Pull trivial into test branch
[pandora-kernel.git] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
index 41e1289..39bc16b 100644 (file)
@@ -1,9 +1,10 @@
 /*
- * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
+ * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
  *
  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
+ *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
  *
  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  *
 #include <linux/kernel.h>
 #include <linux/module.h>
 #include <linux/init.h>
+#include <linux/smp.h>
+#include <linux/sched.h>
 #include <linux/cpufreq.h>
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
 #include <linux/compiler.h>
-#include <linux/sched.h>       /* current */
 #include <linux/dmi.h>
-#include <asm/io.h>
-#include <asm/delay.h>
-#include <asm/uaccess.h>
 
 #include <linux/acpi.h>
 #include <acpi/processor.h>
 
+#include <asm/io.h>
+#include <asm/msr.h>
+#include <asm/processor.h>
+#include <asm/cpufeature.h>
+#include <asm/delay.h>
+#include <asm/uaccess.h>
+
 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
 
 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
 MODULE_LICENSE("GPL");
 
+enum {
+       UNDEFINED_CAPABLE = 0,
+       SYSTEM_INTEL_MSR_CAPABLE,
+       SYSTEM_IO_CAPABLE,
+};
+
+#define INTEL_MSR_RANGE                (0xffff)
+#define CPUID_6_ECX_APERFMPERF_CAPABILITY      (0x1)
 
-struct cpufreq_acpi_io {
-       struct acpi_processor_performance       *acpi_data;
-       struct cpufreq_frequency_table          *freq_table;
-       unsigned int                            resume;
+struct acpi_cpufreq_data {
+       struct acpi_processor_performance *acpi_data;
+       struct cpufreq_frequency_table *freq_table;
+       unsigned int max_freq;
+       unsigned int resume;
+       unsigned int cpu_feature;
 };
 
-static struct cpufreq_acpi_io  *acpi_io_data[NR_CPUS];
-static struct acpi_processor_performance       *acpi_perf_data[NR_CPUS];
+static struct acpi_cpufreq_data *drv_data[NR_CPUS];
+static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
 
 static struct cpufreq_driver acpi_cpufreq_driver;
 
 static unsigned int acpi_pstate_strict;
 
-static int
-acpi_processor_write_port(
-       u16     port,
-       u8      bit_width,
-       u32     value)
+static int check_est_cpu(unsigned int cpuid)
+{
+       struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
+
+       if (cpu->x86_vendor != X86_VENDOR_INTEL ||
+           !cpu_has(cpu, X86_FEATURE_EST))
+               return 0;
+
+       return 1;
+}
+
+static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
+{
+       struct acpi_processor_performance *perf;
+       int i;
+
+       perf = data->acpi_data;
+
+       for (i=0; i<perf->state_count; i++) {
+               if (value == perf->states[i].status)
+                       return data->freq_table[i].frequency;
+       }
+       return 0;
+}
+
+static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
 {
-       if (bit_width <= 8) {
+       int i;
+       struct acpi_processor_performance *perf;
+
+       msr &= INTEL_MSR_RANGE;
+       perf = data->acpi_data;
+
+       for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
+               if (msr == perf->states[data->freq_table[i].index].status)
+                       return data->freq_table[i].frequency;
+       }
+       return data->freq_table[0].frequency;
+}
+
+static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
+{
+       switch (data->cpu_feature) {
+       case SYSTEM_INTEL_MSR_CAPABLE:
+               return extract_msr(val, data);
+       case SYSTEM_IO_CAPABLE:
+               return extract_io(val, data);
+       default:
+               return 0;
+       }
+}
+
+static void wrport(u16 port, u8 bit_width, u32 value)
+{
+       if (bit_width <= 8)
                outb(value, port);
-       } else if (bit_width <= 16) {
+       else if (bit_width <= 16)
                outw(value, port);
-       } else if (bit_width <= 32) {
+       else if (bit_width <= 32)
                outl(value, port);
-       } else {
-               return -ENODEV;
-       }
-       return 0;
 }
 
