69de7248083fc0cb361334a72778ea65aaedab18
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
44
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
50
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS                                               \
53         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS                                               \
57         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
59                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
60                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
61
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
63
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
66
67 /* EFER defaults:
68  * - enable syscall per default because its emulated by KVM
69  * - enable LME and LMA per default on 64 bit KVM
70  */
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
76
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
79
80 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
81                                     struct kvm_cpuid_entry2 __user *entries);
82
83 struct kvm_x86_ops *kvm_x86_ops;
84 EXPORT_SYMBOL_GPL(kvm_x86_ops);
85
86 int ignore_msrs = 0;
87 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
88
89 struct kvm_stats_debugfs_item debugfs_entries[] = {
90         { "pf_fixed", VCPU_STAT(pf_fixed) },
91         { "pf_guest", VCPU_STAT(pf_guest) },
92         { "tlb_flush", VCPU_STAT(tlb_flush) },
93         { "invlpg", VCPU_STAT(invlpg) },
94         { "exits", VCPU_STAT(exits) },
95         { "io_exits", VCPU_STAT(io_exits) },
96         { "mmio_exits", VCPU_STAT(mmio_exits) },
97         { "signal_exits", VCPU_STAT(signal_exits) },
98         { "irq_window", VCPU_STAT(irq_window_exits) },
99         { "nmi_window", VCPU_STAT(nmi_window_exits) },
100         { "halt_exits", VCPU_STAT(halt_exits) },
101         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
102         { "hypercalls", VCPU_STAT(hypercalls) },
103         { "request_irq", VCPU_STAT(request_irq_exits) },
104         { "irq_exits", VCPU_STAT(irq_exits) },
105         { "host_state_reload", VCPU_STAT(host_state_reload) },
106         { "efer_reload", VCPU_STAT(efer_reload) },
107         { "fpu_reload", VCPU_STAT(fpu_reload) },
108         { "insn_emulation", VCPU_STAT(insn_emulation) },
109         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
110         { "irq_injections", VCPU_STAT(irq_injections) },
111         { "nmi_injections", VCPU_STAT(nmi_injections) },
112         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
113         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
114         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
115         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
116         { "mmu_flooded", VM_STAT(mmu_flooded) },
117         { "mmu_recycled", VM_STAT(mmu_recycled) },
118         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
119         { "mmu_unsync", VM_STAT(mmu_unsync) },
120         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
121         { "largepages", VM_STAT(lpages) },
122         { NULL }
123 };
124
125 unsigned long segment_base(u16 selector)
126 {
127         struct descriptor_table gdt;
128         struct desc_struct *d;
129         unsigned long table_base;
130         unsigned long v;
131
132         if (selector == 0)
133                 return 0;
134
135         kvm_get_gdt(&gdt);
136         table_base = gdt.base;
137
138         if (selector & 4) {           /* from ldt */
139                 u16 ldt_selector = kvm_read_ldt();
140
141                 table_base = segment_base(ldt_selector);
142         }
143         d = (struct desc_struct *)(table_base + (selector & ~7));
144         v = get_desc_base(d);
145 #ifdef CONFIG_X86_64
146         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
147                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
148 #endif
149         return v;
150 }
151 EXPORT_SYMBOL_GPL(segment_base);
152
153 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
154 {
155         if (irqchip_in_kernel(vcpu->kvm))
156                 return vcpu->arch.apic_base;
157         else
158                 return vcpu->arch.apic_base;
159 }
160 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
161
162 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
163 {
164         /* TODO: reserve bits check */
165         if (irqchip_in_kernel(vcpu->kvm))
166                 kvm_lapic_set_base(vcpu, data);
167         else
168                 vcpu->arch.apic_base = data;
169 }
170 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
171
172 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
173 {
174         WARN_ON(vcpu->arch.exception.pending);
175         vcpu->arch.exception.pending = true;
176         vcpu->arch.exception.has_error_code = false;
177         vcpu->arch.exception.nr = nr;
178 }
179 EXPORT_SYMBOL_GPL(kvm_queue_exception);
180
181 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
182                            u32 error_code)
183 {
184         ++vcpu->stat.pf_guest;
185
186         if (vcpu->arch.exception.pending) {
187                 switch(vcpu->arch.exception.nr) {
188                 case DF_VECTOR:
189                         /* triple fault -> shutdown */
190                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
191                         return;
192                 case PF_VECTOR:
193                         vcpu->arch.exception.nr = DF_VECTOR;
194                         vcpu->arch.exception.error_code = 0;
195                         return;
196                 default:
197                         /* replace previous exception with a new one in a hope
198                            that instruction re-execution will regenerate lost
199                            exception */
200                         vcpu->arch.exception.pending = false;
201                         break;
202                 }
203         }
204         vcpu->arch.cr2 = addr;
205         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
206 }
207
208 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
209 {
210         vcpu->arch.nmi_pending = 1;
211 }
212 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
213
214 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
215 {
216         WARN_ON(vcpu->arch.exception.pending);
217         vcpu->arch.exception.pending = true;
218         vcpu->arch.exception.has_error_code = true;
219         vcpu->arch.exception.nr = nr;
220         vcpu->arch.exception.error_code = error_code;
221 }
222 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
223
224 /*
225  * Load the pae pdptrs.  Return true is they are all valid.
226  */
227 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
228 {
229         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
230         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
231         int i;
232         int ret;
233         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
234
235         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
236                                   offset * sizeof(u64), sizeof(pdpte));
237         if (ret < 0) {
238                 ret = 0;
239                 goto out;
240         }
241         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
242                 if (is_present_gpte(pdpte[i]) &&
243                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
244                         ret = 0;
245                         goto out;
246                 }
247         }
248         ret = 1;
249
250         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
251         __set_bit(VCPU_EXREG_PDPTR,
252                   (unsigned long *)&vcpu->arch.regs_avail);
253         __set_bit(VCPU_EXREG_PDPTR,
254                   (unsigned long *)&vcpu->arch.regs_dirty);
255 out:
256
257         return ret;
258 }
259 EXPORT_SYMBOL_GPL(load_pdptrs);
260
261 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
262 {
263         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
264         bool changed = true;
265         int r;
266
267         if (is_long_mode(vcpu) || !is_pae(vcpu))
268                 return false;
269
270         if (!test_bit(VCPU_EXREG_PDPTR,
271                       (unsigned long *)&vcpu->arch.regs_avail))
272                 return true;
273
274         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
275         if (r < 0)
276                 goto out;
277         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
278 out:
279
280         return changed;
281 }
282
283 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
284 {
285         if (cr0 & CR0_RESERVED_BITS) {
286                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
287                        cr0, vcpu->arch.cr0);
288                 kvm_inject_gp(vcpu, 0);
289                 return;
290         }
291
292         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
293                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
294                 kvm_inject_gp(vcpu, 0);
295                 return;
296         }
297
298         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
299                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
300                        "and a clear PE flag\n");
301                 kvm_inject_gp(vcpu, 0);
302                 return;
303         }
304
305         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
306 #ifdef CONFIG_X86_64
307                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
308                         int cs_db, cs_l;
309
310                         if (!is_pae(vcpu)) {
311                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
312                                        "in long mode while PAE is disabled\n");
313                                 kvm_inject_gp(vcpu, 0);
314                                 return;
315                         }
316                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
317                         if (cs_l) {
318                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
319                                        "in long mode while CS.L == 1\n");
320                                 kvm_inject_gp(vcpu, 0);
321                                 return;
322
323                         }
324                 } else
325 #endif
326                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
327                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
328                                "reserved bits\n");
329                         kvm_inject_gp(vcpu, 0);
330                         return;
331                 }
332
333         }
334
335         kvm_x86_ops->set_cr0(vcpu, cr0);
336         vcpu->arch.cr0 = cr0;
337
338         kvm_mmu_reset_context(vcpu);
339         return;
340 }
341 EXPORT_SYMBOL_GPL(kvm_set_cr0);
342
343 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
344 {
345         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
346 }
347 EXPORT_SYMBOL_GPL(kvm_lmsw);
348
349 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
350 {
351         unsigned long old_cr4 = vcpu->arch.cr4;
352         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
353
354         if (cr4 & CR4_RESERVED_BITS) {
355                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
356                 kvm_inject_gp(vcpu, 0);
357                 return;
358         }
359
360         if (is_long_mode(vcpu)) {
361                 if (!(cr4 & X86_CR4_PAE)) {
362                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
363                                "in long mode\n");
364                         kvm_inject_gp(vcpu, 0);
365                         return;
366                 }
367         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
368                    && ((cr4 ^ old_cr4) & pdptr_bits)
369                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
370                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
371                 kvm_inject_gp(vcpu, 0);
372                 return;
373         }
374
375         if (cr4 & X86_CR4_VMXE) {
376                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
377                 kvm_inject_gp(vcpu, 0);
378                 return;
379         }
380         kvm_x86_ops->set_cr4(vcpu, cr4);
381         vcpu->arch.cr4 = cr4;
382         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
383         kvm_mmu_reset_context(vcpu);
384 }
385 EXPORT_SYMBOL_GPL(kvm_set_cr4);
386
387 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
388 {
389         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
390                 kvm_mmu_sync_roots(vcpu);
391                 kvm_mmu_flush_tlb(vcpu);
392                 return;
393         }
394
395         if (is_long_mode(vcpu)) {
396                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
397                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
398                         kvm_inject_gp(vcpu, 0);
399                         return;
400                 }
401         } else {
402                 if (is_pae(vcpu)) {
403                         if (cr3 & CR3_PAE_RESERVED_BITS) {
404                                 printk(KERN_DEBUG
405                                        "set_cr3: #GP, reserved bits\n");
406                                 kvm_inject_gp(vcpu, 0);
407                                 return;
408                         }
409                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
410                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
411                                        "reserved bits\n");
412                                 kvm_inject_gp(vcpu, 0);
413                                 return;
414                         }
415                 }
416                 /*
417                  * We don't check reserved bits in nonpae mode, because
418                  * this isn't enforced, and VMware depends on this.
419                  */
420         }
421
422         /*
423          * Does the new cr3 value map to physical memory? (Note, we
424          * catch an invalid cr3 even in real-mode, because it would
425          * cause trouble later on when we turn on paging anyway.)
426          *
427          * A real CPU would silently accept an invalid cr3 and would
428          * attempt to use it - with largely undefined (and often hard
429          * to debug) behavior on the guest side.
430          */
431         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
432                 kvm_inject_gp(vcpu, 0);
433         else {
434                 vcpu->arch.cr3 = cr3;
435                 vcpu->arch.mmu.new_cr3(vcpu);
436         }
437 }
438 EXPORT_SYMBOL_GPL(kvm_set_cr3);
439
440 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
441 {
442         if (cr8 & CR8_RESERVED_BITS) {
443                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
444                 kvm_inject_gp(vcpu, 0);
445                 return;
446         }
447         if (irqchip_in_kernel(vcpu->kvm))
448                 kvm_lapic_set_tpr(vcpu, cr8);
449         else
450                 vcpu->arch.cr8 = cr8;
451 }
452 EXPORT_SYMBOL_GPL(kvm_set_cr8);
453
454 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
455 {
456         if (irqchip_in_kernel(vcpu->kvm))
457                 return kvm_lapic_get_cr8(vcpu);
458         else
459                 return vcpu->arch.cr8;
460 }
461 EXPORT_SYMBOL_GPL(kvm_get_cr8);
462
463 static inline u32 bit(int bitno)
464 {
465         return 1 << (bitno & 31);
466 }
467
468 /*
469  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
470  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
471  *
472  * This list is modified at module load time to reflect the
473  * capabilities of the host cpu.
474  */
475 static u32 msrs_to_save[] = {
476         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
477         MSR_K6_STAR,
478 #ifdef CONFIG_X86_64
479         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
480 #endif
481         MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
482         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
483 };
484
485 static unsigned num_msrs_to_save;
486
487 static u32 emulated_msrs[] = {
488         MSR_IA32_MISC_ENABLE,
489 };
490
491 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
492 {
493         if (efer & efer_reserved_bits) {
494                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
495                        efer);
496                 kvm_inject_gp(vcpu, 0);
497                 return;
498         }
499
500         if (is_paging(vcpu)
501             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
502                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
503                 kvm_inject_gp(vcpu, 0);
504                 return;
505         }
506
507         if (efer & EFER_FFXSR) {
508                 struct kvm_cpuid_entry2 *feat;
509
510                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
511                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
512                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
513                         kvm_inject_gp(vcpu, 0);
514                         return;
515                 }
516         }
517
518         if (efer & EFER_SVME) {
519                 struct kvm_cpuid_entry2 *feat;
520
521                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
522                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
523                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
524                         kvm_inject_gp(vcpu, 0);
525                         return;
526                 }
527         }
528
529         kvm_x86_ops->set_efer(vcpu, efer);
530
531         efer &= ~EFER_LMA;
532         efer |= vcpu->arch.shadow_efer & EFER_LMA;
533
534         vcpu->arch.shadow_efer = efer;
535
536         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
537         kvm_mmu_reset_context(vcpu);
538 }
539
540 void kvm_enable_efer_bits(u64 mask)
541 {
542        efer_reserved_bits &= ~mask;
543 }
544 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
545
546
547 /*
548  * Writes msr value into into the appropriate "register".
549  * Returns 0 on success, non-0 otherwise.
550  * Assumes vcpu_load() was already called.
551  */
552 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
553 {
554         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
555 }
556
557 /*
558  * Adapt set_msr() to msr_io()'s calling convention
559  */
560 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
561 {
562         return kvm_set_msr(vcpu, index, *data);
563 }
564
565 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
566 {
567         static int version;
568         struct pvclock_wall_clock wc;
569         struct timespec now, sys, boot;
570
571         if (!wall_clock)
572                 return;
573
574         version++;
575
576         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
577
578         /*
579          * The guest calculates current wall clock time by adding
580          * system time (updated by kvm_write_guest_time below) to the
581          * wall clock specified here.  guest system time equals host
582          * system time for us, thus we must fill in host boot time here.
583          */
584         now = current_kernel_time();
585         ktime_get_ts(&sys);
586         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
587
588         wc.sec = boot.tv_sec;
589         wc.nsec = boot.tv_nsec;
590         wc.version = version;
591
592         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
593
594         version++;
595         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
596 }
597
598 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
599 {
600         uint32_t quotient, remainder;
601
602         /* Don't try to replace with do_div(), this one calculates
603          * "(dividend << 32) / divisor" */
604         __asm__ ( "divl %4"
605                   : "=a" (quotient), "=d" (remainder)
606                   : "0" (0), "1" (dividend), "r" (divisor) );
607         return quotient;
608 }
609
610 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
611 {
612         uint64_t nsecs = 1000000000LL;
613         int32_t  shift = 0;
614         uint64_t tps64;
615         uint32_t tps32;
616
617         tps64 = tsc_khz * 1000LL;
618         while (tps64 > nsecs*2) {
619                 tps64 >>= 1;
620                 shift--;
621         }
622
623         tps32 = (uint32_t)tps64;
624         while (tps32 <= (uint32_t)nsecs) {
625                 tps32 <<= 1;
626                 shift++;
627         }
628
629         hv_clock->tsc_shift = shift;
630         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
631
632         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
633                  __func__, tsc_khz, hv_clock->tsc_shift,
634                  hv_clock->tsc_to_system_mul);
635 }
636
637 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
638
639 static void kvm_write_guest_time(struct kvm_vcpu *v)
640 {
641         struct timespec ts;
642         unsigned long flags;
643         struct kvm_vcpu_arch *vcpu = &v->arch;
644         void *shared_kaddr;
645         unsigned long this_tsc_khz;
646
647         if ((!vcpu->time_page))
648                 return;
649
650         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
651         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
652                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
653                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
654         }
655         put_cpu_var(cpu_tsc_khz);
656
657         /* Keep irq disabled to prevent changes to the clock */
658         local_irq_save(flags);
659         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
660         ktime_get_ts(&ts);
661         local_irq_restore(flags);
662
663         /* With all the info we got, fill in the values */
664
665         vcpu->hv_clock.system_time = ts.tv_nsec +
666                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
667         /*
668          * The interface expects us to write an even number signaling that the
669          * update is finished. Since the guest won't see the intermediate
670          * state, we just increase by 2 at the end.
