ALSA: hda - Release assigned pin/cvt at error path of hdmi_pcm_open()
[pandora-kernel.git] / sound / pci / sis7019.c
1 /*
2  *  Driver for SiS7019 Audio Accelerator
3  *
4  *  Copyright (C) 2004-2007, David Dillow
5  *  Written by David Dillow <dave@thedillows.org>
6  *  Inspired by the Trident 4D-WaveDX/NX driver.
7  *
8  *  All rights reserved.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation, version 2.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
22  */
23
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/initval.h>
34 #include "sis7019.h"
35
36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
37 MODULE_DESCRIPTION("SiS7019");
38 MODULE_LICENSE("GPL");
39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
40
41 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
42 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
43 static bool enable = 1;
44 static int codecs = 1;
45
46 module_param(index, int, 0444);
47 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
48 module_param(id, charp, 0444);
49 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
50 module_param(enable, bool, 0444);
51 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
52 module_param(codecs, int, 0444);
53 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
54
55 static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = {
56         { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
57         { 0, }
58 };
59
60 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
61
62 /* There are three timing modes for the voices.
63  *
64  * For both playback and capture, when the buffer is one or two periods long,
65  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
66  * to let us know when the periods have ended.
67  *
68  * When performing playback with more than two periods per buffer, we set
69  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
70  * reach it. We then update the offset and continue on until we are
71  * interrupted for the next period.
72  *
73  * Capture channels do not have a SSO, so we allocate a playback channel to
74  * use as a timer for the capture periods. We use the SSO on the playback
75  * channel to clock out virtual periods, and adjust the virtual period length
76  * to maintain synchronization. This algorithm came from the Trident driver.
77  *
78  * FIXME: It'd be nice to make use of some of the synth features in the
79  * hardware, but a woeful lack of documentation is a significant roadblock.
80  */
81 struct voice {
82         u16 flags;
83 #define         VOICE_IN_USE            1
84 #define         VOICE_CAPTURE           2
85 #define         VOICE_SSO_TIMING        4
86 #define         VOICE_SYNC_TIMING       8
87         u16 sync_cso;
88         u16 period_size;
89         u16 buffer_size;
90         u16 sync_period_size;
91         u16 sync_buffer_size;
92         u32 sso;
93         u32 vperiod;
94         struct snd_pcm_substream *substream;
95         struct voice *timing;
96         void __iomem *ctrl_base;
97         void __iomem *wave_base;
98         void __iomem *sync_base;
99         int num;
100 };
101
102 /* We need four pages to store our wave parameters during a suspend. If
103  * we're not doing power management, we still need to allocate a page
104  * for the silence buffer.
105  */
106 #ifdef CONFIG_PM_SLEEP
107 #define SIS_SUSPEND_PAGES       4
108 #else
109 #define SIS_SUSPEND_PAGES       1
110 #endif
111
112 struct sis7019 {
113         unsigned long ioport;
114         void __iomem *ioaddr;
115         int irq;
116         int codecs_present;
117
118         struct pci_dev *pci;
119         struct snd_pcm *pcm;
120         struct snd_card *card;
121         struct snd_ac97 *ac97[3];
122
123         /* Protect against more than one thread hitting the AC97
124          * registers (in a more polite manner than pounding the hardware
125          * semaphore)
126          */
127         struct mutex ac97_mutex;
128
129         /* voice_lock protects allocation/freeing of the voice descriptions
130          */
131         spinlock_t voice_lock;
132
133         struct voice voices[64];
134         struct voice capture_voice;
135
136         /* Allocate pages to store the internal wave state during
137          * suspends. When we're operating, this can be used as a silence
138          * buffer for a timing channel.
139          */
140         void *suspend_state[SIS_SUSPEND_PAGES];
141
142         int silence_users;
143         dma_addr_t silence_dma_addr;
144 };
145
146 /* These values are also used by the module param 'codecs' to indicate
147  * which codecs should be present.
148  */
149 #define SIS_PRIMARY_CODEC_PRESENT       0x0001
150 #define SIS_SECONDARY_CODEC_PRESENT     0x0002
151 #define SIS_TERTIARY_CODEC_PRESENT      0x0004
152
153 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
154  * documented range of 8-0xfff8 samples. Given that they are 0-based,
155  * that places our period/buffer range at 9-0xfff9 samples. That makes the
156  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
157  * max samples / min samples gives us the max periods in a buffer.
158  *
159  * We'll add a constraint upon open that limits the period and buffer sample
160  * size to values that are legal for the hardware.
