c2fa21d0103e0348f2b1f48c886aa11d63809dad
[pandora-kernel.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34
35 #include "mm.h"
36
37 /*
38  * empty_zero_page is a special page that is used for
39  * zero-initialized data and COW.
40  */
41 struct page *empty_zero_page;
42 EXPORT_SYMBOL(empty_zero_page);
43
44 /*
45  * The pmd table for the upper-most set of pages.
46  */
47 pmd_t *top_pmd;
48
49 #define CPOLICY_UNCACHED        0
50 #define CPOLICY_BUFFERED        1
51 #define CPOLICY_WRITETHROUGH    2
52 #define CPOLICY_WRITEBACK       3
53 #define CPOLICY_WRITEALLOC      4
54
55 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56 static unsigned int ecc_mask __initdata = 0;
57 pgprot_t pgprot_user;
58 pgprot_t pgprot_kernel;
59
60 EXPORT_SYMBOL(pgprot_user);
61 EXPORT_SYMBOL(pgprot_kernel);
62
63 struct cachepolicy {
64         const char      policy[16];
65         unsigned int    cr_mask;
66         pmdval_t        pmd;
67         pteval_t        pte;
68 };
69
70 static struct cachepolicy cache_policies[] __initdata = {
71         {
72                 .policy         = "uncached",
73                 .cr_mask        = CR_W|CR_C,
74                 .pmd            = PMD_SECT_UNCACHED,
75                 .pte            = L_PTE_MT_UNCACHED,
76         }, {
77                 .policy         = "buffered",
78                 .cr_mask        = CR_C,
79                 .pmd            = PMD_SECT_BUFFERED,
80                 .pte            = L_PTE_MT_BUFFERABLE,
81         }, {
82                 .policy         = "writethrough",
83                 .cr_mask        = 0,
84                 .pmd            = PMD_SECT_WT,
85                 .pte            = L_PTE_MT_WRITETHROUGH,
86         }, {
87                 .policy         = "writeback",
88                 .cr_mask        = 0,
89                 .pmd            = PMD_SECT_WB,
90                 .pte            = L_PTE_MT_WRITEBACK,
91         }, {
92                 .policy         = "writealloc",
93                 .cr_mask        = 0,
94                 .pmd            = PMD_SECT_WBWA,
95                 .pte            = L_PTE_MT_WRITEALLOC,
96         }
97 };
98
99 /*
100  * These are useful for identifying cache coherency
101  * problems by allowing the cache or the cache and
102  * writebuffer to be turned off.  (Note: the write
103  * buffer should not be on and the cache off).
104  */
105 static int __init early_cachepolicy(char *p)
106 {
107         int i;
108
109         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110                 int len = strlen(cache_policies[i].policy);
111
112                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
113                         cachepolicy = i;
114                         cr_alignment &= ~cache_policies[i].cr_mask;
115                         cr_no_alignment &= ~cache_policies[i].cr_mask;
116                         break;
117                 }
118         }
119         if (i == ARRAY_SIZE(cache_policies))
120                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121         /*
122          * This restriction is partly to do with the way we boot; it is
123          * unpredictable to have memory mapped using two different sets of
124          * memory attributes (shared, type, and cache attribs).  We can not
125          * change these attributes once the initial assembly has setup the
126          * page tables.
