ALSA: pcm: Remove yet superfluous WARN_ON()
[pandora-kernel.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/info.h>
30 #include <sound/pcm.h>
31 #include <sound/pcm_params.h>
32 #include <sound/timer.h>
33
34 /*
35  * fill ring buffer with silence
36  * runtime->silence_start: starting pointer to silence area
37  * runtime->silence_filled: size filled with silence
38  * runtime->silence_threshold: threshold from application
39  * runtime->silence_size: maximal size from application
40  *
41  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42  */
43 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44 {
45         struct snd_pcm_runtime *runtime = substream->runtime;
46         snd_pcm_uframes_t frames, ofs, transfer;
47
48         if (runtime->silence_size < runtime->boundary) {
49                 snd_pcm_sframes_t noise_dist, n;
50                 if (runtime->silence_start != runtime->control->appl_ptr) {
51                         n = runtime->control->appl_ptr - runtime->silence_start;
52                         if (n < 0)
53                                 n += runtime->boundary;
54                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55                                 runtime->silence_filled -= n;
56                         else
57                                 runtime->silence_filled = 0;
58                         runtime->silence_start = runtime->control->appl_ptr;
59                 }
60                 if (runtime->silence_filled >= runtime->buffer_size)
61                         return;
62                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64                         return;
65                 frames = runtime->silence_threshold - noise_dist;
66                 if (frames > runtime->silence_size)
67                         frames = runtime->silence_size;
68         } else {
69                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
70                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71                         if (avail > runtime->buffer_size)
72                                 avail = runtime->buffer_size;
73                         runtime->silence_filled = avail > 0 ? avail : 0;
74                         runtime->silence_start = (runtime->status->hw_ptr +
75                                                   runtime->silence_filled) %
76                                                  runtime->boundary;
77                 } else {
78                         ofs = runtime->status->hw_ptr;
79                         frames = new_hw_ptr - ofs;
80                         if ((snd_pcm_sframes_t)frames < 0)
81                                 frames += runtime->boundary;
82                         runtime->silence_filled -= frames;
83                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84                                 runtime->silence_filled = 0;
85                                 runtime->silence_start = new_hw_ptr;
86                         } else {
87                                 runtime->silence_start = ofs;
88                         }
89                 }
90                 frames = runtime->buffer_size - runtime->silence_filled;
91         }
92         if (snd_BUG_ON(frames > runtime->buffer_size))
93                 return;
94         if (frames == 0)
95                 return;
96         ofs = runtime->silence_start % runtime->buffer_size;
97         while (frames > 0) {
98                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101                         if (substream->ops->silence) {
102                                 int err;
103                                 err = substream->ops->silence(substream, -1, ofs, transfer);
104                                 snd_BUG_ON(err < 0);
105                         } else {
106                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108                         }
109                 } else {
110                         unsigned int c;
111                         unsigned int channels = runtime->channels;
112                         if (substream->ops->silence) {
113                                 for (c = 0; c < channels; ++c) {
114                                         int err;
115                                         err = substream->ops->silence(substream, c, ofs, transfer);
116                                         snd_BUG_ON(err < 0);
117                                 }
118                         } else {
119                                 size_t dma_csize = runtime->dma_bytes / channels;
120                                 for (c = 0; c < channels; ++c) {
121                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123                                 }
124                         }
125                 }
126                 runtime->silence_filled += transfer;
127                 frames -= transfer;
128                 ofs = 0;
129         }
130 }
131
132 #ifdef CONFIG_SND_DEBUG
133 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134                            char *name, size_t len)
135 {
136         snprintf(name, len, "pcmC%dD%d%c:%d",
137                  substream->pcm->card->number,
138                  substream->pcm->device,
139                  substream->stream ? 'c' : 'p',
140                  substream->number);
141 }
142 EXPORT_SYMBOL(snd_pcm_debug_name);
143 #endif
144
145 #define XRUN_DEBUG_BASIC        (1<<0)
146 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
147 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
148 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
149 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
150 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
151 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
152
153 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
154
155 #define xrun_debug(substream, mask) \
156                         ((substream)->pstr->xrun_debug & (mask))
157 #else
158 #define xrun_debug(substream, mask)     0
159 #endif
160
161 #define dump_stack_on_xrun(substream) do {                      \
162                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
163                         dump_stack();                           \
164         } while (0)
165
166 static void xrun(struct snd_pcm_substream *substream)
167 {
168         struct snd_pcm_runtime *runtime = substream->runtime;
169
170         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174                 char name[16];
175                 snd_pcm_debug_name(substream, name, sizeof(name));
176                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177                 dump_stack_on_xrun(substream);
178         }
179 }
180
181 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
182 #define hw_ptr_error(substream, fmt, args...)                           \
183         do {                                                            \
184                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
185                         xrun_log_show(substream);                       \
186                         if (printk_ratelimit()) {                       \
187                                 snd_printd("PCM: " fmt, ##args);        \
188                         }                                               \
189                         dump_stack_on_xrun(substream);                  \
190                 }                                                       \
191         } while (0)
192
193 #define XRUN_LOG_CNT    10
194
195 struct hwptr_log_entry {
196         unsigned int in_interrupt;
197         unsigned long jiffies;
198         snd_pcm_uframes_t pos;
199         snd_pcm_uframes_t period_size;
200         snd_pcm_uframes_t buffer_size;
201         snd_pcm_uframes_t old_hw_ptr;
202         snd_pcm_uframes_t hw_ptr_base;
203 };
204
205 struct snd_pcm_hwptr_log {
206         unsigned int idx;
207         unsigned int hit: 1;
208         struct hwptr_log_entry entries[XRUN_LOG_CNT];
209 };
210
211 static void xrun_log(struct snd_pcm_substream *substream,
212                      snd_pcm_uframes_t pos, int in_interrupt)
213 {
214         struct snd_pcm_runtime *runtime = substream->runtime;
215         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216         struct hwptr_log_entry *entry;
217
218         if (log == NULL) {
219                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
220                 if (log == NULL)
221                         return;
222                 runtime->hwptr_log = log;
223         } else {
224                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225                         return;
226         }
227         entry = &log->entries[log->idx];
228         entry->in_interrupt = in_interrupt;
229         entry->jiffies = jiffies;
230         entry->pos = pos;
231         entry->period_size = runtime->period_size;
232         entry->buffer_size = runtime->buffer_size;
233         entry->old_hw_ptr = runtime->status->hw_ptr;
234         entry->hw_ptr_base = runtime->hw_ptr_base;
235         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236 }
237
238 static void xrun_log_show(struct snd_pcm_substream *substream)
239 {
240         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241         struct hwptr_log_entry *entry;
242         char name[16];
243         unsigned int idx;
244         int cnt;
245
246         if (log == NULL)
247                 return;
248         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249                 return;
250         snd_pcm_debug_name(substream, name, sizeof(name));
251         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252                 entry = &log->entries[idx];
253                 if (entry->period_size == 0)
254                         break;
255                 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256                            "hwptr=%ld/%ld\n",
257                            name, entry->in_interrupt ? "[Q] " : "",
258                            entry->jiffies,
259                            (unsigned long)entry->pos,
260                            (unsigned long)entry->period_size,
261                            (unsigned long)entry->buffer_size,
262                            (unsigned long)entry->old_hw_ptr,
263                            (unsigned long)entry->hw_ptr_base);
264                 idx++;
265                 idx %= XRUN_LOG_CNT;
266         }
267         log->hit = 1;
268 }
269
270 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271
272 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
273 #define xrun_log(substream, pos, in_interrupt)  do { } while (0)
274 #define xrun_log_show(substream)        do { } while (0)
275
276 #endif
277
278 int snd_pcm_update_state(struct snd_pcm_substream *substream,
279                          struct snd_pcm_runtime *runtime)
280 {
281         snd_pcm_uframes_t avail;
282
283         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284                 avail = snd_pcm_playback_avail(runtime);
285         else
286                 avail = snd_pcm_capture_avail(runtime);
287         if (avail > runtime->avail_max)
288                 runtime->avail_max = avail;
289         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290                 if (avail >= runtime->buffer_size) {
291                         snd_pcm_drain_done(substream);
292                         return -EPIPE;
293                 }
294         } else {
295                 if (avail >= runtime->stop_threshold) {
296                         xrun(substream);
297                         return -EPIPE;
298                 }
299         }
300         if (runtime->twake) {
301                 if (avail >= runtime->twake)
302                         wake_up(&runtime->tsleep);
303         } else if (avail >= runtime->control->avail_min)
304                 wake_up(&runtime->sleep);
305         return 0;
306 }
307
308 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309                                   unsigned int in_interrupt)
310 {
311         struct snd_pcm_runtime *runtime = substream->runtime;
312         snd_pcm_uframes_t pos;
313         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314         snd_pcm_sframes_t hdelta, delta;
315         unsigned long jdelta;
316
317         old_hw_ptr = runtime->status->hw_ptr;
318         pos = substream->ops->pointer(substream);
319         if (pos == SNDRV_PCM_POS_XRUN) {
320                 xrun(substream);
321                 return -EPIPE;
322         }
323         if (pos >= runtime->buffer_size) {
324                 if (printk_ratelimit()) {
325                         char name[16];
326                         snd_pcm_debug_name(substream, name, sizeof(name));
327                         xrun_log_show(substream);
328                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
329                                    "buffer size = %ld, period size = %ld\n",
330                                    name, pos, runtime->buffer_size,
331                                    runtime->period_size);
332                 }
333                 pos = 0;
334         }
335         pos -= pos % runtime->min_align;
336         if (xrun_debug(substream, XRUN_DEBUG_LOG))
337                 xrun_log(substream, pos, in_interrupt);
338         hw_base = runtime->hw_ptr_base;
339         new_hw_ptr = hw_base + pos;
340         if (in_interrupt) {
341                 /* we know that one period was processed */
342                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344                 if (delta > new_hw_ptr) {
345                         /* check for double acknowledged interrupts */
346                         hdelta = jiffies - runtime->hw_ptr_jiffies;
347                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
348                                 hw_base += runtime->buffer_size;
349                                 if (hw_base >= runtime->boundary)
350                                         hw_base = 0;
351                                 new_hw_ptr = hw_base + pos;
352                                 goto __delta;
353                         }
354                 }
355         }
356         /* new_hw_ptr might be lower than old_hw_ptr in case when */
357         /* pointer crosses the end of the ring buffer */
358         if (new_hw_ptr < old_hw_ptr) {
359                 hw_base += runtime->buffer_size;
360                 if (hw_base >= runtime->boundary)
361                         hw_base = 0;
362                 new_hw_ptr = hw_base + pos;
363         }
364       __delta:
365         delta = new_hw_ptr - old_hw_ptr;
366         if (delta < 0)
367                 delta += runtime->boundary;
368         if (xrun_debug(substream, in_interrupt ?
