58ca98fdc2cabbc3e73ad03f910c59af64e30d69
[pandora-kernel.git] / arch / i386 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003, 2004, 2005 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Support : mark.langsdorf@amd.com
8  *
9  *  Based on the powernow-k7.c module written by Dave Jones.
10  *  (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
12  *  (C) 2004 Pavel Machek <pavel@suse.cz>
13  *  Licensed under the terms of the GNU GPL License version 2.
14  *  Based upon datasheets & sample CPUs kindly provided by AMD.
15  *
16  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
17  *  Dominik Brodowski, and others.
18  *  Originally developed by Paul Devriendt.
19  *  Processor information obtained from Chapter 9 (Power and Thermal Management)
20  *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21  *  Opteron Processors" available for download from www.amd.com
22  *
23  *  Tables for specific CPUs can be infrerred from
24  *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35
36 #include <asm/msr.h>
37 #include <asm/io.h>
38 #include <asm/delay.h>
39
40 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
41 #include <linux/acpi.h>
42 #include <acpi/processor.h>
43 #endif
44
45 #define PFX "powernow-k8: "
46 #define BFX PFX "BIOS error: "
47 #define VERSION "version 1.50.4"
48 #include "powernow-k8.h"
49
50 /* serialize freq changes  */
51 static DECLARE_MUTEX(fidvid_sem);
52
53 static struct powernow_k8_data *powernow_data[NR_CPUS];
54
55 #ifndef CONFIG_SMP
56 static cpumask_t cpu_core_map[1];
57 #endif
58
59 /* Return a frequency in MHz, given an input fid */
60 static u32 find_freq_from_fid(u32 fid)
61 {
62         return 800 + (fid * 100);
63 }
64
65 /* Return a frequency in KHz, given an input fid */
66 static u32 find_khz_freq_from_fid(u32 fid)
67 {
68         return 1000 * find_freq_from_fid(fid);
69 }
70
71 /* Return a voltage in miliVolts, given an input vid */
72 static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid)
73 {
74         return 1550-vid*25;
75 }
76
77 /* Return the vco fid for an input fid
78  *
79  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
80  * only from corresponding high fids. This returns "high" fid corresponding to
81  * "low" one.
82  */
83 static u32 convert_fid_to_vco_fid(u32 fid)
84 {
85         if (fid < HI_FID_TABLE_BOTTOM) {
86                 return 8 + (2 * fid);
87         } else {
88                 return fid;
89         }
90 }
91
92 /*
93  * Return 1 if the pending bit is set. Unless we just instructed the processor
94  * to transition to a new state, seeing this bit set is really bad news.
95  */
96 static int pending_bit_stuck(void)
97 {
98         u32 lo, hi;
99
100         rdmsr(MSR_FIDVID_STATUS, lo, hi);
101         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
102 }
103
104 /*
105  * Update the global current fid / vid values from the status msr.
106  * Returns 1 on error.
