a5cf3864b31f87dcabf7abe4ea1e96be693b54b4
[pandora-kernel.git] / arch / sparc / kernel / process_64.c
1 /*  arch/sparc64/kernel/process.c
2  *
3  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
5  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
6  */
7
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/sysrq.h>
32 #include <linux/nmi.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/system.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51
52 #include "kstack.h"
53
54 static void sparc64_yield(int cpu)
55 {
56         if (tlb_type != hypervisor) {
57                 touch_nmi_watchdog();
58                 return;
59         }
60
61         clear_thread_flag(TIF_POLLING_NRFLAG);
62         smp_mb__after_clear_bit();
63
64         while (!need_resched() && !cpu_is_offline(cpu)) {
65                 unsigned long pstate;
66
67                 /* Disable interrupts. */
68                 __asm__ __volatile__(
69                         "rdpr %%pstate, %0\n\t"
70                         "andn %0, %1, %0\n\t"
71                         "wrpr %0, %%g0, %%pstate"
72                         : "=&r" (pstate)
73                         : "i" (PSTATE_IE));
74
75                 if (!need_resched() && !cpu_is_offline(cpu))
76                         sun4v_cpu_yield();
77
78                 /* Re-enable interrupts. */
79                 __asm__ __volatile__(
80                         "rdpr %%pstate, %0\n\t"
81                         "or %0, %1, %0\n\t"
82                         "wrpr %0, %%g0, %%pstate"
83                         : "=&r" (pstate)
84                         : "i" (PSTATE_IE));
85         }
86
87         set_thread_flag(TIF_POLLING_NRFLAG);
88 }
89
90 /* The idle loop on sparc64. */
91 void cpu_idle(void)
92 {
93         int cpu = smp_processor_id();
94
95         set_thread_flag(TIF_POLLING_NRFLAG);
96
97         while(1) {
98                 tick_nohz_stop_sched_tick(1);
99
100                 while (!need_resched() && !cpu_is_offline(cpu))
101                         sparc64_yield(cpu);
102
103                 tick_nohz_restart_sched_tick();
104
105                 preempt_enable_no_resched();
106
107 #ifdef CONFIG_HOTPLUG_CPU
108                 if (cpu_is_offline(cpu))
109                         cpu_play_dead();
110 #endif
111
112                 schedule();
113                 preempt_disable();
114         }
115 }
116
117 #ifdef CONFIG_COMPAT
118 static void show_regwindow32(struct pt_regs *regs)
119 {
120         struct reg_window32 __user *rw;
121         struct reg_window32 r_w;
122         mm_segment_t old_fs;
123         
124         __asm__ __volatile__ ("flushw");
125         rw = compat_ptr((unsigned)regs->u_regs[14]);
126         old_fs = get_fs();
127         set_fs (USER_DS);
128         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
129                 set_fs (old_fs);
130                 return;
131         }
132
133         set_fs (old_fs);                        
134         printk("l0: %08x l1: %08x l2: %08x l3: %08x "
135                "l4: %08x l5: %08x l6: %08x l7: %08x\n",
136                r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
137                r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
138         printk("i0: %08x i1: %08x i2: %08x i3: %08x "
139                "i4: %08x i5: %08x i6: %08x i7: %08x\n",
140                r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
141                r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
142 }
143 #else
144 #define show_regwindow32(regs)  do { } while (0)
145 #endif
146
147 static void show_regwindow(struct pt_regs *regs)
148 {
149         struct reg_window __user *rw;
150         struct reg_window *rwk;
151         struct reg_window r_w;
152         mm_segment_t old_fs;
153
154         if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
155                 __asm__ __volatile__ ("flushw");
156                 rw = (struct reg_window __user *)
157                         (regs->u_regs[14] + STACK_BIAS);
158                 rwk = (struct reg_window *)
159                         (regs->u_regs[14] + STACK_BIAS);
160                 if (!(regs->tstate & TSTATE_PRIV)) {
161                         old_fs = get_fs();
162                         set_fs (USER_DS);
163                         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
164                                 set_fs (old_fs);
165                                 return;
166                         }
167                         rwk = &r_w;
