ALSA: hda - Always turn on pins for HDMI/DP
[pandora-kernel.git] / sound / pci / cmipci.c
1 /*
2  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19  
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22
23 #include <asm/io.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/gameport.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <sound/core.h>
33 #include <sound/info.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/rawmidi.h>
37 #include <sound/mpu401.h>
38 #include <sound/opl3.h>
39 #include <sound/sb.h>
40 #include <sound/asoundef.h>
41 #include <sound/initval.h>
42
43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47                 "{C-Media,CMI8738B},"
48                 "{C-Media,CMI8338A},"
49                 "{C-Media,CMI8338B}}");
50
51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52 #define SUPPORT_JOYSTICK 1
53 #endif
54
55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
57 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;     /* Enable switches */
58 static long mpu_port[SNDRV_CARDS];
59 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 #ifdef SUPPORT_JOYSTICK
62 static int joystick_port[SNDRV_CARDS];
63 #endif
64
65 module_param_array(index, int, NULL, 0444);
66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67 module_param_array(id, charp, NULL, 0444);
68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69 module_param_array(enable, bool, NULL, 0444);
70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71 module_param_array(mpu_port, long, NULL, 0444);
72 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73 module_param_array(fm_port, long, NULL, 0444);
74 MODULE_PARM_DESC(fm_port, "FM port.");
75 module_param_array(soft_ac3, bool, NULL, 0444);
76 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
77 #ifdef SUPPORT_JOYSTICK
78 module_param_array(joystick_port, int, NULL, 0444);
79 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80 #endif
81
82 /*
83  * CM8x38 registers definition
84  */
85
86 #define CM_REG_FUNCTRL0         0x00
87 #define CM_RST_CH1              0x00080000
88 #define CM_RST_CH0              0x00040000
89 #define CM_CHEN1                0x00020000      /* ch1: enable */
90 #define CM_CHEN0                0x00010000      /* ch0: enable */
91 #define CM_PAUSE1               0x00000008      /* ch1: pause */
92 #define CM_PAUSE0               0x00000004      /* ch0: pause */
93 #define CM_CHADC1               0x00000002      /* ch1, 0:playback, 1:record */
94 #define CM_CHADC0               0x00000001      /* ch0, 0:playback, 1:record */
95
96 #define CM_REG_FUNCTRL1         0x04
97 #define CM_DSFC_MASK            0x0000E000      /* channel 1 (DAC?) sampling frequency */
98 #define CM_DSFC_SHIFT           13
99 #define CM_ASFC_MASK            0x00001C00      /* channel 0 (ADC?) sampling frequency */
100 #define CM_ASFC_SHIFT           10
101 #define CM_SPDF_1               0x00000200      /* SPDIF IN/OUT at channel B */
102 #define CM_SPDF_0               0x00000100      /* SPDIF OUT only channel A */
103 #define CM_SPDFLOOP             0x00000080      /* ext. SPDIIF/IN -> OUT loopback */
104 #define CM_SPDO2DAC             0x00000040      /* SPDIF/OUT can be heard from internal DAC */
105 #define CM_INTRM                0x00000020      /* master control block (MCB) interrupt enabled */
106 #define CM_BREQ                 0x00000010      /* bus master enabled */
107 #define CM_VOICE_EN             0x00000008      /* legacy voice (SB16,FM) */
108 #define CM_UART_EN              0x00000004      /* legacy UART */
109 #define CM_JYSTK_EN             0x00000002      /* legacy joystick */
110 #define CM_ZVPORT               0x00000001      /* ZVPORT */
111
112 #define CM_REG_CHFORMAT         0x08
113
114 #define CM_CHB3D5C              0x80000000      /* 5,6 channels */
115 #define CM_FMOFFSET2            0x40000000      /* initial FM PCM offset 2 when Fmute=1 */
116 #define CM_CHB3D                0x20000000      /* 4 channels */
117
118 #define CM_CHIP_MASK1           0x1f000000
119 #define CM_CHIP_037             0x01000000
120 #define CM_SETLAT48             0x00800000      /* set latency timer 48h */
121 #define CM_EDGEIRQ              0x00400000      /* emulated edge trigger legacy IRQ */
122 #define CM_SPD24SEL39           0x00200000      /* 24-bit spdif: model 039 */
123 #define CM_AC3EN1               0x00100000      /* enable AC3: model 037 */
124 #define CM_SPDIF_SELECT1        0x00080000      /* for model <= 037 ? */
125 #define CM_SPD24SEL             0x00020000      /* 24bit spdif: model 037 */
126 /* #define CM_SPDIF_INVERSE     0x00010000 */ /* ??? */
127
128 #define CM_ADCBITLEN_MASK       0x0000C000      
129 #define CM_ADCBITLEN_16         0x00000000
130 #define CM_ADCBITLEN_15         0x00004000
131 #define CM_ADCBITLEN_14         0x00008000
132 #define CM_ADCBITLEN_13         0x0000C000
133
134 #define CM_ADCDACLEN_MASK       0x00003000      /* model 037 */
135 #define CM_ADCDACLEN_060        0x00000000
136 #define CM_ADCDACLEN_066        0x00001000
137 #define CM_ADCDACLEN_130        0x00002000
138 #define CM_ADCDACLEN_280        0x00003000
139
140 #define CM_ADCDLEN_MASK         0x00003000      /* model 039 */
141 #define CM_ADCDLEN_ORIGINAL     0x00000000
142 #define CM_ADCDLEN_EXTRA        0x00001000
143 #define CM_ADCDLEN_24K          0x00002000
144 #define CM_ADCDLEN_WEIGHT       0x00003000
145
146 #define CM_CH1_SRATE_176K       0x00000800
147 #define CM_CH1_SRATE_96K        0x00000800      /* model 055? */
148 #define CM_CH1_SRATE_88K        0x00000400
149 #define CM_CH0_SRATE_176K       0x00000200
150 #define CM_CH0_SRATE_96K        0x00000200      /* model 055? */
151 #define CM_CH0_SRATE_88K        0x00000100
152 #define CM_CH0_SRATE_128K       0x00000300
153 #define CM_CH0_SRATE_MASK       0x00000300
154
155 #define CM_SPDIF_INVERSE2       0x00000080      /* model 055? */
156 #define CM_DBLSPDS              0x00000040      /* double SPDIF sample rate 88.2/96 */
157 #define CM_POLVALID             0x00000020      /* inverse SPDIF/IN valid bit */
158 #define CM_SPDLOCKED            0x00000010
159
160 #define CM_CH1FMT_MASK          0x0000000C      /* bit 3: 16 bits, bit 2: stereo */
161 #define CM_CH1FMT_SHIFT         2
162 #define CM_CH0FMT_MASK          0x00000003      /* bit 1: 16 bits, bit 0: stereo */
163 #define CM_CH0FMT_SHIFT         0
164
165 #define CM_REG_INT_HLDCLR       0x0C
166 #define CM_CHIP_MASK2           0xff000000
167 #define CM_CHIP_8768            0x20000000
168 #define CM_CHIP_055             0x08000000
169 #define CM_CHIP_039             0x04000000
170 #define CM_CHIP_039_6CH         0x01000000
171 #define CM_UNKNOWN_INT_EN       0x00080000      /* ? */
172 #define CM_TDMA_INT_EN          0x00040000
173 #define CM_CH1_INT_EN           0x00020000
174 #define CM_CH0_INT_EN           0x00010000
175
176 #define CM_REG_INT_STATUS       0x10
177 #define CM_INTR                 0x80000000
178 #define CM_VCO                  0x08000000      /* Voice Control? CMI8738 */
179 #define CM_MCBINT               0x04000000      /* Master Control Block abort cond.? */
180 #define CM_UARTINT              0x00010000
181 #define CM_LTDMAINT             0x00008000
182 #define CM_HTDMAINT             0x00004000
183 #define CM_XDO46                0x00000080      /* Modell 033? Direct programming EEPROM (read data register) */
184 #define CM_LHBTOG               0x00000040      /* High/Low status from DMA ctrl register */
185 #define CM_LEG_HDMA             0x00000020      /* Legacy is in High DMA channel */
186 #define CM_LEG_STEREO           0x00000010      /* Legacy is in Stereo mode */
187 #define CM_CH1BUSY              0x00000008
188 #define CM_CH0BUSY              0x00000004
189 #define CM_CHINT1               0x00000002
190 #define CM_CHINT0               0x00000001
191
192 #define CM_REG_LEGACY_CTRL      0x14
193 #define CM_NXCHG                0x80000000      /* don't map base reg dword->sample */
194 #define CM_VMPU_MASK            0x60000000      /* MPU401 i/o port address */
195 #define CM_VMPU_330             0x00000000
196 #define CM_VMPU_320             0x20000000
197 #define CM_VMPU_310             0x40000000
198 #define CM_VMPU_300             0x60000000
199 #define CM_ENWR8237             0x10000000      /* enable bus master to write 8237 base reg */
200 #define CM_VSBSEL_MASK          0x0C000000      /* SB16 base address */
201 #define CM_VSBSEL_220           0x00000000
202 #define CM_VSBSEL_240           0x04000000
203 #define CM_VSBSEL_260           0x08000000
204 #define CM_VSBSEL_280           0x0C000000
205 #define CM_FMSEL_MASK           0x03000000      /* FM OPL3 base address */
206 #define CM_FMSEL_388            0x00000000
207 #define CM_FMSEL_3C8            0x01000000
208 #define CM_FMSEL_3E0            0x02000000
209 #define CM_FMSEL_3E8            0x03000000
210 #define CM_ENSPDOUT             0x00800000      /* enable XSPDIF/OUT to I/O interface */
211 #define CM_SPDCOPYRHT           0x00400000      /* spdif in/out copyright bit */
212 #define CM_DAC2SPDO             0x00200000      /* enable wave+fm_midi -> SPDIF/OUT */
213 #define CM_INVIDWEN             0x00100000      /* internal vendor ID write enable, model 039? */
214 #define CM_SETRETRY             0x00100000      /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215 #define CM_C_EEACCESS           0x00080000      /* direct programming eeprom regs */
216 #define CM_C_EECS               0x00040000
217 #define CM_C_EEDI46             0x00020000
218 #define CM_C_EECK46             0x00010000
219 #define CM_CHB3D6C              0x00008000      /* 5.1 channels support */
220 #define CM_CENTR2LIN            0x00004000      /* line-in as center out */
221 #define CM_BASE2LIN             0x00002000      /* line-in as bass out */
222 #define CM_EXBASEN              0x00001000      /* external bass input enable */
223
224 #define CM_REG_MISC_CTRL        0x18
225 #define CM_PWD                  0x80000000      /* power down */
226 #define CM_RESET                0x40000000
227 #define CM_SFIL_MASK            0x30000000      /* filter control at front end DAC, model 037? */
228 #define CM_VMGAIN               0x10000000      /* analog master amp +6dB, model 039? */
229 #define CM_TXVX                 0x08000000      /* model 037? */
230 #define CM_N4SPK3D              0x04000000      /* copy front to rear */
231 #define CM_SPDO5V               0x02000000      /* 5V spdif output (1 = 0.5v (coax)) */
232 #define CM_SPDIF48K             0x01000000      /* write */
233 #define CM_SPATUS48K            0x01000000      /* read */
234 #define CM_ENDBDAC              0x00800000      /* enable double dac */
235 #define CM_XCHGDAC              0x00400000      /* 0: front=ch0, 1: front=ch1 */
236 #define CM_SPD32SEL             0x00200000      /* 0: 16bit SPDIF, 1: 32bit */
237 #define CM_SPDFLOOPI            0x00100000      /* int. SPDIF-OUT -> int. IN */
238 #define CM_FM_EN                0x00080000      /* enable legacy FM */
239 #define CM_AC3EN2               0x00040000      /* enable AC3: model 039 */
240 #define CM_ENWRASID             0x00010000      /* choose writable internal SUBID (audio) */
241 #define CM_VIDWPDSB             0x00010000      /* model 037? */
242 #define CM_SPDF_AC97            0x00008000      /* 0: SPDIF/OUT 44.1K, 1: 48K */
243 #define CM_MASK_EN              0x00004000      /* activate channel mask on legacy DMA */
244 #define CM_ENWRMSID             0x00002000      /* choose writable internal SUBID (modem) */
245 #define CM_VIDWPPRT             0x00002000      /* model 037? */
246 #define CM_SFILENB              0x00001000      /* filter stepping at front end DAC, model 037? */
247 #define CM_MMODE_MASK           0x00000E00      /* model DAA interface mode */
248 #define CM_SPDIF_SELECT2        0x00000100      /* for model > 039 ? */
249 #define CM_ENCENTER             0x00000080
250 #define CM_FLINKON              0x00000040      /* force modem link detection on, model 037 */
251 #define CM_MUTECH1              0x00000040      /* mute PCI ch1 to DAC */
252 #define CM_FLINKOFF             0x00000020      /* force modem link detection off, model 037 */
253 #define CM_MIDSMP               0x00000010      /* 1/2 interpolation at front end DAC */
254 #define CM_UPDDMA_MASK          0x0000000C      /* TDMA position update notification */
255 #define CM_UPDDMA_2048          0x00000000
256 #define CM_UPDDMA_1024          0x00000004
257 #define CM_UPDDMA_512           0x00000008
258 #define CM_UPDDMA_256           0x0000000C              
259 #define CM_TWAIT_MASK           0x00000003      /* model 037 */
260 #define CM_TWAIT1               0x00000002      /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261 #define CM_TWAIT0               0x00000001      /* i/o cycle, 0: 4, 1: 6 PCICLKs */