107  */
108 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
109 {
110         u32 lo, hi;
111         u32 i = 0;
112
113         do {
114                 if (i++ > 10000) {
115                         dprintk("detected change pending stuck\n");
116                         return 1;
117                 }
118                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
119         } while (lo & MSR_S_LO_CHANGE_PENDING);
120
121         data->currvid = hi & MSR_S_HI_CURRENT_VID;
122         data->currfid = lo & MSR_S_LO_CURRENT_FID;
123
124         return 0;
125 }
126
127 /* the isochronous relief time */
128 static void count_off_irt(struct powernow_k8_data *data)
129 {
130         udelay((1 << data->irt) * 10);
131         return;
132 }
133
134 /* the voltage stabalization time */
135 static void count_off_vst(struct powernow_k8_data *data)
136 {
137         udelay(data->vstable * VST_UNITS_20US);
138         return;
139 }
140
141 /* need to init the control msr to a safe value (for each cpu) */
142 static void fidvid_msr_init(void)
143 {
144         u32 lo, hi;
145         u8 fid, vid;
146
147         rdmsr(MSR_FIDVID_STATUS, lo, hi);
148         vid = hi & MSR_S_HI_CURRENT_VID;
149         fid = lo & MSR_S_LO_CURRENT_FID;
150         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
151         hi = MSR_C_HI_STP_GNT_BENIGN;
152         dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
153         wrmsr(MSR_FIDVID_CTL, lo, hi);
154 }
155
156
157 /* write the new fid value along with the other control fields to the msr */
158 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
159 {
160         u32 lo;
161         u32 savevid = data->currvid;
162         u32 i = 0;
163
164         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
165                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
166                 return 1;
167         }
168
169         lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
170
171         dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
172                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
173
174         do {
175                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
176                 if (i++ > 100) {
177                         printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
178                         return 1;
179                 }                       
180         } while (query_current_values_with_pending_wait(data));
181
182         count_off_irt(data);
183
184         if (savevid != data->currvid) {
185                 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
186                        savevid, data->currvid);
187                 return 1;
188         }
189
190         if (fid != data->currfid) {
191                 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
192                         data->currfid);
193                 return 1;
194         }
195
196         return 0;
197 }
198
199 /* Write a new vid to the hardware */
200 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
201 {
202         u32 lo;
203         u32 savefid = data->currfid;
204         int i = 0;
205
206         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
207                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
208                 return 1;
209         }
210
211         lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
212
213         dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
214                 vid, lo, STOP_GRANT_5NS);
215
216         do {
217                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
218                 if (i++ > 100) {
219                         printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
220                         return 1;
221                 }
222         } while (query_current_values_with_pending_wait(data));
223
224         if (savefid != data->currfid) {
225                 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
226                        savefid, data->currfid);
227                 return 1;
228         }
229
230         if (vid != data->currvid) {
231                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
232                                 data->currvid);
233                 return 1;
234         }
235
236         return 0;
237 }
238
239 /*
240  * Reduce the vid by the max of step or reqvid.
241  * Decreasing vid codes represent increasing voltages:
242  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
243  */
244 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
245 {
246         if ((data->currvid - reqvid) > step)
247                 reqvid = data->currvid - step;
248
249         if (write_new_vid(data, reqvid))
250                 return 1;
251
252         count_off_vst(data);
253
254         return 0;
255 }
256
257 /* Change the fid and vid, by the 3 phases. */
258 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
259 {
260         if (core_voltage_pre_transition(data, reqvid))
261                 return 1;
262
263         if (core_frequency_transition(data, reqfid))
264                 return 1;
265
266         if (core_voltage_post_transition(data, reqvid))
267                 return 1;
268
269         if (query_current_values_with_pending_wait(data))
270                 return 1;
271
272         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
273                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
274                                 smp_processor_id(),
275                                 reqfid, reqvid, data->currfid, data->currvid);
276                 return 1;
277         }
278
279         dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
280                 smp_processor_id(), data->currfid, data->currvid);
281
282         return 0;
283 }
284
285 /* Phase 1 - core voltage transition ... setup voltage */
286 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
287 {
288         u32 rvosteps = data->rvo;
289         u32 savefid = data->currfid;
290         u32 maxvid, lo;
291
292         dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
293                 smp_processor_id(),
294                 data->currfid, data->currvid, reqvid, data->rvo);
295
296         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
297         maxvid = 0x1f & (maxvid >> 16);
298         dprintk("ph1 maxvid=0x%x\n", maxvid);
299         if (reqvid < maxvid) /* lower numbers are higher voltages */
300                 reqvid = maxvid;
301