168                         set_fs (old_fs);                        
169                 }
170         } else {
171                 show_regwindow32(regs);
172                 return;
173         }
174         printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
175                rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
176         printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
177                rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
178         printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
179                rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
180         printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
181                rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
182         if (regs->tstate & TSTATE_PRIV)
183                 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
184 }
185
186 void show_regs(struct pt_regs *regs)
187 {
188         printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
189                regs->tpc, regs->tnpc, regs->y, print_tainted());
190         printk("TPC: <%pS>\n", (void *) regs->tpc);
191         printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
192                regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
193                regs->u_regs[3]);
194         printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
195                regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
196                regs->u_regs[7]);
197         printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
198                regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
199                regs->u_regs[11]);
200         printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
201                regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
202                regs->u_regs[15]);
203         printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
204         show_regwindow(regs);
205 }
206
207 struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
208 static DEFINE_SPINLOCK(global_reg_snapshot_lock);
209
210 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
211                               int this_cpu)
212 {
213         flushw_all();
214
215         global_reg_snapshot[this_cpu].tstate = regs->tstate;
216         global_reg_snapshot[this_cpu].tpc = regs->tpc;
217         global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
218         global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
219
220         if (regs->tstate & TSTATE_PRIV) {
221                 struct reg_window *rw;
222
223                 rw = (struct reg_window *)
224                         (regs->u_regs[UREG_FP] + STACK_BIAS);
225                 if (kstack_valid(tp, (unsigned long) rw)) {
226                         global_reg_snapshot[this_cpu].i7 = rw->ins[7];
227                         rw = (struct reg_window *)
228                                 (rw->ins[6] + STACK_BIAS);
229                         if (kstack_valid(tp, (unsigned long) rw))
230                                 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
231                 }
232         } else {
233                 global_reg_snapshot[this_cpu].i7 = 0;
234                 global_reg_snapshot[this_cpu].rpc = 0;
235         }
236         global_reg_snapshot[this_cpu].thread = tp;
237 }
238
239 /* In order to avoid hangs we do not try to synchronize with the
240  * global register dump client cpus.  The last store they make is to
241  * the thread pointer, so do a short poll waiting for that to become
242  * non-NULL.
243  */
244 static void __global_reg_poll(struct global_reg_snapshot *gp)
245 {
246         int limit = 0;
247
248         while (!gp->thread && ++limit < 100) {
249                 barrier();
250                 udelay(1);
251         }
252 }
253
254 void arch_trigger_all_cpu_backtrace(void)
255 {
256         struct thread_info *tp = current_thread_info();
257         struct pt_regs *regs = get_irq_regs();
258         unsigned long flags;
259         int this_cpu, cpu;
260
261         if (!regs)
262                 regs = tp->kregs;
263
264         spin_lock_irqsave(&global_reg_snapshot_lock, flags);
265
266         memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
267
268         this_cpu = raw_smp_processor_id();
269
270         __global_reg_self(tp, regs, this_cpu);
271
272         smp_fetch_global_regs();
273
274         for_each_online_cpu(cpu) {
275                 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
