410fdb3f1939ba98cfabea61071d0ffe403ef1a3
[pandora-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17
18 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long                           hpet_address;
36 u8                                      hpet_blockid; /* OS timer block num */
37 u8                                      hpet_msi_disable;
38
39 #ifdef CONFIG_PCI_MSI
40 static unsigned long                    hpet_num_timers;
41 #endif
42 static void __iomem                     *hpet_virt_address;
43
44 struct hpet_dev {
45         struct clock_event_device       evt;
46         unsigned int                    num;
47         int                             cpu;
48         unsigned int                    irq;
49         unsigned int                    flags;
50         char                            name[10];
51 };
52
53 inline unsigned int hpet_readl(unsigned int a)
54 {
55         return readl(hpet_virt_address + a);
56 }
57
58 static inline void hpet_writel(unsigned int d, unsigned int a)
59 {
60         writel(d, hpet_virt_address + a);
61 }
62
63 #ifdef CONFIG_X86_64
64 #include <asm/pgtable.h>
65 #endif
66
67 static inline void hpet_set_mapping(void)
68 {
69         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
70 #ifdef CONFIG_X86_64
71         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
72 #endif
73 }
74
75 static inline void hpet_clear_mapping(void)
76 {
77         iounmap(hpet_virt_address);
78         hpet_virt_address = NULL;
79 }
80
81 /*
82  * HPET command line enable / disable
83  */
84 static int boot_hpet_disable;
85 int hpet_force_user;
86 static int hpet_verbose;
87
88 static int __init hpet_setup(char *str)
89 {
90         if (str) {
91                 if (!strncmp("disable", str, 7))
92                         boot_hpet_disable = 1;
93                 if (!strncmp("force", str, 5))
94                         hpet_force_user = 1;
95                 if (!strncmp("verbose", str, 7))
96                         hpet_verbose = 1;
97         }
98         return 1;
99 }
100 __setup("hpet=", hpet_setup);
101
102 static int __init disable_hpet(char *str)
103 {
104         boot_hpet_disable = 1;
105         return 1;
106 }
107 __setup("nohpet", disable_hpet);
108
109 static inline int is_hpet_capable(void)
110 {
111         return !boot_hpet_disable && hpet_address;
112 }
113
114 /*
115  * HPET timer interrupt enable / disable
116  */
117 static int hpet_legacy_int_enabled;
118
119 /**
120  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
121  */
122 int is_hpet_enabled(void)
123 {
124         return is_hpet_capable() && hpet_legacy_int_enabled;
125 }
126 EXPORT_SYMBOL_GPL(is_hpet_enabled);
127
128 static void _hpet_print_config(const char *function, int line)
129 {
130         u32 i, timers, l, h;
131         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
132         l = hpet_readl(HPET_ID);
133         h = hpet_readl(HPET_PERIOD);
134         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
135         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
136         l = hpet_readl(HPET_CFG);
137         h = hpet_readl(HPET_STATUS);
138         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
139         l = hpet_readl(HPET_COUNTER);
140         h = hpet_readl(HPET_COUNTER+4);
141         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
142
143         for (i = 0; i < timers; i++) {
144                 l = hpet_readl(HPET_Tn_CFG(i));
145                 h = hpet_readl(HPET_Tn_CFG(i)+4);
146                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
147                        i, l, h);
148                 l = hpet_readl(HPET_Tn_CMP(i));
149                 h = hpet_readl(HPET_Tn_CMP(i)+4);
150                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
151                        i, l, h);
152                 l = hpet_readl(HPET_Tn_ROUTE(i));
153                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
154                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
155                        i, l, h);
156         }
157 }
158
159 #define hpet_print_config()                                     \
160 do {                                                            \
161         if (hpet_verbose)                                       \
162                 _hpet_print_config(__FUNCTION__, __LINE__);     \
163 } while (0)
164
165 /*
166  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
167  * timer 0 and timer 1 in case of RTC emulation.
168  */
169 #ifdef CONFIG_HPET
170
171 static void hpet_reserve_msi_timers(struct hpet_data *hd);
172
173 static void hpet_reserve_platform_timers(unsigned int id)
174 {
175         struct hpet __iomem *hpet = hpet_virt_address;
176         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
177         unsigned int nrtimers, i;
178         struct hpet_data hd;
179
180         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
181
182         memset(&hd, 0, sizeof(hd));
183         hd.hd_phys_address      = hpet_address;
184         hd.hd_address           = hpet;
185         hd.hd_nirqs             = nrtimers;
186         hpet_reserve_timer(&hd, 0);
187
188 #ifdef CONFIG_HPET_EMULATE_RTC
189         hpet_reserve_timer(&hd, 1);
190 #endif
191
192         /*
193          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
194          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
195          * don't bother configuring *any* comparator interrupts.
