Merge git://github.com/herbertx/crypto
[pandora-kernel.git] / sound / sparc / dbri.c
1 /*
2  * Driver for DBRI sound chip found on Sparcs.
3  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
4  *
5  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
6  *
7  * Based entirely upon drivers/sbus/audio/dbri.c which is:
8  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
9  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
10  *
11  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12  * on Sun SPARCStation 10, 20, LX and Voyager models.
13  *
14  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15  *   data time multiplexer with ISDN support (aka T7259)
16  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18  *   Documentation:
19  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20  *     Sparc Technology Business (courtesy of Sun Support)
21  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22  *     available from the Lucent (formerly AT&T microelectronics) home
23  *     page.
24  *   - http://www.freesoft.org/Linux/DBRI/
25  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
27  *   Documentation: from the Crystal Semiconductor home page.
28  *
29  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30  * memory and a serial device (long pipes, no. 0-15) or between two serial
31  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32  * device (short pipes).
33  * A timeslot defines the bit-offset and no. of bits read from a serial device.
34  * The timeslots are linked to 6 circular lists, one for each direction for
35  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36  * (the second one is a monitor/tee pipe, valid only for serial input).
37  *
38  * The mmcodec is connected via the CHI bus and needs the data & some
39  * parameters (volume, output selection) time multiplexed in 8 byte
40  * chunks. It also has a control mode, which serves for audio format setting.
41  *
42  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43  * the same CHI bus, so I thought perhaps it is possible to use the on-board
44  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45  * audio devices. But the SUN HW group decided against it, at least on my
46  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47  * connected.
48  *
49  * I've tried to stick to the following function naming conventions:
50  * snd_*        ALSA stuff
51  * cs4215_*     CS4215 codec specific stuff
52  * dbri_*       DBRI high-level stuff
53  * other        DBRI low-level stuff
54  */
55
56 #include <linux/interrupt.h>
57 #include <linux/delay.h>
58 #include <linux/irq.h>
59 #include <linux/io.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/gfp.h>
62
63 #include <sound/core.h>
64 #include <sound/pcm.h>
65 #include <sound/pcm_params.h>
66 #include <sound/info.h>
67 #include <sound/control.h>
68 #include <sound/initval.h>
69
70 #include <linux/of.h>
71 #include <linux/of_device.h>
72 #include <linux/atomic.h>
73 #include <linux/module.h>
74
75 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
76 MODULE_DESCRIPTION("Sun DBRI");
77 MODULE_LICENSE("GPL");
78 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
79
80 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
81 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
82 /* Enable this card */
83 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
84
85 module_param_array(index, int, NULL, 0444);
86 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
87 module_param_array(id, charp, NULL, 0444);
88 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
89 module_param_array(enable, bool, NULL, 0444);
90 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
91
92 #undef DBRI_DEBUG
93
94 #define D_INT   (1<<0)
95 #define D_GEN   (1<<1)
96 #define D_CMD   (1<<2)
97 #define D_MM    (1<<3)
98 #define D_USR   (1<<4)
99 #define D_DESC  (1<<5)
100
101 static int dbri_debug;
102 module_param(dbri_debug, int, 0644);
103 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
104
105 #ifdef DBRI_DEBUG
106 static char *cmds[] = {
107         "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
108         "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
109 };
110
111 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
112
113 #else
114 #define dprintk(a, x...) do { } while (0)
115
116 #endif                          /* DBRI_DEBUG */
117
118 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |       \
119                                     (intr << 27) |      \
120                                     value)
121
122 /***************************************************************************
123         CS4215 specific definitions and structures
124 ****************************************************************************/
125
126 struct cs4215 {
127         __u8 data[4];           /* Data mode: Time slots 5-8 */
128         __u8 ctrl[4];           /* Ctrl mode: Time slots 1-4 */
129         __u8 onboard;
130         __u8 offset;            /* Bit offset from frame sync to time slot 1 */
131         volatile __u32 status;
132         volatile __u32 version;
133         __u8 precision;         /* In bits, either 8 or 16 */
134         __u8 channels;          /* 1 or 2 */
135 };
136
137 /*
138  * Control mode first
139  */
140
141 /* Time Slot 1, Status register */
142 #define CS4215_CLB      (1<<2)  /* Control Latch Bit */
143 #define CS4215_OLB      (1<<3)  /* 1: line: 2.0V, speaker 4V */
144                                 /* 0: line: 2.8V, speaker 8V */
145 #define CS4215_MLB      (1<<4)  /* 1: Microphone: 20dB gain disabled */
146 #define CS4215_RSRVD_1  (1<<5)
147
148 /* Time Slot 2, Data Format Register */
149 #define CS4215_DFR_LINEAR16     0
150 #define CS4215_DFR_ULAW         1
151 #define CS4215_DFR_ALAW         2
152 #define CS4215_DFR_LINEAR8      3
153 #define CS4215_DFR_STEREO       (1<<2)
154 static struct {
155         unsigned short freq;
156         unsigned char xtal;
157         unsigned char csval;
158 } CS4215_FREQ[] = {
159         {  8000, (1 << 4), (0 << 3) },
160         { 16000, (1 << 4), (1 << 3) },
161         { 27429, (1 << 4), (2 << 3) },  /* Actually 24428.57 */
162         { 32000, (1 << 4), (3 << 3) },
163      /* {    NA, (1 << 4), (4 << 3) }, */
164      /* {    NA, (1 << 4), (5 << 3) }, */
165         { 48000, (1 << 4), (6 << 3) },
166         {  9600, (1 << 4), (7 << 3) },
167         {  5512, (2 << 4), (0 << 3) },  /* Actually 5512.5 */
168         { 11025, (2 << 4), (1 << 3) },
169         { 18900, (2 << 4), (2 << 3) },
170         { 22050, (2 << 4), (3 << 3) },
171         { 37800, (2 << 4), (4 << 3) },
172         { 44100, (2 << 4), (5 << 3) },
173         { 33075, (2 << 4), (6 << 3) },
174         {  6615, (2 << 4), (7 << 3) },
175         { 0, 0, 0}
176 };
177
178 #define CS4215_HPF      (1<<7)  /* High Pass Filter, 1: Enabled */
179
180 #define CS4215_12_MASK  0xfcbf  /* Mask off reserved bits in slot 1 & 2 */
181
182 /* Time Slot 3, Serial Port Control register */
183 #define CS4215_XEN      (1<<0)  /* 0: Enable serial output */
184 #define CS4215_XCLK     (1<<1)  /* 1: Master mode: Generate SCLK */
185 #define CS4215_BSEL_64  (0<<2)  /* Bitrate: 64 bits per frame */
186 #define CS4215_BSEL_128 (1<<2)
187 #define CS4215_BSEL_256 (2<<2)
188 #define CS4215_MCK_MAST (0<<4)  /* Master clock */
189 #define CS4215_MCK_XTL1 (1<<4)  /* 24.576 MHz clock source */
190 #define CS4215_MCK_XTL2 (2<<4)  /* 16.9344 MHz clock source */
191 #define CS4215_MCK_CLK1 (3<<4)  /* Clockin, 256 x Fs */
192 #define CS4215_MCK_CLK2 (4<<4)  /* Clockin, see DFR */
193
194 /* Time Slot 4, Test Register */
195 #define CS4215_DAD      (1<<0)  /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
196 #define CS4215_ENL      (1<<1)  /* Enable Loopback Testing */
197
198 /* Time Slot 5, Parallel Port Register */
199 /* Read only here and the same as the in data mode */
200
201 /* Time Slot 6, Reserved  */
202
203 /* Time Slot 7, Version Register  */
204 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
205
206 /* Time Slot 8, Reserved  */
207
208 /*
209  * Data mode
210  */
211 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
212
213 /* Time Slot 5, Output Setting  */
214 #define CS4215_LO(v)    v       /* Left Output Attenuation 0x3f: -94.5 dB */
215 #define CS4215_LE       (1<<6)  /* Line Out Enable */
216 #define CS4215_HE       (1<<7)  /* Headphone Enable */
217
218 /* Time Slot 6, Output Setting  */
219 #define CS4215_RO(v)    v       /* Right Output Attenuation 0x3f: -94.5 dB */
220 #define CS4215_SE       (1<<6)  /* Speaker Enable */
221 #define CS4215_ADI      (1<<7)  /* A/D Data Invalid: Busy in calibration */
222
223 /* Time Slot 7, Input Setting */
224 #define CS4215_LG(v)    v       /* Left Gain Setting 0xf: 22.5 dB */
225 #define CS4215_IS       (1<<4)  /* Input Select: 1=Microphone, 0=Line */
226 #define CS4215_OVR      (1<<5)  /* 1: Over range condition occurred */
227 #define CS4215_PIO0     (1<<6)  /* Parallel I/O 0 */
228 #define CS4215_PIO1     (1<<7)
229
230 /* Time Slot 8, Input Setting */
231 #define CS4215_RG(v)    v       /* Right Gain Setting 0xf: 22.5 dB */
232 #define CS4215_MA(v)    (v<<4)  /* Monitor Path Attenuation 0xf: mute */
233
234 /***************************************************************************
235                 DBRI specific definitions and structures
236 ****************************************************************************/
237
238 /* DBRI main registers */
239 #define REG0    0x00            /* Status and Control */
240 #define REG1    0x04            /* Mode and Interrupt */
241 #define REG2    0x08            /* Parallel IO */
242 #define REG3    0x0c            /* Test */
243 #define REG8    0x20            /* Command Queue Pointer */
244 #define REG9    0x24            /* Interrupt Queue Pointer */
245
246 #define DBRI_NO_CMDS    64
247 #define DBRI_INT_BLK    64
248 #define DBRI_NO_DESCS   64
249 #define DBRI_NO_PIPES   32
250 #define DBRI_MAX_PIPE   (DBRI_NO_PIPES - 1)
251
252 #define DBRI_REC        0
253 #define DBRI_PLAY       1
254 #define DBRI_NO_STREAMS 2
255
256 /* One transmit/receive descriptor */
257 /* When ba != 0 descriptor is used */
258 struct dbri_mem {
259         volatile __u32 word1;
260         __u32 ba;       /* Transmit/Receive Buffer Address */
261         __u32 nda;      /* Next Descriptor Address */
262         volatile __u32 word4;
263 };
264
265 /* This structure is in a DMA region where it can accessed by both
266  * the CPU and the DBRI
267  */
268 struct dbri_dma {
269         s32 cmd[DBRI_NO_CMDS];                  /* Place for commands */
270         volatile s32 intr[DBRI_INT_BLK];        /* Interrupt field  */
271         struct dbri_mem desc[DBRI_NO_DESCS];    /* Xmit/receive descriptors */
272 };
273
274 #define dbri_dma_off(member, elem)      \
275         ((u32)(unsigned long)           \
276          (&(((struct dbri_dma *)0)->member[elem])))
277
278 enum in_or_out { PIPEinput, PIPEoutput };
279
280 struct dbri_pipe {
281         u32 sdp;                /* SDP command word */
282         int nextpipe;           /* Next pipe in linked list */
283         int length;             /* Length of timeslot (bits) */
284         int first_desc;         /* Index of first descriptor */
285         int desc;               /* Index of active descriptor */
286         volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
287 };
288
289 /* Per stream (playback or record) information */
290 struct dbri_streaminfo {
291         struct snd_pcm_substream *substream;
292         u32 dvma_buffer;        /* Device view of ALSA DMA buffer */
293         int size;               /* Size of DMA buffer             */
294         size_t offset;          /* offset in user buffer          */
295         int pipe;               /* Data pipe used                 */
296         int left_gain;          /* mixer elements                 */