276
277                 __global_reg_poll(gp);
278
279                 tp = gp->thread;
280                 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
281                        (cpu == this_cpu ? '*' : ' '), cpu,
282                        gp->tstate, gp->tpc, gp->tnpc,
283                        ((tp && tp->task) ? tp->task->comm : "NULL"),
284                        ((tp && tp->task) ? tp->task->pid : -1));
285
286                 if (gp->tstate & TSTATE_PRIV) {
287                         printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
288                                (void *) gp->tpc,
289                                (void *) gp->o7,
290                                (void *) gp->i7,
291                                (void *) gp->rpc);
292                 } else {
293                         printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
294                                gp->tpc, gp->o7, gp->i7, gp->rpc);
295                 }
296         }
297
298         memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
299
300         spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
301 }
302
303 #ifdef CONFIG_MAGIC_SYSRQ
304
305 static void sysrq_handle_globreg(int key, struct tty_struct *tty)
306 {
307         arch_trigger_all_cpu_backtrace();
308 }
309
310 static struct sysrq_key_op sparc_globalreg_op = {
311         .handler        = sysrq_handle_globreg,
312         .help_msg       = "Globalregs",
313         .action_msg     = "Show Global CPU Regs",
314 };
315
316 static int __init sparc_globreg_init(void)
317 {
318         return register_sysrq_key('y', &sparc_globalreg_op);
319 }
320
321 core_initcall(sparc_globreg_init);
322
323 #endif
324
325 unsigned long thread_saved_pc(struct task_struct *tsk)
326 {
327         struct thread_info *ti = task_thread_info(tsk);
328         unsigned long ret = 0xdeadbeefUL;
329         
330         if (ti && ti->ksp) {
331                 unsigned long *sp;
332                 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
333                 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
334                     sp[14]) {
335                         unsigned long *fp;
336                         fp = (unsigned long *)(sp[14] + STACK_BIAS);
337                         if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
338                                 ret = fp[15];
339                 }
340         }
341         return ret;
342 }
343
344 /* Free current thread data structures etc.. */
345 void exit_thread(void)
346 {
347         struct thread_info *t = current_thread_info();
348
349         if (t->utraps) {
350                 if (t->utraps[0] < 2)
351                         kfree (t->utraps);
352                 else
353                         t->utraps[0]--;
354         }
355 }
356
357 void flush_thread(void)
358 {
359         struct thread_info *t = current_thread_info();
360         struct mm_struct *mm;
361
362         mm = t->task->mm;
363         if (mm)
364                 tsb_context_switch(mm);
365
366         set_thread_wsaved(0);
367
368         /* Clear FPU register state. */
369         t->fpsaved[0] = 0;
370         
371         if (get_thread_current_ds() != ASI_AIUS)
372                 set_fs(USER_DS);
373 }
374
375 /* It's a bit more tricky when 64-bit tasks are involved... */
376 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
377 {
378         unsigned long fp, distance, rval;
379
380         if (!(test_thread_flag(TIF_32BIT))) {
381                 csp += STACK_BIAS;
382                 psp += STACK_BIAS;
383                 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
384                 fp += STACK_BIAS;
385         } else
386                 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
387
388         /* Now align the stack as this is mandatory in the Sparc ABI
389          * due to how register windows work.  This hides the
390          * restriction from thread libraries etc.
391          */
392         csp &= ~15UL;
393
394         distance = fp - psp;
395         rval = (csp - distance);
396         if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
397                 rval = 0;
398         else if (test_thread_flag(TIF_32BIT)) {
399                 if (put_user(((u32)csp),
400                              &(((struct reg_window32 __user *)rval)->ins[6])))
401                         rval = 0;
402         } else {
403                 if (put_user(((u64)csp - STACK_BIAS),