671          */
672         vcpu->hv_clock.version += 2;
673
674         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
675
676         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
677                sizeof(vcpu->hv_clock));
678
679         kunmap_atomic(shared_kaddr, KM_USER0);
680
681         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
682 }
683
684 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
685 {
686         struct kvm_vcpu_arch *vcpu = &v->arch;
687
688         if (!vcpu->time_page)
689                 return 0;
690         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
691         return 1;
692 }
693
694 static bool msr_mtrr_valid(unsigned msr)
695 {
696         switch (msr) {
697         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
698         case MSR_MTRRfix64K_00000:
699         case MSR_MTRRfix16K_80000:
700         case MSR_MTRRfix16K_A0000:
701         case MSR_MTRRfix4K_C0000:
702         case MSR_MTRRfix4K_C8000:
703         case MSR_MTRRfix4K_D0000:
704         case MSR_MTRRfix4K_D8000:
705         case MSR_MTRRfix4K_E0000:
706         case MSR_MTRRfix4K_E8000:
707         case MSR_MTRRfix4K_F0000:
708         case MSR_MTRRfix4K_F8000:
709         case MSR_MTRRdefType:
710         case MSR_IA32_CR_PAT:
711                 return true;
712         case 0x2f8:
713                 return true;
714         }
715         return false;
716 }
717
718 static bool valid_pat_type(unsigned t)
719 {
720         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
721 }
722
723 static bool valid_mtrr_type(unsigned t)
724 {
725         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
726 }
727
728 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
729 {
730         int i;
731
732         if (!msr_mtrr_valid(msr))
733                 return false;
734
735         if (msr == MSR_IA32_CR_PAT) {
736                 for (i = 0; i < 8; i++)
737                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
738                                 return false;
739                 return true;
740         } else if (msr == MSR_MTRRdefType) {
741                 if (data & ~0xcff)
742                         return false;
743                 return valid_mtrr_type(data & 0xff);
744         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
745                 for (i = 0; i < 8 ; i++)
746                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
747                                 return false;
748                 return true;
749         }
750
751         /* variable MTRRs */
752         return valid_mtrr_type(data & 0xff);
753 }
754
755 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
756 {
757         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
758
759         if (!mtrr_valid(vcpu, msr, data))
760                 return 1;
761
762         if (msr == MSR_MTRRdefType) {
763                 vcpu->arch.mtrr_state.def_type = data;
764                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
765         } else if (msr == MSR_MTRRfix64K_00000)
766                 p[0] = data;
767         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
768                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
769         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
770                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
771         else if (msr == MSR_IA32_CR_PAT)
772                 vcpu->arch.pat = data;
773         else {  /* Variable MTRRs */
774                 int idx, is_mtrr_mask;
775                 u64 *pt;
776
777                 idx = (msr - 0x200) / 2;
778                 is_mtrr_mask = msr - 0x200 - 2 * idx;
779                 if (!is_mtrr_mask)
780                         pt =
781                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
782                 else
783                         pt =
784                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
785                 *pt = data;
786         }
787
788         kvm_mmu_reset_context(vcpu);
789         return 0;
790 }
791
792 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
793 {
794         u64 mcg_cap = vcpu->arch.mcg_cap;
795         unsigned bank_num = mcg_cap & 0xff;
796
797         switch (msr) {
798         case MSR_IA32_MCG_STATUS:
799                 vcpu->arch.mcg_status = data;
800                 break;
801         case MSR_IA32_MCG_CTL:
802                 if (!(mcg_cap & MCG_CTL_P))
803                         return 1;
804                 if (data != 0 && data != ~(u64)0)
805                         return -1;
806                 vcpu->arch.mcg_ctl = data;
807                 break;
808         default:
809                 if (msr >= MSR_IA32_MC0_CTL &&
810                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
811                         u32 offset = msr - MSR_IA32_MC0_CTL;
812                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
813                         if ((offset & 0x3) == 0 &&
814                             data != 0 && data != ~(u64)0)
815                                 return -1;
816                         vcpu->arch.mce_banks[offset] = data;
817                         break;
818                 }
819                 return 1;
820         }
821         return 0;
822 }
823
824 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
825 {
826         switch (msr) {
827         case MSR_EFER:
828                 set_efer(vcpu, data);
829                 break;
830         case MSR_K7_HWCR:
831                 data &= ~(u64)0x40;     /* ignore flush filter disable */
832                 if (data != 0) {
833                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
834                                 data);
835                         return 1;
836                 }
837                 break;
838         case MSR_FAM10H_MMIO_CONF_BASE:
839                 if (data != 0) {
840                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
841                                 "0x%llx\n", data);
842                         return 1;
843                 }
844                 break;
845         case MSR_AMD64_NB_CFG:
846                 break;
847         case MSR_IA32_DEBUGCTLMSR:
848                 if (!data) {
849                         /* We support the non-activated case already */
850                         break;
851                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
852                         /* Values other than LBR and BTF are vendor-specific,
853                            thus reserved and should throw a #GP */
854                         return 1;
855                 }
856                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
857                         __func__, data);
858                 break;
859         case MSR_IA32_UCODE_REV:
860         case MSR_IA32_UCODE_WRITE:
861         case MSR_VM_HSAVE_PA:
862         case MSR_AMD64_PATCH_LOADER:
863                 break;
864         case 0x200 ... 0x2ff:
865                 return set_msr_mtrr(vcpu, msr, data);
866         case MSR_IA32_APICBASE:
867                 kvm_set_apic_base(vcpu, data);
868                 break;
869         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
870                 return kvm_x2apic_msr_write(vcpu, msr, data);
871         case MSR_IA32_MISC_ENABLE:
872                 vcpu->arch.ia32_misc_enable_msr = data;
873                 break;
874         case MSR_KVM_WALL_CLOCK:
875                 vcpu->kvm->arch.wall_clock = data;
876                 kvm_write_wall_clock(vcpu->kvm, data);
877                 break;
878         case MSR_KVM_SYSTEM_TIME: {
879                 if (vcpu->arch.time_page) {
880                         kvm_release_page_dirty(vcpu->arch.time_page);
881                         vcpu->arch.time_page = NULL;
882                 }
883
884                 vcpu->arch.time = data;
885
886                 /* we verify if the enable bit is set... */
887                 if (!(data & 1))
888                         break;
889
890                 /* ...but clean it before doing the actual write */
891                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
892
893                 vcpu->arch.time_page =
894                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
895
896                 if (is_error_page(vcpu->arch.time_page)) {
897                         kvm_release_page_clean(vcpu->arch.time_page);
898                         vcpu->arch.time_page = NULL;
899                 }
900
901                 kvm_request_guest_time_update(vcpu);
902                 break;
903         }
904         case MSR_IA32_MCG_CTL:
905         case MSR_IA32_MCG_STATUS:
906         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
907                 return set_msr_mce(vcpu, msr, data);
908
909         /* Performance counters are not protected by a CPUID bit,
910          * so we should check all of them in the generic path for the sake of
911          * cross vendor migration.
912          * Writing a zero into the event select MSRs disables them,
913          * which we perfectly emulate ;-). Any other value should be at least
914          * reported, some guests depend on them.
915          */
916         case MSR_P6_EVNTSEL0:
917         case MSR_P6_EVNTSEL1:
918         case MSR_K7_EVNTSEL0:
919         case MSR_K7_EVNTSEL1:
920         case MSR_K7_EVNTSEL2:
921         case MSR_K7_EVNTSEL3:
922                 if (data != 0)
923                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
924                                 "0x%x data 0x%llx\n", msr, data);
925                 break;
926         /* at least RHEL 4 unconditionally writes to the perfctr registers,
927          * so we ignore writes to make it happy.
928          */
929         case MSR_P6_PERFCTR0:
930         case MSR_P6_PERFCTR1:
931         case MSR_K7_PERFCTR0:
932         case MSR_K7_PERFCTR1:
933         case MSR_K7_PERFCTR2:
934         case MSR_K7_PERFCTR3:
935                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
936                         "0x%x data 0x%llx\n", msr, data);
937                 break;
938         default:
939                 if (!ignore_msrs) {
940                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
941                                 msr, data);
942                         return 1;
943                 } else {
944                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
945                                 msr, data);
946                         break;
947                 }
948         }
949         return 0;
950 }
951 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
952
953
954 /*
955  * Reads an msr value (of 'msr_index') into 'pdata'.
956  * Returns 0 on success, non-0 otherwise.
957  * Assumes vcpu_load() was already called.
958  */
959 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
960 {
961         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
962 }
963
964 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
965 {
966         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
967
968         if (!msr_mtrr_valid(msr))
969                 return 1;
970
971         if (msr == MSR_MTRRdefType)
972                 *pdata = vcpu->arch.mtrr_state.def_type +
973                          (vcpu->arch.mtrr_state.enabled << 10);
974         else if (msr == MSR_MTRRfix64K_00000)
975                 *pdata = p[0];
976         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
977                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
978         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
979                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
980         else if (msr == MSR_IA32_CR_PAT)
981                 *pdata = vcpu->arch.pat;
982         else {  /* Variable MTRRs */
983                 int idx, is_mtrr_mask;
984                 u64 *pt;
985
986                 idx = (msr - 0x200) / 2;
987                 is_mtrr_mask = msr - 0x200 - 2 * idx;
988                 if (!is_mtrr_mask)
989                         pt =
990                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
991                 else
992                         pt =
993                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
994                 *pdata = *pt;
995         }
996
997         return 0;
998 }
999
1000 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1001 {
1002         u64 data;
1003         u64 mcg_cap = vcpu->arch.mcg_cap;
1004         unsigned bank_num = mcg_cap & 0xff;
1005
1006         switch (msr) {
1007         case MSR_IA32_P5_MC_ADDR:
1008         case MSR_IA32_P5_MC_TYPE:
1009                 data = 0;
1010                 break;
1011         case MSR_IA32_MCG_CAP:
1012                 data = vcpu->arch.mcg_cap;
1013                 break;
1014         case MSR_IA32_MCG_CTL:
1015                 if (!(mcg_cap & MCG_CTL_P))
1016                         return 1;
1017                 data = vcpu->arch.mcg_ctl;
1018                 break;
1019         case MSR_IA32_MCG_STATUS:
1020                 data = vcpu->arch.mcg_status;
1021                 break;
1022         default:
1023                 if (msr >= MSR_IA32_MC0_CTL &&
1024                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1025                         u32 offset = msr - MSR_IA32_MC0_CTL;
1026                         data = vcpu->arch.mce_banks[offset];
1027                         break;
1028                 }
1029                 return 1;
1030         }
1031         *pdata = data;
1032         return 0;
1033 }
1034
1035 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1036 {
1037         u64 data;
1038
1039         switch (msr) {
1040         case MSR_IA32_PLATFORM_ID:
1041         case MSR_IA32_UCODE_REV:
1042         case MSR_IA32_EBL_CR_POWERON:
1043         case MSR_IA32_DEBUGCTLMSR:
1044         case MSR_IA32_LASTBRANCHFROMIP:
1045         case MSR_IA32_LASTBRANCHTOIP:
1046         case MSR_IA32_LASTINTFROMIP:
1047         case MSR_IA32_LASTINTTOIP:
1048         case MSR_K8_SYSCFG:
1049         case MSR_K7_HWCR:
1050         case MSR_VM_HSAVE_PA:
1051         case MSR_P6_EVNTSEL0:
1052         case MSR_P6_EVNTSEL1:
1053         case MSR_K7_EVNTSEL0:
1054         case MSR_K8_INT_PENDING_MSG:
1055         case MSR_AMD64_NB_CFG:
1056         case MSR_FAM10H_MMIO_CONF_BASE:
1057                 data = 0;
1058                 break;
1059         case MSR_MTRRcap:
1060                 data = 0x500 | KVM_NR_VAR_MTRR;
1061                 break;
1062         case 0x200 ... 0x2ff:
1063                 return get_msr_mtrr(vcpu, msr, pdata);
1064         case 0xcd: /* fsb frequency */
1065                 data = 3;
1066                 break;
1067         case MSR_IA32_APICBASE:
1068                 data = kvm_get_apic_base(vcpu);
1069                 break;
1070         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1071                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1072                 break;
1073         case MSR_IA32_MISC_ENABLE:
1074                 data = vcpu->arch.ia32_misc_enable_msr;
1075                 break;
1076         case MSR_IA32_PERF_STATUS:
1077                 /* TSC increment by tick */
1078                 data = 1000ULL;
1079                 /* CPU multiplier */
1080                 data |= (((uint64_t)4ULL) << 40);
1081                 break;
1082         case MSR_EFER:
1083                 data = vcpu->arch.shadow_efer;
1084                 break;
1085         case MSR_KVM_WALL_CLOCK:
1086                 data = vcpu->kvm->arch.wall_clock;
1087                 break;
1088         case MSR_KVM_SYSTEM_TIME:
1089                 data = vcpu->arch.time;
1090                 break;
1091         case MSR_IA32_P5_MC_ADDR:
1092         case MSR_IA32_P5_MC_TYPE:
1093         case MSR_IA32_MCG_CAP:
1094         case MSR_IA32_MCG_CTL:
1095         case MSR_IA32_MCG_STATUS:
1096         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1097                 return get_msr_mce(vcpu, msr, pdata);
1098         default:
1099                 if (!ignore_msrs) {
1100                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1101                         return 1;
1102                 } else {
1103                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1104                         data = 0;
1105                 }
1106                 break;
1107         }
1108         *pdata = data;
1109         return 0;
1110 }
1111 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1112
1113 /*
1114  * Read or write a bunch of msrs. All parameters are kernel addresses.
1115  *
1116  * @return number of msrs set successfully.
1117  */
1118 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1119                     struct kvm_msr_entry *entries,
1120                     int (*do_msr)(struct kvm_vcpu *vcpu,
1121                                   unsigned index, u64 *data))
1122 {
1123         int i;
1124
1125         vcpu_load(vcpu);
1126
1127         down_read(&vcpu->kvm->slots_lock);
1128         for (i = 0; i < msrs->nmsrs; ++i)
1129                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1130                         break;
1131         up_read(&vcpu->kvm->slots_lock);
1132
1133         vcpu_put(vcpu);
1134
1135         return i;
1136 }
1137
1138 /*
1139  * Read or write a bunch of msrs. Parameters are user addresses.
1140  *
1141  * @return number of msrs set successfully.