297         int right_gain;
298 };
299
300 /* This structure holds the information for both chips (DBRI & CS4215) */
301 struct snd_dbri {
302         int regs_size, irq;     /* Needed for unload */
303         struct platform_device *op;     /* OF device info */
304         spinlock_t lock;
305
306         struct dbri_dma *dma;   /* Pointer to our DMA block */
307         u32 dma_dvma;           /* DBRI visible DMA address */
308
309         void __iomem *regs;     /* dbri HW regs */
310         int dbri_irqp;          /* intr queue pointer */
311
312         struct dbri_pipe pipes[DBRI_NO_PIPES];  /* DBRI's 32 data pipes */
313         int next_desc[DBRI_NO_DESCS];           /* Index of next desc, or -1 */
314         spinlock_t cmdlock;     /* Protects cmd queue accesses */
315         s32 *cmdptr;            /* Pointer to the last queued cmd */
316
317         int chi_bpf;
318
319         struct cs4215 mm;       /* mmcodec special info */
320                                 /* per stream (playback/record) info */
321         struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
322 };
323
324 #define DBRI_MAX_VOLUME         63      /* Output volume */
325 #define DBRI_MAX_GAIN           15      /* Input gain */
326
327 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328 #define D_P             (1<<15) /* Program command & queue pointer valid */
329 #define D_G             (1<<14) /* Allow 4-Word SBus Burst */
330 #define D_S             (1<<13) /* Allow 16-Word SBus Burst */
331 #define D_E             (1<<12) /* Allow 8-Word SBus Burst */
332 #define D_X             (1<<7)  /* Sanity Timer Disable */
333 #define D_T             (1<<6)  /* Permit activation of the TE interface */
334 #define D_N             (1<<5)  /* Permit activation of the NT interface */
335 #define D_C             (1<<4)  /* Permit activation of the CHI interface */
336 #define D_F             (1<<3)  /* Force Sanity Timer Time-Out */
337 #define D_D             (1<<2)  /* Disable Master Mode */
338 #define D_H             (1<<1)  /* Halt for Analysis */
339 #define D_R             (1<<0)  /* Soft Reset */
340
341 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342 #define D_LITTLE_END    (1<<8)  /* Byte Order */
343 #define D_BIG_END       (0<<8)  /* Byte Order */
344 #define D_MRR           (1<<4)  /* Multiple Error Ack on SBus (read only) */
345 #define D_MLE           (1<<3)  /* Multiple Late Error on SBus (read only) */
346 #define D_LBG           (1<<2)  /* Lost Bus Grant on SBus (read only) */
347 #define D_MBE           (1<<1)  /* Burst Error on SBus (read only) */
348 #define D_IR            (1<<0)  /* Interrupt Indicator (read only) */
349
350 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351 #define D_ENPIO3        (1<<7)  /* Enable Pin 3 */
352 #define D_ENPIO2        (1<<6)  /* Enable Pin 2 */
353 #define D_ENPIO1        (1<<5)  /* Enable Pin 1 */
354 #define D_ENPIO0        (1<<4)  /* Enable Pin 0 */
355 #define D_ENPIO         (0xf0)  /* Enable all the pins */
356 #define D_PIO3          (1<<3)  /* Pin 3: 1: Data mode, 0: Ctrl mode */
357 #define D_PIO2          (1<<2)  /* Pin 2: 1: Onboard PDN */
358 #define D_PIO1          (1<<1)  /* Pin 1: 0: Reset */
359 #define D_PIO0          (1<<0)  /* Pin 0: 1: Speakerbox PDN */
360
361 /* DBRI Commands (Page 20) */
362 #define D_WAIT          0x0     /* Stop execution */
363 #define D_PAUSE         0x1     /* Flush long pipes */
364 #define D_JUMP          0x2     /* New command queue */
365 #define D_IIQ           0x3     /* Initialize Interrupt Queue */
366 #define D_REX           0x4     /* Report command execution via interrupt */
367 #define D_SDP           0x5     /* Setup Data Pipe */
368 #define D_CDP           0x6     /* Continue Data Pipe (reread NULL Pointer) */
369 #define D_DTS           0x7     /* Define Time Slot */
370 #define D_SSP           0x8     /* Set short Data Pipe */
371 #define D_CHI           0x9     /* Set CHI Global Mode */
372 #define D_NT            0xa     /* NT Command */
373 #define D_TE            0xb     /* TE Command */
374 #define D_CDEC          0xc     /* Codec setup */
375 #define D_TEST          0xd     /* No comment */
376 #define D_CDM           0xe     /* CHI Data mode command */
377
378 /* Special bits for some commands */
379 #define D_PIPE(v)      ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
380
381 /* Setup Data Pipe */
382 /* IRM */
383 #define D_SDP_2SAME     (1<<18) /* Report 2nd time in a row value received */
384 #define D_SDP_CHANGE    (2<<18) /* Report any changes */
385 #define D_SDP_EVERY     (3<<18) /* Report any changes */
386 #define D_SDP_EOL       (1<<17) /* EOL interrupt enable */
387 #define D_SDP_IDLE      (1<<16) /* HDLC idle interrupt enable */
388
389 /* Pipe data MODE */
390 #define D_SDP_MEM       (0<<13) /* To/from memory */
391 #define D_SDP_HDLC      (2<<13)
392 #define D_SDP_HDLC_D    (3<<13) /* D Channel (prio control) */
393 #define D_SDP_SER       (4<<13) /* Serial to serial */
394 #define D_SDP_FIXED     (6<<13) /* Short only */
395 #define D_SDP_MODE(v)   ((v)&(7<<13))
396
397 #define D_SDP_TO_SER    (1<<12) /* Direction */
398 #define D_SDP_FROM_SER  (0<<12) /* Direction */
399 #define D_SDP_MSB       (1<<11) /* Bit order within Byte */
400 #define D_SDP_LSB       (0<<11) /* Bit order within Byte */
401 #define D_SDP_P         (1<<10) /* Pointer Valid */
402 #define D_SDP_A         (1<<8)  /* Abort */
403 #define D_SDP_C         (1<<7)  /* Clear */
404
405 /* Define Time Slot */
406 #define D_DTS_VI        (1<<17) /* Valid Input Time-Slot Descriptor */
407 #define D_DTS_VO        (1<<16) /* Valid Output Time-Slot Descriptor */
408 #define D_DTS_INS       (1<<15) /* Insert Time Slot */
409 #define D_DTS_DEL       (0<<15) /* Delete Time Slot */
410 #define D_DTS_PRVIN(v) ((v)<<10)        /* Previous In Pipe */
411 #define D_DTS_PRVOUT(v)        ((v)<<5) /* Previous Out Pipe */
412
413 /* Time Slot defines */
414 #define D_TS_LEN(v)     ((v)<<24)       /* Number of bits in this time slot */
415 #define D_TS_CYCLE(v)   ((v)<<14)       /* Bit Count at start of TS */
416 #define D_TS_DI         (1<<13) /* Data Invert */
417 #define D_TS_1CHANNEL   (0<<10) /* Single Channel / Normal mode */
418 #define D_TS_MONITOR    (2<<10) /* Monitor pipe */
419 #define D_TS_NONCONTIG  (3<<10) /* Non contiguous mode */
420 #define D_TS_ANCHOR     (7<<10) /* Starting short pipes */
421 #define D_TS_MON(v)    ((v)<<5) /* Monitor Pipe */
422 #define D_TS_NEXT(v)   ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
423
424 /* Concentration Highway Interface Modes */
425 #define D_CHI_CHICM(v)  ((v)<<16)       /* Clock mode */
426 #define D_CHI_IR        (1<<15) /* Immediate Interrupt Report */
427 #define D_CHI_EN        (1<<14) /* CHIL Interrupt enabled */
428 #define D_CHI_OD        (1<<13) /* Open Drain Enable */
429 #define D_CHI_FE        (1<<12) /* Sample CHIFS on Rising Frame Edge */
430 #define D_CHI_FD        (1<<11) /* Frame Drive */
431 #define D_CHI_BPF(v)    ((v)<<0)        /* Bits per Frame */
432
433 /* NT: These are here for completeness */
434 #define D_NT_FBIT       (1<<17) /* Frame Bit */
435 #define D_NT_NBF        (1<<16) /* Number of bad frames to loose framing */
436 #define D_NT_IRM_IMM    (1<<15) /* Interrupt Report & Mask: Immediate */
437 #define D_NT_IRM_EN     (1<<14) /* Interrupt Report & Mask: Enable */
438 #define D_NT_ISNT       (1<<13) /* Configure interface as NT */
439 #define D_NT_FT         (1<<12) /* Fixed Timing */
440 #define D_NT_EZ         (1<<11) /* Echo Channel is Zeros */
441 #define D_NT_IFA        (1<<10) /* Inhibit Final Activation */
442 #define D_NT_ACT        (1<<9)  /* Activate Interface */
443 #define D_NT_MFE        (1<<8)  /* Multiframe Enable */
444 #define D_NT_RLB(v)     ((v)<<5)        /* Remote Loopback */
445 #define D_NT_LLB(v)     ((v)<<2)        /* Local Loopback */
446 #define D_NT_FACT       (1<<1)  /* Force Activation */
447 #define D_NT_ABV        (1<<0)  /* Activate Bipolar Violation */
448
449 /* Codec Setup */
450 #define D_CDEC_CK(v)    ((v)<<24)       /* Clock Select */
451 #define D_CDEC_FED(v)   ((v)<<12)       /* FSCOD Falling Edge Delay */
452 #define D_CDEC_RED(v)   ((v)<<0)        /* FSCOD Rising Edge Delay */
453
454 /* Test */
455 #define D_TEST_RAM(v)   ((v)<<16)       /* RAM Pointer */
456 #define D_TEST_SIZE(v)  ((v)<<11)       /* */
457 #define D_TEST_ROMONOFF 0x5     /* Toggle ROM opcode monitor on/off */
458 #define D_TEST_PROC     0x6     /* Microprocessor test */
459 #define D_TEST_SER      0x7     /* Serial-Controller test */
460 #define D_TEST_RAMREAD  0x8     /* Copy from Ram to system memory */
461 #define D_TEST_RAMWRITE 0x9     /* Copy into Ram from system memory */
462 #define D_TEST_RAMBIST  0xa     /* RAM Built-In Self Test */
463 #define D_TEST_MCBIST   0xb     /* Microcontroller Built-In Self Test */
464 #define D_TEST_DUMP     0xe     /* ROM Dump */
465
466 /* CHI Data Mode */
467 #define D_CDM_THI       (1 << 8)        /* Transmit Data on CHIDR Pin */
468 #define D_CDM_RHI       (1 << 7)        /* Receive Data on CHIDX Pin */
469 #define D_CDM_RCE       (1 << 6)        /* Receive on Rising Edge of CHICK */
470 #define D_CDM_XCE       (1 << 2) /* Transmit Data on Rising Edge of CHICK */
471 #define D_CDM_XEN       (1 << 1)        /* Transmit Highway Enable */
472 #define D_CDM_REN       (1 << 0)        /* Receive Highway Enable */
473
474 /* The Interrupts */
475 #define D_INTR_BRDY     1       /* Buffer Ready for processing */
476 #define D_INTR_MINT     2       /* Marked Interrupt in RD/TD */
477 #define D_INTR_IBEG     3       /* Flag to idle transition detected (HDLC) */
478 #define D_INTR_IEND     4       /* Idle to flag transition detected (HDLC) */
479 #define D_INTR_EOL      5       /* End of List */
480 #define D_INTR_CMDI     6       /* Command has bean read */
481 #define D_INTR_XCMP     8       /* Transmission of frame complete */
482 #define D_INTR_SBRI     9       /* BRI status change info */
483 #define D_INTR_FXDT     10      /* Fixed data change */
484 #define D_INTR_CHIL     11      /* CHI lost frame sync (channel 36 only) */
485 #define D_INTR_COLL     11      /* Unrecoverable D-Channel collision */
486 #define D_INTR_DBYT     12      /* Dropped by frame slip */
487 #define D_INTR_RBYT     13      /* Repeated by frame slip */
488 #define D_INTR_LINT     14      /* Lost Interrupt */
489 #define D_INTR_UNDR     15      /* DMA underrun */
490
491 #define D_INTR_TE       32
492 #define D_INTR_NT       34
493 #define D_INTR_CHI      36
494 #define D_INTR_CMD      38
495
496 #define D_INTR_GETCHAN(v)       (((v) >> 24) & 0x3f)
497 #define D_INTR_GETCODE(v)       (((v) >> 20) & 0xf)
498 #define D_INTR_GETCMD(v)        (((v) >> 16) & 0xf)
499 #define D_INTR_GETVAL(v)        ((v) & 0xffff)
500 #define D_INTR_GETRVAL(v)       ((v) & 0xfffff)
501
502 #define D_P_0           0       /* TE receive anchor */
503 #define D_P_1           1       /* TE transmit anchor */
504 #define D_P_2           2       /* NT transmit anchor */
505 #define D_P_3           3       /* NT receive anchor */
506 #define D_P_4           4       /* CHI send data */
507 #define D_P_5           5       /* CHI receive data */
508 #define D_P_6           6       /* */
509 #define D_P_7           7       /* */
510 #define D_P_8           8       /* */
511 #define D_P_9           9       /* */
512 #define D_P_10          10      /* */
513 #define D_P_11          11      /* */
514 #define D_P_12          12      /* */
515 #define D_P_13          13      /* */
516 #define D_P_14          14      /* */
517 #define D_P_15          15      /* */
518 #define D_P_16          16      /* CHI anchor pipe */
519 #define D_P_17          17      /* CHI send */
520 #define D_P_18          18      /* CHI receive */
521 #define D_P_19          19      /* CHI receive */