196          */
197         hd.hd_irq[0] = HPET_LEGACY_8254;
198         hd.hd_irq[1] = HPET_LEGACY_RTC;
199
200         for (i = 2; i < nrtimers; timer++, i++) {
201                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
202                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
203         }
204
205         hpet_reserve_msi_timers(&hd);
206
207         hpet_alloc(&hd);
208
209 }
210 #else
211 static void hpet_reserve_platform_timers(unsigned int id) { }
212 #endif
213
214 /*
215  * Common hpet info
216  */
217 static unsigned long hpet_period;
218
219 static void hpet_legacy_set_mode(enum clock_event_mode mode,
220                           struct clock_event_device *evt);
221 static int hpet_legacy_next_event(unsigned long delta,
222                            struct clock_event_device *evt);
223
224 /*
225  * The hpet clock event device
226  */
227 static struct clock_event_device hpet_clockevent = {
228         .name           = "hpet",
229         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
230         .set_mode       = hpet_legacy_set_mode,
231         .set_next_event = hpet_legacy_next_event,
232         .shift          = 32,
233         .irq            = 0,
234         .rating         = 50,
235 };
236
237 static void hpet_stop_counter(void)
238 {
239         unsigned long cfg = hpet_readl(HPET_CFG);
240         cfg &= ~HPET_CFG_ENABLE;
241         hpet_writel(cfg, HPET_CFG);
242 }
243
244 static void hpet_reset_counter(void)
245 {
246         hpet_writel(0, HPET_COUNTER);
247         hpet_writel(0, HPET_COUNTER + 4);
248 }
249
250 static void hpet_start_counter(void)
251 {
252         unsigned int cfg = hpet_readl(HPET_CFG);
253         cfg |= HPET_CFG_ENABLE;
254         hpet_writel(cfg, HPET_CFG);
255 }
256
257 static void hpet_restart_counter(void)
258 {
259         hpet_stop_counter();
260         hpet_reset_counter();
261         hpet_start_counter();
262 }
263
264 static void hpet_resume_device(void)
265 {
266         force_hpet_resume();
267 }
268
269 static void hpet_resume_counter(struct clocksource *cs)
270 {
271         hpet_resume_device();
272         hpet_restart_counter();
273 }
274
275 static void hpet_enable_legacy_int(void)
276 {
277         unsigned int cfg = hpet_readl(HPET_CFG);
278
279         cfg |= HPET_CFG_LEGACY;
280         hpet_writel(cfg, HPET_CFG);
281         hpet_legacy_int_enabled = 1;
282 }
283
284 static void hpet_legacy_clockevent_register(void)
285 {
286         /* Start HPET legacy interrupts */
287         hpet_enable_legacy_int();
288
289         /*
290          * The mult factor is defined as (include/linux/clockchips.h)
291          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
292          * hpet_period is in units of femtoseconds (per cycle), so
293          *  mult/2^shift = cyc/ns = 10^6/hpet_period
294          *  mult = (10^6 * 2^shift)/hpet_period
295          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
296          */
297         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
298                                       hpet_period, hpet_clockevent.shift);
299         /* Calculate the min / max delta */
300         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
301                                                            &hpet_clockevent);
302         /* 5 usec minimum reprogramming delta. */
303         hpet_clockevent.min_delta_ns = 5000;
304
305         /*
306          * Start hpet with the boot cpu mask and make it
307          * global after the IO_APIC has been initialized.
308          */
309         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
310         clockevents_register_device(&hpet_clockevent);
311         global_clock_event = &hpet_clockevent;
312         printk(KERN_DEBUG "hpet clockevent registered\n");
313 }
314
315 static int hpet_setup_msi_irq(unsigned int irq);
316
317 static void hpet_set_mode(enum clock_event_mode mode,
318                           struct clock_event_device *evt, int timer)
319 {
320         unsigned int cfg, cmp, now;
321         uint64_t delta;
322
323         switch (mode) {
324         case CLOCK_EVT_MODE_PERIODIC:
325                 hpet_stop_counter();
326                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
327                 delta >>= evt->shift;
328                 now = hpet_readl(HPET_COUNTER);
329                 cmp = now + (unsigned int) delta;
330                 cfg = hpet_readl(HPET_Tn_CFG(timer));
331                 /* Make sure we use edge triggered interrupts */
332                 cfg &= ~HPET_TN_LEVEL;
333                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
334                        HPET_TN_SETVAL | HPET_TN_32BIT;
335                 hpet_writel(cfg, HPET_Tn_CFG(timer));
336                 hpet_writel(cmp, HPET_Tn_CMP(timer));
337                 udelay(1);
338                 /*
339                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
340                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
341                  * bit is automatically cleared after the first write.
