops->check_processor_compatibility(rtn);
5407 }
5408
5409 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5410 {
5411         struct page *page;
5412         struct kvm *kvm;
5413         int r;
5414
5415         BUG_ON(vcpu->kvm == NULL);
5416         kvm = vcpu->kvm;
5417
5418         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5419         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5420                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5421         else
5422                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5423
5424         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5425         if (!page) {
5426                 r = -ENOMEM;
5427                 goto fail;
5428         }
5429         vcpu->arch.pio_data = page_address(page);
5430
5431         r = kvm_mmu_create(vcpu);
5432         if (r < 0)
5433                 goto fail_free_pio_data;
5434
5435         if (irqchip_in_kernel(kvm)) {
5436                 r = kvm_create_lapic(vcpu);
5437                 if (r < 0)
5438                         goto fail_mmu_destroy;
5439         }
5440
5441         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5442                                        GFP_KERNEL);
5443         if (!vcpu->arch.mce_banks) {
5444                 r = -ENOMEM;
5445                 goto fail_free_lapic;
5446         }
5447         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5448
5449         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5450                 goto fail_free_mce_banks;
5451
5452         return 0;
5453 fail_free_mce_banks:
5454         kfree(vcpu->arch.mce_banks);
5455 fail_free_lapic:
5456         kvm_free_lapic(vcpu);
5457 fail_mmu_destroy:
5458         kvm_mmu_destroy(vcpu);
5459 fail_free_pio_data:
5460         free_page((unsigned long)vcpu->arch.pio_data);
5461 fail:
5462         return r;
5463 }
5464
5465 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5466 {
5467         int idx;
5468
5469         kfree(vcpu->arch.mce_banks);
5470         kvm_free_lapic(vcpu);
5471         idx = srcu_read_lock(&vcpu->kvm->srcu);
5472         kvm_mmu_destroy(vcpu);
5473         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5474         free_page((unsigned long)vcpu->arch.pio_data);
5475 }
5476
5477 struct  kvm *kvm_arch_create_vm(void)
5478 {
5479         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5480
5481         if (!kvm)
5482                 return ERR_PTR(-ENOMEM);
5483
5484         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5485         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5486
5487         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5488         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5489
5490         rdtscll(kvm->arch.vm_init_tsc);
5491
5492         return kvm;
5493 }
5494
5495 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5496 {
5497         vcpu_load(vcpu);
5498         kvm_mmu_unload(vcpu);
5499         vcpu_put(vcpu);
5500 }
5501
5502 static void kvm_free_vcpus(struct kvm *kvm)
5503 {
5504         unsigned int i;
5505         struct kvm_vcpu *vcpu;
5506
5507         /*
5508          * Unpin any mmu pages first.
5509          */
5510         kvm_for_each_vcpu(i, vcpu, kvm)
5511                 kvm_unload_vcpu_mmu(vcpu);
5512         kvm_for_each_vcpu(i, vcpu, kvm)
5513                 kvm_arch_vcpu_free(vcpu);
5514
5515         mutex_lock(&kvm->lock);
5516         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5517                 kvm->vcpus[i] = NULL;
5518
5519         atomic_set(&kvm->online_vcpus, 0);
5520         mutex_unlock(&kvm->lock);
5521 }
5522
5523 void kvm_arch_sync_events(struct kvm *kvm)
5524 {
5525         kvm_free_all_assigned_devices(kvm);
5526         kvm_free_pit(kvm);
5527 }
5528
5529 void kvm_arch_destroy_vm(struct kvm *kvm)
5530 {
5531         kvm_iommu_unmap_guest(kvm);
5532         kfree(kvm->arch.vpic);
5533         kfree(kvm->arch.vioapic);
5534         kvm_free_vcpus(kvm);
5535         kvm_free_physmem(kvm);
5536         if (kvm->arch.apic_access_page)
5537                 put_page(kvm->arch.apic_access_page);
5538         if (kvm->arch.ept_identity_pagetable)
5539                 put_page(kvm->arch.ept_identity_pagetable);
5540         cleanup_srcu_struct(&kvm->srcu);
5541         kfree(kvm);
5542 }
5543
5544 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5545                                 struct kvm_memory_slot *memslot,
5546                                 struct kvm_memory_slot old,
5547                                 struct kvm_userspace_memory_region *mem,
5548                                 int user_alloc)
5549 {
5550         int npages = memslot->npages;
5551         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5552
5553         /* Prevent internal slot pages from being moved by fork()/COW. */
5554         if (memslot->id >= KVM_MEMORY_SLOTS)
5555                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5556
5557         /*To keep backward compatibility with older userspace,
5558          *x86 needs to hanlde !user_alloc case.