522 #define D_P_20          20      /* CHI receive */
523 #define D_P_21          21      /* */
524 #define D_P_22          22      /* */
525 #define D_P_23          23      /* */
526 #define D_P_24          24      /* */
527 #define D_P_25          25      /* */
528 #define D_P_26          26      /* */
529 #define D_P_27          27      /* */
530 #define D_P_28          28      /* */
531 #define D_P_29          29      /* */
532 #define D_P_30          30      /* */
533 #define D_P_31          31      /* */
534
535 /* Transmit descriptor defines */
536 #define DBRI_TD_F       (1 << 31)       /* End of Frame */
537 #define DBRI_TD_D       (1 << 30)       /* Do not append CRC */
538 #define DBRI_TD_CNT(v)  ((v) << 16) /* Number of valid bytes in the buffer */
539 #define DBRI_TD_B       (1 << 15)       /* Final interrupt */
540 #define DBRI_TD_M       (1 << 14)       /* Marker interrupt */
541 #define DBRI_TD_I       (1 << 13)       /* Transmit Idle Characters */
542 #define DBRI_TD_FCNT(v) (v)             /* Flag Count */
543 #define DBRI_TD_UNR     (1 << 3) /* Underrun: transmitter is out of data */
544 #define DBRI_TD_ABT     (1 << 2)        /* Abort: frame aborted */
545 #define DBRI_TD_TBC     (1 << 0)        /* Transmit buffer Complete */
546 #define DBRI_TD_STATUS(v)       ((v) & 0xff)    /* Transmit status */
547                         /* Maximum buffer size per TD: almost 8KB */
548 #define DBRI_TD_MAXCNT  ((1 << 13) - 4)
549
550 /* Receive descriptor defines */
551 #define DBRI_RD_F       (1 << 31)       /* End of Frame */
552 #define DBRI_RD_C       (1 << 30)       /* Completed buffer */
553 #define DBRI_RD_B       (1 << 15)       /* Final interrupt */
554 #define DBRI_RD_M       (1 << 14)       /* Marker interrupt */
555 #define DBRI_RD_BCNT(v) (v)             /* Buffer size */
556 #define DBRI_RD_CRC     (1 << 7)        /* 0: CRC is correct */
557 #define DBRI_RD_BBC     (1 << 6)        /* 1: Bad Byte received */
558 #define DBRI_RD_ABT     (1 << 5)        /* Abort: frame aborted */
559 #define DBRI_RD_OVRN    (1 << 3)        /* Overrun: data lost */
560 #define DBRI_RD_STATUS(v)      ((v) & 0xff)     /* Receive status */
561 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)   /* Valid bytes in the buffer */
562
563 /* stream_info[] access */
564 /* Translate the ALSA direction into the array index */
565 #define DBRI_STREAMNO(substream)                                \
566                 (substream->stream ==                           \
567                  SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
568
569 /* Return a pointer to dbri_streaminfo */
570 #define DBRI_STREAM(dbri, substream)    \
571                 &dbri->stream_info[DBRI_STREAMNO(substream)]
572
573 /*
574  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
575  * So we have to reverse the bits. Note: not all bit lengths are supported
576  */
577 static __u32 reverse_bytes(__u32 b, int len)
578 {
579         switch (len) {
580         case 32:
581                 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
582         case 16:
583                 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
584         case 8:
585                 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
586         case 4:
587                 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
588         case 2:
589                 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
590         case 1:
591         case 0:
592                 break;
593         default:
594                 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
595         };
596
597         return b;
598 }
599
600 /*
601 ****************************************************************************
602 ************** DBRI initialization and command synchronization *************
603 ****************************************************************************
604
605 Commands are sent to the DBRI by building a list of them in memory,
606 then writing the address of the first list item to DBRI register 8.
607 The list is terminated with a WAIT command, which generates a
608 CPU interrupt to signal completion.
609
610 Since the DBRI can run in parallel with the CPU, several means of
611 synchronization present themselves. The method implemented here uses
612 the dbri_cmdwait() to wait for execution of batch of sent commands.
613
614 A circular command buffer is used here. A new command is being added
615 while another can be executed. The scheme works by adding two WAIT commands
616 after each sent batch of commands. When the next batch is prepared it is
617 added after the WAIT commands then the WAITs are replaced with single JUMP
618 command to the new batch. The the DBRI is forced to reread the last WAIT
619 command (replaced by the JUMP by then). If the DBRI is still executing
620 previous commands the request to reread the WAIT command is ignored.
621
622 Every time a routine wants to write commands to the DBRI, it must
623 first call dbri_cmdlock() and get pointer to a free space in
624 dbri->dma->cmd buffer. After this, the commands can be written to
625 the buffer, and dbri_cmdsend() is called with the final pointer value
626 to send them to the DBRI.
627
628 */
629
630 #define MAXLOOPS 20
631 /*
632  * Wait for the current command string to execute
633  */
634 static void dbri_cmdwait(struct snd_dbri *dbri)
635 {
636         int maxloops = MAXLOOPS;
637         unsigned long flags;
638
639         /* Delay if previous commands are still being processed */
640         spin_lock_irqsave(&dbri->lock, flags);
641         while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
642                 spin_unlock_irqrestore(&dbri->lock, flags);
643                 msleep_interruptible(1);
644                 spin_lock_irqsave(&dbri->lock, flags);
645         }
646         spin_unlock_irqrestore(&dbri->lock, flags);
647
648         if (maxloops == 0)
649                 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
650         else
651                 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
652                         MAXLOOPS - maxloops - 1);
653 }
654 /*
655  * Lock the command queue and return pointer to space for len cmd words
656  * It locks the cmdlock spinlock.
657  */
658 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
659 {
660         /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
661         len += 2;
662         spin_lock(&dbri->cmdlock);
663         if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
664                 return dbri->cmdptr + 2;
665         else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
666                 return dbri->dma->cmd;
667         else
668                 printk(KERN_ERR "DBRI: no space for commands.");
669
670         return NULL;
671 }
672
673 /*
674  * Send prepared cmd string. It works by writing a JUMP cmd into
675  * the last WAIT cmd and force DBRI to reread the cmd.
676  * The JUMP cmd points to the new cmd string.
677  * It also releases the cmdlock spinlock.
678  *
679  * Lock must be held before calling this.
680  */
681 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
682 {
683         s32 tmp, addr;
684         static int wait_id = 0;
685
686         wait_id++;
687         wait_id &= 0xffff;      /* restrict it to a 16 bit counter. */
688         *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
689         *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
690
691         /* Replace the last command with JUMP */
692         addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
693         *(dbri->cmdptr+1) = addr;
694         *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
695
696 #ifdef DBRI_DEBUG
697         if (cmd > dbri->cmdptr) {
698                 s32 *ptr;
699
700                 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
701                         dprintk(D_CMD, "cmd: %lx:%08x\n",
702                                 (unsigned long)ptr, *ptr);
703         } else {
704                 s32 *ptr = dbri->cmdptr;
705
706                 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
707                 ptr++;
708                 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
709                 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
710                         dprintk(D_CMD, "cmd: %lx:%08x\n",
711                                 (unsigned long)ptr, *ptr);
712         }
713 #endif
714
715         /* Reread the last command */
716         tmp = sbus_readl(dbri->regs + REG0);
717         tmp |= D_P;
718         sbus_writel(tmp, dbri->regs + REG0);
719
720         dbri->cmdptr = cmd;
721         spin_unlock(&dbri->cmdlock);
722 }
723
724 /* Lock must be held when calling this */
725 static void dbri_reset(struct snd_dbri *dbri)
726 {
727         int i;
728         u32 tmp;
729
730         dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
731                 sbus_readl(dbri->regs + REG0),
732                 sbus_readl(dbri->regs + REG2),
733                 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
734
735         sbus_writel(D_R, dbri->regs + REG0);    /* Soft Reset */
736         for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
737                 udelay(10);
738
739         /* A brute approach - DBRI falls back to working burst size by itself
740          * On SS20 D_S does not work, so do not try so high. */
741         tmp = sbus_readl(dbri->regs + REG0);
742         tmp |= D_G | D_E;
743         tmp &= ~D_S;
744         sbus_writel(tmp, dbri->regs + REG0);
745 }
746
747 /* Lock must not be held before calling this */
748 static void __devinit dbri_initialize(struct snd_dbri *dbri)
749 {
750         s32 *cmd;
751         u32 dma_addr;
752         unsigned long flags;
753         int n;
754
755         spin_lock_irqsave(&dbri->lock, flags);
756
757         dbri_reset(dbri);
758
759         /* Initialize pipes */
760         for (n = 0; n < DBRI_NO_PIPES; n++)
761                 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
762
763         spin_lock_init(&dbri->cmdlock);
764         /*
765          * Initialize the interrupt ring buffer.
766          */
767         dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
768         dbri->dma->intr[0] = dma_addr;
769         dbri->dbri_irqp = 1;
770         /*
771          * Set up the interrupt queue
772          */
773         spin_lock(&dbri->cmdlock);
774         cmd = dbri->cmdptr = dbri->dma->cmd;
775         *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
776         *(cmd++) = dma_addr;
777         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
778         dbri->cmdptr = cmd;
779         *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
780         *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
781         dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
782         sbus_writel(dma_addr, dbri->regs + REG8);
783         spin_unlock(&dbri->cmdlock);
784
785         spin_unlock_irqrestore(&dbri->lock, flags);
786         dbri_cmdwait(dbri);
787 }
788
789 /*
790 ****************************************************************************
791 ************************** DBRI data pipe management ***********************
792 ****************************************************************************
793
794 While DBRI control functions use the command and interrupt buffers, the
795 main data path takes the form of data pipes, which can be short (command
796 and interrupt driven), or long (attached to DMA buffers).  These functions
797 provide a rudimentary means of setting up and managing the DBRI's pipes,
798 but the calling functions have to make sure they respect the pipes' linked
799 list ordering, among other things.  The transmit and receive functions
800 here interface closely with the transmit and receive interrupt code.
