8e991a0b5e356a0010836fe689b33653d8aa9ea6
[pandora-kernel.git] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      Stephane Eranian <eranian@hpl.hp.com>
6  *      David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 #include <linux/platform_device.h>
24
25 #include <asm/machvec.h>
26 #include <asm/delay.h>
27 #include <asm/hw_irq.h>
28 #include <asm/paravirt.h>
29 #include <asm/ptrace.h>
30 #include <asm/sal.h>
31 #include <asm/sections.h>
32 #include <asm/system.h>
33
34 #include "fsyscall_gtod_data.h"
35
36 static cycle_t itc_get_cycles(struct clocksource *cs);
37
38 struct fsyscall_gtod_data_t fsyscall_gtod_data;
39
40 struct itc_jitter_data_t itc_jitter_data;
41
42 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
43
44 #ifdef CONFIG_IA64_DEBUG_IRQ
45
46 unsigned long last_cli_ip;
47 EXPORT_SYMBOL(last_cli_ip);
48
49 #endif
50
51 #ifdef CONFIG_PARAVIRT
52 /* We need to define a real function for sched_clock, to override the
53    weak default version */
54 unsigned long long sched_clock(void)
55 {
56         return paravirt_sched_clock();
57 }
58 #endif
59
60 #ifdef CONFIG_PARAVIRT
61 static void
62 paravirt_clocksource_resume(struct clocksource *cs)
63 {
64         if (pv_time_ops.clocksource_resume)
65                 pv_time_ops.clocksource_resume();
66 }
67 #endif
68
69 static struct clocksource clocksource_itc = {
70         .name           = "itc",
71         .rating         = 350,
72         .read           = itc_get_cycles,
73         .mask           = CLOCKSOURCE_MASK(64),
74         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
75 #ifdef CONFIG_PARAVIRT
76         .resume         = paravirt_clocksource_resume,
77 #endif
78 };
79 static struct clocksource *itc_clocksource;
80
81 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
82
83 #include <linux/kernel_stat.h>
84
85 extern cputime_t cycle_to_cputime(u64 cyc);
86
87 /*
88  * Called from the context switch with interrupts disabled, to charge all
89  * accumulated times to the current process, and to prepare accounting on
90  * the next process.
91  */
92 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
93 {
94         struct thread_info *pi = task_thread_info(prev);
95         struct thread_info *ni = task_thread_info(next);
96         cputime_t delta_stime, delta_utime;
97         __u64 now;
98
99         now = ia64_get_itc();
100
101         delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
102         if (idle_task(smp_processor_id()) != prev)
103                 account_system_time(prev, 0, delta_stime, delta_stime);
104         else
105                 account_idle_time(delta_stime);
106
107         if (pi->ac_utime) {
108                 delta_utime = cycle_to_cputime(pi->ac_utime);
109                 account_user_time(prev, delta_utime, delta_utime);
110         }
111
112         pi->ac_stamp = ni->ac_stamp = now;
113         ni->ac_stime = ni->ac_utime = 0;
114 }
115
116 /*
117  * Account time for a transition between system, hard irq or soft irq state.
118  * Note that this function is called with interrupts enabled.
119  */
120 void account_system_vtime(struct task_struct *tsk)
121 {
122         struct thread_info *ti = task_thread_info(tsk);
123         unsigned long flags;
124         cputime_t delta_stime;
125         __u64 now;
126
127         local_irq_save(flags);
128
129         now = ia64_get_itc();
130
131         delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
132         if (irq_count() || idle_task(smp_processor_id()) != tsk)
133                 account_system_time(tsk, 0, delta_stime, delta_stime);
134         else
135                 account_idle_time(delta_stime);
136         ti->ac_stime = 0;
137
138         ti->ac_stamp = now;
139
140         local_irq_restore(flags);
141 }
142 EXPORT_SYMBOL_GPL(account_system_vtime);
143
144 /*
145  * Called from the timer interrupt handler to charge accumulated user time
146  * to the current process.  Must be called with interrupts disabled.