1142  */
1143 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1144                   int (*do_msr)(struct kvm_vcpu *vcpu,
1145                                 unsigned index, u64 *data),
1146                   int writeback)
1147 {
1148         struct kvm_msrs msrs;
1149         struct kvm_msr_entry *entries;
1150         int r, n;
1151         unsigned size;
1152
1153         r = -EFAULT;
1154         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1155                 goto out;
1156
1157         r = -E2BIG;
1158         if (msrs.nmsrs >= MAX_IO_MSRS)
1159                 goto out;
1160
1161         r = -ENOMEM;
1162         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1163         entries = vmalloc(size);
1164         if (!entries)
1165                 goto out;
1166
1167         r = -EFAULT;
1168         if (copy_from_user(entries, user_msrs->entries, size))
1169                 goto out_free;
1170
1171         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1172         if (r < 0)
1173                 goto out_free;
1174
1175         r = -EFAULT;
1176         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1177                 goto out_free;
1178
1179         r = n;
1180
1181 out_free:
1182         vfree(entries);
1183 out:
1184         return r;
1185 }
1186
1187 int kvm_dev_ioctl_check_extension(long ext)
1188 {
1189         int r;
1190
1191         switch (ext) {
1192         case KVM_CAP_IRQCHIP:
1193         case KVM_CAP_HLT:
1194         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1195         case KVM_CAP_SET_TSS_ADDR:
1196         case KVM_CAP_EXT_CPUID:
1197         case KVM_CAP_CLOCKSOURCE:
1198         case KVM_CAP_PIT:
1199         case KVM_CAP_NOP_IO_DELAY:
1200         case KVM_CAP_MP_STATE:
1201         case KVM_CAP_SYNC_MMU:
1202         case KVM_CAP_REINJECT_CONTROL:
1203         case KVM_CAP_IRQ_INJECT_STATUS:
1204         case KVM_CAP_ASSIGN_DEV_IRQ:
1205         case KVM_CAP_IRQFD:
1206         case KVM_CAP_IOEVENTFD:
1207         case KVM_CAP_PIT2:
1208         case KVM_CAP_PIT_STATE2:
1209         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1210                 r = 1;
1211                 break;
1212         case KVM_CAP_COALESCED_MMIO:
1213                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1214                 break;
1215         case KVM_CAP_VAPIC:
1216                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1217                 break;
1218         case KVM_CAP_NR_VCPUS:
1219                 r = KVM_MAX_VCPUS;
1220                 break;
1221         case KVM_CAP_NR_MEMSLOTS:
1222                 r = KVM_MEMORY_SLOTS;
1223                 break;
1224         case KVM_CAP_PV_MMU:
1225                 r = !tdp_enabled;
1226                 break;
1227         case KVM_CAP_IOMMU:
1228                 r = iommu_found();
1229                 break;
1230         case KVM_CAP_MCE:
1231                 r = KVM_MAX_MCE_BANKS;
1232                 break;
1233         default:
1234                 r = 0;
1235                 break;
1236         }
1237         return r;
1238
1239 }
1240
1241 long kvm_arch_dev_ioctl(struct file *filp,
1242                         unsigned int ioctl, unsigned long arg)
1243 {
1244         void __user *argp = (void __user *)arg;
1245         long r;
1246
1247         switch (ioctl) {
1248         case KVM_GET_MSR_INDEX_LIST: {
1249                 struct kvm_msr_list __user *user_msr_list = argp;
1250                 struct kvm_msr_list msr_list;
1251                 unsigned n;
1252
1253                 r = -EFAULT;
1254                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1255                         goto out;
1256                 n = msr_list.nmsrs;
1257                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1258                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1259                         goto out;
1260                 r = -E2BIG;
1261                 if (n < msr_list.nmsrs)
1262                         goto out;
1263                 r = -EFAULT;
1264                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1265                                  num_msrs_to_save * sizeof(u32)))
1266                         goto out;
1267                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1268                                  &emulated_msrs,
1269                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1270                         goto out;
1271                 r = 0;
1272                 break;
1273         }
1274         case KVM_GET_SUPPORTED_CPUID: {
1275                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1276                 struct kvm_cpuid2 cpuid;
1277
1278                 r = -EFAULT;
1279                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1280                         goto out;
1281                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1282                                                       cpuid_arg->entries);
1283                 if (r)
1284                         goto out;
1285
1286                 r = -EFAULT;
1287                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1288                         goto out;
1289                 r = 0;
1290                 break;
1291         }
1292         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1293                 u64 mce_cap;
1294
1295                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1296                 r = -EFAULT;
1297                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1298                         goto out;
1299                 r = 0;
1300                 break;
1301         }
1302         default:
1303                 r = -EINVAL;
1304         }
1305 out:
1306         return r;
1307 }
1308
1309 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1310 {
1311         kvm_x86_ops->vcpu_load(vcpu, cpu);
1312         kvm_request_guest_time_update(vcpu);
1313 }
1314
1315 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1316 {
1317         kvm_x86_ops->vcpu_put(vcpu);
1318         kvm_put_guest_fpu(vcpu);
1319 }
1320
1321 static int is_efer_nx(void)
1322 {
1323         unsigned long long efer = 0;
1324
1325         rdmsrl_safe(MSR_EFER, &efer);
1326         return efer & EFER_NX;
1327 }
1328
1329 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1330 {
1331         int i;
1332         struct kvm_cpuid_entry2 *e, *entry;
1333
1334         entry = NULL;
1335         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1336                 e = &vcpu->arch.cpuid_entries[i];
1337                 if (e->function == 0x80000001) {
1338                         entry = e;
1339                         break;
1340                 }
1341         }
1342         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1343                 entry->edx &= ~(1 << 20);
1344                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1345         }
1346 }
1347
1348 /* when an old userspace process fills a new kernel module */
1349 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1350                                     struct kvm_cpuid *cpuid,
1351                                     struct kvm_cpuid_entry __user *entries)
1352 {
1353         int r, i;
1354         struct kvm_cpuid_entry *cpuid_entries;
1355
1356         r = -E2BIG;
1357         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1358                 goto out;
1359         r = -ENOMEM;
1360         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1361         if (!cpuid_entries)
1362                 goto out;
1363         r = -EFAULT;
1364         if (copy_from_user(cpuid_entries, entries,
1365                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1366                 goto out_free;
1367         for (i = 0; i < cpuid->nent; i++) {
1368                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1369                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1370                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1371                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1372                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1373                 vcpu->arch.cpuid_entries[i].index = 0;
1374                 vcpu->arch.cpuid_entries[i].flags = 0;
1375                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1376                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1377                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1378         }
1379         vcpu->arch.cpuid_nent = cpuid->nent;
1380         cpuid_fix_nx_cap(vcpu);
1381         r = 0;
1382         kvm_apic_set_version(vcpu);
1383
1384 out_free:
1385         vfree(cpuid_entries);
1386 out:
1387         return r;
1388 }
1389
1390 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1391                                      struct kvm_cpuid2 *cpuid,
1392                                      struct kvm_cpuid_entry2 __user *entries)
1393 {
1394         int r;
1395
1396         r = -E2BIG;
1397         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1398                 goto out;
1399         r = -EFAULT;
1400         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1401                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1402                 goto out;
1403         vcpu->arch.cpuid_nent = cpuid->nent;
1404         kvm_apic_set_version(vcpu);
1405         return 0;
1406
1407 out:
1408         return r;
1409 }
1410
1411 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1412                                      struct kvm_cpuid2 *cpuid,
1413                                      struct kvm_cpuid_entry2 __user *entries)
1414 {
1415         int r;
1416
1417         r = -E2BIG;
1418         if (cpuid->nent < vcpu->arch.cpuid_nent)
1419                 goto out;
1420         r = -EFAULT;
1421         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1422                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1423                 goto out;
1424         return 0;
1425
1426 out:
1427         cpuid->nent = vcpu->arch.cpuid_nent;
1428         return r;
1429 }
1430
1431 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1432                            u32 index)
1433 {
1434         entry->function = function;
1435         entry->index = index;
1436         cpuid_count(entry->function, entry->index,
1437                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1438         entry->flags = 0;
1439 }
1440
1441 #define F(x) bit(X86_FEATURE_##x)
1442
1443 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1444                          u32 index, int *nent, int maxnent)
1445 {
1446         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1447 #ifdef CONFIG_X86_64
1448         unsigned f_lm = F(LM);
1449 #else
1450         unsigned f_lm = 0;
1451 #endif
1452
1453         /* cpuid 1.edx */
1454         const u32 kvm_supported_word0_x86_features =
1455                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1456                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1457                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1458                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1459                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1460                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1461                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1462                 0 /* HTT, TM, Reserved, PBE */;
1463         /* cpuid 0x80000001.edx */
1464         const u32 kvm_supported_word1_x86_features =
1465                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1466                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1467                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1468                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1469                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1470                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1471                 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1472                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1473         /* cpuid 1.ecx */
1474         const u32 kvm_supported_word4_x86_features =
1475                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1476                 0 /* DS-CPL, VMX, SMX, EST */ |
1477                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1478                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1479                 0 /* Reserved, DCA */ | F(XMM4_1) |
1480                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1481                 0 /* Reserved, XSAVE, OSXSAVE */;
1482         /* cpuid 0x80000001.ecx */
1483         const u32 kvm_supported_word6_x86_features =
1484                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1485                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1486                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1487                 0 /* SKINIT */ | 0 /* WDT */;
1488
1489         /* all calls to cpuid_count() should be made on the same cpu */
1490         get_cpu();
1491         do_cpuid_1_ent(entry, function, index);
1492         ++*nent;
1493
1494         switch (function) {
1495         case 0:
1496                 entry->eax = min(entry->eax, (u32)0xb);
1497                 break;
1498         case 1:
1499                 entry->edx &= kvm_supported_word0_x86_features;
1500                 entry->ecx &= kvm_supported_word4_x86_features;
1501                 /* we support x2apic emulation even if host does not support
1502                  * it since we emulate x2apic in software */
1503                 entry->ecx |= F(X2APIC);
1504                 break;
1505         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1506          * may return different values. This forces us to get_cpu() before
1507          * issuing the first command, and also to emulate this annoying behavior
1508          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1509         case 2: {
1510                 int t, times = entry->eax & 0xff;
1511
1512                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1513                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1514                 for (t = 1; t < times && *nent < maxnent; ++t) {
1515                         do_cpuid_1_ent(&entry[t], function, 0);
1516                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1517                         ++*nent;
1518                 }
1519                 break;
1520         }
1521         /* function 4 and 0xb have additional index. */
1522         case 4: {
1523                 int i, cache_type;
1524
1525                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1526                 /* read more entries until cache_type is zero */
1527                 for (i = 1; *nent < maxnent; ++i) {
1528                         cache_type = entry[i - 1].eax & 0x1f;
1529                         if (!cache_type)
1530                                 break;
1531                         do_cpuid_1_ent(&entry[i], function, i);
1532                         entry[i].flags |=
1533                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1534                         ++*nent;
1535                 }
1536                 break;
1537         }
1538         case 0xb: {
1539                 int i, level_type;
1540
1541                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1542                 /* read more entries until level_type is zero */
1543                 for (i = 1; *nent < maxnent; ++i) {
1544                         level_type = entry[i - 1].ecx & 0xff00;
1545                         if (!level_type)
1546                                 break;
1547                         do_cpuid_1_ent(&entry[i], function, i);
1548                         entry[i].flags |=
1549                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1550                         ++*nent;
1551                 }
1552                 break;
1553         }
1554         case 0x80000000:
1555                 entry->eax = min(entry->eax, 0x8000001a);
1556                 break;
1557         case 0x80000001:
1558                 entry->edx &= kvm_supported_word1_x86_features;
1559                 entry->ecx &= kvm_supported_word6_x86_features;
1560                 break;
1561         }
1562         put_cpu();
1563 }
1564
1565 #undef F
1566
1567 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1568                                      struct kvm_cpuid_entry2 __user *entries)
1569 {
1570         struct kvm_cpuid_entry2 *cpuid_entries;
1571         int limit, nent = 0, r = -E2BIG;
1572         u32 func;
1573
1574         if (cpuid->nent < 1)
1575                 goto out;
1576         r = -ENOMEM;
1577         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1578         if (!cpuid_entries)
1579                 goto out;
1580
1581         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1582         limit = cpuid_entries[0].eax;
1583         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1584                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1585                              &nent, cpuid->nent);
1586         r = -E2BIG;
1587         if (nent >= cpuid->nent)
1588                 goto out_free;
1589
1590         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1591         limit = cpuid_entries[nent - 1].eax;
1592         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1593                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1594                              &nent, cpuid->nent);
1595         r = -E2BIG;
1596         if (nent >= cpuid->nent)
1597                 goto out_free;
1598
1599         r = -EFAULT;
1600         if (copy_to_user(entries, cpuid_entries,
1601                          nent * sizeof(struct kvm_cpuid_entry2)))
1602                 goto out_free;
1603         cpuid->nent = nent;
1604         r = 0;
1605
1606 out_free:
1607         vfree(cpuid_entries);
1608 out:
1609         return r;
1610 }
1611
1612 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1613                                     struct kvm_lapic_state *s)
1614 {
1615         vcpu_load(vcpu);
1616         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1617         vcpu_put(vcpu);
1618
1619         return 0;
1620 }
1621
1622 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1623                                     struct kvm_lapic_state *s)
1624 {
1625         vcpu_load(vcpu);
1626         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1627         kvm_apic_post_state_restore(vcpu);
1628         vcpu_put(vcpu);
1629
1630         return 0;
1631 }
1632
1633 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1634                                     struct kvm_interrupt *irq)
1635 {
1636         if (irq->irq < 0 || irq->irq >= 256)
1637                 return -EINVAL;
1638         if (irqchip_in_kernel(vcpu->kvm))
1639                 return -ENXIO;
1640         vcpu_load(vcpu);
1641
1642         kvm_queue_interrupt(vcpu, irq->irq, false);
1643
1644         vcpu_put(vcpu);
1645
1646         return 0;
1647 }
1648
1649 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1650 {
1651         vcpu_load(vcpu);
1652         kvm_inject_nmi(vcpu);
1653         vcpu_put(vcpu);
1654
1655         return 0;
1656 }
1657
1658 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1659                                            struct kvm_tpr_access_ctl *tac)
1660 {
1661         if (tac->flags)
1662                 return -EINVAL;
1663         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1664         return 0;
1665 }
1666
1667 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1668                                         u64 mcg_cap)
1669 {
1670         int r;
1671         unsigned bank_num = mcg_cap & 0xff, bank;
1672
1673         r = -EINVAL;
1674         if (!bank_num)
1675                 goto out;
1676         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1677                 goto out;
1678         r = 0;
1679         vcpu->arch.mcg_cap = mcg_cap;
1680         /* Init IA32_MCG_CTL to all 1s */
1681         if (mcg_cap & MCG_CTL_P)
1682                 vcpu->arch.mcg_ctl = ~(u64)0;
1683         /* Init IA32_MCi_CTL to all 1s */
1684         for (bank = 0; bank < bank_num; bank++)
1685                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1686 out:
1687         return r;
1688 }
1689
1690 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1691                                       struct kvm_x86_mce *mce)
1692 {
1693         u64 mcg_cap = vcpu->arch.mcg_cap;
1694         unsigned bank_num = mcg_cap & 0xff;
1695         u64 *banks = vcpu->arch.mce_banks;
1696
1697         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1698                 return -EINVAL;
1699         /*
1700          * if IA32_MCG_CTL is not all 1s, the uncorrected error
1701          * reporting is disabled
1702          */
1703         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1704             vcpu->arch.mcg_ctl != ~(u64)0)
1705                 return 0;
1706         banks += 4 * mce->bank;
1707         /*
1708          * if IA32_MCi_CTL is not all 1s, the uncorrected error
1709          * reporting is disabled for the bank
1710          */
1711         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1712                 return 0;
1713         if (mce->status & MCI_STATUS_UC) {
1714                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1715                     !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1716                         printk(KERN_DEBUG "kvm: set_mce: "
1717                                "injects mce exception while "
1718                                "previous one is in progress!\n");
1719                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1720                         return 0;
1721                 }
1722                 if (banks[1] & MCI_STATUS_VAL)
1723                         mce->status |= MCI_STATUS_OVER;
1724                 banks[2] = mce->addr;
1725                 banks[3] = mce->misc;
1726                 vcpu->arch.mcg_status = mce->mcg_status;
1727                 banks[1] = mce->status;
1728                 kvm_queue_exception(vcpu, MC_VECTOR);
1729         } else if (!(banks[1] & MCI_STATUS_VAL)
1730                    || !(banks[1] & MCI_STATUS_UC)) {
1731                 if (banks[1] & MCI_STATUS_VAL)
1732                         mce->status |= MCI_STATUS_OVER;
1733                 banks[2] = mce->addr;
1734                 banks[3] = mce->misc;
1735                 banks[1] = mce->status;
1736         } else
1737                 banks[1] |= MCI_STATUS_OVER;
1738         return 0;
1739 }
1740
1741 long kvm_arch_vcpu_ioctl(struct file *filp,
1742                          unsigned int ioctl, unsigned long arg)
1743 {
1744         struct kvm_vcpu *vcpu = filp->private_data;
1745         void __user *argp = (void __user *)arg;
1746         int r;
1747         struct kvm_lapic_state *lapic = NULL;
1748
1749         switch (ioctl) {
1750         case KVM_GET_LAPIC: {
1751                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1752
1753                 r = -ENOMEM;
1754                 if (!lapic)
1755                         goto out;
1756                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1757                 if (r)
1758                         goto out;
1759                 r = -EFAULT;
1760                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1761                         goto out;
1762                 r = 0;
1763                 break;
1764         }
1765         case KVM_SET_LAPIC: {
1766                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1767                 r = -ENOMEM;
1768                 if (!lapic)
1769                         goto out;
1770                 r = -EFAULT;
1771                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1772                         goto out;
1773                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1774                 if (r)
1775                         goto out;
1776                 r = 0;
1777                 break;
1778         }
1779         case KVM_INTERRUPT: {
1780                 struct kvm_interrupt irq;
1781
1782                 r = -EFAULT;
1783                 if (copy_from_user(&irq, argp, sizeof irq))
1784                         goto out;
1785                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1786                 if (r)
1787                         goto out;
1788                 r = 0;
1789                 break;
1790         }
1791         case KVM_NMI: {
1792                 r = kvm_vcpu_ioctl_nmi(vcpu);
1793                 if (r)
1794                         goto out;
1795                 r = 0;
1796                 break;
1797         }
1798         case KVM_SET_CPUID: {
1799                 struct kvm_cpuid __user *cpuid_arg = argp;
1800                 struct kvm_cpuid cpuid;
1801
1802                 r = -EFAULT;
1803                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1804                         goto out;
1805                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1806                 if (r)
1807                         goto out;
1808                 break;
1809         }
1810         case KVM_SET_CPUID2: {
1811                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1812                 struct kvm_cpuid2 cpuid;
1813
1814                 r = -EFAULT;
1815                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1816                         goto out;
1817                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1818                                               cpuid_arg->entries);
1819                 if (r)
1820                         goto out;
1821                 break;
1822         }
1823         case KVM_GET_CPUID2: {
1824                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1825                 struct kvm_cpuid2 cpuid;
1826
1827                 r = -EFAULT;
1828                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1829                         goto out;
1830                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1831                                               cpuid_arg->entries);
1832                 if (r)
1833                         goto out;
1834                 r = -EFAULT;
1835                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1836                         goto out;
1837                 r = 0;
1838                 break;
1839         }
1840         case KVM_GET_MSRS:
1841                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1842                 break;
1843         case KVM_SET_MSRS:
1844                 r = msr_io(vcpu, argp, do_set_msr, 0);
1845                 break;
1846         case KVM_TPR_ACCESS_REPORTING: {
1847                 struct kvm_tpr_access_ctl tac;
1848
1849                 r = -EFAULT;
1850                 if (copy_from_user(&tac, argp, sizeof tac))
1851                         goto out;
1852                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1853                 if (r)
1854                         goto out;
1855                 r = -EFAULT;
1856                 if (copy_to_user(argp, &tac, sizeof tac))
1857                         goto out;
1858                 r = 0;
1859                 break;
1860         };
1861         case KVM_SET_VAPIC_ADDR: {
1862                 struct kvm_vapic_addr va;
1863
1864                 r = -EINVAL;
1865                 if (!irqchip_in_kernel(vcpu->kvm))
1866                         goto out;
1867                 r = -EFAULT;
1868                 if (copy_from_user(&va, argp, sizeof va))
1869                         goto out;
1870                 r = 0;
1871                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1872                 break;
1873         }
1874         case KVM_X86_SETUP_MCE: {
1875                 u64 mcg_cap;
1876
1877                 r = -EFAULT;
1878                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1879                         goto out;
1880                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1881                 break;
1882         }
1883         case KVM_X86_SET_MCE: {
1884                 struct kvm_x86_mce mce;
1885
1886                 r = -EFAULT;
1887                 if (copy_from_user(&mce, argp, sizeof mce))
1888                         goto out;
1889                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1890                 break;
1891         }
1892         default:
1893                 r = -EINVAL;
1894         }
1895 out:
1896         kfree(lapic);
1897         return r;
1898 }
1899
1900 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1901 {
1902         int ret;
1903
1904         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1905                 return -1;
1906         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1907         return ret;
1908 }
1909
1910 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
1911                                               u64 ident_addr)
1912 {
1913         kvm->arch.ept_identity_map_addr = ident_addr;
1914         return 0;
1915 }
1916
1917 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1918                                           u32 kvm_nr_mmu_pages)
1919 {
1920         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1921                 return -EINVAL;
1922
1923         down_write(&kvm->slots_lock);
1924         spin_lock(&kvm->mmu_lock);
1925
1926         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1927         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1928
1929         spin_unlock(&kvm->mmu_lock);
1930         up_write(&kvm->slots_lock);
1931         return 0;
1932 }
1933
1934 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1935 {
1936         return kvm->arch.n_alloc_mmu_pages;
1937 }
1938
1939 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1940 {
1941         int i;
1942         struct kvm_mem_alias *alias;
1943
1944         for (i = 0; i < kvm->arch.naliases; ++i) {
1945                 alias = &kvm->arch.aliases[i];
1946                 if (gfn >= alias->base_gfn
1947                     && gfn < alias->base_gfn + alias->npages)
1948                         return alias->target_gfn + gfn - alias->base_gfn;
1949         }
1950         return gfn;
1951 }
1952
1953 /*
1954  * Set a new alias region.  Aliases map a portion of physical memory into
1955  * another portion.  This is useful for memory windows, for example the PC
1956  * VGA region.
