ALSA: pcm - Fix hwptr buffer-size overlap bug
[pandora-kernel.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         runtime->silence_filled = avail > 0 ? avail : 0;
71                         runtime->silence_start = (runtime->status->hw_ptr +
72                                                   runtime->silence_filled) %
73                                                  runtime->boundary;
74                 } else {
75                         ofs = runtime->status->hw_ptr;
76                         frames = new_hw_ptr - ofs;
77                         if ((snd_pcm_sframes_t)frames < 0)
78                                 frames += runtime->boundary;
79                         runtime->silence_filled -= frames;
80                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81                                 runtime->silence_filled = 0;
82                                 runtime->silence_start = new_hw_ptr;
83                         } else {
84                                 runtime->silence_start = ofs;
85                         }
86                 }
87                 frames = runtime->buffer_size - runtime->silence_filled;
88         }
89         if (snd_BUG_ON(frames > runtime->buffer_size))
90                 return;
91         if (frames == 0)
92                 return;
93         ofs = runtime->silence_start % runtime->buffer_size;
94         while (frames > 0) {
95                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
96                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
97                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
98                         if (substream->ops->silence) {
99                                 int err;
100                                 err = substream->ops->silence(substream, -1, ofs, transfer);
101                                 snd_BUG_ON(err < 0);
102                         } else {
103                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
104                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
105                         }
106                 } else {
107                         unsigned int c;
108                         unsigned int channels = runtime->channels;
109                         if (substream->ops->silence) {
110                                 for (c = 0; c < channels; ++c) {
111                                         int err;
112                                         err = substream->ops->silence(substream, c, ofs, transfer);
113                                         snd_BUG_ON(err < 0);
114                                 }
115                         } else {
116                                 size_t dma_csize = runtime->dma_bytes / channels;
117                                 for (c = 0; c < channels; ++c) {
118                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
119                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
120                                 }
121                         }
122                 }
123                 runtime->silence_filled += transfer;
124                 frames -= transfer;
125                 ofs = 0;
126         }
127 }
128
129 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
130 #define xrun_debug(substream, mask)     ((substream)->pstr->xrun_debug & (mask))
131 #else
132 #define xrun_debug(substream, mask)     0
133 #endif
134
135 #define dump_stack_on_xrun(substream) do {              \
136                 if (xrun_debug(substream, 2))           \
137                         dump_stack();                   \
138         } while (0)
139
140 static void pcm_debug_name(struct snd_pcm_substream *substream,
141                            char *name, size_t len)
142 {
143         snprintf(name, len, "pcmC%dD%d%c:%d",
144                  substream->pcm->card->number,
145                  substream->pcm->device,
146                  substream->stream ? 'c' : 'p',
147                  substream->number);
148 }
149
150 static void xrun(struct snd_pcm_substream *substream)
151 {
152         struct snd_pcm_runtime *runtime = substream->runtime;
153
154         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
155                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
156         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
157         if (xrun_debug(substream, 1)) {
158                 char name[16];
159                 pcm_debug_name(substream, name, sizeof(name));
160                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
161                 dump_stack_on_xrun(substream);
162         }
163 }
164
165 static snd_pcm_uframes_t
166 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
167                           struct snd_pcm_runtime *runtime)
168 {
169         snd_pcm_uframes_t pos;
170
171         pos = substream->ops->pointer(substream);
172         if (pos == SNDRV_PCM_POS_XRUN)
173                 return pos; /* XRUN */
174         if (pos >= runtime->buffer_size) {
175                 if (printk_ratelimit()) {
176                         char name[16];
177                         pcm_debug_name(substream, name, sizeof(name));
178                         snd_printd(KERN_ERR  "BUG: %s, pos = 0x%lx, "
179                                    "buffer size = 0x%lx, period size = 0x%lx\n",
180                                    name, pos, runtime->buffer_size,
181                                    runtime->period_size);
182                 }
183                 pos = 0;
184         }
185         pos -= pos % runtime->min_align;
186         return pos;
187 }
188
189 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
190                                       struct snd_pcm_runtime *runtime)
191 {
192         snd_pcm_uframes_t avail;
193
194         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195                 avail = snd_pcm_playback_avail(runtime);
196         else
197                 avail = snd_pcm_capture_avail(runtime);
198         if (avail > runtime->avail_max)
199                 runtime->avail_max = avail;
200         if (avail >= runtime->stop_threshold) {
201                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
202                         snd_pcm_drain_done(substream);
203                 else
204                         xrun(substream);
205                 return -EPIPE;
206         }
207         if (avail >= runtime->control->avail_min)
208                 wake_up(&runtime->sleep);
209         return 0;
210 }
211
212 #define hw_ptr_error(substream, fmt, args...)                           \
213         do {                                                            \
214                 if (xrun_debug(substream, 1)) {                         \
215                         if (printk_ratelimit()) {                       \
216                                 snd_printd("PCM: " fmt, ##args);        \
217                         }                                               \
218                         dump_stack_on_xrun(substream);                  \
219                 }                                                       \
220         } while (0)
221
222 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
223 {
224         struct snd_pcm_runtime *runtime = substream->runtime;
225         snd_pcm_uframes_t pos;
226         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base;
227         snd_pcm_sframes_t hdelta, delta;
228         unsigned long jdelta;
229
230         old_hw_ptr = runtime->status->hw_ptr;
231         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
232         if (pos == SNDRV_PCM_POS_XRUN) {
233                 xrun(substream);
234                 return -EPIPE;
235         }
236         if (xrun_debug(substream, 8)) {
237                 char name[16];
238                 pcm_debug_name(substream, name, sizeof(name));
239                 snd_printd("period_update: %s: pos=0x%x/0x%x/0x%x, "
240                            "hwptr=0x%lx, hw_base=0x%lx, hw_intr=0x%lx\n",
241                            name, (unsigned int)pos,
242                            (unsigned int)runtime->period_size,
243                            (unsigned int)runtime->buffer_size,
244                            (unsigned long)old_hw_ptr,
245                            (unsigned long)runtime->hw_ptr_base,
246                            (unsigned long)runtime->hw_ptr_interrupt);
247         }
248         hw_base = runtime->hw_ptr_base;
249         new_hw_ptr = hw_base + pos;
250         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
251         delta = new_hw_ptr - hw_ptr_interrupt;
252         if (hw_ptr_interrupt >= runtime->boundary) {
253                 hw_ptr_interrupt -= runtime->boundary;
254                 if (hw_base < runtime->boundary / 2)
255                         /* hw_base was already lapped; recalc delta */
256                         delta = new_hw_ptr - hw_ptr_interrupt;
257         }
258         if (delta < 0) {
259                 if (runtime->periods == 1 || new_hw_ptr < old_hw_ptr)
260                         delta += runtime->buffer_size;
261                 if (delta < 0) {
262                         hw_ptr_error(substream, 
263                                      "Unexpected hw_pointer value "
264                                      "(stream=%i, pos=%ld, intr_ptr=%ld)\n",
265                                      substream->stream, (long)pos,
266                                      (long)hw_ptr_interrupt);
267 #if 1
268                         /* simply skipping the hwptr update seems more
269                          * robust in some cases, e.g. on VMware with
270                          * inaccurate timer source
271                          */
272                         return 0; /* skip this update */
273 #else
274                         /* rebase to interrupt position */
275                         hw_base = new_hw_ptr = hw_ptr_interrupt;
276                         /* align hw_base to buffer_size */
277                         hw_base -= hw_base % runtime->buffer_size;
278                         delta = 0;
279 #endif
280                 } else {
281                         hw_base += runtime->buffer_size;
282                         if (hw_base >= runtime->boundary)
283                                 hw_base = 0;
284                         new_hw_ptr = hw_base + pos;
285                 }
286         }
287
288         /* Do jiffies check only in xrun_debug mode */
289         if (!xrun_debug(substream, 4))
290                 goto no_jiffies_check;
291
292         /* Skip the jiffies check for hardwares with BATCH flag.
293          * Such hardware usually just increases the position at each IRQ,
294          * thus it can't give any strange position.