161  */
162 static struct snd_pcm_hardware sis_playback_hw_info = {
163         .info = (SNDRV_PCM_INFO_MMAP |
164                  SNDRV_PCM_INFO_MMAP_VALID |
165                  SNDRV_PCM_INFO_INTERLEAVED |
166                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
167                  SNDRV_PCM_INFO_SYNC_START |
168                  SNDRV_PCM_INFO_RESUME),
169         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
170                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
171         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
172         .rate_min = 4000,
173         .rate_max = 48000,
174         .channels_min = 1,
175         .channels_max = 2,
176         .buffer_bytes_max = (0xfff9 * 4),
177         .period_bytes_min = 9,
178         .period_bytes_max = (0xfff9 * 4),
179         .periods_min = 1,
180         .periods_max = (0xfff9 / 9),
181 };
182
183 static struct snd_pcm_hardware sis_capture_hw_info = {
184         .info = (SNDRV_PCM_INFO_MMAP |
185                  SNDRV_PCM_INFO_MMAP_VALID |
186                  SNDRV_PCM_INFO_INTERLEAVED |
187                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
188                  SNDRV_PCM_INFO_SYNC_START |
189                  SNDRV_PCM_INFO_RESUME),
190         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
191                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
192         .rates = SNDRV_PCM_RATE_48000,
193         .rate_min = 4000,
194         .rate_max = 48000,
195         .channels_min = 1,
196         .channels_max = 2,
197         .buffer_bytes_max = (0xfff9 * 4),
198         .period_bytes_min = 9,
199         .period_bytes_max = (0xfff9 * 4),
200         .periods_min = 1,
201         .periods_max = (0xfff9 / 9),
202 };
203
204 static void sis_update_sso(struct voice *voice, u16 period)
205 {
206         void __iomem *base = voice->ctrl_base;
207
208         voice->sso += period;
209         if (voice->sso >= voice->buffer_size)
210                 voice->sso -= voice->buffer_size;
211
212         /* Enforce the documented hardware minimum offset */
213         if (voice->sso < 8)
214                 voice->sso = 8;
215
216         /* The SSO is in the upper 16 bits of the register. */
217         writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
218 }
219
220 static void sis_update_voice(struct voice *voice)
221 {
222         if (voice->flags & VOICE_SSO_TIMING) {
223                 sis_update_sso(voice, voice->period_size);
224         } else if (voice->flags & VOICE_SYNC_TIMING) {
225                 int sync;
226
227                 /* If we've not hit the end of the virtual period, update
228                  * our records and keep going.
229                  */
230                 if (voice->vperiod > voice->period_size) {
231                         voice->vperiod -= voice->period_size;
232                         if (voice->vperiod < voice->period_size)
233                                 sis_update_sso(voice, voice->vperiod);
234                         else
235                                 sis_update_sso(voice, voice->period_size);
236                         return;
237                 }
238
239                 /* Calculate our relative offset between the target and
240                  * the actual CSO value. Since we're operating in a loop,
241                  * if the value is more than half way around, we can
242                  * consider ourselves wrapped.
243                  */
244                 sync = voice->sync_cso;
245                 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
246                 if (sync > (voice->sync_buffer_size / 2))
247                         sync -= voice->sync_buffer_size;
248
249                 /* If sync is positive, then we interrupted too early, and
250                  * we'll need to come back in a few samples and try again.
251                  * There's a minimum wait, as it takes some time for the DMA
252                  * engine to startup, etc...
253                  */
254                 if (sync > 0) {
255                         if (sync < 16)
256                                 sync = 16;
257                         sis_update_sso(voice, sync);
258                         return;
259                 }
260
261                 /* Ok, we interrupted right on time, or (hopefully) just
262                  * a bit late. We'll adjst our next waiting period based
263                  * on how close we got.
264                  *
265                  * We need to stay just behind the actual channel to ensure
266                  * it really is past a period when we get our interrupt --
267                  * otherwise we'll fall into the early code above and have
268                  * a minimum wait time, which makes us quite late here,
269                  * eating into the user's time to refresh the buffer, esp.
270                  * if using small periods.
271                  *
272                  * If we're less than 9 samples behind, we're on target.
273                  * Otherwise, shorten the next vperiod by the amount we've
274                  * been delayed.
275                  */
276                 if (sync > -9)
277                         voice->vperiod = voice->sync_period_size + 1;
278                 else
279                         voice->vperiod = voice->sync_period_size + sync + 10;
280
281                 if (voice->vperiod < voice->buffer_size) {
282                         sis_update_sso(voice, voice->vperiod);
283                         voice->vperiod = 0;
284                 } else
285                         sis_update_sso(voice, voice->period_size);
286
287                 sync = voice->sync_cso + voice->sync_period_size;
288                 if (sync >= voice->sync_buffer_size)
289                         sync -= voice->sync_buffer_size;
290                 voice->sync_cso = sync;
291         }
292
293         snd_pcm_period_elapsed(voice->substream);
294 }
295
296 static void sis_voice_irq(u32 status, struct voice *voice)
297 {
298         int bit;
299
300         while (status) {
301                 bit = __ffs(status);
302                 status >>= bit + 1;
303                 voice += bit;
304                 sis_update_voice(voice);
305                 voice++;
306         }
307 }
308
309 static irqreturn_t sis_interrupt(int irq, void *dev)
310 {
311         struct sis7019 *sis = dev;
312         unsigned long io = sis->ioport;
313         struct voice *voice;
314         u32 intr, status;
315
316         /* We only use the DMA interrupts, and we don't enable any other
317          * source of interrupts. But, it is possible to see an interrupt
318          * status that didn't actually interrupt us, so eliminate anything
319          * we're not expecting to avoid falsely claiming an IRQ, and an
320          * ensuing endless loop.
321          */
322         intr = inl(io + SIS_GISR);
323         intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
324                 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
325         if (!intr)
326                 return IRQ_NONE;
327
328         do {
329                 status = inl(io + SIS_PISR_A);
330                 if (status) {
331                         sis_voice_irq(status, sis->voices);
332                         outl(status, io + SIS_PISR_A);
333                 }
334
335                 status = inl(io + SIS_PISR_B);
336                 if (status) {
337                         sis_voice_irq(status, &sis->voices[32]);
338                         outl(status, io + SIS_PISR_B);
339                 }
340
341                 status = inl(io + SIS_RISR);
342                 if (status) {
343                         voice = &sis->capture_voice;
344                         if (!voice->timing)
345                                 snd_pcm_period_elapsed(voice->substream);
346
347                         outl(status, io + SIS_RISR);
348                 }
349
350                 outl(intr, io + SIS_GISR);
351                 intr = inl(io + SIS_GISR);
352                 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
353                         SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
354         } while (intr);
355
356         return IRQ_HANDLED;
357 }
358
359 static u32 sis_rate_to_delta(unsigned int rate)
360 {
361         u32 delta;
362
363         /* This was copied from the trident driver, but it seems its gotten
364          * around a bit... nevertheless, it works well.
