Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide-2.6
[pandora-kernel.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         runtime->silence_filled = avail > 0 ? avail : 0;
71                         runtime->silence_start = (runtime->status->hw_ptr +
72                                                   runtime->silence_filled) %
73                                                  runtime->boundary;
74                 } else {
75                         ofs = runtime->status->hw_ptr;
76                         frames = new_hw_ptr - ofs;
77                         if ((snd_pcm_sframes_t)frames < 0)
78                                 frames += runtime->boundary;
79                         runtime->silence_filled -= frames;
80                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81                                 runtime->silence_filled = 0;
82                                 runtime->silence_start = new_hw_ptr;
83                         } else {
84                                 runtime->silence_start = ofs;
85                         }
86                 }
87                 frames = runtime->buffer_size - runtime->silence_filled;
88         }
89         if (snd_BUG_ON(frames > runtime->buffer_size))
90                 return;
91         if (frames == 0)
92                 return;
93         ofs = runtime->silence_start % runtime->buffer_size;
94         while (frames > 0) {
95                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
96                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
97                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
98                         if (substream->ops->silence) {
99                                 int err;
100                                 err = substream->ops->silence(substream, -1, ofs, transfer);
101                                 snd_BUG_ON(err < 0);
102                         } else {
103                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
104                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
105                         }
106                 } else {
107                         unsigned int c;
108                         unsigned int channels = runtime->channels;
109                         if (substream->ops->silence) {
110                                 for (c = 0; c < channels; ++c) {
111                                         int err;
112                                         err = substream->ops->silence(substream, c, ofs, transfer);
113                                         snd_BUG_ON(err < 0);
114                                 }
115                         } else {
116                                 size_t dma_csize = runtime->dma_bytes / channels;
117                                 for (c = 0; c < channels; ++c) {
118                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
119                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
120                                 }
121                         }
122                 }
123                 runtime->silence_filled += transfer;
124                 frames -= transfer;
125                 ofs = 0;
126         }
127 }
128
129 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
130 #define xrun_debug(substream, mask)     ((substream)->pstr->xrun_debug & (mask))
131 #else
132 #define xrun_debug(substream, mask)     0
133 #endif
134
135 #define dump_stack_on_xrun(substream) do {              \
136                 if (xrun_debug(substream, 2))           \
137                         dump_stack();                   \
138         } while (0)
139
140 static void pcm_debug_name(struct snd_pcm_substream *substream,
141                            char *name, size_t len)
142 {
143         snprintf(name, len, "pcmC%dD%d%c:%d",
144                  substream->pcm->card->number,
145                  substream->pcm->device,
146                  substream->stream ? 'c' : 'p',
147                  substream->number);
148 }
149
150 static void xrun(struct snd_pcm_substream *substream)
151 {
152         struct snd_pcm_runtime *runtime = substream->runtime;
153
154         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
155                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
156         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
157         if (xrun_debug(substream, 1)) {
158                 char name[16];
159                 pcm_debug_name(substream, name, sizeof(name));
160                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
161                 dump_stack_on_xrun(substream);
162         }
163 }
164
165 static snd_pcm_uframes_t
166 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
167                           struct snd_pcm_runtime *runtime)
168 {
169         snd_pcm_uframes_t pos;
170
171         pos = substream->ops->pointer(substream);
172         if (pos == SNDRV_PCM_POS_XRUN)
173                 return pos; /* XRUN */
174         if (pos >= runtime->buffer_size) {
175                 if (printk_ratelimit()) {
176                         char name[16];
177                         pcm_debug_name(substream, name, sizeof(name));
178                         snd_printd(KERN_ERR  "BUG: %s, pos = 0x%lx, "
179                                    "buffer size = 0x%lx, period size = 0x%lx\n",
180                                    name, pos, runtime->buffer_size,
181                                    runtime->period_size);
182                 }
183                 pos = 0;
184         }
185         pos -= pos % runtime->min_align;
186         return pos;
187 }
188
189 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
190                                       struct snd_pcm_runtime *runtime)
191 {
192         snd_pcm_uframes_t avail;
193
194         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195                 avail = snd_pcm_playback_avail(runtime);
196         else
197                 avail = snd_pcm_capture_avail(runtime);
198         if (avail > runtime->avail_max)
199                 runtime->avail_max = avail;
200         if (avail >= runtime->stop_threshold) {
201                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
202                         snd_pcm_drain_done(substream);
203                 else
204                         xrun(substream);
205                 return -EPIPE;
206         }
207         if (avail >= runtime->control->avail_min)
208                 wake_up(&runtime->sleep);
209         return 0;
210 }
211
212 #define hw_ptr_error(substream, fmt, args...)                           \
213         do {                                                            \
214                 if (xrun_debug(substream, 1)) {                         \
215                         if (printk_ratelimit()) {                       \
216                                 snd_printd("PCM: " fmt, ##args);        \
217                         }                                               \
218                         dump_stack_on_xrun(substream);                  \
219                 }                                                       \
220         } while (0)
221
222 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
223 {
224         struct snd_pcm_runtime *runtime = substream->runtime;
225         snd_pcm_uframes_t pos;
226         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base;
227         snd_pcm_sframes_t hdelta, delta;
228         unsigned long jdelta;
229
230         old_hw_ptr = runtime->status->hw_ptr;
231         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
232         if (pos == SNDRV_PCM_POS_XRUN) {
233                 xrun(substream);
234                 return -EPIPE;
235         }
236         if (xrun_debug(substream, 8)) {
237                 char name[16];
238                 pcm_debug_name(substream, name, sizeof(name));
239                 snd_printd("period_update: %s: pos=0x%x/0x%x/0x%x, "
240                            "hwptr=0x%lx, hw_base=0x%lx, hw_intr=0x%lx\n",
241                            name, (unsigned int)pos,
242                            (unsigned int)runtime->period_size,
243                            (unsigned int)runtime->buffer_size,
244                            (unsigned long)old_hw_ptr,
245                            (unsigned long)runtime->hw_ptr_base,
246                            (unsigned long)runtime->hw_ptr_interrupt);
247         }
248         hw_base = runtime->hw_ptr_base;
249         new_hw_ptr = hw_base + pos;
250         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
251         delta = new_hw_ptr - hw_ptr_interrupt;
252         if (hw_ptr_interrupt >= runtime->boundary) {
253                 hw_ptr_interrupt -= runtime->boundary;
254                 if (hw_base < runtime->boundary / 2)
255                         /* hw_base was already lapped; recalc delta */
256                         delta = new_hw_ptr - hw_ptr_interrupt;
257         }
258         if (delta < 0) {
259                 if (runtime->periods == 1 || new_hw_ptr < old_hw_ptr)
260                         delta += runtime->buffer_size;
261                 if (delta < 0) {
262                         hw_ptr_error(substream, 
263                                      "Unexpected hw_pointer value "
264                                      "(stream=%i, pos=%ld, intr_ptr=%ld)\n",
265                                      substream->stream, (long)pos,
266                                      (long)hw_ptr_interrupt);
267 #if 1
268                         /* simply skipping the hwptr update seems more
269                          * robust in some cases, e.g. on VMware with
270                          * inaccurate timer source
271                          */
272                         return 0; /* skip this update */
273 #else
274                         /* rebase to interrupt position */
275                         hw_base = new_hw_ptr = hw_ptr_interrupt;
276                         /* align hw_base to buffer_size */
277                         hw_base -= hw_base % runtime->buffer_size;
278                         delta = 0;
279 #endif
280                 } else {
281                         hw_base += runtime->buffer_size;
282                         if (hw_base >= runtime->boundary)
283                                 hw_base = 0;
284                         new_hw_ptr = hw_base + pos;
285                 }
286         }
287
288         /* Do jiffies check only in xrun_debug mode */
289         if (!xrun_debug(substream, 4))
290                 goto no_jiffies_check;
291
292         /* Skip the jiffies check for hardwares with BATCH flag.
293          * Such hardware usually just increases the position at each IRQ,
294          * thus it can't give any strange position.