127          */
128         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130                 cachepolicy = CPOLICY_WRITEBACK;
131         }
132         flush_cache_all();
133         set_cr(cr_alignment);
134         return 0;
135 }
136 early_param("cachepolicy", early_cachepolicy);
137
138 static int __init early_nocache(char *__unused)
139 {
140         char *p = "buffered";
141         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142         early_cachepolicy(p);
143         return 0;
144 }
145 early_param("nocache", early_nocache);
146
147 static int __init early_nowrite(char *__unused)
148 {
149         char *p = "uncached";
150         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151         early_cachepolicy(p);
152         return 0;
153 }
154 early_param("nowb", early_nowrite);
155
156 #ifndef CONFIG_ARM_LPAE
157 static int __init early_ecc(char *p)
158 {
159         if (memcmp(p, "on", 2) == 0)
160                 ecc_mask = PMD_PROTECTION;
161         else if (memcmp(p, "off", 3) == 0)
162                 ecc_mask = 0;
163         return 0;
164 }
165 early_param("ecc", early_ecc);
166 #endif
167
168 static int __init noalign_setup(char *__unused)
169 {
170         cr_alignment &= ~CR_A;
171         cr_no_alignment &= ~CR_A;
172         set_cr(cr_alignment);
173         return 1;
174 }
175 __setup("noalign", noalign_setup);
176
177 #ifndef CONFIG_SMP
178 void adjust_cr(unsigned long mask, unsigned long set)
179 {
180         unsigned long flags;
181
182         mask &= ~CR_A;
183
184         set &= mask;
185
186         local_irq_save(flags);
187
188         cr_no_alignment = (cr_no_alignment & ~mask) | set;
189         cr_alignment = (cr_alignment & ~mask) | set;
190
191         set_cr((get_cr() & ~mask) | set);
192
193         local_irq_restore(flags);
194 }
195 #endif
196
197 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199
200 static struct mem_type mem_types[] = {
201         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
202                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203                                   L_PTE_SHARED,
204                 .prot_l1        = PMD_TYPE_TABLE,
205                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
206                 .domain         = DOMAIN_IO,
207         },
208         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210                 .prot_l1        = PMD_TYPE_TABLE,
211                 .prot_sect      = PROT_SECT_DEVICE,
212                 .domain         = DOMAIN_IO,
213         },
214         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
215                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216                 .prot_l1        = PMD_TYPE_TABLE,
217                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
218                 .domain         = DOMAIN_IO,
219         },      
220         [MT_DEVICE_WC] = {      /* ioremap_wc */
221                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222                 .prot_l1        = PMD_TYPE_TABLE,
223                 .prot_sect      = PROT_SECT_DEVICE,
224                 .domain         = DOMAIN_IO,
225         },
226         [MT_UNCACHED] = {
227                 .prot_pte       = PROT_PTE_DEVICE,
228                 .prot_l1        = PMD_TYPE_TABLE,
229                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
230                 .domain         = DOMAIN_IO,
231         },
232         [MT_CACHECLEAN] = {
233                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234                 .domain    = DOMAIN_KERNEL,
235         },
236 #ifndef CONFIG_ARM_LPAE
237         [MT_MINICLEAN] = {
238                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239                 .domain    = DOMAIN_KERNEL,
240         },
241 #endif
242         [MT_LOW_VECTORS] = {
243                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244                                 L_PTE_RDONLY,
245                 .prot_l1   = PMD_TYPE_TABLE,
246                 .domain    = DOMAIN_USER,
247         },
248         [MT_HIGH_VECTORS] = {
249                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250                                 L_PTE_USER | L_PTE_RDONLY,
251                 .prot_l1   = PMD_TYPE_TABLE,
252                 .domain    = DOMAIN_USER,
253         },
254         [MT_MEMORY] = {
255                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256                 .prot_l1   = PMD_TYPE_TABLE,
257                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258                 .domain    = DOMAIN_KERNEL,
259         },
260         [MT_ROM] = {
261                 .prot_sect = PMD_TYPE_SECT,
262                 .domain    = DOMAIN_KERNEL,
263         },
264         [MT_MEMORY_NONCACHED] = {
265                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266                                 L_PTE_MT_BUFFERABLE,
267                 .prot_l1   = PMD_TYPE_TABLE,
268                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269                 .domain    = DOMAIN_KERNEL,
270         },
271         [MT_MEMORY_DTCM] = {
272                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273                                 L_PTE_XN,
274                 .prot_l1   = PMD_TYPE_TABLE,
275                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276                 .domain    = DOMAIN_KERNEL,
277         },
278         [MT_MEMORY_ITCM] = {
279                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280                 .prot_l1   = PMD_TYPE_TABLE,
281                 .domain    = DOMAIN_KERNEL,
282         },
283         [MT_MEMORY_SO] = {
284                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285                                 L_PTE_MT_UNCACHED,
286                 .prot_l1   = PMD_TYPE_TABLE,
287                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
289                 .domain    = DOMAIN_KERNEL,
290         },
291         [MT_MEMORY_DMA_READY] = {
292                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293                 .prot_l1   = PMD_TYPE_TABLE,
294                 .domain    = DOMAIN_KERNEL,
295         },
296 };
297
298 const struct mem_type *get_mem_type(unsigned int type)
299 {
300         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
301 }
302 EXPORT_SYMBOL(get_mem_type);
303
304 /*
305  * Adjust the PMD section entries according to the CPU in use.
