X-Git-Url: https://git.openpandora.org/cgi-bin/gitweb.cgi?p=pandora-kernel.git;a=blobdiff_plain;f=mm%2Fpage-writeback.c;h=62bfbd9ee10592dbf9301d1f9c070ae076d5c465;hp=71252486bc6f1f161b87592ded6e8b7e6c0dc8ee;hb=3cc0730eef779b6d7e27d6dfa5bd81f76a2baa0c;hpb=073c460311662eff7beb429de21acdbf7d90a4cb diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 71252486bc6f..62bfbd9ee105 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -411,8 +411,13 @@ void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) * * Returns @bdi's dirty limit in pages. The term "dirty" in the context of * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. - * And the "limit" in the name is not seriously taken as hard limit in - * balance_dirty_pages(). + * + * Note that balance_dirty_pages() will only seriously take it as a hard limit + * when sleeping max_pause per page is not enough to keep the dirty pages under + * control. For example, when the device is completely stalled due to some error + * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. + * In the other normal situations, it acts more gently by throttling the tasks + * more (rather than completely block them) when the bdi dirty pages go high. * * It allocates high/low dirty limits to fast/slow devices, in order to prevent * - starving fast devices @@ -554,8 +559,8 @@ static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, * => fast response on large errors; small oscillation near setpoint */ setpoint = (freerun + limit) / 2; - x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT, - limit - setpoint + 1); + x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, + (limit - setpoint) | 1); pos_ratio = x; pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; @@ -594,12 +599,19 @@ static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, */ if (unlikely(bdi_thresh > thresh)) bdi_thresh = thresh; + /* + * It's very possible that bdi_thresh is close to 0 not because the + * device is slow, but that it has remained inactive for long time. + * Honour such devices a reasonable good (hopefully IO efficient) + * threshold, so that the occasional writes won't be blocked and active + * writes can rampup the threshold quickly. + */ bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); /* * scale global setpoint to bdi's: * bdi_setpoint = setpoint * bdi_thresh / thresh */ - x = div_u64((u64)bdi_thresh << 16, thresh + 1); + x = div_u64((u64)bdi_thresh << 16, thresh | 1); bdi_setpoint = setpoint * (u64)x >> 16; /* * Use span=(8*write_bw) in single bdi case as indicated by @@ -613,8 +625,8 @@ static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, x_intercept = bdi_setpoint + span; if (bdi_dirty < x_intercept - span / 4) { - pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty), - x_intercept - bdi_setpoint + 1); + pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty), + (x_intercept - bdi_setpoint) | 1); } else pos_ratio /= 4; @@ -649,8 +661,11 @@ static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, * bw * elapsed + write_bandwidth * (period - elapsed) * write_bandwidth = --------------------------------------------------- * period + * + * @written may have decreased due to account_page_redirty(). + * Avoid underflowing @bw calculation. */ - bw = written - bdi->written_stamp; + bw = written - min(written, bdi->written_stamp); bw *= HZ; if (unlikely(elapsed > period)) { do_div(bw, elapsed); @@ -714,7 +729,7 @@ static void global_update_bandwidth(unsigned long thresh, unsigned long now) { static DEFINE_SPINLOCK(dirty_lock); - static unsigned long update_time; + static unsigned long update_time = INITIAL_JIFFIES; /* * check locklessly first to optimize away locking for the most time @@ -977,8 +992,7 @@ static unsigned long bdi_max_pause(struct backing_dev_info *bdi, * * 8 serves as the safety ratio. */ - if (bdi_dirty) - t = min(t, bdi_dirty * HZ / (8 * bw + 1)); + t = min(t, bdi_dirty * HZ / (8 * bw + 1)); /* * The pause time will be settled within range (max_pause/4, max_pause). @@ -1136,6 +1150,19 @@ pause: if (task_ratelimit) break; + /* + * In the case of an unresponding NFS server and the NFS dirty + * pages exceeds dirty_thresh, give the other good bdi's a pipe + * to go through, so that tasks on them still remain responsive. + * + * In theory 1 page is