md: Fix "strchr" [drivers/md/dm-log-userspace.ko] undefined!
[pandora-kernel.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163         struct cred *cred = (struct cred *) current->real_cred;
164         struct task_security_struct *tsec;
165
166         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167         if (!tsec)
168                 panic("SELinux:  Failed to initialize initial task.\n");
169
170         tsec->osid = tsec->sid = SECINITSID_KERNEL;
171         cred->security = tsec;
172 }
173
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179         const struct task_security_struct *tsec;
180
181         tsec = cred->security;
182         return tsec->sid;
183 }
184
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190         u32 sid;
191
192         rcu_read_lock();
193         sid = cred_sid(__task_cred(task));
194         rcu_read_unlock();
195         return sid;
196 }
197
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203         const struct task_security_struct *tsec = current_cred()->security;
204
205         return tsec->sid;
206 }
207
208 /* Allocate and free functions for each kind of security blob. */
209
210 static int inode_alloc_security(struct inode *inode)
211 {
212         struct inode_security_struct *isec;
213         u32 sid = current_sid();
214
215         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216         if (!isec)
217                 return -ENOMEM;
218
219         mutex_init(&isec->lock);
220         INIT_LIST_HEAD(&isec->list);
221         isec->inode = inode;
222         isec->sid = SECINITSID_UNLABELED;
223         isec->sclass = SECCLASS_FILE;
224         isec->task_sid = sid;
225         inode->i_security = isec;
226
227         return 0;
228 }
229
230 static void inode_free_security(struct inode *inode)
231 {
232         struct inode_security_struct *isec = inode->i_security;
233         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234
235         spin_lock(&sbsec->isec_lock);
236         if (!list_empty(&isec->list))
237                 list_del_init(&isec->list);
238         spin_unlock(&sbsec->isec_lock);
239
240         inode->i_security = NULL;
241         kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static int file_alloc_security(struct file *file)
245 {
246         struct file_security_struct *fsec;
247         u32 sid = current_sid();
248
249         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250         if (!fsec)
251                 return -ENOMEM;
252
253         fsec->sid = sid;
254         fsec->fown_sid = sid;
255         file->f_security = fsec;
256
257         return 0;
258 }
259
260 static void file_free_security(struct file *file)
261 {
262         struct file_security_struct *fsec = file->f_security;
263         file->f_security = NULL;
264         kfree(fsec);
265 }
266
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269         struct superblock_security_struct *sbsec;
270
271         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272         if (!sbsec)
273                 return -ENOMEM;
274
275         mutex_init(&sbsec->lock);
276         INIT_LIST_HEAD(&sbsec->list);
277         INIT_LIST_HEAD(&sbsec->isec_head);
278         spin_lock_init(&sbsec->isec_lock);
279         sbsec->sb = sb;
280         sbsec->sid = SECINITSID_UNLABELED;
281         sbsec->def_sid = SECINITSID_FILE;
282         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283         sb->s_security = sbsec;
284
285         return 0;
286 }
287
288 static void superblock_free_security(struct super_block *sb)
289 {
290         struct superblock_security_struct *sbsec = sb->s_security;
291
292         spin_lock(&sb_security_lock);
293         if (!list_empty(&sbsec->list))
294                 list_del_init(&sbsec->list);
295         spin_unlock(&sb_security_lock);
296
297         sb->s_security = NULL;
298         kfree(sbsec);
299 }
300
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303         struct sk_security_struct *ssec;
304
305         ssec = kzalloc(sizeof(*ssec), priority);
306         if (!ssec)
307                 return -ENOMEM;
308
309         ssec->peer_sid = SECINITSID_UNLABELED;
310         ssec->sid = SECINITSID_UNLABELED;
311         sk->sk_security = ssec;
312
313         selinux_netlbl_sk_security_reset(ssec);
314
315         return 0;
316 }
317
318 static void sk_free_security(struct sock *sk)
319 {
320         struct sk_security_struct *ssec = sk->sk_security;
321
322         sk->sk_security = NULL;
323         selinux_netlbl_sk_security_free(ssec);
324         kfree(ssec);
325 }
326
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330
331 /* The file system's label must be initialized prior to use. */
332
333 static char *labeling_behaviors[6] = {
334         "uses xattr",
335         "uses transition SIDs",
336         "uses task SIDs",
337         "uses genfs_contexts",
338         "not configured for labeling",
339         "uses mountpoint labeling",
340 };
341
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343
344 static inline int inode_doinit(struct inode *inode)
345 {
346         return inode_doinit_with_dentry(inode, NULL);
347 }
348
349 enum {
350         Opt_error = -1,
351         Opt_context = 1,
352         Opt_fscontext = 2,
353         Opt_defcontext = 3,
354         Opt_rootcontext = 4,
355         Opt_labelsupport = 5,
356 };
357
358 static const match_table_t tokens = {
359         {Opt_context, CONTEXT_STR "%s"},
360         {Opt_fscontext, FSCONTEXT_STR "%s"},
361         {Opt_defcontext, DEFCONTEXT_STR "%s"},
362         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363         {Opt_labelsupport, LABELSUPP_STR},
364         {Opt_error, NULL},
365 };
366
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368
369 static int may_context_mount_sb_relabel(u32 sid,
370                         struct superblock_security_struct *sbsec,
371                         const struct cred *cred)
372 {
373         const struct task_security_struct *tsec = cred->security;
374         int rc;
375
376         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377                           FILESYSTEM__RELABELFROM, NULL);
378         if (rc)
379                 return rc;
380
381         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382                           FILESYSTEM__RELABELTO, NULL);
383         return rc;
384 }
385
386 static int may_context_mount_inode_relabel(u32 sid,
387                         struct superblock_security_struct *sbsec,
388                         const struct cred *cred)
389 {
390         const struct task_security_struct *tsec = cred->security;
391         int rc;
392         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393                           FILESYSTEM__RELABELFROM, NULL);
394         if (rc)
395                 return rc;
396
397         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398                           FILESYSTEM__ASSOCIATE, NULL);
399         return rc;
400 }
401
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404         struct superblock_security_struct *sbsec = sb->s_security;
405         struct dentry *root = sb->s_root;
406         struct inode *root_inode = root->d_inode;
407         int rc = 0;
408
409         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410                 /* Make sure that the xattr handler exists and that no
411                    error other than -ENODATA is returned by getxattr on
412                    the root directory.  -ENODATA is ok, as this may be
413                    the first boot of the SELinux kernel before we have
414                    assigned xattr values to the filesystem. */
415                 if (!root_inode->i_op->getxattr) {
416                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417                                "xattr support\n", sb->s_id, sb->s_type->name);
418                         rc = -EOPNOTSUPP;
419                         goto out;
420                 }
421                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422                 if (rc < 0 && rc != -ENODATA) {
423                         if (rc == -EOPNOTSUPP)
424                                 printk(KERN_WARNING "SELinux: (dev %s, type "
425                                        "%s) has no security xattr handler\n",
426                                        sb->s_id, sb->s_type->name);
427                         else
428                                 printk(KERN_WARNING "SELinux: (dev %s, type "
429                                        "%s) getxattr errno %d\n", sb->s_id,
430                                        sb->s_type->name, -rc);
431                         goto out;
432                 }
433         }
434
435         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436
437         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439                        sb->s_id, sb->s_type->name);
440         else
441                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442                        sb->s_id, sb->s_type->name,
443                        labeling_behaviors[sbsec->behavior-1]);
444
445         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447             sbsec->behavior == SECURITY_FS_USE_NONE ||
448             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449                 sbsec->flags &= ~SE_SBLABELSUPP;
450
451         /* Initialize the root inode. */
452         rc = inode_doinit_with_dentry(root_inode, root);
453
454         /* Initialize any other inodes associated with the superblock, e.g.
455            inodes created prior to initial policy load or inodes created
456            during get_sb by a pseudo filesystem that directly
457            populates itself. */
458         spin_lock(&sbsec->isec_lock);
459 next_inode:
460         if (!list_empty(&sbsec->isec_head)) {
461                 struct inode_security_struct *isec =
462                                 list_entry(sbsec->isec_head.next,
463                                            struct inode_security_struct, list);
464                 struct inode *inode = isec->inode;
465                 spin_unlock(&sbsec->isec_lock);
466                 inode = igrab(inode);
467                 if (inode) {
468                         if (!IS_PRIVATE(inode))
469                                 inode_doinit(inode);
470                         iput(inode);
471                 }
472                 spin_lock(&sbsec->isec_lock);
473                 list_del_init(&isec->list);
474                 goto next_inode;
475         }
476         spin_unlock(&sbsec->isec_lock);
477 out:
478         return rc;
479 }
480
481 /*
482  * This function should allow an FS to ask what it's mount security
483  * options were so it can use those later for submounts, displaying
484  * mount options, or whatever.
485  */
486 static int selinux_get_mnt_opts(const struct super_block *sb,
487                                 struct security_mnt_opts *opts)
488 {
489         int rc = 0, i;
490         struct superblock_security_struct *sbsec = sb->s_security;
491         char *context = NULL;
492         u32 len;
493         char tmp;
494
495         security_init_mnt_opts(opts);
496
497         if (!(sbsec->flags & SE_SBINITIALIZED))
498                 return -EINVAL;
499
500         if (!ss_initialized)
501                 return -EINVAL;
502
503         tmp = sbsec->flags & SE_MNTMASK;
504         /* count the number of mount options for this sb */
505         for (i = 0; i < 8; i++) {
506                 if (tmp & 0x01)
507                         opts->num_mnt_opts++;
508                 tmp >>= 1;
509         }
510         /* Check if the Label support flag is set */
511         if (sbsec->flags & SE_SBLABELSUPP)
512                 opts->num_mnt_opts++;
513
514         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
515         if (!opts->mnt_opts) {
516                 rc = -ENOMEM;
517                 goto out_free;
518         }
519
520         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
521         if (!opts->mnt_opts_flags) {
522                 rc = -ENOMEM;
523                 goto out_free;
524         }
525
526         i = 0;
527         if (sbsec->flags & FSCONTEXT_MNT) {
528                 rc = security_sid_to_context(sbsec->sid, &context, &len);
529                 if (rc)
530                         goto out_free;
531                 opts->mnt_opts[i] = context;
532                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
533         }
534         if (sbsec->flags & CONTEXT_MNT) {
535                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
536                 if (rc)
537                         goto out_free;
538                 opts->mnt_opts[i] = context;
539                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
540         }
541         if (sbsec->flags & DEFCONTEXT_MNT) {
542                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
543                 if (rc)
544                         goto out_free;
545                 opts->mnt_opts[i] = context;
546                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
547         }
548         if (sbsec->flags & ROOTCONTEXT_MNT) {
549                 struct inode *root = sbsec->sb->s_root->d_inode;
550                 struct inode_security_struct *isec = root->i_security;
551
552                 rc = security_sid_to_context(isec->sid, &context, &len);
553                 if (rc)
554                         goto out_free;
555                 opts->mnt_opts[i] = context;
556                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
557         }
558         if (sbsec->flags & SE_SBLABELSUPP) {
559                 opts->mnt_opts[i] = NULL;
560                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
561         }
562
563         BUG_ON(i != opts->num_mnt_opts);
564
565         return 0;
566
567 out_free:
568         security_free_mnt_opts(opts);
569         return rc;
570 }
571
572 static int bad_option(struct superblock_security_struct *sbsec, char flag,
573                       u32 old_sid, u32 new_sid)
574 {
575         char mnt_flags = sbsec->flags & SE_MNTMASK;
576
577         /* check if the old mount command had the same options */
578         if (sbsec->flags & SE_SBINITIALIZED)
579                 if (!(sbsec->flags & flag) ||
580                     (old_sid != new_sid))
581                         return 1;
582
583         /* check if we were passed the same options twice,
584          * aka someone passed context=a,context=b
585          */
586         if (!(sbsec->flags & SE_SBINITIALIZED))
587                 if (mnt_flags & flag)
588                         return 1;
589         return 0;
590 }
591
592 /*
593  * Allow filesystems with binary mount data to explicitly set mount point
594  * labeling information.
595  */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597                                 struct security_mnt_opts *opts)
598 {
599         const struct cred *cred = current_cred();
600         int rc = 0, i;
601         struct superblock_security_struct *sbsec = sb->s_security;
602         const char *name = sb->s_type->name;
603         struct inode *inode = sbsec->sb->s_root->d_inode;
604         struct inode_security_struct *root_isec = inode->i_security;
605         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606         u32 defcontext_sid = 0;
607         char **mount_options = opts->mnt_opts;
608         int *flags = opts->mnt_opts_flags;
609         int num_opts = opts->num_mnt_opts;
610
611         mutex_lock(&sbsec->lock);
612
613         if (!ss_initialized) {
614                 if (!num_opts) {
615                         /* Defer initialization until selinux_complete_init,
616                            after the initial policy is loaded and the security
617                            server is ready to handle calls. */
618                         spin_lock(&sb_security_lock);
619                         if (list_empty(&sbsec->list))
620                                 list_add(&sbsec->list, &superblock_security_head);
621                         spin_unlock(&sb_security_lock);
622                         goto out;
623                 }
624                 rc = -EINVAL;
625                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
626                         "before the security server is initialized\n");
627                 goto out;
628         }
629
630         /*
631          * Binary mount data FS will come through this function twice.  Once
632          * from an explicit call and once from the generic calls from the vfs.