369                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
370                 char name[16];
371                 snd_pcm_debug_name(substream, name, sizeof(name));
372                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
373                            "hwptr=%ld/%ld/%ld/%ld\n",
374                            in_interrupt ? "period" : "hwptr",
375                            name,
376                            (unsigned int)pos,
377                            (unsigned int)runtime->period_size,
378                            (unsigned int)runtime->buffer_size,
379                            (unsigned long)delta,
380                            (unsigned long)old_hw_ptr,
381                            (unsigned long)new_hw_ptr,
382                            (unsigned long)runtime->hw_ptr_base);
383         }
384
385         if (runtime->no_period_wakeup) {
386                 snd_pcm_sframes_t xrun_threshold;
387                 /*
388                  * Without regular period interrupts, we have to check
389                  * the elapsed time to detect xruns.
390                  */
391                 jdelta = jiffies - runtime->hw_ptr_jiffies;
392                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
393                         goto no_delta_check;
394                 hdelta = jdelta - delta * HZ / runtime->rate;
395                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
396                 while (hdelta > xrun_threshold) {
397                         delta += runtime->buffer_size;
398                         hw_base += runtime->buffer_size;
399                         if (hw_base >= runtime->boundary)
400                                 hw_base = 0;
401                         new_hw_ptr = hw_base + pos;
402                         hdelta -= runtime->hw_ptr_buffer_jiffies;
403                 }
404                 goto no_delta_check;
405         }
406
407         /* something must be really wrong */
408         if (delta >= runtime->buffer_size + runtime->period_size) {
409                 hw_ptr_error(substream,
410                                "Unexpected hw_pointer value %s"
411                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
412                                "old_hw_ptr=%ld)\n",
413                                      in_interrupt ? "[Q] " : "[P]",
414                                      substream->stream, (long)pos,
415                                      (long)new_hw_ptr, (long)old_hw_ptr);
416                 return 0;
417         }
418
419         /* Do jiffies check only in xrun_debug mode */
420         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
421                 goto no_jiffies_check;
422
423         /* Skip the jiffies check for hardwares with BATCH flag.
424          * Such hardware usually just increases the position at each IRQ,
425          * thus it can't give any strange position.
426          */
427         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
428                 goto no_jiffies_check;
429         hdelta = delta;
430         if (hdelta < runtime->delay)
431                 goto no_jiffies_check;
432         hdelta -= runtime->delay;
433         jdelta = jiffies - runtime->hw_ptr_jiffies;
434         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
435                 delta = jdelta /
436                         (((runtime->period_size * HZ) / runtime->rate)
437                                                                 + HZ/100);
438                 /* move new_hw_ptr according jiffies not pos variable */
439                 new_hw_ptr = old_hw_ptr;
440                 hw_base = delta;
441                 /* use loop to avoid checks for delta overflows */
442                 /* the delta value is small or zero in most cases */
443                 while (delta > 0) {
444                         new_hw_ptr += runtime->period_size;
445                         if (new_hw_ptr >= runtime->boundary)
446                                 new_hw_ptr -= runtime->boundary;
447                         delta--;
448                 }
449                 /* align hw_base to buffer_size */
450                 hw_ptr_error(substream,
451                              "hw_ptr skipping! %s"
452                              "(pos=%ld, delta=%ld, period=%ld, "
453                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
454                              in_interrupt ? "[Q] " : "",
455                              (long)pos, (long)hdelta,
456                              (long)runtime->period_size, jdelta,
457                              ((hdelta * HZ) / runtime->rate), hw_base,
458                              (unsigned long)old_hw_ptr,
459                              (unsigned long)new_hw_ptr);
460                 /* reset values to proper state */
461                 delta = 0;
462                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
463         }
464  no_jiffies_check:
465         if (delta > runtime->period_size + runtime->period_size / 2) {
466                 hw_ptr_error(substream,
467                              "Lost interrupts? %s"
468                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
469                              "old_hw_ptr=%ld)\n",
470                              in_interrupt ? "[Q] " : "",
471                              substream->stream, (long)delta,
472                              (long)new_hw_ptr,
473                              (long)old_hw_ptr);
474         }
475
476  no_delta_check:
477         if (runtime->status->hw_ptr == new_hw_ptr)
478                 return 0;
479
480         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
481             runtime->silence_size > 0)
482                 snd_pcm_playback_silence(substream, new_hw_ptr);
483
484         if (in_interrupt) {
485                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
486                 if (delta < 0)
487                         delta += runtime->boundary;
488                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
489                 runtime->hw_ptr_interrupt += delta;
490                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
491                         runtime->hw_ptr_interrupt -= runtime->boundary;
492         }
493         runtime->hw_ptr_base = hw_base;
494         runtime->status->hw_ptr = new_hw_ptr;
495         runtime->hw_ptr_jiffies = jiffies;
496         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
497                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
498
499         return snd_pcm_update_state(substream, runtime);
500 }
501
502 /* CAUTION: call it with irq disabled */
503 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
504 {
505         return snd_pcm_update_hw_ptr0(substream, 0);
506 }
507
508 /**
509  * snd_pcm_set_ops - set the PCM operators
510  * @pcm: the pcm instance
511  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
512  * @ops: the operator table
513  *
514  * Sets the given PCM operators to the pcm instance.
515  */
516 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
517 {
518         struct snd_pcm_str *stream = &pcm->streams[direction];
519         struct snd_pcm_substream *substream;
520         
521         for (substream = stream->substream; substream != NULL; substream = substream->next)
522                 substream->ops = ops;
523 }
524
525 EXPORT_SYMBOL(snd_pcm_set_ops);
526
527 /**
528  * snd_pcm_sync - set the PCM sync id
529  * @substream: the pcm substream
530  *
531  * Sets the PCM sync identifier for the card.