147  */
148 void account_process_tick(struct task_struct *p, int user_tick)
149 {
150         struct thread_info *ti = task_thread_info(p);
151         cputime_t delta_utime;
152
153         if (ti->ac_utime) {
154                 delta_utime = cycle_to_cputime(ti->ac_utime);
155                 account_user_time(p, delta_utime, delta_utime);
156                 ti->ac_utime = 0;
157         }
158 }
159
160 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
161
162 static irqreturn_t
163 timer_interrupt (int irq, void *dev_id)
164 {
165         unsigned long new_itm;
166
167         if (cpu_is_offline(smp_processor_id())) {
168                 return IRQ_HANDLED;
169         }
170
171         platform_timer_interrupt(irq, dev_id);
172
173         new_itm = local_cpu_data->itm_next;
174
175         if (!time_after(ia64_get_itc(), new_itm))
176                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
177                        ia64_get_itc(), new_itm);
178
179         profile_tick(CPU_PROFILING);
180
181         if (paravirt_do_steal_accounting(&new_itm))
182                 goto skip_process_time_accounting;
183
184         while (1) {
185                 update_process_times(user_mode(get_irq_regs()));
186
187                 new_itm += local_cpu_data->itm_delta;
188
189                 if (smp_processor_id() == time_keeper_id)
190                         xtime_update(1);
191
192                 local_cpu_data->itm_next = new_itm;
193
194                 if (time_after(new_itm, ia64_get_itc()))
195                         break;
196
197                 /*
198                  * Allow IPIs to interrupt the timer loop.
199                  */
200                 local_irq_enable();
201                 local_irq_disable();
202         }
203
204 skip_process_time_accounting:
205
206         do {
207                 /*
208                  * If we're too close to the next clock tick for
209                  * comfort, we increase the safety margin by
210                  * intentionally dropping the next tick(s).  We do NOT
211                  * update itm.next because that would force us to call
212                  * xtime_update() which in turn would let our clock run
213                  * too fast (with the potentially devastating effect
214                  * of losing monotony of time).
215                  */
216                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
217                         new_itm += local_cpu_data->itm_delta;
218                 ia64_set_itm(new_itm);
219                 /* double check, in case we got hit by a (slow) PMI: */
220         } while (time_after_eq(ia64_get_itc(), new_itm));
221         return IRQ_HANDLED;
222 }
223
224 /*
225  * Encapsulate access to the itm structure for SMP.
226  */
227 void
228 ia64_cpu_local_tick (void)
229 {
230         int cpu = smp_processor_id();
231         unsigned long shift = 0, delta;
232
233         /* arrange for the cycle counter to generate a timer interrupt: */
234         ia64_set_itv(IA64_TIMER_VECTOR);
235
236         delta = local_cpu_data->itm_delta;
237         /*
238          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
239          * same time:
240          */
241         if (cpu) {
242                 unsigned long hi = 1UL << ia64_fls(cpu);
243                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
244         }
245         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
246         ia64_set_itm(local_cpu_data->itm_next);
247 }
248
249 static int nojitter;
250
251 static int __init nojitter_setup(char *str)
252 {
253         nojitter = 1;
254         printk("Jitter checking for ITC timers disabled\n");
255         return 1;
256 }
257
258 __setup("nojitter", nojitter_setup);
259
260
261 void __devinit
262 ia64_init_itm (void)
263 {
264         unsigned long platform_base_freq, itc_freq;
265         struct pal_freq_ratio itc_ratio, proc_ratio;
266         long status, platform_base_drift, itc_drift;
267
268         /*
269          * According to SAL v2.6, we need to use a SAL call to determine the platform base
270          * frequency and then a PAL call to determine the frequency ratio between the ITC
271          * and the base frequency.
272          */
273         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
274                                     &platform_base_freq, &platform_base_drift);
275         if (status != 0) {
276                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
277         } else {
278                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
279                 if (status != 0)
280                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
281         }
282         if (status != 0) {
283                 /* invent "random" values */
284                 printk(KERN_ERR
285                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
286                 platform_base_freq = 100000000;
287                 platform_base_drift = -1;       /* no drift info */
288                 itc_ratio.num = 3;
289                 itc_ratio.den = 1;
290         }
291         if (platform_base_freq < 40000000) {
292                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
293                        platform_base_freq);
294                 platform_base_freq = 75000000;
295                 platform_base_drift = -1;
296         }
297         if (!proc_ratio.den)
298                 proc_ratio.den = 1;     /* avoid division by zero */
299         if (!itc_ratio.den)
300                 itc_ratio.den = 1;      /* avoid division by zero */
301
302         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
303
304         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
305         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
306                "ITC freq=%lu.%03luMHz", smp_processor_id(),
307                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
308                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
309
310         if (platform_base_drift != -1) {
311                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
312                 printk("+/-%ldppm\n", itc_drift);
313         } else {
314                 itc_drift = -1;
315                 printk("\n");
316         }
317
318         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
319         local_cpu_data->itc_freq = itc_freq;
320         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
321         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
322                                         + itc_freq/2)/itc_freq;
323
324         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
325 #ifdef CONFIG_SMP
326                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
327                  * Jitter compensation requires a cmpxchg which may limit
328                  * the scalability of the syscalls for retrieving time.
