pandora: defconfig: update
[pandora-kernel.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include "builtin.h"
16
17 #include "util/util.h"
18
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/callchain.h"
25 #include "util/strlist.h"
26
27 #include "perf.h"
28 #include "util/header.h"
29 #include "util/parse-options.h"
30 #include "util/parse-events.h"
31 #include "util/event.h"
32 #include "util/session.h"
33 #include "util/svghelper.h"
34
35 #define SUPPORT_OLD_POWER_EVENTS 1
36 #define PWR_EVENT_EXIT -1
37
38
39 static char             const *input_name = "perf.data";
40 static char             const *output_name = "output.svg";
41
42 static unsigned int     numcpus;
43 static u64              min_freq;       /* Lowest CPU frequency seen */
44 static u64              max_freq;       /* Highest CPU frequency seen */
45 static u64              turbo_frequency;
46
47 static u64              first_time, last_time;
48
49 static bool             power_only;
50
51
52 struct per_pid;
53 struct per_pidcomm;
54
55 struct cpu_sample;
56 struct power_event;
57 struct wake_event;
58
59 struct sample_wrapper;
60
61 /*
62  * Datastructure layout:
63  * We keep an list of "pid"s, matching the kernels notion of a task struct.
64  * Each "pid" entry, has a list of "comm"s.
65  *      this is because we want to track different programs different, while
66  *      exec will reuse the original pid (by design).
67  * Each comm has a list of samples that will be used to draw
68  * final graph.
69  */
70
71 struct per_pid {
72         struct per_pid *next;
73
74         int             pid;
75         int             ppid;
76
77         u64             start_time;
78         u64             end_time;
79         u64             total_time;
80         int             display;
81
82         struct per_pidcomm *all;
83         struct per_pidcomm *current;
84 };
85
86
87 struct per_pidcomm {
88         struct per_pidcomm *next;
89
90         u64             start_time;
91         u64             end_time;
92         u64             total_time;
93
94         int             Y;
95         int             display;
96
97         long            state;
98         u64             state_since;
99
100         char            *comm;
101
102         struct cpu_sample *samples;
103 };
104
105 struct sample_wrapper {
106         struct sample_wrapper *next;
107
108         u64             timestamp;
109         unsigned char   data[0];
110 };
111
112 #define TYPE_NONE       0
113 #define TYPE_RUNNING    1
114 #define TYPE_WAITING    2
115 #define TYPE_BLOCKED    3
116
117 struct cpu_sample {
118         struct cpu_sample *next;
119
120         u64 start_time;
121         u64 end_time;
122         int type;
123         int cpu;
124 };
125
126 static struct per_pid *all_data;
127
128 #define CSTATE 1
129 #define PSTATE 2
130
131 struct power_event {
132         struct power_event *next;
133         int type;
134         int state;
135         u64 start_time;
136         u64 end_time;
137         int cpu;
138 };
139
140 struct wake_event {
141         struct wake_event *next;
142         int waker;
143         int wakee;
144         u64 time;
145 };
146
147 static struct power_event    *power_events;
148 static struct wake_event     *wake_events;
149
150 struct process_filter;
151 struct process_filter {
152         char                    *name;
153         int                     pid;
154         struct process_filter   *next;
155 };
156
157 static struct process_filter *process_filter;
158
159
160 static struct per_pid *find_create_pid(int pid)
161 {
162         struct per_pid *cursor = all_data;
163
164         while (cursor) {
165                 if (cursor->pid == pid)
166                         return cursor;
167                 cursor = cursor->next;
168         }
169         cursor = malloc(sizeof(struct per_pid));
170         assert(cursor != NULL);
171         memset(cursor, 0, sizeof(struct per_pid));
172         cursor->pid = pid;
173         cursor->next = all_data;
174         all_data = cursor;
175         return cursor;
176 }
177
178 static void pid_set_comm(int pid, char *comm)
179 {
180         struct per_pid *p;
181         struct per_pidcomm *c;
182         p = find_create_pid(pid);
183         c = p->all;
184         while (c) {
185                 if (c->comm && strcmp(c->comm, comm) == 0) {
186                         p->current = c;
187                         return;
188                 }
