ALSA: pcm : Call kill_fasync() in stream lock
[pandora-kernel.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/info.h>
30 #include <sound/pcm.h>
31 #include <sound/pcm_params.h>
32 #include <sound/timer.h>
33
34 /*
35  * fill ring buffer with silence
36  * runtime->silence_start: starting pointer to silence area
37  * runtime->silence_filled: size filled with silence
38  * runtime->silence_threshold: threshold from application
39  * runtime->silence_size: maximal size from application
40  *
41  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42  */
43 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44 {
45         struct snd_pcm_runtime *runtime = substream->runtime;
46         snd_pcm_uframes_t frames, ofs, transfer;
47
48         if (runtime->silence_size < runtime->boundary) {
49                 snd_pcm_sframes_t noise_dist, n;
50                 if (runtime->silence_start != runtime->control->appl_ptr) {
51                         n = runtime->control->appl_ptr - runtime->silence_start;
52                         if (n < 0)
53                                 n += runtime->boundary;
54                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55                                 runtime->silence_filled -= n;
56                         else
57                                 runtime->silence_filled = 0;
58                         runtime->silence_start = runtime->control->appl_ptr;
59                 }
60                 if (runtime->silence_filled >= runtime->buffer_size)
61                         return;
62                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64                         return;
65                 frames = runtime->silence_threshold - noise_dist;
66                 if (frames > runtime->silence_size)
67                         frames = runtime->silence_size;
68         } else {
69                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
70                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71                         if (avail > runtime->buffer_size)
72                                 avail = runtime->buffer_size;
73                         runtime->silence_filled = avail > 0 ? avail : 0;
74                         runtime->silence_start = (runtime->status->hw_ptr +
75                                                   runtime->silence_filled) %
76                                                  runtime->boundary;
77                 } else {
78                         ofs = runtime->status->hw_ptr;
79                         frames = new_hw_ptr - ofs;
80                         if ((snd_pcm_sframes_t)frames < 0)
81                                 frames += runtime->boundary;
82                         runtime->silence_filled -= frames;
83                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84                                 runtime->silence_filled = 0;
85                                 runtime->silence_start = new_hw_ptr;
86                         } else {
87                                 runtime->silence_start = ofs;
88                         }
89                 }
90                 frames = runtime->buffer_size - runtime->silence_filled;
91         }
92         if (snd_BUG_ON(frames > runtime->buffer_size))
93                 return;
94         if (frames == 0)
95                 return;
96         ofs = runtime->silence_start % runtime->buffer_size;
97         while (frames > 0) {
98                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101                         if (substream->ops->silence) {
102                                 int err;
103                                 err = substream->ops->silence(substream, -1, ofs, transfer);
104                                 snd_BUG_ON(err < 0);
105                         } else {
106                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108                         }
109                 } else {
110                         unsigned int c;
111                         unsigned int channels = runtime->channels;
112                         if (substream->ops->silence) {
113                                 for (c = 0; c < channels; ++c) {
114                                         int err;
115                                         err = substream->ops->silence(substream, c, ofs, transfer);
116                                         snd_BUG_ON(err < 0);
117                                 }
118                         } else {
119                                 size_t dma_csize = runtime->dma_bytes / channels;
120                                 for (c = 0; c < channels; ++c) {
121                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123                                 }
124                         }
125                 }
126                 runtime->silence_filled += transfer;
127                 frames -= transfer;
128                 ofs = 0;
129         }
130 }
131
132 #ifdef CONFIG_SND_DEBUG
133 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134                            char *name, size_t len)
135 {
136         snprintf(name, len, "pcmC%dD%d%c:%d",
137                  substream->pcm->card->number,
138                  substream->pcm->device,
139                  substream->stream ? 'c' : 'p',
140                  substream->number);
141 }
142 EXPORT_SYMBOL(snd_pcm_debug_name);
143 #endif
144
145 #define XRUN_DEBUG_BASIC        (1<<0)
146 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
147 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
148 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
149 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
150 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
151 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
152
153 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
154
155 #define xrun_debug(substream, mask) \
156                         ((substream)->pstr->xrun_debug & (mask))
157 #else
158 #define xrun_debug(substream, mask)     0
159 #endif
160
161 #define dump_stack_on_xrun(substream) do {                      \
162                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
163                         dump_stack();                           \
164         } while (0)
165
166 static void xrun(struct snd_pcm_substream *substream)
167 {
168         struct snd_pcm_runtime *runtime = substream->runtime;
169
170         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174                 char name[16];
175                 snd_pcm_debug_name(substream, name, sizeof(name));
176                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177                 dump_stack_on_xrun(substream);
178         }
179 }
180
181 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
182 #define hw_ptr_error(substream, fmt, args...)                           \
183         do {                                                            \
184                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
185                         xrun_log_show(substream);                       \
186                         if (printk_ratelimit()) {                       \
187                                 snd_printd("PCM: " fmt, ##args);        \
188                         }                                               \
189                         dump_stack_on_xrun(substream);                  \
190                 }                                                       \
191         } while (0)
192
193 #define XRUN_LOG_CNT    10
194
195 struct hwptr_log_entry {
196         unsigned int in_interrupt;
197         unsigned long jiffies;
198         snd_pcm_uframes_t pos;
199         snd_pcm_uframes_t period_size;
200         snd_pcm_uframes_t buffer_size;
201         snd_pcm_uframes_t old_hw_ptr;
202         snd_pcm_uframes_t hw_ptr_base;
203 };
204
205 struct snd_pcm_hwptr_log {
206         unsigned int idx;
207         unsigned int hit: 1;
208         struct hwptr_log_entry entries[XRUN_LOG_CNT];
209 };
210
211 static void xrun_log(struct snd_pcm_substream *substream,
212                      snd_pcm_uframes_t pos, int in_interrupt)
213 {
214         struct snd_pcm_runtime *runtime = substream->runtime;
215         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216         struct hwptr_log_entry *entry;
217
218         if (log == NULL) {
219                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
220                 if (log == NULL)
221                         return;
222                 runtime->hwptr_log = log;
223         } else {
224                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225                         return;
226         }
227         entry = &log->entries[log->idx];
228         entry->in_interrupt = in_interrupt;
229         entry->jiffies = jiffies;
230         entry->pos = pos;
231         entry->period_size = runtime->period_size;
232         entry->buffer_size = runtime->buffer_size;
233         entry->old_hw_ptr = runtime->status->hw_ptr;
234         entry->hw_ptr_base = runtime->hw_ptr_base;
235         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236 }
237
238 static void xrun_log_show(struct snd_pcm_substream *substream)
239 {
240         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241         struct hwptr_log_entry *entry;
242         char name[16];
243         unsigned int idx;
244         int cnt;
245
246         if (log == NULL)
247                 return;
248         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249                 return;
250         snd_pcm_debug_name(substream, name, sizeof(name));
251         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252                 entry = &log->entries[idx];
253                 if (entry->period_size == 0)
254                         break;
255                 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256                            "hwptr=%ld/%ld\n",
257                            name, entry->in_interrupt ? "[Q] " : "",
258                            entry->jiffies,
259                            (unsigned long)entry->pos,
260                            (unsigned long)entry->period_size,
261                            (unsigned long)entry->buffer_size,
262                            (unsigned long)entry->old_hw_ptr,
263                            (unsigned long)entry->hw_ptr_base);
264                 idx++;
265                 idx %= XRUN_LOG_CNT;
266         }
267         log->hit = 1;
268 }
269
270 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271
272 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
273 #define xrun_log(substream, pos, in_interrupt)  do { } while (0)
274 #define xrun_log_show(substream)        do { } while (0)
275
276 #endif
277
278 int snd_pcm_update_state(struct snd_pcm_substream *substream,
279                          struct snd_pcm_runtime *runtime)
280 {
281         snd_pcm_uframes_t avail;
282
283         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284                 avail = snd_pcm_playback_avail(runtime);
285         else
286                 avail = snd_pcm_capture_avail(runtime);
287         if (avail > runtime->avail_max)
288                 runtime->avail_max = avail;
289         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290                 if (avail >= runtime->buffer_size) {
291                         snd_pcm_drain_done(substream);
292                         return -EPIPE;
293                 }
294         } else {
295                 if (avail >= runtime->stop_threshold) {
296                         xrun(substream);
297                         return -EPIPE;
298                 }
299         }
300         if (runtime->twake) {
301                 if (avail >= runtime->twake)
302                         wake_up(&runtime->tsleep);
303         } else if (avail >= runtime->control->avail_min)
304                 wake_up(&runtime->sleep);
305         return 0;
306 }
307
308 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309                                   unsigned int in_interrupt)
310 {
311         struct snd_pcm_runtime *runtime = substream->runtime;
312         snd_pcm_uframes_t pos;
313         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314         snd_pcm_sframes_t hdelta, delta;
315         unsigned long jdelta;
316
317         old_hw_ptr = runtime->status->hw_ptr;
318         pos = substream->ops->pointer(substream);
319         if (pos == SNDRV_PCM_POS_XRUN) {
320                 xrun(substream);
321                 return -EPIPE;
322         }
323         if (pos >= runtime->buffer_size) {
324                 if (printk_ratelimit()) {
325                         char name[16];
326                         snd_pcm_debug_name(substream, name, sizeof(name));
327                         xrun_log_show(substream);
328                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
329                                    "buffer size = %ld, period size = %ld\n",
330                                    name, pos, runtime->buffer_size,
331                                    runtime->period_size);
332                 }
333                 pos = 0;
334         }
335         pos -= pos % runtime->min_align;
336         if (xrun_debug(substream, XRUN_DEBUG_LOG))
337                 xrun_log(substream, pos, in_interrupt);
338         hw_base = runtime->hw_ptr_base;
339         new_hw_ptr = hw_base + pos;
340         if (in_interrupt) {
341                 /* we know that one period was processed */
342                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344                 if (delta > new_hw_ptr) {
345                         /* check for double acknowledged interrupts */
346                         hdelta = jiffies - runtime->hw_ptr_jiffies;
347                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
348                                 hw_base += runtime->buffer_size;
349                                 if (hw_base >= runtime->boundary)
350                                         hw_base = 0;
351                                 new_hw_ptr = hw_base + pos;
352                                 goto __delta;
353                         }
354                 }
355         }
356         /* new_hw_ptr might be lower than old_hw_ptr in case when */
357         /* pointer crosses the end of the ring buffer */
358         if (new_hw_ptr < old_hw_ptr) {
359                 hw_base += runtime->buffer_size;
360                 if (hw_base >= runtime->boundary)
361                         hw_base = 0;
362                 new_hw_ptr = hw_base + pos;
363         }
364       __delta:
365         delta = new_hw_ptr - old_hw_ptr;
366         if (delta < 0)
367                 delta += runtime->boundary;
368         if (xrun_debug(substream, in_interrupt ?