295          */
296         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
297                 goto no_jiffies_check;
298         hdelta = new_hw_ptr - old_hw_ptr;
299         if (hdelta < runtime->delay)
300                 goto no_jiffies_check;
301         hdelta -= runtime->delay;
302         jdelta = jiffies - runtime->hw_ptr_jiffies;
303         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
304                 delta = jdelta /
305                         (((runtime->period_size * HZ) / runtime->rate)
306                                                                 + HZ/100);
307                 hw_ptr_error(substream,
308                              "hw_ptr skipping! [Q] "
309                              "(pos=%ld, delta=%ld, period=%ld, "
310                              "jdelta=%lu/%lu/%lu)\n",
311                              (long)pos, (long)hdelta,
312                              (long)runtime->period_size, jdelta,
313                              ((hdelta * HZ) / runtime->rate), delta);
314                 hw_ptr_interrupt = runtime->hw_ptr_interrupt +
315                                    runtime->period_size * delta;
316                 if (hw_ptr_interrupt >= runtime->boundary)
317                         hw_ptr_interrupt -= runtime->boundary;
318                 /* rebase to interrupt position */
319                 hw_base = new_hw_ptr = hw_ptr_interrupt;
320                 /* align hw_base to buffer_size */
321                 hw_base -= hw_base % runtime->buffer_size;
322                 delta = 0;
323         }
324  no_jiffies_check:
325         if (delta > runtime->period_size + runtime->period_size / 2) {
326                 hw_ptr_error(substream,
327                              "Lost interrupts? "
328                              "(stream=%i, delta=%ld, intr_ptr=%ld)\n",
329                              substream->stream, (long)delta,
330                              (long)hw_ptr_interrupt);
331                 /* rebase hw_ptr_interrupt */
332                 hw_ptr_interrupt =
333                         new_hw_ptr - new_hw_ptr % runtime->period_size;
334         }
335         runtime->hw_ptr_interrupt = hw_ptr_interrupt;
336
337         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
338             runtime->silence_size > 0)
339                 snd_pcm_playback_silence(substream, new_hw_ptr);
340
341         if (runtime->status->hw_ptr == new_hw_ptr)
342                 return 0;
343
344         runtime->hw_ptr_base = hw_base;
345         runtime->status->hw_ptr = new_hw_ptr;
346         runtime->hw_ptr_jiffies = jiffies;
347         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
348                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
349
350         return snd_pcm_update_hw_ptr_post(substream, runtime);
351 }
352
353 /* CAUTION: call it with irq disabled */
354 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
355 {
356         struct snd_pcm_runtime *runtime = substream->runtime;
357         snd_pcm_uframes_t pos;
358         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
359         snd_pcm_sframes_t delta;
360         unsigned long jdelta;
361
362         old_hw_ptr = runtime->status->hw_ptr;
363         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
364         if (pos == SNDRV_PCM_POS_XRUN) {
365                 xrun(substream);
366                 return -EPIPE;
367         }
368         if (xrun_debug(substream, 16)) {
369                 char name[16];
370                 pcm_debug_name(substream, name, sizeof(name));
371                 snd_printd("hw_update: %s: pos=0x%x/0x%x/0x%x, "
372                            "hwptr=0x%lx, hw_base=0x%lx, hw_intr=0x%lx\n",
373                            name, (unsigned int)pos,
374                            (unsigned int)runtime->period_size,
375                            (unsigned int)runtime->buffer_size,
376                            (unsigned long)old_hw_ptr,
377                            (unsigned long)runtime->hw_ptr_base,
378                            (unsigned long)runtime->hw_ptr_interrupt);
379         }
380
381         hw_base = runtime->hw_ptr_base;
382         new_hw_ptr = hw_base + pos;
383
384         delta = new_hw_ptr - old_hw_ptr;
385         jdelta = jiffies - runtime->hw_ptr_jiffies;
386         if (delta < 0) {
387                 delta += runtime->buffer_size;
388                 if (delta < 0) {
389                         hw_ptr_error(substream, 
390                                      "Unexpected hw_pointer value [2] "
391                                      "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n",
392                                      substream->stream, (long)pos,
393                                      (long)old_hw_ptr, jdelta);
394                         return 0;
395                 }
396                 hw_base += runtime->buffer_size;
397                 if (hw_base >= runtime->boundary)
398                         hw_base = 0;
399                 new_hw_ptr = hw_base + pos;
400         }
401         /* Do jiffies check only in xrun_debug mode */
402         if (!xrun_debug(substream, 4))
403                 goto no_jiffies_check;
404         if (delta < runtime->delay)
405                 goto no_jiffies_check;
406         delta -= runtime->delay;
407         if (((delta * HZ) / runtime->rate) > jdelta + HZ/100) {
408                 hw_ptr_error(substream,
409                              "hw_ptr skipping! "
410                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n",
411                              (long)pos, (long)delta,
412                              (long)runtime->period_size, jdelta,
413                              ((delta * HZ) / runtime->rate));
414                 return 0;
415         }
416  no_jiffies_check:
417         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
418             runtime->silence_size > 0)
419                 snd_pcm_playback_silence(substream, new_hw_ptr);
420
421         if (runtime->status->hw_ptr == new_hw_ptr)
422                 return 0;
423
424         runtime->hw_ptr_base = hw_base;
425         runtime->status->hw_ptr = new_hw_ptr;
426         runtime->hw_ptr_jiffies = jiffies;
427         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
428                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
429
430         return snd_pcm_update_hw_ptr_post(substream, runtime);
431 }
432
433 /**
434  * snd_pcm_set_ops - set the PCM operators
435  * @pcm: the pcm instance
436  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
437  * @ops: the operator table
438  *
439  * Sets the given PCM operators to the pcm instance.
440  */
441 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
442 {
443         struct snd_pcm_str *stream = &pcm->streams[direction];
444         struct snd_pcm_substream *substream;
445         
446         for (substream = stream->substream; substream != NULL; substream = substream->next)
447                 substream->ops = ops;
448 }
449
450 EXPORT_SYMBOL(snd_pcm_set_ops);
451
452 /**
453  * snd_pcm_sync - set the PCM sync id
454  * @substream: the pcm substream
455  *
456  * Sets the PCM sync identifier for the card.
457  */
458 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
459 {
460         struct snd_pcm_runtime *runtime = substream->runtime;
461         
462         runtime->sync.id32[0] = substream->pcm->card->number;
463         runtime->sync.id32[1] = -1;
464         runtime->sync.id32[2] = -1;
465         runtime->sync.id32[3] = -1;
466 }
467
468 EXPORT_SYMBOL(snd_pcm_set_sync);
469
470 /*
471  *  Standard ioctl routine
472  */
473
474 static inline unsigned int div32(unsigned int a, unsigned int b, 
475                                  unsigned int *r)
476 {
477         if (b == 0) {
478                 *r = 0;
479                 return UINT_MAX;
480         }
481         *r = a % b;
482         return a / b;
483 }
484
485 static inline unsigned int div_down(unsigned int a, unsigned int b)
486 {
487         if (b == 0)
488                 return UINT_MAX;
489         return a / b;
490 }
491
492 static inline unsigned int div_up(unsigned int a, unsigned int b)
493 {
494         unsigned int r;
495         unsigned int q;
496         if (b == 0)
497                 return UINT_MAX;
498         q = div32(a, b, &r);
499         if (r)
500                 ++q;
501         return q;
502 }
503
504 static inline unsigned int mul(unsigned int a, unsigned int b)
505 {
506         if (a == 0)
507                 return 0;
508         if (div_down(UINT_MAX, a) < b)
509                 return UINT_MAX;
510         return a * b;
511 }
512
513 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
514                                     unsigned int c, unsigned int *r)
515 {
516         u_int64_t n = (u_int64_t) a * b;
517         if (c == 0) {
518                 snd_BUG_ON(!n);
519                 *r = 0;
520                 return UINT_MAX;
521         }
522         n = div_u64_rem(n, c, r);
523         if (n >= UINT_MAX) {
524                 *r = 0;
525                 return UINT_MAX;
526         }
527         return n;
528 }
529
530 /**
531  * snd_interval_refine - refine the interval value of configurator
532  * @i: the interval value to refine
533  * @v: the interval value to refer to
534  *
535  * Refines the interval value with the reference value.