189                 if (!c->comm) {
190                         c->comm = strdup(comm);
191                         p->current = c;
192                         return;
193                 }
194                 c = c->next;
195         }
196         c = malloc(sizeof(struct per_pidcomm));
197         assert(c != NULL);
198         memset(c, 0, sizeof(struct per_pidcomm));
199         c->comm = strdup(comm);
200         p->current = c;
201         c->next = p->all;
202         p->all = c;
203 }
204
205 static void pid_fork(int pid, int ppid, u64 timestamp)
206 {
207         struct per_pid *p, *pp;
208         p = find_create_pid(pid);
209         pp = find_create_pid(ppid);
210         p->ppid = ppid;
211         if (pp->current && pp->current->comm && !p->current)
212                 pid_set_comm(pid, pp->current->comm);
213
214         p->start_time = timestamp;
215         if (p->current) {
216                 p->current->start_time = timestamp;
217                 p->current->state_since = timestamp;
218         }
219 }
220
221 static void pid_exit(int pid, u64 timestamp)
222 {
223         struct per_pid *p;
224         p = find_create_pid(pid);
225         p->end_time = timestamp;
226         if (p->current)
227                 p->current->end_time = timestamp;
228 }
229
230 static void
231 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
232 {
233         struct per_pid *p;
234         struct per_pidcomm *c;
235         struct cpu_sample *sample;
236
237         p = find_create_pid(pid);
238         c = p->current;
239         if (!c) {
240                 c = malloc(sizeof(struct per_pidcomm));
241                 assert(c != NULL);
242                 memset(c, 0, sizeof(struct per_pidcomm));
243                 p->current = c;
244                 c->next = p->all;
245                 p->all = c;
246         }
247
248         sample = malloc(sizeof(struct cpu_sample));
249         assert(sample != NULL);
250         memset(sample, 0, sizeof(struct cpu_sample));
251         sample->start_time = start;
252         sample->end_time = end;
253         sample->type = type;
254         sample->next = c->samples;
255         sample->cpu = cpu;
256         c->samples = sample;
257
258         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259                 c->total_time += (end-start);
260                 p->total_time += (end-start);
261         }
262
263         if (c->start_time == 0 || c->start_time > start)
264                 c->start_time = start;
265         if (p->start_time == 0 || p->start_time > start)
266                 p->start_time = start;
267 }
268
269 #define MAX_CPUS 4096
270
271 static u64 cpus_cstate_start_times[MAX_CPUS];
272 static int cpus_cstate_state[MAX_CPUS];
273 static u64 cpus_pstate_start_times[MAX_CPUS];
274 static u64 cpus_pstate_state[MAX_CPUS];
275
276 static int process_comm_event(union perf_event *event,
277                               struct perf_sample *sample __used,
278                               struct perf_session *session __used)
279 {
280         pid_set_comm(event->comm.tid, event->comm.comm);
281         return 0;
282 }
283
284 static int process_fork_event(union perf_event *event,
285                               struct perf_sample *sample __used,
286                               struct perf_session *session __used)
287 {
288         pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
289         return 0;
290 }
291
292 static int process_exit_event(union perf_event *event,
293                               struct perf_sample *sample __used,
294                               struct perf_session *session __used)
295 {
296         pid_exit(event->fork.pid, event->fork.time);
297         return 0;
298 }
299
300 struct trace_entry {
301         unsigned short          type;
302         unsigned char           flags;
303         unsigned char           preempt_count;
304         int                     pid;
305         int                     lock_depth;
306 };
307
308 #ifdef SUPPORT_OLD_POWER_EVENTS
309 static int use_old_power_events;
310 struct power_entry_old {
311         struct trace_entry te;
312         u64     type;
313         u64     value;
314         u64     cpu_id;
315 };
316 #endif
317
318 struct power_processor_entry {
319         struct trace_entry te;
320         u32     state;
321         u32     cpu_id;
322 };
323
324 #define TASK_COMM_LEN 16
325 struct wakeup_entry {
326         struct trace_entry te;