532  */
533 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
534 {
535         struct snd_pcm_runtime *runtime = substream->runtime;
536         
537         runtime->sync.id32[0] = substream->pcm->card->number;
538         runtime->sync.id32[1] = -1;
539         runtime->sync.id32[2] = -1;
540         runtime->sync.id32[3] = -1;
541 }
542
543 EXPORT_SYMBOL(snd_pcm_set_sync);
544
545 /*
546  *  Standard ioctl routine
547  */
548
549 static inline unsigned int div32(unsigned int a, unsigned int b, 
550                                  unsigned int *r)
551 {
552         if (b == 0) {
553                 *r = 0;
554                 return UINT_MAX;
555         }
556         *r = a % b;
557         return a / b;
558 }
559
560 static inline unsigned int div_down(unsigned int a, unsigned int b)
561 {
562         if (b == 0)
563                 return UINT_MAX;
564         return a / b;
565 }
566
567 static inline unsigned int div_up(unsigned int a, unsigned int b)
568 {
569         unsigned int r;
570         unsigned int q;
571         if (b == 0)
572                 return UINT_MAX;
573         q = div32(a, b, &r);
574         if (r)
575                 ++q;
576         return q;
577 }
578
579 static inline unsigned int mul(unsigned int a, unsigned int b)
580 {
581         if (a == 0)
582                 return 0;
583         if (div_down(UINT_MAX, a) < b)
584                 return UINT_MAX;
585         return a * b;
586 }
587
588 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
589                                     unsigned int c, unsigned int *r)
590 {
591         u_int64_t n = (u_int64_t) a * b;
592         if (c == 0) {
593                 *r = 0;
594                 return UINT_MAX;
595         }
596         n = div_u64_rem(n, c, r);
597         if (n >= UINT_MAX) {
598                 *r = 0;
599                 return UINT_MAX;
600         }
601         return n;
602 }
603
604 /**
605  * snd_interval_refine - refine the interval value of configurator
606  * @i: the interval value to refine
607  * @v: the interval value to refer to
608  *
609  * Refines the interval value with the reference value.
610  * The interval is changed to the range satisfying both intervals.
611  * The interval status (min, max, integer, etc.) are evaluated.
612  *
613  * Returns non-zero if the value is changed, zero if not changed.
614  */
615 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
616 {
617         int changed = 0;
618         if (snd_BUG_ON(snd_interval_empty(i)))
619                 return -EINVAL;
620         if (i->min < v->min) {
621                 i->min = v->min;
622                 i->openmin = v->openmin;
623                 changed = 1;
624         } else if (i->min == v->min && !i->openmin && v->openmin) {
625                 i->openmin = 1;
626                 changed = 1;
627         }
628         if (i->max > v->max) {
629                 i->max = v->max;
630                 i->openmax = v->openmax;
631                 changed = 1;
632         } else if (i->max == v->max && !i->openmax && v->openmax) {
633                 i->openmax = 1;
634                 changed = 1;
635         }
636         if (!i->integer && v->integer) {
637                 i->integer = 1;
638                 changed = 1;
639         }
640         if (i->integer) {
641                 if (i->openmin) {
642                         i->min++;
643                         i->openmin = 0;
644                 }
645                 if (i->openmax) {
646                         i->max--;
647                         i->openmax = 0;
648                 }
649         } else if (!i->openmin && !i->openmax && i->min == i->max)
650                 i->integer = 1;
651         if (snd_interval_checkempty(i)) {
652                 snd_interval_none(i);
653                 return -EINVAL;
654         }
655         return changed;
656 }
657
658 EXPORT_SYMBOL(snd_interval_refine);
659
660 static int snd_interval_refine_first(struct snd_interval *i)
661 {
662         if (snd_BUG_ON(snd_interval_empty(i)))
663                 return -EINVAL;
664         if (snd_interval_single(i))
665                 return 0;
666         i->max = i->min;
667         i->openmax = i->openmin;
668         if (i->openmax)
669                 i->max++;
670         return 1;
671 }
672
673 static int snd_interval_refine_last(struct snd_interval *i)
674 {
675         if (snd_BUG_ON(snd_interval_empty(i)))
676                 return -EINVAL;
677         if (snd_interval_single(i))
678                 return 0;
679         i->min = i->max;
680         i->openmin = i->openmax;
681         if (i->openmin)
682                 i->min--;
683         return 1;
684 }
685
686 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
687 {
688         if (a->empty || b->empty) {
689                 snd_interval_none(c);
690                 return;
691         }
692         c->empty = 0;
693         c->min = mul(a->min, b->min);
694         c->openmin = (a->openmin || b->openmin);
695         c->max = mul(a->max,  b->max);
696         c->openmax = (a->openmax || b->openmax);
697         c->integer = (a->integer && b->integer);
698 }
699
700 /**
701  * snd_interval_div - refine the interval value with division
702  * @a: dividend
703  * @b: divisor
704  * @c: quotient
705  *
706  * c = a / b
707  *
708  * Returns non-zero if the value is changed, zero if not changed.
709  */
710 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
711 {
712         unsigned int r;
713         if (a->empty || b->empty) {
714                 snd_interval_none(c);
715                 return;
716         }
717         c->empty = 0;
718         c->min = div32(a->min, b->max, &r);
719         c->openmin = (r || a->openmin || b->openmax);
720         if (b->min > 0) {
721                 c->max = div32(a->max, b->min, &r);
722                 if (r) {
723                         c->max++;
724                         c->openmax = 1;
725                 } else
726                         c->openmax = (a->openmax || b->openmin);
727         } else {
728                 c->max = UINT_MAX;
729                 c->openmax = 0;
730         }
731         c->integer = 0;
732 }
733
734 /**
735  * snd_interval_muldivk - refine the interval value
736  * @a: dividend 1
737  * @b: dividend 2
738  * @k: divisor (as integer)
739  * @c: result
740   *
741  * c = a * b / k
742  *
743  * Returns non-zero if the value is changed, zero if not changed.
744  */
745 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
746                       unsigned int k, struct snd_interval *c)
747 {
748         unsigned int r;
749         if (a->empty || b->empty) {
750                 snd_interval_none(c);
751                 return;
752         }
753         c->empty = 0;
754         c->min = muldiv32(a->min, b->min, k, &r);
755         c->openmin = (r || a->openmin || b->openmin);
756         c->max = muldiv32(a->max, b->max, k, &r);
757         if (r) {
758                 c->max++;
759                 c->openmax = 1;
760         } else
761                 c->openmax = (a->openmax || b->openmax);
762         c->integer = 0;
763 }
764
765 /**
766  * snd_interval_mulkdiv - refine the interval value
767  * @a: dividend 1
768  * @k: dividend 2 (as integer)
769  * @b: divisor
770  * @c: result
771  *
772  * c = a * k / b
773  *
774  * Returns non-zero if the value is changed, zero if not changed.
775  */
776 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
777                       const struct snd_interval *b, struct snd_interval *c)
778 {
779         unsigned int r;
780         if (a->empty || b->empty) {
781                 snd_interval_none(c);
782                 return;
783         }
784         c->empty = 0;
785         c->min = muldiv32(a->min, k, b->max, &r);
786         c->openmin = (r || a->openmin || b->openmax);
787         if (b->min > 0) {
788                 c->max = muldiv32(a->max, k, b->min, &r);
789                 if (r) {
790                         c->max++;
791                         c->openmax = 1;
792                 } else
793                         c->openmax = (a->openmax || b->openmin);
794         } else {
795                 c->max = UINT_MAX;
796                 c->openmax = 0;
797         }
798         c->integer = 0;
799 }
800
801 /* ---- */
802
803
804 /**
805  * snd_interval_ratnum - refine the interval value
806  * @i: interval to refine
807  * @rats_count: number of ratnum_t 
808  * @rats: ratnum_t array
809  * @nump: pointer to store the resultant numerator
810  * @denp: pointer to store the resultant denominator
811  *
812  * Returns non-zero if the value is changed, zero if not changed.