369                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
370                 char name[16];
371                 snd_pcm_debug_name(substream, name, sizeof(name));
372                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
373                            "hwptr=%ld/%ld/%ld/%ld\n",
374                            in_interrupt ? "period" : "hwptr",
375                            name,
376                            (unsigned int)pos,
377                            (unsigned int)runtime->period_size,
378                            (unsigned int)runtime->buffer_size,
379                            (unsigned long)delta,
380                            (unsigned long)old_hw_ptr,
381                            (unsigned long)new_hw_ptr,
382                            (unsigned long)runtime->hw_ptr_base);
383         }
384
385         if (runtime->no_period_wakeup) {
386                 snd_pcm_sframes_t xrun_threshold;
387                 /*
388                  * Without regular period interrupts, we have to check
389                  * the elapsed time to detect xruns.
390                  */
391                 jdelta = jiffies - runtime->hw_ptr_jiffies;
392                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
393                         goto no_delta_check;
394                 hdelta = jdelta - delta * HZ / runtime->rate;
395                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
396                 while (hdelta > xrun_threshold) {
397                         delta += runtime->buffer_size;
398                         hw_base += runtime->buffer_size;
399                         if (hw_base >= runtime->boundary)
400                                 hw_base = 0;
401                         new_hw_ptr = hw_base + pos;
402                         hdelta -= runtime->hw_ptr_buffer_jiffies;
403                 }
404                 goto no_delta_check;
405         }
406
407         /* something must be really wrong */
408         if (delta >= runtime->buffer_size + runtime->period_size) {
409                 hw_ptr_error(substream,
410                                "Unexpected hw_pointer value %s"
411                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
412                                "old_hw_ptr=%ld)\n",
413                                      in_interrupt ? "[Q] " : "[P]",
414                                      substream->stream, (long)pos,
415                                      (long)new_hw_ptr, (long)old_hw_ptr);
416                 return 0;
417         }
418
419         /* Do jiffies check only in xrun_debug mode */
420         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
421                 goto no_jiffies_check;
422
423         /* Skip the jiffies check for hardwares with BATCH flag.
424          * Such hardware usually just increases the position at each IRQ,
425          * thus it can't give any strange position.
426          */
427         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
428                 goto no_jiffies_check;
429         hdelta = delta;
430         if (hdelta < runtime->delay)
431                 goto no_jiffies_check;
432         hdelta -= runtime->delay;
433         jdelta = jiffies - runtime->hw_ptr_jiffies;
434         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
435                 delta = jdelta /
436                         (((runtime->period_size * HZ) / runtime->rate)
437                                                                 + HZ/100);
438                 /* move new_hw_ptr according jiffies not pos variable */
439                 new_hw_ptr = old_hw_ptr;
440                 hw_base = delta;
441                 /* use loop to avoid checks for delta overflows */
442                 /* the delta value is small or zero in most cases */
443                 while (delta > 0) {
444                         new_hw_ptr += runtime->period_size;
445                         if (new_hw_ptr >= runtime->boundary)
446                                 new_hw_ptr -= runtime->boundary;
447                         delta--;
448                 }
449                 /* align hw_base to buffer_size */
450                 hw_ptr_error(substream,
451                              "hw_ptr skipping! %s"
452                              "(pos=%ld, delta=%ld, period=%ld, "
453                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
454                              in_interrupt ? "[Q] " : "",
455                              (long)pos, (long)hdelta,
456                              (long)runtime->period_size, jdelta,
457                              ((hdelta * HZ) / runtime->rate), hw_base,
458                              (unsigned long)old_hw_ptr,
459                              (unsigned long)new_hw_ptr);
460                 /* reset values to proper state */
461                 delta = 0;
462                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
463         }
464  no_jiffies_check:
465         if (delta > runtime->period_size + runtime->period_size / 2) {
466                 hw_ptr_error(substream,
467                              "Lost interrupts? %s"
468                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
469                              "old_hw_ptr=%ld)\n",
470                              in_interrupt ? "[Q] " : "",
471                              substream->stream, (long)delta,
472                              (long)new_hw_ptr,
473                              (long)old_hw_ptr);
474         }
475
476  no_delta_check:
477         if (runtime->status->hw_ptr == new_hw_ptr)
478                 return 0;
479
480         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
481             runtime->silence_size > 0)
482                 snd_pcm_playback_silence(substream, new_hw_ptr);
483
484         if (in_interrupt) {
485                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
486                 if (delta < 0)
487                         delta += runtime->boundary;
488                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
489                 runtime->hw_ptr_interrupt += delta;
490                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
491                         runtime->hw_ptr_interrupt -= runtime->boundary;
492         }
493         runtime->hw_ptr_base = hw_base;
494         runtime->status->hw_ptr = new_hw_ptr;
495         runtime->hw_ptr_jiffies = jiffies;
496         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
497                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
498
499         return snd_pcm_update_state(substream, runtime);
500 }
501
502 /* CAUTION: call it with irq disabled */
503 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
504 {
505         return snd_pcm_update_hw_ptr0(substream, 0);
506 }
507
508 /**
509  * snd_pcm_set_ops - set the PCM operators
510  * @pcm: the pcm instance
511  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
512  * @ops: the operator table
513  *
514  * Sets the given PCM operators to the pcm instance.
515  */
516 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
517 {
518         struct snd_pcm_str *stream = &pcm->streams[direction];
519         struct snd_pcm_substream *substream;
520         
521         for (substream = stream->substream; substream != NULL; substream = substream->next)
522                 substream->ops = ops;
523 }
524
525 EXPORT_SYMBOL(snd_pcm_set_ops);
526
527 /**
528  * snd_pcm_sync - set the PCM sync id
529  * @substream: the pcm substream
530  *
531  * Sets the PCM sync identifier for the card.