-static int
-acpi_processor_read_port(
-       u16     port,
-       u8      bit_width,
-       u32     *ret)
+static void rdport(u16 port, u8 bit_width, u32 * ret)
 {
        *ret = 0;
-       if (bit_width <= 8) {
+       if (bit_width <= 8)
                *ret = inb(port);
-       } else if (bit_width <= 16) {
+       else if (bit_width <= 16)
                *ret = inw(port);
-       } else if (bit_width <= 32) {
+       else if (bit_width <= 32)
                *ret = inl(port);
-       } else {
-               return -ENODEV;
+}
+
+struct msr_addr {
+       u32 reg;
+};
+
+struct io_addr {
+       u16 port;
+       u8 bit_width;
+};
+
+typedef union {
+       struct msr_addr msr;
+       struct io_addr io;
+} drv_addr_union;
+
+struct drv_cmd {
+       unsigned int type;
+       cpumask_t mask;
+       drv_addr_union addr;
+       u32 val;
+};
+
+static void do_drv_read(struct drv_cmd *cmd)
+{
+       u32 h;
+
+       switch (cmd->type) {
+       case SYSTEM_INTEL_MSR_CAPABLE:
+               rdmsr(cmd->addr.msr.reg, cmd->val, h);
+               break;
+       case SYSTEM_IO_CAPABLE:
+               rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val);
+               break;
+       default:
+               break;
        }
-       return 0;
 }
 
-static int
-acpi_processor_set_performance (
-       struct cpufreq_acpi_io  *data,
-       unsigned int            cpu,
-       int                     state)
+static void do_drv_write(struct drv_cmd *cmd)
 {
-       u16                     port = 0;
-       u8                      bit_width = 0;
-       int                     i = 0;
-       int                     ret = 0;
-       u32                     value = 0;
-       int                     retval;
-       struct acpi_processor_performance       *perf;
-
-       dprintk("acpi_processor_set_performance\n");
-
-       retval = 0;
-       perf = data->acpi_data; 
-       if (state == perf->state) {
-               if (unlikely(data->resume)) {
-                       dprintk("Called after resume, resetting to P%d\n", state);
-                       data->resume = 0;
-               } else {
-                       dprintk("Already at target state (P%d)\n", state);
-                       return (retval);
-               }
+       u32 h = 0;
+
+       switch (cmd->type) {
+       case SYSTEM_INTEL_MSR_CAPABLE:
+               wrmsr(cmd->addr.msr.reg, cmd->val, h);
+               break;
+       case SYSTEM_IO_CAPABLE:
+               wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val);
+               break;
+       default:
+               break;
        }
+}
 
-       dprintk("Transitioning from P%d to P%d\n", perf->state, state);
+static void drv_read(struct drv_cmd *cmd)
+{
+       cpumask_t saved_mask = current->cpus_allowed;
+       cmd->val = 0;
 
-       /*
-        * First we write the target state's 'control' value to the
-        * control_register.
-        */
+       set_cpus_allowed(current, cmd->mask);
+       do_drv_read(cmd);
+       set_cpus_allowed(current, saved_mask);
+}
+
+static void drv_write(struct drv_cmd *cmd)
+{
+       cpumask_t saved_mask = current->cpus_allowed;
+       unsigned int i;
+
+       for_each_cpu_mask(i, cmd->mask) {
+               set_cpus_allowed(current, cpumask_of_cpu(i));
+               do_drv_write(cmd);
+       }
+
+       set_cpus_allowed(current, saved_mask);
+       return;
+}
+
+static u32 get_cur_val(cpumask_t mask)
+{
+       struct acpi_processor_performance *perf;
+       struct drv_cmd cmd;
+
+       if (unlikely(cpus_empty(mask)))
+               return 0;
+
+       switch (drv_data[first_cpu(mask)]->cpu_feature) {
+       case SYSTEM_INTEL_MSR_CAPABLE:
+               cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
+               cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
+               break;
+       case SYSTEM_IO_CAPABLE:
+               cmd.type = SYSTEM_IO_CAPABLE;
+               perf = drv_data[first_cpu(mask)]->acpi_data;
+               cmd.addr.io.port = perf->control_register.address;
+               cmd.addr.io.bit_width = perf->control_register.bit_width;
+               break;
+       default:
+               return 0;
+       }
+
+       cmd.mask = mask;
 