342                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
343                  * Publication # 24674)
344                  */
345                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
346                 hpet_start_counter();
347                 hpet_print_config();
348                 break;
349
350         case CLOCK_EVT_MODE_ONESHOT:
351                 cfg = hpet_readl(HPET_Tn_CFG(timer));
352                 cfg &= ~HPET_TN_PERIODIC;
353                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
354                 hpet_writel(cfg, HPET_Tn_CFG(timer));
355                 break;
356
357         case CLOCK_EVT_MODE_UNUSED:
358         case CLOCK_EVT_MODE_SHUTDOWN:
359                 cfg = hpet_readl(HPET_Tn_CFG(timer));
360                 cfg &= ~HPET_TN_ENABLE;
361                 hpet_writel(cfg, HPET_Tn_CFG(timer));
362                 break;
363
364         case CLOCK_EVT_MODE_RESUME:
365                 if (timer == 0) {
366                         hpet_enable_legacy_int();
367                 } else {
368                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
369                         hpet_setup_msi_irq(hdev->irq);
370                         disable_irq(hdev->irq);
371                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
372                         enable_irq(hdev->irq);
373                 }
374                 hpet_print_config();
375                 break;
376         }
377 }
378
379 static int hpet_next_event(unsigned long delta,
380                            struct clock_event_device *evt, int timer)
381 {
382         u32 cnt;
383
384         cnt = hpet_readl(HPET_COUNTER);
385         cnt += (u32) delta;
386         hpet_writel(cnt, HPET_Tn_CMP(timer));
387
388         /*
389          * We need to read back the CMP register on certain HPET
390          * implementations (ATI chipsets) which seem to delay the
391          * transfer of the compare register into the internal compare
392          * logic. With small deltas this might actually be too late as
393          * the counter could already be higher than the compare value
394          * at that point and we would wait for the next hpet interrupt
395          * forever. We found out that reading the CMP register back
396          * forces the transfer so we can rely on the comparison with
397          * the counter register below. If the read back from the
398          * compare register does not match the value we programmed
399          * then we might have a real hardware problem. We can not do
400          * much about it here, but at least alert the user/admin with
401          * a prominent warning.
402          *
403          * An erratum on some chipsets (ICH9,..), results in
404          * comparator read immediately following a write returning old
405          * value. Workaround for this is to read this value second
406          * time, when first read returns old value.
407          *
408          * In fact the write to the comparator register is delayed up
409          * to two HPET cycles so the workaround we tried to restrict
410          * the readback to those known to be borked ATI chipsets
411          * failed miserably. So we give up on optimizations forever
412          * and penalize all HPET incarnations unconditionally.