813  */
814 int snd_interval_ratnum(struct snd_interval *i,
815                         unsigned int rats_count, struct snd_ratnum *rats,
816                         unsigned int *nump, unsigned int *denp)
817 {
818         unsigned int best_num, best_den;
819         int best_diff;
820         unsigned int k;
821         struct snd_interval t;
822         int err;
823         unsigned int result_num, result_den;
824         int result_diff;
825
826         best_num = best_den = best_diff = 0;
827         for (k = 0; k < rats_count; ++k) {
828                 unsigned int num = rats[k].num;
829                 unsigned int den;
830                 unsigned int q = i->min;
831                 int diff;
832                 if (q == 0)
833                         q = 1;
834                 den = div_up(num, q);
835                 if (den < rats[k].den_min)
836                         continue;
837                 if (den > rats[k].den_max)
838                         den = rats[k].den_max;
839                 else {
840                         unsigned int r;
841                         r = (den - rats[k].den_min) % rats[k].den_step;
842                         if (r != 0)
843                                 den -= r;
844                 }
845                 diff = num - q * den;
846                 if (diff < 0)
847                         diff = -diff;
848                 if (best_num == 0 ||
849                     diff * best_den < best_diff * den) {
850                         best_diff = diff;
851                         best_den = den;
852                         best_num = num;
853                 }
854         }
855         if (best_den == 0) {
856                 i->empty = 1;
857                 return -EINVAL;
858         }
859         t.min = div_down(best_num, best_den);
860         t.openmin = !!(best_num % best_den);
861         
862         result_num = best_num;
863         result_diff = best_diff;
864         result_den = best_den;
865         best_num = best_den = best_diff = 0;
866         for (k = 0; k < rats_count; ++k) {
867                 unsigned int num = rats[k].num;
868                 unsigned int den;
869                 unsigned int q = i->max;
870                 int diff;
871                 if (q == 0) {
872                         i->empty = 1;
873                         return -EINVAL;
874                 }
875                 den = div_down(num, q);
876                 if (den > rats[k].den_max)
877                         continue;
878                 if (den < rats[k].den_min)
879                         den = rats[k].den_min;
880                 else {
881                         unsigned int r;
882                         r = (den - rats[k].den_min) % rats[k].den_step;
883                         if (r != 0)
884                                 den += rats[k].den_step - r;
885                 }
886                 diff = q * den - num;
887                 if (diff < 0)
888                         diff = -diff;
889                 if (best_num == 0 ||
890                     diff * best_den < best_diff * den) {
891                         best_diff = diff;
892                         best_den = den;
893                         best_num = num;
894                 }
895         }
896         if (best_den == 0) {
897                 i->empty = 1;
898                 return -EINVAL;
899         }
900         t.max = div_up(best_num, best_den);
901         t.openmax = !!(best_num % best_den);
902         t.integer = 0;
903         err = snd_interval_refine(i, &t);
904         if (err < 0)
905                 return err;
906
907         if (snd_interval_single(i)) {
908                 if (best_diff * result_den < result_diff * best_den) {
909                         result_num = best_num;
910                         result_den = best_den;
911                 }
912                 if (nump)
913                         *nump = result_num;
914                 if (denp)
915                         *denp = result_den;
916         }
917         return err;
918 }
919
920 EXPORT_SYMBOL(snd_interval_ratnum);
921
922 /**
923  * snd_interval_ratden - refine the interval value
924  * @i: interval to refine
925  * @rats_count: number of struct ratden
926  * @rats: struct ratden array
927  * @nump: pointer to store the resultant numerator
928  * @denp: pointer to store the resultant denominator
929  *
930  * Returns non-zero if the value is changed, zero if not changed.
931  */
932 static int snd_interval_ratden(struct snd_interval *i,
933                                unsigned int rats_count, struct snd_ratden *rats,
934                                unsigned int *nump, unsigned int *denp)
935 {
936         unsigned int best_num, best_diff, best_den;
937         unsigned int k;
938         struct snd_interval t;
939         int err;
940
941         best_num = best_den = best_diff = 0;
942         for (k = 0; k < rats_count; ++k) {
943                 unsigned int num;
944                 unsigned int den = rats[k].den;
945                 unsigned int q = i->min;
946                 int diff;
947                 num = mul(q, den);
948                 if (num > rats[k].num_max)
949                         continue;
950                 if (num < rats[k].num_min)
951                         num = rats[k].num_max;
952                 else {
953                         unsigned int r;
954                         r = (num - rats[k].num_min) % rats[k].num_step;
955                         if (r != 0)
956                                 num += rats[k].num_step - r;
957                 }
958                 diff = num - q * den;
959                 if (best_num == 0 ||
960                     diff * best_den < best_diff * den) {
961                         best_diff = diff;
962                         best_den = den;
963                         best_num = num;
964                 }
965         }
966         if (best_den == 0) {
967                 i->empty = 1;
968                 return -EINVAL;
969         }
970         t.min = div_down(best_num, best_den);
971         t.openmin = !!(best_num % best_den);
972         
973         best_num = best_den = best_diff = 0;
974         for (k = 0; k < rats_count; ++k) {
975                 unsigned int num;
976                 unsigned int den = rats[k].den;
977                 unsigned int q = i->max;
978                 int diff;
979                 num = mul(q, den);
980                 if (num < rats[k].num_min)
981                         continue;
982                 if (num > rats[k].num_max)
983                         num = rats[k].num_max;
984                 else {
985                         unsigned int r;
986                         r = (num - rats[k].num_min) % rats[k].num_step;
987                         if (r != 0)
988                                 num -= r;
989                 }
990                 diff = q * den - num;
991                 if (best_num == 0 ||
992                     diff * best_den < best_diff * den) {
993                         best_diff = diff;
994                         best_den = den;
995                         best_num = num;
996                 }
997         }
998         if (best_den == 0) {
999                 i->empty = 1;
1000                 return -EINVAL;
1001         }
1002         t.max = div_up(best_num, best_den);
1003         t.openmax = !!(best_num % best_den);
1004         t.integer = 0;
1005         err = snd_interval_refine(i, &t);
1006         if (err < 0)
1007                 return err;
1008
1009         if (snd_interval_single(i)) {
1010                 if (nump)
1011                         *nump = best_num;
1012                 if (denp)
1013                         *denp = best_den;
1014         }
1015         return err;
1016 }
1017
1018 /**
1019  * snd_interval_list - refine the interval value from the list
1020  * @i: the interval value to refine
1021  * @count: the number of elements in the list
1022  * @list: the value list
1023  * @mask: the bit-mask to evaluate
1024  *
1025  * Refines the interval value from the list.
1026  * When mask is non-zero, only the elements corresponding to bit 1 are
1027  * evaluated.
1028  *
1029  * Returns non-zero if the value is changed, zero if not changed.
1030  */
1031 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1032 {
1033         unsigned int k;
1034         struct snd_interval list_range;
1035
1036         if (!count) {
1037                 i->empty = 1;
1038                 return -EINVAL;
1039         }
1040         snd_interval_any(&list_range);
1041         list_range.min = UINT_MAX;
1042         list_range.max = 0;
1043         for (k = 0; k < count; k++) {
1044                 if (mask && !(mask & (1 << k)))
1045                         continue;
1046                 if (!snd_interval_test(i, list[k]))
1047                         continue;
1048                 list_range.min = min(list_range.min, list[k]);
1049                 list_range.max = max(list_range.max, list[k]);
1050         }
1051         return snd_interval_refine(i, &list_range);
1052 }
1053
1054 EXPORT_SYMBOL(snd_interval_list);
1055
1056 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1057 {
1058         unsigned int n;
1059         int changed = 0;
1060         n = (i->min - min) % step;
1061         if (n != 0 || i->openmin) {
1062                 i->min += step - n;
1063                 changed = 1;
1064         }
1065         n = (i->max - min) % step;
1066         if (n != 0 || i->openmax) {
1067                 i->max -= n;
1068                 changed = 1;
1069         }
1070         if (snd_interval_checkempty(i)) {
1071                 i->empty = 1;
1072                 return -EINVAL;
1073         }
1074         return changed;
1075 }
1076
1077 /* Info constraints helpers */
1078
1079 /**
1080  * snd_pcm_hw_rule_add - add the hw-constraint rule
1081  * @runtime: the pcm runtime instance
1082  * @cond: condition bits
1083  * @var: the variable to evaluate
1084  * @func: the evaluation function
1085  * @private: the private data pointer passed to function
1086  * @dep: the dependent variables
1087  *
1088  * Returns zero if successful, or a negative error code on failure.
1089  */
1090 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1091                         int var,
1092                         snd_pcm_hw_rule_func_t func, void *private,
1093                         int dep, ...)
1094 {
1095         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1096         struct snd_pcm_hw_rule *c;
1097         unsigned int k;
1098         va_list args;
1099         va_start(args, dep);
1100         if (constrs->rules_num >= constrs->rules_all) {
1101                 struct snd_pcm_hw_rule *new;
1102                 unsigned int new_rules = constrs->rules_all + 16;
1103                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1104                 if (!new) {
1105                         va_end(args);
1106                         return -ENOMEM;
1107                 }
1108                 if (constrs->rules) {
1109                         memcpy(new, constrs->rules,
1110                                constrs->rules_num * sizeof(*c));
1111                         kfree(constrs->rules);
1112                 }
1113                 constrs->rules = new;
1114                 constrs->rules_all = new_rules;
1115         }
1116         c = &constrs->rules[constrs->rules_num];
1117         c->cond = cond;
1118         c->func = func;
1119         c->var = var;
1120         c->private = private;
1121         k = 0;
1122         while (1) {
1123                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1124                         va_end(args);
1125                         return -EINVAL;
1126                 }
1127                 c->deps[k++] = dep;
1128                 if (dep < 0)
1129                         break;
1130                 dep = va_arg(args, int);
1131         }
1132         constrs->rules_num++;
1133         va_end(args);
1134         return 0;
1135 }
1136
1137 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1138
1139 /**
1140  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1141  * @runtime: PCM runtime instance
1142  * @var: hw_params variable to apply the mask
1143  * @mask: the bitmap mask
1144  *
1145  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1146  */
1147 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1148                                u_int32_t mask)
1149 {
1150         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151         struct snd_mask *maskp = constrs_mask(constrs, var);
1152         *maskp->bits &= mask;
1153         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1154         if (*maskp->bits == 0)
1155                 return -EINVAL;
1156         return 0;
1157 }
1158
1159 /**
1160  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1161  * @runtime: PCM runtime instance
1162  * @var: hw_params variable to apply the mask
1163  * @mask: the 64bit bitmap mask
1164  *
1165  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1166  */
1167 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1168                                  u_int64_t mask)
1169 {
1170         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171         struct snd_mask *maskp = constrs_mask(constrs, var);
1172         maskp->bits[0] &= (u_int32_t)mask;
1173         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1174         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1175         if (! maskp->bits[0] && ! maskp->bits[1])
1176                 return -EINVAL;
1177         return 0;
1178 }
1179
1180 /**
1181  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1182  * @runtime: PCM runtime instance
1183  * @var: hw_params variable to apply the integer constraint
1184  *
1185  * Apply the constraint of integer to an interval parameter.