404                              &(((struct reg_window __user *)rval)->ins[6])))
405                         rval = 0;
406                 else
407                         rval = rval - STACK_BIAS;
408         }
409
410         return rval;
411 }
412
413 /* Standard stuff. */
414 static inline void shift_window_buffer(int first_win, int last_win,
415                                        struct thread_info *t)
416 {
417         int i;
418
419         for (i = first_win; i < last_win; i++) {
420                 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
421                 memcpy(&t->reg_window[i], &t->reg_window[i+1],
422                        sizeof(struct reg_window));
423         }
424 }
425
426 void synchronize_user_stack(void)
427 {
428         struct thread_info *t = current_thread_info();
429         unsigned long window;
430
431         flush_user_windows();
432         if ((window = get_thread_wsaved()) != 0) {
433                 int winsize = sizeof(struct reg_window);
434                 int bias = 0;
435
436                 if (test_thread_flag(TIF_32BIT))
437                         winsize = sizeof(struct reg_window32);
438                 else
439                         bias = STACK_BIAS;
440
441                 window -= 1;
442                 do {
443                         unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
444                         struct reg_window *rwin = &t->reg_window[window];
445
446                         if (!copy_to_user((char __user *)sp, rwin, winsize)) {
447                                 shift_window_buffer(window, get_thread_wsaved() - 1, t);
448                                 set_thread_wsaved(get_thread_wsaved() - 1);
449                         }
450                 } while (window--);
451         }
452 }
453
454 static void stack_unaligned(unsigned long sp)
455 {
456         siginfo_t info;
457
458         info.si_signo = SIGBUS;
459         info.si_errno = 0;
460         info.si_code = BUS_ADRALN;
461         info.si_addr = (void __user *) sp;
462         info.si_trapno = 0;
463         force_sig_info(SIGBUS, &info, current);
464 }
465
466 void fault_in_user_windows(void)
467 {
468         struct thread_info *t = current_thread_info();
469         unsigned long window;
470         int winsize = sizeof(struct reg_window);
471         int bias = 0;
472
473         if (test_thread_flag(TIF_32BIT))
474                 winsize = sizeof(struct reg_window32);
475         else
476                 bias = STACK_BIAS;
477
478         flush_user_windows();
479         window = get_thread_wsaved();
480
481         if (likely(window != 0)) {
482                 window -= 1;
483                 do {
484                         unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
485                         struct reg_window *rwin = &t->reg_window[window];
486
487                         if (unlikely(sp & 0x7UL))
488                                 stack_unaligned(sp);
489
490                         if (unlikely(copy_to_user((char __user *)sp,
491                                                   rwin, winsize)))
492                                 goto barf;
493                 } while (window--);
494         }
495         set_thread_wsaved(0);
496         return;
497
498 barf:
499         set_thread_wsaved(window + 1);
500         do_exit(SIGILL);
501 }
502
503 asmlinkage long sparc_do_fork(unsigned long clone_flags,
504                               unsigned long stack_start,
505                               struct pt_regs *regs,
506                               unsigned long stack_size)
507 {
508         int __user *parent_tid_ptr, *child_tid_ptr;
509         unsigned long orig_i1 = regs->u_regs[UREG_I1];
510         long ret;
511
512 #ifdef CONFIG_COMPAT
513         if (test_thread_flag(TIF_32BIT)) {
514                 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
515                 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
516         } else
517 #endif
518         {
519                 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
520                 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
521         }
522
523         ret = do_fork(clone_flags, stack_start,
524                       regs, stack_size,
525                       parent_tid_ptr, child_tid_ptr);
526
527         /* If we get an error and potentially restart the system
528          * call, we're screwed because copy_thread() clobbered
529          * the parent's %o1.  So detect that case and restore it
530          * here.