262
263 #define CM_REG_TDMA_POSITION    0x1C
264 #define CM_TDMA_CNT_MASK        0xFFFF0000      /* current byte/word count */
265 #define CM_TDMA_ADR_MASK        0x0000FFFF      /* current address */
266
267         /* byte */
268 #define CM_REG_MIXER0           0x20
269 #define CM_REG_SBVR             0x20            /* write: sb16 version */
270 #define CM_REG_DEV              0x20            /* read: hardware device version */
271
272 #define CM_REG_MIXER21          0x21
273 #define CM_UNKNOWN_21_MASK      0x78            /* ? */
274 #define CM_X_ADPCM              0x04            /* SB16 ADPCM enable */
275 #define CM_PROINV               0x02            /* SBPro left/right channel switching */
276 #define CM_X_SB16               0x01            /* SB16 compatible */
277
278 #define CM_REG_SB16_DATA        0x22
279 #define CM_REG_SB16_ADDR        0x23
280
281 #define CM_REFFREQ_XIN          (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
282 #define CM_ADCMULT_XIN          512                     /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283 #define CM_TOLERANCE_RATE       0.001                   /* Tolerance sample rate pitch (1000ppm) */
284 #define CM_MAXIMUM_RATE         80000000                /* Note more than 80MHz */
285
286 #define CM_REG_MIXER1           0x24
287 #define CM_FMMUTE               0x80    /* mute FM */
288 #define CM_FMMUTE_SHIFT         7
289 #define CM_WSMUTE               0x40    /* mute PCM */
290 #define CM_WSMUTE_SHIFT         6
291 #define CM_REAR2LIN             0x20    /* lin-in -> rear line out */
292 #define CM_REAR2LIN_SHIFT       5
293 #define CM_REAR2FRONT           0x10    /* exchange rear/front */
294 #define CM_REAR2FRONT_SHIFT     4
295 #define CM_WAVEINL              0x08    /* digital wave rec. left chan */
296 #define CM_WAVEINL_SHIFT        3
297 #define CM_WAVEINR              0x04    /* digical wave rec. right */
298 #define CM_WAVEINR_SHIFT        2
299 #define CM_X3DEN                0x02    /* 3D surround enable */
300 #define CM_X3DEN_SHIFT          1
301 #define CM_CDPLAY               0x01    /* enable SPDIF/IN PCM -> DAC */
302 #define CM_CDPLAY_SHIFT         0
303
304 #define CM_REG_MIXER2           0x25
305 #define CM_RAUXREN              0x80    /* AUX right capture */
306 #define CM_RAUXREN_SHIFT        7
307 #define CM_RAUXLEN              0x40    /* AUX left capture */
308 #define CM_RAUXLEN_SHIFT        6
309 #define CM_VAUXRM               0x20    /* AUX right mute */
310 #define CM_VAUXRM_SHIFT         5
311 #define CM_VAUXLM               0x10    /* AUX left mute */
312 #define CM_VAUXLM_SHIFT         4
313 #define CM_VADMIC_MASK          0x0e    /* mic gain level (0-3) << 1 */
314 #define CM_VADMIC_SHIFT         1
315 #define CM_MICGAINZ             0x01    /* mic boost */
316 #define CM_MICGAINZ_SHIFT       0
317
318 #define CM_REG_MIXER3           0x24
319 #define CM_REG_AUX_VOL          0x26
320 #define CM_VAUXL_MASK           0xf0
321 #define CM_VAUXR_MASK           0x0f
322
323 #define CM_REG_MISC             0x27
324 #define CM_UNKNOWN_27_MASK      0xd8    /* ? */
325 #define CM_XGPO1                0x20
326 // #define CM_XGPBIO            0x04
327 #define CM_MIC_CENTER_LFE       0x04    /* mic as center/lfe out? (model 039 or later?) */
328 #define CM_SPDIF_INVERSE        0x04    /* spdif input phase inverse (model 037) */
329 #define CM_SPDVALID             0x02    /* spdif input valid check */
330 #define CM_DMAUTO               0x01    /* SB16 DMA auto detect */
331
332 #define CM_REG_AC97             0x28    /* hmmm.. do we have ac97 link? */
333 /*
334  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335  * or identical with AC97 codec?
336  */
337 #define CM_REG_EXTERN_CODEC     CM_REG_AC97
338
339 /*
340  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341  */
342 #define CM_REG_MPU_PCI          0x40
343
344 /*
345  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346  */
347 #define CM_REG_FM_PCI           0x50
348
349 /*
350  * access from SB-mixer port
351  */
352 #define CM_REG_EXTENT_IND       0xf0
353 #define CM_VPHONE_MASK          0xe0    /* Phone volume control (0-3) << 5 */
354 #define CM_VPHONE_SHIFT         5
355 #define CM_VPHOM                0x10    /* Phone mute control */
356 #define CM_VSPKM                0x08    /* Speaker mute control, default high */
357 #define CM_RLOOPREN             0x04    /* Rec. R-channel enable */
358 #define CM_RLOOPLEN             0x02    /* Rec. L-channel enable */
359 #define CM_VADMIC3              0x01    /* Mic record boost */
360
361 /*
362  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364  * unit (readonly?).
365  */
366 #define CM_REG_PLL              0xf8
367
368 /*
369  * extended registers
370  */
371 #define CM_REG_CH0_FRAME1       0x80    /* write: base address */
372 #define CM_REG_CH0_FRAME2       0x84    /* read: current address */
373 #define CM_REG_CH1_FRAME1       0x88    /* 0-15: count of samples at bus master; buffer size */
374 #define CM_REG_CH1_FRAME2       0x8C    /* 16-31: count of samples at codec; fragment size */
375
376 #define CM_REG_EXT_MISC         0x90
377 #define CM_ADC48K44K            0x10000000      /* ADC parameters group, 0: 44k, 1: 48k */
378 #define CM_CHB3D8C              0x00200000      /* 7.1 channels support */
379 #define CM_SPD32FMT             0x00100000      /* SPDIF/IN 32k sample rate */
380 #define CM_ADC2SPDIF            0x00080000      /* ADC output to SPDIF/OUT */
381 #define CM_SHAREADC             0x00040000      /* DAC in ADC as Center/LFE */
382 #define CM_REALTCMP             0x00020000      /* monitor the CMPL/CMPR of ADC */
383 #define CM_INVLRCK              0x00010000      /* invert ZVPORT's LRCK */
384 #define CM_UNKNOWN_90_MASK      0x0000FFFF      /* ? */
385
386 /*
387  * size of i/o region
388  */
389 #define CM_EXTENT_CODEC   0x100
390 #define CM_EXTENT_MIDI    0x2
391 #define CM_EXTENT_SYNTH   0x4
392
393
394 /*
395  * channels for playback / capture
396  */
397 #define CM_CH_PLAY      0
398 #define CM_CH_CAPT      1
399
400 /*
401  * flags to check device open/close
402  */
403 #define CM_OPEN_NONE    0
404 #define CM_OPEN_CH_MASK 0x01
405 #define CM_OPEN_DAC     0x10
406 #define CM_OPEN_ADC     0x20
407 #define CM_OPEN_SPDIF   0x40
408 #define CM_OPEN_MCHAN   0x80
409 #define CM_OPEN_PLAYBACK        (CM_CH_PLAY | CM_OPEN_DAC)
410 #define CM_OPEN_PLAYBACK2       (CM_CH_CAPT | CM_OPEN_DAC)
411 #define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412 #define CM_OPEN_CAPTURE         (CM_CH_CAPT | CM_OPEN_ADC)
413 #define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414 #define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415
416
417 #if CM_CH_PLAY == 1
418 #define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
419 #define CM_PLAYBACK_SPDF        CM_SPDF_1
420 #define CM_CAPTURE_SPDF         CM_SPDF_0
421 #else
422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423 #define CM_PLAYBACK_SPDF        CM_SPDF_0
424 #define CM_CAPTURE_SPDF         CM_SPDF_1
425 #endif
426
427
428 /*
429  * driver data
430  */
431
432 struct cmipci_pcm {
433         struct snd_pcm_substream *substream;
434         u8 running;             /* dac/adc running? */
435         u8 fmt;                 /* format bits */
436         u8 is_dac;
437         u8 needs_silencing;
438         unsigned int dma_size;  /* in frames */
439         unsigned int shift;
440         unsigned int ch;        /* channel (0/1) */
441         unsigned int offset;    /* physical address of the buffer */
442 };
443
444 /* mixer elements toggled/resumed during ac3 playback */
445 struct cmipci_mixer_auto_switches {
446         const char *name;       /* switch to toggle */
447         int toggle_on;          /* value to change when ac3 mode */
448 };
449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450         {"PCM Playback Switch", 0},
451         {"IEC958 Output Switch", 1},
452         {"IEC958 Mix Analog", 0},
453         // {"IEC958 Out To DAC", 1}, // no longer used
454         {"IEC958 Loop", 0},
455 };
456 #define CM_SAVED_MIXERS         ARRAY_SIZE(cm_saved_mixer)
457
458 struct cmipci {
459         struct snd_card *card;
460
461         struct pci_dev *pci;
462         unsigned int device;    /* device ID */
463         int irq;
464
465         unsigned long iobase;
466         unsigned int ctrl;      /* FUNCTRL0 current value */
467
468         struct snd_pcm *pcm;            /* DAC/ADC PCM */
469         struct snd_pcm *pcm2;   /* 2nd DAC */
470         struct snd_pcm *pcm_spdif;      /* SPDIF */
471
472         int chip_version;
473         int max_channels;
474         unsigned int can_ac3_sw: 1;
475         unsigned int can_ac3_hw: 1;
476         unsigned int can_multi_ch: 1;
477         unsigned int can_96k: 1;        /* samplerate above 48k */
478         unsigned int do_soft_ac3: 1;
479
480         unsigned int spdif_playback_avail: 1;   /* spdif ready? */
481         unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
482         int spdif_counter;      /* for software AC3 */
483
484         unsigned int dig_status;
485         unsigned int dig_pcm_status;
486
487         struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488
489         int opened[2];  /* open mode */
490         struct mutex open_mutex;
491
492         unsigned int mixer_insensitive: 1;
493         struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494         int mixer_res_status[CM_SAVED_MIXERS];
495
496         struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */
497
498         /* external MIDI */
499         struct snd_rawmidi *rmidi;
500
501 #ifdef SUPPORT_JOYSTICK
502         struct gameport *gameport;
503 #endif
504
505         spinlock_t reg_lock;
506
507 #ifdef CONFIG_PM_SLEEP
508         unsigned int saved_regs[0x20];
509         unsigned char saved_mixers[0x20];
510 #endif
511 };
512
513
514 /* read/write operations for dword register */
515 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516 {
517         outl(data, cm->iobase + cmd);
518 }
519
520 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521 {
522         return inl(cm->iobase + cmd);
523 }
524
525 /* read/write operations for word register */
526 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527 {
528         outw(data, cm->iobase + cmd);
529 }
530
531 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532 {
533         return inw(cm->iobase + cmd);
534 }
535
536 /* read/write operations for byte register */
537 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538 {
539         outb(data, cm->iobase + cmd);
540 }
541
542 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543 {
544         return inb(cm->iobase + cmd);
545 }
546
547 /* bit operations for dword register */
548 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549 {
550         unsigned int val, oval;
551         val = oval = inl(cm->iobase + cmd);
552         val |= flag;
553         if (val == oval)
554                 return 0;
555         outl(val, cm->iobase + cmd);
556         return 1;
557 }
558
559 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560 {
561         unsigned int val, oval;
562         val = oval = inl(cm->iobase + cmd);
563         val &= ~flag;
564         if (val == oval)
565                 return 0;
566         outl(val, cm->iobase + cmd);
567         return 1;
568 }
569
570 /* bit operations for byte register */
571 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572 {
573         unsigned char val, oval;
574         val = oval = inb(cm->iobase + cmd);
575         val |= flag;
576         if (val == oval)
577                 return 0;
578         outb(val, cm->iobase + cmd);
579         return 1;
580 }
581
582 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583 {
584         unsigned char val, oval;
585         val = oval = inb(cm->iobase + cmd);
586         val &= ~flag;
587         if (val == oval)
588                 return 0;
589         outb(val, cm->iobase + cmd);
590         return 1;
591 }
592
593
594 /*
595  * PCM interface
596  */
597
598 /*
599  * calculate frequency
600  */
601
602 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603
604 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605 {
606         unsigned int i;
607
608         for (i = 0; i < ARRAY_SIZE(rates); i++) {
609                 if (rates[i] == rate)
610                         return i;
611         }
612         snd_BUG();
613         return 0;
614 }
615
616 #ifdef USE_VAR48KRATE
617 /*
618  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619  * does it this way .. maybe not.  Never get any information from C-Media about
620  * that <werner@suse.de>.