801
802 */
803 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
804 {
805         return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
806 }
807
808 /* reset_pipe(dbri, pipe)
809  *
810  * Called on an in-use pipe to clear anything being transmitted or received
811  * Lock must be held before calling this.
812  */
813 static void reset_pipe(struct snd_dbri *dbri, int pipe)
814 {
815         int sdp;
816         int desc;
817         s32 *cmd;
818
819         if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
820                 printk(KERN_ERR "DBRI: reset_pipe called with "
821                         "illegal pipe number\n");
822                 return;
823         }
824
825         sdp = dbri->pipes[pipe].sdp;
826         if (sdp == 0) {
827                 printk(KERN_ERR "DBRI: reset_pipe called "
828                         "on uninitialized pipe\n");
829                 return;
830         }
831
832         cmd = dbri_cmdlock(dbri, 3);
833         *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
834         *(cmd++) = 0;
835         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
836         dbri_cmdsend(dbri, cmd, 3);
837
838         desc = dbri->pipes[pipe].first_desc;
839         if (desc >= 0)
840                 do {
841                         dbri->dma->desc[desc].ba = 0;
842                         dbri->dma->desc[desc].nda = 0;
843                         desc = dbri->next_desc[desc];
844                 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
845
846         dbri->pipes[pipe].desc = -1;
847         dbri->pipes[pipe].first_desc = -1;
848 }
849
850 /*
851  * Lock must be held before calling this.
852  */
853 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
854 {
855         if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
856                 printk(KERN_ERR "DBRI: setup_pipe called "
857                         "with illegal pipe number\n");
858                 return;
859         }
860
861         if ((sdp & 0xf800) != sdp) {
862                 printk(KERN_ERR "DBRI: setup_pipe called "
863                         "with strange SDP value\n");
864                 /* sdp &= 0xf800; */
865         }
866
867         /* If this is a fixed receive pipe, arrange for an interrupt
868          * every time its data changes
869          */
870         if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
871                 sdp |= D_SDP_CHANGE;
872
873         sdp |= D_PIPE(pipe);
874         dbri->pipes[pipe].sdp = sdp;
875         dbri->pipes[pipe].desc = -1;
876         dbri->pipes[pipe].first_desc = -1;
877
878         reset_pipe(dbri, pipe);
879 }
880
881 /*
882  * Lock must be held before calling this.
883  */
884 static void link_time_slot(struct snd_dbri *dbri, int pipe,
885                            int prevpipe, int nextpipe,
886                            int length, int cycle)
887 {
888         s32 *cmd;
889         int val;
890
891         if (pipe < 0 || pipe > DBRI_MAX_PIPE
892                         || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
893                         || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
894                 printk(KERN_ERR
895                     "DBRI: link_time_slot called with illegal pipe number\n");
896                 return;
897         }
898
899         if (dbri->pipes[pipe].sdp == 0
900                         || dbri->pipes[prevpipe].sdp == 0
901                         || dbri->pipes[nextpipe].sdp == 0) {
902                 printk(KERN_ERR "DBRI: link_time_slot called "
903                         "on uninitialized pipe\n");
904                 return;
905         }
906
907         dbri->pipes[prevpipe].nextpipe = pipe;
908         dbri->pipes[pipe].nextpipe = nextpipe;
909         dbri->pipes[pipe].length = length;
910
911         cmd = dbri_cmdlock(dbri, 4);
912
913         if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
914                 /* Deal with CHI special case:
915                  * "If transmission on edges 0 or 1 is desired, then cycle n
916                  *  (where n = # of bit times per frame...) must be used."
917                  *                  - DBRI data sheet, page 11
918                  */
919                 if (prevpipe == 16 && cycle == 0)
920                         cycle = dbri->chi_bpf;
921
922                 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
923                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
924                 *(cmd++) = 0;
925                 *(cmd++) =
926                     D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
927         } else {
928                 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
929                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
930                 *(cmd++) =
931                     D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
932                 *(cmd++) = 0;
933         }
934         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
935
936         dbri_cmdsend(dbri, cmd, 4);
937 }
938
939 #if 0
940 /*
941  * Lock must be held before calling this.
942  */
943 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
944                              enum in_or_out direction, int prevpipe,
945                              int nextpipe)
946 {
947         s32 *cmd;
948         int val;
949
950         if (pipe < 0 || pipe > DBRI_MAX_PIPE
951                         || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
952                         || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
953                 printk(KERN_ERR
954                     "DBRI: unlink_time_slot called with illegal pipe number\n");
955                 return;
956         }
957
958         cmd = dbri_cmdlock(dbri, 4);
959
960         if (direction == PIPEinput) {
961                 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
962                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
963                 *(cmd++) = D_TS_NEXT(nextpipe);
964                 *(cmd++) = 0;
965         } else {
966                 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
967                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
968                 *(cmd++) = 0;
969                 *(cmd++) = D_TS_NEXT(nextpipe);
970         }
971         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
972
973         dbri_cmdsend(dbri, cmd, 4);
974 }
975 #endif
976
977 /* xmit_fixed() / recv_fixed()
978  *
979  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
980  * expected to change much, and which we don't need to buffer.
981  * The DBRI only interrupts us when the data changes (receive pipes),
982  * or only changes the data when this function is called (transmit pipes).
983  * Only short pipes (numbers 16-31) can be used in fixed data mode.
984  *
985  * These function operate on a 32-bit field, no matter how large
986  * the actual time slot is.  The interrupt handler takes care of bit
987  * ordering and alignment.  An 8-bit time slot will always end up
988  * in the low-order 8 bits, filled either MSB-first or LSB-first,
989  * depending on the settings passed to setup_pipe().
990  *
991  * Lock must not be held before calling it.
992  */
993 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
994 {
995         s32 *cmd;
996         unsigned long flags;
997
998         if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
999                 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1000                 return;
1001         }
1002
1003         if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1004                 printk(KERN_ERR "DBRI: xmit_fixed: "
1005                         "Uninitialized pipe %d\n", pipe);
1006                 return;
1007         }
1008
1009         if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1010                 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1011                 return;
1012         }
1013
1014         if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1015                 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1016                         pipe);
1017                 return;
1018         }
1019
1020         /* DBRI short pipes always transmit LSB first */
1021
1022         if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1023                 data = reverse_bytes(data, dbri->pipes[pipe].length);
1024
1025         cmd = dbri_cmdlock(dbri, 3);
1026
1027         *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1028         *(cmd++) = data;
1029         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1030
1031         spin_lock_irqsave(&dbri->lock, flags);
1032         dbri_cmdsend(dbri, cmd, 3);
1033         spin_unlock_irqrestore(&dbri->lock, flags);
1034         dbri_cmdwait(dbri);
1035
1036 }
1037
1038 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1039 {
1040         if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1041                 printk(KERN_ERR "DBRI: recv_fixed called with "
1042                         "illegal pipe number\n");
1043                 return;
1044         }
1045
1046         if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1047                 printk(KERN_ERR "DBRI: recv_fixed called on "
1048                         "non-fixed pipe %d\n", pipe);
1049                 return;
1050         }
1051
1052         if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1053                 printk(KERN_ERR "DBRI: recv_fixed called on "
1054                         "transmit pipe %d\n", pipe);
1055                 return;
1056         }
1057
1058         dbri->pipes[pipe].recv_fixed_ptr = ptr;
1059 }
1060
1061 /* setup_descs()
1062  *
1063  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1064  * with a DMA buffer.
1065  *
1066  * Only pipe numbers 0-15 can be used in this mode.
1067  *
1068  * This function takes a stream number pointing to a data buffer,
1069  * and work by building chains of descriptors which identify the
1070  * data buffers.  Buffers too large for a single descriptor will
1071  * be spread across multiple descriptors.
1072  *
1073  * All descriptors create a ring buffer.
1074  *
1075  * Lock must be held before calling this.
1076  */
1077 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1078 {
1079         struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1080         __u32 dvma_buffer;
1081         int desc;
1082         int len;
1083         int first_desc = -1;
1084         int last_desc = -1;
1085
1086         if (info->pipe < 0 || info->pipe > 15) {
1087                 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1088                 return -2;
1089         }
1090
1091         if (dbri->pipes[info->pipe].sdp == 0) {
1092                 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1093                        info->pipe);
1094                 return -2;
1095         }
1096
1097         dvma_buffer = info->dvma_buffer;
1098         len = info->size;
1099
1100         if (streamno == DBRI_PLAY) {
1101                 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1102                         printk(KERN_ERR "DBRI: setup_descs: "
1103                                 "Called on receive pipe %d\n", info->pipe);
1104                         return -2;
1105                 }
1106         } else {
1107                 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1108                         printk(KERN_ERR
1109                             "DBRI: setup_descs: Called on transmit pipe %d\n",
1110                              info->pipe);
1111                         return -2;
1112                 }
1113                 /* Should be able to queue multiple buffers
1114                  * to receive on a pipe
1115                  */
1116                 if (pipe_active(dbri, info->pipe)) {
1117                         printk(KERN_ERR "DBRI: recv_on_pipe: "
1118                                 "Called on active pipe %d\n", info->pipe);
1119                         return -2;
1120                 }
1121
1122                 /* Make sure buffer size is multiple of four */
1123                 len &= ~3;
1124         }
1125
1126         /* Free descriptors if pipe has any */
1127         desc = dbri->pipes[info->pipe].first_desc;
1128         if (desc >= 0)
1129                 do {
1130                         dbri->dma->desc[desc].ba = 0;
1131                         dbri->dma->desc[desc].nda = 0;
1132                         desc = dbri->next_desc[desc];
1133                 } while (desc != -1 &&
1134                          desc != dbri->pipes[info->pipe].first_desc);
1135
1136         dbri->pipes[info->pipe].desc = -1;
1137         dbri->pipes[info->pipe].first_desc = -1;
1138
1139         desc = 0;
1140         while (len > 0) {
1141                 int mylen;
1142
1143                 for (; desc < DBRI_NO_DESCS; desc++) {
1144                         if (!dbri->dma->desc[desc].ba)
1145                                 break;
1146                 }
1147
1148                 if (desc == DBRI_NO_DESCS) {
1149                         printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1150                         return -1;
1151                 }
1152
1153                 if (len > DBRI_TD_MAXCNT)
1154                         mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1155                 else
1156                         mylen = len;
1157
1158                 if (mylen > period)
1159                         mylen = period;
1160
1161                 dbri->next_desc[desc] = -1;
1162                 dbri->dma->desc[desc].ba = dvma_buffer;
1163                 dbri->dma->desc[desc].nda = 0;
1164
1165                 if (streamno == DBRI_PLAY) {
1166                         dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1167                         dbri->dma->desc[desc].word4 = 0;
1168                         dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1169                 } else {
1170                         dbri->dma->desc[desc].word1 = 0;
1171                         dbri->dma->desc[desc].word4 =
1172                             DBRI_RD_B | DBRI_RD_BCNT(mylen);
1173                 }
1174
1175                 if (first_desc == -1)
1176                         first_desc = desc;
1177                 else {
1178                         dbri->next_desc[last_desc] = desc;
1179                         dbri->dma->desc[last_desc].nda =
1180                             dbri->dma_dvma + dbri_dma_off(desc, desc);
1181                 }
1182
1183                 last_desc = desc;
1184                 dvma_buffer += mylen;
1185                 len -= mylen;
1186         }
1187
1188         if (first_desc == -1 || last_desc == -1) {
1189                 printk(KERN_ERR "DBRI: setup_descs: "
1190                         " Not enough descriptors available\n");
1191                 return -1;
1192         }
1193
1194         dbri->dma->desc[last_desc].nda =
1195             dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1196         dbri->next_desc[last_desc] = first_desc;
1197         dbri->pipes[info->pipe].first_desc = first_desc;
1198         dbri->pipes[info->pipe].desc = first_desc;
1199
1200 #ifdef DBRI_DEBUG
1201         for (desc = first_desc; desc != -1;) {
1202                 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1203                         desc,
1204                         dbri->dma->desc[desc].word1,
1205                         dbri->dma->desc[desc].ba,
1206                         dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1207                         desc = dbri->next_desc[desc];
1208                         if (desc == first_desc)
1209                                 break;
1210         }
1211 #endif
1212         return 0;
1213 }
1214
1215 /*
1216 ****************************************************************************
1217 ************************** DBRI - CHI interface ****************************
1218 ****************************************************************************
1219
1220 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1221 multiplexed serial interface which the DBRI can operate in either master
1222 (give clock/frame sync) or slave (take clock/frame sync) mode.