327         char comm[TASK_COMM_LEN];
328         int   pid;
329         int   prio;
330         int   success;
331 };
332
333 /*
334  * trace_flag_type is an enumeration that holds different
335  * states when a trace occurs. These are:
336  *  IRQS_OFF            - interrupts were disabled
337  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
338  *  NEED_RESCED         - reschedule is requested
339  *  HARDIRQ             - inside an interrupt handler
340  *  SOFTIRQ             - inside a softirq handler
341  */
342 enum trace_flag_type {
343         TRACE_FLAG_IRQS_OFF             = 0x01,
344         TRACE_FLAG_IRQS_NOSUPPORT       = 0x02,
345         TRACE_FLAG_NEED_RESCHED         = 0x04,
346         TRACE_FLAG_HARDIRQ              = 0x08,
347         TRACE_FLAG_SOFTIRQ              = 0x10,
348 };
349
350
351
352 struct sched_switch {
353         struct trace_entry te;
354         char prev_comm[TASK_COMM_LEN];
355         int  prev_pid;
356         int  prev_prio;
357         long prev_state; /* Arjan weeps. */
358         char next_comm[TASK_COMM_LEN];
359         int  next_pid;
360         int  next_prio;
361 };
362
363 static void c_state_start(int cpu, u64 timestamp, int state)
364 {
365         cpus_cstate_start_times[cpu] = timestamp;
366         cpus_cstate_state[cpu] = state;
367 }
368
369 static void c_state_end(int cpu, u64 timestamp)
370 {
371         struct power_event *pwr;
372         pwr = malloc(sizeof(struct power_event));
373         if (!pwr)
374                 return;
375         memset(pwr, 0, sizeof(struct power_event));
376
377         pwr->state = cpus_cstate_state[cpu];
378         pwr->start_time = cpus_cstate_start_times[cpu];
379         pwr->end_time = timestamp;
380         pwr->cpu = cpu;
381         pwr->type = CSTATE;
382         pwr->next = power_events;
383
384         power_events = pwr;
385 }
386
387 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
388 {
389         struct power_event *pwr;
390         pwr = malloc(sizeof(struct power_event));
391
392         if (new_freq > 8000000) /* detect invalid data */
393                 return;
394
395         if (!pwr)
396                 return;
397         memset(pwr, 0, sizeof(struct power_event));
398
399         pwr->state = cpus_pstate_state[cpu];
400         pwr->start_time = cpus_pstate_start_times[cpu];
401         pwr->end_time = timestamp;
402         pwr->cpu = cpu;
403         pwr->type = PSTATE;
404         pwr->next = power_events;
405
406         if (!pwr->start_time)
407                 pwr->start_time = first_time;
408
409         power_events = pwr;
410
411         cpus_pstate_state[cpu] = new_freq;
412         cpus_pstate_start_times[cpu] = timestamp;
413
414         if ((u64)new_freq > max_freq)
415                 max_freq = new_freq;
416
417         if (new_freq < min_freq || min_freq == 0)
418                 min_freq = new_freq;
419
420         if (new_freq == max_freq - 1000)
421                         turbo_frequency = max_freq;
422 }
423
424 static void
425 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
426 {
427         struct wake_event *we;
428         struct per_pid *p;
429         struct wakeup_entry *wake = (void *)te;
430
431         we = malloc(sizeof(struct wake_event));
432         if (!we)
433                 return;
434
435         memset(we, 0, sizeof(struct wake_event));
436         we->time = timestamp;
437         we->waker = pid;
438
439         if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
440                 we->waker = -1;
441
442         we->wakee = wake->pid;
443         we->next = wake_events;
444         wake_events = we;
445         p = find_create_pid(we->wakee);
446
447         if (p && p->current && p->current->state == TYPE_NONE) {
448                 p->current->state_since = timestamp;
449                 p->current->state = TYPE_WAITING;
450         }
451         if (p && p->current && p->current->state == TYPE_BLOCKED) {
452                 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
453                 p->current->state_since = timestamp;
454                 p->current->state = TYPE_WAITING;
455         }
456 }
457
458 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
459 {
460         struct per_pid *p = NULL, *prev_p;
461         struct sched_switch *sw = (void *)te;
462
463
464         prev_p = find_create_pid(sw->prev_pid);
465
466         p = find_create_pid(sw->next_pid);
467