306  */
307 static void __init build_mem_type_table(void)
308 {
309         struct cachepolicy *cp;
310         unsigned int cr = get_cr();
311         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
312         int cpu_arch = cpu_architecture();
313         int i;
314
315         if (cpu_arch < CPU_ARCH_ARMv6) {
316 #if defined(CONFIG_CPU_DCACHE_DISABLE)
317                 if (cachepolicy > CPOLICY_BUFFERED)
318                         cachepolicy = CPOLICY_BUFFERED;
319 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
320                 if (cachepolicy > CPOLICY_WRITETHROUGH)
321                         cachepolicy = CPOLICY_WRITETHROUGH;
322 #endif
323         }
324         if (cpu_arch < CPU_ARCH_ARMv5) {
325                 if (cachepolicy >= CPOLICY_WRITEALLOC)
326                         cachepolicy = CPOLICY_WRITEBACK;
327                 ecc_mask = 0;
328         }
329         if (is_smp())
330                 cachepolicy = CPOLICY_WRITEALLOC;
331
332         /*
333          * Strip out features not present on earlier architectures.
334          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
335          * without extended page tables don't have the 'Shared' bit.
336          */
337         if (cpu_arch < CPU_ARCH_ARMv5)
338                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
339                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
340         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
341                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
342                         mem_types[i].prot_sect &= ~PMD_SECT_S;
343
344         /*
345          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
346          * "update-able on write" bit on ARM610).  However, Xscale and
347          * Xscale3 require this bit to be cleared.
348          */
349         if (cpu_is_xscale() || cpu_is_xsc3()) {
350                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351                         mem_types[i].prot_sect &= ~PMD_BIT4;
352                         mem_types[i].prot_l1 &= ~PMD_BIT4;
353                 }
354         } else if (cpu_arch < CPU_ARCH_ARMv6) {
355                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
356                         if (mem_types[i].prot_l1)
357                                 mem_types[i].prot_l1 |= PMD_BIT4;
358                         if (mem_types[i].prot_sect)
359                                 mem_types[i].prot_sect |= PMD_BIT4;
360                 }
361         }
362
363         /*
364          * Mark the device areas according to the CPU/architecture.
365          */
366         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
367                 if (!cpu_is_xsc3()) {
368                         /*
369                          * Mark device regions on ARMv6+ as execute-never
370                          * to prevent speculative instruction fetches.
371                          */
372                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
373                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
374                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
375                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
376                 }
377                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
378                         /*
379                          * For ARMv7 with TEX remapping,
380                          * - shared device is SXCB=1100
381                          * - nonshared device is SXCB=0100
382                          * - write combine device mem is SXCB=0001
383                          * (Uncached Normal memory)
384                          */
385                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
386                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
387                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
388                 } else if (cpu_is_xsc3()) {
389                         /*
390                          * For Xscale3,
391                          * - shared device is TEXCB=00101
392                          * - nonshared device is TEXCB=01000
393                          * - write combine device mem is TEXCB=00100
394                          * (Inner/Outer Uncacheable in xsc3 parlance)
395                          */
396                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
397                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399                 } else {
400                         /*
401                          * For ARMv6 and ARMv7 without TEX remapping,
402                          * - shared device is TEXCB=00001
403                          * - nonshared device is TEXCB=01000
404                          * - write combine device mem is TEXCB=00100
405                          * (Uncached Normal in ARMv6 parlance).
406                          */
407                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
408                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
409                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
410                 }
411         } else {
412                 /*
413                  * On others, write combining is "Uncached/Buffered"
414                  */
415                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
416         }
417
418         /*
419          * Now deal with the memory-type mappings
420          */
421         cp = &cache_policies[cachepolicy];
422         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
423
424         /*
425          * Enable CPU-specific coherency if supported.
426          * (Only available on XSC3 at the moment.)
427          */
428         if (arch_is_coherent() && cpu_is_xsc3()) {
429                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
430                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
431                 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
432                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
433                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
434         }
435         /*
436          * ARMv6 and above have extended page tables.
437          */
438         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
439 #ifndef CONFIG_ARM_LPAE
440                 /*
441                  * Mark cache clean areas and XIP ROM read only
442                  * from SVC mode and no access from userspace.
443                  */
444                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
447 #endif
448
449                 if (is_smp()) {
450                         /*
451                          * Mark memory with the "shared" attribute
452                          * for SMP systems
453                          */
454                         user_pgprot |= L_PTE_SHARED;
455                         kern_pgprot |= L_PTE_SHARED;
456                         vecs_pgprot |= L_PTE_SHARED;
457                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
458                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
459                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
460                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
461                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
462                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
463                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
464                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
465                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
466                 }
467         }
468
469         /*
470          * Non-cacheable Normal - intended for memory areas that must
471          * not cause dirty cache line writebacks when used
472          */
473         if (cpu_arch >= CPU_ARCH_ARMv6) {
474                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
475                         /* Non-cacheable Normal is XCB = 001 */
476                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
477                                 PMD_SECT_BUFFERED;
478                 } else {
479                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
480                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
481                                 PMD_SECT_TEX(1);
482                 }
483         } else {
484                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
485         }
486
487 #ifdef CONFIG_ARM_LPAE
488         /*
489          * Do not generate access flag faults for the kernel mappings.