1186  */
1187 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1188 {
1189         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1190         return snd_interval_setinteger(constrs_interval(constrs, var));
1191 }
1192
1193 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1194
1195 /**
1196  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1197  * @runtime: PCM runtime instance
1198  * @var: hw_params variable to apply the range
1199  * @min: the minimal value
1200  * @max: the maximal value
1201  * 
1202  * Apply the min/max range constraint to an interval parameter.
1203  */
1204 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1205                                  unsigned int min, unsigned int max)
1206 {
1207         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1208         struct snd_interval t;
1209         t.min = min;
1210         t.max = max;
1211         t.openmin = t.openmax = 0;
1212         t.integer = 0;
1213         return snd_interval_refine(constrs_interval(constrs, var), &t);
1214 }
1215
1216 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1217
1218 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1219                                 struct snd_pcm_hw_rule *rule)
1220 {
1221         struct snd_pcm_hw_constraint_list *list = rule->private;
1222         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1223 }               
1224
1225
1226 /**
1227  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1228  * @runtime: PCM runtime instance
1229  * @cond: condition bits
1230  * @var: hw_params variable to apply the list constraint
1231  * @l: list
1232  * 
1233  * Apply the list of constraints to an interval parameter.
1234  */
1235 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1236                                unsigned int cond,
1237                                snd_pcm_hw_param_t var,
1238                                struct snd_pcm_hw_constraint_list *l)
1239 {
1240         return snd_pcm_hw_rule_add(runtime, cond, var,
1241                                    snd_pcm_hw_rule_list, l,
1242                                    var, -1);
1243 }
1244
1245 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1246
1247 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1248                                    struct snd_pcm_hw_rule *rule)
1249 {
1250         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1251         unsigned int num = 0, den = 0;
1252         int err;
1253         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1254                                   r->nrats, r->rats, &num, &den);
1255         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1256                 params->rate_num = num;
1257                 params->rate_den = den;
1258         }
1259         return err;
1260 }
1261
1262 /**
1263  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1264  * @runtime: PCM runtime instance
1265  * @cond: condition bits
1266  * @var: hw_params variable to apply the ratnums constraint
1267  * @r: struct snd_ratnums constriants
1268  */
1269 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1270                                   unsigned int cond,
1271                                   snd_pcm_hw_param_t var,
1272                                   struct snd_pcm_hw_constraint_ratnums *r)
1273 {
1274         return snd_pcm_hw_rule_add(runtime, cond, var,
1275                                    snd_pcm_hw_rule_ratnums, r,
1276                                    var, -1);
1277 }
1278
1279 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1280
1281 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1282                                    struct snd_pcm_hw_rule *rule)
1283 {
1284         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1285         unsigned int num = 0, den = 0;
1286         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1287                                   r->nrats, r->rats, &num, &den);
1288         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1289                 params->rate_num = num;
1290                 params->rate_den = den;
1291         }
1292         return err;
1293 }
1294
1295 /**
1296  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1297  * @runtime: PCM runtime instance
1298  * @cond: condition bits
1299  * @var: hw_params variable to apply the ratdens constraint
1300  * @r: struct snd_ratdens constriants
1301  */
1302 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1303                                   unsigned int cond,
1304                                   snd_pcm_hw_param_t var,
1305                                   struct snd_pcm_hw_constraint_ratdens *r)
1306 {
1307         return snd_pcm_hw_rule_add(runtime, cond, var,
1308                                    snd_pcm_hw_rule_ratdens, r,
1309                                    var, -1);
1310 }
1311
1312 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1313
1314 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1315                                   struct snd_pcm_hw_rule *rule)
1316 {
1317         unsigned int l = (unsigned long) rule->private;
1318         int width = l & 0xffff;
1319         unsigned int msbits = l >> 16;
1320         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1321         if (snd_interval_single(i) && snd_interval_value(i) == width)
1322                 params->msbits = msbits;
1323         return 0;
1324 }
1325
1326 /**
1327  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1328  * @runtime: PCM runtime instance
1329  * @cond: condition bits
1330  * @width: sample bits width
1331  * @msbits: msbits width
1332  */
1333 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1334                                  unsigned int cond,
1335                                  unsigned int width,
1336                                  unsigned int msbits)
1337 {
1338         unsigned long l = (msbits << 16) | width;
1339         return snd_pcm_hw_rule_add(runtime, cond, -1,
1340                                     snd_pcm_hw_rule_msbits,
1341                                     (void*) l,
1342                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1343 }
1344
1345 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1346
1347 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1348                                 struct snd_pcm_hw_rule *rule)
1349 {
1350         unsigned long step = (unsigned long) rule->private;
1351         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1352 }
1353
1354 /**
1355  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1356  * @runtime: PCM runtime instance
1357  * @cond: condition bits
1358  * @var: hw_params variable to apply the step constraint
1359  * @step: step size
1360  */
1361 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1362                                unsigned int cond,
1363                                snd_pcm_hw_param_t var,
1364                                unsigned long step)
1365 {
1366         return snd_pcm_hw_rule_add(runtime, cond, var, 
1367                                    snd_pcm_hw_rule_step, (void *) step,
1368                                    var, -1);
1369 }
1370
1371 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1372
1373 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1374 {
1375         static unsigned int pow2_sizes[] = {
1376                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1377                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1378                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1379                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1380         };
1381         return snd_interval_list(hw_param_interval(params, rule->var),
1382                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1383 }               
1384
1385 /**
1386  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1387  * @runtime: PCM runtime instance
1388  * @cond: condition bits
1389  * @var: hw_params variable to apply the power-of-2 constraint
1390  */
1391 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1392                                unsigned int cond,
1393                                snd_pcm_hw_param_t var)
1394 {
1395         return snd_pcm_hw_rule_add(runtime, cond, var, 
1396                                    snd_pcm_hw_rule_pow2, NULL,
1397                                    var, -1);
1398 }
1399
1400 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1401
1402 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1403                                            struct snd_pcm_hw_rule *rule)
1404 {
1405         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1406         struct snd_interval *rate;
1407
1408         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1409         return snd_interval_list(rate, 1, &base_rate, 0);
1410 }
1411
1412 /**
1413  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1414  * @runtime: PCM runtime instance
1415  * @base_rate: the rate at which the hardware does not resample
1416  */
1417 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1418                                unsigned int base_rate)
1419 {
1420         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1421                                    SNDRV_PCM_HW_PARAM_RATE,
1422                                    snd_pcm_hw_rule_noresample_func,
1423                                    (void *)(uintptr_t)base_rate,
1424                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1425 }
1426 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1427
1428 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1429                                   snd_pcm_hw_param_t var)
1430 {
1431         if (hw_is_mask(var)) {
1432                 snd_mask_any(hw_param_mask(params, var));
1433                 params->cmask |= 1 << var;
1434                 params->rmask |= 1 << var;
1435                 return;
1436         }
1437         if (hw_is_interval(var)) {
1438                 snd_interval_any(hw_param_interval(params, var));
1439                 params->cmask |= 1 << var;
1440                 params->rmask |= 1 << var;
1441                 return;
1442         }
1443         snd_BUG();
1444 }
1445
1446 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1447 {
1448         unsigned int k;
1449         memset(params, 0, sizeof(*params));
1450         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1451                 _snd_pcm_hw_param_any(params, k);
1452         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1453                 _snd_pcm_hw_param_any(params, k);
1454         params->info = ~0U;
1455 }
1456
1457 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1458
1459 /**
1460  * snd_pcm_hw_param_value - return @params field @var value
1461  * @params: the hw_params instance
1462  * @var: parameter to retrieve
1463  * @dir: pointer to the direction (-1,0,1) or %NULL
1464  *
1465  * Return the value for field @var if it's fixed in configuration space
1466  * defined by @params. Return -%EINVAL otherwise.