365          *
366          * We special case 44100 and 8000 since rounding with the equation
367          * does not give us an accurate enough value. For 11025 and 22050
368          * the equation gives us the best answer. All other frequencies will
369          * also use the equation. JDW
370          */
371         if (rate == 44100)
372                 delta = 0xeb3;
373         else if (rate == 8000)
374                 delta = 0x2ab;
375         else if (rate == 48000)
376                 delta = 0x1000;
377         else
378                 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
379         return delta;
380 }
381
382 static void __sis_map_silence(struct sis7019 *sis)
383 {
384         /* Helper function: must hold sis->voice_lock on entry */
385         if (!sis->silence_users)
386                 sis->silence_dma_addr = pci_map_single(sis->pci,
387                                                 sis->suspend_state[0],
388                                                 4096, PCI_DMA_TODEVICE);
389         sis->silence_users++;
390 }
391
392 static void __sis_unmap_silence(struct sis7019 *sis)
393 {
394         /* Helper function: must hold sis->voice_lock on entry */
395         sis->silence_users--;
396         if (!sis->silence_users)
397                 pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
398                                         PCI_DMA_TODEVICE);
399 }
400
401 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
402 {
403         unsigned long flags;
404
405         spin_lock_irqsave(&sis->voice_lock, flags);
406         if (voice->timing) {
407                 __sis_unmap_silence(sis);
408                 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
409                                                 VOICE_SYNC_TIMING);
410                 voice->timing = NULL;
411         }
412         voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
413         spin_unlock_irqrestore(&sis->voice_lock, flags);
414 }
415
416 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
417 {
418         /* Must hold the voice_lock on entry */
419         struct voice *voice;
420         int i;
421
422         for (i = 0; i < 64; i++) {
423                 voice = &sis->voices[i];
424                 if (voice->flags & VOICE_IN_USE)
425                         continue;
426                 voice->flags |= VOICE_IN_USE;
427                 goto found_one;
428         }
429         voice = NULL;
430
431 found_one:
432         return voice;
433 }
434
435 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
436 {
437         struct voice *voice;
438         unsigned long flags;
439
440         spin_lock_irqsave(&sis->voice_lock, flags);
441         voice = __sis_alloc_playback_voice(sis);
442         spin_unlock_irqrestore(&sis->voice_lock, flags);
443
444         return voice;
445 }
446
447 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
448                                         struct snd_pcm_hw_params *hw_params)
449 {
450         struct sis7019 *sis = snd_pcm_substream_chip(substream);
451         struct snd_pcm_runtime *runtime = substream->runtime;
452         struct voice *voice = runtime->private_data;
453         unsigned int period_size, buffer_size;
454         unsigned long flags;
455         int needed;
456
457         /* If there are one or two periods per buffer, we don't need a
458          * timing voice, as we can use the capture channel's interrupts
459          * to clock out the periods.
460          */
461         period_size = params_period_size(hw_params);
462         buffer_size = params_buffer_size(hw_params);
463         needed = (period_size != buffer_size &&
464                         period_size != (buffer_size / 2));
465
466         if (needed && !voice->timing) {
467                 spin_lock_irqsave(&sis->voice_lock, flags);
468                 voice->timing = __sis_alloc_playback_voice(sis);
469                 if (voice->timing)
470                         __sis_map_silence(sis);
471                 spin_unlock_irqrestore(&sis->voice_lock, flags);
472                 if (!voice->timing)
473                         return -ENOMEM;
474                 voice->timing->substream = substream;
475         } else if (!needed && voice->timing) {
476                 sis_free_voice(sis, voice);
477                 voice->timing = NULL;
478         }
479
480         return 0;
481 }
482
483 static int sis_playback_open(struct snd_pcm_substream *substream)
484 {
485         struct sis7019 *sis = snd_pcm_substream_chip(substream);
486         struct snd_pcm_runtime *runtime = substream->runtime;
487         struct voice *voice;
488
489         voice = sis_alloc_playback_voice(sis);
490         if (!voice)
491                 return -EAGAIN;
492
493         voice->substream = substream;
494         runtime->private_data = voice;
495         runtime->hw = sis_playback_hw_info;
496         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
497                                                 9, 0xfff9);
498         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
499                                                 9, 0xfff9);
500         snd_pcm_set_sync(substream);
501         return 0;
502 }
503
504 static int sis_substream_close(struct snd_pcm_substream *substream)
505 {
506         struct sis7019 *sis = snd_pcm_substream_chip(substream);
507         struct snd_pcm_runtime *runtime = substream->runtime;
508         struct voice *voice = runtime->private_data;
509
510         sis_free_voice(sis, voice);
511         return 0;
512 }
513
514 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
515                                         struct snd_pcm_hw_params *hw_params)
516 {
517         return snd_pcm_lib_malloc_pages(substream,
518                                         params_buffer_bytes(hw_params));
519 }
520
521 static int sis_hw_free(struct snd_pcm_substream *substream)
522 {
523         return snd_pcm_lib_free_pages(substream);
524 }
525
526 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
527 {
528         struct snd_pcm_runtime *runtime = substream->runtime;
529         struct voice *voice = runtime->private_data;
530         void __iomem *ctrl_base = voice->ctrl_base;
531         void __iomem *wave_base = voice->wave_base;
532         u32 format, dma_addr, control, sso_eso, delta, reg;
533         u16 leo;
534
535         /* We rely on the PCM core to ensure that the parameters for this
536          * substream do not change on us while we're programming the HW.