532  */
533 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
534 {
535         struct snd_pcm_runtime *runtime = substream->runtime;
536         
537         runtime->sync.id32[0] = substream->pcm->card->number;
538         runtime->sync.id32[1] = -1;
539         runtime->sync.id32[2] = -1;
540         runtime->sync.id32[3] = -1;
541 }
542
543 EXPORT_SYMBOL(snd_pcm_set_sync);
544
545 /*
546  *  Standard ioctl routine
547  */
548
549 static inline unsigned int div32(unsigned int a, unsigned int b, 
550                                  unsigned int *r)
551 {
552         if (b == 0) {
553                 *r = 0;
554                 return UINT_MAX;
555         }
556         *r = a % b;
557         return a / b;
558 }
559
560 static inline unsigned int div_down(unsigned int a, unsigned int b)
561 {
562         if (b == 0)
563                 return UINT_MAX;
564         return a / b;
565 }
566
567 static inline unsigned int div_up(unsigned int a, unsigned int b)
568 {
569         unsigned int r;
570         unsigned int q;
571         if (b == 0)
572                 return UINT_MAX;
573         q = div32(a, b, &r);
574         if (r)
575                 ++q;
576         return q;
577 }
578
579 static inline unsigned int mul(unsigned int a, unsigned int b)
580 {
581         if (a == 0)
582                 return 0;
583         if (div_down(UINT_MAX, a) < b)
584                 return UINT_MAX;
585         return a * b;
586 }
587
588 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
589                                     unsigned int c, unsigned int *r)
590 {
591         u_int64_t n = (u_int64_t) a * b;
592         if (c == 0) {
593                 snd_BUG_ON(!n);
594                 *r = 0;
595                 return UINT_MAX;
596         }
597         n = div_u64_rem(n, c, r);
598         if (n >= UINT_MAX) {
599                 *r = 0;
600                 return UINT_MAX;
601         }
602         return n;
603 }
604
605 /**
606  * snd_interval_refine - refine the interval value of configurator
607  * @i: the interval value to refine
608  * @v: the interval value to refer to
609  *
610  * Refines the interval value with the reference value.
611  * The interval is changed to the range satisfying both intervals.
612  * The interval status (min, max, integer, etc.) are evaluated.
613  *
614  * Returns non-zero if the value is changed, zero if not changed.
615  */
616 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
617 {
618         int changed = 0;
619         if (snd_BUG_ON(snd_interval_empty(i)))
620                 return -EINVAL;
621         if (i->min < v->min) {
622                 i->min = v->min;
623                 i->openmin = v->openmin;
624                 changed = 1;
625         } else if (i->min == v->min && !i->openmin && v->openmin) {
626                 i->openmin = 1;
627                 changed = 1;
628         }
629         if (i->max > v->max) {
630                 i->max = v->max;
631                 i->openmax = v->openmax;
632                 changed = 1;
633         } else if (i->max == v->max && !i->openmax && v->openmax) {
634                 i->openmax = 1;
635                 changed = 1;
636         }
637         if (!i->integer && v->integer) {
638                 i->integer = 1;
639                 changed = 1;
640         }
641         if (i->integer) {
642                 if (i->openmin) {
643                         i->min++;
644                         i->openmin = 0;
645                 }
646                 if (i->openmax) {
647                         i->max--;
648                         i->openmax = 0;
649                 }
650         } else if (!i->openmin && !i->openmax && i->min == i->max)
651                 i->integer = 1;
652         if (snd_interval_checkempty(i)) {
653                 snd_interval_none(i);
654                 return -EINVAL;
655         }
656         return changed;
657 }
658
659 EXPORT_SYMBOL(snd_interval_refine);
660
661 static int snd_interval_refine_first(struct snd_interval *i)
662 {
663         if (snd_BUG_ON(snd_interval_empty(i)))
664                 return -EINVAL;
665         if (snd_interval_single(i))
666                 return 0;
667         i->max = i->min;
668         i->openmax = i->openmin;
669         if (i->openmax)
670                 i->max++;
671         return 1;
672 }
673
674 static int snd_interval_refine_last(struct snd_interval *i)
675 {
676         if (snd_BUG_ON(snd_interval_empty(i)))
677                 return -EINVAL;
678         if (snd_interval_single(i))
679                 return 0;
680         i->min = i->max;
681         i->openmin = i->openmax;
682         if (i->openmin)
683                 i->min--;
684         return 1;
685 }
686
687 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
688 {
689         if (a->empty || b->empty) {
690                 snd_interval_none(c);
691                 return;
692         }
693         c->empty = 0;
694         c->min = mul(a->min, b->min);
695         c->openmin = (a->openmin || b->openmin);
696         c->max = mul(a->max,  b->max);
697         c->openmax = (a->openmax || b->openmax);
698         c->integer = (a->integer && b->integer);
699 }
700
701 /**
702  * snd_interval_div - refine the interval value with division
703  * @a: dividend
704  * @b: divisor
705  * @c: quotient
706  *
707  * c = a / b
708  *
709  * Returns non-zero if the value is changed, zero if not changed.
710  */
711 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
712 {
713         unsigned int r;
714         if (a->empty || b->empty) {
715                 snd_interval_none(c);
716                 return;
717         }
718         c->empty = 0;
719         c->min = div32(a->min, b->max, &r);
720         c->openmin = (r || a->openmin || b->openmax);
721         if (b->min > 0) {
722                 c->max = div32(a->max, b->min, &r);
723                 if (r) {
724                         c->max++;
725                         c->openmax = 1;
726                 } else
727                         c->openmax = (a->openmax || b->openmin);
728         } else {
729                 c->max = UINT_MAX;
730                 c->openmax = 0;
731         }
732         c->integer = 0;
733 }
734
735 /**
736  * snd_interval_muldivk - refine the interval value
737  * @a: dividend 1
738  * @b: dividend 2
739  * @k: divisor (as integer)
740  * @c: result
741   *
742  * c = a * b / k
743  *
744  * Returns non-zero if the value is changed, zero if not changed.
745  */
746 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
747                       unsigned int k, struct snd_interval *c)
748 {
749         unsigned int r;
750         if (a->empty || b->empty) {
751                 snd_interval_none(c);
752                 return;
753         }
754         c->empty = 0;
755         c->min = muldiv32(a->min, b->min, k, &r);
756         c->openmin = (r || a->openmin || b->openmin);
757         c->max = muldiv32(a->max, b->max, k, &r);
758         if (r) {
759                 c->max++;
760                 c->openmax = 1;
761         } else
762                 c->openmax = (a->openmax || b->openmax);
763         c->integer = 0;
764 }
765
766 /**
767  * snd_interval_mulkdiv - refine the interval value
768  * @a: dividend 1
769  * @k: dividend 2 (as integer)
770  * @b: divisor
771  * @c: result
772  *
773  * c = a * k / b
774  *
775  * Returns non-zero if the value is changed, zero if not changed.
776  */
777 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
778                       const struct snd_interval *b, struct snd_interval *c)
779 {
780         unsigned int r;
781         if (a->empty || b->empty) {
782                 snd_interval_none(c);
783                 return;
784         }
785         c->empty = 0;
786         c->min = muldiv32(a->min, k, b->max, &r);
787         c->openmin = (r || a->openmin || b->openmax);
788         if (b->min > 0) {
789                 c->max = muldiv32(a->max, k, b->min, &r);
790                 if (r) {
791                         c->max++;
792                         c->openmax = 1;
793                 } else
794                         c->openmax = (a->openmax || b->openmin);
795         } else {
796                 c->max = UINT_MAX;
797                 c->openmax = 0;
798         }
799         c->integer = 0;
800 }
801
802 /* ---- */
803
804
805 /**
806  * snd_interval_ratnum - refine the interval value
807  * @i: interval to refine
808  * @rats_count: number of ratnum_t 
809  * @rats: ratnum_t array
810  * @nump: pointer to store the resultant numerator
811  * @denp: pointer to store the resultant denominator
812  *
813  * Returns non-zero if the value is changed, zero if not changed.