490          */
491         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
492                 mem_types[i].prot_pte |= PTE_EXT_AF;
493                 if (mem_types[i].prot_sect)
494                         mem_types[i].prot_sect |= PMD_SECT_AF;
495         }
496         kern_pgprot |= PTE_EXT_AF;
497         vecs_pgprot |= PTE_EXT_AF;
498 #endif
499
500         for (i = 0; i < 16; i++) {
501                 unsigned long v = pgprot_val(protection_map[i]);
502                 protection_map[i] = __pgprot(v | user_pgprot);
503         }
504
505         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
506         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
507
508         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
509         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
510                                  L_PTE_DIRTY | kern_pgprot);
511
512         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
513         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
514         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
515         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
516         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
517         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
518         mem_types[MT_ROM].prot_sect |= cp->pmd;
519
520         switch (cp->pmd) {
521         case PMD_SECT_WT:
522                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
523                 break;
524         case PMD_SECT_WB:
525         case PMD_SECT_WBWA:
526                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
527                 break;
528         }
529         printk("Memory policy: ECC %sabled, Data cache %s\n",
530                 ecc_mask ? "en" : "dis", cp->policy);
531
532         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
533                 struct mem_type *t = &mem_types[i];
534                 if (t->prot_l1)
535                         t->prot_l1 |= PMD_DOMAIN(t->domain);
536                 if (t->prot_sect)
537                         t->prot_sect |= PMD_DOMAIN(t->domain);
538         }
539 }
540
541 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
542 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
543                               unsigned long size, pgprot_t vma_prot)
544 {
545         if (!pfn_valid(pfn))
546                 return pgprot_noncached(vma_prot);
547         else if (file->f_flags & O_SYNC)
548                 return pgprot_writecombine(vma_prot);
549         return vma_prot;
550 }
551 EXPORT_SYMBOL(phys_mem_access_prot);
552 #endif
553
554 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
555
556 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
557 {
558         void *ptr = __va(memblock_alloc(sz, align));
559         memset(ptr, 0, sz);
560         return ptr;
561 }
562
563 static void __init *early_alloc(unsigned long sz)
564 {
565         return early_alloc_aligned(sz, sz);
566 }
567
568 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
569 {
570         if (pmd_none(*pmd)) {
571                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
572                 __pmd_populate(pmd, __pa(pte), prot);
573         }
574         BUG_ON(pmd_bad(*pmd));
575         return pte_offset_kernel(pmd, addr);
576 }
577
578 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
579                                   unsigned long end, unsigned long pfn,
580                                   const struct mem_type *type)
581 {
582         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
583         do {
584                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
585                 pfn++;
586         } while (pte++, addr += PAGE_SIZE, addr != end);
587 }
588
589 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
590                                       unsigned long end, phys_addr_t phys,
591                                       const struct mem_type *type)
592 {
593         pmd_t *pmd = pmd_offset(pud, addr);
594
595         /*
596          * Try a section mapping - end, addr and phys must all be aligned
597          * to a section boundary.  Note that PMDs refer to the individual
598          * L1 entries, whereas PGDs refer to a group of L1 entries making
599          * up one logical pointer to an L2 table.
600          */
601         if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
602                 pmd_t *p = pmd;
603
604 #ifndef CONFIG_ARM_LPAE
605                 if (addr & SECTION_SIZE)
606                         pmd++;
607 #endif
608
609                 do {
610                         *pmd = __pmd(phys | type->prot_sect);
611                         phys += SECTION_SIZE;
612                 } while (pmd++, addr += SECTION_SIZE, addr != end);
613
614                 flush_pmd_entry(p);
615         } else {
616                 /*
617                  * No need to loop; pte's aren't interested in the
618                  * individual L1 entries.