536  * The interval is changed to the range satisfying both intervals.
537  * The interval status (min, max, integer, etc.) are evaluated.
538  *
539  * Returns non-zero if the value is changed, zero if not changed.
540  */
541 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
542 {
543         int changed = 0;
544         if (snd_BUG_ON(snd_interval_empty(i)))
545                 return -EINVAL;
546         if (i->min < v->min) {
547                 i->min = v->min;
548                 i->openmin = v->openmin;
549                 changed = 1;
550         } else if (i->min == v->min && !i->openmin && v->openmin) {
551                 i->openmin = 1;
552                 changed = 1;
553         }
554         if (i->max > v->max) {
555                 i->max = v->max;
556                 i->openmax = v->openmax;
557                 changed = 1;
558         } else if (i->max == v->max && !i->openmax && v->openmax) {
559                 i->openmax = 1;
560                 changed = 1;
561         }
562         if (!i->integer && v->integer) {
563                 i->integer = 1;
564                 changed = 1;
565         }
566         if (i->integer) {
567                 if (i->openmin) {
568                         i->min++;
569                         i->openmin = 0;
570                 }
571                 if (i->openmax) {
572                         i->max--;
573                         i->openmax = 0;
574                 }
575         } else if (!i->openmin && !i->openmax && i->min == i->max)
576                 i->integer = 1;
577         if (snd_interval_checkempty(i)) {
578                 snd_interval_none(i);
579                 return -EINVAL;
580         }
581         return changed;
582 }
583
584 EXPORT_SYMBOL(snd_interval_refine);
585
586 static int snd_interval_refine_first(struct snd_interval *i)
587 {
588         if (snd_BUG_ON(snd_interval_empty(i)))
589                 return -EINVAL;
590         if (snd_interval_single(i))
591                 return 0;
592         i->max = i->min;
593         i->openmax = i->openmin;
594         if (i->openmax)
595                 i->max++;
596         return 1;
597 }
598
599 static int snd_interval_refine_last(struct snd_interval *i)
600 {
601         if (snd_BUG_ON(snd_interval_empty(i)))
602                 return -EINVAL;
603         if (snd_interval_single(i))
604                 return 0;
605         i->min = i->max;
606         i->openmin = i->openmax;
607         if (i->openmin)
608                 i->min--;
609         return 1;
610 }
611
612 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
613 {
614         if (a->empty || b->empty) {
615                 snd_interval_none(c);
616                 return;
617         }
618         c->empty = 0;
619         c->min = mul(a->min, b->min);
620         c->openmin = (a->openmin || b->openmin);
621         c->max = mul(a->max,  b->max);
622         c->openmax = (a->openmax || b->openmax);
623         c->integer = (a->integer && b->integer);
624 }
625
626 /**
627  * snd_interval_div - refine the interval value with division
628  * @a: dividend
629  * @b: divisor
630  * @c: quotient
631  *
632  * c = a / b
633  *
634  * Returns non-zero if the value is changed, zero if not changed.
635  */
636 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
637 {
638         unsigned int r;
639         if (a->empty || b->empty) {
640                 snd_interval_none(c);
641                 return;
642         }
643         c->empty = 0;
644         c->min = div32(a->min, b->max, &r);
645         c->openmin = (r || a->openmin || b->openmax);
646         if (b->min > 0) {
647                 c->max = div32(a->max, b->min, &r);
648                 if (r) {
649                         c->max++;
650                         c->openmax = 1;
651                 } else
652                         c->openmax = (a->openmax || b->openmin);
653         } else {
654                 c->max = UINT_MAX;
655                 c->openmax = 0;
656         }
657         c->integer = 0;
658 }
659
660 /**
661  * snd_interval_muldivk - refine the interval value
662  * @a: dividend 1
663  * @b: dividend 2
664  * @k: divisor (as integer)
665  * @c: result
666   *
667  * c = a * b / k
668  *
669  * Returns non-zero if the value is changed, zero if not changed.
670  */
671 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
672                       unsigned int k, struct snd_interval *c)
673 {
674         unsigned int r;
675         if (a->empty || b->empty) {
676                 snd_interval_none(c);
677                 return;
678         }
679         c->empty = 0;
680         c->min = muldiv32(a->min, b->min, k, &r);
681         c->openmin = (r || a->openmin || b->openmin);
682         c->max = muldiv32(a->max, b->max, k, &r);
683         if (r) {
684                 c->max++;
685                 c->openmax = 1;
686         } else
687                 c->openmax = (a->openmax || b->openmax);
688         c->integer = 0;
689 }
690
691 /**
692  * snd_interval_mulkdiv - refine the interval value
693  * @a: dividend 1
694  * @k: dividend 2 (as integer)
695  * @b: divisor
696  * @c: result
697  *
698  * c = a * k / b
699  *
700  * Returns non-zero if the value is changed, zero if not changed.
701  */
702 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
703                       const struct snd_interval *b, struct snd_interval *c)
704 {
705         unsigned int r;
706         if (a->empty || b->empty) {
707                 snd_interval_none(c);
708                 return;
709         }
710         c->empty = 0;
711         c->min = muldiv32(a->min, k, b->max, &r);
712         c->openmin = (r || a->openmin || b->openmax);
713         if (b->min > 0) {
714                 c->max = muldiv32(a->max, k, b->min, &r);
715                 if (r) {
716                         c->max++;
717                         c->openmax = 1;
718                 } else
719                         c->openmax = (a->openmax || b->openmin);
720         } else {
721                 c->max = UINT_MAX;
722                 c->openmax = 0;
723         }
724         c->integer = 0;
725 }
726
727 /* ---- */
728
729
730 /**
731  * snd_interval_ratnum - refine the interval value
732  * @i: interval to refine
733  * @rats_count: number of ratnum_t 
734  * @rats: ratnum_t array
735  * @nump: pointer to store the resultant numerator
736  * @denp: pointer to store the resultant denominator
737  *
738  * Returns non-zero if the value is changed, zero if not changed.
739  */
740 int snd_interval_ratnum(struct snd_interval *i,
741                         unsigned int rats_count, struct snd_ratnum *rats,
742                         unsigned int *nump, unsigned int *denp)
743 {
744         unsigned int best_num, best_diff, best_den;
745         unsigned int k;
746         struct snd_interval t;
747         int err;
748
749         best_num = best_den = best_diff = 0;
750         for (k = 0; k < rats_count; ++k) {
751                 unsigned int num = rats[k].num;
752                 unsigned int den;
753                 unsigned int q = i->min;
754                 int diff;
755                 if (q == 0)
756                         q = 1;
757                 den = div_down(num, q);
758                 if (den < rats[k].den_min)
759                         continue;
760                 if (den > rats[k].den_max)
761                         den = rats[k].den_max;
762                 else {
763                         unsigned int r;
764                         r = (den - rats[k].den_min) % rats[k].den_step;
765                         if (r != 0)
766                                 den -= r;
767                 }
768                 diff = num - q * den;
769                 if (best_num == 0 ||
770                     diff * best_den < best_diff * den) {
771                         best_diff = diff;
772                         best_den = den;
773                         best_num = num;
774                 }
775         }
776         if (best_den == 0) {
777                 i->empty = 1;
778                 return -EINVAL;
779         }
780         t.min = div_down(best_num, best_den);
781         t.openmin = !!(best_num % best_den);
782         
783         best_num = best_den = best_diff = 0;
784         for (k = 0; k < rats_count; ++k) {
785                 unsigned int num = rats[k].num;
786                 unsigned int den;
787                 unsigned int q = i->max;
788                 int diff;
789                 if (q == 0) {
790                         i->empty = 1;
791                         return -EINVAL;
792                 }
793                 den = div_up(num, q);
794                 if (den > rats[k].den_max)
795                         continue;
796                 if (den < rats[k].den_min)
797                         den = rats[k].den_min;
798                 else {
799                         unsigned int r;
800                         r = (den - rats[k].den_min) % rats[k].den_step;
801                         if (r != 0)
802                                 den += rats[k].den_step - r;
803                 }
804                 diff = q * den - num;
805                 if (best_num == 0 ||
806                     diff * best_den < best_diff * den) {
807                         best_diff = diff;
808                         best_den = den;
809                         best_num = num;
810                 }
811         }
812         if (best_den == 0) {
813                 i->empty = 1;
814                 return -EINVAL;
815         }
816         t.max = div_up(best_num, best_den);
817         t.openmax = !!(best_num % best_den);
818         t.integer = 0;
819         err = snd_interval_refine(i, &t);
820         if (err < 0)
821                 return err;
822
823         if (snd_interval_single(i)) {
824                 if (nump)
825                         *nump = best_num;
826                 if (denp)
827                         *denp = best_den;
828         }
829         return err;
830 }
831
832 EXPORT_SYMBOL(snd_interval_ratnum);
833
834 /**
835  * snd_interval_ratden - refine the interval value
836  * @i: interval to refine
837  * @rats_count: number of struct ratden
838  * @rats: struct ratden array
839  * @nump: pointer to store the resultant numerator
840  * @denp: pointer to store the resultant denominator
841  *
842  * Returns non-zero if the value is changed, zero if not changed.