814  */
815 int snd_interval_ratnum(struct snd_interval *i,
816                         unsigned int rats_count, struct snd_ratnum *rats,
817                         unsigned int *nump, unsigned int *denp)
818 {
819         unsigned int best_num, best_den;
820         int best_diff;
821         unsigned int k;
822         struct snd_interval t;
823         int err;
824         unsigned int result_num, result_den;
825         int result_diff;
826
827         best_num = best_den = best_diff = 0;
828         for (k = 0; k < rats_count; ++k) {
829                 unsigned int num = rats[k].num;
830                 unsigned int den;
831                 unsigned int q = i->min;
832                 int diff;
833                 if (q == 0)
834                         q = 1;
835                 den = div_up(num, q);
836                 if (den < rats[k].den_min)
837                         continue;
838                 if (den > rats[k].den_max)
839                         den = rats[k].den_max;
840                 else {
841                         unsigned int r;
842                         r = (den - rats[k].den_min) % rats[k].den_step;
843                         if (r != 0)
844                                 den -= r;
845                 }
846                 diff = num - q * den;
847                 if (diff < 0)
848                         diff = -diff;
849                 if (best_num == 0 ||
850                     diff * best_den < best_diff * den) {
851                         best_diff = diff;
852                         best_den = den;
853                         best_num = num;
854                 }
855         }
856         if (best_den == 0) {
857                 i->empty = 1;
858                 return -EINVAL;
859         }
860         t.min = div_down(best_num, best_den);
861         t.openmin = !!(best_num % best_den);
862         
863         result_num = best_num;
864         result_diff = best_diff;
865         result_den = best_den;
866         best_num = best_den = best_diff = 0;
867         for (k = 0; k < rats_count; ++k) {
868                 unsigned int num = rats[k].num;
869                 unsigned int den;
870                 unsigned int q = i->max;
871                 int diff;
872                 if (q == 0) {
873                         i->empty = 1;
874                         return -EINVAL;
875                 }
876                 den = div_down(num, q);
877                 if (den > rats[k].den_max)
878                         continue;
879                 if (den < rats[k].den_min)
880                         den = rats[k].den_min;
881                 else {
882                         unsigned int r;
883                         r = (den - rats[k].den_min) % rats[k].den_step;
884                         if (r != 0)
885                                 den += rats[k].den_step - r;
886                 }
887                 diff = q * den - num;
888                 if (diff < 0)
889                         diff = -diff;
890                 if (best_num == 0 ||
891                     diff * best_den < best_diff * den) {
892                         best_diff = diff;
893                         best_den = den;
894                         best_num = num;
895                 }
896         }
897         if (best_den == 0) {
898                 i->empty = 1;
899                 return -EINVAL;
900         }
901         t.max = div_up(best_num, best_den);
902         t.openmax = !!(best_num % best_den);
903         t.integer = 0;
904         err = snd_interval_refine(i, &t);
905         if (err < 0)
906                 return err;
907
908         if (snd_interval_single(i)) {
909                 if (best_diff * result_den < result_diff * best_den) {
910                         result_num = best_num;
911                         result_den = best_den;
912                 }
913                 if (nump)
914                         *nump = result_num;
915                 if (denp)
916                         *denp = result_den;
917         }
918         return err;
919 }
920
921 EXPORT_SYMBOL(snd_interval_ratnum);
922
923 /**
924  * snd_interval_ratden - refine the interval value
925  * @i: interval to refine
926  * @rats_count: number of struct ratden
927  * @rats: struct ratden array
928  * @nump: pointer to store the resultant numerator
929  * @denp: pointer to store the resultant denominator
930  *
931  * Returns non-zero if the value is changed, zero if not changed.
932  */
933 static int snd_interval_ratden(struct snd_interval *i,
934                                unsigned int rats_count, struct snd_ratden *rats,
935                                unsigned int *nump, unsigned int *denp)
936 {
937         unsigned int best_num, best_diff, best_den;
938         unsigned int k;
939         struct snd_interval t;
940         int err;
941
942         best_num = best_den = best_diff = 0;
943         for (k = 0; k < rats_count; ++k) {
944                 unsigned int num;
945                 unsigned int den = rats[k].den;
946                 unsigned int q = i->min;
947                 int diff;
948                 num = mul(q, den);
949                 if (num > rats[k].num_max)
950                         continue;
951                 if (num < rats[k].num_min)
952                         num = rats[k].num_max;
953                 else {
954                         unsigned int r;
955                         r = (num - rats[k].num_min) % rats[k].num_step;
956                         if (r != 0)
957                                 num += rats[k].num_step - r;
958                 }
959                 diff = num - q * den;
960                 if (best_num == 0 ||
961                     diff * best_den < best_diff * den) {
962                         best_diff = diff;
963                         best_den = den;
964                         best_num = num;
965                 }
966         }
967         if (best_den == 0) {
968                 i->empty = 1;
969                 return -EINVAL;
970         }
971         t.min = div_down(best_num, best_den);
972         t.openmin = !!(best_num % best_den);
973         
974         best_num = best_den = best_diff = 0;
975         for (k = 0; k < rats_count; ++k) {
976                 unsigned int num;
977                 unsigned int den = rats[k].den;
978                 unsigned int q = i->max;
979                 int diff;
980                 num = mul(q, den);
981                 if (num < rats[k].num_min)
982                         continue;
983                 if (num > rats[k].num_max)
984                         num = rats[k].num_max;
985                 else {
986                         unsigned int r;
987                         r = (num - rats[k].num_min) % rats[k].num_step;
988                         if (r != 0)
989                                 num -= r;
990                 }
991                 diff = q * den - num;
992                 if (best_num == 0 ||
993                     diff * best_den < best_diff * den) {
994                         best_diff = diff;
995                         best_den = den;
996                         best_num = num;
997                 }
998         }
999         if (best_den == 0) {
1000                 i->empty = 1;
1001                 return -EINVAL;
1002         }
1003         t.max = div_up(best_num, best_den);
1004         t.openmax = !!(best_num % best_den);
1005         t.integer = 0;
1006         err = snd_interval_refine(i, &t);
1007         if (err < 0)
1008                 return err;
1009
1010         if (snd_interval_single(i)) {
1011                 if (nump)
1012                         *nump = best_num;
1013                 if (denp)
1014                         *denp = best_den;
1015         }
1016         return err;
1017 }
1018
1019 /**
1020  * snd_interval_list - refine the interval value from the list
1021  * @i: the interval value to refine
1022  * @count: the number of elements in the list
1023  * @list: the value list
1024  * @mask: the bit-mask to evaluate
1025  *
1026  * Refines the interval value from the list.
1027  * When mask is non-zero, only the elements corresponding to bit 1 are
1028  * evaluated.
1029  *
1030  * Returns non-zero if the value is changed, zero if not changed.
1031  */
1032 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1033 {
1034         unsigned int k;
1035         struct snd_interval list_range;
1036
1037         if (!count) {
1038                 i->empty = 1;
1039                 return -EINVAL;
1040         }
1041         snd_interval_any(&list_range);
1042         list_range.min = UINT_MAX;
1043         list_range.max = 0;
1044         for (k = 0; k < count; k++) {
1045                 if (mask && !(mask & (1 << k)))
1046                         continue;
1047                 if (!snd_interval_test(i, list[k]))
1048                         continue;
1049                 list_range.min = min(list_range.min, list[k]);
1050                 list_range.max = max(list_range.max, list[k]);
1051         }
1052         return snd_interval_refine(i, &list_range);
1053 }
1054
1055 EXPORT_SYMBOL(snd_interval_list);
1056
1057 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1058 {
1059         unsigned int n;
1060         int changed = 0;
1061         n = (i->min - min) % step;
1062         if (n != 0 || i->openmin) {
1063                 i->min += step - n;
1064                 changed = 1;
1065         }
1066         n = (i->max - min) % step;
1067         if (n != 0 || i->openmax) {
1068                 i->max -= n;
1069                 changed = 1;
1070         }
1071         if (snd_interval_checkempty(i)) {
1072                 i->empty = 1;
1073                 return -EINVAL;
1074         }
1075         return changed;
1076 }
1077
1078 /* Info constraints helpers */
1079
1080 /**
1081  * snd_pcm_hw_rule_add - add the hw-constraint rule
1082  * @runtime: the pcm runtime instance
1083  * @cond: condition bits
1084  * @var: the variable to evaluate
1085  * @func: the evaluation function
1086  * @private: the private data pointer passed to function
1087  * @dep: the dependent variables
1088  *
1089  * Returns zero if successful, or a negative error code on failure.
1090  */
1091 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1092                         int var,
1093                         snd_pcm_hw_rule_func_t func, void *private,
1094                         int dep, ...)
1095 {
1096         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1097         struct snd_pcm_hw_rule *c;
1098         unsigned int k;
1099         va_list args;
1100         va_start(args, dep);
1101         if (constrs->rules_num >= constrs->rules_all) {
1102                 struct snd_pcm_hw_rule *new;
1103                 unsigned int new_rules = constrs->rules_all + 16;
1104                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1105                 if (!new) {
1106                         va_end(args);
1107                         return -ENOMEM;
1108                 }
1109                 if (constrs->rules) {
1110                         memcpy(new, constrs->rules,
1111                                constrs->rules_num * sizeof(*c));
1112                         kfree(constrs->rules);
1113                 }
1114                 constrs->rules = new;
1115                 constrs->rules_all = new_rules;
1116         }
1117         c = &constrs->rules[constrs->rules_num];
1118         c->cond = cond;
1119         c->func = func;
1120         c->var = var;
1121         c->private = private;
1122         k = 0;
1123         while (1) {
1124                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1125                         va_end(args);
1126                         return -EINVAL;
1127                 }
1128                 c->deps[k++] = dep;
1129                 if (dep < 0)
1130                         break;
1131                 dep = va_arg(args, int);
1132         }
1133         constrs->rules_num++;
1134         va_end(args);
1135         return 0;
1136 }
1137
1138 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1139
1140 /**
1141  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1142  * @runtime: PCM runtime instance
1143  * @var: hw_params variable to apply the mask
1144  * @mask: the bitmap mask
1145  *
1146  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1147  */
1148 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1149                                u_int32_t mask)
1150 {
1151         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1152         struct snd_mask *maskp = constrs_mask(constrs, var);
1153         *maskp->bits &= mask;
1154         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1155         if (*maskp->bits == 0)
1156                 return -EINVAL;
1157         return 0;
1158 }
1159
1160 /**
1161  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1162  * @runtime: PCM runtime instance
1163  * @var: hw_params variable to apply the mask
1164  * @mask: the 64bit bitmap mask
1165  *
1166  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1167  */
1168 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1169                                  u_int64_t mask)
1170 {
1171         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1172         struct snd_mask *maskp = constrs_mask(constrs, var);
1173         maskp->bits[0] &= (u_int32_t)mask;
1174         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1175         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1176         if (! maskp->bits[0] && ! maskp->bits[1])
1177                 return -EINVAL;
1178         return 0;
1179 }
1180
1181 /**
1182  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1183  * @runtime: PCM runtime instance
1184  * @var: hw_params variable to apply the integer constraint
1185  *
1186  * Apply the constraint of integer to an interval parameter.