-       port = perf->control_register.address;
-       bit_width = perf->control_register.bit_width;
-       value = (u32) perf->states[state].control;
+       drv_read(&cmd);
 
-       dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
+       dprintk("get_cur_val = %u\n", cmd.val);
 
-       ret = acpi_processor_write_port(port, bit_width, value);
-       if (ret) {
-               dprintk("Invalid port width 0x%04x\n", bit_width);
-               return (ret);
+       return cmd.val;
+}
+
+/*
+ * Return the measured active (C0) frequency on this CPU since last call
+ * to this function.
+ * Input: cpu number
+ * Return: Average CPU frequency in terms of max frequency (zero on error)
+ *
+ * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
+ * over a period of time, while CPU is in C0 state.
+ * IA32_MPERF counts at the rate of max advertised frequency
+ * IA32_APERF counts at the rate of actual CPU frequency
+ * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
+ * no meaning should be associated with absolute values of these MSRs.
+ */
+static unsigned int get_measured_perf(unsigned int cpu)
+{
+       union {
+               struct {
+                       u32 lo;
+                       u32 hi;
+               } split;
+               u64 whole;
+       } aperf_cur, mperf_cur;
+
+       cpumask_t saved_mask;
+       unsigned int perf_percent;
+       unsigned int retval;
+
+       saved_mask = current->cpus_allowed;
+       set_cpus_allowed(current, cpumask_of_cpu(cpu));
+       if (get_cpu() != cpu) {
+               /* We were not able to run on requested processor */
+               put_cpu();
+               return 0;
        }
 
+       rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
+       rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
+
+       wrmsr(MSR_IA32_APERF, 0,0);
+       wrmsr(MSR_IA32_MPERF, 0,0);
+
+#ifdef __i386__
        /*
-        * Assume the write went through when acpi_pstate_strict is not used.
-        * As read status_register is an expensive operation and there 
-        * are no specific error cases where an IO port write will fail.
+        * We dont want to do 64 bit divide with 32 bit kernel
+        * Get an approximate value. Return failure in case we cannot get
+        * an approximate value.
         */
-       if (acpi_pstate_strict) {
-               /* Then we read the 'status_register' and compare the value 
-                * with the target state's 'status' to make sure the 
-                * transition was successful.
-                * Note that we'll poll for up to 1ms (100 cycles of 10us) 
-                * before giving up.
-                */
-
-               port = perf->status_register.address;
-               bit_width = perf->status_register.bit_width;
-
-               dprintk("Looking for 0x%08x from port 0x%04x\n",
-                       (u32) perf->states[state].status, port);
-
-               for (i = 0; i < 100; i++) {
-                       ret = acpi_processor_read_port(port, bit_width, &value);
-                       if (ret) {      
-                               dprintk("Invalid port width 0x%04x\n", bit_width);
-                               return (ret);
-                       }
-                       if (value == (u32) perf->states[state].status)
-                               break;
-                       udelay(10);
-               }
-       } else {
-               value = (u32) perf->states[state].status;
+       if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
+               int shift_count;
+               u32 h;
+
+               h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
+               shift_count = fls(h);
+
+               aperf_cur.whole >>= shift_count;
+               mperf_cur.whole >>= shift_count;
+       }
+
+       if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
+               int shift_count = 7;
+               aperf_cur.split.lo >>= shift_count;
+               mperf_cur.split.lo >>= shift_count;
        }
 
-       if (unlikely(value != (u32) perf->states[state].status)) {
-               printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
-               retval = -ENODEV;
-               return (retval);
+       if (aperf_cur.split.lo && mperf_cur.split.lo)
+               perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
+       else
+               perf_percent = 0;
+
+#else
+       if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
+               int shift_count = 7;
+               aperf_cur.whole >>= shift_count;
+               mperf_cur.whole >>= shift_count;
        }
 