468         if (prev_p->current && prev_p->current->state != TYPE_NONE)
469                 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
470         if (p && p->current) {
471                 if (p->current->state != TYPE_NONE)
472                         pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
473
474                 p->current->state_since = timestamp;
475                 p->current->state = TYPE_RUNNING;
476         }
477
478         if (prev_p->current) {
479                 prev_p->current->state = TYPE_NONE;
480                 prev_p->current->state_since = timestamp;
481                 if (sw->prev_state & 2)
482                         prev_p->current->state = TYPE_BLOCKED;
483                 if (sw->prev_state == 0)
484                         prev_p->current->state = TYPE_WAITING;
485         }
486 }
487
488
489 static int process_sample_event(union perf_event *event __used,
490                                 struct perf_sample *sample,
491                                 struct perf_evsel *evsel __used,
492                                 struct perf_session *session)
493 {
494         struct trace_entry *te;
495
496         if (session->sample_type & PERF_SAMPLE_TIME) {
497                 if (!first_time || first_time > sample->time)
498                         first_time = sample->time;
499                 if (last_time < sample->time)
500                         last_time = sample->time;
501         }
502
503         te = (void *)sample->raw_data;
504         if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
505                 char *event_str;
506 #ifdef SUPPORT_OLD_POWER_EVENTS
507                 struct power_entry_old *peo;
508                 peo = (void *)te;
509 #endif
510                 /*
511                  * FIXME: use evsel, its already mapped from id to perf_evsel,
512                  * remove perf_header__find_event infrastructure bits.
513                  * Mapping all these "power:cpu_idle" strings to the tracepoint
514                  * ID and then just comparing against evsel->attr.config.
515                  *
516                  * e.g.:
517                  *
518                  * if (evsel->attr.config == power_cpu_idle_id)
519                  */
520                 event_str = perf_header__find_event(te->type);
521
522                 if (!event_str)
523                         return 0;
524
525                 if (sample->cpu > numcpus)
526                         numcpus = sample->cpu;
527
528                 if (strcmp(event_str, "power:cpu_idle") == 0) {
529                         struct power_processor_entry *ppe = (void *)te;
530                         if (ppe->state == (u32)PWR_EVENT_EXIT)
531                                 c_state_end(ppe->cpu_id, sample->time);
532                         else
533                                 c_state_start(ppe->cpu_id, sample->time,
534                                               ppe->state);
535                 }
536                 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
537                         struct power_processor_entry *ppe = (void *)te;
538                         p_state_change(ppe->cpu_id, sample->time, ppe->state);
539                 }
540
541                 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
542                         sched_wakeup(sample->cpu, sample->time, sample->pid, te);
543
544                 else if (strcmp(event_str, "sched:sched_switch") == 0)
545                         sched_switch(sample->cpu, sample->time, te);
546
547 #ifdef SUPPORT_OLD_POWER_EVENTS
548                 if (use_old_power_events) {
549                         if (strcmp(event_str, "power:power_start") == 0)
550                                 c_state_start(peo->cpu_id, sample->time,
551                                               peo->value);
552
553                         else if (strcmp(event_str, "power:power_end") == 0)
554                                 c_state_end(sample->cpu, sample->time);
555
556                         else if (strcmp(event_str,
557                                         "power:power_frequency") == 0)
558                                 p_state_change(peo->cpu_id, sample->time,
559                                                peo->value);
560                 }
561 #endif
562         }
563         return 0;
564 }
565
566 /*
567  * After the last sample we need to wrap up the current C/P state
568  * and close out each CPU for these.