302         while (data->currvid > reqvid) {
303                 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
304                         data->currvid, reqvid);
305                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
306                         return 1;
307         }
308
309         while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
310                 if (data->currvid == maxvid) {
311                         rvosteps = 0;
312                 } else {
313                         dprintk("ph1: changing vid for rvo, req 0x%x\n",
314                                 data->currvid - 1);
315                         if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
316                                 return 1;
317                         rvosteps--;
318                 }
319         }
320
321         if (query_current_values_with_pending_wait(data))
322                 return 1;
323
324         if (savefid != data->currfid) {
325                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
326                 return 1;
327         }
328
329         dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
330                 data->currfid, data->currvid);
331
332         return 0;
333 }
334
335 /* Phase 2 - core frequency transition */
336 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
337 {
338         u32 vcoreqfid, vcocurrfid, vcofiddiff, savevid = data->currvid;
339
340         if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
341                 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
342                         reqfid, data->currfid);
343                 return 1;
344         }
345
346         if (data->currfid == reqfid) {
347                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
348                 return 0;
349         }
350
351         dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
352                 smp_processor_id(),
353                 data->currfid, data->currvid, reqfid);
354
355         vcoreqfid = convert_fid_to_vco_fid(reqfid);
356         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
357         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
358             : vcoreqfid - vcocurrfid;
359
360         while (vcofiddiff > 2) {
361                 if (reqfid > data->currfid) {
362                         if (data->currfid > LO_FID_TABLE_TOP) {
363                                 if (write_new_fid(data, data->currfid + 2)) {
364                                         return 1;
365                                 }
366                         } else {
367                                 if (write_new_fid
368                                     (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
369                                         return 1;
370                                 }
371                         }
372                 } else {
373                         if (write_new_fid(data, data->currfid - 2))
374                                 return 1;
375                 }
376
377                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
378                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
379                     : vcoreqfid - vcocurrfid;
380         }
381
382         if (write_new_fid(data, reqfid))
383                 return 1;
384
385         if (query_current_values_with_pending_wait(data))
386                 return 1;
387
388         if (data->currfid != reqfid) {
389                 printk(KERN_ERR PFX
390                         "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
391                         data->currfid, reqfid);
392                 return 1;
393         }
394
395         if (savevid != data->currvid) {
396                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
397                         savevid, data->currvid);
398                 return 1;
399         }
400
401         dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
402                 data->currfid, data->currvid);
403
404         return 0;
405 }
406
407 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
408 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
409 {
410         u32 savefid = data->currfid;
411         u32 savereqvid = reqvid;
412
413         dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
414                 smp_processor_id(),
415                 data->currfid, data->currvid);
416
417         if (reqvid != data->currvid) {
418                 if (write_new_vid(data, reqvid))
419                         return 1;
420
421                 if (savefid != data->currfid) {
422                         printk(KERN_ERR PFX
423                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
424                                savefid, data->currfid);
425                         return 1;
426                 }
427
428                 if (data->currvid != reqvid) {
429                         printk(KERN_ERR PFX
430                                "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
431                                reqvid, data->currvid);
432                         return 1;
433                 }
434         }
435
436         if (query_current_values_with_pending_wait(data))
437                 return 1;
438
439         if (savereqvid != data->currvid) {
440                 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
441                 return 1;
442         }
443
444         if (savefid != data->currfid) {
445                 dprintk("ph3 failed, currfid changed 0x%x\n",
446                         data->currfid);
447                 return 1;
448         }
449
450         dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
451                 data->currfid, data->currvid);
452
453         return 0;
454 }
455
456 static int check_supported_cpu(unsigned int cpu)
457 {
458         cpumask_t oldmask = CPU_MASK_ALL;
459         u32 eax, ebx, ecx, edx;
460         unsigned int rc = 0;
461
462         oldmask = current->cpus_allowed;
463         set_cpus_allowed(current, cpumask_of_cpu(cpu));
464         schedule();
465
466         if (smp_processor_id() != cpu) {
467                 printk(KERN_ERR "limiting to cpu %u failed\n", cpu);
468                 goto out;
469         }
470
471         if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
472                 goto out;
473
474         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
475         if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