1187  */
1188 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1189 {
1190         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1191         return snd_interval_setinteger(constrs_interval(constrs, var));
1192 }
1193
1194 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1195
1196 /**
1197  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1198  * @runtime: PCM runtime instance
1199  * @var: hw_params variable to apply the range
1200  * @min: the minimal value
1201  * @max: the maximal value
1202  * 
1203  * Apply the min/max range constraint to an interval parameter.
1204  */
1205 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1206                                  unsigned int min, unsigned int max)
1207 {
1208         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1209         struct snd_interval t;
1210         t.min = min;
1211         t.max = max;
1212         t.openmin = t.openmax = 0;
1213         t.integer = 0;
1214         return snd_interval_refine(constrs_interval(constrs, var), &t);
1215 }
1216
1217 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1218
1219 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1220                                 struct snd_pcm_hw_rule *rule)
1221 {
1222         struct snd_pcm_hw_constraint_list *list = rule->private;
1223         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1224 }               
1225
1226
1227 /**
1228  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1229  * @runtime: PCM runtime instance
1230  * @cond: condition bits
1231  * @var: hw_params variable to apply the list constraint
1232  * @l: list
1233  * 
1234  * Apply the list of constraints to an interval parameter.
1235  */
1236 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1237                                unsigned int cond,
1238                                snd_pcm_hw_param_t var,
1239                                struct snd_pcm_hw_constraint_list *l)
1240 {
1241         return snd_pcm_hw_rule_add(runtime, cond, var,
1242                                    snd_pcm_hw_rule_list, l,
1243                                    var, -1);
1244 }
1245
1246 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1247
1248 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1249                                    struct snd_pcm_hw_rule *rule)
1250 {
1251         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1252         unsigned int num = 0, den = 0;
1253         int err;
1254         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1255                                   r->nrats, r->rats, &num, &den);
1256         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1257                 params->rate_num = num;
1258                 params->rate_den = den;
1259         }
1260         return err;
1261 }
1262
1263 /**
1264  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1265  * @runtime: PCM runtime instance
1266  * @cond: condition bits
1267  * @var: hw_params variable to apply the ratnums constraint
1268  * @r: struct snd_ratnums constriants
1269  */
1270 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1271                                   unsigned int cond,
1272                                   snd_pcm_hw_param_t var,
1273                                   struct snd_pcm_hw_constraint_ratnums *r)
1274 {
1275         return snd_pcm_hw_rule_add(runtime, cond, var,
1276                                    snd_pcm_hw_rule_ratnums, r,
1277                                    var, -1);
1278 }
1279
1280 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1281
1282 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1283                                    struct snd_pcm_hw_rule *rule)
1284 {
1285         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1286         unsigned int num = 0, den = 0;
1287         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1288                                   r->nrats, r->rats, &num, &den);
1289         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1290                 params->rate_num = num;
1291                 params->rate_den = den;
1292         }
1293         return err;
1294 }
1295
1296 /**
1297  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1298  * @runtime: PCM runtime instance
1299  * @cond: condition bits
1300  * @var: hw_params variable to apply the ratdens constraint
1301  * @r: struct snd_ratdens constriants
1302  */
1303 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1304                                   unsigned int cond,
1305                                   snd_pcm_hw_param_t var,
1306                                   struct snd_pcm_hw_constraint_ratdens *r)
1307 {
1308         return snd_pcm_hw_rule_add(runtime, cond, var,
1309                                    snd_pcm_hw_rule_ratdens, r,
1310                                    var, -1);
1311 }
1312
1313 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1314
1315 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1316                                   struct snd_pcm_hw_rule *rule)
1317 {
1318         unsigned int l = (unsigned long) rule->private;
1319         int width = l & 0xffff;
1320         unsigned int msbits = l >> 16;
1321         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1322         if (snd_interval_single(i) && snd_interval_value(i) == width)
1323                 params->msbits = msbits;
1324         return 0;
1325 }
1326
1327 /**
1328  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1329  * @runtime: PCM runtime instance
1330  * @cond: condition bits
1331  * @width: sample bits width
1332  * @msbits: msbits width
1333  */
1334 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1335                                  unsigned int cond,
1336                                  unsigned int width,
1337                                  unsigned int msbits)
1338 {
1339         unsigned long l = (msbits << 16) | width;
1340         return snd_pcm_hw_rule_add(runtime, cond, -1,
1341                                     snd_pcm_hw_rule_msbits,
1342                                     (void*) l,
1343                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1344 }
1345
1346 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1347
1348 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1349                                 struct snd_pcm_hw_rule *rule)
1350 {
1351         unsigned long step = (unsigned long) rule->private;
1352         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1353 }
1354
1355 /**
1356  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1357  * @runtime: PCM runtime instance
1358  * @cond: condition bits
1359  * @var: hw_params variable to apply the step constraint
1360  * @step: step size
1361  */
1362 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1363                                unsigned int cond,
1364                                snd_pcm_hw_param_t var,
1365                                unsigned long step)
1366 {
1367         return snd_pcm_hw_rule_add(runtime, cond, var, 
1368                                    snd_pcm_hw_rule_step, (void *) step,
1369                                    var, -1);
1370 }
1371
1372 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1373
1374 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1375 {
1376         static unsigned int pow2_sizes[] = {
1377                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1378                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1379                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1380                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1381         };
1382         return snd_interval_list(hw_param_interval(params, rule->var),
1383                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1384 }               
1385
1386 /**
1387  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1388  * @runtime: PCM runtime instance
1389  * @cond: condition bits
1390  * @var: hw_params variable to apply the power-of-2 constraint
1391  */
1392 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1393                                unsigned int cond,
1394                                snd_pcm_hw_param_t var)
1395 {
1396         return snd_pcm_hw_rule_add(runtime, cond, var, 
1397                                    snd_pcm_hw_rule_pow2, NULL,
1398                                    var, -1);
1399 }
1400
1401 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1402
1403 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1404                                            struct snd_pcm_hw_rule *rule)
1405 {
1406         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1407         struct snd_interval *rate;
1408
1409         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1410         return snd_interval_list(rate, 1, &base_rate, 0);
1411 }
1412
1413 /**
1414  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1415  * @runtime: PCM runtime instance
1416  * @base_rate: the rate at which the hardware does not resample
1417  */
1418 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1419                                unsigned int base_rate)
1420 {
1421         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1422                                    SNDRV_PCM_HW_PARAM_RATE,
1423                                    snd_pcm_hw_rule_noresample_func,
1424                                    (void *)(uintptr_t)base_rate,
1425                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1426 }
1427 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1428
1429 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1430                                   snd_pcm_hw_param_t var)
1431 {
1432         if (hw_is_mask(var)) {
1433                 snd_mask_any(hw_param_mask(params, var));
1434                 params->cmask |= 1 << var;
1435                 params->rmask |= 1 << var;
1436                 return;
1437         }
1438         if (hw_is_interval(var)) {
1439                 snd_interval_any(hw_param_interval(params, var));
1440                 params->cmask |= 1 << var;
1441                 params->rmask |= 1 << var;
1442                 return;
1443         }
1444         snd_BUG();
1445 }
1446
1447 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1448 {
1449         unsigned int k;
1450         memset(params, 0, sizeof(*params));
1451         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1452                 _snd_pcm_hw_param_any(params, k);
1453         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1454                 _snd_pcm_hw_param_any(params, k);
1455         params->info = ~0U;
1456 }
1457
1458 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1459
1460 /**
1461  * snd_pcm_hw_param_value - return @params field @var value
1462  * @params: the hw_params instance
1463  * @var: parameter to retrieve
1464  * @dir: pointer to the direction (-1,0,1) or %NULL
1465  *
1466  * Return the value for field @var if it's fixed in configuration space
1467  * defined by @params. Return -%EINVAL otherwise.