621  */
622 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
623 {
624         unsigned int delta, tolerance;
625         int xm, xn, xr;
626
627         for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628                 rate <<= 1;
629         *n = -1;
630         if (*r > 0xff)
631                 goto out;
632         tolerance = rate*CM_TOLERANCE_RATE;
633
634         for (xn = (1+2); xn < (0x1f+2); xn++) {
635                 for (xm = (1+2); xm < (0xff+2); xm++) {
636                         xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
637
638                         if (xr < rate)
639                                 delta = rate - xr;
640                         else
641                                 delta = xr - rate;
642
643                         /*
644                          * If we found one, remember this,
645                          * and try to find a closer one
646                          */
647                         if (delta < tolerance) {
648                                 tolerance = delta;
649                                 *m = xm - 2;
650                                 *n = xn - 2;
651                         }
652                 }
653         }
654 out:
655         return (*n > -1);
656 }
657
658 /*
659  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
660  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
661  * at the register CM_REG_FUNCTRL1 (0x04).
662  * Problem: other ways are also possible (any information about that?)
663  */
664 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
665 {
666         unsigned int reg = CM_REG_PLL + slot;
667         /*
668          * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669          * for DSFC/ASFC (000 up to 111).
670          */
671
672         /* FIXME: Init (Do we've to set an other register first before programming?) */
673
674         /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
675         snd_cmipci_write_b(cm, reg, rate>>8);
676         snd_cmipci_write_b(cm, reg, rate&0xff);
677
678         /* FIXME: Setup (Do we've to set an other register first to enable this?) */
679 }
680 #endif /* USE_VAR48KRATE */
681
682 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
683                                 struct snd_pcm_hw_params *hw_params)
684 {
685         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686 }
687
688 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
689                                           struct snd_pcm_hw_params *hw_params)
690 {
691         struct cmipci *cm = snd_pcm_substream_chip(substream);
692         if (params_channels(hw_params) > 2) {
693                 mutex_lock(&cm->open_mutex);
694                 if (cm->opened[CM_CH_PLAY]) {
695                         mutex_unlock(&cm->open_mutex);
696                         return -EBUSY;
697                 }
698                 /* reserve the channel A */
699                 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
700                 mutex_unlock(&cm->open_mutex);
701         }
702         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703 }
704
705 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
706 {
707         int reset = CM_RST_CH0 << (cm->channel[ch].ch);
708         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
709         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
710         udelay(10);
711 }
712
713 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
714 {
715         return snd_pcm_lib_free_pages(substream);
716 }
717
718
719 /*
720  */
721
722 static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
723 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
724         .count = 3,
725         .list = hw_channels,
726         .mask = 0,
727 };
728 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
729         .count = 4,
730         .list = hw_channels,
731         .mask = 0,
732 };
733 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
734         .count = 5,
735         .list = hw_channels,
736         .mask = 0,
737 };
738
739 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
740 {
741         if (channels > 2) {
742                 if (!cm->can_multi_ch || !rec->ch)
743                         return -EINVAL;
744                 if (rec->fmt != 0x03) /* stereo 16bit only */
745                         return -EINVAL;
746         }
747
748         if (cm->can_multi_ch) {
749                 spin_lock_irq(&cm->reg_lock);
750                 if (channels > 2) {
751                         snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753                 } else {
754                         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
755                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
756                 }
757                 if (channels == 8)
758                         snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
759                 else
760                         snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
761                 if (channels == 6) {
762                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763                         snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764                 } else {
765                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
766                         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
767                 }
768                 if (channels == 4)
769                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
770                 else
771                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
772                 spin_unlock_irq(&cm->reg_lock);
773         }
774         return 0;
775 }
776
777
778 /*
779  * prepare playback/capture channel
780  * channel to be used must have been set in rec->ch.
781  */
782 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
783                                  struct snd_pcm_substream *substream)
784 {
785         unsigned int reg, freq, freq_ext, val;
786         unsigned int period_size;
787         struct snd_pcm_runtime *runtime = substream->runtime;
788
789         rec->fmt = 0;
790         rec->shift = 0;
791         if (snd_pcm_format_width(runtime->format) >= 16) {
792                 rec->fmt |= 0x02;
793                 if (snd_pcm_format_width(runtime->format) > 16)
794                         rec->shift++; /* 24/32bit */
795         }
796         if (runtime->channels > 1)
797                 rec->fmt |= 0x01;
798         if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
799                 snd_printd("cannot set dac channels\n");
800                 return -EINVAL;
801         }
802
803         rec->offset = runtime->dma_addr;
804         /* buffer and period sizes in frame */
805         rec->dma_size = runtime->buffer_size << rec->shift;
806         period_size = runtime->period_size << rec->shift;
807         if (runtime->channels > 2) {
808                 /* multi-channels */
809                 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
810                 period_size = (period_size * runtime->channels) / 2;
811         }
812
813         spin_lock_irq(&cm->reg_lock);
814
815         /* set buffer address */
816         reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
817         snd_cmipci_write(cm, reg, rec->offset);
818         /* program sample counts */
819         reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
820         snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
821         snd_cmipci_write_w(cm, reg + 2, period_size - 1);
822
823         /* set adc/dac flag */
824         val = rec->ch ? CM_CHADC1 : CM_CHADC0;
825         if (rec->is_dac)
826                 cm->ctrl &= ~val;
827         else
828                 cm->ctrl |= val;
829         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
830         //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
831
832         /* set sample rate */
833         freq = 0;
834         freq_ext = 0;
835         if (runtime->rate > 48000)
836                 switch (runtime->rate) {
837                 case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
838                 case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
839                 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
840                 default:     snd_BUG(); break;
841                 }
842         else
843                 freq = snd_cmipci_rate_freq(runtime->rate);
844         val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
845         if (rec->ch) {
846                 val &= ~CM_DSFC_MASK;
847                 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
848         } else {
849                 val &= ~CM_ASFC_MASK;
850                 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
851         }
852         snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
853         //snd_printd("cmipci: functrl1 = %08x\n", val);
854
855         /* set format */
856         val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
857         if (rec->ch) {
858                 val &= ~CM_CH1FMT_MASK;
859                 val |= rec->fmt << CM_CH1FMT_SHIFT;
860         } else {
861                 val &= ~CM_CH0FMT_MASK;
862                 val |= rec->fmt << CM_CH0FMT_SHIFT;
863         }
864         if (cm->can_96k) {
865                 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
866                 val |= freq_ext << (rec->ch * 2);
867         }
868         snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
869         //snd_printd("cmipci: chformat = %08x\n", val);
870
871         if (!rec->is_dac && cm->chip_version) {
872                 if (runtime->rate > 44100)
873                         snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
874                 else
875                         snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
876         }
877
878         rec->running = 0;
879         spin_unlock_irq(&cm->reg_lock);
880
881         return 0;
882 }
883
884 /*
885  * PCM trigger/stop
886  */
887 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
888                                   int cmd)
889 {
890         unsigned int inthld, chen, reset, pause;
891         int result = 0;
892
893         inthld = CM_CH0_INT_EN << rec->ch;
894         chen = CM_CHEN0 << rec->ch;
895         reset = CM_RST_CH0 << rec->ch;
896         pause = CM_PAUSE0 << rec->ch;
897
898         spin_lock(&cm->reg_lock);
899         switch (cmd) {
900         case SNDRV_PCM_TRIGGER_START:
901                 rec->running = 1;
902                 /* set interrupt */
903                 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
904                 cm->ctrl |= chen;
905                 /* enable channel */
906                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
907                 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
908                 break;
909         case SNDRV_PCM_TRIGGER_STOP:
910                 rec->running = 0;
911                 /* disable interrupt */
912                 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
913                 /* reset */
914                 cm->ctrl &= ~chen;
915                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
916                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
917                 rec->needs_silencing = rec->is_dac;
918                 break;
919         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
920         case SNDRV_PCM_TRIGGER_SUSPEND:
921                 cm->ctrl |= pause;
922                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
923                 break;
924         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
925         case SNDRV_PCM_TRIGGER_RESUME:
926                 cm->ctrl &= ~pause;
927                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
928                 break;
929         default:
930                 result = -EINVAL;
931                 break;
932         }
933         spin_unlock(&cm->reg_lock);
934         return result;
935 }
936
937 /*
938  * return the current pointer
939  */
940 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
941                                                 struct snd_pcm_substream *substream)
942 {
943         size_t ptr;
944         unsigned int reg, rem, tries;
945
946         if (!rec->running)
947                 return 0;
948 #if 1 // this seems better..
949         reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
950         for (tries = 0; tries < 3; tries++) {
951                 rem = snd_cmipci_read_w(cm, reg);
952                 if (rem < rec->dma_size)
953                         goto ok;
954         } 
955         printk(KERN_ERR "cmipci: invalid PCM pointer: %#x\n", rem);
956         return SNDRV_PCM_POS_XRUN;
957 ok:
958         ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
959 #else
960         reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
961         ptr = snd_cmipci_read(cm, reg) - rec->offset;
962         ptr = bytes_to_frames(substream->runtime, ptr);
963 #endif
964         if (substream->runtime->channels > 2)
965                 ptr = (ptr * 2) / substream->runtime->channels;
966         return ptr;
967 }
968
969 /*
970  * playback
971  */
972
973 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
974                                        int cmd)
975 {
976         struct cmipci *cm = snd_pcm_substream_chip(substream);
977         return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
978 }
979
980 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
981 {
982         struct cmipci *cm = snd_pcm_substream_chip(substream);
983         return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
984 }
985
986
987
988 /*
989  * capture
990  */
991
992 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
993                                      int cmd)
994 {
995         struct cmipci *cm = snd_pcm_substream_chip(substream);
996         return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
997 }
998
999 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
1000 {
1001         struct cmipci *cm = snd_pcm_substream_chip(substream);
1002         return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1003 }
1004
1005
1006 /*
1007  * hw preparation for spdif
1008  */
1009
1010 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1011                                          struct snd_ctl_elem_info *uinfo)
1012 {
1013         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1014         uinfo->count = 1;
1015         return 0;
1016 }
1017
1018 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1019                                         struct snd_ctl_elem_value *ucontrol)
1020 {
1021         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022         int i;
1023
1024         spin_lock_irq(&chip->reg_lock);
1025         for (i = 0; i < 4; i++)
1026                 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1027         spin_unlock_irq(&chip->reg_lock);
1028         return 0;
1029 }
1030
1031 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1032                                          struct snd_ctl_elem_value *ucontrol)
1033 {
1034         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1035         int i, change;
1036         unsigned int val;
1037
1038         val = 0;
1039         spin_lock_irq(&chip->reg_lock);
1040         for (i = 0; i < 4; i++)
1041                 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1042         change = val != chip->dig_status;
1043         chip->dig_status = val;
1044         spin_unlock_irq(&chip->reg_lock);
1045         return change;
1046 }
1047
1048 static struct snd_kcontrol_new snd_cmipci_spdif_default =
1049 {
1050         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1051         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1052         .info =         snd_cmipci_spdif_default_info,
1053         .get =          snd_cmipci_spdif_default_get,
1054         .put =          snd_cmipci_spdif_default_put
1055 };
1056
1057 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1058                                       struct snd_ctl_elem_info *uinfo)
1059 {
1060         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1061         uinfo->count = 1;
1062         return 0;
1063 }
1064
1065 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1066                                      struct snd_ctl_elem_value *ucontrol)
1067 {
1068         ucontrol->value.iec958.status[0] = 0xff;
1069         ucontrol->value.iec958.status[1] = 0xff;
1070         ucontrol->value.iec958.status[2] = 0xff;
1071         ucontrol->value.iec958.status[3] = 0xff;
1072         return 0;
1073 }
1074
1075 static struct snd_kcontrol_new snd_cmipci_spdif_mask =
1076 {
1077         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1078         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1079         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1080         .info =         snd_cmipci_spdif_mask_info,
1081         .get =          snd_cmipci_spdif_mask_get,
1082 };
1083
1084 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1085                                         struct snd_ctl_elem_info *uinfo)
1086 {
1087         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1088         uinfo->count = 1;
1089         return 0;
1090 }
1091
1092 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1093                                        struct snd_ctl_elem_value *ucontrol)
1094 {
1095         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096         int i;
1097
1098         spin_lock_irq(&chip->reg_lock);
1099         for (i = 0; i < 4; i++)
1100                 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1101         spin_unlock_irq(&chip->reg_lock);
1102         return 0;
1103 }
1104
1105 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1106                                        struct snd_ctl_elem_value *ucontrol)
1107 {
1108         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1109         int i, change;
1110         unsigned int val;
1111
1112         val = 0;
1113         spin_lock_irq(&chip->reg_lock);
1114         for (i = 0; i < 4; i++)
1115                 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1116         change = val != chip->dig_pcm_status;
1117         chip->dig_pcm_status = val;
1118         spin_unlock_irq(&chip->reg_lock);
1119         return change;
1120 }
1121
1122 static struct snd_kcontrol_new snd_cmipci_spdif_stream =
1123 {
1124         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1125         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1126         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1127         .info =         snd_cmipci_spdif_stream_info,
1128         .get =          snd_cmipci_spdif_stream_get,
1129         .put =          snd_cmipci_spdif_stream_put
1130 };
1131
1132 /*
1133  */
1134
1135 /* save mixer setting and mute for AC3 playback */
1136 static int save_mixer_state(struct cmipci *cm)
1137 {
1138         if (! cm->mixer_insensitive) {
1139                 struct snd_ctl_elem_value *val;
1140                 unsigned int i;
1141
1142                 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1143                 if (!val)
1144                         return -ENOMEM;
1145                 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1146                         struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1147                         if (ctl) {
1148                                 int event;
1149                                 memset(val, 0, sizeof(*val));
1150                                 ctl->get(ctl, val);
1151                                 cm->mixer_res_status[i] = val->value.integer.value[0];
1152                                 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1153                                 event = SNDRV_CTL_EVENT_MASK_INFO;
1154                                 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1155                                         ctl->put(ctl, val); /* toggle */