537          */
538         format = 0;
539         if (snd_pcm_format_width(runtime->format) == 8)
540                 format |= SIS_PLAY_DMA_FORMAT_8BIT;
541         if (!snd_pcm_format_signed(runtime->format))
542                 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
543         if (runtime->channels == 1)
544                 format |= SIS_PLAY_DMA_FORMAT_MONO;
545
546         /* The baseline setup is for a single period per buffer, and
547          * we add bells and whistles as needed from there.
548          */
549         dma_addr = runtime->dma_addr;
550         leo = runtime->buffer_size - 1;
551         control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
552         sso_eso = leo;
553
554         if (runtime->period_size == (runtime->buffer_size / 2)) {
555                 control |= SIS_PLAY_DMA_INTR_AT_MLP;
556         } else if (runtime->period_size != runtime->buffer_size) {
557                 voice->flags |= VOICE_SSO_TIMING;
558                 voice->sso = runtime->period_size - 1;
559                 voice->period_size = runtime->period_size;
560                 voice->buffer_size = runtime->buffer_size;
561
562                 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
563                 control |= SIS_PLAY_DMA_INTR_AT_SSO;
564                 sso_eso |= (runtime->period_size - 1) << 16;
565         }
566
567         delta = sis_rate_to_delta(runtime->rate);
568
569         /* Ok, we're ready to go, set up the channel.
570          */
571         writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
572         writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
573         writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
574         writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
575
576         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
577                 writel(0, wave_base + reg);
578
579         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
580         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
581         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
582                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
583                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
584                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
585
586         /* Force PCI writes to post. */
587         readl(ctrl_base);
588
589         return 0;
590 }
591
592 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
593 {
594         struct sis7019 *sis = snd_pcm_substream_chip(substream);
595         unsigned long io = sis->ioport;
596         struct snd_pcm_substream *s;
597         struct voice *voice;
598         void *chip;
599         int starting;
600         u32 record = 0;
601         u32 play[2] = { 0, 0 };
602
603         /* No locks needed, as the PCM core will hold the locks on the
604          * substreams, and the HW will only start/stop the indicated voices
605          * without changing the state of the others.
606          */
607         switch (cmd) {
608         case SNDRV_PCM_TRIGGER_START:
609         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
610         case SNDRV_PCM_TRIGGER_RESUME:
611                 starting = 1;
612                 break;
613         case SNDRV_PCM_TRIGGER_STOP:
614         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
615         case SNDRV_PCM_TRIGGER_SUSPEND:
616                 starting = 0;
617                 break;
618         default:
619                 return -EINVAL;
620         }
621
622         snd_pcm_group_for_each_entry(s, substream) {
623                 /* Make sure it is for us... */
624                 chip = snd_pcm_substream_chip(s);
625                 if (chip != sis)
626                         continue;
627
628                 voice = s->runtime->private_data;
629                 if (voice->flags & VOICE_CAPTURE) {
630                         record |= 1 << voice->num;
631                         voice = voice->timing;
632                 }
633
634                 /* voice could be NULL if this a recording stream, and it
635                  * doesn't have an external timing channel.
636                  */
637                 if (voice)
638                         play[voice->num / 32] |= 1 << (voice->num & 0x1f);
639
640                 snd_pcm_trigger_done(s, substream);
641         }
642
643         if (starting) {
644                 if (record)
645                         outl(record, io + SIS_RECORD_START_REG);
646                 if (play[0])
647                         outl(play[0], io + SIS_PLAY_START_A_REG);
648                 if (play[1])
649                         outl(play[1], io + SIS_PLAY_START_B_REG);
650         } else {
651                 if (record)
652                         outl(record, io + SIS_RECORD_STOP_REG);
653                 if (play[0])
654                         outl(play[0], io + SIS_PLAY_STOP_A_REG);
655                 if (play[1])
656                         outl(play[1], io + SIS_PLAY_STOP_B_REG);
657         }
658         return 0;
659 }
660
661 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
662 {
663         struct snd_pcm_runtime *runtime = substream->runtime;
664         struct voice *voice = runtime->private_data;
665         u32 cso;
666
667         cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
668         cso &= 0xffff;
669         return cso;
670 }
671
672 static int sis_capture_open(struct snd_pcm_substream *substream)
673 {
674         struct sis7019 *sis = snd_pcm_substream_chip(substream);
675         struct snd_pcm_runtime *runtime = substream->runtime;
676         struct voice *voice = &sis->capture_voice;
677         unsigned long flags;
678
679         /* FIXME: The driver only supports recording from one channel
680          * at the moment, but it could support more.
681          */
682         spin_lock_irqsave(&sis->voice_lock, flags);
683         if (voice->flags & VOICE_IN_USE)
684                 voice = NULL;
685         else
686                 voice->flags |= VOICE_IN_USE;
687         spin_unlock_irqrestore(&sis->voice_lock, flags);
688
689         if (!voice)
690                 return -EAGAIN;
691
692         voice->substream = substream;
693         runtime->private_data = voice;
694         runtime->hw = sis_capture_hw_info;
695         runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
696         snd_pcm_limit_hw_rates(runtime);
697         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
698                                                 9, 0xfff9);
699         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
700                                                 9, 0xfff9);
701         snd_pcm_set_sync(substream);
702         return 0;
703 }
704
705 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
706                                         struct snd_pcm_hw_params *hw_params)
707 {
708         struct sis7019 *sis = snd_pcm_substream_chip(substream);
709         int rc;
710
711         rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
712                                                 params_rate(hw_params));
713         if (rc)
714                 goto out;
715
716         rc = snd_pcm_lib_malloc_pages(substream,
717                                         params_buffer_bytes(hw_params));
718         if (rc < 0)
719                 goto out;
720
721         rc = sis_alloc_timing_voice(substream, hw_params);
722
723 out:
724         return rc;
725 }
726
727 static void sis_prepare_timing_voice(struct voice *voice,
728                                         struct snd_pcm_substream *substream)
729 {
730         struct sis7019 *sis = snd_pcm_substream_chip(substream);
731         struct snd_pcm_runtime *runtime = substream->runtime;
732         struct voice *timing = voice->timing;
733         void __iomem *play_base = timing->ctrl_base;
734         void __iomem *wave_base = timing->wave_base;
735         u16 buffer_size, period_size;
736         u32 format, control, sso_eso, delta;
737         u32 vperiod, sso, reg;
738
739         /* Set our initial buffer and period as large as we can given a
740          * single page of silence.