619                  */
620                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
621         }
622 }
623
624 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
625         unsigned long end, unsigned long phys, const struct mem_type *type)
626 {
627         pud_t *pud = pud_offset(pgd, addr);
628         unsigned long next;
629
630         do {
631                 next = pud_addr_end(addr, end);
632                 alloc_init_section(pud, addr, next, phys, type);
633                 phys += next - addr;
634         } while (pud++, addr = next, addr != end);
635 }
636
637 #ifndef CONFIG_ARM_LPAE
638 static void __init create_36bit_mapping(struct map_desc *md,
639                                         const struct mem_type *type)
640 {
641         unsigned long addr, length, end;
642         phys_addr_t phys;
643         pgd_t *pgd;
644
645         addr = md->virtual;
646         phys = __pfn_to_phys(md->pfn);
647         length = PAGE_ALIGN(md->length);
648
649         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
650                 printk(KERN_ERR "MM: CPU does not support supersection "
651                        "mapping for 0x%08llx at 0x%08lx\n",
652                        (long long)__pfn_to_phys((u64)md->pfn), addr);
653                 return;
654         }
655
656         /* N.B. ARMv6 supersections are only defined to work with domain 0.
657          *      Since domain assignments can in fact be arbitrary, the
658          *      'domain == 0' check below is required to insure that ARMv6
659          *      supersections are only allocated for domain 0 regardless
660          *      of the actual domain assignments in use.
661          */
662         if (type->domain) {
663                 printk(KERN_ERR "MM: invalid domain in supersection "
664                        "mapping for 0x%08llx at 0x%08lx\n",
665                        (long long)__pfn_to_phys((u64)md->pfn), addr);
666                 return;
667         }
668
669         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
670                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
671                        " at 0x%08lx invalid alignment\n",
672                        (long long)__pfn_to_phys((u64)md->pfn), addr);
673                 return;
674         }
675
676         /*
677          * Shift bits [35:32] of address into bits [23:20] of PMD
678          * (See ARMv6 spec).
679          */
680         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
681
682         pgd = pgd_offset_k(addr);
683         end = addr + length;
684         do {
685                 pud_t *pud = pud_offset(pgd, addr);
686                 pmd_t *pmd = pmd_offset(pud, addr);
687                 int i;
688
689                 for (i = 0; i < 16; i++)
690                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
691
692                 addr += SUPERSECTION_SIZE;
693                 phys += SUPERSECTION_SIZE;
694                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
695         } while (addr != end);
696 }
697 #endif  /* !CONFIG_ARM_LPAE */
698
699 /*
700  * Create the page directory entries and any necessary
701  * page tables for the mapping specified by `md'.  We
702  * are able to cope here with varying sizes and address
703  * offsets, and we take full advantage of sections and
704  * supersections.
705  */
706 static void __init create_mapping(struct map_desc *md)
707 {
708         unsigned long addr, length, end;
709         phys_addr_t phys;
710         const struct mem_type *type;
711         pgd_t *pgd;
712
713         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
714                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
715                        " at 0x%08lx in user region\n",
716                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
717                 return;
718         }
719
720         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
721             md->virtual >= PAGE_OFFSET &&
722             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
723                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
724                        " at 0x%08lx out of vmalloc space\n",
725                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
726         }
727
728         type = &mem_types[md->type];
729
730 #ifndef CONFIG_ARM_LPAE
731         /*
732          * Catch 36-bit addresses
733          */
734         if (md->pfn >= 0x100000) {
735                 create_36bit_mapping(md, type);
736                 return;
737         }
738 #endif
739
740         addr = md->virtual & PAGE_MASK;
741         phys = __pfn_to_phys(md->pfn);
742         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
743
744         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
745                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
746                        "be mapped using pages, ignoring.\n",
747                        (long long)__pfn_to_phys(md->pfn), addr);
748                 return;
749         }
750
751         pgd = pgd_offset_k(addr);
752         end = addr + length;
753         do {
754                 unsigned long next = pgd_addr_end(addr, end);
755
756                 alloc_init_pud(pgd, addr, next, phys, type);
757
758                 phys += next - addr;
759                 addr = next;
760         } while (pgd++, addr != end);
761 }
762
763 /*
764  * Create the architecture specific mappings
765  */
766 void __init iotable_init(struct map_desc *io_desc, int nr)
767 {
768         struct map_desc *md;
769         struct vm_struct *vm;
770
771         if (!nr)
772                 return;
773
774         vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
775
776         for (md = io_desc; nr; md++, nr--) {
777                 create_mapping(md);
778                 vm->addr = (void *)(md->virtual & PAGE_MASK);
779                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
780                 vm->phys_addr = __pfn_to_phys(md->pfn); 
781                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
782                 vm->flags |= VM_ARM_MTYPE(md->type);
783                 vm->caller = iotable_init;
784                 vm_area_add_early(vm++);
785         }
786 }
787
788 #ifndef CONFIG_ARM_LPAE
789
790 /*
791  * The Linux PMD is made of two consecutive section entries covering 2MB
792  * (see definition in include/asm/pgtable-2level.h).  However a call to
793  * create_mapping() may optimize static mappings by using individual
794  * 1MB section mappings.  This leaves the actual PMD potentially half
795  * initialized if the top or bottom section entry isn't used, leaving it
796  * open to problems if a subsequent ioremap() or vmalloc() tries to use
797  * the virtual space left free by that unused section entry.