1467  */
1468 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1469                            snd_pcm_hw_param_t var, int *dir)
1470 {
1471         if (hw_is_mask(var)) {
1472                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1473                 if (!snd_mask_single(mask))
1474                         return -EINVAL;
1475                 if (dir)
1476                         *dir = 0;
1477                 return snd_mask_value(mask);
1478         }
1479         if (hw_is_interval(var)) {
1480                 const struct snd_interval *i = hw_param_interval_c(params, var);
1481                 if (!snd_interval_single(i))
1482                         return -EINVAL;
1483                 if (dir)
1484                         *dir = i->openmin;
1485                 return snd_interval_value(i);
1486         }
1487         return -EINVAL;
1488 }
1489
1490 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1491
1492 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1493                                 snd_pcm_hw_param_t var)
1494 {
1495         if (hw_is_mask(var)) {
1496                 snd_mask_none(hw_param_mask(params, var));
1497                 params->cmask |= 1 << var;
1498                 params->rmask |= 1 << var;
1499         } else if (hw_is_interval(var)) {
1500                 snd_interval_none(hw_param_interval(params, var));
1501                 params->cmask |= 1 << var;
1502                 params->rmask |= 1 << var;
1503         } else {
1504                 snd_BUG();
1505         }
1506 }
1507
1508 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1509
1510 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1511                                    snd_pcm_hw_param_t var)
1512 {
1513         int changed;
1514         if (hw_is_mask(var))
1515                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1516         else if (hw_is_interval(var))
1517                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1518         else
1519                 return -EINVAL;
1520         if (changed) {
1521                 params->cmask |= 1 << var;
1522                 params->rmask |= 1 << var;
1523         }
1524         return changed;
1525 }
1526
1527
1528 /**
1529  * snd_pcm_hw_param_first - refine config space and return minimum value
1530  * @pcm: PCM instance
1531  * @params: the hw_params instance
1532  * @var: parameter to retrieve
1533  * @dir: pointer to the direction (-1,0,1) or %NULL
1534  *
1535  * Inside configuration space defined by @params remove from @var all
1536  * values > minimum. Reduce configuration space accordingly.
1537  * Return the minimum.
1538  */
1539 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1540                            struct snd_pcm_hw_params *params, 
1541                            snd_pcm_hw_param_t var, int *dir)
1542 {
1543         int changed = _snd_pcm_hw_param_first(params, var);
1544         if (changed < 0)
1545                 return changed;
1546         if (params->rmask) {
1547                 int err = snd_pcm_hw_refine(pcm, params);
1548                 if (err < 0)
1549                         return err;
1550         }
1551         return snd_pcm_hw_param_value(params, var, dir);
1552 }
1553
1554 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1555
1556 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1557                                   snd_pcm_hw_param_t var)
1558 {
1559         int changed;
1560         if (hw_is_mask(var))
1561                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1562         else if (hw_is_interval(var))
1563                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1564         else
1565                 return -EINVAL;
1566         if (changed) {
1567                 params->cmask |= 1 << var;
1568                 params->rmask |= 1 << var;
1569         }
1570         return changed;
1571 }
1572
1573
1574 /**
1575  * snd_pcm_hw_param_last - refine config space and return maximum value
1576  * @pcm: PCM instance
1577  * @params: the hw_params instance
1578  * @var: parameter to retrieve
1579  * @dir: pointer to the direction (-1,0,1) or %NULL
1580  *
1581  * Inside configuration space defined by @params remove from @var all
1582  * values < maximum. Reduce configuration space accordingly.
1583  * Return the maximum.
1584  */
1585 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1586                           struct snd_pcm_hw_params *params,
1587                           snd_pcm_hw_param_t var, int *dir)
1588 {
1589         int changed = _snd_pcm_hw_param_last(params, var);
1590         if (changed < 0)
1591                 return changed;
1592         if (params->rmask) {
1593                 int err = snd_pcm_hw_refine(pcm, params);
1594                 if (err < 0)
1595                         return err;
1596         }
1597         return snd_pcm_hw_param_value(params, var, dir);
1598 }
1599
1600 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1601
1602 /**
1603  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1604  * @pcm: PCM instance
1605  * @params: the hw_params instance
1606  *
1607  * Choose one configuration from configuration space defined by @params.
1608  * The configuration chosen is that obtained fixing in this order:
1609  * first access, first format, first subformat, min channels,
1610  * min rate, min period time, max buffer size, min tick time
1611  */
1612 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1613                              struct snd_pcm_hw_params *params)
1614 {
1615         static int vars[] = {
1616                 SNDRV_PCM_HW_PARAM_ACCESS,
1617                 SNDRV_PCM_HW_PARAM_FORMAT,
1618                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1619                 SNDRV_PCM_HW_PARAM_CHANNELS,
1620                 SNDRV_PCM_HW_PARAM_RATE,
1621                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1622                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1623                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1624                 -1
1625         };
1626         int err, *v;
1627
1628         for (v = vars; *v != -1; v++) {
1629                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1630                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1631                 else
1632                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1633                 if (snd_BUG_ON(err < 0))
1634                         return err;
1635         }
1636         return 0;
1637 }
1638
1639 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1640                                    void *arg)
1641 {
1642         struct snd_pcm_runtime *runtime = substream->runtime;
1643         unsigned long flags;
1644         snd_pcm_stream_lock_irqsave(substream, flags);
1645         if (snd_pcm_running(substream) &&
1646             snd_pcm_update_hw_ptr(substream) >= 0)
1647                 runtime->status->hw_ptr %= runtime->buffer_size;
1648         else
1649                 runtime->status->hw_ptr = 0;
1650         snd_pcm_stream_unlock_irqrestore(substream, flags);
1651         return 0;
1652 }
1653
1654 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1655                                           void *arg)
1656 {
1657         struct snd_pcm_channel_info *info = arg;
1658         struct snd_pcm_runtime *runtime = substream->runtime;
1659         int width;
1660         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1661                 info->offset = -1;
1662                 return 0;
1663         }
1664         width = snd_pcm_format_physical_width(runtime->format);
1665         if (width < 0)
1666                 return width;
1667         info->offset = 0;
1668         switch (runtime->access) {
1669         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1670         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1671                 info->first = info->channel * width;
1672                 info->step = runtime->channels * width;
1673                 break;
1674         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1675         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1676         {
1677                 size_t size = runtime->dma_bytes / runtime->channels;
1678                 info->first = info->channel * size * 8;
1679                 info->step = width;
1680                 break;
1681         }
1682         default:
1683                 snd_BUG();
1684                 break;
1685         }
1686         return 0;
1687 }
1688
1689 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1690                                        void *arg)
1691 {
1692         struct snd_pcm_hw_params *params = arg;
1693         snd_pcm_format_t format;
1694         int channels;
1695         ssize_t frame_size;
1696
1697         params->fifo_size = substream->runtime->hw.fifo_size;
1698         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1699                 format = params_format(params);
1700                 channels = params_channels(params);
1701                 frame_size = snd_pcm_format_size(format, channels);
1702                 if (frame_size > 0)
1703                         params->fifo_size /= (unsigned)frame_size;
1704         }
1705         return 0;
1706 }
1707
1708 /**
1709  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1710  * @substream: the pcm substream instance
1711  * @cmd: ioctl command
1712  * @arg: ioctl argument
1713  *
1714  * Processes the generic ioctl commands for PCM.
1715  * Can be passed as the ioctl callback for PCM ops.
1716  *
1717  * Returns zero if successful, or a negative error code on failure.
1718  */
1719 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1720                       unsigned int cmd, void *arg)
1721 {
1722         switch (cmd) {
1723         case SNDRV_PCM_IOCTL1_INFO:
1724                 return 0;
1725         case SNDRV_PCM_IOCTL1_RESET:
1726                 return snd_pcm_lib_ioctl_reset(substream, arg);
1727         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1728                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1729         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1730                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1731         }
1732         return -ENXIO;
1733 }
1734
1735 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1736
1737 /**
1738  * snd_pcm_period_elapsed - update the pcm status for the next period
1739  * @substream: the pcm substream instance
1740  *
1741  * This function is called from the interrupt handler when the
1742  * PCM has processed the period size.  It will update the current
1743  * pointer, wake up sleepers, etc.
1744  *
1745  * Even if more than one periods have elapsed since the last call, you
1746  * have to call this only once.
1747  */
1748 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1749 {
1750         struct snd_pcm_runtime *runtime;
1751         unsigned long flags;
1752
1753         if (PCM_RUNTIME_CHECK(substream))
1754                 return;
1755         runtime = substream->runtime;
1756
1757         if (runtime->transfer_ack_begin)
1758                 runtime->transfer_ack_begin(substream);
1759
1760         snd_pcm_stream_lock_irqsave(substream, flags);
1761         if (!snd_pcm_running(substream) ||
1762             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1763                 goto _end;
1764
1765         if (substream->timer_running)
1766                 snd_timer_interrupt(substream->timer, 1);
1767  _end:
1768         if (runtime->transfer_ack_end)
1769                 runtime->transfer_ack_end(substream);
1770         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1771         snd_pcm_stream_unlock_irqrestore(substream, flags);
1772 }
1773
1774 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1775
1776 /*
1777  * Wait until avail_min data becomes available
1778  * Returns a negative error code if any error occurs during operation.