741          */
742         buffer_size = 4096 / runtime->channels;
743         buffer_size /= snd_pcm_format_size(runtime->format, 1);
744         period_size = buffer_size;
745
746         /* Initially, we want to interrupt just a bit behind the end of
747          * the period we're clocking out. 12 samples seems to give a good
748          * delay.
749          *
750          * We want to spread our interrupts throughout the virtual period,
751          * so that we don't end up with two interrupts back to back at the
752          * end -- this helps minimize the effects of any jitter. Adjust our
753          * clocking period size so that the last period is at least a fourth
754          * of a full period.
755          *
756          * This is all moot if we don't need to use virtual periods.
757          */
758         vperiod = runtime->period_size + 12;
759         if (vperiod > period_size) {
760                 u16 tail = vperiod % period_size;
761                 u16 quarter_period = period_size / 4;
762
763                 if (tail && tail < quarter_period) {
764                         u16 loops = vperiod / period_size;
765
766                         tail = quarter_period - tail;
767                         tail += loops - 1;
768                         tail /= loops;
769                         period_size -= tail;
770                 }
771
772                 sso = period_size - 1;
773         } else {
774                 /* The initial period will fit inside the buffer, so we
775                  * don't need to use virtual periods -- disable them.
776                  */
777                 period_size = runtime->period_size;
778                 sso = vperiod - 1;
779                 vperiod = 0;
780         }
781
782         /* The interrupt handler implements the timing synchronization, so
783          * setup its state.
784          */
785         timing->flags |= VOICE_SYNC_TIMING;
786         timing->sync_base = voice->ctrl_base;
787         timing->sync_cso = runtime->period_size;
788         timing->sync_period_size = runtime->period_size;
789         timing->sync_buffer_size = runtime->buffer_size;
790         timing->period_size = period_size;
791         timing->buffer_size = buffer_size;
792         timing->sso = sso;
793         timing->vperiod = vperiod;
794
795         /* Using unsigned samples with the all-zero silence buffer
796          * forces the output to the lower rail, killing playback.
797          * So ignore unsigned vs signed -- it doesn't change the timing.
798          */
799         format = 0;
800         if (snd_pcm_format_width(runtime->format) == 8)
801                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
802         if (runtime->channels == 1)
803                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
804
805         control = timing->buffer_size - 1;
806         control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
807         sso_eso = timing->buffer_size - 1;
808         sso_eso |= timing->sso << 16;
809
810         delta = sis_rate_to_delta(runtime->rate);
811
812         /* We've done the math, now configure the channel.
813          */
814         writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
815         writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
816         writel(control, play_base + SIS_PLAY_DMA_CONTROL);
817         writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
818
819         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
820                 writel(0, wave_base + reg);
821
822         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
823         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
824         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
825                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
826                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
827                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
828 }
829
830 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
831 {
832         struct snd_pcm_runtime *runtime = substream->runtime;
833         struct voice *voice = runtime->private_data;
834         void __iomem *rec_base = voice->ctrl_base;
835         u32 format, dma_addr, control;
836         u16 leo;
837
838         /* We rely on the PCM core to ensure that the parameters for this
839          * substream do not change on us while we're programming the HW.
840          */
841         format = 0;
842         if (snd_pcm_format_width(runtime->format) == 8)
843                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
844         if (!snd_pcm_format_signed(runtime->format))
845                 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
846         if (runtime->channels == 1)
847                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
848
849         dma_addr = runtime->dma_addr;
850         leo = runtime->buffer_size - 1;
851         control = leo | SIS_CAPTURE_DMA_LOOP;
852
853         /* If we've got more than two periods per buffer, then we have
854          * use a timing voice to clock out the periods. Otherwise, we can
855          * use the capture channel's interrupts.
856          */
857         if (voice->timing) {
858                 sis_prepare_timing_voice(voice, substream);
859         } else {
860                 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
861                 if (runtime->period_size != runtime->buffer_size)
862                         control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
863         }
864
865         writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
866         writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
867         writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
868
869         /* Force the writes to post. */
870         readl(rec_base);
871
872         return 0;
873 }
874
875 static struct snd_pcm_ops sis_playback_ops = {
876         .open = sis_playback_open,
877         .close = sis_substream_close,
878         .ioctl = snd_pcm_lib_ioctl,
879         .hw_params = sis_playback_hw_params,
880         .hw_free = sis_hw_free,
881         .prepare = sis_pcm_playback_prepare,
882         .trigger = sis_pcm_trigger,
883         .pointer = sis_pcm_pointer,
884 };
885
886 static struct snd_pcm_ops sis_capture_ops = {
887         .open = sis_capture_open,
888         .close = sis_substream_close,
889         .ioctl = snd_pcm_lib_ioctl,
890         .hw_params = sis_capture_hw_params,
891         .hw_free = sis_hw_free,
892         .prepare = sis_pcm_capture_prepare,
893         .trigger = sis_pcm_trigger,
894         .pointer = sis_pcm_pointer,
895 };
896
897 static int sis_pcm_create(struct sis7019 *sis)
898 {
899         struct snd_pcm *pcm;
900         int rc;
901
902         /* We have 64 voices, and the driver currently records from
903          * only one channel, though that could change in the future.