413          */
414         if (unlikely((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt)) {
415                 if (hpet_readl(HPET_Tn_CMP(timer)) != cnt)
416                         printk_once(KERN_WARNING
417                                 "hpet: compare register read back failed.\n");
418         }
419
420         return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
421 }
422
423 static void hpet_legacy_set_mode(enum clock_event_mode mode,
424                         struct clock_event_device *evt)
425 {
426         hpet_set_mode(mode, evt, 0);
427 }
428
429 static int hpet_legacy_next_event(unsigned long delta,
430                         struct clock_event_device *evt)
431 {
432         return hpet_next_event(delta, evt, 0);
433 }
434
435 /*
436  * HPET MSI Support
437  */
438 #ifdef CONFIG_PCI_MSI
439
440 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
441 static struct hpet_dev  *hpet_devs;
442
443 void hpet_msi_unmask(unsigned int irq)
444 {
445         struct hpet_dev *hdev = get_irq_data(irq);
446         unsigned int cfg;
447
448         /* unmask it */
449         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
450         cfg |= HPET_TN_FSB;
451         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
452 }
453
454 void hpet_msi_mask(unsigned int irq)
455 {
456         unsigned int cfg;
457         struct hpet_dev *hdev = get_irq_data(irq);
458
459         /* mask it */
460         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461         cfg &= ~HPET_TN_FSB;
462         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
463 }
464
465 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
466 {
467         struct hpet_dev *hdev = get_irq_data(irq);
468
469         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
470         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
471 }
472
473 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
474 {
475         struct hpet_dev *hdev = get_irq_data(irq);
476
477         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
478         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
479         msg->address_hi = 0;
480 }
481
482 static void hpet_msi_set_mode(enum clock_event_mode mode,
483                                 struct clock_event_device *evt)
484 {
485         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
486         hpet_set_mode(mode, evt, hdev->num);
487 }
488
489 static int hpet_msi_next_event(unsigned long delta,
490                                 struct clock_event_device *evt)
491 {
492         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
493         return hpet_next_event(delta, evt, hdev->num);
494 }
495
496 static int hpet_setup_msi_irq(unsigned int irq)
497 {
498         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
499                 destroy_irq(irq);
500                 return -EINVAL;
501         }
502         return 0;
503 }
504
505 static int hpet_assign_irq(struct hpet_dev *dev)
506 {
507         unsigned int irq;
508
509         irq = create_irq();
510         if (!irq)
511                 return -EINVAL;
512
513         set_irq_data(irq, dev);
514
515         if (hpet_setup_msi_irq(irq))
516                 return -EINVAL;
517
518         dev->irq = irq;
519         return 0;
520 }
521
522 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
523 {
524         struct hpet_dev *dev = (struct hpet_dev *)data;
525         struct clock_event_device *hevt = &dev->evt;
526
527         if (!hevt->event_handler) {
528                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
529                                 dev->num);
530                 return IRQ_HANDLED;
531         }
532
533         hevt->event_handler(hevt);
534         return IRQ_HANDLED;
535 }
536
537 static int hpet_setup_irq(struct hpet_dev *dev)
538 {
539
540         if (request_irq(dev->irq, hpet_interrupt_handler,
541                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
542                         dev->name, dev))
543                 return -1;
544
545         disable_irq(dev->irq);
546         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
547         enable_irq(dev->irq);
548
549         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
550                          dev->name, dev->irq);
551
552         return 0;
553 }
554
555 /* This should be called in specific @cpu */
556 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
557 {
558         struct clock_event_device *evt = &hdev->evt;
559         uint64_t hpet_freq;
560
561         WARN_ON(cpu != smp_processor_id());
562         if (!(hdev->flags & HPET_DEV_VALID))
563                 return;
564
565         if (hpet_setup_msi_irq(hdev->irq))
566                 return;
567
568         hdev->cpu = cpu;
569         per_cpu(cpu_hpet_dev, cpu) = hdev;
570         evt->name = hdev->name;
571         hpet_setup_irq(hdev);
572         evt->irq = hdev->irq;
573
574         evt->rating = 110;
575         evt->features = CLOCK_EVT_FEAT_ONESHOT;
576         if (hdev->flags & HPET_DEV_PERI_CAP)
577                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
578
579         evt->set_mode = hpet_msi_set_mode;
580         evt->set_next_event = hpet_msi_next_event;
581         evt->shift = 32;
582
583         /*
584          * The period is a femto seconds value. We need to calculate the
585          * scaled math multiplication factor for nanosecond to hpet tick
586          * conversion.