-       dprintk("Transition successful after %d microseconds\n", i * 10);
+       if (aperf_cur.whole && mperf_cur.whole)
+               perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
+       else
+               perf_percent = 0;
+
+#endif
+
+       retval = drv_data[cpu]->max_freq * perf_percent / 100;
+
+       put_cpu();
+       set_cpus_allowed(current, saved_mask);
 
-       perf->state = state;
-       return (retval);
+       dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
+       return retval;
 }
 
+static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
+{
+       struct acpi_cpufreq_data *data = drv_data[cpu];
+       unsigned int freq;
+
+       dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
 
-static int
-acpi_cpufreq_target (
-       struct cpufreq_policy   *policy,
-       unsigned int target_freq,
-       unsigned int relation)
+       if (unlikely(data == NULL ||
+                    data->acpi_data == NULL || data->freq_table == NULL)) {
+               return 0;
+       }
+
+       freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
+       dprintk("cur freq = %u\n", freq);
+
+       return freq;
+}
+
+static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
+                               struct acpi_cpufreq_data *data)
 {
-       struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
+       unsigned int cur_freq;
+       unsigned int i;
+
+       for (i=0; i<100; i++) {
+               cur_freq = extract_freq(get_cur_val(mask), data);
+               if (cur_freq == freq)
+                       return 1;
+               udelay(10);
+       }
+       return 0;
+}
+
+static int acpi_cpufreq_target(struct cpufreq_policy *policy,
+                              unsigned int target_freq, unsigned int relation)
+{
+       struct acpi_cpufreq_data *data = drv_data[policy->cpu];
        struct acpi_processor_performance *perf;
        struct cpufreq_freqs freqs;
        cpumask_t online_policy_cpus;
-       cpumask_t saved_mask;
-       cpumask_t set_mask;
-       cpumask_t covered_cpus;
-       unsigned int cur_state = 0;
+       struct drv_cmd cmd;
+       unsigned int msr;
        unsigned int next_state = 0;
-       unsigned int result = 0;
-       unsigned int j;
-       unsigned int tmp;
+       unsigned int next_perf_state = 0;
+       unsigned int i;
+       int result = 0;
 
-       dprintk("acpi_cpufreq_setpolicy\n");
+       dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
 
-       result = cpufreq_frequency_table_target(policy,
-                       data->freq_table,
-                       target_freq,
-                       relation,
-                       &next_state);
-       if (unlikely(result))
-               return (result);
+       if (unlikely(data == NULL ||
+            data->acpi_data == NULL || data->freq_table == NULL)) {
+               return -ENODEV;
+       }
 
        perf = data->acpi_data;
-       cur_state = perf->state;
-       freqs.old = data->freq_table[cur_state].frequency;
-       freqs.new = data->freq_table[next_state].frequency;
+       result = cpufreq_frequency_table_target(policy,
+                                               data->freq_table,
+                                               target_freq,
+                                               relation, &next_state);
+       if (unlikely(result))
+               return -ENODEV;
 
 #ifdef CONFIG_HOTPLUG_CPU
        /* cpufreq holds the hotplug lock, so we are safe from here on */
@@ -231,106 +417,84 @@ acpi_cpufreq_target (
        online_policy_cpus = policy->cpus;
 #endif
 
-       for_each_cpu_mask(j, online_policy_cpus) {
-               freqs.cpu = j;
-               cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
+       next_perf_state = data->freq_table[next_state].index;
+       if (perf->state == next_perf_state) {
+               if (unlikely(data->resume)) {
+                       dprintk("Called after resume, resetting to P%d\n",
+                               next_perf_state);
+                       data->resume = 0;
+               } else {
+                       dprintk("Already at target state (P%d)\n",
+                               next_perf_state);
+                       return 0;
+               }
        }
 
