60e5e4612b0b329fb616564fad02067934e90652
[pandora-kernel.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affilates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 #include <asm-generic/bitops/le.h>
56
57 #include "coalesced_mmio.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 /*
66  * Ordering of locks:
67  *
68  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69  */
70
71 DEFINE_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
77
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
82
83 struct dentry *kvm_debugfs_dir;
84
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86                            unsigned long arg);
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
89
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
91
92 static bool kvm_rebooting;
93
94 static bool largepages_enabled = true;
95
96 static struct page *hwpoison_page;
97 static pfn_t hwpoison_pfn;
98
99 static struct page *fault_page;
100 static pfn_t fault_pfn;
101
102 inline int kvm_is_mmio_pfn(pfn_t pfn)
103 {
104         if (pfn_valid(pfn)) {
105                 struct page *page = compound_head(pfn_to_page(pfn));
106                 return PageReserved(page);
107         }
108
109         return true;
110 }
111
112 /*
113  * Switches to specified vcpu, until a matching vcpu_put()
114  */
115 void vcpu_load(struct kvm_vcpu *vcpu)
116 {
117         int cpu;
118
119         mutex_lock(&vcpu->mutex);
120         cpu = get_cpu();
121         preempt_notifier_register(&vcpu->preempt_notifier);
122         kvm_arch_vcpu_load(vcpu, cpu);
123         put_cpu();
124 }
125
126 void vcpu_put(struct kvm_vcpu *vcpu)
127 {
128         preempt_disable();
129         kvm_arch_vcpu_put(vcpu);
130         preempt_notifier_unregister(&vcpu->preempt_notifier);
131         preempt_enable();
132         mutex_unlock(&vcpu->mutex);
133 }
134
135 static void ack_flush(void *_completed)
136 {
137 }
138
139 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
140 {
141         int i, cpu, me;
142         cpumask_var_t cpus;
143         bool called = true;
144         struct kvm_vcpu *vcpu;
145
146         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
147
148         raw_spin_lock(&kvm->requests_lock);
149         me = smp_processor_id();
150         kvm_for_each_vcpu(i, vcpu, kvm) {
151                 if (kvm_make_check_request(req, vcpu))
152                         continue;
153                 cpu = vcpu->cpu;
154                 if (cpus != NULL && cpu != -1 && cpu != me)
155                         cpumask_set_cpu(cpu, cpus);
156         }
157         if (unlikely(cpus == NULL))
158                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
159         else if (!cpumask_empty(cpus))
160                 smp_call_function_many(cpus, ack_flush, NULL, 1);
161         else
162                 called = false;
163         raw_spin_unlock(&kvm->requests_lock);
164         free_cpumask_var(cpus);
165         return called;
166 }
167
168 void kvm_flush_remote_tlbs(struct kvm *kvm)
169 {
170         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
171                 ++kvm->stat.remote_tlb_flush;
172 }
173
174 void kvm_reload_remote_mmus(struct kvm *kvm)
175 {
176         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
177 }
178
179 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
180 {
181         struct page *page;
182         int r;
183
184         mutex_init(&vcpu->mutex);
185         vcpu->cpu = -1;
186         vcpu->kvm = kvm;
187         vcpu->vcpu_id = id;
188         init_waitqueue_head(&vcpu->wq);
189
190         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
191         if (!page) {
192                 r = -ENOMEM;
193                 goto fail;
194         }
195         vcpu->run = page_address(page);
196
197         r = kvm_arch_vcpu_init(vcpu);
198         if (r < 0)
199                 goto fail_free_run;
200         return 0;
201
202 fail_free_run:
203         free_page((unsigned long)vcpu->run);
204 fail:
205         return r;
206 }
207 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
208
209 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
210 {
211         kvm_arch_vcpu_uninit(vcpu);
212         free_page((unsigned long)vcpu->run);
213 }
214 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
215
216 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
217 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
218 {
219         return container_of(mn, struct kvm, mmu_notifier);
220 }
221
222 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
223                                              struct mm_struct *mm,
224                                              unsigned long address)
225 {
226         struct kvm *kvm = mmu_notifier_to_kvm(mn);
227         int need_tlb_flush, idx;
228
229         /*
230          * When ->invalidate_page runs, the linux pte has been zapped
231          * already but the page is still allocated until
232          * ->invalidate_page returns. So if we increase the sequence
233          * here the kvm page fault will notice if the spte can't be
234          * established because the page is going to be freed. If
235          * instead the kvm page fault establishes the spte before
236          * ->invalidate_page runs, kvm_unmap_hva will release it
237          * before returning.
238          *
239          * The sequence increase only need to be seen at spin_unlock
240          * time, and not at spin_lock time.
241          *
242          * Increasing the sequence after the spin_unlock would be
243          * unsafe because the kvm page fault could then establish the
244          * pte after kvm_unmap_hva returned, without noticing the page
245          * is going to be freed.
246          */
247         idx = srcu_read_lock(&kvm->srcu);
248         spin_lock(&kvm->mmu_lock);
249         kvm->mmu_notifier_seq++;
250         need_tlb_flush = kvm_unmap_hva(kvm, address);
251         spin_unlock(&kvm->mmu_lock);
252         srcu_read_unlock(&kvm->srcu, idx);
253
254         /* we've to flush the tlb before the pages can be freed */
255         if (need_tlb_flush)
256                 kvm_flush_remote_tlbs(kvm);
257
258 }
259
260 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
261                                         struct mm_struct *mm,
262                                         unsigned long address,
263                                         pte_t pte)
264 {
265         struct kvm *kvm = mmu_notifier_to_kvm(mn);
266         int idx;
267
268         idx = srcu_read_lock(&kvm->srcu);
269         spin_lock(&kvm->mmu_lock);
270         kvm->mmu_notifier_seq++;
271         kvm_set_spte_hva(kvm, address, pte);
272         spin_unlock(&kvm->mmu_lock);
273         srcu_read_unlock(&kvm->srcu, idx);
274 }
275
276 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
277                                                     struct mm_struct *mm,
278                                                     unsigned long start,
279                                                     unsigned long end)
280 {
281         struct kvm *kvm = mmu_notifier_to_kvm(mn);
282         int need_tlb_flush = 0, idx;
283
284         idx = srcu_read_lock(&kvm->srcu);
285         spin_lock(&kvm->mmu_lock);
286         /*
287          * The count increase must become visible at unlock time as no
288          * spte can be established without taking the mmu_lock and
289          * count is also read inside the mmu_lock critical section.
290          */
291         kvm->mmu_notifier_count++;
292         for (; start < end; start += PAGE_SIZE)
293                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
294         spin_unlock(&kvm->mmu_lock);
295         srcu_read_unlock(&kvm->srcu, idx);
296
297         /* we've to flush the tlb before the pages can be freed */
298         if (need_tlb_flush)
299                 kvm_flush_remote_tlbs(kvm);
300 }
301
302 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
303                                                   struct mm_struct *mm,
304                                                   unsigned long start,
305                                                   unsigned long end)
306 {
307         struct kvm *kvm = mmu_notifier_to_kvm(mn);
308
309         spin_lock(&kvm->mmu_lock);
310         /*
311          * This sequence increase will notify the kvm page fault that
312          * the page that is going to be mapped in the spte could have
313          * been freed.
314          */
315         kvm->mmu_notifier_seq++;
316         /*
317          * The above sequence increase must be visible before the
318          * below count decrease but both values are read by the kvm
319          * page fault under mmu_lock spinlock so we don't need to add
320          * a smb_wmb() here in between the two.