1957  */
1958 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1959                                          struct kvm_memory_alias *alias)
1960 {
1961         int r, n;
1962         struct kvm_mem_alias *p;
1963
1964         r = -EINVAL;
1965         /* General sanity checks */
1966         if (alias->memory_size & (PAGE_SIZE - 1))
1967                 goto out;
1968         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1969                 goto out;
1970         if (alias->slot >= KVM_ALIAS_SLOTS)
1971                 goto out;
1972         if (alias->guest_phys_addr + alias->memory_size
1973             < alias->guest_phys_addr)
1974                 goto out;
1975         if (alias->target_phys_addr + alias->memory_size
1976             < alias->target_phys_addr)
1977                 goto out;
1978
1979         down_write(&kvm->slots_lock);
1980         spin_lock(&kvm->mmu_lock);
1981
1982         p = &kvm->arch.aliases[alias->slot];
1983         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1984         p->npages = alias->memory_size >> PAGE_SHIFT;
1985         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1986
1987         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1988                 if (kvm->arch.aliases[n - 1].npages)
1989                         break;
1990         kvm->arch.naliases = n;
1991
1992         spin_unlock(&kvm->mmu_lock);
1993         kvm_mmu_zap_all(kvm);
1994
1995         up_write(&kvm->slots_lock);
1996
1997         return 0;
1998
1999 out:
2000         return r;
2001 }
2002
2003 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2004 {
2005         int r;
2006
2007         r = 0;
2008         switch (chip->chip_id) {
2009         case KVM_IRQCHIP_PIC_MASTER:
2010                 memcpy(&chip->chip.pic,
2011                         &pic_irqchip(kvm)->pics[0],
2012                         sizeof(struct kvm_pic_state));
2013                 break;
2014         case KVM_IRQCHIP_PIC_SLAVE:
2015                 memcpy(&chip->chip.pic,
2016                         &pic_irqchip(kvm)->pics[1],
2017                         sizeof(struct kvm_pic_state));
2018                 break;
2019         case KVM_IRQCHIP_IOAPIC:
2020                 memcpy(&chip->chip.ioapic,
2021                         ioapic_irqchip(kvm),
2022                         sizeof(struct kvm_ioapic_state));
2023                 break;
2024         default:
2025                 r = -EINVAL;
2026                 break;
2027         }
2028         return r;
2029 }
2030
2031 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2032 {
2033         int r;
2034
2035         r = 0;
2036         switch (chip->chip_id) {
2037         case KVM_IRQCHIP_PIC_MASTER:
2038                 spin_lock(&pic_irqchip(kvm)->lock);
2039                 memcpy(&pic_irqchip(kvm)->pics[0],
2040                         &chip->chip.pic,
2041                         sizeof(struct kvm_pic_state));
2042                 spin_unlock(&pic_irqchip(kvm)->lock);
2043                 break;
2044         case KVM_IRQCHIP_PIC_SLAVE:
2045                 spin_lock(&pic_irqchip(kvm)->lock);
2046                 memcpy(&pic_irqchip(kvm)->pics[1],
2047                         &chip->chip.pic,
2048                         sizeof(struct kvm_pic_state));
2049                 spin_unlock(&pic_irqchip(kvm)->lock);
2050                 break;
2051         case KVM_IRQCHIP_IOAPIC:
2052                 mutex_lock(&kvm->irq_lock);
2053                 memcpy(ioapic_irqchip(kvm),
2054                         &chip->chip.ioapic,
2055                         sizeof(struct kvm_ioapic_state));
2056                 mutex_unlock(&kvm->irq_lock);
2057                 break;
2058         default:
2059                 r = -EINVAL;
2060                 break;
2061         }
2062         kvm_pic_update_irq(pic_irqchip(kvm));
2063         return r;
2064 }
2065
2066 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2067 {
2068         int r = 0;
2069
2070         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2071         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2072         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2073         return r;
2074 }
2075
2076 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2077 {
2078         int r = 0;
2079
2080         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2081         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2082         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2083         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2084         return r;
2085 }
2086
2087 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2088 {
2089         int r = 0;
2090
2091         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2092         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2093                 sizeof(ps->channels));
2094         ps->flags = kvm->arch.vpit->pit_state.flags;
2095         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2096         return r;
2097 }
2098
2099 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2100 {
2101         int r = 0, start = 0;
2102         u32 prev_legacy, cur_legacy;
2103         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2104         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2105         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2106         if (!prev_legacy && cur_legacy)
2107                 start = 1;
2108         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2109                sizeof(kvm->arch.vpit->pit_state.channels));
2110         kvm->arch.vpit->pit_state.flags = ps->flags;
2111         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2112         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2113         return r;
2114 }
2115
2116 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2117                                  struct kvm_reinject_control *control)
2118 {
2119         if (!kvm->arch.vpit)
2120                 return -ENXIO;
2121         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2122         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2123         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2124         return 0;
2125 }
2126
2127 /*
2128  * Get (and clear) the dirty memory log for a memory slot.
2129  */
2130 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2131                                       struct kvm_dirty_log *log)
2132 {
2133         int r;
2134         int n;
2135         struct kvm_memory_slot *memslot;
2136         int is_dirty = 0;
2137
2138         down_write(&kvm->slots_lock);
2139
2140         r = kvm_get_dirty_log(kvm, log, &is_dirty);
2141         if (r)
2142                 goto out;
2143
2144         /* If nothing is dirty, don't bother messing with page tables. */
2145         if (is_dirty) {
2146                 spin_lock(&kvm->mmu_lock);
2147                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2148                 spin_unlock(&kvm->mmu_lock);
2149                 kvm_flush_remote_tlbs(kvm);
2150                 memslot = &kvm->memslots[log->slot];
2151                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2152                 memset(memslot->dirty_bitmap, 0, n);
2153         }
2154         r = 0;
2155 out:
2156         up_write(&kvm->slots_lock);
2157         return r;
2158 }
2159
2160 long kvm_arch_vm_ioctl(struct file *filp,
2161                        unsigned int ioctl, unsigned long arg)
2162 {
2163         struct kvm *kvm = filp->private_data;
2164         void __user *argp = (void __user *)arg;
2165         int r = -EINVAL;
2166         /*
2167          * This union makes it completely explicit to gcc-3.x
2168          * that these two variables' stack usage should be
2169          * combined, not added together.
2170          */
2171         union {
2172                 struct kvm_pit_state ps;
2173                 struct kvm_pit_state2 ps2;
2174                 struct kvm_memory_alias alias;
2175                 struct kvm_pit_config pit_config;
2176         } u;
2177
2178         switch (ioctl) {
2179         case KVM_SET_TSS_ADDR:
2180                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2181                 if (r < 0)
2182                         goto out;
2183                 break;
2184         case KVM_SET_IDENTITY_MAP_ADDR: {
2185                 u64 ident_addr;
2186
2187                 r = -EFAULT;
2188                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2189                         goto out;
2190                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2191                 if (r < 0)
2192                         goto out;
2193                 break;
2194         }
2195         case KVM_SET_MEMORY_REGION: {
2196                 struct kvm_memory_region kvm_mem;
2197                 struct kvm_userspace_memory_region kvm_userspace_mem;
2198
2199                 r = -EFAULT;
2200                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2201                         goto out;
2202                 kvm_userspace_mem.slot = kvm_mem.slot;
2203                 kvm_userspace_mem.flags = kvm_mem.flags;
2204                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2205                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2206                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2207                 if (r)
2208                         goto out;
2209                 break;
2210         }
2211         case KVM_SET_NR_MMU_PAGES:
2212                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2213                 if (r)
2214                         goto out;
2215                 break;
2216         case KVM_GET_NR_MMU_PAGES:
2217                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2218                 break;
2219         case KVM_SET_MEMORY_ALIAS:
2220                 r = -EFAULT;
2221                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2222                         goto out;
2223                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2224                 if (r)
2225                         goto out;
2226                 break;
2227         case KVM_CREATE_IRQCHIP:
2228                 r = -ENOMEM;
2229                 kvm->arch.vpic = kvm_create_pic(kvm);
2230                 if (kvm->arch.vpic) {
2231                         r = kvm_ioapic_init(kvm);
2232                         if (r) {
2233                                 kfree(kvm->arch.vpic);
2234                                 kvm->arch.vpic = NULL;
2235                                 goto out;
2236                         }
2237                 } else
2238                         goto out;
2239                 r = kvm_setup_default_irq_routing(kvm);
2240                 if (r) {
2241                         kfree(kvm->arch.vpic);
2242                         kfree(kvm->arch.vioapic);
2243                         goto out;
2244                 }
2245                 break;
2246         case KVM_CREATE_PIT:
2247                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2248                 goto create_pit;
2249         case KVM_CREATE_PIT2:
2250                 r = -EFAULT;
2251                 if (copy_from_user(&u.pit_config, argp,
2252                                    sizeof(struct kvm_pit_config)))
2253                         goto out;
2254         create_pit:
2255                 down_write(&kvm->slots_lock);
2256                 r = -EEXIST;
2257                 if (kvm->arch.vpit)
2258                         goto create_pit_unlock;
2259                 r = -ENOMEM;
2260                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2261                 if (kvm->arch.vpit)
2262                         r = 0;
2263         create_pit_unlock:
2264                 up_write(&kvm->slots_lock);
2265                 break;
2266         case KVM_IRQ_LINE_STATUS:
2267         case KVM_IRQ_LINE: {
2268                 struct kvm_irq_level irq_event;
2269
2270                 r = -EFAULT;
2271                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2272                         goto out;
2273                 if (irqchip_in_kernel(kvm)) {
2274                         __s32 status;
2275                         mutex_lock(&kvm->irq_lock);
2276                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2277                                         irq_event.irq, irq_event.level);
2278                         mutex_unlock(&kvm->irq_lock);
2279                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2280                                 irq_event.status = status;
2281                                 if (copy_to_user(argp, &irq_event,
2282                                                         sizeof irq_event))
2283                                         goto out;
2284                         }
2285                         r = 0;
2286                 }
2287                 break;
2288         }
2289         case KVM_GET_IRQCHIP: {
2290                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2291                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2292
2293                 r = -ENOMEM;
2294                 if (!chip)
2295                         goto out;
2296                 r = -EFAULT;
2297                 if (copy_from_user(chip, argp, sizeof *chip))
2298                         goto get_irqchip_out;
2299                 r = -ENXIO;
2300                 if (!irqchip_in_kernel(kvm))
2301                         goto get_irqchip_out;
2302                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2303                 if (r)
2304                         goto get_irqchip_out;
2305                 r = -EFAULT;
2306                 if (copy_to_user(argp, chip, sizeof *chip))
2307                         goto get_irqchip_out;
2308                 r = 0;
2309         get_irqchip_out:
2310                 kfree(chip);
2311                 if (r)
2312                         goto out;
2313                 break;
2314         }
2315         case KVM_SET_IRQCHIP: {
2316                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2317                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2318
2319                 r = -ENOMEM;
2320                 if (!chip)
2321                         goto out;
2322                 r = -EFAULT;
2323                 if (copy_from_user(chip, argp, sizeof *chip))
2324                         goto set_irqchip_out;
2325                 r = -ENXIO;
2326                 if (!irqchip_in_kernel(kvm))
2327                         goto set_irqchip_out;
2328                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2329                 if (r)
2330                         goto set_irqchip_out;
2331                 r = 0;
2332         set_irqchip_out:
2333                 kfree(chip);
2334                 if (r)
2335                         goto out;
2336                 break;
2337         }
2338         case KVM_GET_PIT: {
2339                 r = -EFAULT;
2340                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2341                         goto out;
2342                 r = -ENXIO;
2343                 if (!kvm->arch.vpit)
2344                         goto out;
2345                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2346                 if (r)
2347                         goto out;
2348                 r = -EFAULT;
2349                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2350                         goto out;
2351                 r = 0;
2352                 break;
2353         }
2354         case KVM_SET_PIT: {
2355                 r = -EFAULT;
2356                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2357                         goto out;
2358                 r = -ENXIO;
2359                 if (!kvm->arch.vpit)
2360                         goto out;
2361                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2362                 if (r)
2363                         goto out;
2364                 r = 0;
2365                 break;
2366         }
2367         case KVM_GET_PIT2: {
2368                 r = -ENXIO;
2369                 if (!kvm->arch.vpit)
2370                         goto out;
2371                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2372                 if (r)
2373                         goto out;
2374                 r = -EFAULT;
2375                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2376                         goto out;
2377                 r = 0;
2378                 break;
2379         }
2380         case KVM_SET_PIT2: {
2381                 r = -EFAULT;
2382                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2383                         goto out;
2384                 r = -ENXIO;
2385                 if (!kvm->arch.vpit)
2386                         goto out;
2387                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2388                 if (r)
2389                         goto out;
2390                 r = 0;
2391                 break;
2392         }
2393         case KVM_REINJECT_CONTROL: {
2394                 struct kvm_reinject_control control;
2395                 r =  -EFAULT;
2396                 if (copy_from_user(&control, argp, sizeof(control)))
2397                         goto out;
2398                 r = kvm_vm_ioctl_reinject(kvm, &control);
2399                 if (r)
2400                         goto out;
2401                 r = 0;
2402                 break;
2403         }
2404         default:
2405                 ;
2406         }
2407 out:
2408         return r;
2409 }
2410
2411 static void kvm_init_msr_list(void)
2412 {
2413         u32 dummy[2];
2414         unsigned i, j;
2415
2416         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2417                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2418                         continue;
2419                 if (j < i)
2420                         msrs_to_save[j] = msrs_to_save[i];
2421                 j++;
2422         }
2423         num_msrs_to_save = j;
2424 }
2425
2426 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2427                            const void *v)
2428 {
2429         if (vcpu->arch.apic &&
2430             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2431                 return 0;
2432
2433         return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2434 }
2435
2436 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2437 {
2438         if (vcpu->arch.apic &&
2439             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2440                 return 0;
2441
2442         return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2443 }
2444
2445 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2446                                struct kvm_vcpu *vcpu)
2447 {
2448         void *data = val;
2449         int r = X86EMUL_CONTINUE;
2450
2451         while (bytes) {
2452                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2453                 unsigned offset = addr & (PAGE_SIZE-1);
2454                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2455                 int ret;
2456
2457                 if (gpa == UNMAPPED_GVA) {
2458                         r = X86EMUL_PROPAGATE_FAULT;
2459                         goto out;
2460                 }
2461                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2462                 if (ret < 0) {
2463                         r = X86EMUL_UNHANDLEABLE;
2464                         goto out;
2465                 }
2466
2467                 bytes -= toread;
2468                 data += toread;
2469                 addr += toread;
2470         }
2471 out:
2472         return r;
2473 }
2474
2475 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2476                                 struct kvm_vcpu *vcpu)
2477 {
2478         void *data = val;
2479         int r = X86EMUL_CONTINUE;
2480
2481         while (bytes) {
2482                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2483                 unsigned offset = addr & (PAGE_SIZE-1);
2484                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2485                 int ret;
2486
2487                 if (gpa == UNMAPPED_GVA) {
2488                         r = X86EMUL_PROPAGATE_FAULT;
2489                         goto out;
2490                 }
2491                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2492                 if (ret < 0) {
2493                         r = X86EMUL_UNHANDLEABLE;
2494                         goto out;
2495                 }
2496
2497                 bytes -= towrite;
2498                 data += towrite;
2499                 addr += towrite;
2500         }
2501 out:
2502         return r;
2503 }
2504
2505
2506 static int emulator_read_emulated(unsigned long addr,
2507                                   void *val,
2508                                   unsigned int bytes,
2509                                   struct kvm_vcpu *vcpu)
2510 {
2511         gpa_t                 gpa;
2512
2513         if (vcpu->mmio_read_completed) {
2514                 memcpy(val, vcpu->mmio_data, bytes);
2515                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2516                                vcpu->mmio_phys_addr, *(u64 *)val);
2517                 vcpu->mmio_read_completed = 0;
2518                 return X86EMUL_CONTINUE;
2519         }
2520
2521         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2522
2523         /* For APIC access vmexit */
2524         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2525                 goto mmio;
2526
2527         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2528                                 == X86EMUL_CONTINUE)
2529                 return X86EMUL_CONTINUE;
2530         if (gpa == UNMAPPED_GVA)
2531                 return X86EMUL_PROPAGATE_FAULT;
2532
2533 mmio:
2534         /*
2535          * Is this MMIO handled locally?