531          */
532         if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
533                 regs->u_regs[UREG_I1] = orig_i1;
534
535         return ret;
536 }
537
538 /* Copy a Sparc thread.  The fork() return value conventions
539  * under SunOS are nothing short of bletcherous:
540  * Parent -->  %o0 == childs  pid, %o1 == 0
541  * Child  -->  %o0 == parents pid, %o1 == 1
542  */
543 int copy_thread(unsigned long clone_flags, unsigned long sp,
544                 unsigned long unused,
545                 struct task_struct *p, struct pt_regs *regs)
546 {
547         struct thread_info *t = task_thread_info(p);
548         struct sparc_stackf *parent_sf;
549         unsigned long child_stack_sz;
550         char *child_trap_frame;
551         int kernel_thread;
552
553         kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
554         parent_sf = ((struct sparc_stackf *) regs) - 1;
555
556         /* Calculate offset to stack_frame & pt_regs */
557         child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
558                           (kernel_thread ? STACKFRAME_SZ : 0));
559         child_trap_frame = (task_stack_page(p) +
560                             (THREAD_SIZE - child_stack_sz));
561         memcpy(child_trap_frame, parent_sf, child_stack_sz);
562
563         t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
564                                  (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
565                 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
566         t->new_child = 1;
567         t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
568         t->kregs = (struct pt_regs *) (child_trap_frame +
569                                        sizeof(struct sparc_stackf));
570         t->fpsaved[0] = 0;
571
572         if (kernel_thread) {
573                 struct sparc_stackf *child_sf = (struct sparc_stackf *)
574                         (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
575
576                 /* Zero terminate the stack backtrace.  */
577                 child_sf->fp = NULL;
578                 t->kregs->u_regs[UREG_FP] =
579                   ((unsigned long) child_sf) - STACK_BIAS;
580
581                 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
582                 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
583                 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
584         } else {
585                 if (t->flags & _TIF_32BIT) {
586                         sp &= 0x00000000ffffffffUL;
587                         regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
588                 }
589                 t->kregs->u_regs[UREG_FP] = sp;
590                 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
591                 if (sp != regs->u_regs[UREG_FP]) {
592                         unsigned long csp;
593
594                         csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
595                         if (!csp)
596                                 return -EFAULT;
597                         t->kregs->u_regs[UREG_FP] = csp;
598                 }
599                 if (t->utraps)
600                         t->utraps[0]++;
601         }
602
603         /* Set the return value for the child. */
604         t->kregs->u_regs[UREG_I0] = current->pid;
605         t->kregs->u_regs[UREG_I1] = 1;
606
607         /* Set the second return value for the parent. */
608         regs->u_regs[UREG_I1] = 0;
609
610         if (clone_flags & CLONE_SETTLS)
611                 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
612
613         return 0;
614 }
615
616 /*
617  * This is the mechanism for creating a new kernel thread.
618  *
619  * NOTE! Only a kernel-only process(ie the swapper or direct descendants
620  * who haven't done an "execve()") should use this: it will work within
621  * a system call from a "real" process, but the process memory space will
622  * not be freed until both the parent and the child have exited.
623  */
624 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
625 {
626         long retval;
627
628         /* If the parent runs before fn(arg) is called by the child,
629          * the input registers of this function can be clobbered.
630          * So we stash 'fn' and 'arg' into global registers which
631          * will not be modified by the parent.
632          */
633         __asm__ __volatile__("mov %4, %%g2\n\t"    /* Save FN into global */
634                              "mov %5, %%g3\n\t"    /* Save ARG into global */
635                              "mov %1, %%g1\n\t"    /* Clone syscall nr. */
636                              "mov %2, %%o0\n\t"    /* Clone flags. */
637                              "mov 0, %%o1\n\t"     /* usp arg == 0 */
638                              "t 0x6d\n\t"          /* Linux/Sparc clone(). */
639                              "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
640                              " mov %%o0, %0\n\t"
641                              "jmpl %%g2, %%o7\n\t"   /* Call the function. */
642                              " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
643                              "mov %3, %%g1\n\t"
644                              "t 0x6d\n\t"          /* Linux/Sparc exit(). */
645                              /* Notreached by child. */
646                              "1:" :
647                              "=r" (retval) :
648                              "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
649                              "i" (__NR_exit),  "r" (fn), "r" (arg) :
650                              "g1", "g2", "g3", "o0", "o1", "memory", "cc");
651         return retval;
652 }
653 EXPORT_SYMBOL(kernel_thread);
654
655 typedef struct {
656         union {
657                 unsigned int    pr_regs[32];
658                 unsigned long   pr_dregs[16];
659         } pr_fr;
660         unsigned int __unused;
661         unsigned int    pr_fsr;
662         unsigned char   pr_qcnt;
663         unsigned char   pr_q_entrysize;
664         unsigned char   pr_en;
665         unsigned int    pr_q[64];
666 } elf_fpregset_t32;
667
668 /*
669  * fill in the fpu structure for a core dump.