633          * Since the generic VFS calls will not contain any security mount data
634          * we need to skip the double mount verification.
635          *
636          * This does open a hole in which we will not notice if the first
637          * mount using this sb set explict options and a second mount using
638          * this sb does not set any security options.  (The first options
639          * will be used for both mounts)
640          */
641         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642             && (num_opts == 0))
643                 goto out;
644
645         /*
646          * parse the mount options, check if they are valid sids.
647          * also check if someone is trying to mount the same sb more
648          * than once with different security options.
649          */
650         for (i = 0; i < num_opts; i++) {
651                 u32 sid;
652
653                 if (flags[i] == SE_SBLABELSUPP)
654                         continue;
655                 rc = security_context_to_sid(mount_options[i],
656                                              strlen(mount_options[i]), &sid);
657                 if (rc) {
658                         printk(KERN_WARNING "SELinux: security_context_to_sid"
659                                "(%s) failed for (dev %s, type %s) errno=%d\n",
660                                mount_options[i], sb->s_id, name, rc);
661                         goto out;
662                 }
663                 switch (flags[i]) {
664                 case FSCONTEXT_MNT:
665                         fscontext_sid = sid;
666
667                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
668                                         fscontext_sid))
669                                 goto out_double_mount;
670
671                         sbsec->flags |= FSCONTEXT_MNT;
672                         break;
673                 case CONTEXT_MNT:
674                         context_sid = sid;
675
676                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
677                                         context_sid))
678                                 goto out_double_mount;
679
680                         sbsec->flags |= CONTEXT_MNT;
681                         break;
682                 case ROOTCONTEXT_MNT:
683                         rootcontext_sid = sid;
684
685                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
686                                         rootcontext_sid))
687                                 goto out_double_mount;
688
689                         sbsec->flags |= ROOTCONTEXT_MNT;
690
691                         break;
692                 case DEFCONTEXT_MNT:
693                         defcontext_sid = sid;
694
695                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
696                                         defcontext_sid))
697                                 goto out_double_mount;
698
699                         sbsec->flags |= DEFCONTEXT_MNT;
700
701                         break;
702                 default:
703                         rc = -EINVAL;
704                         goto out;
705                 }
706         }
707
708         if (sbsec->flags & SE_SBINITIALIZED) {
709                 /* previously mounted with options, but not on this attempt? */
710                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
711                         goto out_double_mount;
712                 rc = 0;
713                 goto out;
714         }
715
716         if (strcmp(sb->s_type->name, "proc") == 0)
717                 sbsec->flags |= SE_SBPROC;
718
719         /* Determine the labeling behavior to use for this filesystem type. */
720         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
721         if (rc) {
722                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
723                        __func__, sb->s_type->name, rc);
724                 goto out;
725         }
726
727         /* sets the context of the superblock for the fs being mounted. */
728         if (fscontext_sid) {
729                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
730                 if (rc)
731                         goto out;
732
733                 sbsec->sid = fscontext_sid;
734         }
735
736         /*
737          * Switch to using mount point labeling behavior.
738          * sets the label used on all file below the mountpoint, and will set
739          * the superblock context if not already set.
740          */
741         if (context_sid) {
742                 if (!fscontext_sid) {
743                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
744                                                           cred);
745                         if (rc)
746                                 goto out;
747                         sbsec->sid = context_sid;
748                 } else {
749                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
750                                                              cred);
751                         if (rc)
752                                 goto out;
753                 }
754                 if (!rootcontext_sid)
755                         rootcontext_sid = context_sid;
756
757                 sbsec->mntpoint_sid = context_sid;
758                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
759         }
760
761         if (rootcontext_sid) {
762                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
763                                                      cred);
764                 if (rc)
765                         goto out;
766
767                 root_isec->sid = rootcontext_sid;
768                 root_isec->initialized = 1;
769         }
770
771         if (defcontext_sid) {
772                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
773                         rc = -EINVAL;
774                         printk(KERN_WARNING "SELinux: defcontext option is "
775                                "invalid for this filesystem type\n");
776                         goto out;
777                 }
778
779                 if (defcontext_sid != sbsec->def_sid) {
780                         rc = may_context_mount_inode_relabel(defcontext_sid,
781                                                              sbsec, cred);
782                         if (rc)
783                                 goto out;
784                 }
785
786                 sbsec->def_sid = defcontext_sid;
787         }
788
789         rc = sb_finish_set_opts(sb);
790 out:
791         mutex_unlock(&sbsec->lock);
792         return rc;
793 out_double_mount:
794         rc = -EINVAL;
795         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
796                "security settings for (dev %s, type %s)\n", sb->s_id, name);
797         goto out;
798 }
799
800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
801                                         struct super_block *newsb)
802 {
803         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
804         struct superblock_security_struct *newsbsec = newsb->s_security;
805
806         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
807         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
808         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
809
810         /*
811          * if the parent was able to be mounted it clearly had no special lsm
812          * mount options.  thus we can safely put this sb on the list and deal
813          * with it later
814          */
815         if (!ss_initialized) {
816                 spin_lock(&sb_security_lock);
817                 if (list_empty(&newsbsec->list))
818                         list_add(&newsbsec->list, &superblock_security_head);
819                 spin_unlock(&sb_security_lock);
820                 return;
821         }
822
823         /* how can we clone if the old one wasn't set up?? */
824         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
825
826         /* if fs is reusing a sb, just let its options stand... */
827         if (newsbsec->flags & SE_SBINITIALIZED)
828                 return;
829
830         mutex_lock(&newsbsec->lock);
831
832         newsbsec->flags = oldsbsec->flags;
833
834         newsbsec->sid = oldsbsec->sid;
835         newsbsec->def_sid = oldsbsec->def_sid;
836         newsbsec->behavior = oldsbsec->behavior;
837
838         if (set_context) {
839                 u32 sid = oldsbsec->mntpoint_sid;
840
841                 if (!set_fscontext)
842                         newsbsec->sid = sid;
843                 if (!set_rootcontext) {
844                         struct inode *newinode = newsb->s_root->d_inode;
845                         struct inode_security_struct *newisec = newinode->i_security;
846                         newisec->sid = sid;
847                 }
848                 newsbsec->mntpoint_sid = sid;
849         }
850         if (set_rootcontext) {
851                 const struct inode *oldinode = oldsb->s_root->d_inode;
852                 const struct inode_security_struct *oldisec = oldinode->i_security;
853                 struct inode *newinode = newsb->s_root->d_inode;
854                 struct inode_security_struct *newisec = newinode->i_security;
855
856                 newisec->sid = oldisec->sid;
857         }
858
859         sb_finish_set_opts(newsb);
860         mutex_unlock(&newsbsec->lock);
861 }
862
863 static int selinux_parse_opts_str(char *options,
864                                   struct security_mnt_opts *opts)
865 {
866         char *p;
867         char *context = NULL, *defcontext = NULL;
868         char *fscontext = NULL, *rootcontext = NULL;
869         int rc, num_mnt_opts = 0;
870
871         opts->num_mnt_opts = 0;
872
873         /* Standard string-based options. */
874         while ((p = strsep(&options, "|")) != NULL) {
875                 int token;
876                 substring_t args[MAX_OPT_ARGS];
877
878                 if (!*p)
879                         continue;
880
881                 token = match_token(p, tokens, args);
882
883                 switch (token) {
884                 case Opt_context:
885                         if (context || defcontext) {
886                                 rc = -EINVAL;
887                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
888                                 goto out_err;
889                         }
890                         context = match_strdup(&args[0]);
891                         if (!context) {
892                                 rc = -ENOMEM;
893                                 goto out_err;
894                         }
895                         break;
896
897                 case Opt_fscontext:
898                         if (fscontext) {
899                                 rc = -EINVAL;
900                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
901                                 goto out_err;
902                         }
903                         fscontext = match_strdup(&args[0]);
904                         if (!fscontext) {
905                                 rc = -ENOMEM;
906                                 goto out_err;
907                         }
908                         break;
909
910                 case Opt_rootcontext:
911                         if (rootcontext) {
912                                 rc = -EINVAL;
913                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
914                                 goto out_err;
915                         }
916                         rootcontext = match_strdup(&args[0]);
917                         if (!rootcontext) {
918                                 rc = -ENOMEM;
919                                 goto out_err;
920                         }
921                         break;
922
923                 case Opt_defcontext:
924                         if (context || defcontext) {
925                                 rc = -EINVAL;
926                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
927                                 goto out_err;
928                         }
929                         defcontext = match_strdup(&args[0]);
930                         if (!defcontext) {
931                                 rc = -ENOMEM;
932                                 goto out_err;
933                         }
934                         break;
935                 case Opt_labelsupport:
936                         break;
937                 default:
938                         rc = -EINVAL;
939                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
940                         goto out_err;
941
942                 }
943         }
944
945         rc = -ENOMEM;
946         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
947         if (!opts->mnt_opts)
948                 goto out_err;
949
950         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
951         if (!opts->mnt_opts_flags) {
952                 kfree(opts->mnt_opts);
953                 goto out_err;
954         }
955
956         if (fscontext) {
957                 opts->mnt_opts[num_mnt_opts] = fscontext;
958                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
959         }
960         if (context) {
961                 opts->mnt_opts[num_mnt_opts] = context;
962                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
963         }
964         if (rootcontext) {
965                 opts->mnt_opts[num_mnt_opts] = rootcontext;
966                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
967         }
968         if (defcontext) {
969                 opts->mnt_opts[num_mnt_opts] = defcontext;
970                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
971         }
972
973         opts->num_mnt_opts = num_mnt_opts;
974         return 0;
975
976 out_err:
977         kfree(context);
978         kfree(defcontext);
979         kfree(fscontext);
980         kfree(rootcontext);
981         return rc;
982 }
983 /*
984  * string mount options parsing and call set the sbsec
985  */
986 static int superblock_doinit(struct super_block *sb, void *data)
987 {
988         int rc = 0;
989         char *options = data;
990         struct security_mnt_opts opts;
991
992         security_init_mnt_opts(&opts);
993
994         if (!data)
995                 goto out;
996
997         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
998
999         rc = selinux_parse_opts_str(options, &opts);
1000         if (rc)
1001                 goto out_err;
1002
1003 out:
1004         rc = selinux_set_mnt_opts(sb, &opts);
1005
1006 out_err:
1007         security_free_mnt_opts(&opts);
1008         return rc;
1009 }
1010
1011 static void selinux_write_opts(struct seq_file *m,
1012                                struct security_mnt_opts *opts)
1013 {
1014         int i;
1015         char *prefix;
1016
1017         for (i = 0; i < opts->num_mnt_opts; i++) {
1018                 char *has_comma;
1019
1020                 if (opts->mnt_opts[i])
1021                         has_comma = strchr(opts->mnt_opts[i], ',');
1022                 else
1023                         has_comma = NULL;
1024
1025                 switch (opts->mnt_opts_flags[i]) {
1026                 case CONTEXT_MNT:
1027                         prefix = CONTEXT_STR;
1028                         break;
1029                 case FSCONTEXT_MNT:
1030                         prefix = FSCONTEXT_STR;
1031                         break;
1032                 case ROOTCONTEXT_MNT:
1033                         prefix = ROOTCONTEXT_STR;
1034                         break;
1035                 case DEFCONTEXT_MNT:
1036                         prefix = DEFCONTEXT_STR;
1037                         break;
1038                 case SE_SBLABELSUPP:
1039                         seq_putc(m, ',');
1040                         seq_puts(m, LABELSUPP_STR);
1041                         continue;
1042                 default:
1043                         BUG();
1044                 };
1045                 /* we need a comma before each option */
1046                 seq_putc(m, ',');
1047                 seq_puts(m, prefix);
1048                 if (has_comma)
1049                         seq_putc(m, '\"');
1050                 seq_puts(m, opts->mnt_opts[i]);
1051                 if (has_comma)
1052                         seq_putc(m, '\"');
1053         }
1054 }
1055
1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1057 {
1058         struct security_mnt_opts opts;
1059         int rc;
1060
1061         rc = selinux_get_mnt_opts(sb, &opts);
1062         if (rc) {