1779  * The available space is stored on availp.  When err = 0 and avail = 0
1780  * on the capture stream, it indicates the stream is in DRAINING state.
1781  */
1782 static int wait_for_avail(struct snd_pcm_substream *substream,
1783                               snd_pcm_uframes_t *availp)
1784 {
1785         struct snd_pcm_runtime *runtime = substream->runtime;
1786         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1787         wait_queue_t wait;
1788         int err = 0;
1789         snd_pcm_uframes_t avail = 0;
1790         long wait_time, tout;
1791
1792         init_waitqueue_entry(&wait, current);
1793         set_current_state(TASK_INTERRUPTIBLE);
1794         add_wait_queue(&runtime->tsleep, &wait);
1795
1796         if (runtime->no_period_wakeup)
1797                 wait_time = MAX_SCHEDULE_TIMEOUT;
1798         else {
1799                 wait_time = 10;
1800                 if (runtime->rate) {
1801                         long t = runtime->period_size * 2 / runtime->rate;
1802                         wait_time = max(t, wait_time);
1803                 }
1804                 wait_time = msecs_to_jiffies(wait_time * 1000);
1805         }
1806
1807         for (;;) {
1808                 if (signal_pending(current)) {
1809                         err = -ERESTARTSYS;
1810                         break;
1811                 }
1812
1813                 /*
1814                  * We need to check if space became available already
1815                  * (and thus the wakeup happened already) first to close
1816                  * the race of space already having become available.
1817                  * This check must happen after been added to the waitqueue
1818                  * and having current state be INTERRUPTIBLE.
1819                  */
1820                 if (is_playback)
1821                         avail = snd_pcm_playback_avail(runtime);
1822                 else
1823                         avail = snd_pcm_capture_avail(runtime);
1824                 if (avail >= runtime->twake)
1825                         break;
1826                 snd_pcm_stream_unlock_irq(substream);
1827
1828                 tout = schedule_timeout(wait_time);
1829
1830                 snd_pcm_stream_lock_irq(substream);
1831                 set_current_state(TASK_INTERRUPTIBLE);
1832                 switch (runtime->status->state) {
1833                 case SNDRV_PCM_STATE_SUSPENDED:
1834                         err = -ESTRPIPE;
1835                         goto _endloop;
1836                 case SNDRV_PCM_STATE_XRUN:
1837                         err = -EPIPE;
1838                         goto _endloop;
1839                 case SNDRV_PCM_STATE_DRAINING:
1840                         if (is_playback)
1841                                 err = -EPIPE;
1842                         else 
1843                                 avail = 0; /* indicate draining */
1844                         goto _endloop;
1845                 case SNDRV_PCM_STATE_OPEN:
1846                 case SNDRV_PCM_STATE_SETUP:
1847                 case SNDRV_PCM_STATE_DISCONNECTED:
1848                         err = -EBADFD;
1849                         goto _endloop;
1850                 case SNDRV_PCM_STATE_PAUSED:
1851                         continue;
1852                 }
1853                 if (!tout) {
1854                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1855                                    is_playback ? "playback" : "capture");
1856                         err = -EIO;
1857                         break;
1858                 }
1859         }
1860  _endloop:
1861         set_current_state(TASK_RUNNING);
1862         remove_wait_queue(&runtime->tsleep, &wait);
1863         *availp = avail;
1864         return err;
1865 }
1866         
1867 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1868                                       unsigned int hwoff,
1869                                       unsigned long data, unsigned int off,
1870                                       snd_pcm_uframes_t frames)
1871 {
1872         struct snd_pcm_runtime *runtime = substream->runtime;
1873         int err;
1874         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1875         if (substream->ops->copy) {
1876                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1877                         return err;
1878         } else {
1879                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1880                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1881                         return -EFAULT;
1882         }
1883         return 0;
1884 }
1885  
1886 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1887                           unsigned long data, unsigned int off,
1888                           snd_pcm_uframes_t size);
1889
1890 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1891                                             unsigned long data,
1892                                             snd_pcm_uframes_t size,
1893                                             int nonblock,
1894                                             transfer_f transfer)
1895 {
1896         struct snd_pcm_runtime *runtime = substream->runtime;
1897         snd_pcm_uframes_t xfer = 0;
1898         snd_pcm_uframes_t offset = 0;
1899         int err = 0;
1900
1901         if (size == 0)
1902                 return 0;
1903
1904         snd_pcm_stream_lock_irq(substream);
1905         switch (runtime->status->state) {
1906         case SNDRV_PCM_STATE_PREPARED:
1907         case SNDRV_PCM_STATE_RUNNING:
1908         case SNDRV_PCM_STATE_PAUSED:
1909                 break;
1910         case SNDRV_PCM_STATE_XRUN:
1911                 err = -EPIPE;
1912                 goto _end_unlock;
1913         case SNDRV_PCM_STATE_SUSPENDED:
1914                 err = -ESTRPIPE;
1915                 goto _end_unlock;
1916         default:
1917                 err = -EBADFD;
1918                 goto _end_unlock;
1919         }
1920
1921         runtime->twake = runtime->control->avail_min ? : 1;
1922         while (size > 0) {
1923                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1924                 snd_pcm_uframes_t avail;
1925                 snd_pcm_uframes_t cont;
1926                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1927                         snd_pcm_update_hw_ptr(substream);
1928                 avail = snd_pcm_playback_avail(runtime);
1929                 if (!avail) {
1930                         if (nonblock) {
1931                                 err = -EAGAIN;
1932                                 goto _end_unlock;
1933                         }
1934                         runtime->twake = min_t(snd_pcm_uframes_t, size,
1935                                         runtime->control->avail_min ? : 1);
1936                         err = wait_for_avail(substream, &avail);
1937                         if (err < 0)
1938                                 goto _end_unlock;
1939                 }
1940                 frames = size > avail ? avail : size;
1941                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1942                 if (frames > cont)
1943                         frames = cont;
1944                 if (snd_BUG_ON(!frames)) {
1945                         runtime->twake = 0;
1946                         snd_pcm_stream_unlock_irq(substream);
1947                         return -EINVAL;
1948                 }
1949                 appl_ptr = runtime->control->appl_ptr;
1950                 appl_ofs = appl_ptr % runtime->buffer_size;
1951                 snd_pcm_stream_unlock_irq(substream);
1952                 err = transfer(substream, appl_ofs, data, offset, frames);
1953                 snd_pcm_stream_lock_irq(substream);
1954                 if (err < 0)
1955                         goto _end_unlock;
1956                 switch (runtime->status->state) {
1957                 case SNDRV_PCM_STATE_XRUN:
1958                         err = -EPIPE;
1959                         goto _end_unlock;
1960                 case SNDRV_PCM_STATE_SUSPENDED:
1961                         err = -ESTRPIPE;
1962                         goto _end_unlock;
1963                 default:
1964                         break;
1965                 }
1966                 appl_ptr += frames;
1967                 if (appl_ptr >= runtime->boundary)
1968                         appl_ptr -= runtime->boundary;
1969                 runtime->control->appl_ptr = appl_ptr;
1970                 if (substream->ops->ack)
1971                         substream->ops->ack(substream);
1972
1973                 offset += frames;
1974                 size -= frames;
1975                 xfer += frames;
1976                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1977                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1978                         err = snd_pcm_start(substream);
1979                         if (err < 0)
1980                                 goto _end_unlock;
1981                 }
1982         }
1983  _end_unlock:
1984         runtime->twake = 0;
1985         if (xfer > 0 && err >= 0)
1986                 snd_pcm_update_state(substream, runtime);
1987         snd_pcm_stream_unlock_irq(substream);
1988         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1989 }
1990
1991 /* sanity-check for read/write methods */
1992 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1993 {
1994         struct snd_pcm_runtime *runtime;
1995         if (PCM_RUNTIME_CHECK(substream))
1996                 return -ENXIO;
1997         runtime = substream->runtime;
1998         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1999                 return -EINVAL;
2000         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2001                 return -EBADFD;
2002         return 0;
2003 }
2004
2005 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2006 {
2007         struct snd_pcm_runtime *runtime;
2008         int nonblock;
2009         int err;
2010
2011         err = pcm_sanity_check(substream);
2012         if (err < 0)
2013                 return err;
2014         runtime = substream->runtime;
2015         nonblock = !!(substream->f_flags & O_NONBLOCK);
2016
2017         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2018             runtime->channels > 1)
2019                 return -EINVAL;
2020         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2021                                   snd_pcm_lib_write_transfer);
2022 }
2023
2024 EXPORT_SYMBOL(snd_pcm_lib_write);
2025
2026 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2027                                        unsigned int hwoff,
2028                                        unsigned long data, unsigned int off,
2029                                        snd_pcm_uframes_t frames)
2030 {
2031         struct snd_pcm_runtime *runtime = substream->runtime;
2032         int err;
2033         void __user **bufs = (void __user **)data;
2034         int channels = runtime->channels;