329                  * The ITC synchronization is usually successful to within a few
330                  * ITC ticks but this is not a sure thing. If you need to improve
331                  * timer performance in SMP situations then boot the kernel with the
332                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
333                  * even going backward) if the ITC offsets between the individual CPUs
334                  * are too large.
335                  */
336                 if (!nojitter)
337                         itc_jitter_data.itc_jitter = 1;
338 #endif
339         } else
340                 /*
341                  * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
342                  * ITC values may fluctuate significantly between processors.
343                  * Clock should not be used for hrtimers. Mark itc as only
344                  * useful for boot and testing.
345                  *
346                  * Note that jitter compensation is off! There is no point of
347                  * synchronizing ITCs since they may be large differentials
348                  * that change over time.
349                  *
350                  * The only way to fix this would be to repeatedly sync the
351                  * ITCs. Until that time we have to avoid ITC.
352                  */
353                 clocksource_itc.rating = 50;
354
355         paravirt_init_missing_ticks_accounting(smp_processor_id());
356
357         /* avoid softlock up message when cpu is unplug and plugged again. */
358         touch_softlockup_watchdog();
359
360         /* Setup the CPU local timer tick */
361         ia64_cpu_local_tick();
362
363         if (!itc_clocksource) {
364                 clocksource_register_hz(&clocksource_itc,
365                                                 local_cpu_data->itc_freq);
366                 itc_clocksource = &clocksource_itc;
367         }
368 }
369
370 static cycle_t itc_get_cycles(struct clocksource *cs)
371 {
372         unsigned long lcycle, now, ret;
373
374         if (!itc_jitter_data.itc_jitter)
375                 return get_cycles();
376
377         lcycle = itc_jitter_data.itc_lastcycle;
378         now = get_cycles();
379         if (lcycle && time_after(lcycle, now))
380                 return lcycle;
381
382         /*
383          * Keep track of the last timer value returned.
384          * In an SMP environment, you could lose out in contention of
385          * cmpxchg. If so, your cmpxchg returns new value which the
386          * winner of contention updated to. Use the new value instead.
387          */
388         ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
389         if (unlikely(ret != lcycle))
390                 return ret;
391
392         return now;
393 }
394
395
396 static struct irqaction timer_irqaction = {
397         .handler =      timer_interrupt,
398         .flags =        IRQF_DISABLED | IRQF_IRQPOLL,
399         .name =         "timer"
400 };
401
402 static struct platform_device rtc_efi_dev = {
403         .name = "rtc-efi",
404         .id = -1,
405 };
406
407 static int __init rtc_init(void)
408 {
409         if (platform_device_register(&rtc_efi_dev) < 0)
410                 printk(KERN_ERR "unable to register rtc device...\n");
411
412         /* not necessarily an error */
413         return 0;
414 }
415 module_init(rtc_init);
416
417 void read_persistent_clock(struct timespec *ts)
418 {
419         efi_gettimeofday(ts);
420 }
421
422 void __init
423 time_init (void)
424 {
425         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
426         ia64_init_itm();
427 }
428
429 /*
430  * Generic udelay assumes that if preemption is allowed and the thread
431  * migrates to another CPU, that the ITC values are synchronized across
432  * all CPUs.
433  */
434 static void
435 ia64_itc_udelay (unsigned long usecs)
436 {
437         unsigned long start = ia64_get_itc();
438         unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
439
440         while (time_before(ia64_get_itc(), end))
441                 cpu_relax();
442 }
443
444 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
445
446 void
447 udelay (unsigned long usecs)
448 {
449         (*ia64_udelay)(usecs);
450 }
451 EXPORT_SYMBOL(udelay);
452
453 /* IA64 doesn't cache the timezone */
454 void update_vsyscall_tz(void)
455 {
456 }
457
458 void update_vsyscall(struct timespec *wall, struct timespec *wtm,
459                         struct clocksource *c, u32 mult)
460 {
461         write_seqcount_begin(&fsyscall_gtod_data.seq);
462
463         /* copy fsyscall clock data */
464         fsyscall_gtod_data.clk_mask = c->mask;
465         fsyscall_gtod_data.clk_mult = mult;
466         fsyscall_gtod_data.clk_shift = c->shift;
467         fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
468         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
469
470         /* copy kernel time structures */
471         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
472         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
473         fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
474                                                         + wall->tv_sec;
475         fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
476                                                         + wall->tv_nsec;
477
478         /* normalize */
479         while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
480                 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
481                 fsyscall_gtod_data.monotonic_time.tv_sec++;
482         }
483
484         write_seqcount_end(&fsyscall_gtod_data.seq);
485 }
486