798  *
799  * Let's avoid the issue by inserting dummy vm entries covering the unused
800  * PMD halves once the static mappings are in place.
801  */
802
803 static void __init pmd_empty_section_gap(unsigned long addr)
804 {
805         struct vm_struct *vm;
806
807         vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
808         vm->addr = (void *)addr;
809         vm->size = SECTION_SIZE;
810         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
811         vm->caller = pmd_empty_section_gap;
812         vm_area_add_early(vm);
813 }
814
815 static void __init fill_pmd_gaps(void)
816 {
817         struct vm_struct *vm;
818         unsigned long addr, next = 0;
819         pmd_t *pmd;
820
821         /* we're still single threaded hence no lock needed here */
822         for (vm = vmlist; vm; vm = vm->next) {
823                 if (!(vm->flags & (VM_ARM_STATIC_MAPPING | VM_ARM_EMPTY_MAPPING)))
824                         continue;
825                 addr = (unsigned long)vm->addr;
826                 if (addr < next)
827                         continue;
828
829                 /*
830                  * Check if this vm starts on an odd section boundary.
831                  * If so and the first section entry for this PMD is free
832                  * then we block the corresponding virtual address.
833                  */
834                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
835                         pmd = pmd_off_k(addr);
836                         if (pmd_none(*pmd))
837                                 pmd_empty_section_gap(addr & PMD_MASK);
838                 }
839
840                 /*
841                  * Then check if this vm ends on an odd section boundary.
842                  * If so and the second section entry for this PMD is empty
843                  * then we block the corresponding virtual address.
844                  */
845                 addr += vm->size;
846                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
847                         pmd = pmd_off_k(addr) + 1;
848                         if (pmd_none(*pmd))
849                                 pmd_empty_section_gap(addr);
850                 }
851
852                 /* no need to look at any vm entry until we hit the next PMD */
853                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
854         }
855 }
856
857 #else
858 #define fill_pmd_gaps() do { } while (0)
859 #endif
860
861 static void * __initdata vmalloc_min =
862         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
863
864 /*
865  * vmalloc=size forces the vmalloc area to be exactly 'size'
866  * bytes. This can be used to increase (or decrease) the vmalloc
867  * area - the default is 240m.
868  */
869 static int __init early_vmalloc(char *arg)
870 {
871         unsigned long vmalloc_reserve = memparse(arg, NULL);
872
873         if (vmalloc_reserve < SZ_16M) {
874                 vmalloc_reserve = SZ_16M;
875                 printk(KERN_WARNING
876                         "vmalloc area too small, limiting to %luMB\n",
877                         vmalloc_reserve >> 20);
878         }
879
880         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
881                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
882                 printk(KERN_WARNING
883                         "vmalloc area is too big, limiting to %luMB\n",
884                         vmalloc_reserve >> 20);
885         }
886
887         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
888         return 0;
889 }
890 early_param("vmalloc", early_vmalloc);
891
892 phys_addr_t arm_lowmem_limit __initdata = 0;
893
894 void __init sanity_check_meminfo(void)
895 {
896         int i, j, highmem = 0;
897
898         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
899                 struct membank *bank = &meminfo.bank[j];
900                 *bank = meminfo.bank[i];
901
902                 if (bank->start > ULONG_MAX)
903                         highmem = 1;
904
905 #ifdef CONFIG_HIGHMEM
906                 if (__va(bank->start) >= vmalloc_min ||
907                     __va(bank->start) < (void *)PAGE_OFFSET)
908                         highmem = 1;
909
910                 bank->highmem = highmem;
911
912                 /*
913                  * Split those memory banks which are partially overlapping
914                  * the vmalloc area greatly simplifying things later.