321          */
322         kvm->mmu_notifier_count--;
323         spin_unlock(&kvm->mmu_lock);
324
325         BUG_ON(kvm->mmu_notifier_count < 0);
326 }
327
328 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
329                                               struct mm_struct *mm,
330                                               unsigned long address)
331 {
332         struct kvm *kvm = mmu_notifier_to_kvm(mn);
333         int young, idx;
334
335         idx = srcu_read_lock(&kvm->srcu);
336         spin_lock(&kvm->mmu_lock);
337         young = kvm_age_hva(kvm, address);
338         spin_unlock(&kvm->mmu_lock);
339         srcu_read_unlock(&kvm->srcu, idx);
340
341         if (young)
342                 kvm_flush_remote_tlbs(kvm);
343
344         return young;
345 }
346
347 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
348                                      struct mm_struct *mm)
349 {
350         struct kvm *kvm = mmu_notifier_to_kvm(mn);
351         int idx;
352
353         idx = srcu_read_lock(&kvm->srcu);
354         kvm_arch_flush_shadow(kvm);
355         srcu_read_unlock(&kvm->srcu, idx);
356 }
357
358 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
359         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
360         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
361         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
362         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
363         .change_pte             = kvm_mmu_notifier_change_pte,
364         .release                = kvm_mmu_notifier_release,
365 };
366
367 static int kvm_init_mmu_notifier(struct kvm *kvm)
368 {
369         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
370         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
371 }
372
373 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
374
375 static int kvm_init_mmu_notifier(struct kvm *kvm)
376 {
377         return 0;
378 }
379
380 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
381
382 static struct kvm *kvm_create_vm(void)
383 {
384         int r = 0, i;
385         struct kvm *kvm = kvm_arch_create_vm();
386
387         if (IS_ERR(kvm))
388                 goto out;
389
390         r = hardware_enable_all();
391         if (r)
392                 goto out_err_nodisable;
393
394 #ifdef CONFIG_HAVE_KVM_IRQCHIP
395         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
396         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
397 #endif
398
399         r = -ENOMEM;
400         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
401         if (!kvm->memslots)
402                 goto out_err;
403         if (init_srcu_struct(&kvm->srcu))
404                 goto out_err;
405         for (i = 0; i < KVM_NR_BUSES; i++) {
406                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
407                                         GFP_KERNEL);
408                 if (!kvm->buses[i]) {
409                         cleanup_srcu_struct(&kvm->srcu);
410                         goto out_err;
411                 }
412         }
413
414         r = kvm_init_mmu_notifier(kvm);
415         if (r) {
416                 cleanup_srcu_struct(&kvm->srcu);
417                 goto out_err;
418         }
419
420         kvm->mm = current->mm;
421         atomic_inc(&kvm->mm->mm_count);
422         spin_lock_init(&kvm->mmu_lock);
423         raw_spin_lock_init(&kvm->requests_lock);
424         kvm_eventfd_init(kvm);
425         mutex_init(&kvm->lock);
426         mutex_init(&kvm->irq_lock);
427         mutex_init(&kvm->slots_lock);
428         atomic_set(&kvm->users_count, 1);
429         spin_lock(&kvm_lock);
430         list_add(&kvm->vm_list, &vm_list);
431         spin_unlock(&kvm_lock);
432 out:
433         return kvm;
434
435 out_err:
436         hardware_disable_all();
437 out_err_nodisable:
438         for (i = 0; i < KVM_NR_BUSES; i++)
439                 kfree(kvm->buses[i]);
440         kfree(kvm->memslots);
441         kfree(kvm);
442         return ERR_PTR(r);
443 }
444
445 /*
446  * Free any memory in @free but not in @dont.
447  */
448 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
449                                   struct kvm_memory_slot *dont)
450 {
451         int i;
452
453         if (!dont || free->rmap != dont->rmap)
454                 vfree(free->rmap);
455
456         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
457                 vfree(free->dirty_bitmap);
458
459
460         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
461                 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
462                         vfree(free->lpage_info[i]);
463                         free->lpage_info[i] = NULL;
464                 }
465         }
466
467         free->npages = 0;
468         free->dirty_bitmap = NULL;
469         free->rmap = NULL;
470 }
471
472 void kvm_free_physmem(struct kvm *kvm)
473 {
474         int i;
475         struct kvm_memslots *slots = kvm->memslots;
476
477         for (i = 0; i < slots->nmemslots; ++i)
478                 kvm_free_physmem_slot(&slots->memslots[i], NULL);
479
480         kfree(kvm->memslots);
481 }
482
483 static void kvm_destroy_vm(struct kvm *kvm)
484 {
485         int i;
486         struct mm_struct *mm = kvm->mm;
487
488         kvm_arch_sync_events(kvm);
489         spin_lock(&kvm_lock);
490         list_del(&kvm->vm_list);
491         spin_unlock(&kvm_lock);
492         kvm_free_irq_routing(kvm);
493         for (i = 0; i < KVM_NR_BUSES; i++)
494                 kvm_io_bus_destroy(kvm->buses[i]);
495         kvm_coalesced_mmio_free(kvm);
496 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
497         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
498 #else
499         kvm_arch_flush_shadow(kvm);
500 #endif
501         kvm_arch_destroy_vm(kvm);
502         hardware_disable_all();
503         mmdrop(mm);
504 }
505
506 void kvm_get_kvm(struct kvm *kvm)
507 {
508         atomic_inc(&kvm->users_count);
509 }
510 EXPORT_SYMBOL_GPL(kvm_get_kvm);
511
512 void kvm_put_kvm(struct kvm *kvm)
513 {
514         if (atomic_dec_and_test(&kvm->users_count))
515                 kvm_destroy_vm(kvm);
516 }
517 EXPORT_SYMBOL_GPL(kvm_put_kvm);
518
519
520 static int kvm_vm_release(struct inode *inode, struct file *filp)
521 {
522         struct kvm *kvm = filp->private_data;
523
524         kvm_irqfd_release(kvm);
525
526         kvm_put_kvm(kvm);
527         return 0;
528 }
529
530 /*
531  * Allocate some memory and give it an address in the guest physical address
532  * space.
533  *
534  * Discontiguous memory is allowed, mostly for framebuffers.
535  *
536  * Must be called holding mmap_sem for write.
537  */
538 int __kvm_set_memory_region(struct kvm *kvm,
539                             struct kvm_userspace_memory_region *mem,
540                             int user_alloc)
541 {
542         int r, flush_shadow = 0;
543         gfn_t base_gfn;
544         unsigned long npages;
545         unsigned long i;
546         struct kvm_memory_slot *memslot;
547         struct kvm_memory_slot old, new;
548         struct kvm_memslots *slots, *old_memslots;
549
550         r = -EINVAL;
551         /* General sanity checks */
552         if (mem->memory_size & (PAGE_SIZE - 1))
553                 goto out;
554         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
555                 goto out;
556         if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
557                 goto out;
558         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
559                 goto out;
560         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
561                 goto out;
562
563         memslot = &kvm->memslots->memslots[mem->slot];
564         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
565         npages = mem->memory_size >> PAGE_SHIFT;
566
567         r = -EINVAL;
568         if (npages > KVM_MEM_MAX_NR_PAGES)
569                 goto out;
570
571         if (!npages)
572                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
573
574         new = old = *memslot;
575
576         new.id = mem->slot;
577         new.base_gfn = base_gfn;
578         new.npages = npages;
579         new.flags = mem->flags;
580
581         /* Disallow changing a memory slot's size. */
582         r = -EINVAL;
583         if (npages && old.npages && npages != old.npages)
584                 goto out_free;
585
586         /* Check for overlaps */
587         r = -EEXIST;
588         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
589                 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
590
591                 if (s == memslot || !s->npages)
592                         continue;
593                 if (!((base_gfn + npages <= s->base_gfn) ||
594                       (base_gfn >= s->base_gfn + s->npages)))
595                         goto out_free;
596         }
597
598         /* Free page dirty bitmap if unneeded */
599         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
600                 new.dirty_bitmap = NULL;
601
602         r = -ENOMEM;
603
604         /* Allocate if a slot is being created */
605 #ifndef CONFIG_S390
606         if (npages && !new.rmap) {
607                 new.rmap = vmalloc(npages * sizeof(*new.rmap));
608
609                 if (!new.rmap)
610                         goto out_free;
611
612                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
613
614                 new.user_alloc = user_alloc;
615                 new.userspace_addr = mem->userspace_addr;
616         }
617         if (!npages)
618                 goto skip_lpage;
619
620         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
621                 unsigned long ugfn;
622                 unsigned long j;
623                 int lpages;
624                 int level = i + 2;
625
626                 /* Avoid unused variable warning if no large pages */
627                 (void)level;
628
629                 if (new.lpage_info[i])
630                         continue;
631
632                 lpages = 1 + ((base_gfn + npages - 1)
633                              >> KVM_HPAGE_GFN_SHIFT(level));
634                 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
635
636                 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
637
638                 if (!new.lpage_info[i])
639                         goto out_free;
640
641                 memset(new.lpage_info[i], 0,
642                        lpages * sizeof(*new.lpage_info[i]));
643
644                 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
645                         new.lpage_info[i][0].write_count = 1;
646                 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
647                         new.lpage_info[i][lpages - 1].write_count = 1;
648                 ugfn = new.userspace_addr >> PAGE_SHIFT;
649                 /*
650                  * If the gfn and userspace address are not aligned wrt each
651                  * other, or if explicitly asked to, disable large page
652                  * support for this slot
653                  */
654                 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
655                     !largepages_enabled)
656                         for (j = 0; j < lpages; ++j)
657                                 new.lpage_info[i][j].write_count = 1;
658         }
659
660 skip_lpage:
661
662         /* Allocate page dirty bitmap if needed */
663         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
664                 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
665
666                 new.dirty_bitmap = vmalloc(dirty_bytes);
667                 if (!new.dirty_bitmap)
668                         goto out_free;
669                 memset(new.dirty_bitmap, 0, dirty_bytes);
670                 /* destroy any largepage mappings for dirty tracking */
671                 if (old.npages)
672                         flush_shadow = 1;
673         }
674 #else  /* not defined CONFIG_S390 */
675         new.user_alloc = user_alloc;
676         if (user_alloc)
677                 new.userspace_addr = mem->userspace_addr;
678 #endif /* not defined CONFIG_S390 */
679
680         if (!npages) {
681                 r = -ENOMEM;
682                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
683                 if (!slots)
684                         goto out_free;
685                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
686                 if (mem->slot >= slots->nmemslots)
687                         slots->nmemslots = mem->slot + 1;
688                 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
689
690                 old_memslots = kvm->memslots;
691                 rcu_assign_pointer(kvm->memslots, slots);
692                 synchronize_srcu_expedited(&kvm->srcu);
693                 /* From this point no new shadow pages pointing to a deleted
694                  * memslot will be created.