1063                 /* before policy load we may get EINVAL, don't show anything */
1064                 if (rc == -EINVAL)
1065                         rc = 0;
1066                 return rc;
1067         }
1068
1069         selinux_write_opts(m, &opts);
1070
1071         security_free_mnt_opts(&opts);
1072
1073         return rc;
1074 }
1075
1076 static inline u16 inode_mode_to_security_class(umode_t mode)
1077 {
1078         switch (mode & S_IFMT) {
1079         case S_IFSOCK:
1080                 return SECCLASS_SOCK_FILE;
1081         case S_IFLNK:
1082                 return SECCLASS_LNK_FILE;
1083         case S_IFREG:
1084                 return SECCLASS_FILE;
1085         case S_IFBLK:
1086                 return SECCLASS_BLK_FILE;
1087         case S_IFDIR:
1088                 return SECCLASS_DIR;
1089         case S_IFCHR:
1090                 return SECCLASS_CHR_FILE;
1091         case S_IFIFO:
1092                 return SECCLASS_FIFO_FILE;
1093
1094         }
1095
1096         return SECCLASS_FILE;
1097 }
1098
1099 static inline int default_protocol_stream(int protocol)
1100 {
1101         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1102 }
1103
1104 static inline int default_protocol_dgram(int protocol)
1105 {
1106         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1107 }
1108
1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1110 {
1111         switch (family) {
1112         case PF_UNIX:
1113                 switch (type) {
1114                 case SOCK_STREAM:
1115                 case SOCK_SEQPACKET:
1116                         return SECCLASS_UNIX_STREAM_SOCKET;
1117                 case SOCK_DGRAM:
1118                         return SECCLASS_UNIX_DGRAM_SOCKET;
1119                 }
1120                 break;
1121         case PF_INET:
1122         case PF_INET6:
1123                 switch (type) {
1124                 case SOCK_STREAM:
1125                         if (default_protocol_stream(protocol))
1126                                 return SECCLASS_TCP_SOCKET;
1127                         else
1128                                 return SECCLASS_RAWIP_SOCKET;
1129                 case SOCK_DGRAM:
1130                         if (default_protocol_dgram(protocol))
1131                                 return SECCLASS_UDP_SOCKET;
1132                         else
1133                                 return SECCLASS_RAWIP_SOCKET;
1134                 case SOCK_DCCP:
1135                         return SECCLASS_DCCP_SOCKET;
1136                 default:
1137                         return SECCLASS_RAWIP_SOCKET;
1138                 }
1139                 break;
1140         case PF_NETLINK:
1141                 switch (protocol) {
1142                 case NETLINK_ROUTE:
1143                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1144                 case NETLINK_FIREWALL:
1145                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1146                 case NETLINK_INET_DIAG:
1147                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1148                 case NETLINK_NFLOG:
1149                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1150                 case NETLINK_XFRM:
1151                         return SECCLASS_NETLINK_XFRM_SOCKET;
1152                 case NETLINK_SELINUX:
1153                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1154                 case NETLINK_AUDIT:
1155                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1156                 case NETLINK_IP6_FW:
1157                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1158                 case NETLINK_DNRTMSG:
1159                         return SECCLASS_NETLINK_DNRT_SOCKET;
1160                 case NETLINK_KOBJECT_UEVENT:
1161                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1162                 default:
1163                         return SECCLASS_NETLINK_SOCKET;
1164                 }
1165         case PF_PACKET:
1166                 return SECCLASS_PACKET_SOCKET;
1167         case PF_KEY:
1168                 return SECCLASS_KEY_SOCKET;
1169         case PF_APPLETALK:
1170                 return SECCLASS_APPLETALK_SOCKET;
1171         }
1172
1173         return SECCLASS_SOCKET;
1174 }
1175
1176 #ifdef CONFIG_PROC_FS
1177 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1178                                 u16 tclass,
1179                                 u32 *sid)
1180 {
1181         int buflen, rc;
1182         char *buffer, *path, *end;
1183
1184         buffer = (char *)__get_free_page(GFP_KERNEL);
1185         if (!buffer)
1186                 return -ENOMEM;
1187
1188         buflen = PAGE_SIZE;
1189         end = buffer+buflen;
1190         *--end = '\0';
1191         buflen--;
1192         path = end-1;
1193         *path = '/';
1194         while (de && de != de->parent) {
1195                 buflen -= de->namelen + 1;
1196                 if (buflen < 0)
1197                         break;
1198                 end -= de->namelen;
1199                 memcpy(end, de->name, de->namelen);
1200                 *--end = '/';
1201                 path = end;
1202                 de = de->parent;
1203         }
1204         rc = security_genfs_sid("proc", path, tclass, sid);
1205         free_page((unsigned long)buffer);
1206         return rc;
1207 }
1208 #else
1209 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1210                                 u16 tclass,
1211                                 u32 *sid)
1212 {
1213         return -EINVAL;
1214 }
1215 #endif
1216
1217 /* The inode's security attributes must be initialized before first use. */
1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1219 {
1220         struct superblock_security_struct *sbsec = NULL;
1221         struct inode_security_struct *isec = inode->i_security;
1222         u32 sid;
1223         struct dentry *dentry;
1224 #define INITCONTEXTLEN 255
1225         char *context = NULL;
1226         unsigned len = 0;
1227         int rc = 0;
1228
1229         if (isec->initialized)
1230                 goto out;
1231
1232         mutex_lock(&isec->lock);
1233         if (isec->initialized)
1234                 goto out_unlock;
1235
1236         sbsec = inode->i_sb->s_security;
1237         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1238                 /* Defer initialization until selinux_complete_init,
1239                    after the initial policy is loaded and the security
1240                    server is ready to handle calls. */
1241                 spin_lock(&sbsec->isec_lock);
1242                 if (list_empty(&isec->list))
1243                         list_add(&isec->list, &sbsec->isec_head);
1244                 spin_unlock(&sbsec->isec_lock);
1245                 goto out_unlock;
1246         }
1247
1248         switch (sbsec->behavior) {
1249         case SECURITY_FS_USE_XATTR:
1250                 if (!inode->i_op->getxattr) {
1251                         isec->sid = sbsec->def_sid;
1252                         break;
1253                 }
1254
1255                 /* Need a dentry, since the xattr API requires one.
1256                    Life would be simpler if we could just pass the inode. */
1257                 if (opt_dentry) {
1258                         /* Called from d_instantiate or d_splice_alias. */
1259                         dentry = dget(opt_dentry);
1260                 } else {
1261                         /* Called from selinux_complete_init, try to find a dentry. */
1262                         dentry = d_find_alias(inode);
1263                 }
1264                 if (!dentry) {
1265                         /*
1266                          * this is can be hit on boot when a file is accessed
1267                          * before the policy is loaded.  When we load policy we
1268                          * may find inodes that have no dentry on the
1269                          * sbsec->isec_head list.  No reason to complain as these
1270                          * will get fixed up the next time we go through
1271                          * inode_doinit with a dentry, before these inodes could
1272                          * be used again by userspace.
1273                          */
1274                         goto out_unlock;
1275                 }
1276
1277                 len = INITCONTEXTLEN;
1278                 context = kmalloc(len+1, GFP_NOFS);
1279                 if (!context) {
1280                         rc = -ENOMEM;
1281                         dput(dentry);
1282                         goto out_unlock;
1283                 }
1284                 context[len] = '\0';
1285                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1286                                            context, len);
1287                 if (rc == -ERANGE) {
1288                         kfree(context);
1289
1290                         /* Need a larger buffer.  Query for the right size. */
1291                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1292                                                    NULL, 0);
1293                         if (rc < 0) {
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         len = rc;
1298                         context = kmalloc(len+1, GFP_NOFS);
1299                         if (!context) {
1300                                 rc = -ENOMEM;
1301                                 dput(dentry);
1302                                 goto out_unlock;
1303                         }
1304                         context[len] = '\0';
1305                         rc = inode->i_op->getxattr(dentry,
1306                                                    XATTR_NAME_SELINUX,
1307                                                    context, len);
1308                 }
1309                 dput(dentry);
1310                 if (rc < 0) {
1311                         if (rc != -ENODATA) {
1312                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1313                                        "%d for dev=%s ino=%ld\n", __func__,
1314                                        -rc, inode->i_sb->s_id, inode->i_ino);
1315                                 kfree(context);
1316                                 goto out_unlock;
1317                         }
1318                         /* Map ENODATA to the default file SID */
1319                         sid = sbsec->def_sid;
1320                         rc = 0;
1321                 } else {
1322                         rc = security_context_to_sid_default(context, rc, &sid,
1323                                                              sbsec->def_sid,
1324                                                              GFP_NOFS);
1325                         if (rc) {
1326                                 char *dev = inode->i_sb->s_id;
1327                                 unsigned long ino = inode->i_ino;
1328
1329                                 if (rc == -EINVAL) {
1330                                         if (printk_ratelimit())
1331                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1332                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1333                                                         "filesystem in question.\n", ino, dev, context);
1334                                 } else {
1335                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1336                                                "returned %d for dev=%s ino=%ld\n",
1337                                                __func__, context, -rc, dev, ino);
1338                                 }
1339                                 kfree(context);
1340                                 /* Leave with the unlabeled SID */
1341                                 rc = 0;
1342                                 break;
1343                         }
1344                 }
1345                 kfree(context);
1346                 isec->sid = sid;
1347                 break;
1348         case SECURITY_FS_USE_TASK:
1349                 isec->sid = isec->task_sid;
1350                 break;
1351         case SECURITY_FS_USE_TRANS:
1352                 /* Default to the fs SID. */
1353                 isec->sid = sbsec->sid;
1354
1355                 /* Try to obtain a transition SID. */
1356                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1357                 rc = security_transition_sid(isec->task_sid,
1358                                              sbsec->sid,
1359                                              isec->sclass,
1360                                              &sid);
1361                 if (rc)
1362                         goto out_unlock;
1363                 isec->sid = sid;
1364                 break;
1365         case SECURITY_FS_USE_MNTPOINT:
1366                 isec->sid = sbsec->mntpoint_sid;
1367                 break;
1368         default:
1369                 /* Default to the fs superblock SID. */
1370                 isec->sid = sbsec->sid;
1371
1372                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1373                         struct proc_inode *proci = PROC_I(inode);
1374                         if (proci->pde) {
1375                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1376                                 rc = selinux_proc_get_sid(proci->pde,
1377                                                           isec->sclass,
1378                                                           &sid);
1379                                 if (rc)
1380                                         goto out_unlock;
1381                                 isec->sid = sid;
1382                         }
1383                 }
1384                 break;
1385         }
1386
1387         isec->initialized = 1;
1388
1389 out_unlock:
1390         mutex_unlock(&isec->lock);
1391 out:
1392         if (isec->sclass == SECCLASS_FILE)
1393                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1394         return rc;
1395 }
1396
1397 /* Convert a Linux signal to an access vector. */
1398 static inline u32 signal_to_av(int sig)
1399 {
1400         u32 perm = 0;
1401
1402         switch (sig) {
1403         case SIGCHLD:
1404                 /* Commonly granted from child to parent. */
1405                 perm = PROCESS__SIGCHLD;
1406                 break;
1407         case SIGKILL:
1408                 /* Cannot be caught or ignored */
1409                 perm = PROCESS__SIGKILL;
1410                 break;
1411         case SIGSTOP:
1412                 /* Cannot be caught or ignored */
1413                 perm = PROCESS__SIGSTOP;
1414                 break;
1415         default:
1416                 /* All other signals. */
1417                 perm = PROCESS__SIGNAL;
1418                 break;
1419         }
1420
1421         return perm;
1422 }
1423
1424 /*
1425  * Check permission between a pair of credentials
1426  * fork check, ptrace check, etc.
1427  */
1428 static int cred_has_perm(const struct cred *actor,
1429                          const struct cred *target,
1430                          u32 perms)
1431 {
1432         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1433
1434         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1435 }
1436
1437 /*
1438  * Check permission between a pair of tasks, e.g. signal checks,
1439  * fork check, ptrace check, etc.
1440  * tsk1 is the actor and tsk2 is the target
1441  * - this uses the default subjective creds of tsk1
1442  */
1443 static int task_has_perm(const struct task_struct *tsk1,
1444                          const struct task_struct *tsk2,
1445                          u32 perms)
1446 {
1447         const struct task_security_struct *__tsec1, *__tsec2;
1448         u32 sid1, sid2;
1449
1450         rcu_read_lock();
1451         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1452         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1453         rcu_read_unlock();
1454         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1455 }
1456
1457 /*
1458  * Check permission between current and another task, e.g. signal checks,
1459  * fork check, ptrace check, etc.
1460  * current is the actor and tsk2 is the target
1461  * - this uses current's subjective creds
1462  */
1463 static int current_has_perm(const struct task_struct *tsk,
1464                             u32 perms)
1465 {
1466         u32 sid, tsid;
1467
1468         sid = current_sid();
1469         tsid = task_sid(tsk);
1470         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1471 }
1472
1473 #if CAP_LAST_CAP > 63
1474 #error Fix SELinux to handle capabilities > 63.