-       /*
-        * We need to call driver->target() on all or any CPU in
-        * policy->cpus, depending on policy->shared_type.
-        */
-       saved_mask = current->cpus_allowed;
-       cpus_clear(covered_cpus);
-       for_each_cpu_mask(j, online_policy_cpus) {
-               /*
-                * Support for SMP systems.
-                * Make sure we are running on CPU that wants to change freq
-                */
-               cpus_clear(set_mask);
-               if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
-                       cpus_or(set_mask, set_mask, online_policy_cpus);
-               else
-                       cpu_set(j, set_mask);
-
-               set_cpus_allowed(current, set_mask);
-               if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
-                       dprintk("couldn't limit to CPUs in this domain\n");
-                       result = -EAGAIN;
-                       break;
-               }
+       switch (data->cpu_feature) {
+       case SYSTEM_INTEL_MSR_CAPABLE:
+               cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
+               cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
+               msr =
+                   (u32) perf->states[next_perf_state].
+                   control & INTEL_MSR_RANGE;
+               cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
+               break;
+       case SYSTEM_IO_CAPABLE:
+               cmd.type = SYSTEM_IO_CAPABLE;
+               cmd.addr.io.port = perf->control_register.address;
+               cmd.addr.io.bit_width = perf->control_register.bit_width;
+               cmd.val = (u32) perf->states[next_perf_state].control;
+               break;
+       default:
+               return -ENODEV;
+       }
 
-               result = acpi_processor_set_performance (data, j, next_state);
-               if (result) {
-                       result = -EAGAIN;
-                       break;
-               }
+       cpus_clear(cmd.mask);
 
-               if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
-                       break;
-               cpu_set(j, covered_cpus);
-       }
+       if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
+               cmd.mask = online_policy_cpus;
+       else
+               cpu_set(policy->cpu, cmd.mask);
 
-       for_each_cpu_mask(j, online_policy_cpus) {
-               freqs.cpu = j;
-               cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
+       freqs.old = data->freq_table[perf->state].frequency;
+       freqs.new = data->freq_table[next_perf_state].frequency;
+       for_each_cpu_mask(i, cmd.mask) {
+               freqs.cpu = i;
+               cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
        }
 
-       if (unlikely(result)) {
-               /*
-                * We have failed halfway through the frequency change.
-                * We have sent callbacks to online_policy_cpus and
-                * acpi_processor_set_performance() has been called on 
-                * coverd_cpus. Best effort undo..
-                */
-
-               if (!cpus_empty(covered_cpus)) {
-                       for_each_cpu_mask(j, covered_cpus) {
-                               policy->cpu = j;
-                               acpi_processor_set_performance (data, 
-                                               j, 
-                                               cur_state);
-                       }
-               }
+       drv_write(&cmd);
 
-               tmp = freqs.new;
-               freqs.new = freqs.old;
-               freqs.old = tmp;
-               for_each_cpu_mask(j, online_policy_cpus) {
-                       freqs.cpu = j;
-                       cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
-                       cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
+       if (acpi_pstate_strict) {
+               if (!check_freqs(cmd.mask, freqs.new, data)) {
+                       dprintk("acpi_cpufreq_target failed (%d)\n",
+                               policy->cpu);
+                       return -EAGAIN;
                }
        }
 
-       set_cpus_allowed(current, saved_mask);
-       return (result);
-}
+       for_each_cpu_mask(i, cmd.mask) {
+               freqs.cpu = i;
+               cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
+       }
+       perf->state = next_perf_state;
 
+       return result;
+}
 
-static int
-acpi_cpufreq_verify (
-       struct cpufreq_policy   *policy)
+static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
 {
-       unsigned int result = 0;
-       struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
+       struct acpi_cpufreq_data *data = drv_data[policy->cpu];
 
        dprintk("acpi_cpufreq_verify\n");
 
-       result = cpufreq_frequency_table_verify(policy, 
-                       data->freq_table);
-
-       return (result);
+       return cpufreq_frequency_table_verify(policy, data->freq_table);
 }
 
-
 static unsigned long
-acpi_cpufreq_guess_freq (
-       struct cpufreq_acpi_io  *data,
-       unsigned int            cpu)
+acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
 {
-       struct acpi_processor_performance       *perf = data->acpi_data;
+       struct acpi_processor_performance *perf = data->acpi_data;
 
        if (cpu_khz) {
                /* search the closest match to cpu_khz */
@@ -338,16 +502,16 @@ acpi_cpufreq_guess_freq (
                unsigned long freq;
                unsigned long freqn = perf->states[0].core_frequency * 1000;
 