587          */
588         hpet_freq = FSEC_PER_SEC;
589         do_div(hpet_freq, hpet_period);
590         evt->mult = div_sc((unsigned long) hpet_freq,
591                                       NSEC_PER_SEC, evt->shift);
592         /* Calculate the max delta */
593         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
594         /* 5 usec minimum reprogramming delta. */
595         evt->min_delta_ns = 5000;
596
597         evt->cpumask = cpumask_of(hdev->cpu);
598         clockevents_register_device(evt);
599 }
600
601 #ifdef CONFIG_HPET
602 /* Reserve at least one timer for userspace (/dev/hpet) */
603 #define RESERVE_TIMERS 1
604 #else
605 #define RESERVE_TIMERS 0
606 #endif
607
608 static void hpet_msi_capability_lookup(unsigned int start_timer)
609 {
610         unsigned int id;
611         unsigned int num_timers;
612         unsigned int num_timers_used = 0;
613         int i;
614
615         if (hpet_msi_disable)
616                 return;
617
618         if (boot_cpu_has(X86_FEATURE_ARAT))
619                 return;
620         id = hpet_readl(HPET_ID);
621
622         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
623         num_timers++; /* Value read out starts from 0 */
624         hpet_print_config();
625
626         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
627         if (!hpet_devs)
628                 return;
629
630         hpet_num_timers = num_timers;
631
632         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
633                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
634                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
635
636                 /* Only consider HPET timer with MSI support */
637                 if (!(cfg & HPET_TN_FSB_CAP))
638                         continue;
639
640                 hdev->flags = 0;
641                 if (cfg & HPET_TN_PERIODIC_CAP)
642                         hdev->flags |= HPET_DEV_PERI_CAP;
643                 hdev->num = i;
644
645                 sprintf(hdev->name, "hpet%d", i);
646                 if (hpet_assign_irq(hdev))
647                         continue;
648
649                 hdev->flags |= HPET_DEV_FSB_CAP;
650                 hdev->flags |= HPET_DEV_VALID;
651                 num_timers_used++;
652                 if (num_timers_used == num_possible_cpus())
653                         break;
654         }
655
656         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
657                 num_timers, num_timers_used);
658 }
659
660 #ifdef CONFIG_HPET
661 static void hpet_reserve_msi_timers(struct hpet_data *hd)
662 {
663         int i;
664
665         if (!hpet_devs)
666                 return;
667
668         for (i = 0; i < hpet_num_timers; i++) {
669                 struct hpet_dev *hdev = &hpet_devs[i];
670
671                 if (!(hdev->flags & HPET_DEV_VALID))
672                         continue;
673
674                 hd->hd_irq[hdev->num] = hdev->irq;
675                 hpet_reserve_timer(hd, hdev->num);
676         }
677 }
678 #endif
679
680 static struct hpet_dev *hpet_get_unused_timer(void)
681 {
682         int i;
683
684         if (!hpet_devs)
685                 return NULL;
686
687         for (i = 0; i < hpet_num_timers; i++) {
688                 struct hpet_dev *hdev = &hpet_devs[i];
689
690                 if (!(hdev->flags & HPET_DEV_VALID))
691                         continue;
692                 if (test_and_set_bit(HPET_DEV_USED_BIT,
693                         (unsigned long *)&hdev->flags))
694                         continue;
695                 return hdev;
696         }
697         return NULL;
698 }
699
700 struct hpet_work_struct {
701         struct delayed_work work;
702         struct completion complete;
703 };
704
705 static void hpet_work(struct work_struct *w)
706 {
707         struct hpet_dev *hdev;
708         int cpu = smp_processor_id();
709         struct hpet_work_struct *hpet_work;
710
711         hpet_work = container_of(w, struct hpet_work_struct, work.work);
712
713         hdev = hpet_get_unused_timer();
714         if (hdev)
715                 init_one_hpet_msi_clockevent(hdev, cpu);
716
717         complete(&hpet_work->complete);
718 }
719
720 static int hpet_cpuhp_notify(struct notifier_block *n,
721                 unsigned long action, void *hcpu)
722 {
723         unsigned long cpu = (unsigned long)hcpu;
724         struct hpet_work_struct work;
725         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
726
727         switch (action & 0xf) {
728         case CPU_ONLINE:
729                 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
730                 init_completion(&work.complete);
731                 /* FIXME: add schedule_work_on() */
732                 schedule_delayed_work_on(cpu, &work.work, 0);
733                 wait_for_completion(&work.complete);
734                 destroy_timer_on_stack(&work.work.timer);
735                 break;
736         case CPU_DEAD:
737                 if (hdev) {
738                         free_irq(hdev->irq, hdev);
739                         hdev->flags &= ~HPET_DEV_USED;
740                         per_cpu(cpu_hpet_dev, cpu) = NULL;
741                 }
742                 break;
743         }
744         return NOTIFY_OK;
745 }
746 #else
747
748 static int hpet_setup_msi_irq(unsigned int irq)
749 {
750         return 0;
751 }
752 static void hpet_msi_capability_lookup(unsigned int start_timer)
753 {
754         return;
755 }
756