476             ((eax & CPUID_XFAM) != CPUID_XFAM_K8) ||
477             ((eax & CPUID_XMOD) > CPUID_XMOD_REV_F)) {
478                 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
479                 goto out;
480         }
481
482         eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
483         if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
484                 printk(KERN_INFO PFX
485                        "No frequency change capabilities detected\n");
486                 goto out;
487         }
488
489         cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
490         if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
491                 printk(KERN_INFO PFX "Power state transitions not supported\n");
492                 goto out;
493         }
494
495         rc = 1;
496
497 out:
498         set_cpus_allowed(current, oldmask);
499         schedule();
500         return rc;
501
502 }
503
504 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
505 {
506         unsigned int j;
507         u8 lastfid = 0xff;
508
509         for (j = 0; j < data->numps; j++) {
510                 if (pst[j].vid > LEAST_VID) {
511                         printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
512                         return -EINVAL;
513                 }
514                 if (pst[j].vid < data->rvo) {   /* vid + rvo >= 0 */
515                         printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
516                         return -ENODEV;
517                 }
518                 if (pst[j].vid < maxvid + data->rvo) {  /* vid + rvo >= maxvid */
519                         printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
520                         return -ENODEV;
521                 }
522                 if ((pst[j].fid > MAX_FID)
523                     || (pst[j].fid & 1)
524                     || (j && (pst[j].fid < HI_FID_TABLE_BOTTOM))) {
525                         /* Only first fid is allowed to be in "low" range */
526                         printk(KERN_ERR PFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
527                         return -EINVAL;
528                 }
529                 if (pst[j].fid < lastfid)
530                         lastfid = pst[j].fid;
531         }
532         if (lastfid & 1) {
533                 printk(KERN_ERR PFX "lastfid invalid\n");
534                 return -EINVAL;
535         }
536         if (lastfid > LO_FID_TABLE_TOP)
537                 printk(KERN_INFO PFX  "first fid not from lo freq table\n");
538
539         return 0;
540 }
541
542 static void print_basics(struct powernow_k8_data *data)
543 {
544         int j;
545         for (j = 0; j < data->numps; j++) {
546                 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID)
547                         printk(KERN_INFO PFX "   %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j,
548                                 data->powernow_table[j].index & 0xff,
549                                 data->powernow_table[j].frequency/1000,
550                                 data->powernow_table[j].index >> 8,
551                                 find_millivolts_from_vid(data, data->powernow_table[j].index >> 8));
552         }
553         if (data->batps)
554                 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
555 }
556
557 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
558 {
559         struct cpufreq_frequency_table *powernow_table;
560         unsigned int j;
561
562         if (data->batps) {    /* use ACPI support to get full speed on mains power */
563                 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
564                 data->numps = data->batps;
565         }
566
567         for ( j=1; j<data->numps; j++ ) {
568                 if (pst[j-1].fid >= pst[j].fid) {
569                         printk(KERN_ERR PFX "PST out of sequence\n");
570                         return -EINVAL;
571                 }
572         }
573
574         if (data->numps < 2) {
575                 printk(KERN_ERR PFX "no p states to transition\n");
576                 return -ENODEV;
577         }
578
579         if (check_pst_table(data, pst, maxvid))
580                 return -EINVAL;
581
582         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
583                 * (data->numps + 1)), GFP_KERNEL);
584         if (!powernow_table) {
585                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
586                 return -ENOMEM;
587         }
588
589         for (j = 0; j < data->numps; j++) {
590                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
591                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
592                 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
593         }
594         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
595         powernow_table[data->numps].index = 0;
596
597         if (query_current_values_with_pending_wait(data)) {
598                 kfree(powernow_table);
599                 return -EIO;
600         }
601
602         dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
603         data->powernow_table = powernow_table;
604         print_basics(data);
605
606         for (j = 0; j < data->numps; j++)
607                 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
608                         return 0;
609
610         dprintk("currfid/vid do not match PST, ignoring\n");
611         return 0;
612 }
613
614 /* Find and validate the PSB/PST table in BIOS. */
615 static int find_psb_table(struct powernow_k8_data *data)
616 {
617         struct psb_s *psb;
618         unsigned int i;
619         u32 mvs;
620         u8 maxvid;
621         u32 cpst = 0;
622         u32 thiscpuid;
623
624         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
625                 /* Scan BIOS looking for the signature. */
626                 /* It can not be at ffff0 - it is too big. */
627
628                 psb = phys_to_virt(i);
629                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
630                         continue;
631
632                 dprintk("found PSB header at 0x%p\n", psb);
633
634                 dprintk("table vers: 0x%x\n", psb->tableversion);
635                 if (psb->tableversion != PSB_VERSION_1_4) {
636                         printk(KERN_INFO BFX "PSB table is not v1.4\n");
637                         return -ENODEV;
638                 }
639