695                  *
696                  * validation of sp->gfn happens in:
697                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
698                  *      - kvm_is_visible_gfn (mmu_check_roots)
699                  */
700                 kvm_arch_flush_shadow(kvm);
701                 kfree(old_memslots);
702         }
703
704         r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
705         if (r)
706                 goto out_free;
707
708 #ifdef CONFIG_DMAR
709         /* map the pages in iommu page table */
710         if (npages) {
711                 r = kvm_iommu_map_pages(kvm, &new);
712                 if (r)
713                         goto out_free;
714         }
715 #endif
716
717         r = -ENOMEM;
718         slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
719         if (!slots)
720                 goto out_free;
721         memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
722         if (mem->slot >= slots->nmemslots)
723                 slots->nmemslots = mem->slot + 1;
724
725         /* actual memory is freed via old in kvm_free_physmem_slot below */
726         if (!npages) {
727                 new.rmap = NULL;
728                 new.dirty_bitmap = NULL;
729                 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
730                         new.lpage_info[i] = NULL;
731         }
732
733         slots->memslots[mem->slot] = new;
734         old_memslots = kvm->memslots;
735         rcu_assign_pointer(kvm->memslots, slots);
736         synchronize_srcu_expedited(&kvm->srcu);
737
738         kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
739
740         kvm_free_physmem_slot(&old, &new);
741         kfree(old_memslots);
742
743         if (flush_shadow)
744                 kvm_arch_flush_shadow(kvm);
745
746         return 0;
747
748 out_free:
749         kvm_free_physmem_slot(&new, &old);
750 out:
751         return r;
752
753 }
754 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
755
756 int kvm_set_memory_region(struct kvm *kvm,
757                           struct kvm_userspace_memory_region *mem,
758                           int user_alloc)
759 {
760         int r;
761
762         mutex_lock(&kvm->slots_lock);
763         r = __kvm_set_memory_region(kvm, mem, user_alloc);
764         mutex_unlock(&kvm->slots_lock);
765         return r;
766 }
767 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
768
769 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
770                                    struct
771                                    kvm_userspace_memory_region *mem,
772                                    int user_alloc)
773 {
774         if (mem->slot >= KVM_MEMORY_SLOTS)
775                 return -EINVAL;
776         return kvm_set_memory_region(kvm, mem, user_alloc);
777 }
778
779 int kvm_get_dirty_log(struct kvm *kvm,
780                         struct kvm_dirty_log *log, int *is_dirty)
781 {
782         struct kvm_memory_slot *memslot;
783         int r, i;
784         unsigned long n;
785         unsigned long any = 0;
786
787         r = -EINVAL;
788         if (log->slot >= KVM_MEMORY_SLOTS)
789                 goto out;
790
791         memslot = &kvm->memslots->memslots[log->slot];
792         r = -ENOENT;
793         if (!memslot->dirty_bitmap)
794                 goto out;
795
796         n = kvm_dirty_bitmap_bytes(memslot);
797
798         for (i = 0; !any && i < n/sizeof(long); ++i)
799                 any = memslot->dirty_bitmap[i];
800
801         r = -EFAULT;
802         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
803                 goto out;
804
805         if (any)
806                 *is_dirty = 1;
807
808         r = 0;
809 out:
810         return r;
811 }
812
813 void kvm_disable_largepages(void)
814 {
815         largepages_enabled = false;
816 }
817 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
818
819 int is_error_page(struct page *page)
820 {
821         return page == bad_page || page == hwpoison_page || page == fault_page;
822 }
823 EXPORT_SYMBOL_GPL(is_error_page);
824
825 int is_error_pfn(pfn_t pfn)
826 {
827         return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
828 }
829 EXPORT_SYMBOL_GPL(is_error_pfn);
830
831 int is_hwpoison_pfn(pfn_t pfn)
832 {
833         return pfn == hwpoison_pfn;
834 }
835 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
836
837 int is_fault_pfn(pfn_t pfn)
838 {
839         return pfn == fault_pfn;
840 }
841 EXPORT_SYMBOL_GPL(is_fault_pfn);
842
843 static inline unsigned long bad_hva(void)
844 {
845         return PAGE_OFFSET;
846 }
847
848 int kvm_is_error_hva(unsigned long addr)
849 {
850         return addr == bad_hva();
851 }
852 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
853
854 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
855 {
856         int i;
857         struct kvm_memslots *slots = kvm_memslots(kvm);
858
859         for (i = 0; i < slots->nmemslots; ++i) {
860                 struct kvm_memory_slot *memslot = &slots->memslots[i];
861
862                 if (gfn >= memslot->base_gfn
863                     && gfn < memslot->base_gfn + memslot->npages)
864                         return memslot;
865         }
866         return NULL;
867 }
868 EXPORT_SYMBOL_GPL(gfn_to_memslot);
869
870 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
871 {
872         int i;
873         struct kvm_memslots *slots = kvm_memslots(kvm);
874
875         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
876                 struct kvm_memory_slot *memslot = &slots->memslots[i];
877
878                 if (memslot->flags & KVM_MEMSLOT_INVALID)
879                         continue;
880
881                 if (gfn >= memslot->base_gfn
882                     && gfn < memslot->base_gfn + memslot->npages)
883                         return 1;
884         }
885         return 0;
886 }
887 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
888
889 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
890 {
891         struct vm_area_struct *vma;
892         unsigned long addr, size;
893
894         size = PAGE_SIZE;
895
896         addr = gfn_to_hva(kvm, gfn);
897         if (kvm_is_error_hva(addr))
898                 return PAGE_SIZE;
899
900         down_read(&current->mm->mmap_sem);
901         vma = find_vma(current->mm, addr);
902         if (!vma)
903                 goto out;
904
905         size = vma_kernel_pagesize(vma);
906
907 out:
908         up_read(&current->mm->mmap_sem);
909
910         return size;
911 }
912
913 int memslot_id(struct kvm *kvm, gfn_t gfn)
914 {
915         int i;
916         struct kvm_memslots *slots = kvm_memslots(kvm);
917         struct kvm_memory_slot *memslot = NULL;
918
919         for (i = 0; i < slots->nmemslots; ++i) {
920                 memslot = &slots->memslots[i];
921
922                 if (gfn >= memslot->base_gfn
923                     && gfn < memslot->base_gfn + memslot->npages)
924                         break;
925         }
926
927         return memslot - slots->memslots;
928 }
929
930 static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
931 {
932         return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
933 }
934
935 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
936 {
937         struct kvm_memory_slot *slot;
938
939         slot = gfn_to_memslot(kvm, gfn);
940         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
941                 return bad_hva();
942         return gfn_to_hva_memslot(slot, gfn);
943 }
944 EXPORT_SYMBOL_GPL(gfn_to_hva);
945
946 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
947 {
948         struct page *page[1];
949         int npages;
950         pfn_t pfn;
951
952         might_sleep();
953
954         npages = get_user_pages_fast(addr, 1, 1, page);
955
956         if (unlikely(npages != 1)) {
957                 struct vm_area_struct *vma;
958
959                 down_read(&current->mm->mmap_sem);
960                 if (is_hwpoison_address(addr)) {
961                         up_read(&current->mm->mmap_sem);
962                         get_page(hwpoison_page);
963                         return page_to_pfn(hwpoison_page);
964                 }
965
966                 vma = find_vma(current->mm, addr);
967
968                 if (vma == NULL || addr < vma->vm_start ||
969                     !(vma->vm_flags & VM_PFNMAP)) {
970                         up_read(&current->mm->mmap_sem);
971                         get_page(fault_page);