670  */
671 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
672 {
673         unsigned long *kfpregs = current_thread_info()->fpregs;
674         unsigned long fprs = current_thread_info()->fpsaved[0];
675
676         if (test_thread_flag(TIF_32BIT)) {
677                 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
678
679                 if (fprs & FPRS_DL)
680                         memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
681                                sizeof(unsigned int) * 32);
682                 else
683                         memset(&fpregs32->pr_fr.pr_regs[0], 0,
684                                sizeof(unsigned int) * 32);
685                 fpregs32->pr_qcnt = 0;
686                 fpregs32->pr_q_entrysize = 8;
687                 memset(&fpregs32->pr_q[0], 0,
688                        (sizeof(unsigned int) * 64));
689                 if (fprs & FPRS_FEF) {
690                         fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
691                         fpregs32->pr_en = 1;
692                 } else {
693                         fpregs32->pr_fsr = 0;
694                         fpregs32->pr_en = 0;
695                 }
696         } else {
697                 if(fprs & FPRS_DL)
698                         memcpy(&fpregs->pr_regs[0], kfpregs,
699                                sizeof(unsigned int) * 32);
700                 else
701                         memset(&fpregs->pr_regs[0], 0,
702                                sizeof(unsigned int) * 32);
703                 if(fprs & FPRS_DU)
704                         memcpy(&fpregs->pr_regs[16], kfpregs+16,
705                                sizeof(unsigned int) * 32);
706                 else
707                         memset(&fpregs->pr_regs[16], 0,
708                                sizeof(unsigned int) * 32);
709                 if(fprs & FPRS_FEF) {
710                         fpregs->pr_fsr = current_thread_info()->xfsr[0];
711                         fpregs->pr_gsr = current_thread_info()->gsr[0];
712                 } else {
713                         fpregs->pr_fsr = fpregs->pr_gsr = 0;
714                 }
715                 fpregs->pr_fprs = fprs;
716         }
717         return 1;
718 }
719 EXPORT_SYMBOL(dump_fpu);
720
721 /*
722  * sparc_execve() executes a new program after the asm stub has set
723  * things up for us.  This should basically do what I want it to.
724  */
725 asmlinkage int sparc_execve(struct pt_regs *regs)
726 {
727         int error, base = 0;
728         char *filename;
729
730         /* User register window flush is done by entry.S */
731
732         /* Check for indirect call. */
733         if (regs->u_regs[UREG_G1] == 0)
734                 base = 1;
735
736         filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
737         error = PTR_ERR(filename);
738         if (IS_ERR(filename))
739                 goto out;
740         error = do_execve(filename,
741                           (char __user * __user *)
742                           regs->u_regs[base + UREG_I1],
743                           (char __user * __user *)
744                           regs->u_regs[base + UREG_I2], regs);
745         putname(filename);
746         if (!error) {
747                 fprs_write(0);
748                 current_thread_info()->xfsr[0] = 0;
749                 current_thread_info()->fpsaved[0] = 0;
750                 regs->tstate &= ~TSTATE_PEF;
751         }
752 out:
753         return error;
754 }
755
756 unsigned long get_wchan(struct task_struct *task)
757 {
758         unsigned long pc, fp, bias = 0;
759         struct thread_info *tp;
760         struct reg_window *rw;
761         unsigned long ret = 0;
762         int count = 0; 
763
764         if (!task || task == current ||
765             task->state == TASK_RUNNING)
766                 goto out;
767
768         tp = task_thread_info(task);
769         bias = STACK_BIAS;
770         fp = task_thread_info(task)->ksp + bias;
771
772         do {
773                 if (!kstack_valid(tp, fp))
774                         break;
775                 rw = (struct reg_window *) fp;
776                 pc = rw->ins[7];
777                 if (!in_sched_functions(pc)) {
778                         ret = pc;
779                         goto out;
780                 }
781                 fp = rw->ins[6] + bias;
782         } while (++count < 16);
783
784 out:
785         return ret;
786 }