2536          */
2537         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2538                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2539                 return X86EMUL_CONTINUE;
2540         }
2541
2542         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2543
2544         vcpu->mmio_needed = 1;
2545         vcpu->mmio_phys_addr = gpa;
2546         vcpu->mmio_size = bytes;
2547         vcpu->mmio_is_write = 0;
2548
2549         return X86EMUL_UNHANDLEABLE;
2550 }
2551
2552 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2553                           const void *val, int bytes)
2554 {
2555         int ret;
2556
2557         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2558         if (ret < 0)
2559                 return 0;
2560         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2561         return 1;
2562 }
2563
2564 static int emulator_write_emulated_onepage(unsigned long addr,
2565                                            const void *val,
2566                                            unsigned int bytes,
2567                                            struct kvm_vcpu *vcpu)
2568 {
2569         gpa_t                 gpa;
2570
2571         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2572
2573         if (gpa == UNMAPPED_GVA) {
2574                 kvm_inject_page_fault(vcpu, addr, 2);
2575                 return X86EMUL_PROPAGATE_FAULT;
2576         }
2577
2578         /* For APIC access vmexit */
2579         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2580                 goto mmio;
2581
2582         if (emulator_write_phys(vcpu, gpa, val, bytes))
2583                 return X86EMUL_CONTINUE;
2584
2585 mmio:
2586         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2587         /*
2588          * Is this MMIO handled locally?
2589          */
2590         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2591                 return X86EMUL_CONTINUE;
2592
2593         vcpu->mmio_needed = 1;
2594         vcpu->mmio_phys_addr = gpa;
2595         vcpu->mmio_size = bytes;
2596         vcpu->mmio_is_write = 1;
2597         memcpy(vcpu->mmio_data, val, bytes);
2598
2599         return X86EMUL_CONTINUE;
2600 }
2601
2602 int emulator_write_emulated(unsigned long addr,
2603                                    const void *val,
2604                                    unsigned int bytes,
2605                                    struct kvm_vcpu *vcpu)
2606 {
2607         /* Crossing a page boundary? */
2608         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2609                 int rc, now;
2610
2611                 now = -addr & ~PAGE_MASK;
2612                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2613                 if (rc != X86EMUL_CONTINUE)
2614                         return rc;
2615                 addr += now;
2616                 val += now;
2617                 bytes -= now;
2618         }
2619         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2620 }
2621 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2622
2623 static int emulator_cmpxchg_emulated(unsigned long addr,
2624                                      const void *old,
2625                                      const void *new,
2626                                      unsigned int bytes,
2627                                      struct kvm_vcpu *vcpu)
2628 {
2629         static int reported;
2630
2631         if (!reported) {
2632                 reported = 1;
2633                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2634         }
2635 #ifndef CONFIG_X86_64
2636         /* guests cmpxchg8b have to be emulated atomically */
2637         if (bytes == 8) {
2638                 gpa_t gpa;
2639                 struct page *page;
2640                 char *kaddr;
2641                 u64 val;
2642
2643                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2644
2645                 if (gpa == UNMAPPED_GVA ||
2646                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2647                         goto emul_write;
2648
2649                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2650                         goto emul_write;
2651
2652                 val = *(u64 *)new;
2653
2654                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2655
2656                 kaddr = kmap_atomic(page, KM_USER0);
2657                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2658                 kunmap_atomic(kaddr, KM_USER0);
2659                 kvm_release_page_dirty(page);
2660         }
2661 emul_write:
2662 #endif
2663
2664         return emulator_write_emulated(addr, new, bytes, vcpu);
2665 }
2666
2667 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2668 {
2669         return kvm_x86_ops->get_segment_base(vcpu, seg);
2670 }
2671
2672 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2673 {
2674         kvm_mmu_invlpg(vcpu, address);
2675         return X86EMUL_CONTINUE;
2676 }
2677
2678 int emulate_clts(struct kvm_vcpu *vcpu)
2679 {
2680         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2681         return X86EMUL_CONTINUE;
2682 }
2683
2684 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2685 {
2686         struct kvm_vcpu *vcpu = ctxt->vcpu;
2687
2688         switch (dr) {
2689         case 0 ... 3:
2690                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2691                 return X86EMUL_CONTINUE;
2692         default:
2693                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2694                 return X86EMUL_UNHANDLEABLE;
2695         }
2696 }
2697
2698 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2699 {
2700         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2701         int exception;
2702
2703         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2704         if (exception) {
2705                 /* FIXME: better handling */
2706                 return X86EMUL_UNHANDLEABLE;
2707         }
2708         return X86EMUL_CONTINUE;
2709 }
2710
2711 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2712 {
2713         u8 opcodes[4];
2714         unsigned long rip = kvm_rip_read(vcpu);
2715         unsigned long rip_linear;
2716
2717         if (!printk_ratelimit())
2718                 return;
2719
2720         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2721
2722         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2723
2724         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2725                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2726 }
2727 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2728
2729 static struct x86_emulate_ops emulate_ops = {
2730         .read_std            = kvm_read_guest_virt,
2731         .read_emulated       = emulator_read_emulated,
2732         .write_emulated      = emulator_write_emulated,
2733         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2734 };
2735
2736 static void cache_all_regs(struct kvm_vcpu *vcpu)
2737 {
2738         kvm_register_read(vcpu, VCPU_REGS_RAX);
2739         kvm_register_read(vcpu, VCPU_REGS_RSP);
2740         kvm_register_read(vcpu, VCPU_REGS_RIP);
2741         vcpu->arch.regs_dirty = ~0;
2742 }
2743
2744 int emulate_instruction(struct kvm_vcpu *vcpu,
2745                         struct kvm_run *run,
2746                         unsigned long cr2,
2747                         u16 error_code,
2748                         int emulation_type)
2749 {
2750         int r, shadow_mask;
2751         struct decode_cache *c;
2752
2753         kvm_clear_exception_queue(vcpu);
2754         vcpu->arch.mmio_fault_cr2 = cr2;
2755         /*
2756          * TODO: fix x86_emulate.c to use guest_read/write_register
2757          * instead of direct ->regs accesses, can save hundred cycles
2758          * on Intel for instructions that don't read/change RSP, for
2759          * for example.
2760          */
2761         cache_all_regs(vcpu);
2762
2763         vcpu->mmio_is_write = 0;
2764         vcpu->arch.pio.string = 0;
2765
2766         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2767                 int cs_db, cs_l;
2768                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2769
2770                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2771                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2772                 vcpu->arch.emulate_ctxt.mode =
2773                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2774                         ? X86EMUL_MODE_REAL : cs_l
2775                         ? X86EMUL_MODE_PROT64 : cs_db
2776                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2777
2778                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2779
2780                 /* Only allow emulation of specific instructions on #UD
2781                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
2782                 c = &vcpu->arch.emulate_ctxt.decode;
2783                 if (emulation_type & EMULTYPE_TRAP_UD) {
2784                         if (!c->twobyte)
2785                                 return EMULATE_FAIL;
2786                         switch (c->b) {
2787                         case 0x01: /* VMMCALL */
2788                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2789                                         return EMULATE_FAIL;
2790                                 break;
2791                         case 0x34: /* sysenter */
2792                         case 0x35: /* sysexit */
2793                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2794                                         return EMULATE_FAIL;
2795                                 break;
2796                         case 0x05: /* syscall */
2797                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2798                                         return EMULATE_FAIL;
2799                                 break;
2800                         default:
2801                                 return EMULATE_FAIL;
2802                         }
2803
2804                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2805                                 return EMULATE_FAIL;
2806                 }
2807
2808                 ++vcpu->stat.insn_emulation;
2809                 if (r)  {
2810                         ++vcpu->stat.insn_emulation_fail;
2811                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2812                                 return EMULATE_DONE;
2813                         return EMULATE_FAIL;
2814                 }
2815         }
2816
2817         if (emulation_type & EMULTYPE_SKIP) {
2818                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2819                 return EMULATE_DONE;
2820         }
2821
2822         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2823         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2824
2825         if (r == 0)
2826                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2827
2828         if (vcpu->arch.pio.string)
2829                 return EMULATE_DO_MMIO;
2830
2831         if ((r || vcpu->mmio_is_write) && run) {
2832                 run->exit_reason = KVM_EXIT_MMIO;
2833                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2834                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2835                 run->mmio.len = vcpu->mmio_size;
2836                 run->mmio.is_write = vcpu->mmio_is_write;
2837         }
2838
2839         if (r) {
2840                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2841                         return EMULATE_DONE;
2842                 if (!vcpu->mmio_needed) {
2843                         kvm_report_emulation_failure(vcpu, "mmio");
2844                         return EMULATE_FAIL;
2845                 }
2846                 return EMULATE_DO_MMIO;
2847         }
2848
2849         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2850
2851         if (vcpu->mmio_is_write) {
2852                 vcpu->mmio_needed = 0;
2853                 return EMULATE_DO_MMIO;
2854         }
2855
2856         return EMULATE_DONE;
2857 }
2858 EXPORT_SYMBOL_GPL(emulate_instruction);
2859
2860 static int pio_copy_data(struct kvm_vcpu *vcpu)
2861 {
2862         void *p = vcpu->arch.pio_data;
2863         gva_t q = vcpu->arch.pio.guest_gva;
2864         unsigned bytes;
2865         int ret;
2866
2867         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2868         if (vcpu->arch.pio.in)
2869                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2870         else
2871                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2872         return ret;
2873 }
2874
2875 int complete_pio(struct kvm_vcpu *vcpu)
2876 {
2877         struct kvm_pio_request *io = &vcpu->arch.pio;
2878         long delta;
2879         int r;
2880         unsigned long val;
2881
2882         if (!io->string) {
2883                 if (io->in) {
2884                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2885                         memcpy(&val, vcpu->arch.pio_data, io->size);
2886                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2887                 }
2888         } else {
2889                 if (io->in) {
2890                         r = pio_copy_data(vcpu);
2891                         if (r)
2892                                 return r;
2893                 }
2894
2895                 delta = 1;
2896                 if (io->rep) {
2897                         delta *= io->cur_count;
2898                         /*
2899                          * The size of the register should really depend on
2900                          * current address size.
2901                          */
2902                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2903                         val -= delta;
2904                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2905                 }
2906                 if (io->down)
2907                         delta = -delta;
2908                 delta *= io->size;
2909                 if (io->in) {
2910                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2911                         val += delta;
2912                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2913                 } else {
2914                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2915                         val += delta;
2916                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2917                 }
2918         }
2919
2920         io->count -= io->cur_count;
2921         io->cur_count = 0;
2922
2923         return 0;
2924 }
2925
2926 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2927 {
2928         /* TODO: String I/O for in kernel device */
2929         int r;
2930
2931         if (vcpu->arch.pio.in)
2932                 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2933                                     vcpu->arch.pio.size, pd);
2934         else
2935                 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2936                                      vcpu->arch.pio.size, pd);
2937         return r;
2938 }
2939
2940 static int pio_string_write(struct kvm_vcpu *vcpu)
2941 {
2942         struct kvm_pio_request *io = &vcpu->arch.pio;
2943         void *pd = vcpu->arch.pio_data;
2944         int i, r = 0;
2945
2946         for (i = 0; i < io->cur_count; i++) {
2947                 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2948                                      io->port, io->size, pd)) {
2949                         r = -EOPNOTSUPP;
2950                         break;
2951                 }
2952                 pd += io->size;
2953         }
2954         return r;
2955 }
2956
2957 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2958                   int size, unsigned port)
2959 {
2960         unsigned long val;
2961
2962         vcpu->run->exit_reason = KVM_EXIT_IO;
2963         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2964         vcpu->run->io.size = vcpu->arch.pio.size = size;
2965         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2966         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2967         vcpu->run->io.port = vcpu->arch.pio.port = port;
2968         vcpu->arch.pio.in = in;
2969         vcpu->arch.pio.string = 0;
2970         vcpu->arch.pio.down = 0;
2971         vcpu->arch.pio.rep = 0;
2972
2973         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2974                       size, 1);
2975
2976         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2977         memcpy(vcpu->arch.pio_data, &val, 4);
2978
2979         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2980                 complete_pio(vcpu);
2981                 return 1;
2982         }
2983         return 0;
2984 }
2985 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2986
2987 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2988                   int size, unsigned long count, int down,
2989                   gva_t address, int rep, unsigned port)
2990 {
2991         unsigned now, in_page;
2992         int ret = 0;
2993
2994         vcpu->run->exit_reason = KVM_EXIT_IO;
2995         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2996         vcpu->run->io.size = vcpu->arch.pio.size = size;
2997         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2998         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2999         vcpu->run->io.port = vcpu->arch.pio.port = port;
3000         vcpu->arch.pio.in = in;
3001         vcpu->arch.pio.string = 1;
3002         vcpu->arch.pio.down = down;
3003         vcpu->arch.pio.rep = rep;
3004
3005         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3006                       size, count);
3007
3008         if (!count) {
3009                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3010                 return 1;
3011         }
3012
3013         if (!down)
3014                 in_page = PAGE_SIZE - offset_in_page(address);
3015         else
3016                 in_page = offset_in_page(address) + size;
3017         now = min(count, (unsigned long)in_page / size);
3018         if (!now)
3019                 now = 1;
3020         if (down) {
3021                 /*
3022                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3023                  */
3024                 pr_unimpl(vcpu, "guest string pio down\n");
3025                 kvm_inject_gp(vcpu, 0);
3026                 return 1;
3027         }
3028         vcpu->run->io.count = now;
3029         vcpu->arch.pio.cur_count = now;
3030
3031         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3032                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3033
3034         vcpu->arch.pio.guest_gva = address;
3035
3036         if (!vcpu->arch.pio.in) {
3037                 /* string PIO write */
3038                 ret = pio_copy_data(vcpu);
3039                 if (ret == X86EMUL_PROPAGATE_FAULT) {
3040                         kvm_inject_gp(vcpu, 0);
3041                         return 1;
3042                 }
3043                 if (ret == 0 && !pio_string_write(vcpu)) {
3044                         complete_pio(vcpu);
3045                         if (vcpu->arch.pio.count == 0)
3046                                 ret = 1;
3047                 }
3048         }
3049         /* no string PIO read support yet */
3050
3051         return ret;
3052 }
3053 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3054
3055 static void bounce_off(void *info)
3056 {
3057         /* nothing */
3058 }
3059
3060 static unsigned int  ref_freq;
3061 static unsigned long tsc_khz_ref;
3062
3063 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3064                                      void *data)
3065 {
3066         struct cpufreq_freqs *freq = data;
3067         struct kvm *kvm;
3068         struct kvm_vcpu *vcpu;
3069         int i, send_ipi = 0;
3070
3071         if (!ref_freq)
3072                 ref_freq = freq->old;
3073
3074         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3075                 return 0;
3076         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3077                 return 0;
3078         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3079
3080         spin_lock(&kvm_lock);
3081         list_for_each_entry(kvm, &vm_list, vm_list) {
3082                 kvm_for_each_vcpu(i, vcpu, kvm) {
3083                         if (vcpu->cpu != freq->cpu)
3084                                 continue;
3085                         if (!kvm_request_guest_time_update(vcpu))
3086                                 continue;
3087                         if (vcpu->cpu != smp_processor_id())
3088                                 send_ipi++;
3089                 }
3090         }
3091         spin_unlock(&kvm_lock);
3092
3093         if (freq->old < freq->new && send_ipi) {
3094                 /*
3095                  * We upscale the frequency.  Must make the guest
3096                  * doesn't see old kvmclock values while running with
3097                  * the new frequency, otherwise we risk the guest sees
3098                  * time go backwards.