1156                                         event |= SNDRV_CTL_EVENT_MASK_VALUE;
1157                                 }
1158                                 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159                                 snd_ctl_notify(cm->card, event, &ctl->id);
1160                         }
1161                 }
1162                 kfree(val);
1163                 cm->mixer_insensitive = 1;
1164         }
1165         return 0;
1166 }
1167
1168
1169 /* restore the previously saved mixer status */
1170 static void restore_mixer_state(struct cmipci *cm)
1171 {
1172         if (cm->mixer_insensitive) {
1173                 struct snd_ctl_elem_value *val;
1174                 unsigned int i;
1175
1176                 val = kmalloc(sizeof(*val), GFP_KERNEL);
1177                 if (!val)
1178                         return;
1179                 cm->mixer_insensitive = 0; /* at first clear this;
1180                                               otherwise the changes will be ignored */
1181                 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1182                         struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1183                         if (ctl) {
1184                                 int event;
1185
1186                                 memset(val, 0, sizeof(*val));
1187                                 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1188                                 ctl->get(ctl, val);
1189                                 event = SNDRV_CTL_EVENT_MASK_INFO;
1190                                 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1191                                         val->value.integer.value[0] = cm->mixer_res_status[i];
1192                                         ctl->put(ctl, val);
1193                                         event |= SNDRV_CTL_EVENT_MASK_VALUE;
1194                                 }
1195                                 snd_ctl_notify(cm->card, event, &ctl->id);
1196                         }
1197                 }
1198                 kfree(val);
1199         }
1200 }
1201
1202 /* spinlock held! */
1203 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1204 {
1205         if (do_ac3) {
1206                 /* AC3EN for 037 */
1207                 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1208                 /* AC3EN for 039 */
1209                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1210         
1211                 if (cm->can_ac3_hw) {
1212                         /* SPD24SEL for 037, 0x02 */
1213                         /* SPD24SEL for 039, 0x20, but cannot be set */
1214                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1215                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216                 } else { /* can_ac3_sw */
1217                         /* SPD32SEL for 037 & 039, 0x20 */
1218                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219                         /* set 176K sample rate to fix 033 HW bug */
1220                         if (cm->chip_version == 33) {
1221                                 if (rate >= 48000) {
1222                                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1223                                 } else {
1224                                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1225                                 }
1226                         }
1227                 }
1228
1229         } else {
1230                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1231                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1232
1233                 if (cm->can_ac3_hw) {
1234                         /* chip model >= 37 */
1235                         if (snd_pcm_format_width(subs->runtime->format) > 16) {
1236                                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1237                                 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1238                         } else {
1239                                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1240                                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1241                         }
1242                 } else {
1243                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1244                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1245                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1246                 }
1247         }
1248 }
1249
1250 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1251 {
1252         int rate, err;
1253
1254         rate = subs->runtime->rate;
1255
1256         if (up && do_ac3)
1257                 if ((err = save_mixer_state(cm)) < 0)
1258                         return err;
1259
1260         spin_lock_irq(&cm->reg_lock);
1261         cm->spdif_playback_avail = up;
1262         if (up) {
1263                 /* they are controlled via "IEC958 Output Switch" */
1264                 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1265                 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1266                 if (cm->spdif_playback_enabled)
1267                         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1268                 setup_ac3(cm, subs, do_ac3, rate);
1269
1270                 if (rate == 48000 || rate == 96000)
1271                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1272                 else
1273                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1274                 if (rate > 48000)
1275                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1276                 else
1277                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1278         } else {
1279                 /* they are controlled via "IEC958 Output Switch" */
1280                 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1281                 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1282                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1283                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1284                 setup_ac3(cm, subs, 0, 0);
1285         }
1286         spin_unlock_irq(&cm->reg_lock);
1287         return 0;
1288 }
1289
1290
1291 /*
1292  * preparation
1293  */
1294
1295 /* playback - enable spdif only on the certain condition */
1296 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1297 {
1298         struct cmipci *cm = snd_pcm_substream_chip(substream);
1299         int rate = substream->runtime->rate;
1300         int err, do_spdif, do_ac3 = 0;
1301
1302         do_spdif = (rate >= 44100 && rate <= 96000 &&
1303                     substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1304                     substream->runtime->channels == 2);
1305         if (do_spdif && cm->can_ac3_hw) 
1306                 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307         if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1308                 return err;
1309         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310 }
1311
1312 /* playback  (via device #2) - enable spdif always */
1313 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1314 {
1315         struct cmipci *cm = snd_pcm_substream_chip(substream);
1316         int err, do_ac3;
1317
1318         if (cm->can_ac3_hw) 
1319                 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1320         else
1321                 do_ac3 = 1; /* doesn't matter */
1322         if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1323                 return err;
1324         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1325 }
1326
1327 /*
1328  * Apparently, the samples last played on channel A stay in some buffer, even
1329  * after the channel is reset, and get added to the data for the rear DACs when
1330  * playing a multichannel stream on channel B.  This is likely to generate
1331  * wraparounds and thus distortions.
1332  * To avoid this, we play at least one zero sample after the actual stream has
1333  * stopped.
1334  */
1335 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1336 {
1337         struct snd_pcm_runtime *runtime = rec->substream->runtime;
1338         unsigned int reg, val;
1339
1340         if (rec->needs_silencing && runtime && runtime->dma_area) {
1341                 /* set up a small silence buffer */
1342                 memset(runtime->dma_area, 0, PAGE_SIZE);
1343                 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1344                 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1345                 snd_cmipci_write(cm, reg, val);
1346         
1347                 /* configure for 16 bits, 2 channels, 8 kHz */
1348                 if (runtime->channels > 2)
1349                         set_dac_channels(cm, rec, 2);
1350                 spin_lock_irq(&cm->reg_lock);
1351                 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1352                 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1353                 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1354                 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1355                 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1356                 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1357                 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1358                 if (cm->can_96k)
1359                         val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1360                 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1361         
1362                 /* start stream (we don't need interrupts) */
1363                 cm->ctrl |= CM_CHEN0 << rec->ch;
1364                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1365                 spin_unlock_irq(&cm->reg_lock);
1366
1367                 msleep(1);
1368
1369                 /* stop and reset stream */
1370                 spin_lock_irq(&cm->reg_lock);
1371                 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1372                 val = CM_RST_CH0 << rec->ch;
1373                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1374                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1375                 spin_unlock_irq(&cm->reg_lock);
1376
1377                 rec->needs_silencing = 0;
1378         }
1379 }
1380
1381 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1382 {
1383         struct cmipci *cm = snd_pcm_substream_chip(substream);
1384         setup_spdif_playback(cm, substream, 0, 0);
1385         restore_mixer_state(cm);
1386         snd_cmipci_silence_hack(cm, &cm->channel[0]);
1387         return snd_cmipci_hw_free(substream);
1388 }
1389
1390 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1391 {
1392         struct cmipci *cm = snd_pcm_substream_chip(substream);
1393         snd_cmipci_silence_hack(cm, &cm->channel[1]);
1394         return snd_cmipci_hw_free(substream);
1395 }
1396
1397 /* capture */
1398 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1399 {
1400         struct cmipci *cm = snd_pcm_substream_chip(substream);
1401         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1402 }
1403
1404 /* capture with spdif (via device #2) */
1405 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1406 {
1407         struct cmipci *cm = snd_pcm_substream_chip(substream);
1408
1409         spin_lock_irq(&cm->reg_lock);
1410         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1411         if (cm->can_96k) {
1412                 if (substream->runtime->rate > 48000)
1413                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1414                 else
1415                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1416         }
1417         if (snd_pcm_format_width(substream->runtime->format) > 16)
1418                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1419         else
1420                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421
1422         spin_unlock_irq(&cm->reg_lock);
1423
1424         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1425 }
1426
1427 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1428 {
1429         struct cmipci *cm = snd_pcm_substream_chip(subs);
1430
1431         spin_lock_irq(&cm->reg_lock);
1432         snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1433         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1434         spin_unlock_irq(&cm->reg_lock);
1435
1436         return snd_cmipci_hw_free(subs);
1437 }
1438
1439
1440 /*
1441  * interrupt handler
1442  */
1443 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1444 {
1445         struct cmipci *cm = dev_id;
1446         unsigned int status, mask = 0;
1447         
1448         /* fastpath out, to ease interrupt sharing */
1449         status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1450         if (!(status & CM_INTR))
1451                 return IRQ_NONE;
1452
1453         /* acknowledge interrupt */
1454         spin_lock(&cm->reg_lock);
1455         if (status & CM_CHINT0)
1456                 mask |= CM_CH0_INT_EN;
1457         if (status & CM_CHINT1)
1458                 mask |= CM_CH1_INT_EN;
1459         snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1460         snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1461         spin_unlock(&cm->reg_lock);
1462
1463         if (cm->rmidi && (status & CM_UARTINT))
1464                 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1465
1466         if (cm->pcm) {
1467                 if ((status & CM_CHINT0) && cm->channel[0].running)
1468                         snd_pcm_period_elapsed(cm->channel[0].substream);
1469                 if ((status & CM_CHINT1) && cm->channel[1].running)
1470                         snd_pcm_period_elapsed(cm->channel[1].substream);
1471         }
1472         return IRQ_HANDLED;
1473 }
1474
1475 /*
1476  * h/w infos
1477  */
1478
1479 /* playback on channel A */
1480 static struct snd_pcm_hardware snd_cmipci_playback =
1481 {
1482         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1483                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1484                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1485         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1486         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1487         .rate_min =             5512,
1488         .rate_max =             48000,
1489         .channels_min =         1,
1490         .channels_max =         2,
1491         .buffer_bytes_max =     (128*1024),
1492         .period_bytes_min =     64,
1493         .period_bytes_max =     (128*1024),
1494         .periods_min =          2,
1495         .periods_max =          1024,
1496         .fifo_size =            0,
1497 };
1498
1499 /* capture on channel B */
1500 static struct snd_pcm_hardware snd_cmipci_capture =
1501 {
1502         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1503                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1504                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1505         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1506         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1507         .rate_min =             5512,
1508         .rate_max =             48000,
1509         .channels_min =         1,
1510         .channels_max =         2,
1511         .buffer_bytes_max =     (128*1024),
1512         .period_bytes_min =     64,
1513         .period_bytes_max =     (128*1024),
1514         .periods_min =          2,
1515         .periods_max =          1024,
1516         .fifo_size =            0,
1517 };
1518
1519 /* playback on channel B - stereo 16bit only? */
1520 static struct snd_pcm_hardware snd_cmipci_playback2 =
1521 {
1522         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1523                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1524                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1525         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1526         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1527         .rate_min =             5512,
1528         .rate_max =             48000,
1529         .channels_min =         2,
1530         .channels_max =         2,
1531         .buffer_bytes_max =     (128*1024),
1532         .period_bytes_min =     64,
1533         .period_bytes_max =     (128*1024),
1534         .periods_min =          2,
1535         .periods_max =          1024,
1536         .fifo_size =            0,
1537 };
1538
1539 /* spdif playback on channel A */
1540 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1541 {
1542         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1543                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1544                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1545         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1546         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1547         .rate_min =             44100,
1548         .rate_max =             48000,
1549         .channels_min =         2,
1550         .channels_max =         2,
1551         .buffer_bytes_max =     (128*1024),
1552         .period_bytes_min =     64,
1553         .period_bytes_max =     (128*1024),
1554         .periods_min =          2,
1555         .periods_max =          1024,
1556         .fifo_size =            0,
1557 };
1558
1559 /* spdif playback on channel A (32bit, IEC958 subframes) */
1560 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1561 {
1562         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1563                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1564                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1565         .formats =              SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1566         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1567         .rate_min =             44100,
1568         .rate_max =             48000,
1569         .channels_min =         2,
1570         .channels_max =         2,
1571         .buffer_bytes_max =     (128*1024),
1572         .period_bytes_min =     64,
1573         .period_bytes_max =     (128*1024),
1574         .periods_min =          2,
1575         .periods_max =          1024,
1576         .fifo_size =            0,
1577 };
1578
1579 /* spdif capture on channel B */
1580 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1581 {
1582         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1583                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1584                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1585         .formats =              SNDRV_PCM_FMTBIT_S16_LE |
1586                                 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1587         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1588         .rate_min =             44100,
1589         .rate_max =             48000,
1590         .channels_min =         2,
1591         .channels_max =         2,
1592         .buffer_bytes_max =     (128*1024),
1593         .period_bytes_min =     64,
1594         .period_bytes_max =     (128*1024),
1595         .periods_min =          2,
1596         .periods_max =          1024,
1597         .fifo_size =            0,
1598 };
1599
1600 static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1601                         32000, 44100, 48000, 88200, 96000, 128000 };
1602 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1603                 .count = ARRAY_SIZE(rate_constraints),
1604                 .list = rate_constraints,
1605                 .mask = 0,
1606 };
1607
1608 /*
1609  * check device open/close
1610  */
1611 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1612 {
1613         int ch = mode & CM_OPEN_CH_MASK;
1614
1615         /* FIXME: a file should wait until the device becomes free
1616          * when it's opened on blocking mode.  however, since the current
1617          * pcm framework doesn't pass file pointer before actually opened,
1618          * we can't know whether blocking mode or not in open callback..