1223
1224 */
1225
1226 enum master_or_slave { CHImaster, CHIslave };
1227
1228 /*
1229  * Lock must not be held before calling it.
1230  */
1231 static void reset_chi(struct snd_dbri *dbri,
1232                       enum master_or_slave master_or_slave,
1233                       int bits_per_frame)
1234 {
1235         s32 *cmd;
1236         int val;
1237
1238         /* Set CHI Anchor: Pipe 16 */
1239
1240         cmd = dbri_cmdlock(dbri, 4);
1241         val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1242                 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1243         *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1244         *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1245         *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1246         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1247         dbri_cmdsend(dbri, cmd, 4);
1248
1249         dbri->pipes[16].sdp = 1;
1250         dbri->pipes[16].nextpipe = 16;
1251
1252         cmd = dbri_cmdlock(dbri, 4);
1253
1254         if (master_or_slave == CHIslave) {
1255                 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1256                  *
1257                  * CHICM  = 0 (slave mode, 8 kHz frame rate)
1258                  * IR     = give immediate CHI status interrupt
1259                  * EN     = give CHI status interrupt upon change
1260                  */
1261                 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1262         } else {
1263                 /* Setup DBRI for CHI Master - generate clock, FS
1264                  *
1265                  * BPF                          =  bits per 8 kHz frame
1266                  * 12.288 MHz / CHICM_divisor   = clock rate
1267                  * FD = 1 - drive CHIFS on rising edge of CHICK
1268                  */
1269                 int clockrate = bits_per_frame * 8;
1270                 int divisor = 12288 / clockrate;
1271
1272                 if (divisor > 255 || divisor * clockrate != 12288)
1273                         printk(KERN_ERR "DBRI: illegal bits_per_frame "
1274                                 "in setup_chi\n");
1275
1276                 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1277                                     | D_CHI_BPF(bits_per_frame));
1278         }
1279
1280         dbri->chi_bpf = bits_per_frame;
1281
1282         /* CHI Data Mode
1283          *
1284          * RCE   =  0 - receive on falling edge of CHICK
1285          * XCE   =  1 - transmit on rising edge of CHICK
1286          * XEN   =  1 - enable transmitter
1287          * REN   =  1 - enable receiver
1288          */
1289
1290         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1291         *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1292         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1293
1294         dbri_cmdsend(dbri, cmd, 4);
1295 }
1296
1297 /*
1298 ****************************************************************************
1299 *********************** CS4215 audio codec management **********************
1300 ****************************************************************************
1301
1302 In the standard SPARC audio configuration, the CS4215 codec is attached
1303 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1304
1305  * Lock must not be held before calling it.
1306
1307 */
1308 static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1309 {
1310         unsigned long flags;
1311
1312         spin_lock_irqsave(&dbri->lock, flags);
1313         /*
1314          * Data mode:
1315          * Pipe  4: Send timeslots 1-4 (audio data)
1316          * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1317          * Pipe  6: Receive timeslots 1-4 (audio data)
1318          * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1319          *          interrupt, and the rest of the data (slot 5 and 8) is
1320          *          not relevant for us (only for doublechecking).
1321          *
1322          * Control mode:
1323          * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1324          * Pipe 18: Receive timeslot 1 (clb).
1325          * Pipe 19: Receive timeslot 7 (version).
1326          */
1327
1328         setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1329         setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1330         setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1331         setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1332
1333         setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1334         setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335         setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1336         spin_unlock_irqrestore(&dbri->lock, flags);
1337
1338         dbri_cmdwait(dbri);
1339 }
1340
1341 static __devinit int cs4215_init_data(struct cs4215 *mm)
1342 {
1343         /*
1344          * No action, memory resetting only.
1345          *
1346          * Data Time Slot 5-8
1347          * Speaker,Line and Headphone enable. Gain set to the half.
1348          * Input is mike.
1349          */
1350         mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1351         mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1352         mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1353         mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1354
1355         /*
1356          * Control Time Slot 1-4
1357          * 0: Default I/O voltage scale
1358          * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1359          * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1360          * 3: Tests disabled
1361          */
1362         mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1363         mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1364         mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1365         mm->ctrl[3] = 0;
1366
1367         mm->status = 0;
1368         mm->version = 0xff;
1369         mm->precision = 8;      /* For ULAW */
1370         mm->channels = 1;
1371
1372         return 0;
1373 }
1374
1375 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1376 {
1377         if (muted) {
1378                 dbri->mm.data[0] |= 63;
1379                 dbri->mm.data[1] |= 63;
1380                 dbri->mm.data[2] &= ~15;
1381                 dbri->mm.data[3] &= ~15;
1382         } else {
1383                 /* Start by setting the playback attenuation. */
1384                 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1385                 int left_gain = info->left_gain & 0x3f;
1386                 int right_gain = info->right_gain & 0x3f;
1387
1388                 dbri->mm.data[0] &= ~0x3f;      /* Reset the volume bits */
1389                 dbri->mm.data[1] &= ~0x3f;
1390                 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1391                 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1392
1393                 /* Now set the recording gain. */
1394                 info = &dbri->stream_info[DBRI_REC];
1395                 left_gain = info->left_gain & 0xf;
1396                 right_gain = info->right_gain & 0xf;
1397                 dbri->mm.data[2] |= CS4215_LG(left_gain);
1398                 dbri->mm.data[3] |= CS4215_RG(right_gain);
1399         }
1400
1401         xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1402 }
1403
1404 /*
1405  * Set the CS4215 to data mode.
1406  */
1407 static void cs4215_open(struct snd_dbri *dbri)
1408 {
1409         int data_width;
1410         u32 tmp;
1411         unsigned long flags;
1412
1413         dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1414                 dbri->mm.channels, dbri->mm.precision);
1415
1416         /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1417          * to make sure this takes.  This avoids clicking noises.
1418          */
1419
1420         cs4215_setdata(dbri, 1);
1421         udelay(125);
1422
1423         /*
1424          * Data mode:
1425          * Pipe  4: Send timeslots 1-4 (audio data)
1426          * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1427          * Pipe  6: Receive timeslots 1-4 (audio data)
1428          * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1429          *          interrupt, and the rest of the data (slot 5 and 8) is
1430          *          not relevant for us (only for doublechecking).
1431          *
1432          * Just like in control mode, the time slots are all offset by eight
1433          * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1434          * even if it's the CHI master.  Don't ask me...
1435          */
1436         spin_lock_irqsave(&dbri->lock, flags);
1437         tmp = sbus_readl(dbri->regs + REG0);
1438         tmp &= ~(D_C);          /* Disable CHI */
1439         sbus_writel(tmp, dbri->regs + REG0);
1440
1441         /* Switch CS4215 to data mode - set PIO3 to 1 */
1442         sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1443                     (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1444
1445         reset_chi(dbri, CHIslave, 128);
1446
1447         /* Note: this next doesn't work for 8-bit stereo, because the two
1448          * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1449          * (See CS4215 datasheet Fig 15)
1450          *
1451          * DBRI non-contiguous mode would be required to make this work.
1452          */
1453         data_width = dbri->mm.channels * dbri->mm.precision;
1454
1455         link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1456         link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1457         link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1458         link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1459
1460         /* FIXME: enable CHI after _setdata? */
1461         tmp = sbus_readl(dbri->regs + REG0);
1462         tmp |= D_C;             /* Enable CHI */
1463         sbus_writel(tmp, dbri->regs + REG0);
1464         spin_unlock_irqrestore(&dbri->lock, flags);
1465
1466         cs4215_setdata(dbri, 0);
1467 }
1468
1469 /*
1470  * Send the control information (i.e. audio format)
1471  */
1472 static int cs4215_setctrl(struct snd_dbri *dbri)
1473 {
1474         int i, val;
1475         u32 tmp;
1476         unsigned long flags;
1477
1478         /* FIXME - let the CPU do something useful during these delays */
1479
1480         /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1481          * to make sure this takes.  This avoids clicking noises.
1482          */
1483         cs4215_setdata(dbri, 1);
1484         udelay(125);
1485
1486         /*
1487          * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1488          * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1489          */
1490         val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1491         sbus_writel(val, dbri->regs + REG2);
1492         dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1493         udelay(34);
1494
1495         /* In Control mode, the CS4215 is a slave device, so the DBRI must
1496          * operate as CHI master, supplying clocking and frame synchronization.
1497          *
1498          * In Data mode, however, the CS4215 must be CHI master to insure
1499          * that its data stream is synchronous with its codec.
1500          *
1501          * The upshot of all this?  We start by putting the DBRI into master
1502          * mode, program the CS4215 in Control mode, then switch the CS4215
1503          * into Data mode and put the DBRI into slave mode.  Various timing
1504          * requirements must be observed along the way.
1505          *
1506          * Oh, and one more thing, on a SPARCStation 20 (and maybe
1507          * others?), the addressing of the CS4215's time slots is
1508          * offset by eight bits, so we add eight to all the "cycle"
1509          * values in the Define Time Slot (DTS) commands.  This is
1510          * done in hardware by a TI 248 that delays the DBRI->4215
1511          * frame sync signal by eight clock cycles.  Anybody know why?
1512          */
1513         spin_lock_irqsave(&dbri->lock, flags);
1514         tmp = sbus_readl(dbri->regs + REG0);
1515         tmp &= ~D_C;            /* Disable CHI */
1516         sbus_writel(tmp, dbri->regs + REG0);
1517
1518         reset_chi(dbri, CHImaster, 128);
1519
1520         /*
1521          * Control mode:
1522          * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1523          * Pipe 18: Receive timeslot 1 (clb).
1524          * Pipe 19: Receive timeslot 7 (version).
1525          */
1526
1527         link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1528         link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1529         link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1530         spin_unlock_irqrestore(&dbri->lock, flags);
1531
1532         /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1533         dbri->mm.ctrl[0] &= ~CS4215_CLB;
1534         xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1535
1536         spin_lock_irqsave(&dbri->lock, flags);
1537         tmp = sbus_readl(dbri->regs + REG0);
1538         tmp |= D_C;             /* Enable CHI */
1539         sbus_writel(tmp, dbri->regs + REG0);
1540         spin_unlock_irqrestore(&dbri->lock, flags);
1541
1542         for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1543                 msleep_interruptible(1);
1544
1545         if (i == 0) {
1546                 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1547                         dbri->mm.status);
1548                 return -1;
1549         }
1550
1551         /* Disable changes to our copy of the version number, as we are about
1552          * to leave control mode.
1553          */
1554         recv_fixed(dbri, 19, NULL);
1555
1556         /* Terminate CS4215 control mode - data sheet says
1557          * "Set CLB=1 and send two more frames of valid control info"
1558          */
1559         dbri->mm.ctrl[0] |= CS4215_CLB;
1560         xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1561
1562         /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1563         udelay(250);
1564
1565         cs4215_setdata(dbri, 0);
1566
1567         return 0;
1568 }
1569
1570 /*
1571  * Setup the codec with the sampling rate, audio format and number of
1572  * channels.
1573  * As part of the process we resend the settings for the data
1574  * timeslots as well.