569  */
570 static void end_sample_processing(void)
571 {
572         u64 cpu;
573         struct power_event *pwr;
574
575         for (cpu = 0; cpu <= numcpus; cpu++) {
576                 pwr = malloc(sizeof(struct power_event));
577                 if (!pwr)
578                         return;
579                 memset(pwr, 0, sizeof(struct power_event));
580
581                 /* C state */
582 #if 0
583                 pwr->state = cpus_cstate_state[cpu];
584                 pwr->start_time = cpus_cstate_start_times[cpu];
585                 pwr->end_time = last_time;
586                 pwr->cpu = cpu;
587                 pwr->type = CSTATE;
588                 pwr->next = power_events;
589
590                 power_events = pwr;
591 #endif
592                 /* P state */
593
594                 pwr = malloc(sizeof(struct power_event));
595                 if (!pwr)
596                         return;
597                 memset(pwr, 0, sizeof(struct power_event));
598
599                 pwr->state = cpus_pstate_state[cpu];
600                 pwr->start_time = cpus_pstate_start_times[cpu];
601                 pwr->end_time = last_time;
602                 pwr->cpu = cpu;
603                 pwr->type = PSTATE;
604                 pwr->next = power_events;
605
606                 if (!pwr->start_time)
607                         pwr->start_time = first_time;
608                 if (!pwr->state)
609                         pwr->state = min_freq;
610                 power_events = pwr;
611         }
612 }
613
614 /*
615  * Sort the pid datastructure
616  */
617 static void sort_pids(void)
618 {
619         struct per_pid *new_list, *p, *cursor, *prev;
620         /* sort by ppid first, then by pid, lowest to highest */
621
622         new_list = NULL;
623
624         while (all_data) {
625                 p = all_data;
626                 all_data = p->next;
627                 p->next = NULL;
628
629                 if (new_list == NULL) {
630                         new_list = p;
631                         p->next = NULL;
632                         continue;
633                 }
634                 prev = NULL;
635                 cursor = new_list;
636                 while (cursor) {
637                         if (cursor->ppid > p->ppid ||
638                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
639                                 /* must insert before */
640                                 if (prev) {
641                                         p->next = prev->next;
642                                         prev->next = p;
643                                         cursor = NULL;
644                                         continue;
645                                 } else {
646                                         p->next = new_list;
647                                         new_list = p;
648                                         cursor = NULL;
649                                         continue;
650                                 }
651                         }
652
653                         prev = cursor;
654                         cursor = cursor->next;
655                         if (!cursor)
656                                 prev->next = p;
657                 }
658         }
659         all_data = new_list;
660 }
661
662
663 static void draw_c_p_states(void)
664 {
665         struct power_event *pwr;
666         pwr = power_events;
667
668         /*
669          * two pass drawing so that the P state bars are on top of the C state blocks
670          */
671         while (pwr) {
672                 if (pwr->type == CSTATE)
673                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
674                 pwr = pwr->next;
675         }
676
677         pwr = power_events;
678         while (pwr) {
679                 if (pwr->type == PSTATE) {
680                         if (!pwr->state)
681                                 pwr->state = min_freq;
682                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
683                 }
684                 pwr = pwr->next;
685         }
686 }
687
688 static void draw_wakeups(void)
689 {
690         struct wake_event *we;
691         struct per_pid *p;
692         struct per_pidcomm *c;
693
694         we = wake_events;
695         while (we) {
696                 int from = 0, to = 0;
697                 char *task_from = NULL, *task_to = NULL;
698
699                 /* locate the column of the waker and wakee */
700                 p = all_data;
701                 while (p) {
702                         if (p->pid == we->waker || p->pid == we->wakee) {
703                                 c = p->all;
704                                 while (c) {
705                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