1619          */
1620         mutex_lock(&cm->open_mutex);
1621         if (cm->opened[ch]) {
1622                 mutex_unlock(&cm->open_mutex);
1623                 return -EBUSY;
1624         }
1625         cm->opened[ch] = mode;
1626         cm->channel[ch].substream = subs;
1627         if (! (mode & CM_OPEN_DAC)) {
1628                 /* disable dual DAC mode */
1629                 cm->channel[ch].is_dac = 0;
1630                 spin_lock_irq(&cm->reg_lock);
1631                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1632                 spin_unlock_irq(&cm->reg_lock);
1633         }
1634         mutex_unlock(&cm->open_mutex);
1635         return 0;
1636 }
1637
1638 static void close_device_check(struct cmipci *cm, int mode)
1639 {
1640         int ch = mode & CM_OPEN_CH_MASK;
1641
1642         mutex_lock(&cm->open_mutex);
1643         if (cm->opened[ch] == mode) {
1644                 if (cm->channel[ch].substream) {
1645                         snd_cmipci_ch_reset(cm, ch);
1646                         cm->channel[ch].running = 0;
1647                         cm->channel[ch].substream = NULL;
1648                 }
1649                 cm->opened[ch] = 0;
1650                 if (! cm->channel[ch].is_dac) {
1651                         /* enable dual DAC mode again */
1652                         cm->channel[ch].is_dac = 1;
1653                         spin_lock_irq(&cm->reg_lock);
1654                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1655                         spin_unlock_irq(&cm->reg_lock);
1656                 }
1657         }
1658         mutex_unlock(&cm->open_mutex);
1659 }
1660
1661 /*
1662  */
1663
1664 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1665 {
1666         struct cmipci *cm = snd_pcm_substream_chip(substream);
1667         struct snd_pcm_runtime *runtime = substream->runtime;
1668         int err;
1669
1670         if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1671                 return err;
1672         runtime->hw = snd_cmipci_playback;
1673         if (cm->chip_version == 68) {
1674                 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1675                                      SNDRV_PCM_RATE_96000;
1676                 runtime->hw.rate_max = 96000;
1677         } else if (cm->chip_version == 55) {
1678                 err = snd_pcm_hw_constraint_list(runtime, 0,
1679                         SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680                 if (err < 0)
1681                         return err;
1682                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683                 runtime->hw.rate_max = 128000;
1684         }
1685         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686         cm->dig_pcm_status = cm->dig_status;
1687         return 0;
1688 }
1689
1690 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1691 {
1692         struct cmipci *cm = snd_pcm_substream_chip(substream);
1693         struct snd_pcm_runtime *runtime = substream->runtime;
1694         int err;
1695
1696         if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1697                 return err;
1698         runtime->hw = snd_cmipci_capture;
1699         if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
1700                 runtime->hw.rate_min = 41000;
1701                 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1702         } else if (cm->chip_version == 55) {
1703                 err = snd_pcm_hw_constraint_list(runtime, 0,
1704                         SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1705                 if (err < 0)
1706                         return err;
1707                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1708                 runtime->hw.rate_max = 128000;
1709         }
1710         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1711         return 0;
1712 }
1713
1714 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1715 {
1716         struct cmipci *cm = snd_pcm_substream_chip(substream);
1717         struct snd_pcm_runtime *runtime = substream->runtime;
1718         int err;
1719
1720         if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1721                 return err;
1722         runtime->hw = snd_cmipci_playback2;
1723         mutex_lock(&cm->open_mutex);
1724         if (! cm->opened[CM_CH_PLAY]) {
1725                 if (cm->can_multi_ch) {
1726                         runtime->hw.channels_max = cm->max_channels;
1727                         if (cm->max_channels == 4)
1728                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1729                         else if (cm->max_channels == 6)
1730                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1731                         else if (cm->max_channels == 8)
1732                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1733                 }
1734         }
1735         mutex_unlock(&cm->open_mutex);
1736         if (cm->chip_version == 68) {
1737                 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1738                                      SNDRV_PCM_RATE_96000;
1739                 runtime->hw.rate_max = 96000;
1740         } else if (cm->chip_version == 55) {
1741                 err = snd_pcm_hw_constraint_list(runtime, 0,
1742                         SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1743                 if (err < 0)
1744                         return err;
1745                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1746                 runtime->hw.rate_max = 128000;
1747         }
1748         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1749         return 0;
1750 }
1751
1752 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1753 {
1754         struct cmipci *cm = snd_pcm_substream_chip(substream);
1755         struct snd_pcm_runtime *runtime = substream->runtime;
1756         int err;
1757
1758         if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1759                 return err;
1760         if (cm->can_ac3_hw) {
1761                 runtime->hw = snd_cmipci_playback_spdif;
1762                 if (cm->chip_version >= 37) {
1763                         runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1764                         snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1765                 }
1766                 if (cm->can_96k) {
1767                         runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1768                                              SNDRV_PCM_RATE_96000;
1769                         runtime->hw.rate_max = 96000;
1770                 }
1771         } else {
1772                 runtime->hw = snd_cmipci_playback_iec958_subframe;
1773         }
1774         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1775         cm->dig_pcm_status = cm->dig_status;
1776         return 0;
1777 }
1778
1779 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1780 {
1781         struct cmipci *cm = snd_pcm_substream_chip(substream);
1782         struct snd_pcm_runtime *runtime = substream->runtime;
1783         int err;
1784
1785         if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1786                 return err;
1787         runtime->hw = snd_cmipci_capture_spdif;
1788         if (cm->can_96k && !(cm->chip_version == 68)) {
1789                 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1790                                      SNDRV_PCM_RATE_96000;
1791                 runtime->hw.rate_max = 96000;
1792         }
1793         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1794         return 0;
1795 }
1796
1797
1798 /*
1799  */
1800
1801 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1802 {
1803         struct cmipci *cm = snd_pcm_substream_chip(substream);
1804         close_device_check(cm, CM_OPEN_PLAYBACK);
1805         return 0;
1806 }
1807
1808 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1809 {
1810         struct cmipci *cm = snd_pcm_substream_chip(substream);
1811         close_device_check(cm, CM_OPEN_CAPTURE);
1812         return 0;
1813 }
1814
1815 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1816 {
1817         struct cmipci *cm = snd_pcm_substream_chip(substream);
1818         close_device_check(cm, CM_OPEN_PLAYBACK2);
1819         close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1820         return 0;
1821 }
1822
1823 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1824 {
1825         struct cmipci *cm = snd_pcm_substream_chip(substream);
1826         close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1827         return 0;
1828 }
1829
1830 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1831 {
1832         struct cmipci *cm = snd_pcm_substream_chip(substream);
1833         close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1834         return 0;
1835 }
1836
1837
1838 /*
1839  */
1840
1841 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1842         .open =         snd_cmipci_playback_open,
1843         .close =        snd_cmipci_playback_close,
1844         .ioctl =        snd_pcm_lib_ioctl,
1845         .hw_params =    snd_cmipci_hw_params,
1846         .hw_free =      snd_cmipci_playback_hw_free,
1847         .prepare =      snd_cmipci_playback_prepare,
1848         .trigger =      snd_cmipci_playback_trigger,
1849         .pointer =      snd_cmipci_playback_pointer,
1850 };
1851
1852 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1853         .open =         snd_cmipci_capture_open,
1854         .close =        snd_cmipci_capture_close,
1855         .ioctl =        snd_pcm_lib_ioctl,
1856         .hw_params =    snd_cmipci_hw_params,
1857         .hw_free =      snd_cmipci_hw_free,
1858         .prepare =      snd_cmipci_capture_prepare,
1859         .trigger =      snd_cmipci_capture_trigger,
1860         .pointer =      snd_cmipci_capture_pointer,
1861 };
1862
1863 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1864         .open =         snd_cmipci_playback2_open,
1865         .close =        snd_cmipci_playback2_close,
1866         .ioctl =        snd_pcm_lib_ioctl,
1867         .hw_params =    snd_cmipci_playback2_hw_params,
1868         .hw_free =      snd_cmipci_playback2_hw_free,
1869         .prepare =      snd_cmipci_capture_prepare,     /* channel B */
1870         .trigger =      snd_cmipci_capture_trigger,     /* channel B */
1871         .pointer =      snd_cmipci_capture_pointer,     /* channel B */
1872 };
1873
1874 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1875         .open =         snd_cmipci_playback_spdif_open,
1876         .close =        snd_cmipci_playback_spdif_close,
1877         .ioctl =        snd_pcm_lib_ioctl,
1878         .hw_params =    snd_cmipci_hw_params,
1879         .hw_free =      snd_cmipci_playback_hw_free,
1880         .prepare =      snd_cmipci_playback_spdif_prepare,      /* set up rate */
1881         .trigger =      snd_cmipci_playback_trigger,
1882         .pointer =      snd_cmipci_playback_pointer,
1883 };
1884
1885 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1886         .open =         snd_cmipci_capture_spdif_open,
1887         .close =        snd_cmipci_capture_spdif_close,
1888         .ioctl =        snd_pcm_lib_ioctl,
1889         .hw_params =    snd_cmipci_hw_params,
1890         .hw_free =      snd_cmipci_capture_spdif_hw_free,
1891         .prepare =      snd_cmipci_capture_spdif_prepare,
1892         .trigger =      snd_cmipci_capture_trigger,
1893         .pointer =      snd_cmipci_capture_pointer,
1894 };
1895
1896
1897 /*
1898  */
1899
1900 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1901 {
1902         struct snd_pcm *pcm;
1903         int err;
1904
1905         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1906         if (err < 0)
1907                 return err;
1908
1909         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1910         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1911
1912         pcm->private_data = cm;
1913         pcm->info_flags = 0;
1914         strcpy(pcm->name, "C-Media PCI DAC/ADC");
1915         cm->pcm = pcm;
1916
1917         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1918                                               snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1919
1920         return 0;
1921 }
1922
1923 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1924 {
1925         struct snd_pcm *pcm;
1926         int err;
1927
1928         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1929         if (err < 0)
1930                 return err;
1931
1932         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1933
1934         pcm->private_data = cm;
1935         pcm->info_flags = 0;
1936         strcpy(pcm->name, "C-Media PCI 2nd DAC");
1937         cm->pcm2 = pcm;
1938
1939         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940                                               snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1941
1942         return 0;
1943 }
1944
1945 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1946 {
1947         struct snd_pcm *pcm;
1948         int err;
1949
1950         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1951         if (err < 0)
1952                 return err;
1953
1954         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1955         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1956
1957         pcm->private_data = cm;
1958         pcm->info_flags = 0;
1959         strcpy(pcm->name, "C-Media PCI IEC958");
1960         cm->pcm_spdif = pcm;
1961
1962         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1963                                               snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1964
1965         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1966                                      snd_pcm_alt_chmaps, cm->max_channels, 0,
1967                                      NULL);
1968         if (err < 0)
1969                 return err;
1970
1971         return 0;
1972 }
1973
1974 /*
1975  * mixer interface:
1976  * - CM8338/8738 has a compatible mixer interface with SB16, but
1977  *   lack of some elements like tone control, i/o gain and AGC.