295          */
296         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
297                 goto no_jiffies_check;
298         hdelta = new_hw_ptr - old_hw_ptr;
299         if (hdelta < runtime->delay)
300                 goto no_jiffies_check;
301         hdelta -= runtime->delay;
302         jdelta = jiffies - runtime->hw_ptr_jiffies;
303         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
304                 delta = jdelta /
305                         (((runtime->period_size * HZ) / runtime->rate)
306                                                                 + HZ/100);
307                 hw_ptr_error(substream,
308                              "hw_ptr skipping! [Q] "
309                              "(pos=%ld, delta=%ld, period=%ld, "
310                              "jdelta=%lu/%lu/%lu)\n",
311                              (long)pos, (long)hdelta,
312                              (long)runtime->period_size, jdelta,
313                              ((hdelta * HZ) / runtime->rate), delta);
314                 hw_ptr_interrupt = runtime->hw_ptr_interrupt +
315                                    runtime->period_size * delta;
316                 if (hw_ptr_interrupt >= runtime->boundary)
317                         hw_ptr_interrupt -= runtime->boundary;
318                 /* rebase to interrupt position */
319                 hw_base = new_hw_ptr = hw_ptr_interrupt;
320                 /* align hw_base to buffer_size */
321                 hw_base -= hw_base % runtime->buffer_size;
322                 delta = 0;
323         }
324  no_jiffies_check:
325         if (delta > runtime->period_size + runtime->period_size / 2) {
326                 hw_ptr_error(substream,
327                              "Lost interrupts? "
328                              "(stream=%i, delta=%ld, intr_ptr=%ld)\n",
329                              substream->stream, (long)delta,
330                              (long)hw_ptr_interrupt);
331                 /* rebase hw_ptr_interrupt */
332                 hw_ptr_interrupt =
333                         new_hw_ptr - new_hw_ptr % runtime->period_size;
334         }
335         runtime->hw_ptr_interrupt = hw_ptr_interrupt;
336
337         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
338             runtime->silence_size > 0)
339                 snd_pcm_playback_silence(substream, new_hw_ptr);
340
341         if (runtime->status->hw_ptr == new_hw_ptr)
342                 return 0;
343
344         runtime->hw_ptr_base = hw_base;
345         runtime->status->hw_ptr = new_hw_ptr;
346         runtime->hw_ptr_jiffies = jiffies;
347         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
348                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
349
350         return snd_pcm_update_hw_ptr_post(substream, runtime);
351 }
352
353 /* CAUTION: call it with irq disabled */
354 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
355 {
356         struct snd_pcm_runtime *runtime = substream->runtime;
357         snd_pcm_uframes_t pos;
358         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
359         snd_pcm_sframes_t delta;
360         unsigned long jdelta;
361
362         old_hw_ptr = runtime->status->hw_ptr;
363         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
364         if (pos == SNDRV_PCM_POS_XRUN) {
365                 xrun(substream);
366                 return -EPIPE;
367         }
368         if (xrun_debug(substream, 16)) {
369                 char name[16];
370                 pcm_debug_name(substream, name, sizeof(name));
371                 snd_printd("hw_update: %s: pos=0x%x/0x%x/0x%x, "
372                            "hwptr=0x%lx, hw_base=0x%lx, hw_intr=0x%lx\n",
373                            name, (unsigned int)pos,
374                            (unsigned int)runtime->period_size,
375                            (unsigned int)runtime->buffer_size,
376                            (unsigned long)old_hw_ptr,
377                            (unsigned long)runtime->hw_ptr_base,
378                            (unsigned long)runtime->hw_ptr_interrupt);
379         }
380
381         hw_base = runtime->hw_ptr_base;
382         new_hw_ptr = hw_base + pos;
383
384         delta = new_hw_ptr - old_hw_ptr;
385         jdelta = jiffies - runtime->hw_ptr_jiffies;
386         if (delta < 0) {
387                 delta += runtime->buffer_size;
388                 if (delta < 0) {
389                         hw_ptr_error(substream, 
390                                      "Unexpected hw_pointer value [2] "
391                                      "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n",
392                                      substream->stream, (long)pos,
393                                      (long)old_hw_ptr, jdelta);
394                         return 0;
395                 }
396                 hw_base += runtime->buffer_size;
397                 if (hw_base >= runtime->boundary)
398                         hw_base = 0;
399                 new_hw_ptr = hw_base + pos;
400         }
401         /* Do jiffies check only in xrun_debug mode */
402         if (!xrun_debug(substream, 4))
403                 goto no_jiffies_check;
404         if (delta < runtime->delay)
405                 goto no_jiffies_check;
406         delta -= runtime->delay;
407         if (((delta * HZ) / runtime->rate) > jdelta + HZ/100) {
408                 hw_ptr_error(substream,
409                              "hw_ptr skipping! "
410                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n",
411                              (long)pos, (long)delta,
412                              (long)runtime->period_size, jdelta,
413                              ((delta * HZ) / runtime->rate));
414                 return 0;
415         }
416  no_jiffies_check:
417         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
418             runtime->silence_size > 0)
419                 snd_pcm_playback_silence(substream, new_hw_ptr);
420
421         if (runtime->status->hw_ptr == new_hw_ptr)
422                 return 0;
423
424         runtime->hw_ptr_base = hw_base;
425         runtime->status->hw_ptr = new_hw_ptr;
426         runtime->hw_ptr_jiffies = jiffies;
427         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
428                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
429
430         return snd_pcm_update_hw_ptr_post(substream, runtime);
431 }
432
433 /**
434  * snd_pcm_set_ops - set the PCM operators
435  * @pcm: the pcm instance
436  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
437  * @ops: the operator table
438  *
439  * Sets the given PCM operators to the pcm instance.
440  */
441 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
442 {
443         struct snd_pcm_str *stream = &pcm->streams[direction];
444         struct snd_pcm_substream *substream;
445         
446         for (substream = stream->substream; substream != NULL; substream = substream->next)
447                 substream->ops = ops;
448 }
449
450 EXPORT_SYMBOL(snd_pcm_set_ops);
451
452 /**
453  * snd_pcm_sync - set the PCM sync id
454  * @substream: the pcm substream
455  *
456  * Sets the PCM sync identifier for the card.
457  */
458 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
459 {
460         struct snd_pcm_runtime *runtime = substream->runtime;
461         
462         runtime->sync.id32[0] = substream->pcm->card->number;
463         runtime->sync.id32[1] = -1;
464         runtime->sync.id32[2] = -1;
465         runtime->sync.id32[3] = -1;
466 }
467
468 EXPORT_SYMBOL(snd_pcm_set_sync);
469
470 /*
471  *  Standard ioctl routine
472  */
473
474 static inline unsigned int div32(unsigned int a, unsigned int b, 
475                                  unsigned int *r)
476 {
477         if (b == 0) {
478                 *r = 0;
479                 return UINT_MAX;
480         }
481         *r = a % b;
482         return a / b;
483 }
484
485 static inline unsigned int div_down(unsigned int a, unsigned int b)
486 {
487         if (b == 0)
488                 return UINT_MAX;
489         return a / b;
490 }
491
492 static inline unsigned int div_up(unsigned int a, unsigned int b)
493 {
494         unsigned int r;
495         unsigned int q;
496         if (b == 0)
497                 return UINT_MAX;
498         q = div32(a, b, &r);
499         if (r)
500                 ++q;
501         return q;
502 }
503
504 static inline unsigned int mul(unsigned int a, unsigned int b)
505 {
506         if (a == 0)
507                 return 0;
508         if (div_down(UINT_MAX, a) < b)
509                 return UINT_MAX;
510         return a * b;
511 }
512
513 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
514                                     unsigned int c, unsigned int *r)
515 {
516         u_int64_t n = (u_int64_t) a * b;
517         if (c == 0) {
518                 snd_BUG_ON(!n);
519                 *r = 0;
520                 return UINT_MAX;
521         }
522         n = div_u64_rem(n, c, r);
523         if (n >= UINT_MAX) {
524                 *r = 0;
525                 return UINT_MAX;
526         }
527         return n;
528 }
529
530 /**
531  * snd_interval_refine - refine the interval value of configurator
532  * @i: the interval value to refine
533  * @v: the interval value to refer to
534  *
535  * Refines the interval value with the reference value.
