DMA attributes ============== This document describes the semantics of the DMA attributes that are defined in linux/dma-attrs.h. DMA_ATTR_WRITE_BARRIER ---------------------- DMA_ATTR_WRITE_BARRIER is a (write) barrier attribute for DMA. DMA to a memory region with the DMA_ATTR_WRITE_BARRIER attribute forces all pending DMA writes to complete, and thus provides a mechanism to strictly order DMA from a device across all intervening busses and bridges. This barrier is not specific to a particular type of interconnect, it applies to the system as a whole, and so its implementation must account for the idiosyncracies of the system all the way from the DMA device to memory. As an example of a situation where DMA_ATTR_WRITE_BARRIER would be useful, suppose that a device does a DMA write to indicate that data is ready and available in memory. The DMA of the "completion indication" could race with data DMA. Mapping the memory used for completion indications with DMA_ATTR_WRITE_BARRIER would prevent the race. DMA_ATTR_WEAK_ORDERING ---------------------- DMA_ATTR_WEAK_ORDERING specifies that reads and writes to the mapping may be weakly ordered, that is that reads and writes may pass each other. Since it is optional for platforms to implement DMA_ATTR_WEAK_ORDERING, those that do not will simply ignore the attribute and exhibit default behavior. DMA_ATTR_WRITE_COMBINE ---------------------- DMA_ATTR_WRITE_COMBINE specifies that writes to the mapping may be buffered to improve performance. Since it is optional for platforms to implement DMA_ATTR_WRITE_COMBINE, those that do not will simply ignore the attribute and exhibit default behavior. DMA_ATTR_NON_CONSISTENT ----------------------- DMA_ATTR_NON_CONSISTENT lets the platform to choose to return either consistent or non-consistent memory as it sees fit. By using this API, you are guaranteeing to the platform that you have all the correct and necessary sync points for this memory in the driver. DMA_ATTR_NO_KERNEL_MAPPING -------------------------- DMA_ATTR_NO_KERNEL_MAPPING lets the platform to avoid creating a kernel virtual mapping for the allocated buffer. On some architectures creating such mapping is non-trivial task and consumes very limited resources (like kernel virtual address space or dma consistent address space). Buffers allocated with this attribute can be only passed to user space by calling dma_mmap_attrs(). By using this API, you are guaranteeing that you won't dereference the pointer returned by dma_alloc_attr(). You can threat it as a cookie that must be passed to dma_mmap_attrs() and dma_free_attrs(). Make sure that both of these also get this attribute set on each call. Since it is optional for platforms to implement DMA_ATTR_NO_KERNEL_MAPPING, those that do not will simply ignore the attribute and exhibit default behavior.