706                                                 if (p->pid == we->waker && !from) {
707                                                         from = c->Y;
708                                                         task_from = strdup(c->comm);
709                                                 }
710                                                 if (p->pid == we->wakee && !to) {
711                                                         to = c->Y;
712                                                         task_to = strdup(c->comm);
713                                                 }
714                                         }
715                                         c = c->next;
716                                 }
717                                 c = p->all;
718                                 while (c) {
719                                         if (p->pid == we->waker && !from) {
720                                                 from = c->Y;
721                                                 task_from = strdup(c->comm);
722                                         }
723                                         if (p->pid == we->wakee && !to) {
724                                                 to = c->Y;
725                                                 task_to = strdup(c->comm);
726                                         }
727                                         c = c->next;
728                                 }
729                         }
730                         p = p->next;
731                 }
732
733                 if (!task_from) {
734                         task_from = malloc(40);
735                         sprintf(task_from, "[%i]", we->waker);
736                 }
737                 if (!task_to) {
738                         task_to = malloc(40);
739                         sprintf(task_to, "[%i]", we->wakee);
740                 }
741
742                 if (we->waker == -1)
743                         svg_interrupt(we->time, to);
744                 else if (from && to && abs(from - to) == 1)
745                         svg_wakeline(we->time, from, to);
746                 else
747                         svg_partial_wakeline(we->time, from, task_from, to, task_to);
748                 we = we->next;
749
750                 free(task_from);
751                 free(task_to);
752         }
753 }
754
755 static void draw_cpu_usage(void)
756 {
757         struct per_pid *p;
758         struct per_pidcomm *c;
759         struct cpu_sample *sample;
760         p = all_data;
761         while (p) {
762                 c = p->all;
763                 while (c) {
764                         sample = c->samples;
765                         while (sample) {
766                                 if (sample->type == TYPE_RUNNING)
767                                         svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
768
769                                 sample = sample->next;
770                         }
771                         c = c->next;
772                 }
773                 p = p->next;
774         }
775 }
776
777 static void draw_process_bars(void)
778 {
779         struct per_pid *p;
780         struct per_pidcomm *c;
781         struct cpu_sample *sample;
782         int Y = 0;
783
784         Y = 2 * numcpus + 2;
785
786         p = all_data;
787         while (p) {
788                 c = p->all;
789                 while (c) {
790                         if (!c->display) {
791                                 c->Y = 0;
792                                 c = c->next;
793                                 continue;
794                         }
795
796                         svg_box(Y, c->start_time, c->end_time, "process");
797                         sample = c->samples;
798                         while (sample) {
799                                 if (sample->type == TYPE_RUNNING)
800                                         svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
801                                 if (sample->type == TYPE_BLOCKED)
802                                         svg_box(Y, sample->start_time, sample->end_time, "blocked");
803                                 if (sample->type == TYPE_WAITING)
804                                         svg_waiting(Y, sample->start_time, sample->end_time);
805                                 sample = sample->next;
806                         }
807
808                         if (c->comm) {
809                                 char comm[256];
810                                 if (c->total_time > 5000000000) /* 5 seconds */
811                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
812                                 else
813                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