3099                  *
3100                  * In case we update the frequency for another cpu
3101                  * (which might be in guest context) send an interrupt
3102                  * to kick the cpu out of guest context.  Next time
3103                  * guest context is entered kvmclock will be updated,
3104                  * so the guest will not see stale values.
3105                  */
3106                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3107         }
3108         return 0;
3109 }
3110
3111 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3112         .notifier_call  = kvmclock_cpufreq_notifier
3113 };
3114
3115 int kvm_arch_init(void *opaque)
3116 {
3117         int r, cpu;
3118         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3119
3120         if (kvm_x86_ops) {
3121                 printk(KERN_ERR "kvm: already loaded the other module\n");
3122                 r = -EEXIST;
3123                 goto out;
3124         }
3125
3126         if (!ops->cpu_has_kvm_support()) {
3127                 printk(KERN_ERR "kvm: no hardware support\n");
3128                 r = -EOPNOTSUPP;
3129                 goto out;
3130         }
3131         if (ops->disabled_by_bios()) {
3132                 printk(KERN_ERR "kvm: disabled by bios\n");
3133                 r = -EOPNOTSUPP;
3134                 goto out;
3135         }
3136
3137         r = kvm_mmu_module_init();
3138         if (r)
3139                 goto out;
3140
3141         kvm_init_msr_list();
3142
3143         kvm_x86_ops = ops;
3144         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3145         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3146         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3147                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3148
3149         for_each_possible_cpu(cpu)
3150                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3151         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3152                 tsc_khz_ref = tsc_khz;
3153                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3154                                           CPUFREQ_TRANSITION_NOTIFIER);
3155         }
3156
3157         return 0;
3158
3159 out:
3160         return r;
3161 }
3162
3163 void kvm_arch_exit(void)
3164 {
3165         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3166                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3167                                             CPUFREQ_TRANSITION_NOTIFIER);
3168         kvm_x86_ops = NULL;
3169         kvm_mmu_module_exit();
3170 }
3171
3172 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3173 {
3174         ++vcpu->stat.halt_exits;
3175         if (irqchip_in_kernel(vcpu->kvm)) {
3176                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3177                 return 1;
3178         } else {
3179                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3180                 return 0;
3181         }
3182 }
3183 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3184
3185 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3186                            unsigned long a1)
3187 {
3188         if (is_long_mode(vcpu))
3189                 return a0;
3190         else
3191                 return a0 | ((gpa_t)a1 << 32);
3192 }
3193
3194 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3195 {
3196         unsigned long nr, a0, a1, a2, a3, ret;
3197         int r = 1;
3198
3199         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3200         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3201         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3202         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3203         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3204
3205         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3206
3207         if (!is_long_mode(vcpu)) {
3208                 nr &= 0xFFFFFFFF;
3209                 a0 &= 0xFFFFFFFF;
3210                 a1 &= 0xFFFFFFFF;
3211                 a2 &= 0xFFFFFFFF;
3212                 a3 &= 0xFFFFFFFF;
3213         }
3214
3215         switch (nr) {
3216         case KVM_HC_VAPIC_POLL_IRQ:
3217                 ret = 0;
3218                 break;
3219         case KVM_HC_MMU_OP:
3220                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3221                 break;
3222         default:
3223                 ret = -KVM_ENOSYS;
3224                 break;
3225         }
3226         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3227         ++vcpu->stat.hypercalls;
3228         return r;
3229 }
3230 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3231
3232 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3233 {
3234         char instruction[3];
3235         int ret = 0;
3236         unsigned long rip = kvm_rip_read(vcpu);
3237
3238
3239         /*
3240          * Blow out the MMU to ensure that no other VCPU has an active mapping
3241          * to ensure that the updated hypercall appears atomically across all
3242          * VCPUs.
3243          */
3244         kvm_mmu_zap_all(vcpu->kvm);
3245
3246         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3247         if (emulator_write_emulated(rip, instruction, 3, vcpu)
3248             != X86EMUL_CONTINUE)
3249                 ret = -EFAULT;
3250
3251         return ret;
3252 }
3253
3254 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3255 {
3256         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3257 }
3258
3259 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3260 {
3261         struct descriptor_table dt = { limit, base };
3262
3263         kvm_x86_ops->set_gdt(vcpu, &dt);
3264 }
3265
3266 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3267 {
3268         struct descriptor_table dt = { limit, base };
3269
3270         kvm_x86_ops->set_idt(vcpu, &dt);
3271 }
3272
3273 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3274                    unsigned long *rflags)
3275 {
3276         kvm_lmsw(vcpu, msw);
3277         *rflags = kvm_x86_ops->get_rflags(vcpu);
3278 }
3279
3280 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3281 {
3282         unsigned long value;
3283
3284         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3285         switch (cr) {
3286         case 0:
3287                 value = vcpu->arch.cr0;
3288                 break;
3289         case 2:
3290                 value = vcpu->arch.cr2;
3291                 break;
3292         case 3:
3293                 value = vcpu->arch.cr3;
3294                 break;
3295         case 4:
3296                 value = vcpu->arch.cr4;
3297                 break;
3298         case 8:
3299                 value = kvm_get_cr8(vcpu);
3300                 break;
3301         default:
3302                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3303                 return 0;
3304         }
3305
3306         return value;
3307 }
3308
3309 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3310                      unsigned long *rflags)
3311 {
3312         switch (cr) {
3313         case 0:
3314                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3315                 *rflags = kvm_x86_ops->get_rflags(vcpu);
3316                 break;
3317         case 2:
3318                 vcpu->arch.cr2 = val;
3319                 break;
3320         case 3:
3321                 kvm_set_cr3(vcpu, val);
3322                 break;
3323         case 4:
3324                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3325                 break;
3326         case 8:
3327                 kvm_set_cr8(vcpu, val & 0xfUL);
3328                 break;
3329         default:
3330                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3331         }
3332 }
3333
3334 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3335 {
3336         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3337         int j, nent = vcpu->arch.cpuid_nent;
3338
3339         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3340         /* when no next entry is found, the current entry[i] is reselected */
3341         for (j = i + 1; ; j = (j + 1) % nent) {
3342                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3343                 if (ej->function == e->function) {
3344                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3345                         return j;
3346                 }
3347         }
3348         return 0; /* silence gcc, even though control never reaches here */
3349 }
3350
3351 /* find an entry with matching function, matching index (if needed), and that
3352  * should be read next (if it's stateful) */
3353 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3354         u32 function, u32 index)
3355 {
3356         if (e->function != function)
3357                 return 0;
3358         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3359                 return 0;
3360         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3361             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3362                 return 0;
3363         return 1;
3364 }
3365
3366 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3367                                               u32 function, u32 index)
3368 {
3369         int i;
3370         struct kvm_cpuid_entry2 *best = NULL;
3371
3372         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3373                 struct kvm_cpuid_entry2 *e;
3374
3375                 e = &vcpu->arch.cpuid_entries[i];
3376                 if (is_matching_cpuid_entry(e, function, index)) {
3377                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3378                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3379                         best = e;
3380                         break;
3381                 }
3382                 /*
3383                  * Both basic or both extended?
3384                  */
3385                 if (((e->function ^ function) & 0x80000000) == 0)
3386                         if (!best || e->function > best->function)
3387                                 best = e;
3388         }
3389         return best;
3390 }
3391
3392 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3393 {
3394         struct kvm_cpuid_entry2 *best;
3395
3396         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3397         if (best)
3398                 return best->eax & 0xff;
3399         return 36;
3400 }
3401
3402 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3403 {
3404         u32 function, index;
3405         struct kvm_cpuid_entry2 *best;
3406
3407         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3408         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3409         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3410         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3411         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3412         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3413         best = kvm_find_cpuid_entry(vcpu, function, index);
3414         if (best) {
3415                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3416                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3417                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3418                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3419         }
3420         kvm_x86_ops->skip_emulated_instruction(vcpu);
3421         trace_kvm_cpuid(function,
3422                         kvm_register_read(vcpu, VCPU_REGS_RAX),
3423                         kvm_register_read(vcpu, VCPU_REGS_RBX),
3424                         kvm_register_read(vcpu, VCPU_REGS_RCX),
3425                         kvm_register_read(vcpu, VCPU_REGS_RDX));
3426 }
3427 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3428
3429 /*
3430  * Check if userspace requested an interrupt window, and that the
3431  * interrupt window is open.
3432  *
3433  * No need to exit to userspace if we already have an interrupt queued.
3434  */
3435 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3436                                           struct kvm_run *kvm_run)
3437 {
3438         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3439                 kvm_run->request_interrupt_window &&
3440                 kvm_arch_interrupt_allowed(vcpu));
3441 }
3442
3443 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3444                               struct kvm_run *kvm_run)
3445 {
3446         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3447         kvm_run->cr8 = kvm_get_cr8(vcpu);
3448         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3449         if (irqchip_in_kernel(vcpu->kvm))
3450                 kvm_run->ready_for_interrupt_injection = 1;
3451         else
3452                 kvm_run->ready_for_interrupt_injection =
3453                         kvm_arch_interrupt_allowed(vcpu) &&
3454                         !kvm_cpu_has_interrupt(vcpu) &&
3455                         !kvm_event_needs_reinjection(vcpu);
3456 }
3457
3458 static void vapic_enter(struct kvm_vcpu *vcpu)
3459 {
3460         struct kvm_lapic *apic = vcpu->arch.apic;
3461         struct page *page;
3462
3463         if (!apic || !apic->vapic_addr)
3464                 return;
3465
3466         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3467
3468         vcpu->arch.apic->vapic_page = page;
3469 }
3470
3471 static void vapic_exit(struct kvm_vcpu *vcpu)
3472 {
3473         struct kvm_lapic *apic = vcpu->arch.apic;
3474
3475         if (!apic || !apic->vapic_addr)
3476                 return;
3477
3478         down_read(&vcpu->kvm->slots_lock);
3479         kvm_release_page_dirty(apic->vapic_page);
3480         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3481         up_read(&vcpu->kvm->slots_lock);
3482 }
3483
3484 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3485 {
3486         int max_irr, tpr;
3487
3488         if (!kvm_x86_ops->update_cr8_intercept)
3489                 return;
3490
3491         if (!vcpu->arch.apic->vapic_addr)
3492                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3493         else
3494                 max_irr = -1;
3495
3496         if (max_irr != -1)
3497                 max_irr >>= 4;
3498
3499         tpr = kvm_lapic_get_cr8(vcpu);
3500
3501         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3502 }
3503
3504 static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3505 {
3506         /* try to reinject previous events if any */
3507         if (vcpu->arch.exception.pending) {
3508                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3509                                           vcpu->arch.exception.has_error_code,
3510                                           vcpu->arch.exception.error_code);
3511                 return;
3512         }
3513
3514         if (vcpu->arch.nmi_injected) {
3515                 kvm_x86_ops->set_nmi(vcpu);
3516                 return;
3517         }
3518
3519         if (vcpu->arch.interrupt.pending) {
3520                 kvm_x86_ops->set_irq(vcpu);
3521                 return;
3522         }
3523
3524         /* try to inject new event if pending */
3525         if (vcpu->arch.nmi_pending) {
3526                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3527                         vcpu->arch.nmi_pending = false;
3528                         vcpu->arch.nmi_injected = true;
3529                         kvm_x86_ops->set_nmi(vcpu);
3530                 }
3531         } else if (kvm_cpu_has_interrupt(vcpu)) {
3532                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3533                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3534                                             false);
3535                         kvm_x86_ops->set_irq(vcpu);
3536                 }
3537         }
3538 }
3539
3540 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3541 {
3542         int r;
3543         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3544                 kvm_run->request_interrupt_window;
3545
3546         if (vcpu->requests)
3547                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3548                         kvm_mmu_unload(vcpu);
3549
3550         r = kvm_mmu_reload(vcpu);
3551         if (unlikely(r))
3552                 goto out;
3553
3554         if (vcpu->requests) {
3555                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3556                         __kvm_migrate_timers(vcpu);
3557                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3558                         kvm_write_guest_time(vcpu);
3559                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3560                         kvm_mmu_sync_roots(vcpu);
3561                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3562                         kvm_x86_ops->tlb_flush(vcpu);
3563                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3564                                        &vcpu->requests)) {
3565                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3566                         r = 0;
3567                         goto out;
3568                 }
3569                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3570                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3571                         r = 0;
3572                         goto out;
3573                 }
3574         }
3575
3576         preempt_disable();
3577
3578         kvm_x86_ops->prepare_guest_switch(vcpu);
3579         kvm_load_guest_fpu(vcpu);
3580
3581         local_irq_disable();
3582
3583         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3584         smp_mb__after_clear_bit();
3585
3586         if (vcpu->requests || need_resched() || signal_pending(current)) {
3587                 set_bit(KVM_REQ_KICK, &vcpu->requests);
3588                 local_irq_enable();
3589                 preempt_enable();
3590                 r = 1;
3591                 goto out;
3592         }
3593
3594         inject_pending_event(vcpu, kvm_run);
3595
3596         /* enable NMI/IRQ window open exits if needed */
3597         if (vcpu->arch.nmi_pending)
3598                 kvm_x86_ops->enable_nmi_window(vcpu);
3599         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3600                 kvm_x86_ops->enable_irq_window(vcpu);
3601
3602         if (kvm_lapic_enabled(vcpu)) {
3603                 update_cr8_intercept(vcpu);
3604                 kvm_lapic_sync_to_vapic(vcpu);
3605         }
3606
3607         up_read(&vcpu->kvm->slots_lock);
3608
3609         kvm_guest_enter();
3610
3611         get_debugreg(vcpu->arch.host_dr6, 6);
3612         get_debugreg(vcpu->arch.host_dr7, 7);
3613         if (unlikely(vcpu->arch.switch_db_regs)) {
3614                 get_debugreg(vcpu->arch.host_db[0], 0);
3615                 get_debugreg(vcpu->arch.host_db[1], 1);
3616                 get_debugreg(vcpu->arch.host_db[2], 2);
3617                 get_debugreg(vcpu->arch.host_db[3], 3);
3618
3619                 set_debugreg(0, 7);
3620                 set_debugreg(vcpu->arch.eff_db[0], 0);
3621                 set_debugreg(vcpu->arch.eff_db[1], 1);
3622                 set_debugreg(vcpu->arch.eff_db[2], 2);
3623                 set_debugreg(vcpu->arch.eff_db[3], 3);
3624         }
3625
3626         trace_kvm_entry(vcpu->vcpu_id);
3627         kvm_x86_ops->run(vcpu, kvm_run);
3628
3629         if (unlikely(vcpu->arch.switch_db_regs)) {
3630                 set_debugreg(0, 7);
3631                 set_debugreg(vcpu->arch.host_db[0], 0);
3632                 set_debugreg(vcpu->arch.host_db[1], 1);
3633                 set_debugreg(vcpu->arch.host_db[2], 2);
3634                 set_debugreg(vcpu->arch.host_db[3], 3);
3635         }
3636         set_debugreg(vcpu->arch.host_dr6, 6);
3637         set_debugreg(vcpu->arch.host_dr7, 7);
3638
3639         set_bit(KVM_REQ_KICK, &vcpu->requests);
3640         local_irq_enable();
3641
3642         ++vcpu->stat.exits;
3643
3644         /*
3645          * We must have an instruction between local_irq_enable() and
3646          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3647          * the interrupt shadow.  The stat.exits increment will do nicely.