757 #ifdef CONFIG_HPET
758 static void hpet_reserve_msi_timers(struct hpet_data *hd)
759 {
760         return;
761 }
762 #endif
763
764 static int hpet_cpuhp_notify(struct notifier_block *n,
765                 unsigned long action, void *hcpu)
766 {
767         return NOTIFY_OK;
768 }
769
770 #endif
771
772 /*
773  * Clock source related code
774  */
775 static cycle_t read_hpet(struct clocksource *cs)
776 {
777         return (cycle_t)hpet_readl(HPET_COUNTER);
778 }
779
780 #ifdef CONFIG_X86_64
781 static cycle_t __vsyscall_fn vread_hpet(void)
782 {
783         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
784 }
785 #endif
786
787 static struct clocksource clocksource_hpet = {
788         .name           = "hpet",
789         .rating         = 250,
790         .read           = read_hpet,
791         .mask           = HPET_MASK,
792         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
793         .resume         = hpet_resume_counter,
794 #ifdef CONFIG_X86_64
795         .vread          = vread_hpet,
796 #endif
797 };
798
799 static int hpet_clocksource_register(void)
800 {
801         u64 start, now;
802         u64 hpet_freq;
803         cycle_t t1;
804
805         /* Start the counter */
806         hpet_restart_counter();
807
808         /* Verify whether hpet counter works */
809         t1 = hpet_readl(HPET_COUNTER);
810         rdtscll(start);
811
812         /*
813          * We don't know the TSC frequency yet, but waiting for
814          * 200000 TSC cycles is safe:
815          * 4 GHz == 50us
816          * 1 GHz == 200us
817          */
818         do {
819                 rep_nop();
820                 rdtscll(now);
821         } while ((now - start) < 200000UL);
822
823         if (t1 == hpet_readl(HPET_COUNTER)) {
824                 printk(KERN_WARNING
825                        "HPET counter not counting. HPET disabled\n");
826                 return -ENODEV;
827         }
828
829         /*
830          * The definition of mult is (include/linux/clocksource.h)
831          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
832          * so we first need to convert hpet_period to ns/cyc units:
833          *  mult/2^shift = ns/cyc = hpet_period/10^6
834          *  mult = (hpet_period * 2^shift)/10^6
835          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
836          */
837
838         /* Need to convert hpet_period (fsec/cyc) to cyc/sec:
839          *
840          * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
841          * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
842          */
843         hpet_freq = FSEC_PER_SEC;
844         do_div(hpet_freq, hpet_period);
845         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
846
847         return 0;
848 }
849
850 /**
851  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
852  */
853 int __init hpet_enable(void)
854 {
855         unsigned int id;
856         int i;
857
858         if (!is_hpet_capable())
859                 return 0;
860
861         hpet_set_mapping();
862
863         /*
864          * Read the period and check for a sane value:
865          */
866         hpet_period = hpet_readl(HPET_PERIOD);
867
868         /*
869          * AMD SB700 based systems with spread spectrum enabled use a
870          * SMM based HPET emulation to provide proper frequency
871          * setting. The SMM code is initialized with the first HPET
872          * register access and takes some time to complete. During
873          * this time the config register reads 0xffffffff. We check
874          * for max. 1000 loops whether the config register reads a non
875          * 0xffffffff value to make sure that HPET is up and running
876          * before we go further. A counting loop is safe, as the HPET
877          * access takes thousands of CPU cycles. On non SB700 based
878          * machines this check is only done once and has no side
879          * effects.
880          */
881         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
882                 if (i == 1000) {
883                         printk(KERN_WARNING
884                                "HPET config register value = 0xFFFFFFFF. "
885                                "Disabling HPET\n");
886                         goto out_nohpet;
887                 }
888         }
889
890         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
891                 goto out_nohpet;
892
893         /*
894          * Read the HPET ID register to retrieve the IRQ routing
895          * information and the number of channels
896          */
897         id = hpet_readl(HPET_ID);
898         hpet_print_config();
899
900 #ifdef CONFIG_HPET_EMULATE_RTC
901         /*
902          * The legacy routing mode needs at least two channels, tick timer
903          * and the rtc emulation channel.
904          */
905         if (!(id & HPET_ID_NUMBER))
906                 goto out_nohpet;
907 #endif
908
909         if (hpet_clocksource_register())
910                 goto out_nohpet;
911
912         if (id & HPET_ID_LEGSUP) {
913                 hpet_legacy_clockevent_register();
914                 return 1;
915         }
916         return 0;
917
918 out_nohpet:
919         hpet_clear_mapping();
920         hpet_address = 0;
921         return 0;
922 }
923
924 /*
925  * Needs to be late, as the reserve_timer code calls kalloc !
926  *
927  * Not a problem on i386 as hpet_enable is called from late_time_init,
928  * but on x86_64 it is necessary !