843  */
844 static int snd_interval_ratden(struct snd_interval *i,
845                                unsigned int rats_count, struct snd_ratden *rats,
846                                unsigned int *nump, unsigned int *denp)
847 {
848         unsigned int best_num, best_diff, best_den;
849         unsigned int k;
850         struct snd_interval t;
851         int err;
852
853         best_num = best_den = best_diff = 0;
854         for (k = 0; k < rats_count; ++k) {
855                 unsigned int num;
856                 unsigned int den = rats[k].den;
857                 unsigned int q = i->min;
858                 int diff;
859                 num = mul(q, den);
860                 if (num > rats[k].num_max)
861                         continue;
862                 if (num < rats[k].num_min)
863                         num = rats[k].num_max;
864                 else {
865                         unsigned int r;
866                         r = (num - rats[k].num_min) % rats[k].num_step;
867                         if (r != 0)
868                                 num += rats[k].num_step - r;
869                 }
870                 diff = num - q * den;
871                 if (best_num == 0 ||
872                     diff * best_den < best_diff * den) {
873                         best_diff = diff;
874                         best_den = den;
875                         best_num = num;
876                 }
877         }
878         if (best_den == 0) {
879                 i->empty = 1;
880                 return -EINVAL;
881         }
882         t.min = div_down(best_num, best_den);
883         t.openmin = !!(best_num % best_den);
884         
885         best_num = best_den = best_diff = 0;
886         for (k = 0; k < rats_count; ++k) {
887                 unsigned int num;
888                 unsigned int den = rats[k].den;
889                 unsigned int q = i->max;
890                 int diff;
891                 num = mul(q, den);
892                 if (num < rats[k].num_min)
893                         continue;
894                 if (num > rats[k].num_max)
895                         num = rats[k].num_max;
896                 else {
897                         unsigned int r;
898                         r = (num - rats[k].num_min) % rats[k].num_step;
899                         if (r != 0)
900                                 num -= r;
901                 }
902                 diff = q * den - num;
903                 if (best_num == 0 ||
904                     diff * best_den < best_diff * den) {
905                         best_diff = diff;
906                         best_den = den;
907                         best_num = num;
908                 }
909         }
910         if (best_den == 0) {
911                 i->empty = 1;
912                 return -EINVAL;
913         }
914         t.max = div_up(best_num, best_den);
915         t.openmax = !!(best_num % best_den);
916         t.integer = 0;
917         err = snd_interval_refine(i, &t);
918         if (err < 0)
919                 return err;
920
921         if (snd_interval_single(i)) {
922                 if (nump)
923                         *nump = best_num;
924                 if (denp)
925                         *denp = best_den;
926         }
927         return err;
928 }
929
930 /**
931  * snd_interval_list - refine the interval value from the list
932  * @i: the interval value to refine
933  * @count: the number of elements in the list
934  * @list: the value list
935  * @mask: the bit-mask to evaluate
936  *
937  * Refines the interval value from the list.
938  * When mask is non-zero, only the elements corresponding to bit 1 are
939  * evaluated.
940  *
941  * Returns non-zero if the value is changed, zero if not changed.
942  */
943 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
944 {
945         unsigned int k;
946         struct snd_interval list_range;
947
948         if (!count) {
949                 i->empty = 1;
950                 return -EINVAL;
951         }
952         snd_interval_any(&list_range);
953         list_range.min = UINT_MAX;
954         list_range.max = 0;
955         for (k = 0; k < count; k++) {
956                 if (mask && !(mask & (1 << k)))
957                         continue;
958                 if (!snd_interval_test(i, list[k]))
959                         continue;
960                 list_range.min = min(list_range.min, list[k]);
961                 list_range.max = max(list_range.max, list[k]);
962         }
963         return snd_interval_refine(i, &list_range);
964 }
965
966 EXPORT_SYMBOL(snd_interval_list);
967
968 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
969 {
970         unsigned int n;
971         int changed = 0;
972         n = (i->min - min) % step;
973         if (n != 0 || i->openmin) {
974                 i->min += step - n;
975                 changed = 1;
976         }
977         n = (i->max - min) % step;
978         if (n != 0 || i->openmax) {
979                 i->max -= n;
980                 changed = 1;
981         }
982         if (snd_interval_checkempty(i)) {
983                 i->empty = 1;
984                 return -EINVAL;
985         }
986         return changed;
987 }
988
989 /* Info constraints helpers */
990
991 /**
992  * snd_pcm_hw_rule_add - add the hw-constraint rule
993  * @runtime: the pcm runtime instance
994  * @cond: condition bits
995  * @var: the variable to evaluate
996  * @func: the evaluation function
997  * @private: the private data pointer passed to function
998  * @dep: the dependent variables
999  *
1000  * Returns zero if successful, or a negative error code on failure.
1001  */
1002 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1003                         int var,
1004                         snd_pcm_hw_rule_func_t func, void *private,
1005                         int dep, ...)
1006 {
1007         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1008         struct snd_pcm_hw_rule *c;
1009         unsigned int k;
1010         va_list args;
1011         va_start(args, dep);
1012         if (constrs->rules_num >= constrs->rules_all) {
1013                 struct snd_pcm_hw_rule *new;
1014                 unsigned int new_rules = constrs->rules_all + 16;
1015                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1016                 if (!new)
1017                         return -ENOMEM;
1018                 if (constrs->rules) {
1019                         memcpy(new, constrs->rules,
1020                                constrs->rules_num * sizeof(*c));
1021                         kfree(constrs->rules);
1022                 }
1023                 constrs->rules = new;
1024                 constrs->rules_all = new_rules;
1025         }
1026         c = &constrs->rules[constrs->rules_num];
1027         c->cond = cond;
1028         c->func = func;
1029         c->var = var;
1030         c->private = private;
1031         k = 0;
1032         while (1) {
1033                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1034                         return -EINVAL;
1035                 c->deps[k++] = dep;
1036                 if (dep < 0)
1037                         break;
1038                 dep = va_arg(args, int);
1039         }
1040         constrs->rules_num++;
1041         va_end(args);
1042         return 0;
1043 }                                   
1044
1045 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1046
1047 /**
1048  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1049  * @runtime: PCM runtime instance
1050  * @var: hw_params variable to apply the mask
1051  * @mask: the bitmap mask
1052  *
1053  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1054  */
1055 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1056                                u_int32_t mask)
1057 {
1058         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1059         struct snd_mask *maskp = constrs_mask(constrs, var);
1060         *maskp->bits &= mask;
1061         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1062         if (*maskp->bits == 0)
1063                 return -EINVAL;
1064         return 0;
1065 }
1066
1067 /**
1068  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1069  * @runtime: PCM runtime instance
1070  * @var: hw_params variable to apply the mask
1071  * @mask: the 64bit bitmap mask
1072  *
1073  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1074  */
1075 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1076                                  u_int64_t mask)
1077 {
1078         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1079         struct snd_mask *maskp = constrs_mask(constrs, var);
1080         maskp->bits[0] &= (u_int32_t)mask;
1081         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1082         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1083         if (! maskp->bits[0] && ! maskp->bits[1])
1084                 return -EINVAL;
1085         return 0;
1086 }
1087
1088 /**
1089  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1090  * @runtime: PCM runtime instance
1091  * @var: hw_params variable to apply the integer constraint
1092  *
1093  * Apply the constraint of integer to an interval parameter.