3648          * But we need to prevent reordering, hence this barrier():
3649          */
3650         barrier();
3651
3652         kvm_guest_exit();
3653
3654         preempt_enable();
3655
3656         down_read(&vcpu->kvm->slots_lock);
3657
3658         /*
3659          * Profile KVM exit RIPs:
3660          */
3661         if (unlikely(prof_on == KVM_PROFILING)) {
3662                 unsigned long rip = kvm_rip_read(vcpu);
3663                 profile_hit(KVM_PROFILING, (void *)rip);
3664         }
3665
3666
3667         kvm_lapic_sync_from_vapic(vcpu);
3668
3669         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3670 out:
3671         return r;
3672 }
3673
3674
3675 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3676 {
3677         int r;
3678
3679         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3680                 pr_debug("vcpu %d received sipi with vector # %x\n",
3681                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3682                 kvm_lapic_reset(vcpu);
3683                 r = kvm_arch_vcpu_reset(vcpu);
3684                 if (r)
3685                         return r;
3686                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3687         }
3688
3689         down_read(&vcpu->kvm->slots_lock);
3690         vapic_enter(vcpu);
3691
3692         r = 1;
3693         while (r > 0) {
3694                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3695                         r = vcpu_enter_guest(vcpu, kvm_run);
3696                 else {
3697                         up_read(&vcpu->kvm->slots_lock);
3698                         kvm_vcpu_block(vcpu);
3699                         down_read(&vcpu->kvm->slots_lock);
3700                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3701                         {
3702                                 switch(vcpu->arch.mp_state) {
3703                                 case KVM_MP_STATE_HALTED:
3704                                         vcpu->arch.mp_state =
3705                                                 KVM_MP_STATE_RUNNABLE;
3706                                 case KVM_MP_STATE_RUNNABLE:
3707                                         break;
3708                                 case KVM_MP_STATE_SIPI_RECEIVED:
3709                                 default:
3710                                         r = -EINTR;
3711                                         break;
3712                                 }
3713                         }
3714                 }
3715
3716                 if (r <= 0)
3717                         break;
3718
3719                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3720                 if (kvm_cpu_has_pending_timer(vcpu))
3721                         kvm_inject_pending_timer_irqs(vcpu);
3722
3723                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3724                         r = -EINTR;
3725                         kvm_run->exit_reason = KVM_EXIT_INTR;
3726                         ++vcpu->stat.request_irq_exits;
3727                 }
3728                 if (signal_pending(current)) {
3729                         r = -EINTR;
3730                         kvm_run->exit_reason = KVM_EXIT_INTR;
3731                         ++vcpu->stat.signal_exits;
3732                 }
3733                 if (need_resched()) {
3734                         up_read(&vcpu->kvm->slots_lock);
3735                         kvm_resched(vcpu);
3736                         down_read(&vcpu->kvm->slots_lock);
3737                 }
3738         }
3739
3740         up_read(&vcpu->kvm->slots_lock);
3741         post_kvm_run_save(vcpu, kvm_run);
3742
3743         vapic_exit(vcpu);
3744
3745         return r;
3746 }
3747
3748 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3749 {
3750         int r;
3751         sigset_t sigsaved;
3752
3753         vcpu_load(vcpu);
3754
3755         if (vcpu->sigset_active)
3756                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3757
3758         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3759                 kvm_vcpu_block(vcpu);
3760                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3761                 r = -EAGAIN;
3762                 goto out;
3763         }
3764
3765         /* re-sync apic's tpr */
3766         if (!irqchip_in_kernel(vcpu->kvm))
3767                 kvm_set_cr8(vcpu, kvm_run->cr8);
3768
3769         if (vcpu->arch.pio.cur_count) {
3770                 r = complete_pio(vcpu);
3771                 if (r)
3772                         goto out;
3773         }
3774 #if CONFIG_HAS_IOMEM
3775         if (vcpu->mmio_needed) {
3776                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3777                 vcpu->mmio_read_completed = 1;
3778                 vcpu->mmio_needed = 0;
3779
3780                 down_read(&vcpu->kvm->slots_lock);
3781                 r = emulate_instruction(vcpu, kvm_run,
3782                                         vcpu->arch.mmio_fault_cr2, 0,
3783                                         EMULTYPE_NO_DECODE);
3784                 up_read(&vcpu->kvm->slots_lock);
3785                 if (r == EMULATE_DO_MMIO) {
3786                         /*
3787                          * Read-modify-write.  Back to userspace.
3788                          */
3789                         r = 0;
3790                         goto out;
3791                 }
3792         }
3793 #endif
3794         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3795                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3796                                      kvm_run->hypercall.ret);
3797
3798         r = __vcpu_run(vcpu, kvm_run);
3799
3800 out:
3801         if (vcpu->sigset_active)
3802                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3803
3804         vcpu_put(vcpu);
3805         return r;
3806 }
3807
3808 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3809 {
3810         vcpu_load(vcpu);
3811
3812         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3813         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3814         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3815         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3816         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3817         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3818         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3819         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3820 #ifdef CONFIG_X86_64
3821         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3822         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3823         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3824         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3825         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3826         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3827         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3828         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3829 #endif
3830
3831         regs->rip = kvm_rip_read(vcpu);
3832         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3833
3834         /*
3835          * Don't leak debug flags in case they were set for guest debugging
3836          */
3837         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3838                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3839
3840         vcpu_put(vcpu);
3841
3842         return 0;
3843 }
3844
3845 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3846 {
3847         vcpu_load(vcpu);
3848
3849         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3850         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3851         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3852         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3853         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3854         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3855         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3856         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3857 #ifdef CONFIG_X86_64
3858         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3859         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3860         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3861         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3862         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3863         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3864         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3865         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3866
3867 #endif
3868
3869         kvm_rip_write(vcpu, regs->rip);
3870         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3871
3872
3873         vcpu->arch.exception.pending = false;
3874
3875         vcpu_put(vcpu);
3876
3877         return 0;
3878 }
3879
3880 void kvm_get_segment(struct kvm_vcpu *vcpu,
3881                      struct kvm_segment *var, int seg)
3882 {
3883         kvm_x86_ops->get_segment(vcpu, var, seg);
3884 }
3885
3886 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3887 {
3888         struct kvm_segment cs;
3889
3890         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3891         *db = cs.db;
3892         *l = cs.l;
3893 }
3894 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3895
3896 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3897                                   struct kvm_sregs *sregs)
3898 {
3899         struct descriptor_table dt;
3900
3901         vcpu_load(vcpu);
3902
3903         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3904         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3905         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3906         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3907         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3908         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3909
3910         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3911         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3912
3913         kvm_x86_ops->get_idt(vcpu, &dt);
3914         sregs->idt.limit = dt.limit;
3915         sregs->idt.base = dt.base;
3916         kvm_x86_ops->get_gdt(vcpu, &dt);
3917         sregs->gdt.limit = dt.limit;
3918         sregs->gdt.base = dt.base;
3919
3920         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3921         sregs->cr0 = vcpu->arch.cr0;
3922         sregs->cr2 = vcpu->arch.cr2;
3923         sregs->cr3 = vcpu->arch.cr3;
3924         sregs->cr4 = vcpu->arch.cr4;
3925         sregs->cr8 = kvm_get_cr8(vcpu);
3926         sregs->efer = vcpu->arch.shadow_efer;
3927         sregs->apic_base = kvm_get_apic_base(vcpu);
3928
3929         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3930
3931         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3932                 set_bit(vcpu->arch.interrupt.nr,
3933                         (unsigned long *)sregs->interrupt_bitmap);
3934
3935         vcpu_put(vcpu);
3936
3937         return 0;
3938 }
3939
3940 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3941                                     struct kvm_mp_state *mp_state)
3942 {
3943         vcpu_load(vcpu);
3944         mp_state->mp_state = vcpu->arch.mp_state;
3945         vcpu_put(vcpu);
3946         return 0;
3947 }
3948
3949 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3950                                     struct kvm_mp_state *mp_state)
3951 {
3952         vcpu_load(vcpu);
3953         vcpu->arch.mp_state = mp_state->mp_state;
3954         vcpu_put(vcpu);
3955         return 0;
3956 }
3957
3958 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3959                         struct kvm_segment *var, int seg)
3960 {
3961         kvm_x86_ops->set_segment(vcpu, var, seg);
3962 }
3963
3964 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3965                                    struct kvm_segment *kvm_desct)
3966 {
3967         kvm_desct->base = get_desc_base(seg_desc);
3968         kvm_desct->limit = get_desc_limit(seg_desc);
3969         if (seg_desc->g) {
3970                 kvm_desct->limit <<= 12;
3971                 kvm_desct->limit |= 0xfff;
3972         }
3973         kvm_desct->selector = selector;
3974         kvm_desct->type = seg_desc->type;
3975         kvm_desct->present = seg_desc->p;
3976         kvm_desct->dpl = seg_desc->dpl;
3977         kvm_desct->db = seg_desc->d;
3978         kvm_desct->s = seg_desc->s;
3979         kvm_desct->l = seg_desc->l;
3980         kvm_desct->g = seg_desc->g;
3981         kvm_desct->avl = seg_desc->avl;
3982         if (!selector)
3983                 kvm_desct->unusable = 1;
3984         else
3985                 kvm_desct->unusable = 0;
3986         kvm_desct->padding = 0;
3987 }
3988
3989 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3990                                           u16 selector,
3991                                           struct descriptor_table *dtable)
3992 {
3993         if (selector & 1 << 2) {
3994                 struct kvm_segment kvm_seg;
3995
3996                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3997
3998                 if (kvm_seg.unusable)
3999                         dtable->limit = 0;
4000                 else
4001                         dtable->limit = kvm_seg.limit;
4002                 dtable->base = kvm_seg.base;
4003         }
4004         else
4005                 kvm_x86_ops->get_gdt(vcpu, dtable);
4006 }
4007
4008 /* allowed just for 8 bytes segments */
4009 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4010                                          struct desc_struct *seg_desc)
4011 {
4012         gpa_t gpa;
4013         struct descriptor_table dtable;
4014         u16 index = selector >> 3;
4015
4016         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4017
4018         if (dtable.limit < index * 8 + 7) {
4019                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4020                 return 1;
4021         }
4022         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
4023         gpa += index * 8;
4024         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
4025 }
4026
4027 /* allowed just for 8 bytes segments */
4028 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4029                                          struct desc_struct *seg_desc)
4030 {
4031         gpa_t gpa;
4032         struct descriptor_table dtable;
4033         u16 index = selector >> 3;
4034
4035         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4036
4037         if (dtable.limit < index * 8 + 7)
4038                 return 1;
4039         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
4040         gpa += index * 8;
4041         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
4042 }
4043
4044 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
4045                              struct desc_struct *seg_desc)
4046 {
4047         u32 base_addr = get_desc_base(seg_desc);
4048
4049         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4050 }
4051
4052 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4053 {
4054         struct kvm_segment kvm_seg;
4055
4056         kvm_get_segment(vcpu, &kvm_seg, seg);
4057         return kvm_seg.selector;
4058 }
4059
4060 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4061                                                 u16 selector,
4062                                                 struct kvm_segment *kvm_seg)
4063 {
4064         struct desc_struct seg_desc;
4065
4066         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4067                 return 1;
4068         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4069         return 0;
4070 }
4071
4072 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4073 {
4074         struct kvm_segment segvar = {
4075                 .base = selector << 4,
4076                 .limit = 0xffff,
4077                 .selector = selector,
4078                 .type = 3,
4079                 .present = 1,
4080                 .dpl = 3,
4081                 .db = 0,
4082                 .s = 1,
4083                 .l = 0,
4084                 .g = 0,
4085                 .avl = 0,
4086                 .unusable = 0,
4087         };
4088         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4089         return 0;
4090 }
4091
4092 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4093                                 int type_bits, int seg)
4094 {
4095         struct kvm_segment kvm_seg;
4096
4097         if (!(vcpu->arch.cr0 & X86_CR0_PE))
4098                 return kvm_load_realmode_segment(vcpu, selector, seg);
4099         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4100                 return 1;
4101         kvm_seg.type |= type_bits;
4102
4103         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4104             seg != VCPU_SREG_LDTR)
4105                 if (!kvm_seg.s)
4106                         kvm_seg.unusable = 1;
4107
4108         kvm_set_segment(vcpu, &kvm_seg, seg);
4109         return 0;
4110 }
4111
4112 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4113                                 struct tss_segment_32 *tss)
4114 {
4115         tss->cr3 = vcpu->arch.cr3;
4116         tss->eip = kvm_rip_read(vcpu);
4117         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4118         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4119         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4120         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4121         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4122         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4123         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4124         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4125         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4126         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4127         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4128         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4129         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4130         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4131         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4132         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4133 }
4134
4135 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4136                                   struct tss_segment_32 *tss)
4137 {
4138         kvm_set_cr3(vcpu, tss->cr3);
4139
4140         kvm_rip_write(vcpu, tss->eip);
4141         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4142
4143         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4144         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4145         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4146         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4147         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4148         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4149         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4150         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4151
4152         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4153                 return 1;
4154
4155         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4156                 return 1;
4157
4158         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4159                 return 1;
4160
4161         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4162                 return 1;
4163
4164         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4165                 return 1;
4166
4167         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4168                 return 1;
4169
4170         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4171                 return 1;
4172         return 0;
4173 }
4174
4175 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4176                                 struct tss_segment_16 *tss)
4177 {
4178         tss->ip = kvm_rip_read(vcpu);
4179         tss->flag = kvm_x86_ops->get_rflags(vcpu);
4180         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4181         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4182         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4183         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4184         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4185         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4186         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4187         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4188
4189         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4190         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4191         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4192         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4193         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4194         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4195 }
4196
4197 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4198                                  struct tss_segment_16 *tss)
4199 {
4200         kvm_rip_write(vcpu, tss->ip);
4201         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4202         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4203         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4204         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4205         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4206         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4207         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4208         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4209         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4210
4211         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4212                 return 1;
4213
4214         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4215                 return 1;
4216
4217         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4218                 return 1;
4219
4220         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4221                 return 1;
4222
4223         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4224                 return 1;
4225         return 0;
4226 }
4227
4228 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4229                               u16 old_tss_sel, u32 old_tss_base,
4230                               struct desc_struct *nseg_desc)
4231 {
4232         struct tss_segment_16 tss_segment_16;
4233         int ret = 0;
4234
4235         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4236                            sizeof tss_segment_16))
4237                 goto out;
4238
4239         save_state_to_tss16(vcpu, &tss_segment_16);
4240
4241         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4242                             sizeof tss_segment_16))
4243                 goto out;
4244
4245         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4246                            &tss_segment_16, sizeof tss_segment_16))
4247                 goto out;
4248
4249         if (old_tss_sel != 0xffff) {
4250                 tss_segment_16.prev_task_link = old_tss_sel;
4251
4252                 if (kvm_write_guest(vcpu->kvm,
4253                                     get_tss_base_addr(vcpu, nseg_desc),
4254                                     &tss_segment_16.prev_task_link,
4255                                     sizeof tss_segment_16.prev_task_link))
4256                         goto out;
4257         }
4258
4259         if (load_state_from_tss16(vcpu, &tss_segment_16))
4260                 goto out;
4261
4262         ret = 1;
4263 out:
4264         return ret;
4265 }
4266
4267 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4268                        u16 old_tss_sel, u32 old_tss_base,
4269                        struct desc_struct *nseg_desc)
4270 {
4271         struct tss_segment_32 tss_segment_32;
4272         int ret = 0;
4273
4274         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4275                            sizeof tss_segment_32))
4276                 goto out;
4277
4278         save_state_to_tss32(vcpu, &tss_segment_32);
4279
4280         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4281                             sizeof tss_segment_32))
4282                 goto out;
4283
4284         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4285                            &tss_segment_32, sizeof tss_segment_32))
4286                 goto out;
4287
4288         if (old_tss_sel != 0xffff) {
4289                 tss_segment_32.prev_task_link = old_tss_sel;
4290
4291                 if (kvm_write_guest(vcpu->kvm,
4292                                     get_tss_base_addr(vcpu, nseg_desc),
4293                                     &tss_segment_32.prev_task_link,
4294                                     sizeof tss_segment_32.prev_task_link))
4295                         goto out;
4296         }
4297
4298         if (load_state_from_tss32(vcpu, &tss_segment_32))
4299                 goto out;
4300
4301         ret = 1;
4302 out:
4303         return ret;
4304 }
4305
4306 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4307 {
4308         struct kvm_segment tr_seg;
4309         struct desc_struct cseg_desc;
4310         struct desc_struct nseg_desc;
4311         int ret = 0;
4312         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4313         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4314
4315         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4316
4317         /* FIXME: Handle errors. Failure to read either TSS or their
4318          * descriptors should generate a pagefault.