972                         return page_to_pfn(fault_page);
973                 }
974
975                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
976                 up_read(&current->mm->mmap_sem);
977                 BUG_ON(!kvm_is_mmio_pfn(pfn));
978         } else
979                 pfn = page_to_pfn(page[0]);
980
981         return pfn;
982 }
983
984 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
985 {
986         unsigned long addr;
987
988         addr = gfn_to_hva(kvm, gfn);
989         if (kvm_is_error_hva(addr)) {
990                 get_page(bad_page);
991                 return page_to_pfn(bad_page);
992         }
993
994         return hva_to_pfn(kvm, addr);
995 }
996 EXPORT_SYMBOL_GPL(gfn_to_pfn);
997
998 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
999                          struct kvm_memory_slot *slot, gfn_t gfn)
1000 {
1001         unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1002         return hva_to_pfn(kvm, addr);
1003 }
1004
1005 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1006 {
1007         pfn_t pfn;
1008
1009         pfn = gfn_to_pfn(kvm, gfn);
1010         if (!kvm_is_mmio_pfn(pfn))
1011                 return pfn_to_page(pfn);
1012
1013         WARN_ON(kvm_is_mmio_pfn(pfn));
1014
1015         get_page(bad_page);
1016         return bad_page;
1017 }
1018
1019 EXPORT_SYMBOL_GPL(gfn_to_page);
1020
1021 void kvm_release_page_clean(struct page *page)
1022 {
1023         kvm_release_pfn_clean(page_to_pfn(page));
1024 }
1025 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1026
1027 void kvm_release_pfn_clean(pfn_t pfn)
1028 {
1029         if (!kvm_is_mmio_pfn(pfn))
1030                 put_page(pfn_to_page(pfn));
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1033
1034 void kvm_release_page_dirty(struct page *page)
1035 {
1036         kvm_release_pfn_dirty(page_to_pfn(page));
1037 }
1038 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1039
1040 void kvm_release_pfn_dirty(pfn_t pfn)
1041 {
1042         kvm_set_pfn_dirty(pfn);
1043         kvm_release_pfn_clean(pfn);
1044 }
1045 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1046
1047 void kvm_set_page_dirty(struct page *page)
1048 {
1049         kvm_set_pfn_dirty(page_to_pfn(page));
1050 }
1051 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1052
1053 void kvm_set_pfn_dirty(pfn_t pfn)
1054 {
1055         if (!kvm_is_mmio_pfn(pfn)) {
1056                 struct page *page = pfn_to_page(pfn);
1057                 if (!PageReserved(page))
1058                         SetPageDirty(page);
1059         }
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1062
1063 void kvm_set_pfn_accessed(pfn_t pfn)
1064 {
1065         if (!kvm_is_mmio_pfn(pfn))
1066                 mark_page_accessed(pfn_to_page(pfn));
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1069
1070 void kvm_get_pfn(pfn_t pfn)
1071 {
1072         if (!kvm_is_mmio_pfn(pfn))
1073                 get_page(pfn_to_page(pfn));
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1076
1077 static int next_segment(unsigned long len, int offset)
1078 {
1079         if (len > PAGE_SIZE - offset)
1080                 return PAGE_SIZE - offset;
1081         else
1082                 return len;
1083 }
1084
1085 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1086                         int len)
1087 {
1088         int r;
1089         unsigned long addr;
1090
1091         addr = gfn_to_hva(kvm, gfn);
1092         if (kvm_is_error_hva(addr))
1093                 return -EFAULT;
1094         r = copy_from_user(data, (void __user *)addr + offset, len);
1095         if (r)
1096                 return -EFAULT;
1097         return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1100
1101 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1102 {
1103         gfn_t gfn = gpa >> PAGE_SHIFT;
1104         int seg;
1105         int offset = offset_in_page(gpa);
1106         int ret;
1107
1108         while ((seg = next_segment(len, offset)) != 0) {
1109                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1110                 if (ret < 0)
1111                         return ret;
1112                 offset = 0;
1113                 len -= seg;
1114                 data += seg;
1115                 ++gfn;
1116         }
1117         return 0;
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_read_guest);
1120
1121 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1122                           unsigned long len)
1123 {
1124         int r;
1125         unsigned long addr;
1126         gfn_t gfn = gpa >> PAGE_SHIFT;
1127         int offset = offset_in_page(gpa);
1128
1129         addr = gfn_to_hva(kvm, gfn);
1130         if (kvm_is_error_hva(addr))
1131                 return -EFAULT;
1132         pagefault_disable();
1133         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1134         pagefault_enable();
1135         if (r)
1136                 return -EFAULT;
1137         return 0;
1138 }
1139 EXPORT_SYMBOL(kvm_read_guest_atomic);
1140
1141 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1142                          int offset, int len)
1143 {
1144         int r;
1145         unsigned long addr;
1146
1147         addr = gfn_to_hva(kvm, gfn);
1148         if (kvm_is_error_hva(addr))
1149                 return -EFAULT;
1150         r = copy_to_user((void __user *)addr + offset, data, len);
1151         if (r)
1152                 return -EFAULT;
1153         mark_page_dirty(kvm, gfn);
1154         return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1157
1158 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1159                     unsigned long len)
1160 {
1161         gfn_t gfn = gpa >> PAGE_SHIFT;
1162         int seg;
1163         int offset = offset_in_page(gpa);
1164         int ret;
1165
1166         while ((seg = next_segment(len, offset)) != 0) {
1167                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1168                 if (ret < 0)
1169                         return ret;
1170                 offset = 0;
1171                 len -= seg;
1172                 data += seg;
1173                 ++gfn;
1174         }
1175         return 0;
1176 }
1177
1178 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1179 {
1180         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1183
1184 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1185 {
1186         gfn_t gfn = gpa >> PAGE_SHIFT;
1187         int seg;
1188         int offset = offset_in_page(gpa);
1189         int ret;
1190
1191         while ((seg = next_segment(len, offset)) != 0) {
1192                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1193                 if (ret < 0)
1194                         return ret;
1195                 offset = 0;
1196                 len -= seg;
1197                 ++gfn;
1198         }
1199         return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1202
1203 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1204 {
1205         struct kvm_memory_slot *memslot;
1206
1207         memslot = gfn_to_memslot(kvm, gfn);
1208         if (memslot && memslot->dirty_bitmap) {
1209                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1210
1211                 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1212         }
1213 }
1214
1215 /*
1216  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1217  */
1218 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1219 {
1220         DEFINE_WAIT(wait);
1221
1222         for (;;) {
1223                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1224
1225                 if (kvm_arch_vcpu_runnable(vcpu)) {
1226                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1227                         break;
1228                 }
1229                 if (kvm_cpu_has_pending_timer(vcpu))
1230                         break;
1231                 if (signal_pending(current))
1232                         break;
1233
1234                 schedule();
1235         }
1236
1237         finish_wait(&vcpu->wq, &wait);
1238 }
1239
1240 void kvm_resched(struct kvm_vcpu *vcpu)
1241 {
1242         if (!need_resched())
1243                 return;
1244         cond_resched();
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_resched);
1247
1248 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1249 {
1250         ktime_t expires;
1251         DEFINE_WAIT(wait);
1252
1253         prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1254