1978  * - Access to native registers:
1979  *   - A 3D switch
1980  *   - Output mute switches
1981  */
1982
1983 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1984 {
1985         outb(idx, s->iobase + CM_REG_SB16_ADDR);
1986         outb(data, s->iobase + CM_REG_SB16_DATA);
1987 }
1988
1989 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1990 {
1991         unsigned char v;
1992
1993         outb(idx, s->iobase + CM_REG_SB16_ADDR);
1994         v = inb(s->iobase + CM_REG_SB16_DATA);
1995         return v;
1996 }
1997
1998 /*
1999  * general mixer element
2000  */
2001 struct cmipci_sb_reg {
2002         unsigned int left_reg, right_reg;
2003         unsigned int left_shift, right_shift;
2004         unsigned int mask;
2005         unsigned int invert: 1;
2006         unsigned int stereo: 1;
2007 };
2008
2009 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2010  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2011
2012 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2013 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2014   .info = snd_cmipci_info_volume, \
2015   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2016   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2017 }
2018
2019 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2020 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2021 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2022 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2023
2024 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2025 {
2026         r->left_reg = val & 0xff;
2027         r->right_reg = (val >> 8) & 0xff;
2028         r->left_shift = (val >> 16) & 0x07;
2029         r->right_shift = (val >> 19) & 0x07;
2030         r->invert = (val >> 22) & 1;
2031         r->stereo = (val >> 23) & 1;
2032         r->mask = (val >> 24) & 0xff;
2033 }
2034
2035 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2036                                   struct snd_ctl_elem_info *uinfo)
2037 {
2038         struct cmipci_sb_reg reg;
2039
2040         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2041         uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2042         uinfo->count = reg.stereo + 1;
2043         uinfo->value.integer.min = 0;
2044         uinfo->value.integer.max = reg.mask;
2045         return 0;
2046 }
2047  
2048 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2049                                  struct snd_ctl_elem_value *ucontrol)
2050 {
2051         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2052         struct cmipci_sb_reg reg;
2053         int val;
2054
2055         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2056         spin_lock_irq(&cm->reg_lock);
2057         val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2058         if (reg.invert)
2059                 val = reg.mask - val;
2060         ucontrol->value.integer.value[0] = val;
2061         if (reg.stereo) {
2062                 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2063                 if (reg.invert)
2064                         val = reg.mask - val;
2065                  ucontrol->value.integer.value[1] = val;
2066         }
2067         spin_unlock_irq(&cm->reg_lock);
2068         return 0;
2069 }
2070
2071 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2072                                  struct snd_ctl_elem_value *ucontrol)
2073 {
2074         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2075         struct cmipci_sb_reg reg;
2076         int change;
2077         int left, right, oleft, oright;
2078
2079         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2080         left = ucontrol->value.integer.value[0] & reg.mask;
2081         if (reg.invert)
2082                 left = reg.mask - left;
2083         left <<= reg.left_shift;
2084         if (reg.stereo) {
2085                 right = ucontrol->value.integer.value[1] & reg.mask;
2086                 if (reg.invert)
2087                         right = reg.mask - right;
2088                 right <<= reg.right_shift;
2089         } else
2090                 right = 0;
2091         spin_lock_irq(&cm->reg_lock);
2092         oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2093         left |= oleft & ~(reg.mask << reg.left_shift);
2094         change = left != oleft;
2095         if (reg.stereo) {
2096                 if (reg.left_reg != reg.right_reg) {
2097                         snd_cmipci_mixer_write(cm, reg.left_reg, left);
2098                         oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2099                 } else
2100                         oright = left;
2101                 right |= oright & ~(reg.mask << reg.right_shift);
2102                 change |= right != oright;
2103                 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2104         } else
2105                 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2106         spin_unlock_irq(&cm->reg_lock);
2107         return change;
2108 }
2109
2110 /*
2111  * input route (left,right) -> (left,right)
2112  */
2113 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2114 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2115   .info = snd_cmipci_info_input_sw, \
2116   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2117   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2118 }
2119
2120 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2121                                     struct snd_ctl_elem_info *uinfo)
2122 {
2123         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2124         uinfo->count = 4;
2125         uinfo->value.integer.min = 0;
2126         uinfo->value.integer.max = 1;
2127         return 0;
2128 }
2129  
2130 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2131                                    struct snd_ctl_elem_value *ucontrol)
2132 {
2133         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2134         struct cmipci_sb_reg reg;
2135         int val1, val2;
2136
2137         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2138         spin_lock_irq(&cm->reg_lock);
2139         val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2140         val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2141         spin_unlock_irq(&cm->reg_lock);
2142         ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2143         ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2144         ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2145         ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2146         return 0;
2147 }
2148
2149 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2150                                    struct snd_ctl_elem_value *ucontrol)
2151 {
2152         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2153         struct cmipci_sb_reg reg;
2154         int change;
2155         int val1, val2, oval1, oval2;
2156
2157         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2158         spin_lock_irq(&cm->reg_lock);
2159         oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2160         oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2161         val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2162         val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2163         val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2164         val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2165         val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2166         val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2167         change = val1 != oval1 || val2 != oval2;
2168         snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2169         snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2170         spin_unlock_irq(&cm->reg_lock);
2171         return change;
2172 }
2173
2174 /*
2175  * native mixer switches/volumes
2176  */
2177
2178 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2179 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2180   .info = snd_cmipci_info_native_mixer, \
2181   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2182   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2183 }
2184
2185 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2186 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2187   .info = snd_cmipci_info_native_mixer, \
2188   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2189   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2190 }
2191
2192 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2193 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2194   .info = snd_cmipci_info_native_mixer, \
2195   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2196   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2197 }
2198
2199 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2200 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2201   .info = snd_cmipci_info_native_mixer, \
2202   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2203   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2204 }
2205
2206 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2207                                         struct snd_ctl_elem_info *uinfo)
2208 {
2209         struct cmipci_sb_reg reg;
2210
2211         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2212         uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2213         uinfo->count = reg.stereo + 1;
2214         uinfo->value.integer.min = 0;
2215         uinfo->value.integer.max = reg.mask;
2216         return 0;
2217
2218 }
2219
2220 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2221                                        struct snd_ctl_elem_value *ucontrol)
2222 {
2223         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2224         struct cmipci_sb_reg reg;
2225         unsigned char oreg, val;
2226
2227         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2228         spin_lock_irq(&cm->reg_lock);
2229         oreg = inb(cm->iobase + reg.left_reg);
2230         val = (oreg >> reg.left_shift) & reg.mask;
2231         if (reg.invert)
2232                 val = reg.mask - val;
2233         ucontrol->value.integer.value[0] = val;
2234         if (reg.stereo) {
2235                 val = (oreg >> reg.right_shift) & reg.mask;
2236                 if (reg.invert)
2237                         val = reg.mask - val;
2238                 ucontrol->value.integer.value[1] = val;
2239         }
2240         spin_unlock_irq(&cm->reg_lock);
2241         return 0;
2242 }
2243
2244 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2245                                        struct snd_ctl_elem_value *ucontrol)
2246 {
2247         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2248         struct cmipci_sb_reg reg;
2249         unsigned char oreg, nreg, val;
2250
2251         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2252         spin_lock_irq(&cm->reg_lock);
2253         oreg = inb(cm->iobase + reg.left_reg);
2254         val = ucontrol->value.integer.value[0] & reg.mask;
2255         if (reg.invert)
2256                 val = reg.mask - val;
2257         nreg = oreg & ~(reg.mask << reg.left_shift);
2258         nreg |= (val << reg.left_shift);
2259         if (reg.stereo) {
2260                 val = ucontrol->value.integer.value[1] & reg.mask;
2261                 if (reg.invert)
2262                         val = reg.mask - val;
2263                 nreg &= ~(reg.mask << reg.right_shift);
2264                 nreg |= (val << reg.right_shift);
2265         }
2266         outb(nreg, cm->iobase + reg.left_reg);
2267         spin_unlock_irq(&cm->reg_lock);
2268         return (nreg != oreg);
2269 }
2270
2271 /*
2272  * special case - check mixer sensitivity
2273  */
2274 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2275                                                  struct snd_ctl_elem_value *ucontrol)
2276 {
2277         //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2278         return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2279 }
2280
2281 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2282                                                  struct snd_ctl_elem_value *ucontrol)
2283 {
2284         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2285         if (cm->mixer_insensitive) {
2286                 /* ignored */
2287                 return 0;
2288         }
2289         return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2290 }
2291
2292
2293 static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2294         CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2295         CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2296         CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2297         //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2298         { /* switch with sensitivity */
2299                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2300                 .name = "PCM Playback Switch",
2301                 .info = snd_cmipci_info_native_mixer,
2302                 .get = snd_cmipci_get_native_mixer_sensitive,
2303                 .put = snd_cmipci_put_native_mixer_sensitive,
2304                 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2305         },
2306         CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2307         CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2308         CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2309         CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2310         CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2311         CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2312         CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2313         CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2314         CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2315         CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2316         CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2317         CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2318         CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2319         CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2320         CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2321         CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2322         CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2323         CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2324         CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2325         CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2326         CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2327         CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2328         CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2329 };
2330
2331 /*
2332  * other switches
2333  */
2334
2335 struct cmipci_switch_args {
2336         int reg;                /* register index */
2337         unsigned int mask;      /* mask bits */
2338         unsigned int mask_on;   /* mask bits to turn on */
2339         unsigned int is_byte: 1;                /* byte access? */
2340         unsigned int ac3_sensitive: 1;  /* access forbidden during
2341                                          * non-audio operation?
2342                                          */
2343 };
2344
2345 #define snd_cmipci_uswitch_info         snd_ctl_boolean_mono_info
2346
2347 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2348                                    struct snd_ctl_elem_value *ucontrol,
2349                                    struct cmipci_switch_args *args)
2350 {
2351         unsigned int val;
2352         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2353
2354         spin_lock_irq(&cm->reg_lock);
2355         if (args->ac3_sensitive && cm->mixer_insensitive) {
2356                 ucontrol->value.integer.value[0] = 0;
2357                 spin_unlock_irq(&cm->reg_lock);
2358                 return 0;
2359         }
2360         if (args->is_byte)
2361                 val = inb(cm->iobase + args->reg);
2362         else
2363                 val = snd_cmipci_read(cm, args->reg);
2364         ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2365         spin_unlock_irq(&cm->reg_lock);
2366         return 0;
2367 }
2368
2369 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2370                                   struct snd_ctl_elem_value *ucontrol)
2371 {
2372         struct cmipci_switch_args *args;
2373         args = (struct cmipci_switch_args *)kcontrol->private_value;
2374         if (snd_BUG_ON(!args))
2375                 return -EINVAL;
2376         return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2377 }
2378
2379 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2380                                    struct snd_ctl_elem_value *ucontrol,
2381                                    struct cmipci_switch_args *args)
2382 {
2383         unsigned int val;
2384         int change;
2385         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2386
2387         spin_lock_irq(&cm->reg_lock);
2388         if (args->ac3_sensitive && cm->mixer_insensitive) {
2389                 /* ignored */
2390                 spin_unlock_irq(&cm->reg_lock);
2391                 return 0;
2392         }
2393         if (args->is_byte)
2394                 val = inb(cm->iobase + args->reg);
2395         else
2396                 val = snd_cmipci_read(cm, args->reg);
2397         change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2398                         args->mask_on : (args->mask & ~args->mask_on));
2399         if (change) {
2400                 val &= ~args->mask;
2401                 if (ucontrol->value.integer.value[0])
2402                         val |= args->mask_on;
2403                 else
2404                         val |= (args->mask & ~args->mask_on);
2405                 if (args->is_byte)
2406                         outb((unsigned char)val, cm->iobase + args->reg);
2407                 else
2408                         snd_cmipci_write(cm, args->reg, val);
2409         }
2410         spin_unlock_irq(&cm->reg_lock);
2411         return change;
2412 }
2413
2414 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2415                                   struct snd_ctl_elem_value *ucontrol)
2416 {
2417         struct cmipci_switch_args *args;
2418         args = (struct cmipci_switch_args *)kcontrol->private_value;
2419         if (snd_BUG_ON(!args))
2420                 return -EINVAL;
2421         return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2422 }
2423
2424 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2425 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2426   .reg = xreg, \
2427   .mask = xmask, \
2428   .mask_on = xmask_on, \
2429   .is_byte = xis_byte, \
2430   .ac3_sensitive = xac3, \
2431 }
2432         
2433 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2434         DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2435
2436 #if 0 /* these will be controlled in pcm device */
2437 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2438 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2439 #endif
2440 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2441 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2442 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2443 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2444 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2445 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2446 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2447 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2448 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2449 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2450 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2451 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2452 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2453 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2454 #if CM_CH_PLAY == 1
2455 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2456 #else
2457 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2458 #endif
2459 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2460 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2461 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2462 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2463 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2464
2465 #define DEFINE_SWITCH(sname, stype, sarg) \
2466 { .name = sname, \
2467   .iface = stype, \
2468   .info = snd_cmipci_uswitch_info, \
2469   .get = snd_cmipci_uswitch_get, \
2470   .put = snd_cmipci_uswitch_put, \
2471   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2472 }
2473
2474 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2475 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2476
2477
2478 /*
2479  * callbacks for spdif output switch
2480  * needs toggle two registers..