1575  */
1576 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1577                           snd_pcm_format_t format, unsigned int channels)
1578 {
1579         int freq_idx;
1580         int ret = 0;
1581
1582         /* Lookup index for this rate */
1583         for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1584                 if (CS4215_FREQ[freq_idx].freq == rate)
1585                         break;
1586         }
1587         if (CS4215_FREQ[freq_idx].freq != rate) {
1588                 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1589                 return -1;
1590         }
1591
1592         switch (format) {
1593         case SNDRV_PCM_FORMAT_MU_LAW:
1594                 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1595                 dbri->mm.precision = 8;
1596                 break;
1597         case SNDRV_PCM_FORMAT_A_LAW:
1598                 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1599                 dbri->mm.precision = 8;
1600                 break;
1601         case SNDRV_PCM_FORMAT_U8:
1602                 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1603                 dbri->mm.precision = 8;
1604                 break;
1605         case SNDRV_PCM_FORMAT_S16_BE:
1606                 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1607                 dbri->mm.precision = 16;
1608                 break;
1609         default:
1610                 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1611                 return -1;
1612         }
1613
1614         /* Add rate parameters */
1615         dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1616         dbri->mm.ctrl[2] = CS4215_XCLK |
1617             CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1618
1619         dbri->mm.channels = channels;
1620         if (channels == 2)
1621                 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1622
1623         ret = cs4215_setctrl(dbri);
1624         if (ret == 0)
1625                 cs4215_open(dbri);      /* set codec to data mode */
1626
1627         return ret;
1628 }
1629
1630 /*
1631  *
1632  */
1633 static __devinit int cs4215_init(struct snd_dbri *dbri)
1634 {
1635         u32 reg2 = sbus_readl(dbri->regs + REG2);
1636         dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1637
1638         /* Look for the cs4215 chips */
1639         if (reg2 & D_PIO2) {
1640                 dprintk(D_MM, "Onboard CS4215 detected\n");
1641                 dbri->mm.onboard = 1;
1642         }
1643         if (reg2 & D_PIO0) {
1644                 dprintk(D_MM, "Speakerbox detected\n");
1645                 dbri->mm.onboard = 0;
1646
1647                 if (reg2 & D_PIO2) {
1648                         printk(KERN_INFO "DBRI: Using speakerbox / "
1649                                "ignoring onboard mmcodec.\n");
1650                         sbus_writel(D_ENPIO2, dbri->regs + REG2);
1651                 }
1652         }
1653
1654         if (!(reg2 & (D_PIO0 | D_PIO2))) {
1655                 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1656                 return -EIO;
1657         }
1658
1659         cs4215_setup_pipes(dbri);
1660         cs4215_init_data(&dbri->mm);
1661
1662         /* Enable capture of the status & version timeslots. */
1663         recv_fixed(dbri, 18, &dbri->mm.status);
1664         recv_fixed(dbri, 19, &dbri->mm.version);
1665
1666         dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1667         if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1668                 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1669                         dbri->mm.offset);
1670                 return -EIO;
1671         }
1672         dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1673
1674         return 0;
1675 }
1676
1677 /*
1678 ****************************************************************************
1679 *************************** DBRI interrupt handler *************************
1680 ****************************************************************************
1681
1682 The DBRI communicates with the CPU mainly via a circular interrupt
1683 buffer.  When an interrupt is signaled, the CPU walks through the
1684 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1685 Complicated interrupts are handled by dedicated functions (which
1686 appear first in this file).  Any pending interrupts can be serviced by
1687 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1688 interrupts are disabled.
1689
1690 */
1691
1692 /* xmit_descs()
1693  *
1694  * Starts transmitting the current TD's for recording/playing.
1695  * For playback, ALSA has filled the DMA memory with new data (we hope).
1696  */
1697 static void xmit_descs(struct snd_dbri *dbri)
1698 {
1699         struct dbri_streaminfo *info;
1700         s32 *cmd;
1701         unsigned long flags;
1702         int first_td;
1703
1704         if (dbri == NULL)
1705                 return;         /* Disabled */
1706
1707         info = &dbri->stream_info[DBRI_REC];
1708         spin_lock_irqsave(&dbri->lock, flags);
1709
1710         if (info->pipe >= 0) {
1711                 first_td = dbri->pipes[info->pipe].first_desc;
1712
1713                 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1714
1715                 /* Stream could be closed by the time we run. */
1716                 if (first_td >= 0) {
1717                         cmd = dbri_cmdlock(dbri, 2);
1718                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1719                                             dbri->pipes[info->pipe].sdp
1720                                             | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1721                         *(cmd++) = dbri->dma_dvma +
1722                                    dbri_dma_off(desc, first_td);
1723                         dbri_cmdsend(dbri, cmd, 2);
1724
1725                         /* Reset our admin of the pipe. */
1726                         dbri->pipes[info->pipe].desc = first_td;
1727                 }
1728         }
1729
1730         info = &dbri->stream_info[DBRI_PLAY];
1731
1732         if (info->pipe >= 0) {
1733                 first_td = dbri->pipes[info->pipe].first_desc;
1734
1735                 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1736
1737                 /* Stream could be closed by the time we run. */
1738                 if (first_td >= 0) {
1739                         cmd = dbri_cmdlock(dbri, 2);
1740                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1741                                             dbri->pipes[info->pipe].sdp
1742                                             | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1743                         *(cmd++) = dbri->dma_dvma +
1744                                    dbri_dma_off(desc, first_td);
1745                         dbri_cmdsend(dbri, cmd, 2);
1746
1747                         /* Reset our admin of the pipe. */
1748                         dbri->pipes[info->pipe].desc = first_td;
1749                 }
1750         }
1751
1752         spin_unlock_irqrestore(&dbri->lock, flags);
1753 }
1754
1755 /* transmission_complete_intr()
1756  *
1757  * Called by main interrupt handler when DBRI signals transmission complete
1758  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1759  *
1760  * Walks through the pipe's list of transmit buffer descriptors and marks
1761  * them as available. Stops when the first descriptor is found without
1762  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1763  *
1764  * The DMA buffers are not released. They form a ring buffer and
1765  * they are filled by ALSA while others are transmitted by DMA.
1766  *
1767  */
1768
1769 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1770 {
1771         struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1772         int td = dbri->pipes[pipe].desc;
1773         int status;
1774
1775         while (td >= 0) {
1776                 if (td >= DBRI_NO_DESCS) {
1777                         printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1778                         return;
1779                 }
1780
1781                 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1782                 if (!(status & DBRI_TD_TBC))
1783                         break;
1784
1785                 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1786
1787                 dbri->dma->desc[td].word4 = 0;  /* Reset it for next time. */
1788                 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1789
1790                 td = dbri->next_desc[td];
1791                 dbri->pipes[pipe].desc = td;
1792         }
1793
1794         /* Notify ALSA */
1795         spin_unlock(&dbri->lock);
1796         snd_pcm_period_elapsed(info->substream);
1797         spin_lock(&dbri->lock);
1798 }
1799
1800 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1801 {
1802         struct dbri_streaminfo *info;
1803         int rd = dbri->pipes[pipe].desc;
1804         s32 status;
1805
1806         if (rd < 0 || rd >= DBRI_NO_DESCS) {
1807                 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1808                 return;
1809         }
1810
1811         dbri->pipes[pipe].desc = dbri->next_desc[rd];
1812         status = dbri->dma->desc[rd].word1;
1813         dbri->dma->desc[rd].word1 = 0;  /* Reset it for next time. */
1814
1815         info = &dbri->stream_info[DBRI_REC];
1816         info->offset += DBRI_RD_CNT(status);
1817
1818         /* FIXME: Check status */
1819
1820         dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1821                 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1822
1823         /* Notify ALSA */
1824         spin_unlock(&dbri->lock);
1825         snd_pcm_period_elapsed(info->substream);
1826         spin_lock(&dbri->lock);
1827 }
1828
1829 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1830 {
1831         int val = D_INTR_GETVAL(x);
1832         int channel = D_INTR_GETCHAN(x);
1833         int command = D_INTR_GETCMD(x);
1834         int code = D_INTR_GETCODE(x);
1835 #ifdef DBRI_DEBUG
1836         int rval = D_INTR_GETRVAL(x);
1837 #endif
1838
1839         if (channel == D_INTR_CMD) {
1840                 dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1841                         cmds[command], val);
1842         } else {
1843                 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1844                         channel, code, rval);
1845         }
1846
1847         switch (code) {
1848         case D_INTR_CMDI:
1849                 if (command != D_WAIT)
1850                         printk(KERN_ERR "DBRI: Command read interrupt\n");
1851                 break;
1852         case D_INTR_BRDY:
1853                 reception_complete_intr(dbri, channel);
1854                 break;
1855         case D_INTR_XCMP:
1856         case D_INTR_MINT:
1857                 transmission_complete_intr(dbri, channel);
1858                 break;
1859         case D_INTR_UNDR:
1860                 /* UNDR - Transmission underrun
1861                  * resend SDP command with clear pipe bit (C) set
1862                  */
1863                 {
1864         /* FIXME: do something useful in case of underrun */
1865                         printk(KERN_ERR "DBRI: Underrun error\n");
1866 #if 0
1867                         s32 *cmd;
1868                         int pipe = channel;
1869                         int td = dbri->pipes[pipe].desc;
1870
1871                         dbri->dma->desc[td].word4 = 0;
1872                         cmd = dbri_cmdlock(dbri, NoGetLock);
1873                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1874                                             dbri->pipes[pipe].sdp
1875                                             | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1876                         *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1877                         dbri_cmdsend(dbri, cmd);
1878 #endif
1879                 }
1880                 break;
1881         case D_INTR_FXDT:
1882                 /* FXDT - Fixed data change */
1883                 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1884                         val = reverse_bytes(val, dbri->pipes[channel].length);
1885
1886                 if (dbri->pipes[channel].recv_fixed_ptr)
1887                         *(dbri->pipes[channel].recv_fixed_ptr) = val;
1888                 break;
1889         default:
1890                 if (channel != D_INTR_CMD)
1891                         printk(KERN_WARNING
1892                                "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1893         }
1894 }
1895
1896 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1897  * buffer until it finds a zero word (indicating nothing more to do
1898  * right now).  Non-zero words require processing and are handed off
1899  * to dbri_process_one_interrupt AFTER advancing the pointer.
1900  */
1901 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1902 {
1903         s32 x;
1904
1905         while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1906                 dbri->dma->intr[dbri->dbri_irqp] = 0;
1907                 dbri->dbri_irqp++;
1908                 if (dbri->dbri_irqp == DBRI_INT_BLK)
1909                         dbri->dbri_irqp = 1;
1910
1911                 dbri_process_one_interrupt(dbri, x);
1912         }
1913 }
1914
1915 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1916 {
1917         struct snd_dbri *dbri = dev_id;
1918         static int errcnt = 0;
1919         int x;
1920
1921         if (dbri == NULL)
1922                 return IRQ_NONE;
1923         spin_lock(&dbri->lock);
1924
1925         /*
1926          * Read it, so the interrupt goes away.
1927          */
1928         x = sbus_readl(dbri->regs + REG1);
1929
1930         if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1931                 u32 tmp;
1932
1933                 if (x & D_MRR)
1934                         printk(KERN_ERR
1935                                "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1936                                x);
1937                 if (x & D_MLE)
1938                         printk(KERN_ERR
1939                                "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1940                                x);
1941                 if (x & D_LBG)
1942                         printk(KERN_ERR
1943                                "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1944                 if (x & D_MBE)
1945                         printk(KERN_ERR
1946                                "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1947
1948                 /* Some of these SBus errors cause the chip's SBus circuitry
1949                  * to be disabled, so just re-enable and try to keep going.
1950                  *
1951                  * The only one I've seen is MRR, which will be triggered
1952                  * if you let a transmit pipe underrun, then try to CDP it.