1255         /* Sleep for 100 us, and hope lock-holder got scheduled */
1256         expires = ktime_add_ns(ktime_get(), 100000UL);
1257         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1258
1259         finish_wait(&vcpu->wq, &wait);
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1262
1263 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1264 {
1265         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1266         struct page *page;
1267
1268         if (vmf->pgoff == 0)
1269                 page = virt_to_page(vcpu->run);
1270 #ifdef CONFIG_X86
1271         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1272                 page = virt_to_page(vcpu->arch.pio_data);
1273 #endif
1274 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1275         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1276                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1277 #endif
1278         else
1279                 return VM_FAULT_SIGBUS;
1280         get_page(page);
1281         vmf->page = page;
1282         return 0;
1283 }
1284
1285 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1286         .fault = kvm_vcpu_fault,
1287 };
1288
1289 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1290 {
1291         vma->vm_ops = &kvm_vcpu_vm_ops;
1292         return 0;
1293 }
1294
1295 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1296 {
1297         struct kvm_vcpu *vcpu = filp->private_data;
1298
1299         kvm_put_kvm(vcpu->kvm);
1300         return 0;
1301 }
1302
1303 static struct file_operations kvm_vcpu_fops = {
1304         .release        = kvm_vcpu_release,
1305         .unlocked_ioctl = kvm_vcpu_ioctl,
1306         .compat_ioctl   = kvm_vcpu_ioctl,
1307         .mmap           = kvm_vcpu_mmap,
1308         .llseek         = noop_llseek,
1309 };
1310
1311 /*
1312  * Allocates an inode for the vcpu.
1313  */
1314 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1315 {
1316         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1317 }
1318
1319 /*
1320  * Creates some virtual cpus.  Good luck creating more than one.
1321  */
1322 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1323 {
1324         int r;
1325         struct kvm_vcpu *vcpu, *v;
1326
1327         vcpu = kvm_arch_vcpu_create(kvm, id);
1328         if (IS_ERR(vcpu))
1329                 return PTR_ERR(vcpu);
1330
1331         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1332
1333         r = kvm_arch_vcpu_setup(vcpu);
1334         if (r)
1335                 return r;
1336
1337         mutex_lock(&kvm->lock);
1338         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1339                 r = -EINVAL;
1340                 goto vcpu_destroy;
1341         }
1342
1343         kvm_for_each_vcpu(r, v, kvm)
1344                 if (v->vcpu_id == id) {
1345                         r = -EEXIST;
1346                         goto vcpu_destroy;
1347                 }
1348
1349         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1350
1351         /* Now it's all set up, let userspace reach it */
1352         kvm_get_kvm(kvm);
1353         r = create_vcpu_fd(vcpu);
1354         if (r < 0) {
1355                 kvm_put_kvm(kvm);
1356                 goto vcpu_destroy;
1357         }
1358
1359         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1360         smp_wmb();
1361         atomic_inc(&kvm->online_vcpus);
1362
1363 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1364         if (kvm->bsp_vcpu_id == id)
1365                 kvm->bsp_vcpu = vcpu;
1366 #endif
1367         mutex_unlock(&kvm->lock);
1368         return r;
1369
1370 vcpu_destroy:
1371         mutex_unlock(&kvm->lock);
1372         kvm_arch_vcpu_destroy(vcpu);
1373         return r;
1374 }
1375
1376 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1377 {
1378         if (sigset) {
1379                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1380                 vcpu->sigset_active = 1;
1381                 vcpu->sigset = *sigset;
1382         } else
1383                 vcpu->sigset_active = 0;
1384         return 0;
1385 }
1386
1387 static long kvm_vcpu_ioctl(struct file *filp,
1388                            unsigned int ioctl, unsigned long arg)
1389 {
1390         struct kvm_vcpu *vcpu = filp->private_data;
1391         void __user *argp = (void __user *)arg;
1392         int r;
1393         struct kvm_fpu *fpu = NULL;
1394         struct kvm_sregs *kvm_sregs = NULL;
1395
1396         if (vcpu->kvm->mm != current->mm)
1397                 return -EIO;
1398
1399 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1400         /*
1401          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1402          * so vcpu_load() would break it.
1403          */
1404         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1405                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1406 #endif
1407
1408
1409         vcpu_load(vcpu);
1410         switch (ioctl) {
1411         case KVM_RUN:
1412                 r = -EINVAL;
1413                 if (arg)
1414                         goto out;
1415                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1416                 break;
1417         case KVM_GET_REGS: {
1418                 struct kvm_regs *kvm_regs;
1419
1420                 r = -ENOMEM;
1421                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1422                 if (!kvm_regs)
1423                         goto out;
1424                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1425                 if (r)
1426                         goto out_free1;
1427                 r = -EFAULT;
1428                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1429                         goto out_free1;
1430                 r = 0;
1431 out_free1:
1432                 kfree(kvm_regs);
1433                 break;
1434         }
1435         case KVM_SET_REGS: {
1436                 struct kvm_regs *kvm_regs;
1437
1438                 r = -ENOMEM;
1439                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1440                 if (!kvm_regs)
1441                         goto out;
1442                 r = -EFAULT;
1443                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1444                         goto out_free2;
1445                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1446                 if (r)
1447                         goto out_free2;
1448                 r = 0;
1449 out_free2:
1450                 kfree(kvm_regs);
1451                 break;
1452         }
1453         case KVM_GET_SREGS: {
1454                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1455                 r = -ENOMEM;
1456                 if (!kvm_sregs)
1457                         goto out;
1458                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1459                 if (r)
1460                         goto out;
1461                 r = -EFAULT;
1462                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1463                         goto out;
1464                 r = 0;
1465                 break;
1466         }
1467         case KVM_SET_SREGS: {
1468                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1469                 r = -ENOMEM;
1470                 if (!kvm_sregs)
1471                         goto out;
1472                 r = -EFAULT;
1473                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1474                         goto out;
1475                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1476                 if (r)
1477                         goto out;
1478                 r = 0;
1479                 break;
1480         }
1481         case KVM_GET_MP_STATE: {
1482                 struct kvm_mp_state mp_state;
1483
1484                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1485                 if (r)
1486                         goto out;
1487                 r = -EFAULT;
1488                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1489                         goto out;
1490                 r = 0;
1491                 break;
1492         }
1493         case KVM_SET_MP_STATE: {
1494                 struct kvm_mp_state mp_state;
1495
1496                 r = -EFAULT;
1497                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1498                         goto out;