929  */
930 static __init int hpet_late_init(void)
931 {
932         int cpu;
933
934         if (boot_hpet_disable)
935                 return -ENODEV;
936
937         if (!hpet_address) {
938                 if (!force_hpet_address)
939                         return -ENODEV;
940
941                 hpet_address = force_hpet_address;
942                 hpet_enable();
943         }
944
945         if (!hpet_virt_address)
946                 return -ENODEV;
947
948         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
949                 hpet_msi_capability_lookup(2);
950         else
951                 hpet_msi_capability_lookup(0);
952
953         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
954         hpet_print_config();
955
956         if (hpet_msi_disable)
957                 return 0;
958
959         if (boot_cpu_has(X86_FEATURE_ARAT))
960                 return 0;
961
962         for_each_online_cpu(cpu) {
963                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
964         }
965
966         /* This notifier should be called after workqueue is ready */
967         hotcpu_notifier(hpet_cpuhp_notify, -20);
968
969         return 0;
970 }
971 fs_initcall(hpet_late_init);
972
973 void hpet_disable(void)
974 {
975         if (is_hpet_capable() && hpet_virt_address) {
976                 unsigned int cfg = hpet_readl(HPET_CFG);
977
978                 if (hpet_legacy_int_enabled) {
979                         cfg &= ~HPET_CFG_LEGACY;
980                         hpet_legacy_int_enabled = 0;
981                 }
982                 cfg &= ~HPET_CFG_ENABLE;
983                 hpet_writel(cfg, HPET_CFG);
984         }
985 }
986
987 #ifdef CONFIG_HPET_EMULATE_RTC
988
989 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
990  * is enabled, we support RTC interrupt functionality in software.
991  * RTC has 3 kinds of interrupts:
992  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
993  *    is updated
994  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
995  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
996  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
997  * (1) and (2) above are implemented using polling at a frequency of
998  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
999  * overhead. (DEFAULT_RTC_INT_FREQ)
1000  * For (3), we use interrupts at 64Hz or user specified periodic
1001  * frequency, whichever is higher.
1002  */
1003 #include <linux/mc146818rtc.h>
1004 #include <linux/rtc.h>
1005 #include <asm/rtc.h>
1006
1007 #define DEFAULT_RTC_INT_FREQ    64
1008 #define DEFAULT_RTC_SHIFT       6
1009 #define RTC_NUM_INTS            1
1010
1011 static unsigned long hpet_rtc_flags;
1012 static int hpet_prev_update_sec;
1013 static struct rtc_time hpet_alarm_time;
1014 static unsigned long hpet_pie_count;
1015 static u32 hpet_t1_cmp;
1016 static u32 hpet_default_delta;
1017 static u32 hpet_pie_delta;
1018 static unsigned long hpet_pie_limit;
1019
1020 static rtc_irq_handler irq_handler;
1021
1022 /*
1023  * Check that the hpet counter c1 is ahead of the c2
1024  */
1025 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1026 {
1027         return (s32)(c2 - c1) < 0;
1028 }
1029
1030 /*
1031  * Registers a IRQ handler.
1032  */
1033 int hpet_register_irq_handler(rtc_irq_handler handler)
1034 {
1035         if (!is_hpet_enabled())
1036                 return -ENODEV;
1037         if (irq_handler)
1038                 return -EBUSY;
1039
1040         irq_handler = handler;
1041
1042         return 0;
1043 }
1044 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1045
1046 /*
1047  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1048  * and does cleanup.
1049  */
1050 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1051 {
1052         if (!is_hpet_enabled())
1053                 return;
1054
1055         irq_handler = NULL;
1056         hpet_rtc_flags = 0;
1057 }
1058 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1059
1060 /*
1061  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1062  * is not supported by all HPET implementations for timer 1.
1063  *
1064  * hpet_rtc_timer_init() is called when the rtc is initialized.
1065  */
1066 int hpet_rtc_timer_init(void)
1067 {
1068         unsigned int cfg, cnt, delta;
1069         unsigned long flags;
1070
1071         if (!is_hpet_enabled())
1072                 return 0;
1073
1074         if (!hpet_default_delta) {
1075                 uint64_t clc;
1076
1077                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1078                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1079                 hpet_default_delta = clc;
1080         }
1081
1082         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1083                 delta = hpet_default_delta;
1084         else
1085                 delta = hpet_pie_delta;
1086
1087         local_irq_save(flags);
1088
1089         cnt = delta + hpet_readl(HPET_COUNTER);
1090         hpet_writel(cnt, HPET_T1_CMP);
1091         hpet_t1_cmp = cnt;
1092
1093         cfg = hpet_readl(HPET_T1_CFG);
1094         cfg &= ~HPET_TN_PERIODIC;
1095         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1096         hpet_writel(cfg, HPET_T1_CFG);
1097
1098         local_irq_restore(flags);
1099
1100         return 1;
1101 }
1102 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1103
1104 /*
1105  * The functions below are called from rtc driver.