640                 dprintk("flags: 0x%x\n", psb->flags1);
641                 if (psb->flags1) {
642                         printk(KERN_ERR BFX "unknown flags\n");
643                         return -ENODEV;
644                 }
645
646                 data->vstable = psb->vstable;
647                 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
648
649                 dprintk("flags2: 0x%x\n", psb->flags2);
650                 data->rvo = psb->flags2 & 3;
651                 data->irt = ((psb->flags2) >> 2) & 3;
652                 mvs = ((psb->flags2) >> 4) & 3;
653                 data->vidmvs = 1 << mvs;
654                 data->batps = ((psb->flags2) >> 6) & 3;
655
656                 dprintk("ramp voltage offset: %d\n", data->rvo);
657                 dprintk("isochronous relief time: %d\n", data->irt);
658                 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
659
660                 dprintk("numpst: 0x%x\n", psb->num_tables);
661                 cpst = psb->num_tables;
662                 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
663                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
664                         if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
665                                 cpst = 1;
666                         }
667                 }
668                 if (cpst != 1) {
669                         printk(KERN_ERR BFX "numpst must be 1\n");
670                         return -ENODEV;
671                 }
672
673                 data->plllock = psb->plllocktime;
674                 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
675                 dprintk("maxfid: 0x%x\n", psb->maxfid);
676                 dprintk("maxvid: 0x%x\n", psb->maxvid);
677                 maxvid = psb->maxvid;
678
679                 data->numps = psb->numps;
680                 dprintk("numpstates: 0x%x\n", data->numps);
681                 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
682         }
683         /*
684          * If you see this message, complain to BIOS manufacturer. If
685          * he tells you "we do not support Linux" or some similar
686          * nonsense, remember that Windows 2000 uses the same legacy
687          * mechanism that the old Linux PSB driver uses. Tell them it
688          * is broken with Windows 2000.
689          *
690          * The reference to the AMD documentation is chapter 9 in the
691          * BIOS and Kernel Developer's Guide, which is available on
692          * www.amd.com
693          */
694         printk(KERN_INFO PFX "BIOS error - no PSB or ACPI _PSS objects\n");
695         return -ENODEV;
696 }
697
698 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
699 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
700 {
701         if (!data->acpi_data.state_count)
702                 return;
703
704         data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
705         data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
706         data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
707         data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
708         data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
709         data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
710 }
711
712 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
713 {
714         int i;
715         int cntlofreq = 0;
716         struct cpufreq_frequency_table *powernow_table;
717
718         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
719                 dprintk("register performance failed: bad ACPI data\n");
720                 return -EIO;
721         }
722
723         /* verify the data contained in the ACPI structures */
724         if (data->acpi_data.state_count <= 1) {
725                 dprintk("No ACPI P-States\n");
726                 goto err_out;
727         }
728
729         if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
730                 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
731                 dprintk("Invalid control/status registers (%x - %x)\n",
732                         data->acpi_data.control_register.space_id,
733                         data->acpi_data.status_register.space_id);
734                 goto err_out;
735         }
736
737         /* fill in data->powernow_table */
738         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
739                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
740         if (!powernow_table) {
741                 dprintk("powernow_table memory alloc failure\n");
742                 goto err_out;
743         }
744
745         for (i = 0; i < data->acpi_data.state_count; i++) {
746                 u32 fid;
747                 u32 vid;
748
749                 if (data->exttype) {
750                         fid = data->acpi_data.states[i].status & FID_MASK;
751                         vid = (data->acpi_data.states[i].status >> VID_SHIFT) & VID_MASK;
752                 } else {
753                         fid = data->acpi_data.states[i].control & FID_MASK;
754                         vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
755                 }
756
757                 dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
758
759                 powernow_table[i].index = fid; /* lower 8 bits */
760                 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
761                 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
762
763                 /* verify frequency is OK */
764                 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
765                         (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
766                         dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
767                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
768                         continue;
769                 }
770
771                 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
772                 if (vid == VID_OFF) {
773                         dprintk("invalid vid %u, ignoring\n", vid);
774                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
775                         continue;
776                 }
777
778                 /* verify only 1 entry from the lo frequency table */
779                 if (fid < HI_FID_TABLE_BOTTOM) {
780                         if (cntlofreq) {
781                                 /* if both entries are the same, ignore this
782                                  * one... 