1499                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1500                 if (r)
1501                         goto out;
1502                 r = 0;
1503                 break;
1504         }
1505         case KVM_TRANSLATE: {
1506                 struct kvm_translation tr;
1507
1508                 r = -EFAULT;
1509                 if (copy_from_user(&tr, argp, sizeof tr))
1510                         goto out;
1511                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1512                 if (r)
1513                         goto out;
1514                 r = -EFAULT;
1515                 if (copy_to_user(argp, &tr, sizeof tr))
1516                         goto out;
1517                 r = 0;
1518                 break;
1519         }
1520         case KVM_SET_GUEST_DEBUG: {
1521                 struct kvm_guest_debug dbg;
1522
1523                 r = -EFAULT;
1524                 if (copy_from_user(&dbg, argp, sizeof dbg))
1525                         goto out;
1526                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1527                 if (r)
1528                         goto out;
1529                 r = 0;
1530                 break;
1531         }
1532         case KVM_SET_SIGNAL_MASK: {
1533                 struct kvm_signal_mask __user *sigmask_arg = argp;
1534                 struct kvm_signal_mask kvm_sigmask;
1535                 sigset_t sigset, *p;
1536
1537                 p = NULL;
1538                 if (argp) {
1539                         r = -EFAULT;
1540                         if (copy_from_user(&kvm_sigmask, argp,
1541                                            sizeof kvm_sigmask))
1542                                 goto out;
1543                         r = -EINVAL;
1544                         if (kvm_sigmask.len != sizeof sigset)
1545                                 goto out;
1546                         r = -EFAULT;
1547                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1548                                            sizeof sigset))
1549                                 goto out;
1550                         p = &sigset;
1551                 }
1552                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1553                 break;
1554         }
1555         case KVM_GET_FPU: {
1556                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1557                 r = -ENOMEM;
1558                 if (!fpu)
1559                         goto out;
1560                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1561                 if (r)
1562                         goto out;
1563                 r = -EFAULT;
1564                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1565                         goto out;
1566                 r = 0;
1567                 break;
1568         }
1569         case KVM_SET_FPU: {
1570                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1571                 r = -ENOMEM;
1572                 if (!fpu)
1573                         goto out;
1574                 r = -EFAULT;
1575                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1576                         goto out;
1577                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1578                 if (r)
1579                         goto out;
1580                 r = 0;
1581                 break;
1582         }
1583         default:
1584                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1585         }
1586 out:
1587         vcpu_put(vcpu);
1588         kfree(fpu);
1589         kfree(kvm_sregs);
1590         return r;
1591 }
1592
1593 static long kvm_vm_ioctl(struct file *filp,
1594                            unsigned int ioctl, unsigned long arg)
1595 {
1596         struct kvm *kvm = filp->private_data;
1597         void __user *argp = (void __user *)arg;
1598         int r;
1599
1600         if (kvm->mm != current->mm)
1601                 return -EIO;
1602         switch (ioctl) {
1603         case KVM_CREATE_VCPU:
1604                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1605                 if (r < 0)
1606                         goto out;
1607                 break;
1608         case KVM_SET_USER_MEMORY_REGION: {
1609                 struct kvm_userspace_memory_region kvm_userspace_mem;
1610
1611                 r = -EFAULT;
1612                 if (copy_from_user(&kvm_userspace_mem, argp,
1613                                                 sizeof kvm_userspace_mem))
1614                         goto out;
1615
1616                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1617                 if (r)
1618                         goto out;
1619                 break;
1620         }
1621         case KVM_GET_DIRTY_LOG: {
1622                 struct kvm_dirty_log log;
1623
1624                 r = -EFAULT;
1625                 if (copy_from_user(&log, argp, sizeof log))
1626                         goto out;
1627                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1628                 if (r)
1629                         goto out;
1630                 break;
1631         }
1632 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1633         case KVM_REGISTER_COALESCED_MMIO: {
1634                 struct kvm_coalesced_mmio_zone zone;
1635                 r = -EFAULT;
1636                 if (copy_from_user(&zone, argp, sizeof zone))
1637                         goto out;
1638                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1639                 if (r)
1640                         goto out;
1641                 r = 0;
1642                 break;
1643         }
1644         case KVM_UNREGISTER_COALESCED_MMIO: {
1645                 struct kvm_coalesced_mmio_zone zone;
1646                 r = -EFAULT;
1647                 if (copy_from_user(&zone, argp, sizeof zone))
1648                         goto out;
1649                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1650                 if (r)
1651                         goto out;
1652                 r = 0;
1653                 break;
1654         }
1655 #endif
1656         case KVM_IRQFD: {
1657                 struct kvm_irqfd data;
1658
1659                 r = -EFAULT;
1660                 if (copy_from_user(&data, argp, sizeof data))
1661                         goto out;
1662                 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1663                 break;
1664         }
1665         case KVM_IOEVENTFD: {
1666                 struct kvm_ioeventfd data;
1667
1668                 r = -EFAULT;
1669                 if (copy_from_user(&data, argp, sizeof data))
1670                         goto out;
1671                 r = kvm_ioeventfd(kvm, &data);
1672                 break;
1673         }
1674 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1675         case KVM_SET_BOOT_CPU_ID:
1676                 r = 0;
1677                 mutex_lock(&kvm->lock);
1678                 if (atomic_read(&kvm->online_vcpus) != 0)
1679                         r = -EBUSY;
1680                 else
1681                         kvm->bsp_vcpu_id = arg;
1682                 mutex_unlock(&kvm->lock);
1683                 break;
1684 #endif
1685         default:
1686                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1687                 if (r == -ENOTTY)
1688                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1689         }
1690 out:
1691         return r;
1692 }
1693
1694 #ifdef CONFIG_COMPAT
1695 struct compat_kvm_dirty_log {
1696         __u32 slot;
1697         __u32 padding1;
1698         union {
1699                 compat_uptr_t dirty_bitmap; /* one bit per page */
1700                 __u64 padding2;
1701         };
1702 };
1703
1704 static long kvm_vm_compat_ioctl(struct file *filp,
1705                            unsigned int ioctl, unsigned long arg)
1706 {
1707         struct kvm *kvm = filp->private_data;
1708         int r;
1709
1710         if (kvm->mm != current->mm)
1711                 return -EIO;
1712         switch (ioctl) {
1713         case KVM_GET_DIRTY_LOG: {
1714                 struct compat_kvm_dirty_log compat_log;
1715                 struct kvm_dirty_log log;
1716
1717                 r = -EFAULT;
1718                 if (copy_from_user(&compat_log, (void __user *)arg,
1719                                    sizeof(compat_log)))
1720                         goto out;
1721                 log.slot         = compat_log.slot;