1475 #endif
1476
1477 /* Check whether a task is allowed to use a capability. */
1478 static int task_has_capability(struct task_struct *tsk,
1479                                const struct cred *cred,
1480                                int cap, int audit)
1481 {
1482         struct avc_audit_data ad;
1483         struct av_decision avd;
1484         u16 sclass;
1485         u32 sid = cred_sid(cred);
1486         u32 av = CAP_TO_MASK(cap);
1487         int rc;
1488
1489         AVC_AUDIT_DATA_INIT(&ad, CAP);
1490         ad.tsk = tsk;
1491         ad.u.cap = cap;
1492
1493         switch (CAP_TO_INDEX(cap)) {
1494         case 0:
1495                 sclass = SECCLASS_CAPABILITY;
1496                 break;
1497         case 1:
1498                 sclass = SECCLASS_CAPABILITY2;
1499                 break;
1500         default:
1501                 printk(KERN_ERR
1502                        "SELinux:  out of range capability %d\n", cap);
1503                 BUG();
1504         }
1505
1506         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1507         if (audit == SECURITY_CAP_AUDIT)
1508                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1509         return rc;
1510 }
1511
1512 /* Check whether a task is allowed to use a system operation. */
1513 static int task_has_system(struct task_struct *tsk,
1514                            u32 perms)
1515 {
1516         u32 sid = task_sid(tsk);
1517
1518         return avc_has_perm(sid, SECINITSID_KERNEL,
1519                             SECCLASS_SYSTEM, perms, NULL);
1520 }
1521
1522 /* Check whether a task has a particular permission to an inode.
1523    The 'adp' parameter is optional and allows other audit
1524    data to be passed (e.g. the dentry). */
1525 static int inode_has_perm(const struct cred *cred,
1526                           struct inode *inode,
1527                           u32 perms,
1528                           struct avc_audit_data *adp)
1529 {
1530         struct inode_security_struct *isec;
1531         struct avc_audit_data ad;
1532         u32 sid;
1533
1534         if (unlikely(IS_PRIVATE(inode)))
1535                 return 0;
1536
1537         sid = cred_sid(cred);
1538         isec = inode->i_security;
1539
1540         if (!adp) {
1541                 adp = &ad;
1542                 AVC_AUDIT_DATA_INIT(&ad, FS);
1543                 ad.u.fs.inode = inode;
1544         }
1545
1546         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1547 }
1548
1549 /* Same as inode_has_perm, but pass explicit audit data containing
1550    the dentry to help the auditing code to more easily generate the
1551    pathname if needed. */
1552 static inline int dentry_has_perm(const struct cred *cred,
1553                                   struct vfsmount *mnt,
1554                                   struct dentry *dentry,
1555                                   u32 av)
1556 {
1557         struct inode *inode = dentry->d_inode;
1558         struct avc_audit_data ad;
1559
1560         AVC_AUDIT_DATA_INIT(&ad, FS);
1561         ad.u.fs.path.mnt = mnt;
1562         ad.u.fs.path.dentry = dentry;
1563         return inode_has_perm(cred, inode, av, &ad);
1564 }
1565
1566 /* Check whether a task can use an open file descriptor to
1567    access an inode in a given way.  Check access to the
1568    descriptor itself, and then use dentry_has_perm to
1569    check a particular permission to the file.
1570    Access to the descriptor is implicitly granted if it
1571    has the same SID as the process.  If av is zero, then
1572    access to the file is not checked, e.g. for cases
1573    where only the descriptor is affected like seek. */
1574 static int file_has_perm(const struct cred *cred,
1575                          struct file *file,
1576                          u32 av)
1577 {
1578         struct file_security_struct *fsec = file->f_security;
1579         struct inode *inode = file->f_path.dentry->d_inode;
1580         struct avc_audit_data ad;
1581         u32 sid = cred_sid(cred);
1582         int rc;
1583
1584         AVC_AUDIT_DATA_INIT(&ad, FS);
1585         ad.u.fs.path = file->f_path;
1586
1587         if (sid != fsec->sid) {
1588                 rc = avc_has_perm(sid, fsec->sid,
1589                                   SECCLASS_FD,
1590                                   FD__USE,
1591                                   &ad);
1592                 if (rc)
1593                         goto out;
1594         }
1595
1596         /* av is zero if only checking access to the descriptor. */
1597         rc = 0;
1598         if (av)
1599                 rc = inode_has_perm(cred, inode, av, &ad);
1600
1601 out:
1602         return rc;
1603 }
1604
1605 /* Check whether a task can create a file. */
1606 static int may_create(struct inode *dir,
1607                       struct dentry *dentry,
1608                       u16 tclass)
1609 {
1610         const struct cred *cred = current_cred();
1611         const struct task_security_struct *tsec = cred->security;
1612         struct inode_security_struct *dsec;
1613         struct superblock_security_struct *sbsec;
1614         u32 sid, newsid;
1615         struct avc_audit_data ad;
1616         int rc;
1617
1618         dsec = dir->i_security;
1619         sbsec = dir->i_sb->s_security;
1620
1621         sid = tsec->sid;
1622         newsid = tsec->create_sid;
1623
1624         AVC_AUDIT_DATA_INIT(&ad, FS);
1625         ad.u.fs.path.dentry = dentry;
1626
1627         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1628                           DIR__ADD_NAME | DIR__SEARCH,
1629                           &ad);
1630         if (rc)
1631                 return rc;
1632
1633         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1634                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1635                 if (rc)
1636                         return rc;
1637         }
1638
1639         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1640         if (rc)
1641                 return rc;
1642
1643         return avc_has_perm(newsid, sbsec->sid,
1644                             SECCLASS_FILESYSTEM,
1645                             FILESYSTEM__ASSOCIATE, &ad);
1646 }
1647
1648 /* Check whether a task can create a key. */
1649 static int may_create_key(u32 ksid,
1650                           struct task_struct *ctx)
1651 {
1652         u32 sid = task_sid(ctx);
1653
1654         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1655 }
1656
1657 #define MAY_LINK        0
1658 #define MAY_UNLINK      1
1659 #define MAY_RMDIR       2
1660
1661 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1662 static int may_link(struct inode *dir,
1663                     struct dentry *dentry,
1664                     int kind)
1665
1666 {
1667         struct inode_security_struct *dsec, *isec;
1668         struct avc_audit_data ad;
1669         u32 sid = current_sid();
1670         u32 av;
1671         int rc;
1672
1673         dsec = dir->i_security;
1674         isec = dentry->d_inode->i_security;
1675
1676         AVC_AUDIT_DATA_INIT(&ad, FS);
1677         ad.u.fs.path.dentry = dentry;
1678
1679         av = DIR__SEARCH;
1680         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1681         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1682         if (rc)
1683                 return rc;
1684
1685         switch (kind) {
1686         case MAY_LINK:
1687                 av = FILE__LINK;
1688                 break;
1689         case MAY_UNLINK:
1690                 av = FILE__UNLINK;
1691                 break;
1692         case MAY_RMDIR:
1693                 av = DIR__RMDIR;
1694                 break;
1695         default:
1696                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1697                         __func__, kind);
1698                 return 0;
1699         }
1700
1701         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1702         return rc;
1703 }
1704
1705 static inline int may_rename(struct inode *old_dir,
1706                              struct dentry *old_dentry,
1707                              struct inode *new_dir,
1708                              struct dentry *new_dentry)
1709 {
1710         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1711         struct avc_audit_data ad;
1712         u32 sid = current_sid();
1713         u32 av;
1714         int old_is_dir, new_is_dir;
1715         int rc;
1716
1717         old_dsec = old_dir->i_security;
1718         old_isec = old_dentry->d_inode->i_security;
1719         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1720         new_dsec = new_dir->i_security;
1721
1722         AVC_AUDIT_DATA_INIT(&ad, FS);
1723
1724         ad.u.fs.path.dentry = old_dentry;
1725         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1726                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1727         if (rc)
1728                 return rc;
1729         rc = avc_has_perm(sid, old_isec->sid,
1730                           old_isec->sclass, FILE__RENAME, &ad);
1731         if (rc)
1732                 return rc;
1733         if (old_is_dir && new_dir != old_dir) {
1734                 rc = avc_has_perm(sid, old_isec->sid,
1735                                   old_isec->sclass, DIR__REPARENT, &ad);
1736                 if (rc)
1737                         return rc;
1738         }
1739
1740         ad.u.fs.path.dentry = new_dentry;
1741         av = DIR__ADD_NAME | DIR__SEARCH;
1742         if (new_dentry->d_inode)
1743                 av |= DIR__REMOVE_NAME;
1744         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1745         if (rc)
1746                 return rc;
1747         if (new_dentry->d_inode) {
1748                 new_isec = new_dentry->d_inode->i_security;
1749                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1750                 rc = avc_has_perm(sid, new_isec->sid,
1751                                   new_isec->sclass,
1752                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1753                 if (rc)
1754                         return rc;
1755         }
1756
1757         return 0;
1758 }
1759
1760 /* Check whether a task can perform a filesystem operation. */
1761 static int superblock_has_perm(const struct cred *cred,
1762                                struct super_block *sb,
1763                                u32 perms,
1764                                struct avc_audit_data *ad)
1765 {
1766         struct superblock_security_struct *sbsec;
1767         u32 sid = cred_sid(cred);
1768
1769         sbsec = sb->s_security;
1770         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1771 }
1772
1773 /* Convert a Linux mode and permission mask to an access vector. */
1774 static inline u32 file_mask_to_av(int mode, int mask)
1775 {
1776         u32 av = 0;
1777
1778         if ((mode & S_IFMT) != S_IFDIR) {
1779                 if (mask & MAY_EXEC)
1780                         av |= FILE__EXECUTE;
1781                 if (mask & MAY_READ)
1782                         av |= FILE__READ;
1783
1784                 if (mask & MAY_APPEND)
1785                         av |= FILE__APPEND;
1786                 else if (mask & MAY_WRITE)
1787                         av |= FILE__WRITE;
1788
1789         } else {
1790                 if (mask & MAY_EXEC)
1791                         av |= DIR__SEARCH;
1792                 if (mask & MAY_WRITE)
1793                         av |= DIR__WRITE;
1794                 if (mask & MAY_READ)
1795                         av |= DIR__READ;
1796         }
1797
1798         return av;
1799 }
1800
1801 /* Convert a Linux file to an access vector. */
1802 static inline u32 file_to_av(struct file *file)
1803 {
1804         u32 av = 0;
1805
1806         if (file->f_mode & FMODE_READ)
1807                 av |= FILE__READ;
1808         if (file->f_mode & FMODE_WRITE) {
1809                 if (file->f_flags & O_APPEND)
1810                         av |= FILE__APPEND;
1811                 else
1812                         av |= FILE__WRITE;
1813         }
1814         if (!av) {
1815                 /*
1816                  * Special file opened with flags 3 for ioctl-only use.
1817                  */
1818                 av = FILE__IOCTL;
1819         }
1820
1821         return av;
1822 }
1823
1824 /*
1825  * Convert a file to an access vector and include the correct open
1826  * open permission.
1827  */
1828 static inline u32 open_file_to_av(struct file *file)
1829 {
1830         u32 av = file_to_av(file);
1831
1832         if (selinux_policycap_openperm) {
1833                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1834                 /*
1835                  * lnk files and socks do not really have an 'open'
1836                  */
1837                 if (S_ISREG(mode))
1838                         av |= FILE__OPEN;
1839                 else if (S_ISCHR(mode))
1840                         av |= CHR_FILE__OPEN;
1841                 else if (S_ISBLK(mode))
1842                         av |= BLK_FILE__OPEN;
1843                 else if (S_ISFIFO(mode))
1844                         av |= FIFO_FILE__OPEN;
1845                 else if (S_ISDIR(mode))
1846                         av |= DIR__OPEN;
1847                 else if (S_ISSOCK(mode))
1848                         av |= SOCK_FILE__OPEN;
1849                 else
1850                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1851                                 "unknown mode:%o\n", __func__, mode);
1852         }
1853         return av;
1854 }
1855
1856 /* Hook functions begin here. */
1857
1858 static int selinux_ptrace_may_access(struct task_struct *child,
1859                                      unsigned int mode)
1860 {
1861         int rc;
1862
1863         rc = cap_ptrace_may_access(child, mode);
1864         if (rc)
1865                 return rc;
1866
1867         if (mode == PTRACE_MODE_READ) {
1868                 u32 sid = current_sid();
1869                 u32 csid = task_sid(child);
1870                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1871         }
1872
1873         return current_has_perm(child, PROCESS__PTRACE);
1874 }
1875
1876 static int selinux_ptrace_traceme(struct task_struct *parent)
1877 {
1878         int rc;
1879
1880         rc = cap_ptrace_traceme(parent);
1881         if (rc)
1882                 return rc;
1883
1884         return task_has_perm(parent, current, PROCESS__PTRACE);
1885 }
1886
1887 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1888                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1889 {
1890         int error;
1891
1892         error = current_has_perm(target, PROCESS__GETCAP);
1893         if (error)
1894                 return error;
1895
1896         return cap_capget(target, effective, inheritable, permitted);
1897 }
1898
1899 static int selinux_capset(struct cred *new, const struct cred *old,
1900                           const kernel_cap_t *effective,
1901                           const kernel_cap_t *inheritable,
1902                           const kernel_cap_t *permitted)
1903 {
1904         int error;
1905
1906         error = cap_capset(new, old,
1907                                       effective, inheritable, permitted);
1908         if (error)
1909                 return error;
1910
1911         return cred_has_perm(old, new, PROCESS__SETCAP);
1912 }
1913
1914 /*
1915  * (This comment used to live with the selinux_task_setuid hook,
1916  * which was removed).