2481  */
2482 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2483                                         struct snd_ctl_elem_value *ucontrol)
2484 {
2485         int changed;
2486         changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2487         changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2488         return changed;
2489 }
2490
2491 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2492                                         struct snd_ctl_elem_value *ucontrol)
2493 {
2494         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2495         int changed;
2496         changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2497         changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2498         if (changed) {
2499                 if (ucontrol->value.integer.value[0]) {
2500                         if (chip->spdif_playback_avail)
2501                                 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2502                 } else {
2503                         if (chip->spdif_playback_avail)
2504                                 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2505                 }
2506         }
2507         chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2508         return changed;
2509 }
2510
2511
2512 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2513                                         struct snd_ctl_elem_info *uinfo)
2514 {
2515         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516         static const char *const texts[3] = {
2517                 "Line-In", "Rear Output", "Bass Output"
2518         };
2519
2520         return snd_ctl_enum_info(uinfo, 1,
2521                                  cm->chip_version >= 39 ? 3 : 2, texts);
2522 }
2523
2524 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2525 {
2526         unsigned int val;
2527         if (cm->chip_version >= 39) {
2528                 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2529                 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2530                         return 2;
2531         }
2532         val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2533         if (val & CM_REAR2LIN)
2534                 return 1;
2535         return 0;
2536 }
2537
2538 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2539                                        struct snd_ctl_elem_value *ucontrol)
2540 {
2541         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2542
2543         spin_lock_irq(&cm->reg_lock);
2544         ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2545         spin_unlock_irq(&cm->reg_lock);
2546         return 0;
2547 }
2548
2549 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2550                                        struct snd_ctl_elem_value *ucontrol)
2551 {
2552         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2553         int change;
2554
2555         spin_lock_irq(&cm->reg_lock);
2556         if (ucontrol->value.enumerated.item[0] == 2)
2557                 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2558         else
2559                 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2560         if (ucontrol->value.enumerated.item[0] == 1)
2561                 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2562         else
2563                 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2564         spin_unlock_irq(&cm->reg_lock);
2565         return change;
2566 }
2567
2568 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2569                                        struct snd_ctl_elem_info *uinfo)
2570 {
2571         static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2572
2573         return snd_ctl_enum_info(uinfo, 1, 2, texts);
2574 }
2575
2576 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2577                                       struct snd_ctl_elem_value *ucontrol)
2578 {
2579         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2580         /* same bit as spdi_phase */
2581         spin_lock_irq(&cm->reg_lock);
2582         ucontrol->value.enumerated.item[0] = 
2583                 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2584         spin_unlock_irq(&cm->reg_lock);
2585         return 0;
2586 }
2587
2588 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2589                                       struct snd_ctl_elem_value *ucontrol)
2590 {
2591         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2592         int change;
2593
2594         spin_lock_irq(&cm->reg_lock);
2595         if (ucontrol->value.enumerated.item[0])
2596                 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2597         else
2598                 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2599         spin_unlock_irq(&cm->reg_lock);
2600         return change;
2601 }
2602
2603 /* both for CM8338/8738 */
2604 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2605         DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2606         {
2607                 .name = "Line-In Mode",
2608                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2609                 .info = snd_cmipci_line_in_mode_info,
2610                 .get = snd_cmipci_line_in_mode_get,
2611                 .put = snd_cmipci_line_in_mode_put,
2612         },
2613 };
2614
2615 /* for non-multichannel chips */
2616 static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2617 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2618
2619 /* only for CM8738 */
2620 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2621 #if 0 /* controlled in pcm device */
2622         DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2623         DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2624         DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2625 #endif
2626         // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2627         { .name = "IEC958 Output Switch",
2628           .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2629           .info = snd_cmipci_uswitch_info,
2630           .get = snd_cmipci_spdout_enable_get,
2631           .put = snd_cmipci_spdout_enable_put,
2632         },
2633         DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2634         DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2635         DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2636 //      DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2637         DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2638         DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2639 };
2640
2641 /* only for model 033/037 */
2642 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2643         DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2644         DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2645         DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2646 };
2647
2648 /* only for model 039 or later */
2649 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2650         DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2651         DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2652         {
2653                 .name = "Mic-In Mode",
2654                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2655                 .info = snd_cmipci_mic_in_mode_info,
2656                 .get = snd_cmipci_mic_in_mode_get,
2657                 .put = snd_cmipci_mic_in_mode_put,
2658         }
2659 };
2660
2661 /* card control switches */
2662 static struct snd_kcontrol_new snd_cmipci_modem_switch =
2663 DEFINE_CARD_SWITCH("Modem", modem);
2664
2665
2666 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2667 {
2668         struct snd_card *card;
2669         struct snd_kcontrol_new *sw;
2670         struct snd_kcontrol *kctl;
2671         unsigned int idx;
2672         int err;
2673
2674         if (snd_BUG_ON(!cm || !cm->card))
2675                 return -EINVAL;
2676
2677         card = cm->card;
2678
2679         strcpy(card->mixername, "CMedia PCI");
2680
2681         spin_lock_irq(&cm->reg_lock);
2682         snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
2683         spin_unlock_irq(&cm->reg_lock);
2684
2685         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2686                 if (cm->chip_version == 68) {   // 8768 has no PCM volume
2687                         if (!strcmp(snd_cmipci_mixers[idx].name,
2688                                 "PCM Playback Volume"))
2689                                 continue;
2690                 }
2691                 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2692                         return err;
2693         }
2694
2695         /* mixer switches */
2696         sw = snd_cmipci_mixer_switches;
2697         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2698                 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699                 if (err < 0)
2700                         return err;
2701         }
2702         if (! cm->can_multi_ch) {
2703                 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2704                 if (err < 0)
2705                         return err;
2706         }
2707         if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2708             cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2709                 sw = snd_cmipci_8738_mixer_switches;
2710                 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2711                         err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2712                         if (err < 0)
2713                                 return err;
2714                 }
2715                 if (cm->can_ac3_hw) {
2716                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2717                                 return err;
2718                         kctl->id.device = pcm_spdif_device;
2719                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2720                                 return err;
2721                         kctl->id.device = pcm_spdif_device;
2722                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2723                                 return err;
2724                         kctl->id.device = pcm_spdif_device;
2725                 }
2726                 if (cm->chip_version <= 37) {
2727                         sw = snd_cmipci_old_mixer_switches;
2728                         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2729                                 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2730                                 if (err < 0)
2731                                         return err;
2732                         }
2733                 }
2734         }
2735         if (cm->chip_version >= 39) {
2736                 sw = snd_cmipci_extra_mixer_switches;
2737                 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2738                         err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2739                         if (err < 0)
2740                                 return err;
2741                 }
2742         }
2743
2744         /* card switches */
2745         /*
2746          * newer chips don't have the register bits to force modem link
2747          * detection; the bit that was FLINKON now mutes CH1
2748          */
2749         if (cm->chip_version < 39) {
2750                 err = snd_ctl_add(cm->card,
2751                                   snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2752                 if (err < 0)
2753                         return err;
2754         }
2755
2756         for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2757                 struct snd_ctl_elem_id elem_id;
2758                 struct snd_kcontrol *ctl;
2759                 memset(&elem_id, 0, sizeof(elem_id));
2760                 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2761                 strcpy(elem_id.name, cm_saved_mixer[idx].name);
2762                 ctl = snd_ctl_find_id(cm->card, &elem_id);
2763                 if (ctl)
2764                         cm->mixer_res_ctl[idx] = ctl;
2765         }
2766
2767         return 0;
2768 }
2769
2770
2771 /*
2772  * proc interface
2773  */
2774
2775 #ifdef CONFIG_PROC_FS
2776 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2777                                  struct snd_info_buffer *buffer)
2778 {
2779         struct cmipci *cm = entry->private_data;
2780         int i, v;
2781         
2782         snd_iprintf(buffer, "%s\n", cm->card->longname);
2783         for (i = 0; i < 0x94; i++) {
2784                 if (i == 0x28)
2785                         i = 0x90;
2786                 v = inb(cm->iobase + i);
2787                 if (i % 4 == 0)
2788                         snd_iprintf(buffer, "\n%02x:", i);
2789                 snd_iprintf(buffer, " %02x", v);
2790         }
2791         snd_iprintf(buffer, "\n");
2792 }
2793
2794 static void snd_cmipci_proc_init(struct cmipci *cm)
2795 {
2796         struct snd_info_entry *entry;
2797
2798         if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2799                 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2800 }
2801 #else /* !CONFIG_PROC_FS */
2802 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2803 #endif
2804
2805
2806 static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = {
2807         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2808         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2809         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2810         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2811         {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2812         {0,},
2813 };
2814
2815
2816 /*
2817  * check chip version and capabilities
2818  * driver name is modified according to the chip model
2819  */
2820 static void query_chip(struct cmipci *cm)
2821 {
2822         unsigned int detect;
2823
2824         /* check reg 0Ch, bit 24-31 */
2825         detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2826         if (! detect) {
2827                 /* check reg 08h, bit 24-28 */
2828                 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2829                 switch (detect) {
2830                 case 0:
2831                         cm->chip_version = 33;
2832                         if (cm->do_soft_ac3)
2833                                 cm->can_ac3_sw = 1;
2834                         else
2835                                 cm->can_ac3_hw = 1;
2836                         break;
2837                 case CM_CHIP_037:
2838                         cm->chip_version = 37;
2839                         cm->can_ac3_hw = 1;
2840                         break;
2841                 default:
2842                         cm->chip_version = 39;
2843                         cm->can_ac3_hw = 1;
2844                         break;
2845                 }
2846                 cm->max_channels = 2;
2847         } else {
2848                 if (detect & CM_CHIP_039) {
2849                         cm->chip_version = 39;
2850                         if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2851                                 cm->max_channels = 6;
2852                         else
2853                                 cm->max_channels = 4;
2854                 } else if (detect & CM_CHIP_8768) {
2855                         cm->chip_version = 68;
2856                         cm->max_channels = 8;
2857                         cm->can_96k = 1;
2858                 } else {
2859                         cm->chip_version = 55;
2860                         cm->max_channels = 6;
2861                         cm->can_96k = 1;
2862                 }
2863                 cm->can_ac3_hw = 1;
2864                 cm->can_multi_ch = 1;
2865         }
2866 }
2867
2868 #ifdef SUPPORT_JOYSTICK
2869 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2870 {
2871         static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2872         struct gameport *gp;
2873         struct resource *r = NULL;
2874         int i, io_port = 0;
2875
2876         if (joystick_port[dev] == 0)
2877                 return -ENODEV;
2878
2879         if (joystick_port[dev] == 1) { /* auto-detect */
2880                 for (i = 0; ports[i]; i++) {
2881                         io_port = ports[i];
2882                         r = request_region(io_port, 1, "CMIPCI gameport");
2883                         if (r)
2884                                 break;
2885                 }
2886         } else {
2887                 io_port = joystick_port[dev];
2888                 r = request_region(io_port, 1, "CMIPCI gameport");
2889         }
2890
2891         if (!r) {
2892                 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2893                 return -EBUSY;
2894         }
2895
2896         cm->gameport = gp = gameport_allocate_port();
2897         if (!gp) {
2898                 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2899                 release_and_free_resource(r);
2900                 return -ENOMEM;
2901         }
2902         gameport_set_name(gp, "C-Media Gameport");
2903         gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2904         gameport_set_dev_parent(gp, &cm->pci->dev);
2905         gp->io = io_port;
2906         gameport_set_port_data(gp, r);
2907
2908         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2909
2910         gameport_register_port(cm->gameport);
2911
2912         return 0;
2913 }
2914
2915 static void snd_cmipci_free_gameport(struct cmipci *cm)
2916 {
2917         if (cm->gameport) {
2918                 struct resource *r = gameport_get_port_data(cm->gameport);
2919
2920                 gameport_unregister_port(cm->gameport);
2921                 cm->gameport = NULL;
2922
2923                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2924                 release_and_free_resource(r);
2925         }
2926 }
2927 #else
2928 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2929 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2930 #endif
2931
2932 static int snd_cmipci_free(struct cmipci *cm)
2933 {
2934         if (cm->irq >= 0) {
2935                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2936                 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2937                 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2938                 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2939                 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2940                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2941                 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2942