783                                  */
784                                 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
785                                     (powernow_table[i].index != powernow_table[cntlofreq].index)) {
786                                         printk(KERN_ERR PFX "Too many lo freq table entries\n");
787                                         goto err_out_mem;
788                                 }
789
790                                 dprintk("double low frequency table entry, ignoring it.\n");
791                                 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
792                                 continue;
793                         } else
794                                 cntlofreq = i;
795                 }
796
797                 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
798                         printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
799                                 powernow_table[i].frequency,
800                                 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
801                         powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
802                         continue;
803                 }
804         }
805
806         powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
807         powernow_table[data->acpi_data.state_count].index = 0;
808         data->powernow_table = powernow_table;
809
810         /* fill in data */
811         data->numps = data->acpi_data.state_count;
812         print_basics(data);
813         powernow_k8_acpi_pst_values(data, 0);
814
815         /* notify BIOS that we exist */
816         acpi_processor_notify_smm(THIS_MODULE);
817
818         return 0;
819
820 err_out_mem:
821         kfree(powernow_table);
822
823 err_out:
824         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
825
826         /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
827         data->acpi_data.state_count = 0;
828
829         return -ENODEV;
830 }
831
832 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
833 {
834         if (data->acpi_data.state_count)
835                 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
836 }
837
838 #else
839 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
840 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
841 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
842 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
843
844 /* Take a frequency, and issue the fid/vid transition command */
845 static int transition_frequency(struct powernow_k8_data *data, unsigned int index)
846 {
847         u32 fid;
848         u32 vid;
849         int res, i;
850         struct cpufreq_freqs freqs;
851
852         dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
853
854         /* fid are the lower 8 bits of the index we stored into
855          * the cpufreq frequency table in find_psb_table, vid are 
856          * the upper 8 bits.
857          */
858
859         fid = data->powernow_table[index].index & 0xFF;
860         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
861
862         dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
863
864         if (query_current_values_with_pending_wait(data))
865                 return 1;
866
867         if ((data->currvid == vid) && (data->currfid == fid)) {
868                 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
869                         fid, vid);
870                 return 0;
871         }
872
873         if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
874                 printk(KERN_ERR PFX
875                        "ignoring illegal change in lo freq table-%x to 0x%x\n",
876                        data->currfid, fid);
877                 return 1;
878         }
879
880         dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
881                 smp_processor_id(), fid, vid);
882
883         freqs.cpu = data->cpu;
884         freqs.old = find_khz_freq_from_fid(data->currfid);
885         freqs.new = find_khz_freq_from_fid(fid);
886         for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
887                 freqs.cpu = i;
888                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
889         }
890
891         res = transition_fid_vid(data, fid, vid);
892
893         freqs.new = find_khz_freq_from_fid(data->currfid);
894         for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
895                 freqs.cpu = i;
896                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
897         }
898         return res;
899 }
900
901 /* Driver entry point to switch to the target frequency */
902 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
903 {
904         cpumask_t oldmask = CPU_MASK_ALL;
905         struct powernow_k8_data *data = powernow_data[pol->cpu];
906         u32 checkfid = data->currfid;
907         u32 checkvid = data->currvid;
908         unsigned int newstate;
909         int ret = -EIO;
910         int i;
911