1722                 log.padding1     = compat_log.padding1;
1723                 log.padding2     = compat_log.padding2;
1724                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1725
1726                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1727                 if (r)
1728                         goto out;
1729                 break;
1730         }
1731         default:
1732                 r = kvm_vm_ioctl(filp, ioctl, arg);
1733         }
1734
1735 out:
1736         return r;
1737 }
1738 #endif
1739
1740 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1741 {
1742         struct page *page[1];
1743         unsigned long addr;
1744         int npages;
1745         gfn_t gfn = vmf->pgoff;
1746         struct kvm *kvm = vma->vm_file->private_data;
1747
1748         addr = gfn_to_hva(kvm, gfn);
1749         if (kvm_is_error_hva(addr))
1750                 return VM_FAULT_SIGBUS;
1751
1752         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1753                                 NULL);
1754         if (unlikely(npages != 1))
1755                 return VM_FAULT_SIGBUS;
1756
1757         vmf->page = page[0];
1758         return 0;
1759 }
1760
1761 static const struct vm_operations_struct kvm_vm_vm_ops = {
1762         .fault = kvm_vm_fault,
1763 };
1764
1765 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1766 {
1767         vma->vm_ops = &kvm_vm_vm_ops;
1768         return 0;
1769 }
1770
1771 static struct file_operations kvm_vm_fops = {
1772         .release        = kvm_vm_release,
1773         .unlocked_ioctl = kvm_vm_ioctl,
1774 #ifdef CONFIG_COMPAT
1775         .compat_ioctl   = kvm_vm_compat_ioctl,
1776 #endif
1777         .mmap           = kvm_vm_mmap,
1778         .llseek         = noop_llseek,
1779 };
1780
1781 static int kvm_dev_ioctl_create_vm(void)
1782 {
1783         int fd, r;
1784         struct kvm *kvm;
1785
1786         kvm = kvm_create_vm();
1787         if (IS_ERR(kvm))
1788                 return PTR_ERR(kvm);
1789 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1790         r = kvm_coalesced_mmio_init(kvm);
1791         if (r < 0) {
1792                 kvm_put_kvm(kvm);
1793                 return r;
1794         }
1795 #endif
1796         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1797         if (fd < 0)
1798                 kvm_put_kvm(kvm);
1799
1800         return fd;
1801 }
1802
1803 static long kvm_dev_ioctl_check_extension_generic(long arg)
1804 {
1805         switch (arg) {
1806         case KVM_CAP_USER_MEMORY:
1807         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1808         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1809 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1810         case KVM_CAP_SET_BOOT_CPU_ID:
1811 #endif
1812         case KVM_CAP_INTERNAL_ERROR_DATA:
1813                 return 1;
1814 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1815         case KVM_CAP_IRQ_ROUTING:
1816                 return KVM_MAX_IRQ_ROUTES;
1817 #endif
1818         default:
1819                 break;
1820         }
1821         return kvm_dev_ioctl_check_extension(arg);
1822 }
1823
1824 static long kvm_dev_ioctl(struct file *filp,
1825                           unsigned int ioctl, unsigned long arg)
1826 {
1827         long r = -EINVAL;
1828
1829         switch (ioctl) {
1830         case KVM_GET_API_VERSION:
1831                 r = -EINVAL;
1832                 if (arg)
1833                         goto out;
1834                 r = KVM_API_VERSION;
1835                 break;
1836         case KVM_CREATE_VM:
1837                 r = -EINVAL;
1838                 if (arg)
1839                         goto out;
1840                 r = kvm_dev_ioctl_create_vm();
1841                 break;
1842         case KVM_CHECK_EXTENSION:
1843                 r = kvm_dev_ioctl_check_extension_generic(arg);
1844                 break;
1845         case KVM_GET_VCPU_MMAP_SIZE:
1846                 r = -EINVAL;
1847                 if (arg)
1848                         goto out;
1849                 r = PAGE_SIZE;     /* struct kvm_run */
1850 #ifdef CONFIG_X86
1851                 r += PAGE_SIZE;    /* pio data page */
1852 #endif
1853 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1854                 r += PAGE_SIZE;    /* coalesced mmio ring page */
1855 #endif
1856                 break;
1857         case KVM_TRACE_ENABLE:
1858         case KVM_TRACE_PAUSE:
1859         case KVM_TRACE_DISABLE:
1860                 r = -EOPNOTSUPP;
1861                 break;
1862         default:
1863                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1864         }
1865 out:
1866         return r;
1867 }
1868
1869 static struct file_operations kvm_chardev_ops = {
1870         .unlocked_ioctl = kvm_dev_ioctl,
1871         .compat_ioctl   = kvm_dev_ioctl,
1872         .llseek         = noop_llseek,
1873 };
1874
1875 static struct miscdevice kvm_dev = {
1876         KVM_MINOR,
1877         "kvm",
1878         &kvm_chardev_ops,
1879 };
1880
1881 static void hardware_enable(void *junk)
1882 {
1883         int cpu = raw_smp_processor_id();
1884         int r;
1885
1886         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1887                 return;
1888
1889         cpumask_set_cpu(cpu, cpus_hardware_enabled);
1890
1891         r = kvm_arch_hardware_enable(NULL);
1892
1893         if (r) {
1894                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1895                 atomic_inc(&hardware_enable_failed);
1896                 printk(KERN_INFO "kvm: enabling virtualization on "
1897                                  "CPU%d failed\n", cpu);
1898         }
1899 }
1900
1901 static void hardware_disable(void *junk)
1902 {
1903         int cpu = raw_smp_processor_id();
1904
1905         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1906                 return;
1907         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1908         kvm_arch_hardware_disable(NULL);
1909 }
1910
1911 static void hardware_disable_all_nolock(void)
1912 {
1913         BUG_ON(!kvm_usage_count);
1914
1915         kvm_usage_count--;
1916         if (!kvm_usage_count)
1917                 on_each_cpu(hardware_disable, NULL, 1);
1918 }
1919
1920 static void hardware_disable_all(void)
1921 {
1922         spin_lock(&kvm_lock);
1923         hardware_disable_all_nolock();
1924         spin_unlock(&kvm_lock);
1925 }
1926
1927 static int hardware_enable_all(void)
1928 {
1929         int r = 0;
1930
1931         spin_lock(&kvm_lock);
1932
1933         kvm_usage_count++;
1934         if (kvm_usage_count == 1) {
1935                 atomic_set(&hardware_enable_failed, 0);
1936                 on_each_cpu(hardware_enable, NULL, 1);
1937
1938                 if (atomic_read(&hardware_enable_failed)) {
1939                         hardware_disable_all_nolock();
1940                         r = -EBUSY;
1941                 }
1942         }
1943
1944         spin_unlock(&kvm_lock);
1945
1946         return r;
1947 }
1948
1949 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1950                            void *v)
1951 {
1952         int cpu = (long)v;
1953
1954         if (!kvm_usage_count)
1955                 return NOTIFY_OK;
1956
1957         val &= ~CPU_TASKS_FROZEN;
1958         switch (val) {
1959         case CPU_DYING:
1960                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1961                        cpu);
1962                 hardware_disable(NULL);
1963                 break;
1964         case CPU_STARTING:
1965                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1966                        cpu);
1967                 hardware_enable(NULL);
1968                 break;
1969         }
1970         return NOTIFY_OK;
1971 }
1972
1973
1974 asmlinkage void kvm_handle_fault_on_reboot(void)
1975 {
1976         if (kvm_rebooting) {
1977                 /* spin while reset goes on */
1978                 local_irq_enable();
1979                 while (true)
1980                         ;
1981         }
1982         /* Fault while not rebooting.  We want the trace. */
1983         BUG();
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1986
1987 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1988                       void *v)
1989 {
1990         /*
1991          * Some (well, at least mine) BIOSes hang on reboot if
1992          * in vmx root mode.
1993          *
1994          * And Intel TXT required VMX off for all cpu when system shutdown.