5559          */
5560         if (!user_alloc) {
5561                 if (npages && !old.rmap) {
5562                         unsigned long userspace_addr;
5563
5564                         down_write(&current->mm->mmap_sem);
5565                         userspace_addr = do_mmap(NULL, 0,
5566                                                  npages * PAGE_SIZE,
5567                                                  PROT_READ | PROT_WRITE,
5568                                                  map_flags,
5569                                                  0);
5570                         up_write(&current->mm->mmap_sem);
5571
5572                         if (IS_ERR((void *)userspace_addr))
5573                                 return PTR_ERR((void *)userspace_addr);
5574
5575                         memslot->userspace_addr = userspace_addr;
5576                 }
5577         }
5578
5579
5580         return 0;
5581 }
5582
5583 void kvm_arch_commit_memory_region(struct kvm *kvm,
5584                                 struct kvm_userspace_memory_region *mem,
5585                                 struct kvm_memory_slot old,
5586                                 int user_alloc)
5587 {
5588
5589         int npages = mem->memory_size >> PAGE_SHIFT;
5590
5591         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5592                 int ret;
5593
5594                 down_write(&current->mm->mmap_sem);
5595                 ret = do_munmap(current->mm, old.userspace_addr,
5596                                 old.npages * PAGE_SIZE);
5597                 up_write(&current->mm->mmap_sem);
5598                 if (ret < 0)
5599                         printk(KERN_WARNING
5600                                "kvm_vm_ioctl_set_memory_region: "
5601                                "failed to munmap memory\n");
5602         }
5603
5604         spin_lock(&kvm->mmu_lock);
5605         if (!kvm->arch.n_requested_mmu_pages) {
5606                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5607                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5608         }
5609
5610         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5611         spin_unlock(&kvm->mmu_lock);
5612 }
5613
5614 void kvm_arch_flush_shadow(struct kvm *kvm)
5615 {
5616         kvm_mmu_zap_all(kvm);
5617         kvm_reload_remote_mmus(kvm);
5618 }
5619
5620 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5621 {
5622         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5623                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5624                 || vcpu->arch.nmi_pending ||
5625                 (kvm_arch_interrupt_allowed(vcpu) &&
5626                  kvm_cpu_has_interrupt(vcpu));
5627 }
5628
5629 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5630 {
5631         int me;
5632         int cpu = vcpu->cpu;
5633
5634         if (waitqueue_active(&vcpu->wq)) {
5635                 wake_up_interruptible(&vcpu->wq);
5636                 ++vcpu->stat.halt_wakeup;
5637         }
5638
5639         me = get_cpu();
5640         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5641                 if (atomic_xchg(&vcpu->guest_mode, 0))
5642                         smp_send_reschedule(cpu);
5643         put_cpu();
5644 }
5645
5646 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5647 {
5648         return kvm_x86_ops->interrupt_allowed(vcpu);
5649 }
5650
5651 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5652 {
5653         unsigned long current_rip = kvm_rip_read(vcpu) +
5654                 get_segment_base(vcpu, VCPU_SREG_CS);
5655
5656         return current_rip == linear_rip;
5657 }
5658 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5659
5660 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5661 {
5662         unsigned long rflags;
5663
5664         rflags = kvm_x86_ops->get_rflags(vcpu);
5665         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5666                 rflags &= ~X86_EFLAGS_TF;
5667         return rflags;
5668 }
5669 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5670
5671 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5672 {
5673         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5674             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5675                 rflags |= X86_EFLAGS_TF;
5676         kvm_x86_ops->set_rflags(vcpu, rflags);
5677 }
5678 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5679
5680 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5681 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5682 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5683 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5684 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5685 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5686 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5687 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5688 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);