912         /* only run on specific CPU from here on */
913         oldmask = current->cpus_allowed;
914         set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
915         schedule();
916
917         if (smp_processor_id() != pol->cpu) {
918                 printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu);
919                 goto err_out;
920         }
921
922         if (pending_bit_stuck()) {
923                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
924                 goto err_out;
925         }
926
927         dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
928                 pol->cpu, targfreq, pol->min, pol->max, relation);
929
930         if (query_current_values_with_pending_wait(data)) {
931                 ret = -EIO;
932                 goto err_out;
933         }
934
935         dprintk("targ: curr fid 0x%x, vid 0x%x\n",
936                 data->currfid, data->currvid);
937
938         if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
939                 printk(KERN_INFO PFX
940                         "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
941                         checkfid, data->currfid, checkvid, data->currvid);
942         }
943
944         if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
945                 goto err_out;
946
947         down(&fidvid_sem);
948
949         powernow_k8_acpi_pst_values(data, newstate);
950
951         if (transition_frequency(data, newstate)) {
952                 printk(KERN_ERR PFX "transition frequency failed\n");
953                 ret = 1;
954                 up(&fidvid_sem);
955                 goto err_out;
956         }
957
958         /* Update all the fid/vids of our siblings */
959         for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
960                 powernow_data[i]->currvid = data->currvid;
961                 powernow_data[i]->currfid = data->currfid;
962         }       
963         up(&fidvid_sem);
964
965         pol->cur = find_khz_freq_from_fid(data->currfid);
966         ret = 0;
967
968 err_out:
969         set_cpus_allowed(current, oldmask);
970         schedule();
971
972         return ret;
973 }
974
975 /* Driver entry point to verify the policy and range of frequencies */
976 static int powernowk8_verify(struct cpufreq_policy *pol)
977 {
978         struct powernow_k8_data *data = powernow_data[pol->cpu];
979
980         return cpufreq_frequency_table_verify(pol, data->powernow_table);
981 }
982
983 /* per CPU init entry point to the driver */
984 static int __init powernowk8_cpu_init(struct cpufreq_policy *pol)
985 {
986         struct powernow_k8_data *data;
987         cpumask_t oldmask = CPU_MASK_ALL;
988         int rc, i;
989
990         if (!check_supported_cpu(pol->cpu))
991                 return -ENODEV;
992
993         data = kmalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
994         if (!data) {
995                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
996                 return -ENOMEM;
997         }
998         memset(data,0,sizeof(struct powernow_k8_data));
999
1000         data->cpu = pol->cpu;
1001
1002         if (powernow_k8_cpu_init_acpi(data)) {
1003                 /*
1004                  * Use the PSB BIOS structure. This is only availabe on
1005                  * an UP version, and is deprecated by AMD.
1006                  */
1007
1008                 if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
1009                         printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
1010                         kfree(data);
1011                         return -ENODEV;
1012                 }
1013                 if (pol->cpu != 0) {
1014                         printk(KERN_ERR PFX "init not cpu 0\n");
1015                         kfree(data);
1016                         return -ENODEV;
1017                 }
1018                 rc = find_psb_table(data);
1019                 if (rc) {
1020                         kfree(data);
1021                         return -ENODEV;
1022                 }
1023         }
1024
1025         /* only run on specific CPU from here on */
1026         oldmask = current->cpus_allowed;
1027         set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1028         schedule();
1029
1030         if (smp_processor_id() != pol->cpu) {
1031                 printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu);
1032                 goto err_out;
1033         }
1034
1035         if (pending_bit_stuck()) {
1036                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1037                 goto err_out;
1038         }
1039
1040         if (query_current_values_with_pending_wait(data))
1041                 goto err_out;
1042
1043         fidvid_msr_init();
1044
1045         /* run on any CPU again */
1046         set_cpus_allowed(current, oldmask);
1047         schedule();
1048
1049         pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1050         pol->cpus = cpu_core_map[pol->cpu];
1051
1052         /* Take a crude guess here. 