904          */
905         rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
906         if (rc)
907                 return rc;
908
909         pcm->private_data = sis;
910         strcpy(pcm->name, "SiS7019");
911         sis->pcm = pcm;
912
913         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
914         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
915
916         /* Try to preallocate some memory, but it's not the end of the
917          * world if this fails.
918          */
919         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
920                                 snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
921
922         return 0;
923 }
924
925 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
926 {
927         unsigned long io = sis->ioport;
928         unsigned short val = 0xffff;
929         u16 status;
930         u16 rdy;
931         int count;
932         static const u16 codec_ready[3] = {
933                 SIS_AC97_STATUS_CODEC_READY,
934                 SIS_AC97_STATUS_CODEC2_READY,
935                 SIS_AC97_STATUS_CODEC3_READY,
936         };
937
938         rdy = codec_ready[codec];
939
940
941         /* Get the AC97 semaphore -- software first, so we don't spin
942          * pounding out IO reads on the hardware semaphore...
943          */
944         mutex_lock(&sis->ac97_mutex);
945
946         count = 0xffff;
947         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
948                 udelay(1);
949
950         if (!count)
951                 goto timeout;
952
953         /* ... and wait for any outstanding commands to complete ...
954          */
955         count = 0xffff;
956         do {
957                 status = inw(io + SIS_AC97_STATUS);
958                 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
959                         break;
960
961                 udelay(1);
962         } while (--count);
963
964         if (!count)
965                 goto timeout_sema;
966
967         /* ... before sending our command and waiting for it to finish ...
968          */
969         outl(cmd, io + SIS_AC97_CMD);
970         udelay(10);
971
972         count = 0xffff;
973         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
974                 udelay(1);
975
976         /* ... and reading the results (if any).
977          */
978         val = inl(io + SIS_AC97_CMD) >> 16;
979
980 timeout_sema:
981         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
982 timeout:
983         mutex_unlock(&sis->ac97_mutex);
984
985         if (!count) {
986                 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
987                                         codec, cmd);
988         }
989
990         return val;
991 }
992
993 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
994                                 unsigned short val)
995 {
996         static const u32 cmd[3] = {
997                 SIS_AC97_CMD_CODEC_WRITE,
998                 SIS_AC97_CMD_CODEC2_WRITE,
999                 SIS_AC97_CMD_CODEC3_WRITE,
1000         };
1001         sis_ac97_rw(ac97->private_data, ac97->num,
1002                         (val << 16) | (reg << 8) | cmd[ac97->num]);
1003 }
1004
1005 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
1006 {
1007         static const u32 cmd[3] = {
1008                 SIS_AC97_CMD_CODEC_READ,
1009                 SIS_AC97_CMD_CODEC2_READ,
1010                 SIS_AC97_CMD_CODEC3_READ,
1011         };
1012         return sis_ac97_rw(ac97->private_data, ac97->num,
1013                                         (reg << 8) | cmd[ac97->num]);
1014 }
1015
1016 static int sis_mixer_create(struct sis7019 *sis)
1017 {
1018         struct snd_ac97_bus *bus;
1019         struct snd_ac97_template ac97;
1020         static struct snd_ac97_bus_ops ops = {
1021                 .write = sis_ac97_write,
1022                 .read = sis_ac97_read,
1023         };
1024         int rc;
1025
1026         memset(&ac97, 0, sizeof(ac97));
1027         ac97.private_data = sis;
1028
1029         rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1030         if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1031                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1032         ac97.num = 1;
1033         if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1034                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1035         ac97.num = 2;
1036         if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1037                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1038
1039         /* If we return an error here, then snd_card_free() should
1040          * free up any ac97 codecs that got created, as well as the bus.
1041          */
1042         return rc;
1043 }
1044
1045 static void sis_free_suspend(struct sis7019 *sis)
1046 {
1047         int i;
1048
1049         for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1050                 kfree(sis->suspend_state[i]);
1051 }
1052
1053 static int sis_chip_free(struct sis7019 *sis)
1054 {
1055         /* Reset the chip, and disable all interrputs.
1056          */
1057         outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1058         udelay(25);
1059         outl(0, sis->ioport + SIS_GCR);
1060         outl(0, sis->ioport + SIS_GIER);
1061
1062         /* Now, free everything we allocated.
1063          */
1064         if (sis->irq >= 0)
1065                 free_irq(sis->irq, sis);
1066
1067         if (sis->ioaddr)
1068                 iounmap(sis->ioaddr);
1069
1070         pci_release_regions(sis->pci);
1071         pci_disable_device(sis->pci);
1072
1073         sis_free_suspend(sis);
1074         return 0;
1075 }
1076
1077 static int sis_dev_free(struct snd_device *dev)
1078 {
1079         struct sis7019 *sis = dev->device_data;
1080         return sis_chip_free(sis);
1081 }
1082
1083 static int sis_chip_init(struct sis7019 *sis)
1084 {
1085         unsigned long io = sis->ioport;
1086         void __iomem *ioaddr = sis->ioaddr;
1087         unsigned long timeout;
1088         u16 status;
1089         int count;
1090         int i;
1091
1092         /* Reset the audio controller
1093          */
1094         outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1095         udelay(25);
1096         outl(0, io + SIS_GCR);
1097
1098         /* Get the AC-link semaphore, and reset the codecs
1099          */
1100         count = 0xffff;
1101         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1102                 udelay(1);
1103
1104         if (!count)
1105                 return -EIO;
1106
1107         outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1108         udelay(250);
1109
1110         count = 0xffff;
1111         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1112                 udelay(1);
1113
1114         /* Command complete, we can let go of the semaphore now.