536  * The interval is changed to the range satisfying both intervals.
537  * The interval status (min, max, integer, etc.) are evaluated.
538  *
539  * Returns non-zero if the value is changed, zero if not changed.
540  */
541 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
542 {
543         int changed = 0;
544         if (snd_BUG_ON(snd_interval_empty(i)))
545                 return -EINVAL;
546         if (i->min < v->min) {
547                 i->min = v->min;
548                 i->openmin = v->openmin;
549                 changed = 1;
550         } else if (i->min == v->min && !i->openmin && v->openmin) {
551                 i->openmin = 1;
552                 changed = 1;
553         }
554         if (i->max > v->max) {
555                 i->max = v->max;
556                 i->openmax = v->openmax;
557                 changed = 1;
558         } else if (i->max == v->max && !i->openmax && v->openmax) {
559                 i->openmax = 1;
560                 changed = 1;
561         }
562         if (!i->integer && v->integer) {
563                 i->integer = 1;
564                 changed = 1;
565         }
566         if (i->integer) {
567                 if (i->openmin) {
568                         i->min++;
569                         i->openmin = 0;
570                 }
571                 if (i->openmax) {
572                         i->max--;
573                         i->openmax = 0;
574                 }
575         } else if (!i->openmin && !i->openmax && i->min == i->max)
576                 i->integer = 1;
577         if (snd_interval_checkempty(i)) {
578                 snd_interval_none(i);
579                 return -EINVAL;
580         }
581         return changed;
582 }
583
584 EXPORT_SYMBOL(snd_interval_refine);
585
586 static int snd_interval_refine_first(struct snd_interval *i)
587 {
588         if (snd_BUG_ON(snd_interval_empty(i)))
589                 return -EINVAL;
590         if (snd_interval_single(i))
591                 return 0;
592         i->max = i->min;
593         i->openmax = i->openmin;
594         if (i->openmax)
595                 i->max++;
596         return 1;
597 }
598
599 static int snd_interval_refine_last(struct snd_interval *i)
600 {
601         if (snd_BUG_ON(snd_interval_empty(i)))
602                 return -EINVAL;
603         if (snd_interval_single(i))
604                 return 0;
605         i->min = i->max;
606         i->openmin = i->openmax;
607         if (i->openmin)
608                 i->min--;
609         return 1;
610 }
611
612 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
613 {
614         if (a->empty || b->empty) {
615                 snd_interval_none(c);
616                 return;
617         }
618         c->empty = 0;
619         c->min = mul(a->min, b->min);
620         c->openmin = (a->openmin || b->openmin);
621         c->max = mul(a->max,  b->max);
622         c->openmax = (a->openmax || b->openmax);
623         c->integer = (a->integer && b->integer);
624 }
625
626 /**
627  * snd_interval_div - refine the interval value with division
628  * @a: dividend
629  * @b: divisor
630  * @c: quotient
631  *
632  * c = a / b
633  *
634  * Returns non-zero if the value is changed, zero if not changed.
635  */
636 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
637 {
638         unsigned int r;
639         if (a->empty || b->empty) {
640                 snd_interval_none(c);
641                 return;
642         }
643         c->empty = 0;
644         c->min = div32(a->min, b->max, &r);
645         c->openmin = (r || a->openmin || b->openmax);
646         if (b->min > 0) {
647                 c->max = div32(a->max, b->min, &r);
648                 if (r) {
649                         c->max++;
650                         c->openmax = 1;
651                 } else
652                         c->openmax = (a->openmax || b->openmin);
653         } else {
654                 c->max = UINT_MAX;
655                 c->openmax = 0;
656         }
657         c->integer = 0;
658 }
659
660 /**
661  * snd_interval_muldivk - refine the interval value
662  * @a: dividend 1
663  * @b: dividend 2
664  * @k: divisor (as integer)
665  * @c: result
666   *
667  * c = a * b / k
668  *
669  * Returns non-zero if the value is changed, zero if not changed.
670  */
671 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
672                       unsigned int k, struct snd_interval *c)
673 {
674         unsigned int r;
675         if (a->empty || b->empty) {
676                 snd_interval_none(c);
677                 return;
678         }
679         c->empty = 0;
680         c->min = muldiv32(a->min, b->min, k, &r);
681         c->openmin = (r || a->openmin || b->openmin);
682         c->max = muldiv32(a->max, b->max, k, &r);
683         if (r) {
684                 c->max++;
685                 c->openmax = 1;
686         } else
687                 c->openmax = (a->openmax || b->openmax);
688         c->integer = 0;
689 }
690
691 /**
692  * snd_interval_mulkdiv - refine the interval value
693  * @a: dividend 1
694  * @k: dividend 2 (as integer)
695  * @b: divisor
696  * @c: result
697  *
698  * c = a * k / b
699  *
700  * Returns non-zero if the value is changed, zero if not changed.
701  */
702 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
703                       const struct snd_interval *b, struct snd_interval *c)
704 {
705         unsigned int r;
706         if (a->empty || b->empty) {
707                 snd_interval_none(c);
708                 return;
709         }
710         c->empty = 0;
711         c->min = muldiv32(a->min, k, b->max, &r);
712         c->openmin = (r || a->openmin || b->openmax);
713         if (b->min > 0) {
714                 c->max = muldiv32(a->max, k, b->min, &r);
715                 if (r) {
716                         c->max++;
717                         c->openmax = 1;
718                 } else
719                         c->openmax = (a->openmax || b->openmin);
720         } else {
721                 c->max = UINT_MAX;
722                 c->openmax = 0;
723         }
724         c->integer = 0;
725 }
726
727 /* ---- */
728
729
730 /**
731  * snd_interval_ratnum - refine the interval value
732  * @i: interval to refine
733  * @rats_count: number of ratnum_t 
734  * @rats: ratnum_t array
735  * @nump: pointer to store the resultant numerator
736  * @denp: pointer to store the resultant denominator
737  *
738  * Returns non-zero if the value is changed, zero if not changed.
739  */
740 int snd_interval_ratnum(struct snd_interval *i,
741                         unsigned int rats_count, struct snd_ratnum *rats,
742                         unsigned int *nump, unsigned int *denp)
743 {
744         unsigned int best_num, best_diff, best_den;
745         unsigned int k;
746         struct snd_interval t;
747         int err;
748
749         best_num = best_den = best_diff = 0;
750         for (k = 0; k < rats_count; ++k) {
751                 unsigned int num = rats[k].num;
752                 unsigned int den;
753                 unsigned int q = i->min;
754                 int diff;
755                 if (q == 0)
756                         q = 1;
757                 den = div_down(num, q);
758                 if (den < rats[k].den_min)
759                         continue;
760                 if (den > rats[k].den_max)
761                         den = rats[k].den_max;
762                 else {
763                         unsigned int r;
764                         r = (den - rats[k].den_min) % rats[k].den_step;
765                         if (r != 0)
766                                 den -= r;
767                 }
768                 diff = num - q * den;
769                 if (best_num == 0 ||
770                     diff * best_den < best_diff * den) {
771                         best_diff = diff;
772                         best_den = den;
773                         best_num = num;
774                 }
775         }
776         if (best_den == 0) {
777                 i->empty = 1;
778                 return -EINVAL;
779         }
780         t.min = div_down(best_num, best_den);
781         t.openmin = !!(best_num % best_den);
782         
783         best_num = best_den = best_diff = 0;
784         for (k = 0; k < rats_count; ++k) {
785                 unsigned int num = rats[k].num;
786                 unsigned int den;
787                 unsigned int q = i->max;
788                 int diff;
789                 if (q == 0) {
790                         i->empty = 1;
791                         return -EINVAL;
792                 }
793                 den = div_up(num, q);
794                 if (den > rats[k].den_max)
795                         continue;
796                 if (den < rats[k].den_min)
797                         den = rats[k].den_min;
798                 else {
799                         unsigned int r;
800                         r = (den - rats[k].den_min) % rats[k].den_step;
801                         if (r != 0)
802                                 den += rats[k].den_step - r;
803                 }
804                 diff = q * den - num;
805                 if (best_num == 0 ||
806                     diff * best_den < best_diff * den) {
807                         best_diff = diff;
808                         best_den = den;
809                         best_num = num;
810                 }
811         }
812         if (best_den == 0) {
813                 i->empty = 1;
814                 return -EINVAL;
815         }
816         t.max = div_up(best_num, best_den);
817         t.openmax = !!(best_num % best_den);
818         t.integer = 0;
819         err = snd_interval_refine(i, &t);
820         if (err < 0)
821                 return err;
822
823         if (snd_interval_single(i)) {
824                 if (nump)
825                         *nump = best_num;
826                 if (denp)
827                         *denp = best_den;
828         }
829         return err;
830 }
831
832 EXPORT_SYMBOL(snd_interval_ratnum);
833
834 /**
835  * snd_interval_ratden - refine the interval value
836  * @i: interval to refine
837  * @rats_count: number of struct ratden
838  * @rats: struct ratden array
839  * @nump: pointer to store the resultant numerator
840  * @denp: pointer to store the resultant denominator
841  *
842  * Returns non-zero if the value is changed, zero if not changed.