-               for (i = 0; i < (perf->state_count - 1); i++) {
+               for (i=0; i<(perf->state_count-1); i++) {
                        freq = freqn;
                        freqn = perf->states[i+1].core_frequency * 1000;
                        if ((2 * cpu_khz) > (freqn + freq)) {
                                perf->state = i;
-                               return (freq);
+                               return freq;
                        }
                }
-               perf->state = perf->state_count - 1;
-               return (freqn);
+               perf->state = perf->state_count-1;
+               return freqn;
        } else {
                /* assume CPU is at P0... */
                perf->state = 0;
@@ -355,7 +519,6 @@ acpi_cpufreq_guess_freq (
        }
 }
 
-
 /*
  * acpi_cpufreq_early_init - initialize ACPI P-States library
  *
@@ -364,30 +527,34 @@ acpi_cpufreq_guess_freq (
  * do _PDC and _PSD and find out the processor dependency for the
  * actual init that will happen later...
  */
-static int acpi_cpufreq_early_init_acpi(void)
+static int acpi_cpufreq_early_init(void)
 {
-       struct acpi_processor_performance       *data;
-       unsigned int                            i, j;
+       struct acpi_processor_performance *data;
+       cpumask_t covered;
+       unsigned int i, j;
 
        dprintk("acpi_cpufreq_early_init\n");
 
        for_each_possible_cpu(i) {
-               data = kzalloc(sizeof(struct acpi_processor_performance), 
-                       GFP_KERNEL);
+               data = kzalloc(sizeof(struct acpi_processor_performance),
+                              GFP_KERNEL);
                if (!data) {
-                       for_each_possible_cpu(j) {
+                       for_each_cpu_mask(j, covered) {
                                kfree(acpi_perf_data[j]);
                                acpi_perf_data[j] = NULL;
                        }
-                       return (-ENOMEM);
+                       return -ENOMEM;
                }
                acpi_perf_data[i] = data;
+               cpu_set(i, covered);
        }
 
        /* Do initialization in ACPI core */
-       return acpi_processor_preregister_performance(acpi_perf_data);
+       acpi_processor_preregister_performance(acpi_perf_data);
+       return 0;
 }
 
+#ifdef CONFIG_SMP
 /*
  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
  * or do it in BIOS firmware and won't inform about it to OS. If not
@@ -417,38 +584,40 @@ static struct dmi_system_id sw_any_bug_dmi_table[] = {
 };
 #endif
 
-static int
-acpi_cpufreq_cpu_init (
-       struct cpufreq_policy   *policy)
+static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
 {
-       unsigned int            i;
-       unsigned int            cpu = policy->cpu;
-       struct cpufreq_acpi_io  *data;
-       unsigned int            result = 0;
+       unsigned int i;
+       unsigned int valid_states = 0;
+       unsigned int cpu = policy->cpu;
+       struct acpi_cpufreq_data *data;
+       unsigned int result = 0;
        struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
-       struct acpi_processor_performance       *perf;
+       struct acpi_processor_performance *perf;
 
        dprintk("acpi_cpufreq_cpu_init\n");
 
        if (!acpi_perf_data[cpu])
-               return (-ENODEV);
+               return -ENODEV;
 
-       data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
+       data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
        if (!data)
-               return (-ENOMEM);
+               return -ENOMEM;
 
        data->acpi_data = acpi_perf_data[cpu];
-       acpi_io_data[cpu] = data;
+       drv_data[cpu] = data;
 
-       result = acpi_processor_register_performance(data->acpi_data, cpu);
+       if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
+               acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
 
+       result = acpi_processor_register_performance(data->acpi_data, cpu);
        if (result)
                goto err_free;
 
        perf = data->acpi_data;
        policy->shared_type = perf->shared_type;
+
        /*
-        * Will let policy->cpus know about dependency only when software 
+        * Will let policy->cpus know about dependency only when software
         * coordination is required.
         */
        if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
@@ -464,10 +633,6 @@ acpi_cpufreq_cpu_init (
        }
 #endif
 