1094  */
1095 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1096 {
1097         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1098         return snd_interval_setinteger(constrs_interval(constrs, var));
1099 }
1100
1101 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1102
1103 /**
1104  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1105  * @runtime: PCM runtime instance
1106  * @var: hw_params variable to apply the range
1107  * @min: the minimal value
1108  * @max: the maximal value
1109  * 
1110  * Apply the min/max range constraint to an interval parameter.
1111  */
1112 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1113                                  unsigned int min, unsigned int max)
1114 {
1115         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1116         struct snd_interval t;
1117         t.min = min;
1118         t.max = max;
1119         t.openmin = t.openmax = 0;
1120         t.integer = 0;
1121         return snd_interval_refine(constrs_interval(constrs, var), &t);
1122 }
1123
1124 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1125
1126 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1127                                 struct snd_pcm_hw_rule *rule)
1128 {
1129         struct snd_pcm_hw_constraint_list *list = rule->private;
1130         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1131 }               
1132
1133
1134 /**
1135  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1136  * @runtime: PCM runtime instance
1137  * @cond: condition bits
1138  * @var: hw_params variable to apply the list constraint
1139  * @l: list
1140  * 
1141  * Apply the list of constraints to an interval parameter.
1142  */
1143 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1144                                unsigned int cond,
1145                                snd_pcm_hw_param_t var,
1146                                struct snd_pcm_hw_constraint_list *l)
1147 {
1148         return snd_pcm_hw_rule_add(runtime, cond, var,
1149                                    snd_pcm_hw_rule_list, l,
1150                                    var, -1);
1151 }
1152
1153 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1154
1155 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1156                                    struct snd_pcm_hw_rule *rule)
1157 {
1158         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1159         unsigned int num = 0, den = 0;
1160         int err;
1161         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1162                                   r->nrats, r->rats, &num, &den);
1163         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1164                 params->rate_num = num;
1165                 params->rate_den = den;
1166         }
1167         return err;
1168 }
1169
1170 /**
1171  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1172  * @runtime: PCM runtime instance
1173  * @cond: condition bits
1174  * @var: hw_params variable to apply the ratnums constraint
1175  * @r: struct snd_ratnums constriants
1176  */
1177 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1178                                   unsigned int cond,
1179                                   snd_pcm_hw_param_t var,
1180                                   struct snd_pcm_hw_constraint_ratnums *r)
1181 {
1182         return snd_pcm_hw_rule_add(runtime, cond, var,
1183                                    snd_pcm_hw_rule_ratnums, r,
1184                                    var, -1);
1185 }
1186
1187 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1188
1189 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1190                                    struct snd_pcm_hw_rule *rule)
1191 {
1192         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1193         unsigned int num = 0, den = 0;
1194         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1195                                   r->nrats, r->rats, &num, &den);
1196         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1197                 params->rate_num = num;
1198                 params->rate_den = den;
1199         }
1200         return err;
1201 }
1202
1203 /**
1204  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1205  * @runtime: PCM runtime instance
1206  * @cond: condition bits
1207  * @var: hw_params variable to apply the ratdens constraint
1208  * @r: struct snd_ratdens constriants
1209  */
1210 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1211                                   unsigned int cond,
1212                                   snd_pcm_hw_param_t var,
1213                                   struct snd_pcm_hw_constraint_ratdens *r)
1214 {
1215         return snd_pcm_hw_rule_add(runtime, cond, var,
1216                                    snd_pcm_hw_rule_ratdens, r,
1217                                    var, -1);
1218 }
1219
1220 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1221
1222 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1223                                   struct snd_pcm_hw_rule *rule)
1224 {
1225         unsigned int l = (unsigned long) rule->private;
1226         int width = l & 0xffff;
1227         unsigned int msbits = l >> 16;
1228         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1229         if (snd_interval_single(i) && snd_interval_value(i) == width)
1230                 params->msbits = msbits;
1231         return 0;
1232 }
1233
1234 /**
1235  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1236  * @runtime: PCM runtime instance
1237  * @cond: condition bits
1238  * @width: sample bits width
1239  * @msbits: msbits width
1240  */
1241 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1242                                  unsigned int cond,
1243                                  unsigned int width,
1244                                  unsigned int msbits)
1245 {
1246         unsigned long l = (msbits << 16) | width;
1247         return snd_pcm_hw_rule_add(runtime, cond, -1,
1248                                     snd_pcm_hw_rule_msbits,
1249                                     (void*) l,
1250                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1251 }
1252
1253 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1254
1255 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1256                                 struct snd_pcm_hw_rule *rule)
1257 {
1258         unsigned long step = (unsigned long) rule->private;
1259         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1260 }
1261
1262 /**
1263  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1264  * @runtime: PCM runtime instance
1265  * @cond: condition bits
1266  * @var: hw_params variable to apply the step constraint
1267  * @step: step size
1268  */
1269 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1270                                unsigned int cond,
1271                                snd_pcm_hw_param_t var,
1272                                unsigned long step)
1273 {
1274         return snd_pcm_hw_rule_add(runtime, cond, var, 
1275                                    snd_pcm_hw_rule_step, (void *) step,
1276                                    var, -1);
1277 }
1278
1279 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1280
1281 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1282 {
1283         static unsigned int pow2_sizes[] = {
1284                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1285                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1286                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1287                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1288         };
1289         return snd_interval_list(hw_param_interval(params, rule->var),
1290                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1291 }               
1292
1293 /**
1294  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1295  * @runtime: PCM runtime instance
1296  * @cond: condition bits
1297  * @var: hw_params variable to apply the power-of-2 constraint
1298  */
1299 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1300                                unsigned int cond,
1301                                snd_pcm_hw_param_t var)
1302 {
1303         return snd_pcm_hw_rule_add(runtime, cond, var, 
1304                                    snd_pcm_hw_rule_pow2, NULL,
1305                                    var, -1);
1306 }
1307
1308 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1309
1310 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1311                                   snd_pcm_hw_param_t var)
1312 {
1313         if (hw_is_mask(var)) {
1314                 snd_mask_any(hw_param_mask(params, var));
1315                 params->cmask |= 1 << var;
1316                 params->rmask |= 1 << var;
1317                 return;
1318         }
1319         if (hw_is_interval(var)) {
1320                 snd_interval_any(hw_param_interval(params, var));
1321                 params->cmask |= 1 << var;
1322                 params->rmask |= 1 << var;
1323                 return;
1324         }
1325         snd_BUG();
1326 }
1327
1328 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1329 {
1330         unsigned int k;
1331         memset(params, 0, sizeof(*params));
1332         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1333                 _snd_pcm_hw_param_any(params, k);
1334         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1335                 _snd_pcm_hw_param_any(params, k);
1336         params->info = ~0U;
1337 }
1338
1339 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1340
1341 /**
1342  * snd_pcm_hw_param_value - return @params field @var value
1343  * @params: the hw_params instance
1344  * @var: parameter to retrieve
1345  * @dir: pointer to the direction (-1,0,1) or %NULL
1346  *
1347  * Return the value for field @var if it's fixed in configuration space
1348  * defined by @params. Return -%EINVAL otherwise.