1917  *
1918  * Since setuid only affects the current process, and since the SELinux
1919  * controls are not based on the Linux identity attributes, SELinux does not
1920  * need to control this operation.  However, SELinux does control the use of
1921  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1922  */
1923
1924 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1925                            int cap, int audit)
1926 {
1927         int rc;
1928
1929         rc = cap_capable(tsk, cred, cap, audit);
1930         if (rc)
1931                 return rc;
1932
1933         return task_has_capability(tsk, cred, cap, audit);
1934 }
1935
1936 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1937 {
1938         int buflen, rc;
1939         char *buffer, *path, *end;
1940
1941         rc = -ENOMEM;
1942         buffer = (char *)__get_free_page(GFP_KERNEL);
1943         if (!buffer)
1944                 goto out;
1945
1946         buflen = PAGE_SIZE;
1947         end = buffer+buflen;
1948         *--end = '\0';
1949         buflen--;
1950         path = end-1;
1951         *path = '/';
1952         while (table) {
1953                 const char *name = table->procname;
1954                 size_t namelen = strlen(name);
1955                 buflen -= namelen + 1;
1956                 if (buflen < 0)
1957                         goto out_free;
1958                 end -= namelen;
1959                 memcpy(end, name, namelen);
1960                 *--end = '/';
1961                 path = end;
1962                 table = table->parent;
1963         }
1964         buflen -= 4;
1965         if (buflen < 0)
1966                 goto out_free;
1967         end -= 4;
1968         memcpy(end, "/sys", 4);
1969         path = end;
1970         rc = security_genfs_sid("proc", path, tclass, sid);
1971 out_free:
1972         free_page((unsigned long)buffer);
1973 out:
1974         return rc;
1975 }
1976
1977 static int selinux_sysctl(ctl_table *table, int op)
1978 {
1979         int error = 0;
1980         u32 av;
1981         u32 tsid, sid;
1982         int rc;
1983
1984         sid = current_sid();
1985
1986         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1987                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1988         if (rc) {
1989                 /* Default to the well-defined sysctl SID. */
1990                 tsid = SECINITSID_SYSCTL;
1991         }
1992
1993         /* The op values are "defined" in sysctl.c, thereby creating
1994          * a bad coupling between this module and sysctl.c */
1995         if (op == 001) {
1996                 error = avc_has_perm(sid, tsid,
1997                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1998         } else {
1999                 av = 0;
2000                 if (op & 004)
2001                         av |= FILE__READ;
2002                 if (op & 002)
2003                         av |= FILE__WRITE;
2004                 if (av)
2005                         error = avc_has_perm(sid, tsid,
2006                                              SECCLASS_FILE, av, NULL);
2007         }
2008
2009         return error;
2010 }
2011
2012 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2013 {
2014         const struct cred *cred = current_cred();
2015         int rc = 0;
2016
2017         if (!sb)
2018                 return 0;
2019
2020         switch (cmds) {
2021         case Q_SYNC:
2022         case Q_QUOTAON:
2023         case Q_QUOTAOFF:
2024         case Q_SETINFO:
2025         case Q_SETQUOTA:
2026                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2027                 break;
2028         case Q_GETFMT:
2029         case Q_GETINFO:
2030         case Q_GETQUOTA:
2031                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2032                 break;
2033         default:
2034                 rc = 0;  /* let the kernel handle invalid cmds */
2035                 break;
2036         }
2037         return rc;
2038 }
2039
2040 static int selinux_quota_on(struct dentry *dentry)
2041 {
2042         const struct cred *cred = current_cred();
2043
2044         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2045 }
2046
2047 static int selinux_syslog(int type)
2048 {
2049         int rc;
2050
2051         rc = cap_syslog(type);
2052         if (rc)
2053                 return rc;
2054
2055         switch (type) {
2056         case 3:         /* Read last kernel messages */
2057         case 10:        /* Return size of the log buffer */
2058                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2059                 break;
2060         case 6:         /* Disable logging to console */
2061         case 7:         /* Enable logging to console */
2062         case 8:         /* Set level of messages printed to console */
2063                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2064                 break;
2065         case 0:         /* Close log */
2066         case 1:         /* Open log */
2067         case 2:         /* Read from log */
2068         case 4:         /* Read/clear last kernel messages */
2069         case 5:         /* Clear ring buffer */
2070         default:
2071                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2072                 break;
2073         }
2074         return rc;
2075 }
2076
2077 /*
2078  * Check that a process has enough memory to allocate a new virtual
2079  * mapping. 0 means there is enough memory for the allocation to
2080  * succeed and -ENOMEM implies there is not.
2081  *
2082  * Do not audit the selinux permission check, as this is applied to all
2083  * processes that allocate mappings.
2084  */
2085 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2086 {
2087         int rc, cap_sys_admin = 0;
2088
2089         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2090                              SECURITY_CAP_NOAUDIT);
2091         if (rc == 0)
2092                 cap_sys_admin = 1;
2093
2094         return __vm_enough_memory(mm, pages, cap_sys_admin);
2095 }
2096
2097 /* binprm security operations */
2098
2099 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2100 {
2101         const struct task_security_struct *old_tsec;
2102         struct task_security_struct *new_tsec;
2103         struct inode_security_struct *isec;
2104         struct avc_audit_data ad;
2105         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2106         int rc;
2107
2108         rc = cap_bprm_set_creds(bprm);
2109         if (rc)
2110                 return rc;
2111
2112         /* SELinux context only depends on initial program or script and not
2113          * the script interpreter */
2114         if (bprm->cred_prepared)
2115                 return 0;
2116
2117         old_tsec = current_security();
2118         new_tsec = bprm->cred->security;
2119         isec = inode->i_security;
2120
2121         /* Default to the current task SID. */
2122         new_tsec->sid = old_tsec->sid;
2123         new_tsec->osid = old_tsec->sid;
2124
2125         /* Reset fs, key, and sock SIDs on execve. */
2126         new_tsec->create_sid = 0;
2127         new_tsec->keycreate_sid = 0;
2128         new_tsec->sockcreate_sid = 0;
2129
2130         if (old_tsec->exec_sid) {
2131                 new_tsec->sid = old_tsec->exec_sid;
2132                 /* Reset exec SID on execve. */
2133                 new_tsec->exec_sid = 0;
2134         } else {
2135                 /* Check for a default transition on this program. */
2136                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2137                                              SECCLASS_PROCESS, &new_tsec->sid);
2138                 if (rc)
2139                         return rc;
2140         }
2141
2142         AVC_AUDIT_DATA_INIT(&ad, FS);
2143         ad.u.fs.path = bprm->file->f_path;
2144
2145         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2146                 new_tsec->sid = old_tsec->sid;
2147
2148         if (new_tsec->sid == old_tsec->sid) {
2149                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2150                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2151                 if (rc)
2152                         return rc;
2153         } else {
2154                 /* Check permissions for the transition. */
2155                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2156                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2157                 if (rc)
2158                         return rc;
2159
2160                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2161                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2162                 if (rc)
2163                         return rc;
2164
2165                 /* Check for shared state */
2166                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2167                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2168                                           SECCLASS_PROCESS, PROCESS__SHARE,
2169                                           NULL);
2170                         if (rc)
2171                                 return -EPERM;
2172                 }
2173
2174                 /* Make sure that anyone attempting to ptrace over a task that
2175                  * changes its SID has the appropriate permit */
2176                 if (bprm->unsafe &
2177                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2178                         struct task_struct *tracer;
2179                         struct task_security_struct *sec;
2180                         u32 ptsid = 0;
2181
2182                         rcu_read_lock();
2183                         tracer = tracehook_tracer_task(current);
2184                         if (likely(tracer != NULL)) {
2185                                 sec = __task_cred(tracer)->security;
2186                                 ptsid = sec->sid;
2187                         }
2188                         rcu_read_unlock();
2189
2190                         if (ptsid != 0) {
2191                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2192                                                   SECCLASS_PROCESS,
2193                                                   PROCESS__PTRACE, NULL);
2194                                 if (rc)
2195                                         return -EPERM;
2196                         }
2197                 }
2198
2199                 /* Clear any possibly unsafe personality bits on exec: */
2200                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2201         }
2202
2203         return 0;
2204 }
2205
2206 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2207 {
2208         const struct cred *cred = current_cred();
2209         const struct task_security_struct *tsec = cred->security;
2210         u32 sid, osid;
2211         int atsecure = 0;
2212
2213         sid = tsec->sid;
2214         osid = tsec->osid;
2215
2216         if (osid != sid) {
2217                 /* Enable secure mode for SIDs transitions unless
2218                    the noatsecure permission is granted between
2219                    the two SIDs, i.e. ahp returns 0. */
2220                 atsecure = avc_has_perm(osid, sid,
2221                                         SECCLASS_PROCESS,
2222                                         PROCESS__NOATSECURE, NULL);
2223         }
2224
2225         return (atsecure || cap_bprm_secureexec(bprm));
2226 }
2227
2228 extern struct vfsmount *selinuxfs_mount;
2229 extern struct dentry *selinux_null;
2230
2231 /* Derived from fs/exec.c:flush_old_files. */
2232 static inline void flush_unauthorized_files(const struct cred *cred,
2233                                             struct files_struct *files)
2234 {
2235         struct avc_audit_data ad;
2236         struct file *file, *devnull = NULL;
2237         struct tty_struct *tty;
2238         struct fdtable *fdt;
2239         long j = -1;
2240         int drop_tty = 0;
2241
2242         tty = get_current_tty();
2243         if (tty) {
2244                 file_list_lock();
2245                 if (!list_empty(&tty->tty_files)) {
2246                         struct inode *inode;
2247
2248                         /* Revalidate access to controlling tty.
2249                            Use inode_has_perm on the tty inode directly rather
2250                            than using file_has_perm, as this particular open
2251                            file may belong to another process and we are only
2252                            interested in the inode-based check here. */
2253                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2254                         inode = file->f_path.dentry->d_inode;
2255                         if (inode_has_perm(cred, inode,
2256                                            FILE__READ | FILE__WRITE, NULL)) {
2257                                 drop_tty = 1;
2258                         }
2259                 }
2260                 file_list_unlock();
2261                 tty_kref_put(tty);
2262         }
2263         /* Reset controlling tty. */
2264         if (drop_tty)
2265                 no_tty();
2266
2267         /* Revalidate access to inherited open files. */
2268
2269         AVC_AUDIT_DATA_INIT(&ad, FS);
2270
2271         spin_lock(&files->file_lock);
2272         for (;;) {
2273                 unsigned long set, i;
2274                 int fd;
2275
2276                 j++;
2277                 i = j * __NFDBITS;
2278                 fdt = files_fdtable(files);
2279                 if (i >= fdt->max_fds)
2280                         break;
2281                 set = fdt->open_fds->fds_bits[j];
2282                 if (!set)
2283                         continue;
2284                 spin_unlock(&files->file_lock);
2285                 for ( ; set ; i++, set >>= 1) {
2286                         if (set & 1) {
2287                                 file = fget(i);
2288                                 if (!file)
2289                                         continue;
2290                                 if (file_has_perm(cred,
2291                                                   file,
2292                                                   file_to_av(file))) {
2293                                         sys_close(i);
2294                                         fd = get_unused_fd();
2295                                         if (fd != i) {
2296                                                 if (fd >= 0)
2297                                                         put_unused_fd(fd);
2298                                                 fput(file);
2299                                                 continue;
2300                                         }
2301                                         if (devnull) {
2302                                                 get_file(devnull);
2303                                         } else {
2304                                                 devnull = dentry_open(
2305                                                         dget(selinux_null),
2306                                                         mntget(selinuxfs_mount),
2307                                                         O_RDWR, cred);
2308                                                 if (IS_ERR(devnull)) {
2309                                                         devnull = NULL;
2310                                                         put_unused_fd(fd);
2311                                                         fput(file);
2312                                                         continue;
2313                                                 }
2314                                         }
2315                                         fd_install(fd, devnull);
2316                                 }
2317                                 fput(file);
2318                         }
2319                 }
2320                 spin_lock(&files->file_lock);
2321
2322         }
2323         spin_unlock(&files->file_lock);
2324 }
2325
2326 /*
2327  * Prepare a process for imminent new credential changes due to exec
2328  */
2329 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2330 {
2331         struct task_security_struct *new_tsec;
2332         struct rlimit *rlim, *initrlim;
2333         int rc, i;
2334
2335         new_tsec = bprm->cred->security;
2336         if (new_tsec->sid == new_tsec->osid)
2337                 return;
2338
2339         /* Close files for which the new task SID is not authorized. */
2340         flush_unauthorized_files(bprm->cred, current->files);
2341
2342         /* Always clear parent death signal on SID transitions. */
2343         current->pdeath_signal = 0;
2344
2345         /* Check whether the new SID can inherit resource limits from the old
2346          * SID.  If not, reset all soft limits to the lower of the current
2347          * task's hard limit and the init task's soft limit.