-       if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
-               acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
-       }
-
        /* capability check */
        if (perf->state_count <= 1) {
                dprintk("No P-States\n");
@@ -475,17 +640,33 @@ acpi_cpufreq_cpu_init (
                goto err_unreg;
        }
 
-       if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
-           (perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
-               dprintk("Unsupported address space [%d, %d]\n",
-                       (u32) (perf->control_register.space_id),
-                       (u32) (perf->status_register.space_id));
+       if (perf->control_register.space_id != perf->status_register.space_id) {
+               result = -ENODEV;
+               goto err_unreg;
+       }
+
+       switch (perf->control_register.space_id) {
+       case ACPI_ADR_SPACE_SYSTEM_IO:
+               dprintk("SYSTEM IO addr space\n");
+               data->cpu_feature = SYSTEM_IO_CAPABLE;
+               break;
+       case ACPI_ADR_SPACE_FIXED_HARDWARE:
+               dprintk("HARDWARE addr space\n");
+               if (!check_est_cpu(cpu)) {
+                       result = -ENODEV;
+                       goto err_unreg;
+               }
+               data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
+               break;
+       default:
+               dprintk("Unknown addr space %d\n",
+                       (u32) (perf->control_register.space_id));
                result = -ENODEV;
                goto err_unreg;
        }
 
-       /* alloc freq_table */
-       data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
+       data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
+                   (perf->state_count+1), GFP_KERNEL);
        if (!data->freq_table) {
                result = -ENOMEM;
                goto err_unreg;
@@ -494,129 +675,140 @@ acpi_cpufreq_cpu_init (
        /* detect transition latency */
        policy->cpuinfo.transition_latency = 0;
        for (i=0; i<perf->state_count; i++) {
-               if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
-                       policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000;
+               if ((perf->states[i].transition_latency * 1000) >
+                   policy->cpuinfo.transition_latency)
+                       policy->cpuinfo.transition_latency =
+                           perf->states[i].transition_latency * 1000;
        }
        policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
 
-       /* The current speed is unknown and not detectable by ACPI...  */
-       policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
-
+       data->max_freq = perf->states[0].core_frequency * 1000;
        /* table init */
-       for (i=0; i<=perf->state_count; i++)
-       {
-               data->freq_table[i].index = i;
-               if (i<perf->state_count)
-                       data->freq_table[i].frequency = perf->states[i].core_frequency * 1000;
-               else
-                       data->freq_table[i].frequency = CPUFREQ_TABLE_END;
+       for (i=0; i<perf->state_count; i++) {
+               if (i>0 && perf->states[i].core_frequency ==
+                   perf->states[i-1].core_frequency)
+                       continue;
+
+               data->freq_table[valid_states].index = i;
+               data->freq_table[valid_states].frequency =
+                   perf->states[i].core_frequency * 1000;
+               valid_states++;
        }
+       data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
 
        result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
-       if (result) {
+       if (result)
                goto err_freqfree;
+
+       switch (data->cpu_feature) {
+       case ACPI_ADR_SPACE_SYSTEM_IO:
+               /* Current speed is unknown and not detectable by IO port */
+               policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
+               break;
+       case ACPI_ADR_SPACE_FIXED_HARDWARE:
+               acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
+               get_cur_freq_on_cpu(cpu);
+               break;
+       default:
+               break;
        }
 
        /* notify BIOS that we exist */
        acpi_processor_notify_smm(THIS_MODULE);
 
-       printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
-              cpu);
+       /* Check for APERF/MPERF support in hardware */
+       if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
+               unsigned int ecx;
+               ecx = cpuid_ecx(6);
+               if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
+                       acpi_cpufreq_driver.getavg = get_measured_perf;
+       }
+
+       dprintk("CPU%u - ACPI performance management activated.\n", cpu);
        for (i = 0; i < perf->state_count; i++)
                dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
-                       (i == perf->state?'*':' '), i,
+                       (i == perf->state ? '*' : ' '), i,
                        (u32) perf->states[i].core_frequency,
                        (u32) perf->states[i].power,
                        (u32) perf->states[i].transition_latency);
 
        cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
-       
+
        /*
         * the first call to ->target() should result in us actually
         * writing something to the appropriate registers.
         */
        data->resume = 1;
-       
-       return (result);
 