1953                  *
1954                  * If these things persist, we reset the chip.
1955                  */
1956                 if ((++errcnt) % 10 == 0) {
1957                         dprintk(D_INT, "Interrupt errors exceeded.\n");
1958                         dbri_reset(dbri);
1959                 } else {
1960                         tmp = sbus_readl(dbri->regs + REG0);
1961                         tmp &= ~(D_D);
1962                         sbus_writel(tmp, dbri->regs + REG0);
1963                 }
1964         }
1965
1966         dbri_process_interrupt_buffer(dbri);
1967
1968         spin_unlock(&dbri->lock);
1969
1970         return IRQ_HANDLED;
1971 }
1972
1973 /****************************************************************************
1974                 PCM Interface
1975 ****************************************************************************/
1976 static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1977         .info           = SNDRV_PCM_INFO_MMAP |
1978                           SNDRV_PCM_INFO_INTERLEAVED |
1979                           SNDRV_PCM_INFO_BLOCK_TRANSFER |
1980                           SNDRV_PCM_INFO_MMAP_VALID |
1981                           SNDRV_PCM_INFO_BATCH,
1982         .formats        = SNDRV_PCM_FMTBIT_MU_LAW |
1983                           SNDRV_PCM_FMTBIT_A_LAW |
1984                           SNDRV_PCM_FMTBIT_U8 |
1985                           SNDRV_PCM_FMTBIT_S16_BE,
1986         .rates          = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1987         .rate_min               = 5512,
1988         .rate_max               = 48000,
1989         .channels_min           = 1,
1990         .channels_max           = 2,
1991         .buffer_bytes_max       = 64 * 1024,
1992         .period_bytes_min       = 1,
1993         .period_bytes_max       = DBRI_TD_MAXCNT,
1994         .periods_min            = 1,
1995         .periods_max            = 1024,
1996 };
1997
1998 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1999                               struct snd_pcm_hw_rule *rule)
2000 {
2001         struct snd_interval *c = hw_param_interval(params,
2002                                 SNDRV_PCM_HW_PARAM_CHANNELS);
2003         struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2004         struct snd_mask fmt;
2005
2006         snd_mask_any(&fmt);
2007         if (c->min > 1) {
2008                 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2009                 return snd_mask_refine(f, &fmt);
2010         }
2011         return 0;
2012 }
2013
2014 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2015                                 struct snd_pcm_hw_rule *rule)
2016 {
2017         struct snd_interval *c = hw_param_interval(params,
2018                                 SNDRV_PCM_HW_PARAM_CHANNELS);
2019         struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2020         struct snd_interval ch;
2021
2022         snd_interval_any(&ch);
2023         if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2024                 ch.min = 1;
2025                 ch.max = 1;
2026                 ch.integer = 1;
2027                 return snd_interval_refine(c, &ch);
2028         }
2029         return 0;
2030 }
2031
2032 static int snd_dbri_open(struct snd_pcm_substream *substream)
2033 {
2034         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2035         struct snd_pcm_runtime *runtime = substream->runtime;
2036         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2037         unsigned long flags;
2038
2039         dprintk(D_USR, "open audio output.\n");
2040         runtime->hw = snd_dbri_pcm_hw;
2041
2042         spin_lock_irqsave(&dbri->lock, flags);
2043         info->substream = substream;
2044         info->offset = 0;
2045         info->dvma_buffer = 0;
2046         info->pipe = -1;
2047         spin_unlock_irqrestore(&dbri->lock, flags);
2048
2049         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2050                             snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2051                             -1);
2052         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2053                             snd_hw_rule_channels, NULL,
2054                             SNDRV_PCM_HW_PARAM_CHANNELS,
2055                             -1);
2056
2057         cs4215_open(dbri);
2058
2059         return 0;
2060 }
2061
2062 static int snd_dbri_close(struct snd_pcm_substream *substream)
2063 {
2064         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2065         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2066
2067         dprintk(D_USR, "close audio output.\n");
2068         info->substream = NULL;
2069         info->offset = 0;
2070
2071         return 0;
2072 }
2073
2074 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2075                               struct snd_pcm_hw_params *hw_params)
2076 {
2077         struct snd_pcm_runtime *runtime = substream->runtime;
2078         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2079         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2080         int direction;
2081         int ret;
2082
2083         /* set sampling rate, audio format and number of channels */
2084         ret = cs4215_prepare(dbri, params_rate(hw_params),
2085                              params_format(hw_params),
2086                              params_channels(hw_params));
2087         if (ret != 0)
2088                 return ret;
2089
2090         if ((ret = snd_pcm_lib_malloc_pages(substream,
2091                                 params_buffer_bytes(hw_params))) < 0) {
2092                 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2093                 return ret;
2094         }
2095
2096         /* hw_params can get called multiple times. Only map the DMA once.
2097          */
2098         if (info->dvma_buffer == 0) {
2099                 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2100                         direction = DMA_TO_DEVICE;
2101                 else
2102                         direction = DMA_FROM_DEVICE;
2103
2104                 info->dvma_buffer =
2105                         dma_map_single(&dbri->op->dev,
2106                                        runtime->dma_area,
2107                                        params_buffer_bytes(hw_params),
2108                                        direction);
2109         }
2110
2111         direction = params_buffer_bytes(hw_params);
2112         dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2113                 direction, info->dvma_buffer);
2114         return 0;
2115 }
2116
2117 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2118 {
2119         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2120         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2121         int direction;
2122
2123         dprintk(D_USR, "hw_free.\n");
2124
2125         /* hw_free can get called multiple times. Only unmap the DMA once.
2126          */
2127         if (info->dvma_buffer) {
2128                 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2129                         direction = DMA_TO_DEVICE;
2130                 else
2131                         direction = DMA_FROM_DEVICE;
2132
2133                 dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2134                                  substream->runtime->buffer_size, direction);
2135                 info->dvma_buffer = 0;
2136         }
2137         if (info->pipe != -1) {
2138                 reset_pipe(dbri, info->pipe);
2139                 info->pipe = -1;
2140         }
2141
2142         return snd_pcm_lib_free_pages(substream);
2143 }
2144
2145 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2146 {
2147         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2148         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2149         int ret;
2150
2151         info->size = snd_pcm_lib_buffer_bytes(substream);
2152         if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2153                 info->pipe = 4; /* Send pipe */
2154         else
2155                 info->pipe = 6; /* Receive pipe */
2156
2157         spin_lock_irq(&dbri->lock);
2158         info->offset = 0;
2159
2160         /* Setup the all the transmit/receive descriptors to cover the
2161          * whole DMA buffer.
2162          */
2163         ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2164                           snd_pcm_lib_period_bytes(substream));
2165
2166         spin_unlock_irq(&dbri->lock);
2167
2168         dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2169         return ret;
2170 }
2171
2172 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2173 {
2174         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2175         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2176         int ret = 0;
2177
2178         switch (cmd) {
2179         case SNDRV_PCM_TRIGGER_START:
2180                 dprintk(D_USR, "start audio, period is %d bytes\n",
2181                         (int)snd_pcm_lib_period_bytes(substream));
2182                 /* Re-submit the TDs. */
2183                 xmit_descs(dbri);
2184                 break;
2185         case SNDRV_PCM_TRIGGER_STOP:
2186                 dprintk(D_USR, "stop audio.\n");
2187                 reset_pipe(dbri, info->pipe);
2188                 break;
2189         default:
2190                 ret = -EINVAL;
2191         }
2192
2193         return ret;
2194 }
2195
2196 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2197 {
2198         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2199         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2200         snd_pcm_uframes_t ret;
2201
2202         ret = bytes_to_frames(substream->runtime, info->offset)
2203                 % substream->runtime->buffer_size;
2204         dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2205                 ret, substream->runtime->buffer_size);
2206         return ret;
2207 }
2208
2209 static struct snd_pcm_ops snd_dbri_ops = {
2210         .open = snd_dbri_open,
2211         .close = snd_dbri_close,
2212         .ioctl = snd_pcm_lib_ioctl,
2213         .hw_params = snd_dbri_hw_params,
2214         .hw_free = snd_dbri_hw_free,
2215         .prepare = snd_dbri_prepare,
2216         .trigger = snd_dbri_trigger,
2217         .pointer = snd_dbri_pointer,
2218 };
2219
2220 static int __devinit snd_dbri_pcm(struct snd_card *card)
2221 {
2222         struct snd_pcm *pcm;
2223         int err;
2224
2225         if ((err = snd_pcm_new(card,
2226                                /* ID */             "sun_dbri",
2227                                /* device */         0,
2228                                /* playback count */ 1,
2229                                /* capture count */  1, &pcm)) < 0)
2230                 return err;
2231
2232         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2233         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2234
2235         pcm->private_data = card->private_data;
2236         pcm->info_flags = 0;
2237         strcpy(pcm->name, card->shortname);
2238
2239         if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2240                         SNDRV_DMA_TYPE_CONTINUOUS,
2241                         snd_dma_continuous_data(GFP_KERNEL),
2242                         64 * 1024, 64 * 1024)) < 0)
2243                 return err;
2244
2245         return 0;
2246 }
2247
2248 /*****************************************************************************
2249                         Mixer interface
2250 *****************************************************************************/
2251
2252 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2253                                   struct snd_ctl_elem_info *uinfo)
2254 {
2255         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2256         uinfo->count = 2;
2257         uinfo->value.integer.min = 0;
2258         if (kcontrol->private_value == DBRI_PLAY)
2259                 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2260         else
2261                 uinfo->value.integer.max = DBRI_MAX_GAIN;
2262         return 0;
2263 }
2264
2265 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2266                                  struct snd_ctl_elem_value *ucontrol)
2267 {
2268         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2269         struct dbri_streaminfo *info;
2270
2271         if (snd_BUG_ON(!dbri))
2272                 return -EINVAL;
2273         info = &dbri->stream_info[kcontrol->private_value];
2274
2275         ucontrol->value.integer.value[0] = info->left_gain;
2276         ucontrol->value.integer.value[1] = info->right_gain;
2277         return 0;
2278 }
2279
2280 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2281                                  struct snd_ctl_elem_value *ucontrol)
2282 {
2283         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2284         struct dbri_streaminfo *info =
2285                                 &dbri->stream_info[kcontrol->private_value];
2286         unsigned int vol[2];
2287         int changed = 0;
2288
2289         vol[0] = ucontrol->value.integer.value[0];
2290         vol[1] = ucontrol->value.integer.value[1];
2291         if (kcontrol->private_value == DBRI_PLAY) {
2292                 if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2293                         return -EINVAL;
2294         } else {
2295                 if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2296                         return -EINVAL;
2297         }
2298
2299         if (info->left_gain != vol[0]) {
2300                 info->left_gain = vol[0];
2301                 changed = 1;
2302         }
2303         if (info->right_gain != vol[1]) {
2304                 info->right_gain = vol[1];
2305                 changed = 1;
2306         }
2307         if (changed) {
2308                 /* First mute outputs, and wait 1/8000 sec (125 us)
2309                  * to make sure this takes.  This avoids clicking noises.
2310                  */
2311                 cs4215_setdata(dbri, 1);
2312                 udelay(125);
2313                 cs4215_setdata(dbri, 0);
2314         }
2315         return changed;
2316 }
2317
2318 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2319                                   struct snd_ctl_elem_info *uinfo)
2320 {
2321         int mask = (kcontrol->private_value >> 16) & 0xff;
2322
2323         uinfo->type = (mask == 1) ?