843  */
844 static int snd_interval_ratden(struct snd_interval *i,
845                                unsigned int rats_count, struct snd_ratden *rats,
846                                unsigned int *nump, unsigned int *denp)
847 {
848         unsigned int best_num, best_diff, best_den;
849         unsigned int k;
850         struct snd_interval t;
851         int err;
852
853         best_num = best_den = best_diff = 0;
854         for (k = 0; k < rats_count; ++k) {
855                 unsigned int num;
856                 unsigned int den = rats[k].den;
857                 unsigned int q = i->min;
858                 int diff;
859                 num = mul(q, den);
860                 if (num > rats[k].num_max)
861                         continue;
862                 if (num < rats[k].num_min)
863                         num = rats[k].num_max;
864                 else {
865                         unsigned int r;
866                         r = (num - rats[k].num_min) % rats[k].num_step;
867                         if (r != 0)
868                                 num += rats[k].num_step - r;
869                 }
870                 diff = num - q * den;
871                 if (best_num == 0 ||
872                     diff * best_den < best_diff * den) {
873                         best_diff = diff;
874                         best_den = den;
875                         best_num = num;
876                 }
877         }
878         if (best_den == 0) {
879                 i->empty = 1;
880                 return -EINVAL;
881         }
882         t.min = div_down(best_num, best_den);
883         t.openmin = !!(best_num % best_den);
884         
885         best_num = best_den = best_diff = 0;
886         for (k = 0; k < rats_count; ++k) {
887                 unsigned int num;
888                 unsigned int den = rats[k].den;
889                 unsigned int q = i->max;
890                 int diff;
891                 num = mul(q, den);
892                 if (num < rats[k].num_min)
893                         continue;
894                 if (num > rats[k].num_max)
895                         num = rats[k].num_max;
896                 else {
897                         unsigned int r;
898                         r = (num - rats[k].num_min) % rats[k].num_step;
899                         if (r != 0)
900                                 num -= r;
901                 }
902                 diff = q * den - num;
903                 if (best_num == 0 ||
904                     diff * best_den < best_diff * den) {
905                         best_diff = diff;
906                         best_den = den;
907                         best_num = num;
908                 }
909         }
910         if (best_den == 0) {
911                 i->empty = 1;
912                 return -EINVAL;
913         }
914         t.max = div_up(best_num, best_den);
915         t.openmax = !!(best_num % best_den);
916         t.integer = 0;
917         err = snd_interval_refine(i, &t);
918         if (err < 0)
919                 return err;
920
921         if (snd_interval_single(i)) {
922                 if (nump)
923                         *nump = best_num;
924                 if (denp)
925                         *denp = best_den;
926         }
927         return err;
928 }
929
930 /**
931  * snd_interval_list - refine the interval value from the list
932  * @i: the interval value to refine
933  * @count: the number of elements in the list
934  * @list: the value list
935  * @mask: the bit-mask to evaluate
936  *
937  * Refines the interval value from the list.
938  * When mask is non-zero, only the elements corresponding to bit 1 are
939  * evaluated.
940  *
941  * Returns non-zero if the value is changed, zero if not changed.
942  */
943 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
944 {
945         unsigned int k;
946         int changed = 0;
947
948         if (!count) {
949                 i->empty = 1;
950                 return -EINVAL;
951         }
952         for (k = 0; k < count; k++) {
953                 if (mask && !(mask & (1 << k)))
954                         continue;
955                 if (i->min == list[k] && !i->openmin)
956                         goto _l1;
957                 if (i->min < list[k]) {
958                         i->min = list[k];
959                         i->openmin = 0;
960                         changed = 1;
961                         goto _l1;
962                 }
963         }
964         i->empty = 1;
965         return -EINVAL;
966  _l1:
967         for (k = count; k-- > 0;) {
968                 if (mask && !(mask & (1 << k)))
969                         continue;
970                 if (i->max == list[k] && !i->openmax)
971                         goto _l2;
972                 if (i->max > list[k]) {
973                         i->max = list[k];
974                         i->openmax = 0;
975                         changed = 1;
976                         goto _l2;
977                 }
978         }
979         i->empty = 1;
980         return -EINVAL;
981  _l2:
982         if (snd_interval_checkempty(i)) {
983                 i->empty = 1;
984                 return -EINVAL;
985         }
986         return changed;
987 }
988
989 EXPORT_SYMBOL(snd_interval_list);
990
991 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
992 {
993         unsigned int n;
994         int changed = 0;
995         n = (i->min - min) % step;
996         if (n != 0 || i->openmin) {
997                 i->min += step - n;
998                 changed = 1;
999         }
1000         n = (i->max - min) % step;
1001         if (n != 0 || i->openmax) {
1002                 i->max -= n;
1003                 changed = 1;
1004         }
1005         if (snd_interval_checkempty(i)) {
1006                 i->empty = 1;
1007                 return -EINVAL;
1008         }
1009         return changed;
1010 }
1011
1012 /* Info constraints helpers */
1013
1014 /**
1015  * snd_pcm_hw_rule_add - add the hw-constraint rule
1016  * @runtime: the pcm runtime instance
1017  * @cond: condition bits
1018  * @var: the variable to evaluate
1019  * @func: the evaluation function
1020  * @private: the private data pointer passed to function
1021  * @dep: the dependent variables
1022  *
1023  * Returns zero if successful, or a negative error code on failure.
1024  */
1025 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1026                         int var,
1027                         snd_pcm_hw_rule_func_t func, void *private,
1028                         int dep, ...)
1029 {
1030         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1031         struct snd_pcm_hw_rule *c;
1032         unsigned int k;
1033         va_list args;
1034         va_start(args, dep);
1035         if (constrs->rules_num >= constrs->rules_all) {
1036                 struct snd_pcm_hw_rule *new;
1037                 unsigned int new_rules = constrs->rules_all + 16;
1038                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1039                 if (!new)
1040                         return -ENOMEM;
1041                 if (constrs->rules) {
1042                         memcpy(new, constrs->rules,
1043                                constrs->rules_num * sizeof(*c));
1044                         kfree(constrs->rules);
1045                 }
1046                 constrs->rules = new;
1047                 constrs->rules_all = new_rules;
1048         }
1049         c = &constrs->rules[constrs->rules_num];
1050         c->cond = cond;
1051         c->func = func;
1052         c->var = var;
1053         c->private = private;
1054         k = 0;
1055         while (1) {
1056                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1057                         return -EINVAL;
1058                 c->deps[k++] = dep;
1059                 if (dep < 0)
1060                         break;
1061                 dep = va_arg(args, int);
1062         }
1063         constrs->rules_num++;
1064         va_end(args);
1065         return 0;
1066 }                                   
1067
1068 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1069
1070 /**
1071  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1072  * @runtime: PCM runtime instance
1073  * @var: hw_params variable to apply the mask
1074  * @mask: the bitmap mask
1075  *
1076  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1077  */
1078 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1079                                u_int32_t mask)
1080 {
1081         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1082         struct snd_mask *maskp = constrs_mask(constrs, var);
1083         *maskp->bits &= mask;
1084         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1085         if (*maskp->bits == 0)
1086                 return -EINVAL;
1087         return 0;
1088 }
1089
1090 /**
1091  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1092  * @runtime: PCM runtime instance
1093  * @var: hw_params variable to apply the mask
1094  * @mask: the 64bit bitmap mask
1095  *
1096  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1097  */
1098 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1099                                  u_int64_t mask)
1100 {
1101         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1102         struct snd_mask *maskp = constrs_mask(constrs, var);
1103         maskp->bits[0] &= (u_int32_t)mask;
1104         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1105         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1106         if (! maskp->bits[0] && ! maskp->bits[1])
1107                 return -EINVAL;
1108         return 0;
1109 }
1110
1111 /**
1112  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1113  * @runtime: PCM runtime instance
1114  * @var: hw_params variable to apply the integer constraint
1115  *
1116  * Apply the constraint of integer to an interval parameter.