1349  */
1350 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1351                            snd_pcm_hw_param_t var, int *dir)
1352 {
1353         if (hw_is_mask(var)) {
1354                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1355                 if (!snd_mask_single(mask))
1356                         return -EINVAL;
1357                 if (dir)
1358                         *dir = 0;
1359                 return snd_mask_value(mask);
1360         }
1361         if (hw_is_interval(var)) {
1362                 const struct snd_interval *i = hw_param_interval_c(params, var);
1363                 if (!snd_interval_single(i))
1364                         return -EINVAL;
1365                 if (dir)
1366                         *dir = i->openmin;
1367                 return snd_interval_value(i);
1368         }
1369         return -EINVAL;
1370 }
1371
1372 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1373
1374 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1375                                 snd_pcm_hw_param_t var)
1376 {
1377         if (hw_is_mask(var)) {
1378                 snd_mask_none(hw_param_mask(params, var));
1379                 params->cmask |= 1 << var;
1380                 params->rmask |= 1 << var;
1381         } else if (hw_is_interval(var)) {
1382                 snd_interval_none(hw_param_interval(params, var));
1383                 params->cmask |= 1 << var;
1384                 params->rmask |= 1 << var;
1385         } else {
1386                 snd_BUG();
1387         }
1388 }
1389
1390 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1391
1392 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1393                                    snd_pcm_hw_param_t var)
1394 {
1395         int changed;
1396         if (hw_is_mask(var))
1397                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1398         else if (hw_is_interval(var))
1399                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1400         else
1401                 return -EINVAL;
1402         if (changed) {
1403                 params->cmask |= 1 << var;
1404                 params->rmask |= 1 << var;
1405         }
1406         return changed;
1407 }
1408
1409
1410 /**
1411  * snd_pcm_hw_param_first - refine config space and return minimum value
1412  * @pcm: PCM instance
1413  * @params: the hw_params instance
1414  * @var: parameter to retrieve
1415  * @dir: pointer to the direction (-1,0,1) or %NULL
1416  *
1417  * Inside configuration space defined by @params remove from @var all
1418  * values > minimum. Reduce configuration space accordingly.
1419  * Return the minimum.
1420  */
1421 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1422                            struct snd_pcm_hw_params *params, 
1423                            snd_pcm_hw_param_t var, int *dir)
1424 {
1425         int changed = _snd_pcm_hw_param_first(params, var);
1426         if (changed < 0)
1427                 return changed;
1428         if (params->rmask) {
1429                 int err = snd_pcm_hw_refine(pcm, params);
1430                 if (snd_BUG_ON(err < 0))
1431                         return err;
1432         }
1433         return snd_pcm_hw_param_value(params, var, dir);
1434 }
1435
1436 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1437
1438 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1439                                   snd_pcm_hw_param_t var)
1440 {
1441         int changed;
1442         if (hw_is_mask(var))
1443                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1444         else if (hw_is_interval(var))
1445                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1446         else
1447                 return -EINVAL;
1448         if (changed) {
1449                 params->cmask |= 1 << var;
1450                 params->rmask |= 1 << var;
1451         }
1452         return changed;
1453 }
1454
1455
1456 /**
1457  * snd_pcm_hw_param_last - refine config space and return maximum value
1458  * @pcm: PCM instance
1459  * @params: the hw_params instance
1460  * @var: parameter to retrieve
1461  * @dir: pointer to the direction (-1,0,1) or %NULL
1462  *
1463  * Inside configuration space defined by @params remove from @var all
1464  * values < maximum. Reduce configuration space accordingly.
1465  * Return the maximum.
1466  */
1467 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1468                           struct snd_pcm_hw_params *params,
1469                           snd_pcm_hw_param_t var, int *dir)
1470 {
1471         int changed = _snd_pcm_hw_param_last(params, var);
1472         if (changed < 0)
1473                 return changed;
1474         if (params->rmask) {
1475                 int err = snd_pcm_hw_refine(pcm, params);
1476                 if (snd_BUG_ON(err < 0))
1477                         return err;
1478         }
1479         return snd_pcm_hw_param_value(params, var, dir);
1480 }
1481
1482 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1483
1484 /**
1485  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1486  * @pcm: PCM instance
1487  * @params: the hw_params instance
1488  *
1489  * Choose one configuration from configuration space defined by @params.
1490  * The configuration chosen is that obtained fixing in this order:
1491  * first access, first format, first subformat, min channels,
1492  * min rate, min period time, max buffer size, min tick time
1493  */
1494 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1495                              struct snd_pcm_hw_params *params)
1496 {
1497         static int vars[] = {
1498                 SNDRV_PCM_HW_PARAM_ACCESS,
1499                 SNDRV_PCM_HW_PARAM_FORMAT,
1500                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1501                 SNDRV_PCM_HW_PARAM_CHANNELS,
1502                 SNDRV_PCM_HW_PARAM_RATE,
1503                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1504                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1505                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1506                 -1
1507         };
1508         int err, *v;
1509
1510         for (v = vars; *v != -1; v++) {
1511                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1512                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1513                 else
1514                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1515                 if (snd_BUG_ON(err < 0))
1516                         return err;
1517         }
1518         return 0;
1519 }
1520
1521 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1522                                    void *arg)
1523 {
1524         struct snd_pcm_runtime *runtime = substream->runtime;
1525         unsigned long flags;
1526         snd_pcm_stream_lock_irqsave(substream, flags);
1527         if (snd_pcm_running(substream) &&
1528             snd_pcm_update_hw_ptr(substream) >= 0)
1529                 runtime->status->hw_ptr %= runtime->buffer_size;
1530         else
1531                 runtime->status->hw_ptr = 0;
1532         snd_pcm_stream_unlock_irqrestore(substream, flags);
1533         return 0;
1534 }
1535
1536 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1537                                           void *arg)
1538 {
1539         struct snd_pcm_channel_info *info = arg;
1540         struct snd_pcm_runtime *runtime = substream->runtime;
1541         int width;
1542         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1543                 info->offset = -1;
1544                 return 0;
1545         }
1546         width = snd_pcm_format_physical_width(runtime->format);
1547         if (width < 0)
1548                 return width;
1549         info->offset = 0;
1550         switch (runtime->access) {
1551         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1552         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1553                 info->first = info->channel * width;
1554                 info->step = runtime->channels * width;
1555                 break;
1556         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1557         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1558         {
1559                 size_t size = runtime->dma_bytes / runtime->channels;
1560                 info->first = info->channel * size * 8;
1561                 info->step = width;
1562                 break;
1563         }
1564         default:
1565                 snd_BUG();
1566                 break;
1567         }
1568         return 0;
1569 }
1570
1571 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1572                                        void *arg)
1573 {
1574         struct snd_pcm_hw_params *params = arg;
1575         snd_pcm_format_t format;
1576         int channels, width;
1577
1578         params->fifo_size = substream->runtime->hw.fifo_size;
1579         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1580                 format = params_format(params);
1581                 channels = params_channels(params);
1582                 width = snd_pcm_format_physical_width(format);
1583                 params->fifo_size /= width * channels;
1584         }
1585         return 0;
1586 }
1587
1588 /**
1589  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1590  * @substream: the pcm substream instance
1591  * @cmd: ioctl command
1592  * @arg: ioctl argument
1593  *
1594  * Processes the generic ioctl commands for PCM.
1595  * Can be passed as the ioctl callback for PCM ops.
1596  *
1597  * Returns zero if successful, or a negative error code on failure.
1598  */
1599 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1600                       unsigned int cmd, void *arg)
1601 {
1602         switch (cmd) {
1603         case SNDRV_PCM_IOCTL1_INFO:
1604                 return 0;
1605         case SNDRV_PCM_IOCTL1_RESET:
1606                 return snd_pcm_lib_ioctl_reset(substream, arg);
1607         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1608                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1609         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1610                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1611         }
1612         return -ENXIO;
1613 }
1614
1615 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1616
1617 /**
1618  * snd_pcm_period_elapsed - update the pcm status for the next period
1619  * @substream: the pcm substream instance
1620  *
1621  * This function is called from the interrupt handler when the
1622  * PCM has processed the period size.  It will update the current
1623  * pointer, wake up sleepers, etc.
1624  *
1625  * Even if more than one periods have elapsed since the last call, you
1626  * have to call this only once.