1115          */
1116         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1117         if (!count)
1118                 return -EIO;
1119
1120         /* Now that we've finished the reset, find out what's attached.
1121          * There are some codec/board combinations that take an extremely
1122          * long time to come up. 350+ ms has been observed in the field,
1123          * so we'll give them up to 500ms.
1124          */
1125         sis->codecs_present = 0;
1126         timeout = msecs_to_jiffies(500) + jiffies;
1127         while (time_before_eq(jiffies, timeout)) {
1128                 status = inl(io + SIS_AC97_STATUS);
1129                 if (status & SIS_AC97_STATUS_CODEC_READY)
1130                         sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1131                 if (status & SIS_AC97_STATUS_CODEC2_READY)
1132                         sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1133                 if (status & SIS_AC97_STATUS_CODEC3_READY)
1134                         sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1135
1136                 if (sis->codecs_present == codecs)
1137                         break;
1138
1139                 msleep(1);
1140         }
1141
1142         /* All done, check for errors.
1143          */
1144         if (!sis->codecs_present) {
1145                 dev_err(&sis->pci->dev, "could not find any codecs\n");
1146                 return -EIO;
1147         }
1148
1149         if (sis->codecs_present != codecs) {
1150                 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1151                                          sis->codecs_present, codecs);
1152         }
1153
1154         /* Let the hardware know that the audio driver is alive,
1155          * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1156          * record channels. We're going to want to use Variable Rate Audio
1157          * for recording, to avoid needlessly resampling from 48kHZ.
1158          */
1159         outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1160         outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1161                 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1162                 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1163                 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1164
1165         /* All AC97 PCM slots should be sourced from sub-mixer 0.
1166          */
1167         outl(0, io + SIS_AC97_PSR);
1168
1169         /* There is only one valid DMA setup for a PCI environment.
1170          */
1171         outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1172
1173         /* Reset the synchronization groups for all of the channels
1174          * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1175          * we'll need to change how we handle these. Until then, we just
1176          * assign sub-mixer 0 to all playback channels, and avoid any
1177          * attenuation on the audio.
1178          */
1179         outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1180         outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1181         outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1182         outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1183         outl(0, io + SIS_MIXER_SYNC_GROUP);
1184
1185         for (i = 0; i < 64; i++) {
1186                 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1187                 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1188                                 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1189         }
1190
1191         /* Don't attenuate any audio set for the wave amplifier.
1192          *
1193          * FIXME: Maximum attenuation is set for the music amp, which will
1194          * need to change if we start using the synth engine.
1195          */
1196         outl(0xffff0000, io + SIS_WEVCR);
1197
1198         /* Ensure that the wave engine is in normal operating mode.
1199          */
1200         outl(0, io + SIS_WECCR);
1201
1202         /* Go ahead and enable the DMA interrupts. They won't go live
1203          * until we start a channel.
1204          */
1205         outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1206                 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1207
1208         return 0;
1209 }
1210
1211 #ifdef CONFIG_PM_SLEEP
1212 static int sis_suspend(struct device *dev)
1213 {
1214         struct pci_dev *pci = to_pci_dev(dev);
1215         struct snd_card *card = dev_get_drvdata(dev);
1216         struct sis7019 *sis = card->private_data;
1217         void __iomem *ioaddr = sis->ioaddr;
1218         int i;
1219
1220         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1221         snd_pcm_suspend_all(sis->pcm);
1222         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1223                 snd_ac97_suspend(sis->ac97[0]);
1224         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1225                 snd_ac97_suspend(sis->ac97[1]);
1226         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1227                 snd_ac97_suspend(sis->ac97[2]);
1228
1229         /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1230          */
1231         if (sis->irq >= 0) {
1232                 free_irq(sis->irq, sis);
1233                 sis->irq = -1;
1234         }
1235
1236         /* Save the internal state away
1237          */
1238         for (i = 0; i < 4; i++) {
1239                 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1240                 ioaddr += 4096;
1241         }
1242
1243         pci_disable_device(pci);
1244         pci_save_state(pci);
1245         pci_set_power_state(pci, PCI_D3hot);
1246         return 0;
1247 }
1248
1249 static int sis_resume(struct device *dev)
1250 {
1251         struct pci_dev *pci = to_pci_dev(dev);
1252         struct snd_card *card = dev_get_drvdata(dev);
1253         struct sis7019 *sis = card->private_data;
1254         void __iomem *ioaddr = sis->ioaddr;
1255         int i;
1256
1257         pci_set_power_state(pci, PCI_D0);
1258         pci_restore_state(pci);
1259
1260         if (pci_enable_device(pci) < 0) {
1261                 dev_err(&pci->dev, "unable to re-enable device\n");
1262                 goto error;
1263         }
1264
1265         if (sis_chip_init(sis)) {
1266                 dev_err(&pci->dev, "unable to re-init controller\n");
1267                 goto error;
1268         }
1269
1270         if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1271                         KBUILD_MODNAME, sis)) {
1272                 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1273                 goto error;
1274         }
1275
1276         /* Restore saved state, then clear out the page we use for the
1277          * silence buffer.