1117  */
1118 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1119 {
1120         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1121         return snd_interval_setinteger(constrs_interval(constrs, var));
1122 }
1123
1124 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1125
1126 /**
1127  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1128  * @runtime: PCM runtime instance
1129  * @var: hw_params variable to apply the range
1130  * @min: the minimal value
1131  * @max: the maximal value
1132  * 
1133  * Apply the min/max range constraint to an interval parameter.
1134  */
1135 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1136                                  unsigned int min, unsigned int max)
1137 {
1138         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1139         struct snd_interval t;
1140         t.min = min;
1141         t.max = max;
1142         t.openmin = t.openmax = 0;
1143         t.integer = 0;
1144         return snd_interval_refine(constrs_interval(constrs, var), &t);
1145 }
1146
1147 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1148
1149 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1150                                 struct snd_pcm_hw_rule *rule)
1151 {
1152         struct snd_pcm_hw_constraint_list *list = rule->private;
1153         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1154 }               
1155
1156
1157 /**
1158  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1159  * @runtime: PCM runtime instance
1160  * @cond: condition bits
1161  * @var: hw_params variable to apply the list constraint
1162  * @l: list
1163  * 
1164  * Apply the list of constraints to an interval parameter.
1165  */
1166 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1167                                unsigned int cond,
1168                                snd_pcm_hw_param_t var,
1169                                struct snd_pcm_hw_constraint_list *l)
1170 {
1171         return snd_pcm_hw_rule_add(runtime, cond, var,
1172                                    snd_pcm_hw_rule_list, l,
1173                                    var, -1);
1174 }
1175
1176 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1177
1178 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1179                                    struct snd_pcm_hw_rule *rule)
1180 {
1181         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1182         unsigned int num = 0, den = 0;
1183         int err;
1184         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1185                                   r->nrats, r->rats, &num, &den);
1186         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1187                 params->rate_num = num;
1188                 params->rate_den = den;
1189         }
1190         return err;
1191 }
1192
1193 /**
1194  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1195  * @runtime: PCM runtime instance
1196  * @cond: condition bits
1197  * @var: hw_params variable to apply the ratnums constraint
1198  * @r: struct snd_ratnums constriants
1199  */
1200 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1201                                   unsigned int cond,
1202                                   snd_pcm_hw_param_t var,
1203                                   struct snd_pcm_hw_constraint_ratnums *r)
1204 {
1205         return snd_pcm_hw_rule_add(runtime, cond, var,
1206                                    snd_pcm_hw_rule_ratnums, r,
1207                                    var, -1);
1208 }
1209
1210 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1211
1212 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1213                                    struct snd_pcm_hw_rule *rule)
1214 {
1215         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1216         unsigned int num = 0, den = 0;
1217         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1218                                   r->nrats, r->rats, &num, &den);
1219         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1220                 params->rate_num = num;
1221                 params->rate_den = den;
1222         }
1223         return err;
1224 }
1225
1226 /**
1227  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1228  * @runtime: PCM runtime instance
1229  * @cond: condition bits
1230  * @var: hw_params variable to apply the ratdens constraint
1231  * @r: struct snd_ratdens constriants
1232  */
1233 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1234                                   unsigned int cond,
1235                                   snd_pcm_hw_param_t var,
1236                                   struct snd_pcm_hw_constraint_ratdens *r)
1237 {
1238         return snd_pcm_hw_rule_add(runtime, cond, var,
1239                                    snd_pcm_hw_rule_ratdens, r,
1240                                    var, -1);
1241 }
1242
1243 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1244
1245 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1246                                   struct snd_pcm_hw_rule *rule)
1247 {
1248         unsigned int l = (unsigned long) rule->private;
1249         int width = l & 0xffff;
1250         unsigned int msbits = l >> 16;
1251         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1252         if (snd_interval_single(i) && snd_interval_value(i) == width)
1253                 params->msbits = msbits;
1254         return 0;
1255 }
1256
1257 /**
1258  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1259  * @runtime: PCM runtime instance
1260  * @cond: condition bits
1261  * @width: sample bits width
1262  * @msbits: msbits width
1263  */
1264 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1265                                  unsigned int cond,
1266                                  unsigned int width,
1267                                  unsigned int msbits)
1268 {
1269         unsigned long l = (msbits << 16) | width;
1270         return snd_pcm_hw_rule_add(runtime, cond, -1,
1271                                     snd_pcm_hw_rule_msbits,
1272                                     (void*) l,
1273                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1274 }
1275
1276 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1277
1278 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1279                                 struct snd_pcm_hw_rule *rule)
1280 {
1281         unsigned long step = (unsigned long) rule->private;
1282         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1283 }
1284
1285 /**
1286  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1287  * @runtime: PCM runtime instance
1288  * @cond: condition bits
1289  * @var: hw_params variable to apply the step constraint
1290  * @step: step size
1291  */
1292 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1293                                unsigned int cond,
1294                                snd_pcm_hw_param_t var,
1295                                unsigned long step)
1296 {
1297         return snd_pcm_hw_rule_add(runtime, cond, var, 
1298                                    snd_pcm_hw_rule_step, (void *) step,
1299                                    var, -1);
1300 }
1301
1302 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1303
1304 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1305 {
1306         static unsigned int pow2_sizes[] = {
1307                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1308                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1309                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1310                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1311         };
1312         return snd_interval_list(hw_param_interval(params, rule->var),
1313                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1314 }               
1315
1316 /**
1317  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1318  * @runtime: PCM runtime instance
1319  * @cond: condition bits
1320  * @var: hw_params variable to apply the power-of-2 constraint
1321  */
1322 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1323                                unsigned int cond,
1324                                snd_pcm_hw_param_t var)
1325 {
1326         return snd_pcm_hw_rule_add(runtime, cond, var, 
1327                                    snd_pcm_hw_rule_pow2, NULL,
1328                                    var, -1);
1329 }
1330
1331 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1332
1333 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1334                                   snd_pcm_hw_param_t var)
1335 {
1336         if (hw_is_mask(var)) {
1337                 snd_mask_any(hw_param_mask(params, var));
1338                 params->cmask |= 1 << var;
1339                 params->rmask |= 1 << var;
1340                 return;
1341         }
1342         if (hw_is_interval(var)) {
1343                 snd_interval_any(hw_param_interval(params, var));
1344                 params->cmask |= 1 << var;
1345                 params->rmask |= 1 << var;
1346                 return;
1347         }
1348         snd_BUG();
1349 }
1350
1351 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1352 {
1353         unsigned int k;
1354         memset(params, 0, sizeof(*params));
1355         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1356                 _snd_pcm_hw_param_any(params, k);
1357         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1358                 _snd_pcm_hw_param_any(params, k);
1359         params->info = ~0U;
1360 }
1361
1362 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1363
1364 /**
1365  * snd_pcm_hw_param_value - return @params field @var value
1366  * @params: the hw_params instance
1367  * @var: parameter to retrieve
1368  * @dir: pointer to the direction (-1,0,1) or %NULL
1369  *
1370  * Return the value for field @var if it's fixed in configuration space
1371  * defined by @params. Return -%EINVAL otherwise.