enough to keep the comsumer-producer + * pipe going: the flusher cleans 1 page => the task dirties 1 + * more page. However bdi_dirty has accounting errors. So use + * the larger and more IO friendly bdi_stat_error. + */ + if (bdi_dirty <= bdi_stat_error(bdi)) + break; + if (fatal_signal_pending(current)) break; } @@ -1178,16 +1205,6 @@ pause: bdi_start_background_writeback(bdi); } -void set_page_dirty_balance(struct page *page, int page_mkwrite) -{ - if (set_page_dirty(page) || page_mkwrite) { - struct address_space *mapping = page_mapping(page); - - if (mapping) - balance_dirty_pages_ratelimited(mapping); - } -} - static DEFINE_PER_CPU(int, bdp_ratelimits); /** @@ -1740,32 +1757,26 @@ EXPORT_SYMBOL(account_page_writeback); * page dirty in that case, but not all the buffers. This is a "bottom-up" * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. * - * Most callers have locked the page, which pins the address_space in memory. - * But zap_pte_range() does not lock the page, however in that case the - * mapping is pinned by the vma's ->vm_file reference. - * - * We take care to handle the case where the page was truncated from the - * mapping by re-checking page_mapping() inside tree_lock. + * The caller must ensure this doesn't race with truncation. Most will simply + * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and + * the pte lock held, which also locks out truncation. */ int __set_page_dirty_nobuffers(struct page *page) { if (!TestSetPageDirty(page)) { struct address_space *mapping = page_mapping(page); - struct address_space *mapping2; + unsigned long flags; if (!mapping) return 1; - spin_lock_irq(&mapping->tree_lock); - mapping2 = page_mapping(page); - if (mapping2) { /* Race with truncate? */ - BUG_ON(mapping2 != mapping); - WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); - account_page_dirtied(page, mapping); - radix_tree_tag_set(&mapping->page_tree, - page_index(page), PAGECACHE_TAG_DIRTY); - } - spin_unlock_irq(&mapping->tree_lock); + spin_lock_irqsave(&mapping->tree_lock, flags); + BUG_ON(page_mapping(page) != mapping); + WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); + account_page_dirtied(page, mapping); + radix_tree_tag_set(&mapping->page_tree, page_index(page), + PAGECACHE_TAG_DIRTY); + spin_unlock_irqrestore(&mapping->tree_lock, flags); if (mapping->host) { /* !PageAnon && !swapper_space */ __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); @@ -1776,6 +1787,24 @@ int __set_page_dirty_nobuffers(struct page *page) } EXPORT_SYMBOL(__set_page_dirty_nobuffers); +/* + * Call this whenever redirtying a page, to de-account the dirty counters + * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written + * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to + * systematic errors in balanced_dirty_ratelimit and the dirty pages position + * control. + */ +void account_page_redirty(struct page *page) +{ + struct address_space *mapping = page->mapping; + if (mapping && mapping_cap_account_dirty(mapping)) { + current->nr_dirtied--; + dec_zone_page_state(page, NR_DIRTIED); + dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); + } +} +EXPORT_SYMBOL(account_page_redirty); + /* * When a writepage implementation decides that it doesn't want to write this * page for some reason, it should redirty the locked page via @@ -1784,6 +1813,7 @@ EXPORT_SYMBOL(__set_page_dirty_nobuffers); int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) { wbc->pages_skipped++; + account_page_redirty(page); return __set_page_dirty_nobuffers(page); } EXPORT_SYMBOL(redirty_page_for_writepage); @@ -1902,12 +1932,10 @@ int clear_page_dirty_for_io(struct page *page) /* * We carefully synchronise fault handlers against * installing a dirty pte and marking the page dirty - * at this point. We do this by having them hold the - * page lock at some point after installing their - * pte, but before marking the page dirty. - * Pages are always locked coming in here, so we get - * the desired exclusion. See mm/memory.c:do_wp_page() - * for more comments. + * at this point. We do this by having them hold the + * page lock while dirtying the page, and pages are + * always locked coming in here, so we get the desired + * exclusion. */ if (TestClearPageDirty(page)) { dec_zone_page_state(page, NR_FILE_DIRTY);