1468  */
1469 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1470                            snd_pcm_hw_param_t var, int *dir)
1471 {
1472         if (hw_is_mask(var)) {
1473                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1474                 if (!snd_mask_single(mask))
1475                         return -EINVAL;
1476                 if (dir)
1477                         *dir = 0;
1478                 return snd_mask_value(mask);
1479         }
1480         if (hw_is_interval(var)) {
1481                 const struct snd_interval *i = hw_param_interval_c(params, var);
1482                 if (!snd_interval_single(i))
1483                         return -EINVAL;
1484                 if (dir)
1485                         *dir = i->openmin;
1486                 return snd_interval_value(i);
1487         }
1488         return -EINVAL;
1489 }
1490
1491 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1492
1493 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1494                                 snd_pcm_hw_param_t var)
1495 {
1496         if (hw_is_mask(var)) {
1497                 snd_mask_none(hw_param_mask(params, var));
1498                 params->cmask |= 1 << var;
1499                 params->rmask |= 1 << var;
1500         } else if (hw_is_interval(var)) {
1501                 snd_interval_none(hw_param_interval(params, var));
1502                 params->cmask |= 1 << var;
1503                 params->rmask |= 1 << var;
1504         } else {
1505                 snd_BUG();
1506         }
1507 }
1508
1509 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1510
1511 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1512                                    snd_pcm_hw_param_t var)
1513 {
1514         int changed;
1515         if (hw_is_mask(var))
1516                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1517         else if (hw_is_interval(var))
1518                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1519         else
1520                 return -EINVAL;
1521         if (changed) {
1522                 params->cmask |= 1 << var;
1523                 params->rmask |= 1 << var;
1524         }
1525         return changed;
1526 }
1527
1528
1529 /**
1530  * snd_pcm_hw_param_first - refine config space and return minimum value
1531  * @pcm: PCM instance
1532  * @params: the hw_params instance
1533  * @var: parameter to retrieve
1534  * @dir: pointer to the direction (-1,0,1) or %NULL
1535  *
1536  * Inside configuration space defined by @params remove from @var all
1537  * values > minimum. Reduce configuration space accordingly.
1538  * Return the minimum.
1539  */
1540 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1541                            struct snd_pcm_hw_params *params, 
1542                            snd_pcm_hw_param_t var, int *dir)
1543 {
1544         int changed = _snd_pcm_hw_param_first(params, var);
1545         if (changed < 0)
1546                 return changed;
1547         if (params->rmask) {
1548                 int err = snd_pcm_hw_refine(pcm, params);
1549                 if (snd_BUG_ON(err < 0))
1550                         return err;
1551         }
1552         return snd_pcm_hw_param_value(params, var, dir);
1553 }
1554
1555 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1556
1557 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1558                                   snd_pcm_hw_param_t var)
1559 {
1560         int changed;
1561         if (hw_is_mask(var))
1562                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1563         else if (hw_is_interval(var))
1564                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1565         else
1566                 return -EINVAL;
1567         if (changed) {
1568                 params->cmask |= 1 << var;
1569                 params->rmask |= 1 << var;
1570         }
1571         return changed;
1572 }
1573
1574
1575 /**
1576  * snd_pcm_hw_param_last - refine config space and return maximum value
1577  * @pcm: PCM instance
1578  * @params: the hw_params instance
1579  * @var: parameter to retrieve
1580  * @dir: pointer to the direction (-1,0,1) or %NULL
1581  *
1582  * Inside configuration space defined by @params remove from @var all
1583  * values < maximum. Reduce configuration space accordingly.
1584  * Return the maximum.
1585  */
1586 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1587                           struct snd_pcm_hw_params *params,
1588                           snd_pcm_hw_param_t var, int *dir)
1589 {
1590         int changed = _snd_pcm_hw_param_last(params, var);
1591         if (changed < 0)
1592                 return changed;
1593         if (params->rmask) {
1594                 int err = snd_pcm_hw_refine(pcm, params);
1595                 if (snd_BUG_ON(err < 0))
1596                         return err;
1597         }
1598         return snd_pcm_hw_param_value(params, var, dir);
1599 }
1600
1601 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1602
1603 /**
1604  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1605  * @pcm: PCM instance
1606  * @params: the hw_params instance
1607  *
1608  * Choose one configuration from configuration space defined by @params.
1609  * The configuration chosen is that obtained fixing in this order:
1610  * first access, first format, first subformat, min channels,
1611  * min rate, min period time, max buffer size, min tick time
1612  */
1613 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1614                              struct snd_pcm_hw_params *params)
1615 {
1616         static int vars[] = {
1617                 SNDRV_PCM_HW_PARAM_ACCESS,
1618                 SNDRV_PCM_HW_PARAM_FORMAT,
1619                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1620                 SNDRV_PCM_HW_PARAM_CHANNELS,
1621                 SNDRV_PCM_HW_PARAM_RATE,
1622                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1623                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1624                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1625                 -1
1626         };
1627         int err, *v;
1628
1629         for (v = vars; *v != -1; v++) {
1630                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1631                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1632                 else
1633                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1634                 if (snd_BUG_ON(err < 0))
1635                         return err;
1636         }
1637         return 0;
1638 }
1639
1640 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1641                                    void *arg)
1642 {
1643         struct snd_pcm_runtime *runtime = substream->runtime;
1644         unsigned long flags;
1645         snd_pcm_stream_lock_irqsave(substream, flags);
1646         if (snd_pcm_running(substream) &&
1647             snd_pcm_update_hw_ptr(substream) >= 0)
1648                 runtime->status->hw_ptr %= runtime->buffer_size;
1649         else
1650                 runtime->status->hw_ptr = 0;
1651         snd_pcm_stream_unlock_irqrestore(substream, flags);
1652         return 0;
1653 }
1654
1655 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1656                                           void *arg)
1657 {
1658         struct snd_pcm_channel_info *info = arg;
1659         struct snd_pcm_runtime *runtime = substream->runtime;
1660         int width;
1661         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1662                 info->offset = -1;
1663                 return 0;
1664         }
1665         width = snd_pcm_format_physical_width(runtime->format);
1666         if (width < 0)
1667                 return width;
1668         info->offset = 0;
1669         switch (runtime->access) {
1670         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1671         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1672                 info->first = info->channel * width;
1673                 info->step = runtime->channels * width;
1674                 break;
1675         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1676         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1677         {
1678                 size_t size = runtime->dma_bytes / runtime->channels;
1679                 info->first = info->channel * size * 8;
1680                 info->step = width;
1681                 break;
1682         }
1683         default:
1684                 snd_BUG();
1685                 break;
1686         }
1687         return 0;
1688 }
1689
1690 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1691                                        void *arg)
1692 {
1693         struct snd_pcm_hw_params *params = arg;
1694         snd_pcm_format_t format;
1695         int channels;
1696         ssize_t frame_size;
1697
1698         params->fifo_size = substream->runtime->hw.fifo_size;
1699         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1700                 format = params_format(params);
1701                 channels = params_channels(params);
1702                 frame_size = snd_pcm_format_size(format, channels);
1703                 if (frame_size > 0)
1704                         params->fifo_size /= (unsigned)frame_size;
1705         }
1706         return 0;
1707 }
1708
1709 /**
1710  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1711  * @substream: the pcm substream instance
1712  * @cmd: ioctl command
1713  * @arg: ioctl argument
1714  *
1715  * Processes the generic ioctl commands for PCM.
1716  * Can be passed as the ioctl callback for PCM ops.
1717  *
1718  * Returns zero if successful, or a negative error code on failure.
1719  */
1720 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1721                       unsigned int cmd, void *arg)
1722 {
1723         switch (cmd) {
1724         case SNDRV_PCM_IOCTL1_INFO:
1725                 return 0;
1726         case SNDRV_PCM_IOCTL1_RESET:
1727                 return snd_pcm_lib_ioctl_reset(substream, arg);
1728         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1729                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1730         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1731                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1732         }
1733         return -ENXIO;
1734 }
1735
1736 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1737
1738 /**
1739  * snd_pcm_period_elapsed - update the pcm status for the next period
1740  * @substream: the pcm substream instance
1741  *
1742  * This function is called from the interrupt handler when the
1743  * PCM has processed the period size.  It will update the current
1744  * pointer, wake up sleepers, etc.
1745  *
1746  * Even if more than one periods have elapsed since the last call, you
1747  * have to call this only once.
1748  */
1749 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1750 {
1751         struct snd_pcm_runtime *runtime;
1752         unsigned long flags;
1753
1754         if (PCM_RUNTIME_CHECK(substream))
1755                 return;
1756         runtime = substream->runtime;
1757
1758         if (runtime->transfer_ack_begin)
1759                 runtime->transfer_ack_begin(substream);
1760
1761         snd_pcm_stream_lock_irqsave(substream, flags);
1762         if (!snd_pcm_running(substream) ||
1763             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1764                 goto _end;
1765
1766         if (substream->timer_running)
1767                 snd_timer_interrupt(substream->timer, 1);
1768  _end:
1769         if (runtime->transfer_ack_end)
1770                 runtime->transfer_ack_end(substream);
1771         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1772         snd_pcm_stream_unlock_irqrestore(substream, flags);
1773 }
1774
1775 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1776
1777 /*
1778  * Wait until avail_min data becomes available
1779  * Returns a negative error code if any error occurs during operation.