1372  */
1373 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1374                            snd_pcm_hw_param_t var, int *dir)
1375 {
1376         if (hw_is_mask(var)) {
1377                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1378                 if (!snd_mask_single(mask))
1379                         return -EINVAL;
1380                 if (dir)
1381                         *dir = 0;
1382                 return snd_mask_value(mask);
1383         }
1384         if (hw_is_interval(var)) {
1385                 const struct snd_interval *i = hw_param_interval_c(params, var);
1386                 if (!snd_interval_single(i))
1387                         return -EINVAL;
1388                 if (dir)
1389                         *dir = i->openmin;
1390                 return snd_interval_value(i);
1391         }
1392         return -EINVAL;
1393 }
1394
1395 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1396
1397 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1398                                 snd_pcm_hw_param_t var)
1399 {
1400         if (hw_is_mask(var)) {
1401                 snd_mask_none(hw_param_mask(params, var));
1402                 params->cmask |= 1 << var;
1403                 params->rmask |= 1 << var;
1404         } else if (hw_is_interval(var)) {
1405                 snd_interval_none(hw_param_interval(params, var));
1406                 params->cmask |= 1 << var;
1407                 params->rmask |= 1 << var;
1408         } else {
1409                 snd_BUG();
1410         }
1411 }
1412
1413 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1414
1415 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1416                                    snd_pcm_hw_param_t var)
1417 {
1418         int changed;
1419         if (hw_is_mask(var))
1420                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1421         else if (hw_is_interval(var))
1422                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1423         else
1424                 return -EINVAL;
1425         if (changed) {
1426                 params->cmask |= 1 << var;
1427                 params->rmask |= 1 << var;
1428         }
1429         return changed;
1430 }
1431
1432
1433 /**
1434  * snd_pcm_hw_param_first - refine config space and return minimum value
1435  * @pcm: PCM instance
1436  * @params: the hw_params instance
1437  * @var: parameter to retrieve
1438  * @dir: pointer to the direction (-1,0,1) or %NULL
1439  *
1440  * Inside configuration space defined by @params remove from @var all
1441  * values > minimum. Reduce configuration space accordingly.
1442  * Return the minimum.
1443  */
1444 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1445                            struct snd_pcm_hw_params *params, 
1446                            snd_pcm_hw_param_t var, int *dir)
1447 {
1448         int changed = _snd_pcm_hw_param_first(params, var);
1449         if (changed < 0)
1450                 return changed;
1451         if (params->rmask) {
1452                 int err = snd_pcm_hw_refine(pcm, params);
1453                 if (snd_BUG_ON(err < 0))
1454                         return err;
1455         }
1456         return snd_pcm_hw_param_value(params, var, dir);
1457 }
1458
1459 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1460
1461 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1462                                   snd_pcm_hw_param_t var)
1463 {
1464         int changed;
1465         if (hw_is_mask(var))
1466                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1467         else if (hw_is_interval(var))
1468                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1469         else
1470                 return -EINVAL;
1471         if (changed) {
1472                 params->cmask |= 1 << var;
1473                 params->rmask |= 1 << var;
1474         }
1475         return changed;
1476 }
1477
1478
1479 /**
1480  * snd_pcm_hw_param_last - refine config space and return maximum value
1481  * @pcm: PCM instance
1482  * @params: the hw_params instance
1483  * @var: parameter to retrieve
1484  * @dir: pointer to the direction (-1,0,1) or %NULL
1485  *
1486  * Inside configuration space defined by @params remove from @var all
1487  * values < maximum. Reduce configuration space accordingly.
1488  * Return the maximum.
1489  */
1490 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1491                           struct snd_pcm_hw_params *params,
1492                           snd_pcm_hw_param_t var, int *dir)
1493 {
1494         int changed = _snd_pcm_hw_param_last(params, var);
1495         if (changed < 0)
1496                 return changed;
1497         if (params->rmask) {
1498                 int err = snd_pcm_hw_refine(pcm, params);
1499                 if (snd_BUG_ON(err < 0))
1500                         return err;
1501         }
1502         return snd_pcm_hw_param_value(params, var, dir);
1503 }
1504
1505 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1506
1507 /**
1508  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1509  * @pcm: PCM instance
1510  * @params: the hw_params instance
1511  *
1512  * Choose one configuration from configuration space defined by @params.
1513  * The configuration chosen is that obtained fixing in this order:
1514  * first access, first format, first subformat, min channels,
1515  * min rate, min period time, max buffer size, min tick time
1516  */
1517 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1518                              struct snd_pcm_hw_params *params)
1519 {
1520         static int vars[] = {
1521                 SNDRV_PCM_HW_PARAM_ACCESS,
1522                 SNDRV_PCM_HW_PARAM_FORMAT,
1523                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1524                 SNDRV_PCM_HW_PARAM_CHANNELS,
1525                 SNDRV_PCM_HW_PARAM_RATE,
1526                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1527                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1528                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1529                 -1
1530         };
1531         int err, *v;
1532
1533         for (v = vars; *v != -1; v++) {
1534                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1535                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1536                 else
1537                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1538                 if (snd_BUG_ON(err < 0))
1539                         return err;
1540         }
1541         return 0;
1542 }
1543
1544 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1545                                    void *arg)
1546 {
1547         struct snd_pcm_runtime *runtime = substream->runtime;
1548         unsigned long flags;
1549         snd_pcm_stream_lock_irqsave(substream, flags);
1550         if (snd_pcm_running(substream) &&
1551             snd_pcm_update_hw_ptr(substream) >= 0)
1552                 runtime->status->hw_ptr %= runtime->buffer_size;
1553         else
1554                 runtime->status->hw_ptr = 0;
1555         snd_pcm_stream_unlock_irqrestore(substream, flags);
1556         return 0;
1557 }
1558
1559 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1560                                           void *arg)
1561 {
1562         struct snd_pcm_channel_info *info = arg;
1563         struct snd_pcm_runtime *runtime = substream->runtime;
1564         int width;
1565         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1566                 info->offset = -1;
1567                 return 0;
1568         }
1569         width = snd_pcm_format_physical_width(runtime->format);
1570         if (width < 0)
1571                 return width;
1572         info->offset = 0;
1573         switch (runtime->access) {
1574         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1575         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1576                 info->first = info->channel * width;
1577                 info->step = runtime->channels * width;
1578                 break;
1579         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1580         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1581         {
1582                 size_t size = runtime->dma_bytes / runtime->channels;
1583                 info->first = info->channel * size * 8;
1584                 info->step = width;
1585                 break;
1586         }
1587         default:
1588                 snd_BUG();
1589                 break;
1590         }
1591         return 0;
1592 }
1593
1594 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1595                                        void *arg)
1596 {
1597         struct snd_pcm_hw_params *params = arg;
1598         snd_pcm_format_t format;
1599         int channels, width;
1600
1601         params->fifo_size = substream->runtime->hw.fifo_size;
1602         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1603                 format = params_format(params);
1604                 channels = params_channels(params);
1605                 width = snd_pcm_format_physical_width(format);
1606                 params->fifo_size /= width * channels;
1607         }
1608         return 0;
1609 }
1610
1611 /**
1612  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1613  * @substream: the pcm substream instance
1614  * @cmd: ioctl command
1615  * @arg: ioctl argument
1616  *
1617  * Processes the generic ioctl commands for PCM.
1618  * Can be passed as the ioctl callback for PCM ops.
1619  *
1620  * Returns zero if successful, or a negative error code on failure.
1621  */
1622 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1623                       unsigned int cmd, void *arg)
1624 {
1625         switch (cmd) {
1626         case SNDRV_PCM_IOCTL1_INFO:
1627                 return 0;
1628         case SNDRV_PCM_IOCTL1_RESET:
1629                 return snd_pcm_lib_ioctl_reset(substream, arg);
1630         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1631                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1632         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1633                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1634         }
1635         return -ENXIO;
1636 }
1637
1638 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1639
1640 /**
1641  * snd_pcm_period_elapsed - update the pcm status for the next period
1642  * @substream: the pcm substream instance
1643  *
1644  * This function is called from the interrupt handler when the
1645  * PCM has processed the period size.  It will update the current
1646  * pointer, wake up sleepers, etc.
1647  *
1648  * Even if more than one periods have elapsed since the last call, you
1649  * have to call this only once.
