Merge branch 'driver-core-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include "evsel.h"
11 #include "evlist.h"
12 #include "util.h"
13 #include "cpumap.h"
14 #include "thread_map.h"
15
16 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
17
18 int __perf_evsel__sample_size(u64 sample_type)
19 {
20         u64 mask = sample_type & PERF_SAMPLE_MASK;
21         int size = 0;
22         int i;
23
24         for (i = 0; i < 64; i++) {
25                 if (mask & (1ULL << i))
26                         size++;
27         }
28
29         size *= sizeof(u64);
30
31         return size;
32 }
33
34 void perf_evsel__init(struct perf_evsel *evsel,
35                       struct perf_event_attr *attr, int idx)
36 {
37         evsel->idx         = idx;
38         evsel->attr        = *attr;
39         INIT_LIST_HEAD(&evsel->node);
40 }
41
42 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
43 {
44         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
45
46         if (evsel != NULL)
47                 perf_evsel__init(evsel, attr, idx);
48
49         return evsel;
50 }
51
52 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
53 {
54         int cpu, thread;
55         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
56
57         if (evsel->fd) {
58                 for (cpu = 0; cpu < ncpus; cpu++) {
59                         for (thread = 0; thread < nthreads; thread++) {
60                                 FD(evsel, cpu, thread) = -1;
61                         }
62                 }
63         }
64
65         return evsel->fd != NULL ? 0 : -ENOMEM;
66 }
67
68 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
69 {
70         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
71         if (evsel->sample_id == NULL)
72                 return -ENOMEM;
73
74         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
75         if (evsel->id == NULL) {
76                 xyarray__delete(evsel->sample_id);
77                 evsel->sample_id = NULL;
78                 return -ENOMEM;
79         }
80
81         return 0;
82 }
83
84 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
85 {
86         evsel->counts = zalloc((sizeof(*evsel->counts) +
87                                 (ncpus * sizeof(struct perf_counts_values))));
88         return evsel->counts != NULL ? 0 : -ENOMEM;
89 }
90
91 void perf_evsel__free_fd(struct perf_evsel *evsel)
92 {
93         xyarray__delete(evsel->fd);
94         evsel->fd = NULL;
95 }
96
97 void perf_evsel__free_id(struct perf_evsel *evsel)
98 {
99         xyarray__delete(evsel->sample_id);
100         evsel->sample_id = NULL;
101         free(evsel->id);
102         evsel->id = NULL;
103 }
104
105 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
106 {
107         int cpu, thread;
108
109         for (cpu = 0; cpu < ncpus; cpu++)
110                 for (thread = 0; thread < nthreads; ++thread) {
111                         close(FD(evsel, cpu, thread));
112                         FD(evsel, cpu, thread) = -1;
113                 }
114 }
115
116 void perf_evsel__exit(struct perf_evsel *evsel)
117 {
118         assert(list_empty(&evsel->node));
119         xyarray__delete(evsel->fd);
120         xyarray__delete(evsel->sample_id);
121         free(evsel->id);
122 }
123
124 void perf_evsel__delete(struct perf_evsel *evsel)
125 {
126         perf_evsel__exit(evsel);
127         close_cgroup(evsel->cgrp);
128         free(evsel->name);
129         free(evsel);
130 }
131
132 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
133                               int cpu, int thread, bool scale)
134 {
135         struct perf_counts_values count;
136         size_t nv = scale ? 3 : 1;
137
138         if (FD(evsel, cpu, thread) < 0)
139                 return -EINVAL;
140
141         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
142                 return -ENOMEM;
143
144         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
145                 return -errno;
146
147         if (scale) {
148                 if (count.run == 0)
149                         count.val = 0;
150                 else if (count.run < count.ena)
151                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
152         } else
153                 count.ena = count.run = 0;
154
155         evsel->counts->cpu[cpu] = count;
156         return 0;
157 }
158
159 int __perf_evsel__read(struct perf_evsel *evsel,
160                        int ncpus, int nthreads, bool scale)
161 {
162         size_t nv = scale ? 3 : 1;
163         int cpu, thread;
164         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
165
166         aggr->val = aggr->ena = aggr->run = 0;
167
168         for (cpu = 0; cpu < ncpus; cpu++) {
169                 for (thread = 0; thread < nthreads; thread++) {
170                         if (FD(evsel, cpu, thread) < 0)
171                                 continue;
172
173                         if (readn(FD(evsel, cpu, thread),
174                                   &count, nv * sizeof(u64)) < 0)
175                                 return -errno;
176
177                         aggr->val += count.val;
178                         if (scale) {
179                                 aggr->ena += count.ena;
180                                 aggr->run += count.run;
181                         }
182                 }
183         }
184
185         evsel->counts->scaled = 0;
186         if (scale) {
187                 if (aggr->run == 0) {
188                         evsel->counts->scaled = -1;
189                         aggr->val = 0;
190                         return 0;
191                 }
192
193                 if (aggr->run < aggr->ena) {
194                         evsel->counts->scaled = 1;
195                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
196                 }
197         } else
198                 aggr->ena = aggr->run = 0;
199
200         return 0;
201 }
202
203 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
204                               struct thread_map *threads, bool group)
205 {
206         int cpu, thread;
207         unsigned long flags = 0;
208         int pid = -1;
209
210         if (evsel->fd == NULL &&
211             perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
212                 return -1;
213
214         if (evsel->cgrp) {
215                 flags = PERF_FLAG_PID_CGROUP;
216                 pid = evsel->cgrp->fd;
217         }
218
219         for (cpu = 0; cpu < cpus->nr; cpu++) {
220                 int group_fd = -1;
221
222                 for (thread = 0; thread < threads->nr; thread++) {
223
224                         if (!evsel->cgrp)