2324             SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2325         uinfo->count = 1;
2326         uinfo->value.integer.min = 0;
2327         uinfo->value.integer.max = mask;
2328         return 0;
2329 }
2330
2331 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2332                                  struct snd_ctl_elem_value *ucontrol)
2333 {
2334         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2335         int elem = kcontrol->private_value & 0xff;
2336         int shift = (kcontrol->private_value >> 8) & 0xff;
2337         int mask = (kcontrol->private_value >> 16) & 0xff;
2338         int invert = (kcontrol->private_value >> 24) & 1;
2339
2340         if (snd_BUG_ON(!dbri))
2341                 return -EINVAL;
2342
2343         if (elem < 4)
2344                 ucontrol->value.integer.value[0] =
2345                     (dbri->mm.data[elem] >> shift) & mask;
2346         else
2347                 ucontrol->value.integer.value[0] =
2348                     (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2349
2350         if (invert == 1)
2351                 ucontrol->value.integer.value[0] =
2352                     mask - ucontrol->value.integer.value[0];
2353         return 0;
2354 }
2355
2356 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2357                                  struct snd_ctl_elem_value *ucontrol)
2358 {
2359         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2360         int elem = kcontrol->private_value & 0xff;
2361         int shift = (kcontrol->private_value >> 8) & 0xff;
2362         int mask = (kcontrol->private_value >> 16) & 0xff;
2363         int invert = (kcontrol->private_value >> 24) & 1;
2364         int changed = 0;
2365         unsigned short val;
2366
2367         if (snd_BUG_ON(!dbri))
2368                 return -EINVAL;
2369
2370         val = (ucontrol->value.integer.value[0] & mask);
2371         if (invert == 1)
2372                 val = mask - val;
2373         val <<= shift;
2374
2375         if (elem < 4) {
2376                 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2377                                        ~(mask << shift)) | val;
2378                 changed = (val != dbri->mm.data[elem]);
2379         } else {
2380                 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2381                                            ~(mask << shift)) | val;
2382                 changed = (val != dbri->mm.ctrl[elem - 4]);
2383         }
2384
2385         dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2386                 "mixer-value=%ld, mm-value=0x%x\n",
2387                 mask, changed, ucontrol->value.integer.value[0],
2388                 dbri->mm.data[elem & 3]);
2389
2390         if (changed) {
2391                 /* First mute outputs, and wait 1/8000 sec (125 us)
2392                  * to make sure this takes.  This avoids clicking noises.
2393                  */
2394                 cs4215_setdata(dbri, 1);
2395                 udelay(125);
2396                 cs4215_setdata(dbri, 0);
2397         }
2398         return changed;
2399 }
2400
2401 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2402    timeslots. Shift is the bit offset in the timeslot, mask defines the
2403    number of bits. invert is a boolean for use with attenuation.
2404  */
2405 #define CS4215_SINGLE(xname, entry, shift, mask, invert)        \
2406 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),         \
2407   .info = snd_cs4215_info_single,                               \
2408   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,   \
2409   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |  \
2410                         ((invert) << 24) },
2411
2412 static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2413         {
2414          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2415          .name  = "Playback Volume",
2416          .info  = snd_cs4215_info_volume,
2417          .get   = snd_cs4215_get_volume,
2418          .put   = snd_cs4215_put_volume,
2419          .private_value = DBRI_PLAY,
2420          },
2421         CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2422         CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2423         CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2424         {
2425          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2426          .name  = "Capture Volume",
2427          .info  = snd_cs4215_info_volume,
2428          .get   = snd_cs4215_get_volume,
2429          .put   = snd_cs4215_put_volume,
2430          .private_value = DBRI_REC,
2431          },
2432         /* FIXME: mic/line switch */
2433         CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2434         CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2435         CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2436         CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2437 };
2438
2439 static int __devinit snd_dbri_mixer(struct snd_card *card)
2440 {
2441         int idx, err;
2442         struct snd_dbri *dbri;
2443
2444         if (snd_BUG_ON(!card || !card->private_data))
2445                 return -EINVAL;
2446         dbri = card->private_data;
2447
2448         strcpy(card->mixername, card->shortname);
2449
2450         for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2451                 err = snd_ctl_add(card,
2452                                 snd_ctl_new1(&dbri_controls[idx], dbri));
2453                 if (err < 0)
2454                         return err;
2455         }
2456
2457         for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2458                 dbri->stream_info[idx].left_gain = 0;
2459                 dbri->stream_info[idx].right_gain = 0;
2460         }
2461
2462         return 0;
2463 }
2464
2465 /****************************************************************************
2466                         /proc interface
2467 ****************************************************************************/
2468 static void dbri_regs_read(struct snd_info_entry *entry,
2469                            struct snd_info_buffer *buffer)
2470 {
2471         struct snd_dbri *dbri = entry->private_data;
2472
2473         snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2474         snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2475         snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2476         snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2477 }
2478
2479 #ifdef DBRI_DEBUG
2480 static void dbri_debug_read(struct snd_info_entry *entry,
2481                             struct snd_info_buffer *buffer)
2482 {
2483         struct snd_dbri *dbri = entry->private_data;
2484         int pipe;
2485         snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2486
2487         for (pipe = 0; pipe < 32; pipe++) {
2488                 if (pipe_active(dbri, pipe)) {
2489                         struct dbri_pipe *pptr = &dbri->pipes[pipe];
2490                         snd_iprintf(buffer,
2491                                     "Pipe %d: %s SDP=0x%x desc=%d, "
2492                                     "len=%d next %d\n",
2493                                     pipe,
2494                                    (pptr->sdp & D_SDP_TO_SER) ? "output" :
2495                                                                  "input",
2496                                     pptr->sdp, pptr->desc,
2497                                     pptr->length, pptr->nextpipe);
2498                 }
2499         }
2500 }
2501 #endif
2502
2503 static void __devinit snd_dbri_proc(struct snd_card *card)
2504 {
2505         struct snd_dbri *dbri = card->private_data;
2506         struct snd_info_entry *entry;
2507
2508         if (!snd_card_proc_new(card, "regs", &entry))
2509                 snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2510
2511 #ifdef DBRI_DEBUG
2512         if (!snd_card_proc_new(card, "debug", &entry)) {
2513                 snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2514                 entry->mode = S_IFREG | S_IRUGO;        /* Readable only. */
2515         }
2516 #endif
2517 }
2518
2519 /*
2520 ****************************************************************************
2521 **************************** Initialization ********************************
2522 ****************************************************************************
2523 */
2524 static void snd_dbri_free(struct snd_dbri *dbri);
2525
2526 static int __devinit snd_dbri_create(struct snd_card *card,
2527                                      struct platform_device *op,
2528                                      int irq, int dev)
2529 {
2530         struct snd_dbri *dbri = card->private_data;
2531         int err;
2532
2533         spin_lock_init(&dbri->lock);
2534         dbri->op = op;
2535         dbri->irq = irq;
2536
2537         dbri->dma = dma_alloc_coherent(&op->dev,
2538                                        sizeof(struct dbri_dma),
2539                                        &dbri->dma_dvma, GFP_ATOMIC);
2540         if (!dbri->dma)
2541                 return -ENOMEM;
2542         memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2543
2544         dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2545                 dbri->dma, dbri->dma_dvma);
2546
2547         /* Map the registers into memory. */
2548         dbri->regs_size = resource_size(&op->resource[0]);
2549         dbri->regs = of_ioremap(&op->resource[0], 0,
2550                                 dbri->regs_size, "DBRI Registers");
2551         if (!dbri->regs) {
2552                 printk(KERN_ERR "DBRI: could not allocate registers\n");
2553                 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2554                                   (void *)dbri->dma, dbri->dma_dvma);
2555                 return -EIO;
2556         }
2557
2558         err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2559                           "DBRI audio", dbri);
2560         if (err) {
2561                 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2562                 of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2563                 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2564                                   (void *)dbri->dma, dbri->dma_dvma);
2565                 return err;
2566         }
2567
2568         /* Do low level initialization of the DBRI and CS4215 chips */
2569         dbri_initialize(dbri);
2570         err = cs4215_init(dbri);
2571         if (err) {
2572                 snd_dbri_free(dbri);
2573                 return err;
2574         }
2575
2576         return 0;
2577 }
2578
2579 static void snd_dbri_free(struct snd_dbri *dbri)
2580 {
2581         dprintk(D_GEN, "snd_dbri_free\n");
2582         dbri_reset(dbri);
2583
2584         if (dbri->irq)
2585                 free_irq(dbri->irq, dbri);
2586
2587         if (dbri->regs)
2588                 of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2589
2590         if (dbri->dma)
2591                 dma_free_coherent(&dbri->op->dev,
2592                                   sizeof(struct dbri_dma),
2593                                   (void *)dbri->dma, dbri->dma_dvma);
2594 }
2595
2596 static int __devinit dbri_probe(struct platform_device *op)
2597 {
2598         struct snd_dbri *dbri;
2599         struct resource *rp;
2600         struct snd_card *card;
2601         static int dev = 0;
2602         int irq;
2603         int err;
2604
2605         if (dev >= SNDRV_CARDS)
2606                 return -ENODEV;
2607         if (!enable[dev]) {
2608                 dev++;
2609                 return -ENOENT;
2610         }
2611
2612         irq = op->archdata.irqs[0];
2613         if (irq <= 0) {
2614                 printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2615                 return -ENODEV;
2616         }
2617
2618         err = snd_card_create(index[dev], id[dev], THIS_MODULE,
2619                               sizeof(struct snd_dbri), &card);
2620         if (err < 0)
2621                 return err;
2622
2623         strcpy(card->driver, "DBRI");
2624         strcpy(card->shortname, "Sun DBRI");
2625         rp = &op->resource[0];
2626         sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2627                 card->shortname,
2628                 rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2629
2630         err = snd_dbri_create(card, op, irq, dev);
2631         if (err < 0) {
2632                 snd_card_free(card);
2633                 return err;
2634         }
2635
2636         dbri = card->private_data;
2637         err = snd_dbri_pcm(card);
2638         if (err < 0)
2639                 goto _err;
2640
2641         err = snd_dbri_mixer(card);
2642         if (err < 0)
2643                 goto _err;
2644
2645         /* /proc file handling */
2646         snd_dbri_proc(card);
2647         dev_set_drvdata(&op->dev, card);
2648
2649         err = snd_card_register(card);
2650         if (err < 0)
2651                 goto _err;
2652
2653         printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2654                dev, dbri->regs,
2655                dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2656         dev++;
2657
2658         return 0;
2659
2660 _err:
2661         snd_dbri_free(dbri);
2662         snd_card_free(card);
2663         return err;
2664 }
2665
2666 static int __devexit dbri_remove(struct platform_device *op)
2667 {
2668         struct snd_card *card = dev_get_drvdata(&op->dev);
2669
2670         snd_dbri_free(card->private_data);
2671         snd_card_free(card);
2672
2673         dev_set_drvdata(&op->dev, NULL);
2674
2675         return 0;
2676 }
2677
2678 static const struct of_device_id dbri_match[] = {
2679         {
2680                 .name = "SUNW,DBRIe",
2681         },
2682         {
2683                 .name = "SUNW,DBRIf",
2684         },
2685         {},
2686 };
2687
2688 MODULE_DEVICE_TABLE(of, dbri_match);
2689
2690 static struct platform_driver dbri_sbus_driver = {
2691         .driver = {
2692                 .name = "dbri",
2693                 .owner = THIS_MODULE,
2694                 .of_match_table = dbri_match,
2695         },
2696         .probe          = dbri_probe,
2697         .remove         = __devexit_p(dbri_remove),
2698 };
2699
2700 /* Probe for the dbri chip and then attach the driver. */
2701 static int __init dbri_init(void)
2702 {
2703         return platform_driver_register(&dbri_sbus_driver);
2704 }
2705
2706 static void __exit dbri_exit(void)
2707 {
2708         platform_driver_unregister(&dbri_sbus_driver);
2709 }
2710
2711 module_init(dbri_init);
2712 module_exit(dbri_exit);