814
815                                 svg_text(Y, c->start_time, comm);
816                         }
817                         c->Y = Y;
818                         Y++;
819                         c = c->next;
820                 }
821                 p = p->next;
822         }
823 }
824
825 static void add_process_filter(const char *string)
826 {
827         struct process_filter *filt;
828         int pid;
829
830         pid = strtoull(string, NULL, 10);
831         filt = malloc(sizeof(struct process_filter));
832         if (!filt)
833                 return;
834
835         filt->name = strdup(string);
836         filt->pid  = pid;
837         filt->next = process_filter;
838
839         process_filter = filt;
840 }
841
842 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
843 {
844         struct process_filter *filt;
845         if (!process_filter)
846                 return 1;
847
848         filt = process_filter;
849         while (filt) {
850                 if (filt->pid && p->pid == filt->pid)
851                         return 1;
852                 if (strcmp(filt->name, c->comm) == 0)
853                         return 1;
854                 filt = filt->next;
855         }
856         return 0;
857 }
858
859 static int determine_display_tasks_filtered(void)
860 {
861         struct per_pid *p;
862         struct per_pidcomm *c;
863         int count = 0;
864
865         p = all_data;
866         while (p) {
867                 p->display = 0;
868                 if (p->start_time == 1)
869                         p->start_time = first_time;
870
871                 /* no exit marker, task kept running to the end */
872                 if (p->end_time == 0)
873                         p->end_time = last_time;
874
875                 c = p->all;
876
877                 while (c) {
878                         c->display = 0;
879
880                         if (c->start_time == 1)
881                                 c->start_time = first_time;
882
883                         if (passes_filter(p, c)) {
884                                 c->display = 1;
885                                 p->display = 1;
886                                 count++;
887                         }
888
889                         if (c->end_time == 0)
890                                 c->end_time = last_time;
891
892                         c = c->next;
893                 }
894                 p = p->next;
895         }
896         return count;
897 }
898
899 static int determine_display_tasks(u64 threshold)
900 {
901         struct per_pid *p;
902         struct per_pidcomm *c;
903         int count = 0;
904
905         if (process_filter)
906                 return determine_display_tasks_filtered();
907
908         p = all_data;
909         while (p) {
910                 p->display = 0;
911                 if (p->start_time == 1)
912                         p->start_time = first_time;
913
914                 /* no exit marker, task kept running to the end */
915                 if (p->end_time == 0)
916                         p->end_time = last_time;
917                 if (p->total_time >= threshold && !power_only)
918                         p->display = 1;
919
920                 c = p->all;
921
922                 while (c) {
923                         c->display = 0;
924
925                         if (c->start_time == 1)
926                                 c->start_time = first_time;
927
928                         if (c->total_time >= threshold && !power_only) {
929                                 c->display = 1;
930                                 count++;
931                         }
932
933                         if (c->end_time == 0)
934                                 c->end_time = last_time;
935
936                         c = c->next;
937                 }
938                 p = p->next;
939         }
940         return count;
941 }
942
943
944
945 #define TIME_THRESH 10000000
946
947 static void write_svg_file(const char *filename)
948 {
949         u64 i;
950         int count;
951
952         numcpus++;
953
954
955         count = determine_display_tasks(TIME_THRESH);
956
957         /* We'd like to show at least 15 tasks; be less picky if we have fewer */
958         if (count < 15)
959                 count = determine_display_tasks(TIME_THRESH / 10);
960
961         open_svg(filename, numcpus, count, first_time, last_time);
962
963         svg_time_grid();
964         svg_legenda();
965
966         for (i = 0; i < numcpus; i++)
967                 svg_cpu_box(i, max_freq, turbo_frequency);
968
969         draw_cpu_usage();
970         draw_process_bars();
971         draw_c_p_states();
972         draw_wakeups();
973
974         svg_close();
975 }
976