1627  */
1628 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1629 {
1630         struct snd_pcm_runtime *runtime;
1631         unsigned long flags;
1632
1633         if (PCM_RUNTIME_CHECK(substream))
1634                 return;
1635         runtime = substream->runtime;
1636
1637         if (runtime->transfer_ack_begin)
1638                 runtime->transfer_ack_begin(substream);
1639
1640         snd_pcm_stream_lock_irqsave(substream, flags);
1641         if (!snd_pcm_running(substream) ||
1642             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1643                 goto _end;
1644
1645         if (substream->timer_running)
1646                 snd_timer_interrupt(substream->timer, 1);
1647  _end:
1648         snd_pcm_stream_unlock_irqrestore(substream, flags);
1649         if (runtime->transfer_ack_end)
1650                 runtime->transfer_ack_end(substream);
1651         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1652 }
1653
1654 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1655
1656 /*
1657  * Wait until avail_min data becomes available
1658  * Returns a negative error code if any error occurs during operation.
1659  * The available space is stored on availp.  When err = 0 and avail = 0
1660  * on the capture stream, it indicates the stream is in DRAINING state.
1661  */
1662 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1663                               snd_pcm_uframes_t *availp)
1664 {
1665         struct snd_pcm_runtime *runtime = substream->runtime;
1666         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1667         wait_queue_t wait;
1668         int err = 0;
1669         snd_pcm_uframes_t avail = 0;
1670         long tout;
1671
1672         init_waitqueue_entry(&wait, current);
1673         add_wait_queue(&runtime->sleep, &wait);
1674         for (;;) {
1675                 if (signal_pending(current)) {
1676                         err = -ERESTARTSYS;
1677                         break;
1678                 }
1679                 set_current_state(TASK_INTERRUPTIBLE);
1680                 snd_pcm_stream_unlock_irq(substream);
1681                 tout = schedule_timeout(msecs_to_jiffies(10000));
1682                 snd_pcm_stream_lock_irq(substream);
1683                 switch (runtime->status->state) {
1684                 case SNDRV_PCM_STATE_SUSPENDED:
1685                         err = -ESTRPIPE;
1686                         goto _endloop;
1687                 case SNDRV_PCM_STATE_XRUN:
1688                         err = -EPIPE;
1689                         goto _endloop;
1690                 case SNDRV_PCM_STATE_DRAINING:
1691                         if (is_playback)
1692                                 err = -EPIPE;
1693                         else 
1694                                 avail = 0; /* indicate draining */
1695                         goto _endloop;
1696                 case SNDRV_PCM_STATE_OPEN:
1697                 case SNDRV_PCM_STATE_SETUP:
1698                 case SNDRV_PCM_STATE_DISCONNECTED:
1699                         err = -EBADFD;
1700                         goto _endloop;
1701                 }
1702                 if (!tout) {
1703                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1704                                    is_playback ? "playback" : "capture");
1705                         err = -EIO;
1706                         break;
1707                 }
1708                 if (is_playback)
1709                         avail = snd_pcm_playback_avail(runtime);
1710                 else
1711                         avail = snd_pcm_capture_avail(runtime);
1712                 if (avail >= runtime->control->avail_min)
1713                         break;
1714         }
1715  _endloop:
1716         remove_wait_queue(&runtime->sleep, &wait);
1717         *availp = avail;
1718         return err;
1719 }
1720         
1721 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1722                                       unsigned int hwoff,
1723                                       unsigned long data, unsigned int off,
1724                                       snd_pcm_uframes_t frames)
1725 {
1726         struct snd_pcm_runtime *runtime = substream->runtime;
1727         int err;
1728         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1729         if (substream->ops->copy) {
1730                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1731                         return err;
1732         } else {
1733                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1734                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1735                         return -EFAULT;
1736         }
1737         return 0;
1738 }
1739  
1740 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1741                           unsigned long data, unsigned int off,
1742                           snd_pcm_uframes_t size);
1743
1744 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1745                                             unsigned long data,
1746                                             snd_pcm_uframes_t size,
1747                                             int nonblock,
1748                                             transfer_f transfer)
1749 {
1750         struct snd_pcm_runtime *runtime = substream->runtime;
1751         snd_pcm_uframes_t xfer = 0;
1752         snd_pcm_uframes_t offset = 0;
1753         int err = 0;
1754
1755         if (size == 0)
1756                 return 0;
1757
1758         snd_pcm_stream_lock_irq(substream);
1759         switch (runtime->status->state) {
1760         case SNDRV_PCM_STATE_PREPARED:
1761         case SNDRV_PCM_STATE_RUNNING:
1762         case SNDRV_PCM_STATE_PAUSED:
1763                 break;
1764         case SNDRV_PCM_STATE_XRUN:
1765                 err = -EPIPE;
1766                 goto _end_unlock;
1767         case SNDRV_PCM_STATE_SUSPENDED:
1768                 err = -ESTRPIPE;
1769                 goto _end_unlock;
1770         default:
1771                 err = -EBADFD;
1772                 goto _end_unlock;
1773         }
1774
1775         while (size > 0) {
1776                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1777                 snd_pcm_uframes_t avail;
1778                 snd_pcm_uframes_t cont;
1779                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1780                         snd_pcm_update_hw_ptr(substream);
1781                 avail = snd_pcm_playback_avail(runtime);
1782                 if (!avail) {
1783                         if (nonblock) {
1784                                 err = -EAGAIN;
1785                                 goto _end_unlock;
1786                         }
1787                         err = wait_for_avail_min(substream, &avail);
1788                         if (err < 0)
1789                                 goto _end_unlock;
1790                 }
1791                 frames = size > avail ? avail : size;
1792                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1793                 if (frames > cont)
1794                         frames = cont;
1795                 if (snd_BUG_ON(!frames)) {
1796                         snd_pcm_stream_unlock_irq(substream);
1797                         return -EINVAL;
1798                 }
1799                 appl_ptr = runtime->control->appl_ptr;
1800                 appl_ofs = appl_ptr % runtime->buffer_size;
1801                 snd_pcm_stream_unlock_irq(substream);
1802                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1803                         goto _end;
1804                 snd_pcm_stream_lock_irq(substream);
1805                 switch (runtime->status->state) {
1806                 case SNDRV_PCM_STATE_XRUN:
1807                         err = -EPIPE;
1808                         goto _end_unlock;
1809                 case SNDRV_PCM_STATE_SUSPENDED:
1810                         err = -ESTRPIPE;
1811                         goto _end_unlock;
1812                 default:
1813                         break;
1814                 }
1815                 appl_ptr += frames;
1816                 if (appl_ptr >= runtime->boundary)
1817                         appl_ptr -= runtime->boundary;
1818                 runtime->control->appl_ptr = appl_ptr;
1819                 if (substream->ops->ack)
1820                         substream->ops->ack(substream);
1821
1822                 offset += frames;
1823                 size -= frames;
1824                 xfer += frames;
1825                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1826                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1827                         err = snd_pcm_start(substream);
1828                         if (err < 0)
1829                                 goto _end_unlock;
1830                 }
1831         }
1832  _end_unlock:
1833         snd_pcm_stream_unlock_irq(substream);
1834  _end:
1835         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1836 }
1837
1838 /* sanity-check for read/write methods */
1839 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1840 {
1841         struct snd_pcm_runtime *runtime;
1842         if (PCM_RUNTIME_CHECK(substream))
1843                 return -ENXIO;
1844         runtime = substream->runtime;
1845         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1846                 return -EINVAL;
1847         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1848                 return -EBADFD;
1849         return 0;
1850 }
1851
1852 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1853 {
1854         struct snd_pcm_runtime *runtime;
1855         int nonblock;
1856         int err;
1857
1858         err = pcm_sanity_check(substream);
1859         if (err < 0)
1860                 return err;
1861         runtime = substream->runtime;
1862         nonblock = !!(substream->f_flags & O_NONBLOCK);
1863
1864         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1865             runtime->channels > 1)
1866                 return -EINVAL;
1867         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1868                                   snd_pcm_lib_write_transfer);
1869 }
1870
1871 EXPORT_SYMBOL(snd_pcm_lib_write);
1872
1873 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1874                                        unsigned int hwoff,
1875                                        unsigned long data, unsigned int off,
1876                                        snd_pcm_uframes_t frames)
1877 {
1878         struct snd_pcm_runtime *runtime = substream->runtime;
1879         int err;
1880         void __user **bufs = (void __user **)data;