2348          *
2349          * Note that the setting of hard limits (even to lower them) can be
2350          * controlled by the setrlimit check.  The inclusion of the init task's
2351          * soft limit into the computation is to avoid resetting soft limits
2352          * higher than the default soft limit for cases where the default is
2353          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2354          */
2355         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2356                           PROCESS__RLIMITINH, NULL);
2357         if (rc) {
2358                 for (i = 0; i < RLIM_NLIMITS; i++) {
2359                         rlim = current->signal->rlim + i;
2360                         initrlim = init_task.signal->rlim + i;
2361                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2362                 }
2363                 update_rlimit_cpu(rlim->rlim_cur);
2364         }
2365 }
2366
2367 /*
2368  * Clean up the process immediately after the installation of new credentials
2369  * due to exec
2370  */
2371 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2372 {
2373         const struct task_security_struct *tsec = current_security();
2374         struct itimerval itimer;
2375         u32 osid, sid;
2376         int rc, i;
2377
2378         osid = tsec->osid;
2379         sid = tsec->sid;
2380
2381         if (sid == osid)
2382                 return;
2383
2384         /* Check whether the new SID can inherit signal state from the old SID.
2385          * If not, clear itimers to avoid subsequent signal generation and
2386          * flush and unblock signals.
2387          *
2388          * This must occur _after_ the task SID has been updated so that any
2389          * kill done after the flush will be checked against the new SID.
2390          */
2391         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2392         if (rc) {
2393                 memset(&itimer, 0, sizeof itimer);
2394                 for (i = 0; i < 3; i++)
2395                         do_setitimer(i, &itimer, NULL);
2396                 spin_lock_irq(&current->sighand->siglock);
2397                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2398                         __flush_signals(current);
2399                         flush_signal_handlers(current, 1);
2400                         sigemptyset(&current->blocked);
2401                 }
2402                 spin_unlock_irq(&current->sighand->siglock);
2403         }
2404
2405         /* Wake up the parent if it is waiting so that it can recheck
2406          * wait permission to the new task SID. */
2407         read_lock(&tasklist_lock);
2408         wake_up_interruptible(&current->real_parent->signal->wait_chldexit);
2409         read_unlock(&tasklist_lock);
2410 }
2411
2412 /* superblock security operations */
2413
2414 static int selinux_sb_alloc_security(struct super_block *sb)
2415 {
2416         return superblock_alloc_security(sb);
2417 }
2418
2419 static void selinux_sb_free_security(struct super_block *sb)
2420 {
2421         superblock_free_security(sb);
2422 }
2423
2424 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2425 {
2426         if (plen > olen)
2427                 return 0;
2428
2429         return !memcmp(prefix, option, plen);
2430 }
2431
2432 static inline int selinux_option(char *option, int len)
2433 {
2434         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2435                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2436                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2437                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2438                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2439 }
2440
2441 static inline void take_option(char **to, char *from, int *first, int len)
2442 {
2443         if (!*first) {
2444                 **to = ',';
2445                 *to += 1;
2446         } else
2447                 *first = 0;
2448         memcpy(*to, from, len);
2449         *to += len;
2450 }
2451
2452 static inline void take_selinux_option(char **to, char *from, int *first,
2453                                        int len)
2454 {
2455         int current_size = 0;
2456
2457         if (!*first) {
2458                 **to = '|';
2459                 *to += 1;
2460         } else
2461                 *first = 0;
2462
2463         while (current_size < len) {
2464                 if (*from != '"') {
2465                         **to = *from;
2466                         *to += 1;
2467                 }
2468                 from += 1;
2469                 current_size += 1;
2470         }
2471 }
2472
2473 static int selinux_sb_copy_data(char *orig, char *copy)
2474 {
2475         int fnosec, fsec, rc = 0;
2476         char *in_save, *in_curr, *in_end;
2477         char *sec_curr, *nosec_save, *nosec;
2478         int open_quote = 0;
2479
2480         in_curr = orig;
2481         sec_curr = copy;
2482
2483         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2484         if (!nosec) {
2485                 rc = -ENOMEM;
2486                 goto out;
2487         }
2488
2489         nosec_save = nosec;
2490         fnosec = fsec = 1;
2491         in_save = in_end = orig;
2492
2493         do {
2494                 if (*in_end == '"')
2495                         open_quote = !open_quote;
2496                 if ((*in_end == ',' && open_quote == 0) ||
2497                                 *in_end == '\0') {
2498                         int len = in_end - in_curr;
2499
2500                         if (selinux_option(in_curr, len))
2501                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2502                         else
2503                                 take_option(&nosec, in_curr, &fnosec, len);
2504
2505                         in_curr = in_end + 1;
2506                 }
2507         } while (*in_end++);
2508
2509         strcpy(in_save, nosec_save);
2510         free_page((unsigned long)nosec_save);
2511 out:
2512         return rc;
2513 }
2514
2515 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2516 {
2517         const struct cred *cred = current_cred();
2518         struct avc_audit_data ad;
2519         int rc;
2520
2521         rc = superblock_doinit(sb, data);
2522         if (rc)
2523                 return rc;
2524
2525         /* Allow all mounts performed by the kernel */
2526         if (flags & MS_KERNMOUNT)
2527                 return 0;
2528
2529         AVC_AUDIT_DATA_INIT(&ad, FS);
2530         ad.u.fs.path.dentry = sb->s_root;
2531         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2532 }
2533
2534 static int selinux_sb_statfs(struct dentry *dentry)
2535 {
2536         const struct cred *cred = current_cred();
2537         struct avc_audit_data ad;
2538
2539         AVC_AUDIT_DATA_INIT(&ad, FS);
2540         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2541         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2542 }
2543
2544 static int selinux_mount(char *dev_name,
2545                          struct path *path,
2546                          char *type,
2547                          unsigned long flags,
2548                          void *data)
2549 {
2550         const struct cred *cred = current_cred();
2551
2552         if (flags & MS_REMOUNT)
2553                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2554                                            FILESYSTEM__REMOUNT, NULL);
2555         else
2556                 return dentry_has_perm(cred, path->mnt, path->dentry,
2557                                        FILE__MOUNTON);
2558 }
2559
2560 static int selinux_umount(struct vfsmount *mnt, int flags)
2561 {
2562         const struct cred *cred = current_cred();
2563
2564         return superblock_has_perm(cred, mnt->mnt_sb,
2565                                    FILESYSTEM__UNMOUNT, NULL);
2566 }
2567
2568 /* inode security operations */
2569
2570 static int selinux_inode_alloc_security(struct inode *inode)
2571 {
2572         return inode_alloc_security(inode);
2573 }
2574
2575 static void selinux_inode_free_security(struct inode *inode)
2576 {
2577         inode_free_security(inode);
2578 }
2579
2580 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2581                                        char **name, void **value,
2582                                        size_t *len)
2583 {
2584         const struct cred *cred = current_cred();
2585         const struct task_security_struct *tsec = cred->security;
2586         struct inode_security_struct *dsec;
2587         struct superblock_security_struct *sbsec;
2588         u32 sid, newsid, clen;
2589         int rc;
2590         char *namep = NULL, *context;
2591
2592         dsec = dir->i_security;
2593         sbsec = dir->i_sb->s_security;
2594
2595         sid = tsec->sid;
2596         newsid = tsec->create_sid;
2597
2598         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2599                 rc = security_transition_sid(sid, dsec->sid,
2600                                              inode_mode_to_security_class(inode->i_mode),
2601                                              &newsid);
2602                 if (rc) {
2603                         printk(KERN_WARNING "%s:  "
2604                                "security_transition_sid failed, rc=%d (dev=%s "
2605                                "ino=%ld)\n",
2606                                __func__,
2607                                -rc, inode->i_sb->s_id, inode->i_ino);
2608                         return rc;
2609                 }
2610         }
2611
2612         /* Possibly defer initialization to selinux_complete_init. */
2613         if (sbsec->flags & SE_SBINITIALIZED) {
2614                 struct inode_security_struct *isec = inode->i_security;
2615                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2616                 isec->sid = newsid;
2617                 isec->initialized = 1;
2618         }
2619
2620         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2621                 return -EOPNOTSUPP;
2622
2623         if (name) {
2624                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2625                 if (!namep)
2626                         return -ENOMEM;
2627                 *name = namep;
2628         }
2629
2630         if (value && len) {
2631                 rc = security_sid_to_context_force(newsid, &context, &clen);
2632                 if (rc) {
2633                         kfree(namep);
2634                         return rc;
2635                 }
2636                 *value = context;
2637                 *len = clen;
2638         }
2639
2640         return 0;
2641 }
2642
2643 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2644 {
2645         return may_create(dir, dentry, SECCLASS_FILE);
2646 }
2647
2648 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2649 {
2650         return may_link(dir, old_dentry, MAY_LINK);
2651 }
2652
2653 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2654 {
2655         return may_link(dir, dentry, MAY_UNLINK);
2656 }
2657
2658 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2659 {
2660         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2661 }
2662
2663 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2664 {
2665         return may_create(dir, dentry, SECCLASS_DIR);
2666 }
2667
2668 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2669 {
2670         return may_link(dir, dentry, MAY_RMDIR);
2671 }
2672
2673 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2674 {
2675         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2676 }
2677
2678 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2679                                 struct inode *new_inode, struct dentry *new_dentry)
2680 {
2681         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2682 }
2683
2684 static int selinux_inode_readlink(struct dentry *dentry)
2685 {
2686         const struct cred *cred = current_cred();
2687
2688         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2689 }
2690
2691 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2692 {
2693         const struct cred *cred = current_cred();
2694
2695         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2696 }
2697
2698 static int selinux_inode_permission(struct inode *inode, int mask)
2699 {
2700         const struct cred *cred = current_cred();
2701
2702         if (!mask) {
2703                 /* No permission to check.  Existence test. */
2704                 return 0;
2705         }
2706
2707         return inode_has_perm(cred, inode,
2708                               file_mask_to_av(inode->i_mode, mask), NULL);
2709 }
2710
2711 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2712 {
2713         const struct cred *cred = current_cred();
2714
2715         if (iattr->ia_valid & ATTR_FORCE)
2716                 return 0;
2717
2718         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2719                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2720                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2721
2722         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2723 }
2724
2725 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2726 {
2727         const struct cred *cred = current_cred();
2728
2729         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2730 }
2731
2732 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2733 {
2734         const struct cred *cred = current_cred();
2735
2736         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2737                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2738                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2739                         if (!capable(CAP_SETFCAP))
2740                                 return -EPERM;
2741                 } else if (!capable(CAP_SYS_ADMIN)) {
2742                         /* A different attribute in the security namespace.