2943                 /* reset mixer */
2944                 snd_cmipci_mixer_write(cm, 0, 0);
2945
2946                 free_irq(cm->irq, cm);
2947         }
2948
2949         snd_cmipci_free_gameport(cm);
2950         pci_release_regions(cm->pci);
2951         pci_disable_device(cm->pci);
2952         kfree(cm);
2953         return 0;
2954 }
2955
2956 static int snd_cmipci_dev_free(struct snd_device *device)
2957 {
2958         struct cmipci *cm = device->device_data;
2959         return snd_cmipci_free(cm);
2960 }
2961
2962 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2963 {
2964         long iosynth;
2965         unsigned int val;
2966         struct snd_opl3 *opl3;
2967         int err;
2968
2969         if (!fm_port)
2970                 goto disable_fm;
2971
2972         if (cm->chip_version >= 39) {
2973                 /* first try FM regs in PCI port range */
2974                 iosynth = cm->iobase + CM_REG_FM_PCI;
2975                 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2976                                       OPL3_HW_OPL3, 1, &opl3);
2977         } else {
2978                 err = -EIO;
2979         }
2980         if (err < 0) {
2981                 /* then try legacy ports */
2982                 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2983                 iosynth = fm_port;
2984                 switch (iosynth) {
2985                 case 0x3E8: val |= CM_FMSEL_3E8; break;
2986                 case 0x3E0: val |= CM_FMSEL_3E0; break;
2987                 case 0x3C8: val |= CM_FMSEL_3C8; break;
2988                 case 0x388: val |= CM_FMSEL_388; break;
2989                 default:
2990                         goto disable_fm;
2991                 }
2992                 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2993                 /* enable FM */
2994                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2995
2996                 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2997                                     OPL3_HW_OPL3, 0, &opl3) < 0) {
2998                         printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2999                                "skipping...\n", iosynth);
3000                         goto disable_fm;
3001                 }
3002         }
3003         if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
3004                 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
3005                 return err;
3006         }
3007         return 0;
3008
3009  disable_fm:
3010         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3011         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3012         return 0;
3013 }
3014
3015 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3016                              int dev, struct cmipci **rcmipci)
3017 {
3018         struct cmipci *cm;
3019         int err;
3020         static struct snd_device_ops ops = {
3021                 .dev_free =     snd_cmipci_dev_free,
3022         };
3023         unsigned int val;
3024         long iomidi = 0;
3025         int integrated_midi = 0;
3026         char modelstr[16];
3027         int pcm_index, pcm_spdif_index;
3028         static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = {
3029                 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3030                 { },
3031         };
3032
3033         *rcmipci = NULL;
3034
3035         if ((err = pci_enable_device(pci)) < 0)
3036                 return err;
3037
3038         cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3039         if (cm == NULL) {
3040                 pci_disable_device(pci);
3041                 return -ENOMEM;
3042         }
3043
3044         spin_lock_init(&cm->reg_lock);
3045         mutex_init(&cm->open_mutex);
3046         cm->device = pci->device;
3047         cm->card = card;
3048         cm->pci = pci;
3049         cm->irq = -1;
3050         cm->channel[0].ch = 0;
3051         cm->channel[1].ch = 1;
3052         cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3053
3054         if ((err = pci_request_regions(pci, card->driver)) < 0) {
3055                 kfree(cm);
3056                 pci_disable_device(pci);
3057                 return err;
3058         }
3059         cm->iobase = pci_resource_start(pci, 0);
3060
3061         if (request_irq(pci->irq, snd_cmipci_interrupt,
3062                         IRQF_SHARED, KBUILD_MODNAME, cm)) {
3063                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
3064                 snd_cmipci_free(cm);
3065                 return -EBUSY;
3066         }
3067         cm->irq = pci->irq;
3068
3069         pci_set_master(cm->pci);
3070
3071         /*
3072          * check chip version, max channels and capabilities
3073          */
3074
3075         cm->chip_version = 0;
3076         cm->max_channels = 2;
3077         cm->do_soft_ac3 = soft_ac3[dev];
3078
3079         if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3080             pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3081                 query_chip(cm);
3082         /* added -MCx suffix for chip supporting multi-channels */
3083         if (cm->can_multi_ch)
3084                 sprintf(cm->card->driver + strlen(cm->card->driver),
3085                         "-MC%d", cm->max_channels);
3086         else if (cm->can_ac3_sw)
3087                 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3088
3089         cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3090         cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3091
3092 #if CM_CH_PLAY == 1
3093         cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
3094 #else
3095         cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
3096 #endif
3097
3098         /* initialize codec registers */
3099         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3100         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3101         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
3102         snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3103         snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3104         snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);       /* disable channels */
3105         snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3106
3107         snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3108         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3109 #if CM_CH_PLAY == 1
3110         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3111 #else
3112         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3113 #endif
3114         if (cm->chip_version) {
3115                 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3116                 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3117         }
3118         /* Set Bus Master Request */
3119         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3120
3121         /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3122         switch (pci->device) {
3123         case PCI_DEVICE_ID_CMEDIA_CM8738:
3124         case PCI_DEVICE_ID_CMEDIA_CM8738B:
3125                 if (!pci_dev_present(intel_82437vx)) 
3126                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3127                 break;
3128         default:
3129                 break;
3130         }
3131
3132         if (cm->chip_version < 68) {
3133                 val = pci->device < 0x110 ? 8338 : 8738;
3134         } else {
3135                 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3136                 case 0:
3137                         val = 8769;
3138                         break;
3139                 case 2:
3140                         val = 8762;
3141                         break;
3142                 default:
3143                         switch ((pci->subsystem_vendor << 16) |
3144                                 pci->subsystem_device) {
3145                         case 0x13f69761:
3146                         case 0x584d3741:
3147                         case 0x584d3751:
3148                         case 0x584d3761:
3149                         case 0x584d3771:
3150                         case 0x72848384:
3151                                 val = 8770;
3152                                 break;
3153                         default:
3154                                 val = 8768;
3155                                 break;
3156                         }
3157                 }
3158         }
3159         sprintf(card->shortname, "C-Media CMI%d", val);
3160         if (cm->chip_version < 68)
3161                 sprintf(modelstr, " (model %d)", cm->chip_version);
3162         else
3163                 modelstr[0] = '\0';
3164         sprintf(card->longname, "%s%s at %#lx, irq %i",
3165                 card->shortname, modelstr, cm->iobase, cm->irq);
3166
3167         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3168                 snd_cmipci_free(cm);
3169                 return err;
3170         }
3171
3172         if (cm->chip_version >= 39) {
3173                 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3174                 if (val != 0x00 && val != 0xff) {
3175                         iomidi = cm->iobase + CM_REG_MPU_PCI;
3176                         integrated_midi = 1;
3177                 }
3178         }
3179         if (!integrated_midi) {
3180                 val = 0;
3181                 iomidi = mpu_port[dev];
3182                 switch (iomidi) {
3183                 case 0x320: val = CM_VMPU_320; break;
3184                 case 0x310: val = CM_VMPU_310; break;
3185                 case 0x300: val = CM_VMPU_300; break;
3186                 case 0x330: val = CM_VMPU_330; break;
3187                 default:
3188                             iomidi = 0; break;
3189                 }
3190                 if (iomidi > 0) {
3191                         snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3192                         /* enable UART */
3193                         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3194                         if (inb(iomidi + 1) == 0xff) {
3195                                 snd_printk(KERN_ERR "cannot enable MPU-401 port"
3196                                            " at %#lx\n", iomidi);
3197                                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3198                                                      CM_UART_EN);
3199                                 iomidi = 0;
3200                         }
3201                 }
3202         }
3203
3204         if (cm->chip_version < 68) {
3205                 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3206                 if (err < 0)
3207                         return err;
3208         }
3209
3210         /* reset mixer */
3211         snd_cmipci_mixer_write(cm, 0, 0);
3212
3213         snd_cmipci_proc_init(cm);
3214
3215         /* create pcm devices */
3216         pcm_index = pcm_spdif_index = 0;
3217         if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3218                 return err;
3219         pcm_index++;
3220         if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3221                 return err;
3222         pcm_index++;
3223         if (cm->can_ac3_hw || cm->can_ac3_sw) {
3224                 pcm_spdif_index = pcm_index;
3225                 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3226                         return err;
3227         }
3228
3229         /* create mixer interface & switches */
3230         if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3231                 return err;
3232
3233         if (iomidi > 0) {
3234                 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3235                                                iomidi,
3236                                                (integrated_midi ?
3237                                                 MPU401_INFO_INTEGRATED : 0) |
3238                                                MPU401_INFO_IRQ_HOOK,
3239                                                -1, &cm->rmidi)) < 0) {
3240                         printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3241                 }
3242         }
3243
3244 #ifdef USE_VAR48KRATE
3245         for (val = 0; val < ARRAY_SIZE(rates); val++)
3246                 snd_cmipci_set_pll(cm, rates[val], val);
3247
3248         /*
3249          * (Re-)Enable external switch spdo_48k
3250          */
3251         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3252 #endif /* USE_VAR48KRATE */
3253
3254         if (snd_cmipci_create_gameport(cm, dev) < 0)
3255                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3256
3257         snd_card_set_dev(card, &pci->dev);
3258
3259         *rcmipci = cm;
3260         return 0;
3261 }
3262
3263 /*
3264  */
3265
3266 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3267
3268 static int snd_cmipci_probe(struct pci_dev *pci,
3269                             const struct pci_device_id *pci_id)
3270 {
3271         static int dev;
3272         struct snd_card *card;
3273         struct cmipci *cm;
3274         int err;
3275
3276         if (dev >= SNDRV_CARDS)
3277                 return -ENODEV;
3278         if (! enable[dev]) {
3279                 dev++;
3280                 return -ENOENT;
3281         }
3282
3283         err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
3284         if (err < 0)
3285                 return err;
3286         
3287         switch (pci->device) {
3288         case PCI_DEVICE_ID_CMEDIA_CM8738:
3289         case PCI_DEVICE_ID_CMEDIA_CM8738B:
3290                 strcpy(card->driver, "CMI8738");
3291                 break;
3292         case PCI_DEVICE_ID_CMEDIA_CM8338A:
3293         case PCI_DEVICE_ID_CMEDIA_CM8338B:
3294                 strcpy(card->driver, "CMI8338");
3295                 break;
3296         default:
3297                 strcpy(card->driver, "CMIPCI");
3298                 break;
3299         }
3300
3301         if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3302                 snd_card_free(card);
3303                 return err;
3304         }
3305         card->private_data = cm;
3306
3307         if ((err = snd_card_register(card)) < 0) {
3308                 snd_card_free(card);
3309                 return err;
3310         }
3311         pci_set_drvdata(pci, card);
3312         dev++;
3313         return 0;
3314
3315 }
3316
3317 static void snd_cmipci_remove(struct pci_dev *pci)
3318 {
3319         snd_card_free(pci_get_drvdata(pci));
3320         pci_set_drvdata(pci, NULL);
3321 }
3322
3323
3324 #ifdef CONFIG_PM_SLEEP
3325 /*
3326  * power management
3327  */
3328 static unsigned char saved_regs[] = {
3329         CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3330         CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3331         CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3332         CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3333         CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3334 };
3335
3336 static unsigned char saved_mixers[] = {
3337         SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3338         SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3339         SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3340         SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3341         SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3342         SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3343         CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3344         SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3345 };
3346
3347 static int snd_cmipci_suspend(struct device *dev)
3348 {
3349         struct pci_dev *pci = to_pci_dev(dev);
3350         struct snd_card *card = dev_get_drvdata(dev);
3351         struct cmipci *cm = card->private_data;
3352         int i;
3353
3354         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3355         
3356         snd_pcm_suspend_all(cm->pcm);
3357         snd_pcm_suspend_all(cm->pcm2);
3358         snd_pcm_suspend_all(cm->pcm_spdif);
3359
3360         /* save registers */
3361         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3362                 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3363         for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3364                 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3365
3366         /* disable ints */
3367         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3368
3369         pci_disable_device(pci);
3370         pci_save_state(pci);
3371         pci_set_power_state(pci, PCI_D3hot);
3372         return 0;
3373 }
3374
3375 static int snd_cmipci_resume(struct device *dev)
3376 {
3377         struct pci_dev *pci = to_pci_dev(dev);
3378         struct snd_card *card = dev_get_drvdata(dev);
3379         struct cmipci *cm = card->private_data;
3380         int i;
3381
3382         pci_set_power_state(pci, PCI_D0);
3383         pci_restore_state(pci);
3384         if (pci_enable_device(pci) < 0) {
3385                 printk(KERN_ERR "cmipci: pci_enable_device failed, "
3386                        "disabling device\n");
3387                 snd_card_disconnect(card);
3388                 return -EIO;
3389         }
3390         pci_set_master(pci);
3391
3392         /* reset / initialize to a sane state */
3393         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3394         snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3395         snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3396         snd_cmipci_mixer_write(cm, 0, 0);
3397
3398         /* restore registers */
3399         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3400                 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3401         for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3402                 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3403
3404         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3405         return 0;
3406 }
3407
3408 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3409 #define SND_CMIPCI_PM_OPS       &snd_cmipci_pm
3410 #else
3411 #define SND_CMIPCI_PM_OPS       NULL
3412 #endif /* CONFIG_PM_SLEEP */
3413
3414 static struct pci_driver cmipci_driver = {
3415         .name = KBUILD_MODNAME,
3416         .id_table = snd_cmipci_ids,
3417         .probe = snd_cmipci_probe,
3418         .remove = snd_cmipci_remove,
3419         .driver = {
3420                 .pm = SND_CMIPCI_PM_OPS,
3421         },
3422 };
3423         
3424 module_pci_driver(cmipci_driver);