1053          * That guess was in microseconds, so multiply with 1000 */
1054         pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1055             + (3 * (1 << data->irt) * 10)) * 1000;
1056
1057         pol->cur = find_khz_freq_from_fid(data->currfid);
1058         dprintk("policy current frequency %d kHz\n", pol->cur);
1059
1060         /* min/max the cpu is capable of */
1061         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1062                 printk(KERN_ERR PFX "invalid powernow_table\n");
1063                 powernow_k8_cpu_exit_acpi(data);
1064                 kfree(data->powernow_table);
1065                 kfree(data);
1066                 return -EINVAL;
1067         }
1068
1069         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1070
1071         printk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1072                data->currfid, data->currvid);
1073
1074         for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
1075                 powernow_data[i] = data;
1076         }
1077
1078         return 0;
1079
1080 err_out:
1081         set_cpus_allowed(current, oldmask);
1082         schedule();
1083         powernow_k8_cpu_exit_acpi(data);
1084
1085         kfree(data);
1086         return -ENODEV;
1087 }
1088
1089 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1090 {
1091         struct powernow_k8_data *data = powernow_data[pol->cpu];
1092
1093         if (!data)
1094                 return -EINVAL;
1095
1096         powernow_k8_cpu_exit_acpi(data);
1097
1098         cpufreq_frequency_table_put_attr(pol->cpu);
1099
1100         kfree(data->powernow_table);
1101         kfree(data);
1102
1103         return 0;
1104 }
1105
1106 static unsigned int powernowk8_get (unsigned int cpu)
1107 {
1108         struct powernow_k8_data *data = powernow_data[cpu];
1109         cpumask_t oldmask = current->cpus_allowed;
1110         unsigned int khz = 0;
1111
1112         set_cpus_allowed(current, cpumask_of_cpu(cpu));
1113         if (smp_processor_id() != cpu) {
1114                 printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1115                 set_cpus_allowed(current, oldmask);
1116                 return 0;
1117         }
1118         preempt_disable();
1119         
1120         if (query_current_values_with_pending_wait(data))
1121                 goto out;
1122
1123         khz = find_khz_freq_from_fid(data->currfid);
1124
1125  out:
1126         preempt_enable_no_resched();
1127         set_cpus_allowed(current, oldmask);
1128
1129         return khz;
1130 }
1131
1132 static struct freq_attr* powernow_k8_attr[] = {
1133         &cpufreq_freq_attr_scaling_available_freqs,
1134         NULL,
1135 };
1136
1137 static struct cpufreq_driver cpufreq_amd64_driver = {
1138         .verify = powernowk8_verify,
1139         .target = powernowk8_target,
1140         .init = powernowk8_cpu_init,
1141         .exit = __devexit_p(powernowk8_cpu_exit),
1142         .get = powernowk8_get,
1143         .name = "powernow-k8",
1144         .owner = THIS_MODULE,
1145         .attr = powernow_k8_attr,
1146 };
1147
1148 /* driver entry point for init */
1149 static int __init powernowk8_init(void)
1150 {
1151         unsigned int i, supported_cpus = 0;
1152
1153         for (i=0; i<NR_CPUS; i++) {
1154                 if (!cpu_online(i))
1155                         continue;
1156                 if (check_supported_cpu(i))
1157                         supported_cpus++;
1158         }
1159
1160         if (supported_cpus == num_online_cpus()) {
1161                 printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron processors (" VERSION ")\n",
1162                         supported_cpus);
1163                 return cpufreq_register_driver(&cpufreq_amd64_driver);
1164         }
1165
1166         return -ENODEV;
1167 }
1168
1169 /* driver entry point for term */
1170 static void __exit powernowk8_exit(void)
1171 {
1172         dprintk("exit\n");
1173
1174         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1175 }
1176
1177 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com.");
1178 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1179 MODULE_LICENSE("GPL");
1180
1181 late_initcall(powernowk8_init);
1182 module_exit(powernowk8_exit);
1183