1650  */
1651 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1652 {
1653         struct snd_pcm_runtime *runtime;
1654         unsigned long flags;
1655
1656         if (PCM_RUNTIME_CHECK(substream))
1657                 return;
1658         runtime = substream->runtime;
1659
1660         if (runtime->transfer_ack_begin)
1661                 runtime->transfer_ack_begin(substream);
1662
1663         snd_pcm_stream_lock_irqsave(substream, flags);
1664         if (!snd_pcm_running(substream) ||
1665             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1666                 goto _end;
1667
1668         if (substream->timer_running)
1669                 snd_timer_interrupt(substream->timer, 1);
1670  _end:
1671         snd_pcm_stream_unlock_irqrestore(substream, flags);
1672         if (runtime->transfer_ack_end)
1673                 runtime->transfer_ack_end(substream);
1674         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1675 }
1676
1677 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1678
1679 /*
1680  * Wait until avail_min data becomes available
1681  * Returns a negative error code if any error occurs during operation.
1682  * The available space is stored on availp.  When err = 0 and avail = 0
1683  * on the capture stream, it indicates the stream is in DRAINING state.
1684  */
1685 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1686                               snd_pcm_uframes_t *availp)
1687 {
1688         struct snd_pcm_runtime *runtime = substream->runtime;
1689         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1690         wait_queue_t wait;
1691         int err = 0;
1692         snd_pcm_uframes_t avail = 0;
1693         long tout;
1694
1695         init_waitqueue_entry(&wait, current);
1696         add_wait_queue(&runtime->sleep, &wait);
1697         for (;;) {
1698                 if (signal_pending(current)) {
1699                         err = -ERESTARTSYS;
1700                         break;
1701                 }
1702                 set_current_state(TASK_INTERRUPTIBLE);
1703                 snd_pcm_stream_unlock_irq(substream);
1704                 tout = schedule_timeout(msecs_to_jiffies(10000));
1705                 snd_pcm_stream_lock_irq(substream);
1706                 switch (runtime->status->state) {
1707                 case SNDRV_PCM_STATE_SUSPENDED:
1708                         err = -ESTRPIPE;
1709                         goto _endloop;
1710                 case SNDRV_PCM_STATE_XRUN:
1711                         err = -EPIPE;
1712                         goto _endloop;
1713                 case SNDRV_PCM_STATE_DRAINING:
1714                         if (is_playback)
1715                                 err = -EPIPE;
1716                         else 
1717                                 avail = 0; /* indicate draining */
1718                         goto _endloop;
1719                 case SNDRV_PCM_STATE_OPEN:
1720                 case SNDRV_PCM_STATE_SETUP:
1721                 case SNDRV_PCM_STATE_DISCONNECTED:
1722                         err = -EBADFD;
1723                         goto _endloop;
1724                 }
1725                 if (!tout) {
1726                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1727                                    is_playback ? "playback" : "capture");
1728                         err = -EIO;
1729                         break;
1730                 }
1731                 if (is_playback)
1732                         avail = snd_pcm_playback_avail(runtime);
1733                 else
1734                         avail = snd_pcm_capture_avail(runtime);
1735                 if (avail >= runtime->control->avail_min)
1736                         break;
1737         }
1738  _endloop:
1739         remove_wait_queue(&runtime->sleep, &wait);
1740         *availp = avail;
1741         return err;
1742 }
1743         
1744 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1745                                       unsigned int hwoff,
1746                                       unsigned long data, unsigned int off,
1747                                       snd_pcm_uframes_t frames)
1748 {
1749         struct snd_pcm_runtime *runtime = substream->runtime;
1750         int err;
1751         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1752         if (substream->ops->copy) {
1753                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1754                         return err;
1755         } else {
1756                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1757                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1758                         return -EFAULT;
1759         }
1760         return 0;
1761 }
1762  
1763 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1764                           unsigned long data, unsigned int off,
1765                           snd_pcm_uframes_t size);
1766
1767 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1768                                             unsigned long data,
1769                                             snd_pcm_uframes_t size,
1770                                             int nonblock,
1771                                             transfer_f transfer)
1772 {
1773         struct snd_pcm_runtime *runtime = substream->runtime;
1774         snd_pcm_uframes_t xfer = 0;
1775         snd_pcm_uframes_t offset = 0;
1776         int err = 0;
1777
1778         if (size == 0)
1779                 return 0;
1780
1781         snd_pcm_stream_lock_irq(substream);
1782         switch (runtime->status->state) {
1783         case SNDRV_PCM_STATE_PREPARED:
1784         case SNDRV_PCM_STATE_RUNNING:
1785         case SNDRV_PCM_STATE_PAUSED:
1786                 break;
1787         case SNDRV_PCM_STATE_XRUN:
1788                 err = -EPIPE;
1789                 goto _end_unlock;
1790         case SNDRV_PCM_STATE_SUSPENDED:
1791                 err = -ESTRPIPE;
1792                 goto _end_unlock;
1793         default:
1794                 err = -EBADFD;
1795                 goto _end_unlock;
1796         }
1797
1798         while (size > 0) {
1799                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1800                 snd_pcm_uframes_t avail;
1801                 snd_pcm_uframes_t cont;
1802                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1803                         snd_pcm_update_hw_ptr(substream);
1804                 avail = snd_pcm_playback_avail(runtime);
1805                 if (!avail) {
1806                         if (nonblock) {
1807                                 err = -EAGAIN;
1808                                 goto _end_unlock;
1809                         }
1810                         err = wait_for_avail_min(substream, &avail);
1811                         if (err < 0)
1812                                 goto _end_unlock;
1813                 }
1814                 frames = size > avail ? avail : size;
1815                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1816                 if (frames > cont)
1817                         frames = cont;
1818                 if (snd_BUG_ON(!frames)) {
1819                         snd_pcm_stream_unlock_irq(substream);
1820                         return -EINVAL;
1821                 }
1822                 appl_ptr = runtime->control->appl_ptr;
1823                 appl_ofs = appl_ptr % runtime->buffer_size;
1824                 snd_pcm_stream_unlock_irq(substream);
1825                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1826                         goto _end;
1827                 snd_pcm_stream_lock_irq(substream);
1828                 switch (runtime->status->state) {
1829                 case SNDRV_PCM_STATE_XRUN:
1830                         err = -EPIPE;
1831                         goto _end_unlock;
1832                 case SNDRV_PCM_STATE_SUSPENDED:
1833                         err = -ESTRPIPE;
1834                         goto _end_unlock;
1835                 default:
1836                         break;
1837                 }
1838                 appl_ptr += frames;
1839                 if (appl_ptr >= runtime->boundary)
1840                         appl_ptr -= runtime->boundary;
1841                 runtime->control->appl_ptr = appl_ptr;
1842                 if (substream->ops->ack)
1843                         substream->ops->ack(substream);
1844
1845                 offset += frames;
1846                 size -= frames;
1847                 xfer += frames;
1848                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1849                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1850                         err = snd_pcm_start(substream);
1851                         if (err < 0)
1852                                 goto _end_unlock;
1853                 }
1854         }
1855  _end_unlock:
1856         snd_pcm_stream_unlock_irq(substream);
1857  _end:
1858         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1859 }
1860
1861 /* sanity-check for read/write methods */
1862 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1863 {
1864         struct snd_pcm_runtime *runtime;
1865         if (PCM_RUNTIME_CHECK(substream))
1866                 return -ENXIO;
1867         runtime = substream->runtime;
1868         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1869                 return -EINVAL;
1870         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1871                 return -EBADFD;
1872         return 0;
1873 }
1874
1875 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1876 {
1877         struct snd_pcm_runtime *runtime;
1878         int nonblock;
1879         int err;
1880
1881         err = pcm_sanity_check(substream);
1882         if (err < 0)
1883                 return err;
1884         runtime = substream->runtime;
1885         nonblock = !!(substream->f_flags & O_NONBLOCK);
1886
1887         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1888             runtime->channels > 1)
1889                 return -EINVAL;
1890         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1891                                   snd_pcm_lib_write_transfer);
1892 }
1893
1894 EXPORT_SYMBOL(snd_pcm_lib_write);
1895
1896 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1897                                        unsigned int hwoff,
1898                                        unsigned long data, unsigned int off,
1899                                        snd_pcm_uframes_t frames)
1900 {
1901         struct snd_pcm_runtime *runtime = substream->runtime;
1902         int err;
1903         void __user **bufs = (void __user **)data;