225                                 pid = threads->map[thread];
226
227                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
228                                                                      pid,
229                                                                      cpus->map[cpu],
230                                                                      group_fd, flags);
231                         if (FD(evsel, cpu, thread) < 0)
232                                 goto out_close;
233
234                         if (group && group_fd == -1)
235                                 group_fd = FD(evsel, cpu, thread);
236                 }
237         }
238
239         return 0;
240
241 out_close:
242         do {
243                 while (--thread >= 0) {
244                         close(FD(evsel, cpu, thread));
245                         FD(evsel, cpu, thread) = -1;
246                 }
247                 thread = threads->nr;
248         } while (--cpu >= 0);
249         return -1;
250 }
251
252 static struct {
253         struct cpu_map map;
254         int cpus[1];
255 } empty_cpu_map = {
256         .map.nr = 1,
257         .cpus   = { -1, },
258 };
259
260 static struct {
261         struct thread_map map;
262         int threads[1];
263 } empty_thread_map = {
264         .map.nr  = 1,
265         .threads = { -1, },
266 };
267
268 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
269                      struct thread_map *threads, bool group)
270 {
271         if (cpus == NULL) {
272                 /* Work around old compiler warnings about strict aliasing */
273                 cpus = &empty_cpu_map.map;
274         }
275
276         if (threads == NULL)
277                 threads = &empty_thread_map.map;
278
279         return __perf_evsel__open(evsel, cpus, threads, group);
280 }
281
282 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
283                              struct cpu_map *cpus, bool group)
284 {
285         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map, group);
286 }
287
288 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
289                                 struct thread_map *threads, bool group)
290 {
291         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads, group);
292 }
293
294 static int perf_event__parse_id_sample(const union perf_event *event, u64 type,
295                                        struct perf_sample *sample)
296 {
297         const u64 *array = event->sample.array;
298
299         array += ((event->header.size -
300                    sizeof(event->header)) / sizeof(u64)) - 1;
301
302         if (type & PERF_SAMPLE_CPU) {
303                 u32 *p = (u32 *)array;
304                 sample->cpu = *p;
305                 array--;
306         }
307
308         if (type & PERF_SAMPLE_STREAM_ID) {
309                 sample->stream_id = *array;
310                 array--;
311         }
312
313         if (type & PERF_SAMPLE_ID) {
314                 sample->id = *array;
315                 array--;
316         }
317
318         if (type & PERF_SAMPLE_TIME) {
319                 sample->time = *array;
320                 array--;
321         }
322
323         if (type & PERF_SAMPLE_TID) {
324                 u32 *p = (u32 *)array;
325                 sample->pid = p[0];
326                 sample->tid = p[1];
327         }
328
329         return 0;
330 }
331
332 static bool sample_overlap(const union perf_event *event,
333                            const void *offset, u64 size)
334 {
335         const void *base = event;
336
337         if (offset + size > base + event->header.size)
338                 return true;
339
340         return false;
341 }
342
343 int perf_event__parse_sample(const union perf_event *event, u64 type,
344                              int sample_size, bool sample_id_all,
345                              struct perf_sample *data)
346 {
347         const u64 *array;
348
349         data->cpu = data->pid = data->tid = -1;
350         data->stream_id = data->id = data->time = -1ULL;
351
352         if (event->header.type != PERF_RECORD_SAMPLE) {
353                 if (!sample_id_all)
354                         return 0;
355                 return perf_event__parse_id_sample(event, type, data);
356         }
357
358         array = event->sample.array;
359
360         if (sample_size + sizeof(event->header) > event->header.size)
361                 return -EFAULT;
362
363         if (type & PERF_SAMPLE_IP) {
364                 data->ip = event->ip.ip;
365                 array++;
366         }
367
368         if (type & PERF_SAMPLE_TID) {
369                 u32 *p = (u32 *)array;
370                 data->pid = p[0];
371                 data->tid = p[1];
372                 array++;
373         }
374
375         if (type & PERF_SAMPLE_TIME) {
376                 data->time = *array;
377                 array++;
378         }
379
380         if (type & PERF_SAMPLE_ADDR) {
381                 data->addr = *array;
382                 array++;
383         }
384
385         data->id = -1ULL;
386         if (type & PERF_SAMPLE_ID) {
387                 data->id = *array;
388                 array++;
389         }
390
391         if (type & PERF_SAMPLE_STREAM_ID) {
392                 data->stream_id = *array;
393                 array++;
394         }
395
396         if (type & PERF_SAMPLE_CPU) {
397                 u32 *p = (u32 *)array;
398                 data->cpu = *p;
399                 array++;
400         }
401
402         if (type & PERF_SAMPLE_PERIOD) {
403                 data->period = *array;
404                 array++;
405         }
406
407         if (type & PERF_SAMPLE_READ) {
408                 fprintf(stderr, "PERF_SAMPLE_READ is unsuported for now\n");
409                 return -1;
410         }
411
412         if (type & PERF_SAMPLE_CALLCHAIN) {
413                 if (sample_overlap(event, array, sizeof(data->callchain->nr)))
414                         return -EFAULT;
415
416                 data->callchain = (struct ip_callchain *)array;
417
418                 if (sample_overlap(event, array, data->callchain->nr))
419                         return -EFAULT;
420
421                 array += 1 + data->callchain->nr;
422         }
423
424         if (type & PERF_SAMPLE_RAW) {
425                 u32 *p = (u32 *)array;
426
427                 if (sample_overlap(event, array, sizeof(u32)))
428                         return -EFAULT;
429
430                 data->raw_size = *p;
431                 p++;
432
433                 if (sample_overlap(event, p, data->raw_size))
434                         return -EFAULT;
435
436                 data->raw_data = p;
437         }
438
439         return 0;
440 }