1780  * The available space is stored on availp.  When err = 0 and avail = 0
1781  * on the capture stream, it indicates the stream is in DRAINING state.
1782  */
1783 static int wait_for_avail(struct snd_pcm_substream *substream,
1784                               snd_pcm_uframes_t *availp)
1785 {
1786         struct snd_pcm_runtime *runtime = substream->runtime;
1787         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1788         wait_queue_t wait;
1789         int err = 0;
1790         snd_pcm_uframes_t avail = 0;
1791         long wait_time, tout;
1792
1793         init_waitqueue_entry(&wait, current);
1794         set_current_state(TASK_INTERRUPTIBLE);
1795         add_wait_queue(&runtime->tsleep, &wait);
1796
1797         if (runtime->no_period_wakeup)
1798                 wait_time = MAX_SCHEDULE_TIMEOUT;
1799         else {
1800                 wait_time = 10;
1801                 if (runtime->rate) {
1802                         long t = runtime->period_size * 2 / runtime->rate;
1803                         wait_time = max(t, wait_time);
1804                 }
1805                 wait_time = msecs_to_jiffies(wait_time * 1000);
1806         }
1807
1808         for (;;) {
1809                 if (signal_pending(current)) {
1810                         err = -ERESTARTSYS;
1811                         break;
1812                 }
1813
1814                 /*
1815                  * We need to check if space became available already
1816                  * (and thus the wakeup happened already) first to close
1817                  * the race of space already having become available.
1818                  * This check must happen after been added to the waitqueue
1819                  * and having current state be INTERRUPTIBLE.
1820                  */
1821                 if (is_playback)
1822                         avail = snd_pcm_playback_avail(runtime);
1823                 else
1824                         avail = snd_pcm_capture_avail(runtime);
1825                 if (avail >= runtime->twake)
1826                         break;
1827                 snd_pcm_stream_unlock_irq(substream);
1828
1829                 tout = schedule_timeout(wait_time);
1830
1831                 snd_pcm_stream_lock_irq(substream);
1832                 set_current_state(TASK_INTERRUPTIBLE);
1833                 switch (runtime->status->state) {
1834                 case SNDRV_PCM_STATE_SUSPENDED:
1835                         err = -ESTRPIPE;
1836                         goto _endloop;
1837                 case SNDRV_PCM_STATE_XRUN:
1838                         err = -EPIPE;
1839                         goto _endloop;
1840                 case SNDRV_PCM_STATE_DRAINING:
1841                         if (is_playback)
1842                                 err = -EPIPE;
1843                         else 
1844                                 avail = 0; /* indicate draining */
1845                         goto _endloop;
1846                 case SNDRV_PCM_STATE_OPEN:
1847                 case SNDRV_PCM_STATE_SETUP:
1848                 case SNDRV_PCM_STATE_DISCONNECTED:
1849                         err = -EBADFD;
1850                         goto _endloop;
1851                 case SNDRV_PCM_STATE_PAUSED:
1852                         continue;
1853                 }
1854                 if (!tout) {
1855                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1856                                    is_playback ? "playback" : "capture");
1857                         err = -EIO;
1858                         break;
1859                 }
1860         }
1861  _endloop:
1862         set_current_state(TASK_RUNNING);
1863         remove_wait_queue(&runtime->tsleep, &wait);
1864         *availp = avail;
1865         return err;
1866 }
1867         
1868 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1869                                       unsigned int hwoff,
1870                                       unsigned long data, unsigned int off,
1871                                       snd_pcm_uframes_t frames)
1872 {
1873         struct snd_pcm_runtime *runtime = substream->runtime;
1874         int err;
1875         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1876         if (substream->ops->copy) {
1877                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1878                         return err;
1879         } else {
1880                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1881                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1882                         return -EFAULT;
1883         }
1884         return 0;
1885 }
1886  
1887 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1888                           unsigned long data, unsigned int off,
1889                           snd_pcm_uframes_t size);
1890
1891 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1892                                             unsigned long data,
1893                                             snd_pcm_uframes_t size,
1894                                             int nonblock,
1895                                             transfer_f transfer)
1896 {
1897         struct snd_pcm_runtime *runtime = substream->runtime;
1898         snd_pcm_uframes_t xfer = 0;
1899         snd_pcm_uframes_t offset = 0;
1900         int err = 0;
1901
1902         if (size == 0)
1903                 return 0;
1904
1905         snd_pcm_stream_lock_irq(substream);
1906         switch (runtime->status->state) {
1907         case SNDRV_PCM_STATE_PREPARED:
1908         case SNDRV_PCM_STATE_RUNNING:
1909         case SNDRV_PCM_STATE_PAUSED:
1910                 break;
1911         case SNDRV_PCM_STATE_XRUN:
1912                 err = -EPIPE;
1913                 goto _end_unlock;
1914         case SNDRV_PCM_STATE_SUSPENDED:
1915                 err = -ESTRPIPE;
1916                 goto _end_unlock;
1917         default:
1918                 err = -EBADFD;
1919                 goto _end_unlock;
1920         }
1921
1922         runtime->twake = runtime->control->avail_min ? : 1;
1923         while (size > 0) {
1924                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1925                 snd_pcm_uframes_t avail;
1926                 snd_pcm_uframes_t cont;
1927                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1928                         snd_pcm_update_hw_ptr(substream);
1929                 avail = snd_pcm_playback_avail(runtime);
1930                 if (!avail) {
1931                         if (nonblock) {
1932                                 err = -EAGAIN;
1933                                 goto _end_unlock;
1934                         }
1935                         runtime->twake = min_t(snd_pcm_uframes_t, size,
1936                                         runtime->control->avail_min ? : 1);
1937                         err = wait_for_avail(substream, &avail);
1938                         if (err < 0)
1939                                 goto _end_unlock;
1940                 }
1941                 frames = size > avail ? avail : size;
1942                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1943                 if (frames > cont)
1944                         frames = cont;
1945                 if (snd_BUG_ON(!frames)) {
1946                         runtime->twake = 0;
1947                         snd_pcm_stream_unlock_irq(substream);
1948                         return -EINVAL;
1949                 }
1950                 appl_ptr = runtime->control->appl_ptr;
1951                 appl_ofs = appl_ptr % runtime->buffer_size;
1952                 snd_pcm_stream_unlock_irq(substream);
1953                 err = transfer(substream, appl_ofs, data, offset, frames);
1954                 snd_pcm_stream_lock_irq(substream);
1955                 if (err < 0)
1956                         goto _end_unlock;
1957                 switch (runtime->status->state) {
1958                 case SNDRV_PCM_STATE_XRUN:
1959                         err = -EPIPE;
1960                         goto _end_unlock;
1961                 case SNDRV_PCM_STATE_SUSPENDED:
1962                         err = -ESTRPIPE;
1963                         goto _end_unlock;
1964                 default:
1965                         break;
1966                 }
1967                 appl_ptr += frames;
1968                 if (appl_ptr >= runtime->boundary)
1969                         appl_ptr -= runtime->boundary;
1970                 runtime->control->appl_ptr = appl_ptr;
1971                 if (substream->ops->ack)
1972                         substream->ops->ack(substream);
1973
1974                 offset += frames;
1975                 size -= frames;
1976                 xfer += frames;
1977                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1978                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1979                         err = snd_pcm_start(substream);
1980                         if (err < 0)
1981                                 goto _end_unlock;
1982                 }
1983         }
1984  _end_unlock:
1985         runtime->twake = 0;
1986         if (xfer > 0 && err >= 0)
1987                 snd_pcm_update_state(substream, runtime);
1988         snd_pcm_stream_unlock_irq(substream);
1989         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1990 }
1991
1992 /* sanity-check for read/write methods */
1993 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1994 {
1995         struct snd_pcm_runtime *runtime;
1996         if (PCM_RUNTIME_CHECK(substream))
1997                 return -ENXIO;
1998         runtime = substream->runtime;
1999         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2000                 return -EINVAL;
2001         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2002                 return -EBADFD;
2003         return 0;
2004 }
2005
2006 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2007 {
2008         struct snd_pcm_runtime *runtime;
2009         int nonblock;
2010         int err;
2011
2012         err = pcm_sanity_check(substream);
2013         if (err < 0)
2014                 return err;
2015         runtime = substream->runtime;
2016         nonblock = !!(substream->f_flags & O_NONBLOCK);
2017
2018         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2019             runtime->channels > 1)
2020                 return -EINVAL;
2021         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2022                                   snd_pcm_lib_write_transfer);
2023 }
2024
2025 EXPORT_SYMBOL(snd_pcm_lib_write);
2026
2027 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2028                                        unsigned int hwoff,
2029                                        unsigned long data, unsigned int off,
2030                                        snd_pcm_uframes_t frames)
2031 {
2032         struct snd_pcm_runtime *runtime = substream->runtime;
2033         int err;
2034         void __user **bufs = (void __user **)data;
2035         int channels = runtime->channels;