1995          */
1996         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1997         kvm_rebooting = true;
1998         on_each_cpu(hardware_disable, NULL, 1);
1999         return NOTIFY_OK;
2000 }
2001
2002 static struct notifier_block kvm_reboot_notifier = {
2003         .notifier_call = kvm_reboot,
2004         .priority = 0,
2005 };
2006
2007 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2008 {
2009         int i;
2010
2011         for (i = 0; i < bus->dev_count; i++) {
2012                 struct kvm_io_device *pos = bus->devs[i];
2013
2014                 kvm_iodevice_destructor(pos);
2015         }
2016         kfree(bus);
2017 }
2018
2019 /* kvm_io_bus_write - called under kvm->slots_lock */
2020 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2021                      int len, const void *val)
2022 {
2023         int i;
2024         struct kvm_io_bus *bus;
2025
2026         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2027         for (i = 0; i < bus->dev_count; i++)
2028                 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2029                         return 0;
2030         return -EOPNOTSUPP;
2031 }
2032
2033 /* kvm_io_bus_read - called under kvm->slots_lock */
2034 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2035                     int len, void *val)
2036 {
2037         int i;
2038         struct kvm_io_bus *bus;
2039
2040         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2041         for (i = 0; i < bus->dev_count; i++)
2042                 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2043                         return 0;
2044         return -EOPNOTSUPP;
2045 }
2046
2047 /* Caller must hold slots_lock. */
2048 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2049                             struct kvm_io_device *dev)
2050 {
2051         struct kvm_io_bus *new_bus, *bus;
2052
2053         bus = kvm->buses[bus_idx];
2054         if (bus->dev_count > NR_IOBUS_DEVS-1)
2055                 return -ENOSPC;
2056
2057         new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2058         if (!new_bus)
2059                 return -ENOMEM;
2060         memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2061         new_bus->devs[new_bus->dev_count++] = dev;
2062         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2063         synchronize_srcu_expedited(&kvm->srcu);
2064         kfree(bus);
2065
2066         return 0;
2067 }
2068
2069 /* Caller must hold slots_lock. */
2070 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2071                               struct kvm_io_device *dev)
2072 {
2073         int i, r;
2074         struct kvm_io_bus *new_bus, *bus;
2075
2076         new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2077         if (!new_bus)
2078                 return -ENOMEM;
2079
2080         bus = kvm->buses[bus_idx];
2081         memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2082
2083         r = -ENOENT;
2084         for (i = 0; i < new_bus->dev_count; i++)
2085                 if (new_bus->devs[i] == dev) {
2086                         r = 0;
2087                         new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2088                         break;
2089                 }
2090
2091         if (r) {
2092                 kfree(new_bus);
2093                 return r;
2094         }
2095
2096         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2097         synchronize_srcu_expedited(&kvm->srcu);
2098         kfree(bus);
2099         return r;
2100 }
2101
2102 static struct notifier_block kvm_cpu_notifier = {
2103         .notifier_call = kvm_cpu_hotplug,
2104 };
2105
2106 static int vm_stat_get(void *_offset, u64 *val)
2107 {
2108         unsigned offset = (long)_offset;
2109         struct kvm *kvm;
2110
2111         *val = 0;
2112         spin_lock(&kvm_lock);
2113         list_for_each_entry(kvm, &vm_list, vm_list)
2114                 *val += *(u32 *)((void *)kvm + offset);
2115         spin_unlock(&kvm_lock);
2116         return 0;
2117 }
2118
2119 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2120
2121 static int vcpu_stat_get(void *_offset, u64 *val)
2122 {
2123         unsigned offset = (long)_offset;
2124         struct kvm *kvm;
2125         struct kvm_vcpu *vcpu;
2126         int i;
2127
2128         *val = 0;
2129         spin_lock(&kvm_lock);
2130         list_for_each_entry(kvm, &vm_list, vm_list)
2131                 kvm_for_each_vcpu(i, vcpu, kvm)
2132                         *val += *(u32 *)((void *)vcpu + offset);
2133
2134         spin_unlock(&kvm_lock);
2135         return 0;
2136 }
2137
2138 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2139
2140 static const struct file_operations *stat_fops[] = {
2141         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2142         [KVM_STAT_VM]   = &vm_stat_fops,
2143 };
2144
2145 static void kvm_init_debug(void)
2146 {
2147         struct kvm_stats_debugfs_item *p;
2148
2149         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2150         for (p = debugfs_entries; p->name; ++p)
2151                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2152                                                 (void *)(long)p->offset,
2153                                                 stat_fops[p->kind]);
2154 }
2155
2156 static void kvm_exit_debug(void)
2157 {
2158         struct kvm_stats_debugfs_item *p;
2159
2160         for (p = debugfs_entries; p->name; ++p)
2161                 debugfs_remove(p->dentry);
2162         debugfs_remove(kvm_debugfs_dir);
2163 }
2164
2165 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2166 {
2167         if (kvm_usage_count)
2168                 hardware_disable(NULL);
2169         return 0;
2170 }
2171
2172 static int kvm_resume(struct sys_device *dev)
2173 {
2174         if (kvm_usage_count)
2175                 hardware_enable(NULL);
2176         return 0;
2177 }
2178
2179 static struct sysdev_class kvm_sysdev_class = {
2180         .name = "kvm",
2181         .suspend = kvm_suspend,
2182         .resume = kvm_resume,
2183 };
2184
2185 static struct sys_device kvm_sysdev = {
2186         .id = 0,
2187         .cls = &kvm_sysdev_class,
2188 };
2189
2190 struct page *bad_page;
2191 pfn_t bad_pfn;
2192
2193 static inline
2194 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2195 {
2196         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2197 }
2198
2199 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2200 {
2201         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2202
2203         kvm_arch_vcpu_load(vcpu, cpu);
2204 }
2205
2206 static void kvm_sched_out(struct preempt_notifier *pn,
2207                           struct task_struct *next)
2208 {
2209         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2210
2211         kvm_arch_vcpu_put(vcpu);
2212 }
2213
2214 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2215                   struct module *module)
2216 {
2217         int r;
2218         int cpu;
2219
2220         r = kvm_arch_init(opaque);
2221         if (r)
2222                 goto out_fail;
2223
2224         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2225
2226         if (bad_page == NULL) {
2227                 r = -ENOMEM;
2228                 goto out;
2229         }
2230
2231         bad_pfn = page_to_pfn(bad_page);
2232
2233         hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2234
2235         if (hwpoison_page == NULL) {
2236                 r = -ENOMEM;
2237                 goto out_free_0;
2238         }
2239
2240         hwpoison_pfn = page_to_pfn(hwpoison_page);
2241
2242         fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2243
2244         if (fault_page == NULL) {
2245                 r = -ENOMEM;
2246                 goto out_free_0;
2247         }
2248
2249         fault_pfn = page_to_pfn(fault_page);
2250
2251         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2252                 r = -ENOMEM;
2253                 goto out_free_0;
2254         }
2255
2256         r = kvm_arch_hardware_setup();
2257         if (r < 0)
2258                 goto out_free_0a;
2259
2260         for_each_online_cpu(cpu) {
2261                 smp_call_function_single(cpu,
2262                                 kvm_arch_check_processor_compat,
2263                                 &r, 1);
2264                 if (r < 0)
2265                         goto out_free_1;
2266         }
2267
2268         r = register_cpu_notifier(&kvm_cpu_notifier);
2269         if (r)
2270                 goto out_free_2;
2271         register_reboot_notifier(&kvm_reboot_notifier);
2272
2273         r = sysdev_class_register(&kvm_sysdev_class);
2274         if (r)
2275                 goto out_free_3;
2276
2277         r = sysdev_register(&kvm_sysdev);
2278         if (r)
2279                 goto out_free_4;
2280
2281         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2282         if (!vcpu_align)
2283                 vcpu_align = __alignof__(struct kvm_vcpu);
2284         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2285                                            0, NULL);
2286         if (!kvm_vcpu_cache) {
2287                 r = -ENOMEM;
2288                 goto out_free_5;
2289         }
2290
2291         kvm_chardev_ops.owner = module;
2292         kvm_vm_fops.owner = module;
2293         kvm_vcpu_fops.owner = module;
2294
2295         r = misc_register(&kvm_dev);
2296         if (r) {
2297                 printk(KERN_ERR "kvm: misc device register failed\n");
2298                 goto out_free;
2299         }
2300
2301         kvm_preempt_ops.sched_in = kvm_sched_in;
2302         kvm_preempt_ops.sched_out = kvm_sched_out;
2303
2304         kvm_init_debug();
2305
2306         return 0;
2307
2308 out_free:
2309         kmem_cache_destroy(kvm_vcpu_cache);
2310 out_free_5:
2311         sysdev_unregister(&kvm_sysdev);
2312 out_free_4:
2313         sysdev_class_unregister(&kvm_sysdev_class);
2314 out_free_3:
2315         unregister_reboot_notifier(&kvm_reboot_notifier);
2316         unregister_cpu_notifier(&kvm_cpu_notifier);
2317 out_free_2:
2318 out_free_1:
2319         kvm_arch_hardware_unsetup();
2320 out_free_0a:
2321         free_cpumask_var(cpus_hardware_enabled);
2322 out_free_0:
2323         if (fault_page)
2324                 __free_page(fault_page);
2325         if (hwpoison_page)
2326                 __free_page(hwpoison_page);
2327         __free_page(bad_page);
2328 out:
2329         kvm_arch_exit();
2330 out_fail:
2331         return r;
2332 }
2333 EXPORT_SYMBOL_GPL(kvm_init);
2334
2335 void kvm_exit(void)
2336 {
2337         kvm_exit_debug();
2338         misc_deregister(&kvm_dev);
2339         kmem_cache_destroy(kvm_vcpu_cache);
2340         sysdev_unregister(&kvm_sysdev);
2341         sysdev_class_unregister(&kvm_sysdev_class);
2342         unregister_reboot_notifier(&kvm_reboot_notifier);
2343         unregister_cpu_notifier(&kvm_cpu_notifier);
2344         on_each_cpu(hardware_disable, NULL, 1);
2345         kvm_arch_hardware_unsetup();
2346         kvm_arch_exit();
2347         free_cpumask_var(cpus_hardware_enabled);
2348         __free_page(hwpoison_page);
2349         __free_page(bad_page);
2350 }
2351 EXPORT_SYMBOL_GPL(kvm_exit);