977 static struct perf_event_ops event_ops = {
978         .comm                   = process_comm_event,
979         .fork                   = process_fork_event,
980         .exit                   = process_exit_event,
981         .sample                 = process_sample_event,
982         .ordered_samples        = true,
983 };
984
985 static int __cmd_timechart(void)
986 {
987         struct perf_session *session = perf_session__new(input_name, O_RDONLY,
988                                                          0, false, &event_ops);
989         int ret = -EINVAL;
990
991         if (session == NULL)
992                 return -ENOMEM;
993
994         if (!perf_session__has_traces(session, "timechart record"))
995                 goto out_delete;
996
997         ret = perf_session__process_events(session, &event_ops);
998         if (ret)
999                 goto out_delete;
1000
1001         end_sample_processing();
1002
1003         sort_pids();
1004
1005         write_svg_file(output_name);
1006
1007         pr_info("Written %2.1f seconds of trace to %s.\n",
1008                 (last_time - first_time) / 1000000000.0, output_name);
1009 out_delete:
1010         perf_session__delete(session);
1011         return ret;
1012 }
1013
1014 static const char * const timechart_usage[] = {
1015         "perf timechart [<options>] {record}",
1016         NULL
1017 };
1018
1019 #ifdef SUPPORT_OLD_POWER_EVENTS
1020 static const char * const record_old_args[] = {
1021         "record",
1022         "-a",
1023         "-R",
1024         "-f",
1025         "-c", "1",
1026         "-e", "power:power_start",
1027         "-e", "power:power_end",
1028         "-e", "power:power_frequency",
1029         "-e", "sched:sched_wakeup",
1030         "-e", "sched:sched_switch",
1031 };
1032 #endif
1033
1034 static const char * const record_new_args[] = {
1035         "record",
1036         "-a",
1037         "-R",
1038         "-f",
1039         "-c", "1",
1040         "-e", "power:cpu_frequency",
1041         "-e", "power:cpu_idle",
1042         "-e", "sched:sched_wakeup",
1043         "-e", "sched:sched_switch",
1044 };
1045
1046 static int __cmd_record(int argc, const char **argv)
1047 {
1048         unsigned int rec_argc, i, j;
1049         const char **rec_argv;
1050         const char * const *record_args = record_new_args;
1051         unsigned int record_elems = ARRAY_SIZE(record_new_args);
1052
1053 #ifdef SUPPORT_OLD_POWER_EVENTS
1054         if (!is_valid_tracepoint("power:cpu_idle") &&
1055             is_valid_tracepoint("power:power_start")) {
1056                 use_old_power_events = 1;
1057                 record_args = record_old_args;
1058                 record_elems = ARRAY_SIZE(record_old_args);
1059         }
1060 #endif
1061
1062         rec_argc = record_elems + argc - 1;
1063         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1064
1065         if (rec_argv == NULL)
1066                 return -ENOMEM;
1067
1068         for (i = 0; i < record_elems; i++)
1069                 rec_argv[i] = strdup(record_args[i]);
1070
1071         for (j = 1; j < (unsigned int)argc; j++, i++)
1072                 rec_argv[i] = argv[j];
1073
1074         return cmd_record(i, rec_argv, NULL);
1075 }
1076
1077 static int
1078 parse_process(const struct option *opt __used, const char *arg, int __used unset)
1079 {
1080         if (arg)
1081                 add_process_filter(arg);
1082         return 0;
1083 }
1084
1085 static const struct option options[] = {
1086         OPT_STRING('i', "input", &input_name, "file",
1087                     "input file name"),
1088         OPT_STRING('o', "output", &output_name, "file",
1089                     "output file name"),
1090         OPT_INTEGER('w', "width", &svg_page_width,
1091                     "page width"),
1092         OPT_BOOLEAN('P', "power-only", &power_only,
1093                     "output power data only"),
1094         OPT_CALLBACK('p', "process", NULL, "process",
1095                       "process selector. Pass a pid or process name.",
1096                        parse_process),
1097         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098                     "Look for files with symbols relative to this directory"),
1099         OPT_END()
1100 };
1101
1102
1103 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1104 {
1105         argc = parse_options(argc, argv, options, timechart_usage,
1106                         PARSE_OPT_STOP_AT_NON_OPTION);
1107
1108         symbol__init();
1109
1110         if (argc && !strncmp(argv[0], "rec", 3))
1111                 return __cmd_record(argc, argv);
1112         else if (argc)
1113                 usage_with_options(timechart_usage, options);
1114
1115         setup_pager();
1116
1117         return __cmd_timechart();
1118 }