1278          */
1279         for (i = 0; i < 4; i++) {
1280                 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1281                 ioaddr += 4096;
1282         }
1283
1284         memset(sis->suspend_state[0], 0, 4096);
1285
1286         sis->irq = pci->irq;
1287         pci_set_master(pci);
1288
1289         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1290                 snd_ac97_resume(sis->ac97[0]);
1291         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1292                 snd_ac97_resume(sis->ac97[1]);
1293         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1294                 snd_ac97_resume(sis->ac97[2]);
1295
1296         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1297         return 0;
1298
1299 error:
1300         snd_card_disconnect(card);
1301         return -EIO;
1302 }
1303
1304 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1305 #define SIS_PM_OPS      &sis_pm
1306 #else
1307 #define SIS_PM_OPS      NULL
1308 #endif /* CONFIG_PM_SLEEP */
1309
1310 static int sis_alloc_suspend(struct sis7019 *sis)
1311 {
1312         int i;
1313
1314         /* We need 16K to store the internal wave engine state during a
1315          * suspend, but we don't need it to be contiguous, so play nice
1316          * with the memory system. We'll also use this area for a silence
1317          * buffer.
1318          */
1319         for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1320                 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1321                 if (!sis->suspend_state[i])
1322                         return -ENOMEM;
1323         }
1324         memset(sis->suspend_state[0], 0, 4096);
1325
1326         return 0;
1327 }
1328
1329 static int sis_chip_create(struct snd_card *card,
1330                            struct pci_dev *pci)
1331 {
1332         struct sis7019 *sis = card->private_data;
1333         struct voice *voice;
1334         static struct snd_device_ops ops = {
1335                 .dev_free = sis_dev_free,
1336         };
1337         int rc;
1338         int i;
1339
1340         rc = pci_enable_device(pci);
1341         if (rc)
1342                 goto error_out;
1343
1344         if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) {
1345                 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1346                 goto error_out_enabled;
1347         }
1348
1349         memset(sis, 0, sizeof(*sis));
1350         mutex_init(&sis->ac97_mutex);
1351         spin_lock_init(&sis->voice_lock);
1352         sis->card = card;
1353         sis->pci = pci;
1354         sis->irq = -1;
1355         sis->ioport = pci_resource_start(pci, 0);
1356
1357         rc = pci_request_regions(pci, "SiS7019");
1358         if (rc) {
1359                 dev_err(&pci->dev, "unable request regions\n");
1360                 goto error_out_enabled;
1361         }
1362
1363         rc = -EIO;
1364         sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1365         if (!sis->ioaddr) {
1366                 dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1367                 goto error_out_cleanup;
1368         }
1369
1370         rc = sis_alloc_suspend(sis);
1371         if (rc < 0) {
1372                 dev_err(&pci->dev, "unable to allocate state storage\n");
1373                 goto error_out_cleanup;
1374         }
1375
1376         rc = sis_chip_init(sis);
1377         if (rc)
1378                 goto error_out_cleanup;
1379
1380         rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1381                          sis);
1382         if (rc) {
1383                 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1384                 goto error_out_cleanup;
1385         }
1386
1387         sis->irq = pci->irq;
1388         pci_set_master(pci);
1389
1390         for (i = 0; i < 64; i++) {
1391                 voice = &sis->voices[i];
1392                 voice->num = i;
1393                 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1394                 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1395         }
1396
1397         voice = &sis->capture_voice;
1398         voice->flags = VOICE_CAPTURE;
1399         voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1400         voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1401
1402         rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1403         if (rc)
1404                 goto error_out_cleanup;
1405
1406         snd_card_set_dev(card, &pci->dev);
1407
1408         return 0;
1409
1410 error_out_cleanup:
1411         sis_chip_free(sis);
1412
1413 error_out_enabled:
1414         pci_disable_device(pci);
1415
1416 error_out:
1417         return rc;
1418 }
1419
1420 static int snd_sis7019_probe(struct pci_dev *pci,
1421                              const struct pci_device_id *pci_id)
1422 {
1423         struct snd_card *card;
1424         struct sis7019 *sis;
1425         int rc;
1426
1427         rc = -ENOENT;
1428         if (!enable)
1429                 goto error_out;
1430
1431         /* The user can specify which codecs should be present so that we
1432          * can wait for them to show up if they are slow to recover from
1433          * the AC97 cold reset. We default to a single codec, the primary.
1434          *
1435          * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1436          */
1437         codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1438                   SIS_TERTIARY_CODEC_PRESENT;
1439         if (!codecs)
1440                 codecs = SIS_PRIMARY_CODEC_PRESENT;
1441
1442         rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card);
1443         if (rc < 0)
1444                 goto error_out;
1445
1446         strcpy(card->driver, "SiS7019");
1447         strcpy(card->shortname, "SiS7019");
1448         rc = sis_chip_create(card, pci);
1449         if (rc)
1450                 goto card_error_out;
1451
1452         sis = card->private_data;
1453
1454         rc = sis_mixer_create(sis);
1455         if (rc)
1456                 goto card_error_out;
1457
1458         rc = sis_pcm_create(sis);
1459         if (rc)
1460                 goto card_error_out;
1461
1462         snprintf(card->longname, sizeof(card->longname),
1463                         "%s Audio Accelerator with %s at 0x%lx, irq %d",
1464                         card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1465                         sis->ioport, sis->irq);
1466
1467         rc = snd_card_register(card);
1468         if (rc)
1469                 goto card_error_out;
1470
1471         pci_set_drvdata(pci, card);
1472         return 0;
1473
1474 card_error_out:
1475         snd_card_free(card);
1476
1477 error_out:
1478         return rc;
1479 }
1480
1481 static void snd_sis7019_remove(struct pci_dev *pci)
1482 {
1483         snd_card_free(pci_get_drvdata(pci));
1484         pci_set_drvdata(pci, NULL);
1485 }
1486
1487 static struct pci_driver sis7019_driver = {
1488         .name = KBUILD_MODNAME,
1489         .id_table = snd_sis7019_ids,
1490         .probe = snd_sis7019_probe,
1491         .remove = snd_sis7019_remove,
1492         .driver = {
1493                 .pm = SIS_PM_OPS,
1494         },
1495 };
1496
1497 module_pci_driver(sis7019_driver);