1106  * Return 0 if HPET is not being used.
1107  * Otherwise do the necessary changes and return 1.
1108  */
1109 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1110 {
1111         if (!is_hpet_enabled())
1112                 return 0;
1113
1114         hpet_rtc_flags &= ~bit_mask;
1115         return 1;
1116 }
1117 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1118
1119 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1120 {
1121         unsigned long oldbits = hpet_rtc_flags;
1122
1123         if (!is_hpet_enabled())
1124                 return 0;
1125
1126         hpet_rtc_flags |= bit_mask;
1127
1128         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1129                 hpet_prev_update_sec = -1;
1130
1131         if (!oldbits)
1132                 hpet_rtc_timer_init();
1133
1134         return 1;
1135 }
1136 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1137
1138 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1139                         unsigned char sec)
1140 {
1141         if (!is_hpet_enabled())
1142                 return 0;
1143
1144         hpet_alarm_time.tm_hour = hrs;
1145         hpet_alarm_time.tm_min = min;
1146         hpet_alarm_time.tm_sec = sec;
1147
1148         return 1;
1149 }
1150 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1151
1152 int hpet_set_periodic_freq(unsigned long freq)
1153 {
1154         uint64_t clc;
1155
1156         if (!is_hpet_enabled())
1157                 return 0;
1158
1159         if (freq <= DEFAULT_RTC_INT_FREQ)
1160                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1161         else {
1162                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1163                 do_div(clc, freq);
1164                 clc >>= hpet_clockevent.shift;
1165                 hpet_pie_delta = clc;
1166                 hpet_pie_limit = 0;
1167         }
1168         return 1;
1169 }
1170 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1171
1172 int hpet_rtc_dropped_irq(void)
1173 {
1174         return is_hpet_enabled();
1175 }
1176 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1177
1178 static void hpet_rtc_timer_reinit(void)
1179 {
1180         unsigned int cfg, delta;
1181         int lost_ints = -1;
1182
1183         if (unlikely(!hpet_rtc_flags)) {
1184                 cfg = hpet_readl(HPET_T1_CFG);
1185                 cfg &= ~HPET_TN_ENABLE;
1186                 hpet_writel(cfg, HPET_T1_CFG);
1187                 return;
1188         }
1189
1190         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1191                 delta = hpet_default_delta;
1192         else
1193                 delta = hpet_pie_delta;
1194
1195         /*
1196          * Increment the comparator value until we are ahead of the
1197          * current count.
1198          */
1199         do {
1200                 hpet_t1_cmp += delta;
1201                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1202                 lost_ints++;
1203         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1204
1205         if (lost_ints) {
1206                 if (hpet_rtc_flags & RTC_PIE)
1207                         hpet_pie_count += lost_ints;
1208                 if (printk_ratelimit())
1209                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1210                                 lost_ints);
1211         }
1212 }
1213
1214 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1215 {
1216         struct rtc_time curr_time;
1217         unsigned long rtc_int_flag = 0;
1218
1219         hpet_rtc_timer_reinit();
1220         memset(&curr_time, 0, sizeof(struct rtc_time));
1221
1222         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1223                 get_rtc_time(&curr_time);
1224
1225         if (hpet_rtc_flags & RTC_UIE &&
1226             curr_time.tm_sec != hpet_prev_update_sec) {
1227                 if (hpet_prev_update_sec >= 0)
1228                         rtc_int_flag = RTC_UF;
1229                 hpet_prev_update_sec = curr_time.tm_sec;
1230         }
1231
1232         if (hpet_rtc_flags & RTC_PIE &&
1233             ++hpet_pie_count >= hpet_pie_limit) {
1234                 rtc_int_flag |= RTC_PF;
1235                 hpet_pie_count = 0;
1236         }
1237
1238         if (hpet_rtc_flags & RTC_AIE &&
1239             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1240             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1241             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1242                         rtc_int_flag |= RTC_AF;
1243
1244         if (rtc_int_flag) {
1245                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1246                 if (irq_handler)
1247                         irq_handler(rtc_int_flag, dev_id);
1248         }
1249         return IRQ_HANDLED;
1250 }
1251 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1252 #endif