4319          */
4320         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4321                 goto out;
4322
4323         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4324                 goto out;
4325
4326         if (reason != TASK_SWITCH_IRET) {
4327                 int cpl;
4328
4329                 cpl = kvm_x86_ops->get_cpl(vcpu);
4330                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4331                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4332                         return 1;
4333                 }
4334         }
4335
4336         if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4337                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4338                 return 1;
4339         }
4340
4341         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4342                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4343                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4344         }
4345
4346         if (reason == TASK_SWITCH_IRET) {
4347                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4348                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4349         }
4350
4351         /* set back link to prev task only if NT bit is set in eflags
4352            note that old_tss_sel is not used afetr this point */
4353         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4354                 old_tss_sel = 0xffff;
4355
4356         /* set back link to prev task only if NT bit is set in eflags
4357            note that old_tss_sel is not used afetr this point */
4358         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4359                 old_tss_sel = 0xffff;
4360
4361         if (nseg_desc.type & 8)
4362                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4363                                          old_tss_base, &nseg_desc);
4364         else
4365                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4366                                          old_tss_base, &nseg_desc);
4367
4368         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4369                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4370                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4371         }
4372
4373         if (reason != TASK_SWITCH_IRET) {
4374                 nseg_desc.type |= (1 << 1);
4375                 save_guest_segment_descriptor(vcpu, tss_selector,
4376                                               &nseg_desc);
4377         }
4378
4379         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4380         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4381         tr_seg.type = 11;
4382         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4383 out:
4384         return ret;
4385 }
4386 EXPORT_SYMBOL_GPL(kvm_task_switch);
4387
4388 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4389                                   struct kvm_sregs *sregs)
4390 {
4391         int mmu_reset_needed = 0;
4392         int pending_vec, max_bits;
4393         struct descriptor_table dt;
4394
4395         vcpu_load(vcpu);
4396
4397         dt.limit = sregs->idt.limit;
4398         dt.base = sregs->idt.base;
4399         kvm_x86_ops->set_idt(vcpu, &dt);
4400         dt.limit = sregs->gdt.limit;
4401         dt.base = sregs->gdt.base;
4402         kvm_x86_ops->set_gdt(vcpu, &dt);
4403
4404         vcpu->arch.cr2 = sregs->cr2;
4405         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4406         vcpu->arch.cr3 = sregs->cr3;
4407
4408         kvm_set_cr8(vcpu, sregs->cr8);
4409
4410         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4411         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4412         kvm_set_apic_base(vcpu, sregs->apic_base);
4413
4414         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4415
4416         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4417         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4418         vcpu->arch.cr0 = sregs->cr0;
4419
4420         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4421         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4422         if (!is_long_mode(vcpu) && is_pae(vcpu))
4423                 load_pdptrs(vcpu, vcpu->arch.cr3);
4424
4425         if (mmu_reset_needed)
4426                 kvm_mmu_reset_context(vcpu);
4427
4428         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4429         pending_vec = find_first_bit(
4430                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4431         if (pending_vec < max_bits) {
4432                 kvm_queue_interrupt(vcpu, pending_vec, false);
4433                 pr_debug("Set back pending irq %d\n", pending_vec);
4434                 if (irqchip_in_kernel(vcpu->kvm))
4435                         kvm_pic_clear_isr_ack(vcpu->kvm);
4436         }
4437
4438         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4439         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4440         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4441         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4442         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4443         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4444
4445         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4446         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4447
4448         update_cr8_intercept(vcpu);
4449
4450         /* Older userspace won't unhalt the vcpu on reset. */
4451         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4452             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4453             !(vcpu->arch.cr0 & X86_CR0_PE))
4454                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4455
4456         vcpu_put(vcpu);
4457
4458         return 0;
4459 }
4460
4461 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4462                                         struct kvm_guest_debug *dbg)
4463 {
4464         int i, r;
4465
4466         vcpu_load(vcpu);
4467
4468         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4469             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4470                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4471                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4472                 vcpu->arch.switch_db_regs =
4473                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4474         } else {
4475                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4476                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4477                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4478         }
4479
4480         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4481
4482         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4483                 kvm_queue_exception(vcpu, DB_VECTOR);
4484         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4485                 kvm_queue_exception(vcpu, BP_VECTOR);
4486
4487         vcpu_put(vcpu);
4488
4489         return r;
4490 }
4491
4492 /*
4493  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4494  * we have asm/x86/processor.h
4495  */
4496 struct fxsave {
4497         u16     cwd;
4498         u16     swd;
4499         u16     twd;
4500         u16     fop;
4501         u64     rip;
4502         u64     rdp;
4503         u32     mxcsr;
4504         u32     mxcsr_mask;
4505         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4506 #ifdef CONFIG_X86_64
4507         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4508 #else
4509         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4510 #endif
4511 };
4512
4513 /*
4514  * Translate a guest virtual address to a guest physical address.
4515  */
4516 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4517                                     struct kvm_translation *tr)
4518 {
4519         unsigned long vaddr = tr->linear_address;
4520         gpa_t gpa;
4521
4522         vcpu_load(vcpu);
4523         down_read(&vcpu->kvm->slots_lock);
4524         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4525         up_read(&vcpu->kvm->slots_lock);
4526         tr->physical_address = gpa;
4527         tr->valid = gpa != UNMAPPED_GVA;
4528         tr->writeable = 1;
4529         tr->usermode = 0;
4530         vcpu_put(vcpu);
4531
4532         return 0;
4533 }
4534
4535 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4536 {
4537         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4538
4539         vcpu_load(vcpu);
4540
4541         memcpy(fpu->fpr, fxsave->st_space, 128);
4542         fpu->fcw = fxsave->cwd;
4543         fpu->fsw = fxsave->swd;
4544         fpu->ftwx = fxsave->twd;
4545         fpu->last_opcode = fxsave->fop;
4546         fpu->last_ip = fxsave->rip;
4547         fpu->last_dp = fxsave->rdp;
4548         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4549
4550         vcpu_put(vcpu);
4551
4552         return 0;
4553 }
4554
4555 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4556 {
4557         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4558
4559         vcpu_load(vcpu);
4560
4561         memcpy(fxsave->st_space, fpu->fpr, 128);
4562         fxsave->cwd = fpu->fcw;
4563         fxsave->swd = fpu->fsw;
4564         fxsave->twd = fpu->ftwx;
4565         fxsave->fop = fpu->last_opcode;
4566         fxsave->rip = fpu->last_ip;
4567         fxsave->rdp = fpu->last_dp;
4568         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4569
4570         vcpu_put(vcpu);
4571
4572         return 0;
4573 }
4574
4575 void fx_init(struct kvm_vcpu *vcpu)
4576 {
4577         unsigned after_mxcsr_mask;
4578
4579         /*
4580          * Touch the fpu the first time in non atomic context as if
4581          * this is the first fpu instruction the exception handler
4582          * will fire before the instruction returns and it'll have to
4583          * allocate ram with GFP_KERNEL.
4584          */
4585         if (!used_math())
4586                 kvm_fx_save(&vcpu->arch.host_fx_image);
4587
4588         /* Initialize guest FPU by resetting ours and saving into guest's */
4589         preempt_disable();
4590         kvm_fx_save(&vcpu->arch.host_fx_image);
4591         kvm_fx_finit();
4592         kvm_fx_save(&vcpu->arch.guest_fx_image);
4593         kvm_fx_restore(&vcpu->arch.host_fx_image);
4594         preempt_enable();
4595
4596         vcpu->arch.cr0 |= X86_CR0_ET;
4597         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4598         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4599         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4600                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4601 }
4602 EXPORT_SYMBOL_GPL(fx_init);
4603
4604 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4605 {
4606         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4607                 return;
4608
4609         vcpu->guest_fpu_loaded = 1;
4610         kvm_fx_save(&vcpu->arch.host_fx_image);
4611         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4612 }
4613 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4614
4615 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4616 {
4617         if (!vcpu->guest_fpu_loaded)
4618                 return;
4619
4620         vcpu->guest_fpu_loaded = 0;
4621         kvm_fx_save(&vcpu->arch.guest_fx_image);
4622         kvm_fx_restore(&vcpu->arch.host_fx_image);
4623         ++vcpu->stat.fpu_reload;
4624 }
4625 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4626
4627 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4628 {
4629         if (vcpu->arch.time_page) {
4630                 kvm_release_page_dirty(vcpu->arch.time_page);
4631                 vcpu->arch.time_page = NULL;
4632         }
4633
4634         kvm_x86_ops->vcpu_free(vcpu);
4635 }
4636
4637 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4638                                                 unsigned int id)
4639 {
4640         return kvm_x86_ops->vcpu_create(kvm, id);
4641 }
4642
4643 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4644 {
4645         int r;
4646
4647         /* We do fxsave: this must be aligned. */
4648         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4649
4650         vcpu->arch.mtrr_state.have_fixed = 1;
4651         vcpu_load(vcpu);
4652         r = kvm_arch_vcpu_reset(vcpu);
4653         if (r == 0)
4654                 r = kvm_mmu_setup(vcpu);
4655         vcpu_put(vcpu);
4656         if (r < 0)
4657                 goto free_vcpu;
4658
4659         return 0;
4660 free_vcpu:
4661         kvm_x86_ops->vcpu_free(vcpu);
4662         return r;
4663 }
4664
4665 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4666 {
4667         vcpu_load(vcpu);
4668         kvm_mmu_unload(vcpu);
4669         vcpu_put(vcpu);
4670
4671         kvm_x86_ops->vcpu_free(vcpu);
4672 }
4673
4674 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4675 {
4676         vcpu->arch.nmi_pending = false;
4677         vcpu->arch.nmi_injected = false;
4678
4679         vcpu->arch.switch_db_regs = 0;
4680         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4681         vcpu->arch.dr6 = DR6_FIXED_1;
4682         vcpu->arch.dr7 = DR7_FIXED_1;
4683
4684         return kvm_x86_ops->vcpu_reset(vcpu);
4685 }
4686
4687 void kvm_arch_hardware_enable(void *garbage)
4688 {
4689         kvm_x86_ops->hardware_enable(garbage);
4690 }
4691
4692 void kvm_arch_hardware_disable(void *garbage)
4693 {
4694         kvm_x86_ops->hardware_disable(garbage);
4695 }
4696
4697 int kvm_arch_hardware_setup(void)
4698 {
4699         return kvm_x86_ops->hardware_setup();
4700 }
4701
4702 void kvm_arch_hardware_unsetup(void)
4703 {
4704         kvm_x86_ops->hardware_unsetup();
4705 }
4706
4707 void kvm_arch_check_processor_compat(void *rtn)
4708 {
4709         kvm_x86_ops->check_processor_compatibility(rtn);
4710 }
4711
4712 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4713 {
4714         struct page *page;
4715         struct kvm *kvm;
4716         int r;
4717
4718         BUG_ON(vcpu->kvm == NULL);
4719         kvm = vcpu->kvm;
4720
4721         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4722         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4723                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4724         else
4725                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4726
4727         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4728         if (!page) {
4729                 r = -ENOMEM;
4730                 goto fail;
4731         }
4732         vcpu->arch.pio_data = page_address(page);
4733
4734         r = kvm_mmu_create(vcpu);
4735         if (r < 0)
4736                 goto fail_free_pio_data;
4737
4738         if (irqchip_in_kernel(kvm)) {
4739                 r = kvm_create_lapic(vcpu);
4740                 if (r < 0)
4741                         goto fail_mmu_destroy;
4742         }
4743
4744         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4745                                        GFP_KERNEL);
4746         if (!vcpu->arch.mce_banks) {
4747                 r = -ENOMEM;
4748                 goto fail_mmu_destroy;
4749         }
4750         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4751
4752         return 0;
4753
4754 fail_mmu_destroy:
4755         kvm_mmu_destroy(vcpu);
4756 fail_free_pio_data:
4757         free_page((unsigned long)vcpu->arch.pio_data);
4758 fail:
4759         return r;
4760 }
4761
4762 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4763 {
4764         kvm_free_lapic(vcpu);
4765         down_read(&vcpu->kvm->slots_lock);
4766         kvm_mmu_destroy(vcpu);
4767         up_read(&vcpu->kvm->slots_lock);
4768         free_page((unsigned long)vcpu->arch.pio_data);
4769 }
4770
4771 struct  kvm *kvm_arch_create_vm(void)
4772 {
4773         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4774
4775         if (!kvm)
4776                 return ERR_PTR(-ENOMEM);
4777
4778         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4779         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4780
4781         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4782         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4783
4784         rdtscll(kvm->arch.vm_init_tsc);
4785
4786         return kvm;
4787 }
4788
4789 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4790 {
4791         vcpu_load(vcpu);
4792         kvm_mmu_unload(vcpu);
4793         vcpu_put(vcpu);
4794 }
4795
4796 static void kvm_free_vcpus(struct kvm *kvm)
4797 {
4798         unsigned int i;
4799         struct kvm_vcpu *vcpu;
4800
4801         /*
4802          * Unpin any mmu pages first.
4803          */
4804         kvm_for_each_vcpu(i, vcpu, kvm)
4805                 kvm_unload_vcpu_mmu(vcpu);
4806         kvm_for_each_vcpu(i, vcpu, kvm)
4807                 kvm_arch_vcpu_free(vcpu);
4808
4809         mutex_lock(&kvm->lock);
4810         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4811                 kvm->vcpus[i] = NULL;
4812
4813         atomic_set(&kvm->online_vcpus, 0);
4814         mutex_unlock(&kvm->lock);
4815 }
4816
4817 void kvm_arch_sync_events(struct kvm *kvm)
4818 {
4819         kvm_free_all_assigned_devices(kvm);
4820 }
4821
4822 void kvm_arch_destroy_vm(struct kvm *kvm)
4823 {
4824         kvm_iommu_unmap_guest(kvm);
4825         kvm_free_pit(kvm);
4826         kfree(kvm->arch.vpic);
4827         kfree(kvm->arch.vioapic);
4828         kvm_free_vcpus(kvm);
4829         kvm_free_physmem(kvm);
4830         if (kvm->arch.apic_access_page)
4831                 put_page(kvm->arch.apic_access_page);
4832         if (kvm->arch.ept_identity_pagetable)
4833                 put_page(kvm->arch.ept_identity_pagetable);
4834         kfree(kvm);
4835 }
4836
4837 int kvm_arch_set_memory_region(struct kvm *kvm,
4838                                 struct kvm_userspace_memory_region *mem,
4839                                 struct kvm_memory_slot old,
4840                                 int user_alloc)
4841 {
4842         int npages = mem->memory_size >> PAGE_SHIFT;
4843         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4844
4845         /*To keep backward compatibility with older userspace,
4846          *x86 needs to hanlde !user_alloc case.
4847          */
4848         if (!user_alloc) {
4849                 if (npages && !old.rmap) {
4850                         unsigned long userspace_addr;
4851
4852                         down_write(&current->mm->mmap_sem);
4853                         userspace_addr = do_mmap(NULL, 0,
4854                                                  npages * PAGE_SIZE,
4855                                                  PROT_READ | PROT_WRITE,
4856                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4857                                                  0);
4858                         up_write(&current->mm->mmap_sem);
4859
4860                         if (IS_ERR((void *)userspace_addr))
4861                                 return PTR_ERR((void *)userspace_addr);
4862
4863                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4864                         spin_lock(&kvm->mmu_lock);
4865                         memslot->userspace_addr = userspace_addr;
4866                         spin_unlock(&kvm->mmu_lock);
4867                 } else {
4868                         if (!old.user_alloc && old.rmap) {
4869                                 int ret;
4870
4871                                 down_write(&current->mm->mmap_sem);
4872                                 ret = do_munmap(current->mm, old.userspace_addr,
4873                                                 old.npages * PAGE_SIZE);
4874                                 up_write(&current->mm->mmap_sem);
4875                                 if (ret < 0)
4876                                         printk(KERN_WARNING
4877                                        "kvm_vm_ioctl_set_memory_region: "
4878                                        "failed to munmap memory\n");
4879                         }
4880                 }
4881         }
4882
4883         spin_lock(&kvm->mmu_lock);
4884         if (!kvm->arch.n_requested_mmu_pages) {
4885                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4886                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4887         }
4888
4889         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4890         spin_unlock(&kvm->mmu_lock);
4891         kvm_flush_remote_tlbs(kvm);
4892
4893         return 0;
4894 }
4895
4896 void kvm_arch_flush_shadow(struct kvm *kvm)
4897 {
4898         kvm_mmu_zap_all(kvm);
4899         kvm_reload_remote_mmus(kvm);
4900 }
4901
4902 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4903 {
4904         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4905                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4906                 || vcpu->arch.nmi_pending ||
4907                 (kvm_arch_interrupt_allowed(vcpu) &&
4908                  kvm_cpu_has_interrupt(vcpu));
4909 }
4910
4911 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4912 {
4913         int me;
4914         int cpu = vcpu->cpu;
4915
4916         if (waitqueue_active(&vcpu->wq)) {
4917                 wake_up_interruptible(&vcpu->wq);
4918                 ++vcpu->stat.halt_wakeup;
4919         }
4920
4921         me = get_cpu();
4922         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4923                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4924                         smp_send_reschedule(cpu);
4925         put_cpu();
4926 }
4927
4928 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4929 {
4930         return kvm_x86_ops->interrupt_allowed(vcpu);
4931 }
4932
4933 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4934 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4935 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4936 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4937 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);