1881         int channels = runtime->channels;
1882         int c;
1883         if (substream->ops->copy) {
1884                 if (snd_BUG_ON(!substream->ops->silence))
1885                         return -EINVAL;
1886                 for (c = 0; c < channels; ++c, ++bufs) {
1887                         if (*bufs == NULL) {
1888                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1889                                         return err;
1890                         } else {
1891                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1892                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1893                                         return err;
1894                         }
1895                 }
1896         } else {
1897                 /* default transfer behaviour */
1898                 size_t dma_csize = runtime->dma_bytes / channels;
1899                 for (c = 0; c < channels; ++c, ++bufs) {
1900                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1901                         if (*bufs == NULL) {
1902                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1903                         } else {
1904                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1905                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1906                                         return -EFAULT;
1907                         }
1908                 }
1909         }
1910         return 0;
1911 }
1912  
1913 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1914                                      void __user **bufs,
1915                                      snd_pcm_uframes_t frames)
1916 {
1917         struct snd_pcm_runtime *runtime;
1918         int nonblock;
1919         int err;
1920
1921         err = pcm_sanity_check(substream);
1922         if (err < 0)
1923                 return err;
1924         runtime = substream->runtime;
1925         nonblock = !!(substream->f_flags & O_NONBLOCK);
1926
1927         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1928                 return -EINVAL;
1929         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1930                                   nonblock, snd_pcm_lib_writev_transfer);
1931 }
1932
1933 EXPORT_SYMBOL(snd_pcm_lib_writev);
1934
1935 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1936                                      unsigned int hwoff,
1937                                      unsigned long data, unsigned int off,
1938                                      snd_pcm_uframes_t frames)
1939 {
1940         struct snd_pcm_runtime *runtime = substream->runtime;
1941         int err;
1942         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1943         if (substream->ops->copy) {
1944                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1945                         return err;
1946         } else {
1947                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1948                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1949                         return -EFAULT;
1950         }
1951         return 0;
1952 }
1953
1954 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1955                                            unsigned long data,
1956                                            snd_pcm_uframes_t size,
1957                                            int nonblock,
1958                                            transfer_f transfer)
1959 {
1960         struct snd_pcm_runtime *runtime = substream->runtime;
1961         snd_pcm_uframes_t xfer = 0;
1962         snd_pcm_uframes_t offset = 0;
1963         int err = 0;
1964
1965         if (size == 0)
1966                 return 0;
1967
1968         snd_pcm_stream_lock_irq(substream);
1969         switch (runtime->status->state) {
1970         case SNDRV_PCM_STATE_PREPARED:
1971                 if (size >= runtime->start_threshold) {
1972                         err = snd_pcm_start(substream);
1973                         if (err < 0)
1974                                 goto _end_unlock;
1975                 }
1976                 break;
1977         case SNDRV_PCM_STATE_DRAINING:
1978         case SNDRV_PCM_STATE_RUNNING:
1979         case SNDRV_PCM_STATE_PAUSED:
1980                 break;
1981         case SNDRV_PCM_STATE_XRUN:
1982                 err = -EPIPE;
1983                 goto _end_unlock;
1984         case SNDRV_PCM_STATE_SUSPENDED:
1985                 err = -ESTRPIPE;
1986                 goto _end_unlock;
1987         default:
1988                 err = -EBADFD;
1989                 goto _end_unlock;
1990         }
1991
1992         while (size > 0) {
1993                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1994                 snd_pcm_uframes_t avail;
1995                 snd_pcm_uframes_t cont;
1996                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1997                         snd_pcm_update_hw_ptr(substream);
1998                 avail = snd_pcm_capture_avail(runtime);
1999                 if (!avail) {
2000                         if (runtime->status->state ==
2001                             SNDRV_PCM_STATE_DRAINING) {
2002                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2003                                 goto _end_unlock;
2004                         }
2005                         if (nonblock) {
2006                                 err = -EAGAIN;
2007                                 goto _end_unlock;
2008                         }
2009                         err = wait_for_avail_min(substream, &avail);
2010                         if (err < 0)
2011                                 goto _end_unlock;
2012                         if (!avail)
2013                                 continue; /* draining */
2014                 }
2015                 frames = size > avail ? avail : size;
2016                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2017                 if (frames > cont)
2018                         frames = cont;
2019                 if (snd_BUG_ON(!frames)) {
2020                         snd_pcm_stream_unlock_irq(substream);
2021                         return -EINVAL;
2022                 }
2023                 appl_ptr = runtime->control->appl_ptr;
2024                 appl_ofs = appl_ptr % runtime->buffer_size;
2025                 snd_pcm_stream_unlock_irq(substream);
2026                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2027                         goto _end;
2028                 snd_pcm_stream_lock_irq(substream);
2029                 switch (runtime->status->state) {
2030                 case SNDRV_PCM_STATE_XRUN:
2031                         err = -EPIPE;
2032                         goto _end_unlock;
2033                 case SNDRV_PCM_STATE_SUSPENDED:
2034                         err = -ESTRPIPE;
2035                         goto _end_unlock;
2036                 default:
2037                         break;
2038                 }
2039                 appl_ptr += frames;
2040                 if (appl_ptr >= runtime->boundary)
2041                         appl_ptr -= runtime->boundary;
2042                 runtime->control->appl_ptr = appl_ptr;
2043                 if (substream->ops->ack)
2044                         substream->ops->ack(substream);
2045
2046                 offset += frames;
2047                 size -= frames;
2048                 xfer += frames;
2049         }
2050  _end_unlock:
2051         snd_pcm_stream_unlock_irq(substream);
2052  _end:
2053         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2054 }
2055
2056 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2057 {
2058         struct snd_pcm_runtime *runtime;
2059         int nonblock;
2060         int err;
2061         
2062         err = pcm_sanity_check(substream);
2063         if (err < 0)
2064                 return err;
2065         runtime = substream->runtime;
2066         nonblock = !!(substream->f_flags & O_NONBLOCK);
2067         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2068                 return -EINVAL;
2069         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2070 }
2071
2072 EXPORT_SYMBOL(snd_pcm_lib_read);
2073
2074 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2075                                       unsigned int hwoff,
2076                                       unsigned long data, unsigned int off,
2077                                       snd_pcm_uframes_t frames)
2078 {
2079         struct snd_pcm_runtime *runtime = substream->runtime;
2080         int err;
2081         void __user **bufs = (void __user **)data;
2082         int channels = runtime->channels;
2083         int c;
2084         if (substream->ops->copy) {
2085                 for (c = 0; c < channels; ++c, ++bufs) {
2086                         char __user *buf;
2087                         if (*bufs == NULL)
2088                                 continue;
2089                         buf = *bufs + samples_to_bytes(runtime, off);
2090                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2091                                 return err;
2092                 }
2093         } else {
2094                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2095                 for (c = 0; c < channels; ++c, ++bufs) {
2096                         char *hwbuf;
2097                         char __user *buf;
2098                         if (*bufs == NULL)
2099                                 continue;
2100
2101                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2102                         buf = *bufs + samples_to_bytes(runtime, off);
2103                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2104                                 return -EFAULT;
2105                 }
2106         }
2107         return 0;
2108 }
2109  
2110 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2111                                     void __user **bufs,
2112                                     snd_pcm_uframes_t frames)
2113 {
2114         struct snd_pcm_runtime *runtime;
2115         int nonblock;
2116         int err;
2117
2118         err = pcm_sanity_check(substream);
2119         if (err < 0)
2120                 return err;
2121         runtime = substream->runtime;
2122         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2123                 return -EBADFD;
2124
2125         nonblock = !!(substream->f_flags & O_NONBLOCK);
2126         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2127                 return -EINVAL;
2128         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2129 }
2130
2131 EXPORT_SYMBOL(snd_pcm_lib_readv);