915                  */
916                 if (!highmem && __va(bank->start) < vmalloc_min &&
917                     bank->size > vmalloc_min - __va(bank->start)) {
918                         if (meminfo.nr_banks >= NR_BANKS) {
919                                 printk(KERN_CRIT "NR_BANKS too low, "
920                                                  "ignoring high memory\n");
921                         } else {
922                                 memmove(bank + 1, bank,
923                                         (meminfo.nr_banks - i) * sizeof(*bank));
924                                 meminfo.nr_banks++;
925                                 i++;
926                                 bank[1].size -= vmalloc_min - __va(bank->start);
927                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
928                                 bank[1].highmem = highmem = 1;
929                                 j++;
930                         }
931                         bank->size = vmalloc_min - __va(bank->start);
932                 }
933 #else
934                 bank->highmem = highmem;
935
936                 /*
937                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
938                  */
939                 if (highmem) {
940                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
941                                "(!CONFIG_HIGHMEM).\n",
942                                (unsigned long long)bank->start,
943                                (unsigned long long)bank->start + bank->size - 1);
944                         continue;
945                 }
946
947                 /*
948                  * Check whether this memory bank would entirely overlap
949                  * the vmalloc area.
950                  */
951                 if (__va(bank->start) >= vmalloc_min ||
952                     __va(bank->start) < (void *)PAGE_OFFSET) {
953                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
954                                "(vmalloc region overlap).\n",
955                                (unsigned long long)bank->start,
956                                (unsigned long long)bank->start + bank->size - 1);
957                         continue;
958                 }
959
960                 /*
961                  * Check whether this memory bank would partially overlap
962                  * the vmalloc area.
963                  */
964                 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
965                     __va(bank->start + bank->size - 1) <= __va(bank->start)) {
966                         unsigned long newsize = vmalloc_min - __va(bank->start);
967                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
968                                "to -%.8llx (vmalloc region overlap).\n",
969                                (unsigned long long)bank->start,
970                                (unsigned long long)bank->start + bank->size - 1,
971                                (unsigned long long)bank->start + newsize - 1);
972                         bank->size = newsize;
973                 }
974 #endif
975                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
976                         arm_lowmem_limit = bank->start + bank->size;
977
978                 j++;
979         }
980 #ifdef CONFIG_HIGHMEM
981         if (highmem) {
982                 const char *reason = NULL;
983
984                 if (cache_is_vipt_aliasing()) {
985                         /*
986                          * Interactions between kmap and other mappings
987                          * make highmem support with aliasing VIPT caches
988                          * rather difficult.
989                          */
990                         reason = "with VIPT aliasing cache";
991                 }
992                 if (reason) {
993                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
994                                 reason);
995                         while (j > 0 && meminfo.bank[j - 1].highmem)
996                                 j--;
997                 }
998         }
999 #endif
1000         meminfo.nr_banks = j;
1001         high_memory = __va(arm_lowmem_limit - 1) + 1;
1002         memblock_set_current_limit(arm_lowmem_limit);
1003 }
1004
1005 static inline void prepare_page_table(void)
1006 {
1007         unsigned long addr;
1008         phys_addr_t end;
1009
1010         /*
1011          * Clear out all the mappings below the kernel image.
1012          */
1013         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1014                 pmd_clear(pmd_off_k(addr));
1015
1016 #ifdef CONFIG_XIP_KERNEL
1017         /* The XIP kernel is mapped in the module area -- skip over it */
1018         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1019 #endif
1020         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1021                 pmd_clear(pmd_off_k(addr));
1022
1023         /*
1024          * Find the end of the first block of lowmem.
1025          */
1026         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1027         if (end >= arm_lowmem_limit)
1028                 end = arm_lowmem_limit;
1029
1030         /*
1031          * Clear out all the kernel space mappings, except for the first
1032          * memory bank, up to the vmalloc region.
1033          */
1034         for (addr = __phys_to_virt(end);
1035              addr < VMALLOC_START; addr += PMD_SIZE)
1036                 pmd_clear(pmd_off_k(addr));
1037 }
1038
1039 #ifdef CONFIG_ARM_LPAE
1040 /* the first page is reserved for pgd */
1041 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1042                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1043 #else
1044 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1045 #endif
1046
1047 /*
1048  * Reserve the special regions of memory
1049  */
1050 void __init arm_mm_memblock_reserve(void)
1051 {
1052         /*
1053          * Reserve the page tables.  These are already in use,
1054          * and can only be in node 0.
1055          */
1056         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1057
1058 #ifdef CONFIG_SA1111
1059         /*
1060          * Because of the SA1111 DMA bug, we want to preserve our
1061          * precious DMA-able memory...
1062          */
1063         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1064 #endif
1065 }
1066
1067 /*
1068  * Set up the device mappings.  Since we clear out the page tables for all
1069  * mappings above VMALLOC_START, we will remove any debug device mappings.