2743                            Restrict to administrator. */
2744                         return -EPERM;
2745                 }
2746         }
2747
2748         /* Not an attribute we recognize, so just check the
2749            ordinary setattr permission. */
2750         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2751 }
2752
2753 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2754                                   const void *value, size_t size, int flags)
2755 {
2756         struct inode *inode = dentry->d_inode;
2757         struct inode_security_struct *isec = inode->i_security;
2758         struct superblock_security_struct *sbsec;
2759         struct avc_audit_data ad;
2760         u32 newsid, sid = current_sid();
2761         int rc = 0;
2762
2763         if (strcmp(name, XATTR_NAME_SELINUX))
2764                 return selinux_inode_setotherxattr(dentry, name);
2765
2766         sbsec = inode->i_sb->s_security;
2767         if (!(sbsec->flags & SE_SBLABELSUPP))
2768                 return -EOPNOTSUPP;
2769
2770         if (!is_owner_or_cap(inode))
2771                 return -EPERM;
2772
2773         AVC_AUDIT_DATA_INIT(&ad, FS);
2774         ad.u.fs.path.dentry = dentry;
2775
2776         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2777                           FILE__RELABELFROM, &ad);
2778         if (rc)
2779                 return rc;
2780
2781         rc = security_context_to_sid(value, size, &newsid);
2782         if (rc == -EINVAL) {
2783                 if (!capable(CAP_MAC_ADMIN))
2784                         return rc;
2785                 rc = security_context_to_sid_force(value, size, &newsid);
2786         }
2787         if (rc)
2788                 return rc;
2789
2790         rc = avc_has_perm(sid, newsid, isec->sclass,
2791                           FILE__RELABELTO, &ad);
2792         if (rc)
2793                 return rc;
2794
2795         rc = security_validate_transition(isec->sid, newsid, sid,
2796                                           isec->sclass);
2797         if (rc)
2798                 return rc;
2799
2800         return avc_has_perm(newsid,
2801                             sbsec->sid,
2802                             SECCLASS_FILESYSTEM,
2803                             FILESYSTEM__ASSOCIATE,
2804                             &ad);
2805 }
2806
2807 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2808                                         const void *value, size_t size,
2809                                         int flags)
2810 {
2811         struct inode *inode = dentry->d_inode;
2812         struct inode_security_struct *isec = inode->i_security;
2813         u32 newsid;
2814         int rc;
2815
2816         if (strcmp(name, XATTR_NAME_SELINUX)) {
2817                 /* Not an attribute we recognize, so nothing to do. */
2818                 return;
2819         }
2820
2821         rc = security_context_to_sid_force(value, size, &newsid);
2822         if (rc) {
2823                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2824                        "for (%s, %lu), rc=%d\n",
2825                        inode->i_sb->s_id, inode->i_ino, -rc);
2826                 return;
2827         }
2828
2829         isec->sid = newsid;
2830         return;
2831 }
2832
2833 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2834 {
2835         const struct cred *cred = current_cred();
2836
2837         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2838 }
2839
2840 static int selinux_inode_listxattr(struct dentry *dentry)
2841 {
2842         const struct cred *cred = current_cred();
2843
2844         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2845 }
2846
2847 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2848 {
2849         if (strcmp(name, XATTR_NAME_SELINUX))
2850                 return selinux_inode_setotherxattr(dentry, name);
2851
2852         /* No one is allowed to remove a SELinux security label.
2853            You can change the label, but all data must be labeled. */
2854         return -EACCES;
2855 }
2856
2857 /*
2858  * Copy the inode security context value to the user.
2859  *
2860  * Permission check is handled by selinux_inode_getxattr hook.
2861  */
2862 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2863 {
2864         u32 size;
2865         int error;
2866         char *context = NULL;
2867         struct inode_security_struct *isec = inode->i_security;
2868
2869         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2870                 return -EOPNOTSUPP;
2871
2872         /*
2873          * If the caller has CAP_MAC_ADMIN, then get the raw context
2874          * value even if it is not defined by current policy; otherwise,
2875          * use the in-core value under current policy.
2876          * Use the non-auditing forms of the permission checks since
2877          * getxattr may be called by unprivileged processes commonly
2878          * and lack of permission just means that we fall back to the
2879          * in-core context value, not a denial.
2880          */
2881         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2882                                 SECURITY_CAP_NOAUDIT);
2883         if (!error)
2884                 error = security_sid_to_context_force(isec->sid, &context,
2885                                                       &size);
2886         else
2887                 error = security_sid_to_context(isec->sid, &context, &size);
2888         if (error)
2889                 return error;
2890         error = size;
2891         if (alloc) {
2892                 *buffer = context;
2893                 goto out_nofree;
2894         }
2895         kfree(context);
2896 out_nofree:
2897         return error;
2898 }
2899
2900 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2901                                      const void *value, size_t size, int flags)
2902 {
2903         struct inode_security_struct *isec = inode->i_security;
2904         u32 newsid;
2905         int rc;
2906
2907         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2908                 return -EOPNOTSUPP;
2909
2910         if (!value || !size)
2911                 return -EACCES;
2912
2913         rc = security_context_to_sid((void *)value, size, &newsid);
2914         if (rc)
2915                 return rc;
2916
2917         isec->sid = newsid;
2918         return 0;
2919 }
2920
2921 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2922 {
2923         const int len = sizeof(XATTR_NAME_SELINUX);
2924         if (buffer && len <= buffer_size)
2925                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2926         return len;
2927 }
2928
2929 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2930 {
2931         struct inode_security_struct *isec = inode->i_security;
2932         *secid = isec->sid;
2933 }
2934
2935 /* file security operations */
2936
2937 static int selinux_revalidate_file_permission(struct file *file, int mask)
2938 {
2939         const struct cred *cred = current_cred();
2940         struct inode *inode = file->f_path.dentry->d_inode;
2941
2942         if (!mask) {
2943                 /* No permission to check.  Existence test. */
2944                 return 0;
2945         }
2946
2947         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2948         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2949                 mask |= MAY_APPEND;
2950
2951         return file_has_perm(cred, file,
2952                              file_mask_to_av(inode->i_mode, mask));
2953 }
2954
2955 static int selinux_file_permission(struct file *file, int mask)
2956 {
2957         if (!mask)
2958                 /* No permission to check.  Existence test. */
2959                 return 0;
2960
2961         return selinux_revalidate_file_permission(file, mask);
2962 }
2963
2964 static int selinux_file_alloc_security(struct file *file)
2965 {
2966         return file_alloc_security(file);
2967 }
2968
2969 static void selinux_file_free_security(struct file *file)
2970 {
2971         file_free_security(file);
2972 }
2973
2974 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2975                               unsigned long arg)
2976 {
2977         const struct cred *cred = current_cred();
2978         u32 av = 0;
2979
2980         if (_IOC_DIR(cmd) & _IOC_WRITE)
2981                 av |= FILE__WRITE;
2982         if (_IOC_DIR(cmd) & _IOC_READ)
2983                 av |= FILE__READ;
2984         if (!av)
2985                 av = FILE__IOCTL;
2986
2987         return file_has_perm(cred, file, av);
2988 }
2989
2990 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2991 {
2992         const struct cred *cred = current_cred();
2993         int rc = 0;
2994
2995 #ifndef CONFIG_PPC32
2996         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2997                 /*
2998                  * We are making executable an anonymous mapping or a
2999                  * private file mapping that will also be writable.
3000                  * This has an additional check.
3001                  */
3002                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3003                 if (rc)
3004                         goto error;
3005         }
3006 #endif
3007
3008         if (file) {
3009                 /* read access is always possible with a mapping */
3010                 u32 av = FILE__READ;
3011
3012                 /* write access only matters if the mapping is shared */
3013                 if (shared && (prot & PROT_WRITE))
3014                         av |= FILE__WRITE;
3015
3016                 if (prot & PROT_EXEC)
3017                         av |= FILE__EXECUTE;
3018
3019                 return file_has_perm(cred, file, av);
3020         }
3021
3022 error:
3023         return rc;
3024 }
3025
3026 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3027                              unsigned long prot, unsigned long flags,
3028                              unsigned long addr, unsigned long addr_only)
3029 {
3030         int rc = 0;
3031         u32 sid = current_sid();
3032
3033         /*
3034          * notice that we are intentionally putting the SELinux check before
3035          * the secondary cap_file_mmap check.  This is such a likely attempt
3036          * at bad behaviour/exploit that we always want to get the AVC, even
3037          * if DAC would have also denied the operation.
3038          */
3039         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3040                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3041                                   MEMPROTECT__MMAP_ZERO, NULL);
3042                 if (rc)
3043                         return rc;
3044         }
3045
3046         /* do DAC check on address space usage */
3047         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3048         if (rc || addr_only)
3049                 return rc;
3050
3051         if (selinux_checkreqprot)
3052                 prot = reqprot;
3053
3054         return file_map_prot_check(file, prot,
3055                                    (flags & MAP_TYPE) == MAP_SHARED);
3056 }
3057
3058 static int selinux_file_mprotect(struct vm_area_struct *vma,
3059                                  unsigned long reqprot,
3060                                  unsigned long prot)
3061 {
3062         const struct cred *cred = current_cred();
3063
3064         if (selinux_checkreqprot)
3065                 prot = reqprot;
3066
3067 #ifndef CONFIG_PPC32
3068         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3069                 int rc = 0;
3070                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3071                     vma->vm_end <= vma->vm_mm->brk) {
3072                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3073                 } else if (!vma->vm_file &&
3074                            vma->vm_start <= vma->vm_mm->start_stack &&
3075                            vma->vm_end >= vma->vm_mm->start_stack) {
3076                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3077                 } else if (vma->vm_file && vma->anon_vma) {
3078                         /*
3079                          * We are making executable a file mapping that has
3080                          * had some COW done. Since pages might have been
3081                          * written, check ability to execute the possibly
3082                          * modified content.  This typically should only
3083                          * occur for text relocations.
3084                          */
3085                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3086                 }
3087                 if (rc)
3088                         return rc;
3089         }
3090 #endif
3091
3092         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3093 }
3094
3095 static int selinux_file_lock(struct file *file, unsigned int cmd)
3096 {
3097         const struct cred *cred = current_cred();
3098
3099         return file_has_perm(cred, file, FILE__LOCK);
3100 }
3101
3102 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3103                               unsigned long arg)
3104 {
3105         const struct cred *cred = current_cred();
3106         int err = 0;
3107
3108         switch (cmd) {
3109         case F_SETFL:
3110                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3111                         err = -EINVAL;
3112                         break;
3113                 }
3114
3115                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3116                         err = file_has_perm(cred, file, FILE__WRITE);
3117                         break;
3118                 }
3119                 /* fall through */
3120         case F_SETOWN:
3121         case F_SETSIG:
3122         case F_GETFL:
3123         case F_GETOWN:
3124         case F_GETSIG:
3125                 /* Just check FD__USE permission */
3126                 err = file_has_perm(cred, file, 0);
3127                 break;
3128         case F_GETLK:
3129         case F_SETLK:
3130         case F_SETLKW:
3131 #if BITS_PER_LONG == 32
3132         case F_GETLK64:
3133         case F_SETLK64:
3134         case F_SETLKW64:
3135 #endif
3136                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3137                         err = -EINVAL;
3138                         break;
3139                 }
3140                 err = file_has_perm(cred, file, FILE__LOCK);
3141                 break;
3142         }
3143
3144         return err;
3145 }
3146
3147 static int selinux_file_set_fowner(struct file *file)
3148 {
3149         struct file_security_struct *fsec;
3150
3151         fsec = file->f_security;
3152         fsec->fown_sid = current_sid();
3153
3154         return 0;
3155 }
3156
3157 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3158                                        struct fown_struct *fown, int signum)
3159 {
3160         struct file *file;
3161         u32 sid = task_sid(tsk);
3162         u32 perm;
3163         struct file_security_struct *fsec;
3164
3165         /* struct fown_struct is never outside the context of a struct file */
3166         file = container_of(fown, struct file, f_owner);
3167
3168         fsec = file->f_security;
3169
3170         if (!signum)
3171                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3172         else
3173                 perm = signal_to_av(signum);
3174
3175         return avc_has_perm(fsec->fown_sid, sid,
3176                             SECCLASS_PROCESS, perm, NULL);
3177 }
3178
3179 static int selinux_file_receive(struct file *file)
3180 {
3181         const struct cred *cred = current_cred();
3182
3183         return file_has_perm(cred, file, file_to_av(file));
3184 }
3185
3186 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3187 {
3188         struct file_security_struct *fsec;
3189         struct inode *inode;
3190         struct inode_security_struct *isec;
3191
3192         inode = file->f_path.dentry->d_inode;
3193         fsec = file->f_security;
3194         isec = inode->i_security;
3195         /*
3196          * Save inode label and policy sequence number
3197          * at open-time so that selinux_file_permission
3198          * can determine whether revalidation is necessary.
3199          * Task label is already saved in the file security
3200          * struct as its SID.
3201          */
3202         fsec->isid = isec->sid;
3203         fsec->pseqno = avc_policy_seqno();
3204         /*
3205          * Since the inode label or policy seqno may have changed
3206          * between the selinux_inode_permission check and the saving
3207          * of state above, recheck that access is still permitted.
3208          * Otherwise, access might never be revalidated against the
3209          * new inode label or new policy.
3210          * This check is not redundant - do not remove.