1904         int channels = runtime->channels;
1905         int c;
1906         if (substream->ops->copy) {
1907                 if (snd_BUG_ON(!substream->ops->silence))
1908                         return -EINVAL;
1909                 for (c = 0; c < channels; ++c, ++bufs) {
1910                         if (*bufs == NULL) {
1911                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1912                                         return err;
1913                         } else {
1914                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1915                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1916                                         return err;
1917                         }
1918                 }
1919         } else {
1920                 /* default transfer behaviour */
1921                 size_t dma_csize = runtime->dma_bytes / channels;
1922                 for (c = 0; c < channels; ++c, ++bufs) {
1923                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1924                         if (*bufs == NULL) {
1925                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1926                         } else {
1927                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1928                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1929                                         return -EFAULT;
1930                         }
1931                 }
1932         }
1933         return 0;
1934 }
1935  
1936 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1937                                      void __user **bufs,
1938                                      snd_pcm_uframes_t frames)
1939 {
1940         struct snd_pcm_runtime *runtime;
1941         int nonblock;
1942         int err;
1943
1944         err = pcm_sanity_check(substream);
1945         if (err < 0)
1946                 return err;
1947         runtime = substream->runtime;
1948         nonblock = !!(substream->f_flags & O_NONBLOCK);
1949
1950         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1951                 return -EINVAL;
1952         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1953                                   nonblock, snd_pcm_lib_writev_transfer);
1954 }
1955
1956 EXPORT_SYMBOL(snd_pcm_lib_writev);
1957
1958 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1959                                      unsigned int hwoff,
1960                                      unsigned long data, unsigned int off,
1961                                      snd_pcm_uframes_t frames)
1962 {
1963         struct snd_pcm_runtime *runtime = substream->runtime;
1964         int err;
1965         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1966         if (substream->ops->copy) {
1967                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1968                         return err;
1969         } else {
1970                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1971                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1972                         return -EFAULT;
1973         }
1974         return 0;
1975 }
1976
1977 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1978                                            unsigned long data,
1979                                            snd_pcm_uframes_t size,
1980                                            int nonblock,
1981                                            transfer_f transfer)
1982 {
1983         struct snd_pcm_runtime *runtime = substream->runtime;
1984         snd_pcm_uframes_t xfer = 0;
1985         snd_pcm_uframes_t offset = 0;
1986         int err = 0;
1987
1988         if (size == 0)
1989                 return 0;
1990
1991         snd_pcm_stream_lock_irq(substream);
1992         switch (runtime->status->state) {
1993         case SNDRV_PCM_STATE_PREPARED:
1994                 if (size >= runtime->start_threshold) {
1995                         err = snd_pcm_start(substream);
1996                         if (err < 0)
1997                                 goto _end_unlock;
1998                 }
1999                 break;
2000         case SNDRV_PCM_STATE_DRAINING:
2001         case SNDRV_PCM_STATE_RUNNING:
2002         case SNDRV_PCM_STATE_PAUSED:
2003                 break;
2004         case SNDRV_PCM_STATE_XRUN:
2005                 err = -EPIPE;
2006                 goto _end_unlock;
2007         case SNDRV_PCM_STATE_SUSPENDED:
2008                 err = -ESTRPIPE;
2009                 goto _end_unlock;
2010         default:
2011                 err = -EBADFD;
2012                 goto _end_unlock;
2013         }
2014
2015         while (size > 0) {
2016                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2017                 snd_pcm_uframes_t avail;
2018                 snd_pcm_uframes_t cont;
2019                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2020                         snd_pcm_update_hw_ptr(substream);
2021                 avail = snd_pcm_capture_avail(runtime);
2022                 if (!avail) {
2023                         if (runtime->status->state ==
2024                             SNDRV_PCM_STATE_DRAINING) {
2025                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2026                                 goto _end_unlock;
2027                         }
2028                         if (nonblock) {
2029                                 err = -EAGAIN;
2030                                 goto _end_unlock;
2031                         }
2032                         err = wait_for_avail_min(substream, &avail);
2033                         if (err < 0)
2034                                 goto _end_unlock;
2035                         if (!avail)
2036                                 continue; /* draining */
2037                 }
2038                 frames = size > avail ? avail : size;
2039                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2040                 if (frames > cont)
2041                         frames = cont;
2042                 if (snd_BUG_ON(!frames)) {
2043                         snd_pcm_stream_unlock_irq(substream);
2044                         return -EINVAL;
2045                 }
2046                 appl_ptr = runtime->control->appl_ptr;
2047                 appl_ofs = appl_ptr % runtime->buffer_size;
2048                 snd_pcm_stream_unlock_irq(substream);
2049                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2050                         goto _end;
2051                 snd_pcm_stream_lock_irq(substream);
2052                 switch (runtime->status->state) {
2053                 case SNDRV_PCM_STATE_XRUN:
2054                         err = -EPIPE;
2055                         goto _end_unlock;
2056                 case SNDRV_PCM_STATE_SUSPENDED:
2057                         err = -ESTRPIPE;
2058                         goto _end_unlock;
2059                 default:
2060                         break;
2061                 }
2062                 appl_ptr += frames;
2063                 if (appl_ptr >= runtime->boundary)
2064                         appl_ptr -= runtime->boundary;
2065                 runtime->control->appl_ptr = appl_ptr;
2066                 if (substream->ops->ack)
2067                         substream->ops->ack(substream);
2068
2069                 offset += frames;
2070                 size -= frames;
2071                 xfer += frames;
2072         }
2073  _end_unlock:
2074         snd_pcm_stream_unlock_irq(substream);
2075  _end:
2076         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2077 }
2078
2079 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2080 {
2081         struct snd_pcm_runtime *runtime;
2082         int nonblock;
2083         int err;
2084         
2085         err = pcm_sanity_check(substream);
2086         if (err < 0)
2087                 return err;
2088         runtime = substream->runtime;
2089         nonblock = !!(substream->f_flags & O_NONBLOCK);
2090         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2091                 return -EINVAL;
2092         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2093 }
2094
2095 EXPORT_SYMBOL(snd_pcm_lib_read);
2096
2097 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2098                                       unsigned int hwoff,
2099                                       unsigned long data, unsigned int off,
2100                                       snd_pcm_uframes_t frames)
2101 {
2102         struct snd_pcm_runtime *runtime = substream->runtime;
2103         int err;
2104         void __user **bufs = (void __user **)data;
2105         int channels = runtime->channels;
2106         int c;
2107         if (substream->ops->copy) {
2108                 for (c = 0; c < channels; ++c, ++bufs) {
2109                         char __user *buf;
2110                         if (*bufs == NULL)
2111                                 continue;
2112                         buf = *bufs + samples_to_bytes(runtime, off);
2113                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2114                                 return err;
2115                 }
2116         } else {
2117                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2118                 for (c = 0; c < channels; ++c, ++bufs) {
2119                         char *hwbuf;
2120                         char __user *buf;
2121                         if (*bufs == NULL)
2122                                 continue;
2123
2124                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2125                         buf = *bufs + samples_to_bytes(runtime, off);
2126                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2127                                 return -EFAULT;
2128                 }
2129         }
2130         return 0;
2131 }
2132  
2133 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2134                                     void __user **bufs,
2135                                     snd_pcm_uframes_t frames)
2136 {
2137         struct snd_pcm_runtime *runtime;
2138         int nonblock;
2139         int err;
2140
2141         err = pcm_sanity_check(substream);
2142         if (err < 0)
2143                 return err;
2144         runtime = substream->runtime;
2145         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2146                 return -EBADFD;
2147
2148         nonblock = !!(substream->f_flags & O_NONBLOCK);
2149         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2150                 return -EINVAL;
2151         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2152 }
2153
2154 EXPORT_SYMBOL(snd_pcm_lib_readv);