1070  * This means you have to be careful how you debug this function, or any
1071  * called function.  This means you can't use any function or debugging
1072  * method which may touch any device, otherwise the kernel _will_ crash.
1073  */
1074 static void __init devicemaps_init(struct machine_desc *mdesc)
1075 {
1076         struct map_desc map;
1077         unsigned long addr;
1078         void *vectors;
1079
1080         /*
1081          * Allocate the vector page early.
1082          */
1083         vectors = early_alloc(PAGE_SIZE);
1084
1085         early_trap_init(vectors);
1086
1087         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1088                 pmd_clear(pmd_off_k(addr));
1089
1090         /*
1091          * Map the kernel if it is XIP.
1092          * It is always first in the modulearea.
1093          */
1094 #ifdef CONFIG_XIP_KERNEL
1095         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1096         map.virtual = MODULES_VADDR;
1097         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1098         map.type = MT_ROM;
1099         create_mapping(&map);
1100 #endif
1101
1102         /*
1103          * Map the cache flushing regions.
1104          */
1105 #ifdef FLUSH_BASE
1106         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1107         map.virtual = FLUSH_BASE;
1108         map.length = SZ_1M;
1109         map.type = MT_CACHECLEAN;
1110         create_mapping(&map);
1111 #endif
1112 #ifdef FLUSH_BASE_MINICACHE
1113         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1114         map.virtual = FLUSH_BASE_MINICACHE;
1115         map.length = SZ_1M;
1116         map.type = MT_MINICLEAN;
1117         create_mapping(&map);
1118 #endif
1119
1120         /*
1121          * Create a mapping for the machine vectors at the high-vectors
1122          * location (0xffff0000).  If we aren't using high-vectors, also
1123          * create a mapping at the low-vectors virtual address.
1124          */
1125         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1126         map.virtual = 0xffff0000;
1127         map.length = PAGE_SIZE;
1128         map.type = MT_HIGH_VECTORS;
1129         create_mapping(&map);
1130
1131         if (!vectors_high()) {
1132                 map.virtual = 0;
1133                 map.type = MT_LOW_VECTORS;
1134                 create_mapping(&map);
1135         }
1136
1137         /*
1138          * Ask the machine support to map in the statically mapped devices.
1139          */
1140         if (mdesc->map_io)
1141                 mdesc->map_io();
1142         fill_pmd_gaps();
1143
1144         /*
1145          * Finally flush the caches and tlb to ensure that we're in a
1146          * consistent state wrt the writebuffer.  This also ensures that
1147          * any write-allocated cache lines in the vector page are written
1148          * back.  After this point, we can start to touch devices again.
1149          */
1150         local_flush_tlb_all();
1151         flush_cache_all();
1152 }
1153
1154 static void __init kmap_init(void)
1155 {
1156 #ifdef CONFIG_HIGHMEM
1157         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1158                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1159 #endif
1160 }
1161
1162 static void __init map_lowmem(void)
1163 {
1164         struct memblock_region *reg;
1165
1166         /* Map all the lowmem memory banks. */
1167         for_each_memblock(memory, reg) {
1168                 phys_addr_t start = reg->base;
1169                 phys_addr_t end = start + reg->size;
1170                 struct map_desc map;
1171
1172                 if (end > arm_lowmem_limit)
1173                         end = arm_lowmem_limit;
1174                 if (start >= end)
1175                         break;
1176
1177                 map.pfn = __phys_to_pfn(start);
1178                 map.virtual = __phys_to_virt(start);
1179                 map.length = end - start;
1180                 map.type = MT_MEMORY;
1181
1182                 create_mapping(&map);
1183         }
1184 }
1185
1186 /*
1187  * paging_init() sets up the page tables, initialises the zone memory
1188  * maps, and sets up the zero page, bad page and bad page tables.
1189  */
1190 void __init paging_init(struct machine_desc *mdesc)
1191 {
1192         void *zero_page;
1193
1194         memblock_set_current_limit(arm_lowmem_limit);
1195
1196         build_mem_type_table();
1197         prepare_page_table();
1198         map_lowmem();
1199         dma_contiguous_remap();
1200         devicemaps_init(mdesc);
1201         kmap_init();
1202
1203         top_pmd = pmd_off_k(0xffff0000);
1204
1205         /* allocate the zero page. */
1206         zero_page = early_alloc(PAGE_SIZE);
1207
1208         bootmem_init();
1209
1210         empty_zero_page = virt_to_page(zero_page);
1211         __flush_dcache_page(NULL, empty_zero_page);
1212 }