2036         int c;
2037         if (substream->ops->copy) {
2038                 if (snd_BUG_ON(!substream->ops->silence))
2039                         return -EINVAL;
2040                 for (c = 0; c < channels; ++c, ++bufs) {
2041                         if (*bufs == NULL) {
2042                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2043                                         return err;
2044                         } else {
2045                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2046                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2047                                         return err;
2048                         }
2049                 }
2050         } else {
2051                 /* default transfer behaviour */
2052                 size_t dma_csize = runtime->dma_bytes / channels;
2053                 for (c = 0; c < channels; ++c, ++bufs) {
2054                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2055                         if (*bufs == NULL) {
2056                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2057                         } else {
2058                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2059                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2060                                         return -EFAULT;
2061                         }
2062                 }
2063         }
2064         return 0;
2065 }
2066  
2067 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2068                                      void __user **bufs,
2069                                      snd_pcm_uframes_t frames)
2070 {
2071         struct snd_pcm_runtime *runtime;
2072         int nonblock;
2073         int err;
2074
2075         err = pcm_sanity_check(substream);
2076         if (err < 0)
2077                 return err;
2078         runtime = substream->runtime;
2079         nonblock = !!(substream->f_flags & O_NONBLOCK);
2080
2081         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2082                 return -EINVAL;
2083         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2084                                   nonblock, snd_pcm_lib_writev_transfer);
2085 }
2086
2087 EXPORT_SYMBOL(snd_pcm_lib_writev);
2088
2089 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2090                                      unsigned int hwoff,
2091                                      unsigned long data, unsigned int off,
2092                                      snd_pcm_uframes_t frames)
2093 {
2094         struct snd_pcm_runtime *runtime = substream->runtime;
2095         int err;
2096         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2097         if (substream->ops->copy) {
2098                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2099                         return err;
2100         } else {
2101                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2102                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2103                         return -EFAULT;
2104         }
2105         return 0;
2106 }
2107
2108 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2109                                            unsigned long data,
2110                                            snd_pcm_uframes_t size,
2111                                            int nonblock,
2112                                            transfer_f transfer)
2113 {
2114         struct snd_pcm_runtime *runtime = substream->runtime;
2115         snd_pcm_uframes_t xfer = 0;
2116         snd_pcm_uframes_t offset = 0;
2117         int err = 0;
2118
2119         if (size == 0)
2120                 return 0;
2121
2122         snd_pcm_stream_lock_irq(substream);
2123         switch (runtime->status->state) {
2124         case SNDRV_PCM_STATE_PREPARED:
2125                 if (size >= runtime->start_threshold) {
2126                         err = snd_pcm_start(substream);
2127                         if (err < 0)
2128                                 goto _end_unlock;
2129                 }
2130                 break;
2131         case SNDRV_PCM_STATE_DRAINING:
2132         case SNDRV_PCM_STATE_RUNNING:
2133         case SNDRV_PCM_STATE_PAUSED:
2134                 break;
2135         case SNDRV_PCM_STATE_XRUN:
2136                 err = -EPIPE;
2137                 goto _end_unlock;
2138         case SNDRV_PCM_STATE_SUSPENDED:
2139                 err = -ESTRPIPE;
2140                 goto _end_unlock;
2141         default:
2142                 err = -EBADFD;
2143                 goto _end_unlock;
2144         }
2145
2146         runtime->twake = runtime->control->avail_min ? : 1;
2147         while (size > 0) {
2148                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2149                 snd_pcm_uframes_t avail;
2150                 snd_pcm_uframes_t cont;
2151                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2152                         snd_pcm_update_hw_ptr(substream);
2153                 avail = snd_pcm_capture_avail(runtime);
2154                 if (!avail) {
2155                         if (runtime->status->state ==
2156                             SNDRV_PCM_STATE_DRAINING) {
2157                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2158                                 goto _end_unlock;
2159                         }
2160                         if (nonblock) {
2161                                 err = -EAGAIN;
2162                                 goto _end_unlock;
2163                         }
2164                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2165                                         runtime->control->avail_min ? : 1);
2166                         err = wait_for_avail(substream, &avail);
2167                         if (err < 0)
2168                                 goto _end_unlock;
2169                         if (!avail)
2170                                 continue; /* draining */
2171                 }
2172                 frames = size > avail ? avail : size;
2173                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2174                 if (frames > cont)
2175                         frames = cont;
2176                 if (snd_BUG_ON(!frames)) {
2177                         runtime->twake = 0;
2178                         snd_pcm_stream_unlock_irq(substream);
2179                         return -EINVAL;
2180                 }
2181                 appl_ptr = runtime->control->appl_ptr;
2182                 appl_ofs = appl_ptr % runtime->buffer_size;
2183                 snd_pcm_stream_unlock_irq(substream);
2184                 err = transfer(substream, appl_ofs, data, offset, frames);
2185                 snd_pcm_stream_lock_irq(substream);
2186                 if (err < 0)
2187                         goto _end_unlock;
2188                 switch (runtime->status->state) {
2189                 case SNDRV_PCM_STATE_XRUN:
2190                         err = -EPIPE;
2191                         goto _end_unlock;
2192                 case SNDRV_PCM_STATE_SUSPENDED:
2193                         err = -ESTRPIPE;
2194                         goto _end_unlock;
2195                 default:
2196                         break;
2197                 }
2198                 appl_ptr += frames;
2199                 if (appl_ptr >= runtime->boundary)
2200                         appl_ptr -= runtime->boundary;
2201                 runtime->control->appl_ptr = appl_ptr;
2202                 if (substream->ops->ack)
2203                         substream->ops->ack(substream);
2204
2205                 offset += frames;
2206                 size -= frames;
2207                 xfer += frames;
2208         }
2209  _end_unlock:
2210         runtime->twake = 0;
2211         if (xfer > 0 && err >= 0)
2212                 snd_pcm_update_state(substream, runtime);
2213         snd_pcm_stream_unlock_irq(substream);
2214         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2215 }
2216
2217 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2218 {
2219         struct snd_pcm_runtime *runtime;
2220         int nonblock;
2221         int err;
2222         
2223         err = pcm_sanity_check(substream);
2224         if (err < 0)
2225                 return err;
2226         runtime = substream->runtime;
2227         nonblock = !!(substream->f_flags & O_NONBLOCK);
2228         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2229                 return -EINVAL;
2230         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2231 }
2232
2233 EXPORT_SYMBOL(snd_pcm_lib_read);
2234
2235 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2236                                       unsigned int hwoff,
2237                                       unsigned long data, unsigned int off,
2238                                       snd_pcm_uframes_t frames)
2239 {
2240         struct snd_pcm_runtime *runtime = substream->runtime;
2241         int err;
2242         void __user **bufs = (void __user **)data;
2243         int channels = runtime->channels;
2244         int c;
2245         if (substream->ops->copy) {
2246                 for (c = 0; c < channels; ++c, ++bufs) {
2247                         char __user *buf;
2248                         if (*bufs == NULL)
2249                                 continue;
2250                         buf = *bufs + samples_to_bytes(runtime, off);
2251                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2252                                 return err;
2253                 }
2254         } else {
2255                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2256                 for (c = 0; c < channels; ++c, ++bufs) {
2257                         char *hwbuf;
2258                         char __user *buf;
2259                         if (*bufs == NULL)
2260                                 continue;
2261
2262                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2263                         buf = *bufs + samples_to_bytes(runtime, off);
2264                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2265                                 return -EFAULT;
2266                 }
2267         }
2268         return 0;
2269 }
2270  
2271 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2272                                     void __user **bufs,
2273                                     snd_pcm_uframes_t frames)
2274 {
2275         struct snd_pcm_runtime *runtime;
2276         int nonblock;
2277         int err;
2278
2279         err = pcm_sanity_check(substream);
2280         if (err < 0)
2281                 return err;
2282         runtime = substream->runtime;
2283         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2284                 return -EBADFD;
2285
2286         nonblock = !!(substream->f_flags & O_NONBLOCK);
2287         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2288                 return -EINVAL;
2289         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2290 }
2291
2292 EXPORT_SYMBOL(snd_pcm_lib_readv);