- err_freqfree:
+       return result;
+
+err_freqfree:
        kfree(data->freq_table);
- err_unreg:
+err_unreg:
        acpi_processor_unregister_performance(perf, cpu);
- err_free:
+err_free:
        kfree(data);
-       acpi_io_data[cpu] = NULL;
+       drv_data[cpu] = NULL;
 
-       return (result);
+       return result;
 }
 
-
-static int
-acpi_cpufreq_cpu_exit (
-       struct cpufreq_policy   *policy)
+static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 {
-       struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
-
+       struct acpi_cpufreq_data *data = drv_data[policy->cpu];
 
        dprintk("acpi_cpufreq_cpu_exit\n");
 
        if (data) {
                cpufreq_frequency_table_put_attr(policy->cpu);
-               acpi_io_data[policy->cpu] = NULL;
-               acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
+               drv_data[policy->cpu] = NULL;
+               acpi_processor_unregister_performance(data->acpi_data,
+                                                     policy->cpu);
                kfree(data);
        }
 
-       return (0);
+       return 0;
 }
 
-static int
-acpi_cpufreq_resume (
-       struct cpufreq_policy   *policy)
+static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
 {
-       struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
-
+       struct acpi_cpufreq_data *data = drv_data[policy->cpu];
 
        dprintk("acpi_cpufreq_resume\n");
 
        data->resume = 1;
 
-       return (0);
+       return 0;
 }
 
-
-static struct freq_attr* acpi_cpufreq_attr[] = {
+static struct freq_attr *acpi_cpufreq_attr[] = {
        &cpufreq_freq_attr_scaling_available_freqs,
        NULL,
 };
 
 static struct cpufreq_driver acpi_cpufreq_driver = {
-       .verify = acpi_cpufreq_verify,
-       .target = acpi_cpufreq_target,
-       .init   = acpi_cpufreq_cpu_init,
-       .exit   = acpi_cpufreq_cpu_exit,
-       .resume = acpi_cpufreq_resume,
-       .name   = "acpi-cpufreq",
-       .owner  = THIS_MODULE,
-       .attr   = acpi_cpufreq_attr,
+       .verify = acpi_cpufreq_verify,
+       .target = acpi_cpufreq_target,
+       .init = acpi_cpufreq_cpu_init,
+       .exit = acpi_cpufreq_cpu_exit,
+       .resume = acpi_cpufreq_resume,
+       .name = "acpi-cpufreq",
+       .owner = THIS_MODULE,
+       .attr = acpi_cpufreq_attr,
 };
 
-
-static int __init
-acpi_cpufreq_init (void)
+static int __init acpi_cpufreq_init(void)
 {
        dprintk("acpi_cpufreq_init\n");
 
-       acpi_cpufreq_early_init_acpi();
+       acpi_cpufreq_early_init();
 
        return cpufreq_register_driver(&acpi_cpufreq_driver);
 }
 
-
-static void __exit
-acpi_cpufreq_exit (void)
+static void __exit acpi_cpufreq_exit(void)
 {
-       unsigned int    i;
+       unsigned int i;
        dprintk("acpi_cpufreq_exit\n");
 
        cpufreq_unregister_driver(&acpi_cpufreq_driver);
@@ -629,7 +821,9 @@ acpi_cpufreq_exit (void)
 }
 
 module_param(acpi_pstate_strict, uint, 0644);
-MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
+MODULE_PARM_DESC(acpi_pstate_strict,
+       "value 0 or non-zero. non-zero -> strict ACPI checks are "
+       "performed during frequency changes.");
 
 late_initcall(acpi_cpufreq_init);
 module_exit(acpi_cpufreq_exit);