2035         int c;
2036         if (substream->ops->copy) {
2037                 if (snd_BUG_ON(!substream->ops->silence))
2038                         return -EINVAL;
2039                 for (c = 0; c < channels; ++c, ++bufs) {
2040                         if (*bufs == NULL) {
2041                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2042                                         return err;
2043                         } else {
2044                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2045                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2046                                         return err;
2047                         }
2048                 }
2049         } else {
2050                 /* default transfer behaviour */
2051                 size_t dma_csize = runtime->dma_bytes / channels;
2052                 for (c = 0; c < channels; ++c, ++bufs) {
2053                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2054                         if (*bufs == NULL) {
2055                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2056                         } else {
2057                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2058                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2059                                         return -EFAULT;
2060                         }
2061                 }
2062         }
2063         return 0;
2064 }
2065  
2066 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2067                                      void __user **bufs,
2068                                      snd_pcm_uframes_t frames)
2069 {
2070         struct snd_pcm_runtime *runtime;
2071         int nonblock;
2072         int err;
2073
2074         err = pcm_sanity_check(substream);
2075         if (err < 0)
2076                 return err;
2077         runtime = substream->runtime;
2078         nonblock = !!(substream->f_flags & O_NONBLOCK);
2079
2080         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2081                 return -EINVAL;
2082         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2083                                   nonblock, snd_pcm_lib_writev_transfer);
2084 }
2085
2086 EXPORT_SYMBOL(snd_pcm_lib_writev);
2087
2088 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2089                                      unsigned int hwoff,
2090                                      unsigned long data, unsigned int off,
2091                                      snd_pcm_uframes_t frames)
2092 {
2093         struct snd_pcm_runtime *runtime = substream->runtime;
2094         int err;
2095         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2096         if (substream->ops->copy) {
2097                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2098                         return err;
2099         } else {
2100                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2101                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2102                         return -EFAULT;
2103         }
2104         return 0;
2105 }
2106
2107 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2108                                            unsigned long data,
2109                                            snd_pcm_uframes_t size,
2110                                            int nonblock,
2111                                            transfer_f transfer)
2112 {
2113         struct snd_pcm_runtime *runtime = substream->runtime;
2114         snd_pcm_uframes_t xfer = 0;
2115         snd_pcm_uframes_t offset = 0;
2116         int err = 0;
2117
2118         if (size == 0)
2119                 return 0;
2120
2121         snd_pcm_stream_lock_irq(substream);
2122         switch (runtime->status->state) {
2123         case SNDRV_PCM_STATE_PREPARED:
2124                 if (size >= runtime->start_threshold) {
2125                         err = snd_pcm_start(substream);
2126                         if (err < 0)
2127                                 goto _end_unlock;
2128                 }
2129                 break;
2130         case SNDRV_PCM_STATE_DRAINING:
2131         case SNDRV_PCM_STATE_RUNNING:
2132         case SNDRV_PCM_STATE_PAUSED:
2133                 break;
2134         case SNDRV_PCM_STATE_XRUN:
2135                 err = -EPIPE;
2136                 goto _end_unlock;
2137         case SNDRV_PCM_STATE_SUSPENDED:
2138                 err = -ESTRPIPE;
2139                 goto _end_unlock;
2140         default:
2141                 err = -EBADFD;
2142                 goto _end_unlock;
2143         }
2144
2145         runtime->twake = runtime->control->avail_min ? : 1;
2146         while (size > 0) {
2147                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2148                 snd_pcm_uframes_t avail;
2149                 snd_pcm_uframes_t cont;
2150                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2151                         snd_pcm_update_hw_ptr(substream);
2152                 avail = snd_pcm_capture_avail(runtime);
2153                 if (!avail) {
2154                         if (runtime->status->state ==
2155                             SNDRV_PCM_STATE_DRAINING) {
2156                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2157                                 goto _end_unlock;
2158                         }
2159                         if (nonblock) {
2160                                 err = -EAGAIN;
2161                                 goto _end_unlock;
2162                         }
2163                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2164                                         runtime->control->avail_min ? : 1);
2165                         err = wait_for_avail(substream, &avail);
2166                         if (err < 0)
2167                                 goto _end_unlock;
2168                         if (!avail)
2169                                 continue; /* draining */
2170                 }
2171                 frames = size > avail ? avail : size;
2172                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2173                 if (frames > cont)
2174                         frames = cont;
2175                 if (snd_BUG_ON(!frames)) {
2176                         runtime->twake = 0;
2177                         snd_pcm_stream_unlock_irq(substream);
2178                         return -EINVAL;
2179                 }
2180                 appl_ptr = runtime->control->appl_ptr;
2181                 appl_ofs = appl_ptr % runtime->buffer_size;
2182                 snd_pcm_stream_unlock_irq(substream);
2183                 err = transfer(substream, appl_ofs, data, offset, frames);
2184                 snd_pcm_stream_lock_irq(substream);
2185                 if (err < 0)
2186                         goto _end_unlock;
2187                 switch (runtime->status->state) {
2188                 case SNDRV_PCM_STATE_XRUN:
2189                         err = -EPIPE;
2190                         goto _end_unlock;
2191                 case SNDRV_PCM_STATE_SUSPENDED:
2192                         err = -ESTRPIPE;
2193                         goto _end_unlock;
2194                 default:
2195                         break;
2196                 }
2197                 appl_ptr += frames;
2198                 if (appl_ptr >= runtime->boundary)
2199                         appl_ptr -= runtime->boundary;
2200                 runtime->control->appl_ptr = appl_ptr;
2201                 if (substream->ops->ack)
2202                         substream->ops->ack(substream);
2203
2204                 offset += frames;
2205                 size -= frames;
2206                 xfer += frames;
2207         }
2208  _end_unlock:
2209         runtime->twake = 0;
2210         if (xfer > 0 && err >= 0)
2211                 snd_pcm_update_state(substream, runtime);
2212         snd_pcm_stream_unlock_irq(substream);
2213         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2214 }
2215
2216 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2217 {
2218         struct snd_pcm_runtime *runtime;
2219         int nonblock;
2220         int err;
2221         
2222         err = pcm_sanity_check(substream);
2223         if (err < 0)
2224                 return err;
2225         runtime = substream->runtime;
2226         nonblock = !!(substream->f_flags & O_NONBLOCK);
2227         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2228                 return -EINVAL;
2229         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2230 }
2231
2232 EXPORT_SYMBOL(snd_pcm_lib_read);
2233
2234 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2235                                       unsigned int hwoff,
2236                                       unsigned long data, unsigned int off,
2237                                       snd_pcm_uframes_t frames)
2238 {
2239         struct snd_pcm_runtime *runtime = substream->runtime;
2240         int err;
2241         void __user **bufs = (void __user **)data;
2242         int channels = runtime->channels;
2243         int c;
2244         if (substream->ops->copy) {
2245                 for (c = 0; c < channels; ++c, ++bufs) {
2246                         char __user *buf;
2247                         if (*bufs == NULL)
2248                                 continue;
2249                         buf = *bufs + samples_to_bytes(runtime, off);
2250                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2251                                 return err;
2252                 }
2253         } else {
2254                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2255                 for (c = 0; c < channels; ++c, ++bufs) {
2256                         char *hwbuf;
2257                         char __user *buf;
2258                         if (*bufs == NULL)
2259                                 continue;
2260
2261                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2262                         buf = *bufs + samples_to_bytes(runtime, off);
2263                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2264                                 return -EFAULT;
2265                 }
2266         }
2267         return 0;
2268 }
2269  
2270 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2271                                     void __user **bufs,
2272                                     snd_pcm_uframes_t frames)
2273 {
2274         struct snd_pcm_runtime *runtime;
2275         int nonblock;
2276         int err;
2277
2278         err = pcm_sanity_check(substream);
2279         if (err < 0)
2280                 return err;
2281         runtime = substream->runtime;
2282         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2283                 return -EBADFD;
2284
2285         nonblock = !!(substream->f_flags & O_NONBLOCK);
2286         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2287                 return -EINVAL;
2288         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2289 }
2290
2291 EXPORT_SYMBOL(snd_pcm_lib_readv);