3211          */
3212         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3213 }
3214
3215 /* task security operations */
3216
3217 static int selinux_task_create(unsigned long clone_flags)
3218 {
3219         return current_has_perm(current, PROCESS__FORK);
3220 }
3221
3222 /*
3223  * detach and free the LSM part of a set of credentials
3224  */
3225 static void selinux_cred_free(struct cred *cred)
3226 {
3227         struct task_security_struct *tsec = cred->security;
3228         cred->security = NULL;
3229         kfree(tsec);
3230 }
3231
3232 /*
3233  * prepare a new set of credentials for modification
3234  */
3235 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3236                                 gfp_t gfp)
3237 {
3238         const struct task_security_struct *old_tsec;
3239         struct task_security_struct *tsec;
3240
3241         old_tsec = old->security;
3242
3243         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3244         if (!tsec)
3245                 return -ENOMEM;
3246
3247         new->security = tsec;
3248         return 0;
3249 }
3250
3251 /*
3252  * set the security data for a kernel service
3253  * - all the creation contexts are set to unlabelled
3254  */
3255 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3256 {
3257         struct task_security_struct *tsec = new->security;
3258         u32 sid = current_sid();
3259         int ret;
3260
3261         ret = avc_has_perm(sid, secid,
3262                            SECCLASS_KERNEL_SERVICE,
3263                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3264                            NULL);
3265         if (ret == 0) {
3266                 tsec->sid = secid;
3267                 tsec->create_sid = 0;
3268                 tsec->keycreate_sid = 0;
3269                 tsec->sockcreate_sid = 0;
3270         }
3271         return ret;
3272 }
3273
3274 /*
3275  * set the file creation context in a security record to the same as the
3276  * objective context of the specified inode
3277  */
3278 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3279 {
3280         struct inode_security_struct *isec = inode->i_security;
3281         struct task_security_struct *tsec = new->security;
3282         u32 sid = current_sid();
3283         int ret;
3284
3285         ret = avc_has_perm(sid, isec->sid,
3286                            SECCLASS_KERNEL_SERVICE,
3287                            KERNEL_SERVICE__CREATE_FILES_AS,
3288                            NULL);
3289
3290         if (ret == 0)
3291                 tsec->create_sid = isec->sid;
3292         return 0;
3293 }
3294
3295 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3296 {
3297         return current_has_perm(p, PROCESS__SETPGID);
3298 }
3299
3300 static int selinux_task_getpgid(struct task_struct *p)
3301 {
3302         return current_has_perm(p, PROCESS__GETPGID);
3303 }
3304
3305 static int selinux_task_getsid(struct task_struct *p)
3306 {
3307         return current_has_perm(p, PROCESS__GETSESSION);
3308 }
3309
3310 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3311 {
3312         *secid = task_sid(p);
3313 }
3314
3315 static int selinux_task_setnice(struct task_struct *p, int nice)
3316 {
3317         int rc;
3318
3319         rc = cap_task_setnice(p, nice);
3320         if (rc)
3321                 return rc;
3322
3323         return current_has_perm(p, PROCESS__SETSCHED);
3324 }
3325
3326 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3327 {
3328         int rc;
3329
3330         rc = cap_task_setioprio(p, ioprio);
3331         if (rc)
3332                 return rc;
3333
3334         return current_has_perm(p, PROCESS__SETSCHED);
3335 }
3336
3337 static int selinux_task_getioprio(struct task_struct *p)
3338 {
3339         return current_has_perm(p, PROCESS__GETSCHED);
3340 }
3341
3342 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3343 {
3344         struct rlimit *old_rlim = current->signal->rlim + resource;
3345
3346         /* Control the ability to change the hard limit (whether
3347            lowering or raising it), so that the hard limit can
3348            later be used as a safe reset point for the soft limit
3349            upon context transitions.  See selinux_bprm_committing_creds. */
3350         if (old_rlim->rlim_max != new_rlim->rlim_max)
3351                 return current_has_perm(current, PROCESS__SETRLIMIT);
3352
3353         return 0;
3354 }
3355
3356 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3357 {
3358         int rc;
3359
3360         rc = cap_task_setscheduler(p, policy, lp);
3361         if (rc)
3362                 return rc;
3363
3364         return current_has_perm(p, PROCESS__SETSCHED);
3365 }
3366
3367 static int selinux_task_getscheduler(struct task_struct *p)
3368 {
3369         return current_has_perm(p, PROCESS__GETSCHED);
3370 }
3371
3372 static int selinux_task_movememory(struct task_struct *p)
3373 {
3374         return current_has_perm(p, PROCESS__SETSCHED);
3375 }
3376
3377 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3378                                 int sig, u32 secid)
3379 {
3380         u32 perm;
3381         int rc;
3382
3383         if (!sig)
3384                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3385         else
3386                 perm = signal_to_av(sig);
3387         if (secid)
3388                 rc = avc_has_perm(secid, task_sid(p),
3389                                   SECCLASS_PROCESS, perm, NULL);
3390         else
3391                 rc = current_has_perm(p, perm);
3392         return rc;
3393 }
3394
3395 static int selinux_task_wait(struct task_struct *p)
3396 {
3397         return task_has_perm(p, current, PROCESS__SIGCHLD);
3398 }
3399
3400 static void selinux_task_to_inode(struct task_struct *p,
3401                                   struct inode *inode)
3402 {
3403         struct inode_security_struct *isec = inode->i_security;
3404         u32 sid = task_sid(p);
3405
3406         isec->sid = sid;
3407         isec->initialized = 1;
3408 }
3409
3410 /* Returns error only if unable to parse addresses */
3411 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3412                         struct avc_audit_data *ad, u8 *proto)
3413 {
3414         int offset, ihlen, ret = -EINVAL;
3415         struct iphdr _iph, *ih;
3416
3417         offset = skb_network_offset(skb);
3418         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3419         if (ih == NULL)
3420                 goto out;
3421
3422         ihlen = ih->ihl * 4;
3423         if (ihlen < sizeof(_iph))
3424                 goto out;
3425
3426         ad->u.net.v4info.saddr = ih->saddr;
3427         ad->u.net.v4info.daddr = ih->daddr;
3428         ret = 0;
3429
3430         if (proto)
3431                 *proto = ih->protocol;
3432
3433         switch (ih->protocol) {
3434         case IPPROTO_TCP: {
3435                 struct tcphdr _tcph, *th;
3436
3437                 if (ntohs(ih->frag_off) & IP_OFFSET)
3438                         break;
3439
3440                 offset += ihlen;
3441                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3442                 if (th == NULL)
3443                         break;
3444
3445                 ad->u.net.sport = th->source;
3446                 ad->u.net.dport = th->dest;
3447                 break;
3448         }
3449
3450         case IPPROTO_UDP: {
3451                 struct udphdr _udph, *uh;
3452
3453                 if (ntohs(ih->frag_off) & IP_OFFSET)
3454                         break;
3455
3456                 offset += ihlen;
3457                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3458                 if (uh == NULL)
3459                         break;
3460
3461                 ad->u.net.sport = uh->source;
3462                 ad->u.net.dport = uh->dest;
3463                 break;
3464         }
3465
3466         case IPPROTO_DCCP: {
3467                 struct dccp_hdr _dccph, *dh;
3468
3469                 if (ntohs(ih->frag_off) & IP_OFFSET)
3470                         break;
3471
3472                 offset += ihlen;
3473                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3474                 if (dh == NULL)
3475                         break;
3476
3477                 ad->u.net.sport = dh->dccph_sport;
3478                 ad->u.net.dport = dh->dccph_dport;
3479                 break;
3480         }
3481
3482         default:
3483                 break;
3484         }
3485 out:
3486         return ret;
3487 }
3488
3489 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3490
3491 /* Returns error only if unable to parse addresses */
3492 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3493                         struct avc_audit_data *ad, u8 *proto)
3494 {
3495         u8 nexthdr;
3496         int ret = -EINVAL, offset;
3497         struct ipv6hdr _ipv6h, *ip6;
3498
3499         offset = skb_network_offset(skb);
3500         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3501         if (ip6 == NULL)
3502                 goto out;
3503
3504         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3505         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3506         ret = 0;
3507
3508         nexthdr = ip6->nexthdr;
3509         offset += sizeof(_ipv6h);
3510         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3511         if (offset < 0)
3512                 goto out;
3513
3514         if (proto)
3515                 *proto = nexthdr;
3516
3517         switch (nexthdr) {
3518         case IPPROTO_TCP: {
3519                 struct tcphdr _tcph, *th;
3520
3521                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3522                 if (th == NULL)
3523                         break;
3524
3525                 ad->u.net.sport = th->source;
3526                 ad->u.net.dport = th->dest;
3527                 break;
3528         }
3529
3530         case IPPROTO_UDP: {
3531                 struct udphdr _udph, *uh;
3532
3533                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3534                 if (uh == NULL)
3535                         break;
3536
3537                 ad->u.net.sport = uh->source;
3538                 ad->u.net.dport = uh->dest;
3539                 break;
3540         }
3541
3542         case IPPROTO_DCCP: {
3543                 struct dccp_hdr _dccph, *dh;
3544
3545                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3546                 if (dh == NULL)
3547                         break;
3548
3549                 ad->u.net.sport = dh->dccph_sport;
3550                 ad->u.net.dport = dh->dccph_dport;
3551                 break;
3552         }
3553
3554         /* includes fragments */
3555         default:
3556                 break;
3557         }
3558 out:
3559         return ret;
3560 }
3561
3562 #endif /* IPV6 */
3563
3564 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3565                              char **_addrp, int src, u8 *proto)
3566 {
3567         char *addrp;
3568         int ret;
3569
3570         switch (ad->u.net.family) {
3571         case PF_INET:
3572                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3573                 if (ret)
3574                         goto parse_error;
3575                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3576                                        &ad->u.net.v4info.daddr);
3577                 goto okay;
3578
3579 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3580         case PF_INET6:
3581                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3582                 if (ret)
3583                         goto parse_error;
3584                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3585                                        &ad->u.net.v6info.daddr);
3586                 goto okay;
3587 #endif  /* IPV6 */
3588         default:
3589                 addrp = NULL;
3590                 goto okay;
3591         }
3592
3593 parse_error:
3594         printk(KERN_WARNING
3595                "SELinux: failure in selinux_parse_skb(),"
3596                " unable to parse packet\n");
3597         return ret;
3598
3599 okay:
3600         if (_addrp)
3601                 *_addrp = addrp;
3602         return 0;
3603 }
3604
3605 /**
3606  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3607  * @skb: the packet
3608  * @family: protocol family
3609  * @sid: the packet's peer label SID
3610  *
3611  * Description:
3612  * Check the various different forms of network peer labeling and determine
3613  * the peer label/SID for the packet; most of the magic actually occurs in
3614  * the security server function security_net_peersid_cmp().  The function
3615  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3616  * or -EACCES if @sid is invalid due to inconsistencies with the different
3617  * peer labels.
3618  *
3619  */
3620 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3621 {
3622         int err;
3623         u32 xfrm_sid;
3624         u32 nlbl_sid;
3625         u32 nlbl_type;
3626
3627         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3628         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3629
3630         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3631         if (unlikely(err)) {
3632                 printk(KERN_WARNING
3633                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3634                        " unable to determine packet's peer label\n");
3635                 return -EACCES;
3636         }
3637
3638         return 0;
3639 }
3640
3641 /* socket security operations */
3642 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3643                            u32 perms)
3644 {
3645         struct inode_security_struct *isec;
3646         struct avc_audit_data ad;
3647         u32 sid;
3648         int err = 0;
3649
3650         isec = SOCK_INODE(sock)->i_security;
3651
3652         if (isec->sid == SECINITSID_KERNEL)
3653                 goto out;
3654         sid = task_sid(task);
3655
3656         AVC_AUDIT_DATA_INIT(&ad, NET);
3657         ad.u.net.sk = sock->sk;
3658         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3659
3660 out:
3661         return err;
3662 }
3663
3664 static int selinux_socket_create(int family, int type,
3665                                  int protocol, int kern)
3666 {
3667         const struct cred *cred = current_cred();
3668         const struct task_security_struct *tsec = cred->security;
3669         u32 sid, newsid;
3670         u16 secclass;
3671         int err = 0;
3672
3673         if (kern)
3674                 goto out;
3675
3676         sid = tsec->sid;
3677         newsid = tsec->sockcreate_sid ?: sid;
3678
3679         secclass = socket_type_to_security_class(family, type, protocol);
3680         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3681
3682 out:
3683         return err;
3684 }
3685
3686 static int selinux_socket_post_create(struct socket *sock, int family,
3687                                       int type, int protocol, int kern)
3688 {
3689         const struct cred *cred = current_cred();
3690         const struct task_security_struct *tsec = cred->security;
3691         struct inode_security_struct *isec;
3692         struct sk_security_struct *sksec;
3693         u32 sid, newsid;
3694         int err = 0;
3695
3696         sid = tsec->sid;
3697         newsid = tsec->sockcreate_sid;
3698
3699         isec = SOCK_INODE(sock)->i_security;
3700
3701         if (kern)
3702                 isec->sid = SECINITSID_KERNEL;
3703         else if (newsid)
3704                 isec->sid = newsid;
3705         else
3706                 isec->sid = sid;
3707
3708         isec->sclass = socket_type_to_security_class(family, type, protocol);
3709         isec->initialized = 1;
3710
3711         if (sock->sk) {
3712                 sksec = sock->sk->sk_security;
3713                 sksec->sid = isec->sid;
3714                 sksec->sclass = isec->sclass;
3715                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3716         }
3717
3718         return err;
3719 }
3720
3721 /* Range of port numbers used to automatically bind.
3722    Need to determine whether we should perform a name_bind
3723    permission check between the socket and the port number. */
3724
3725 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3726 {
3727         u16 family;
3728         int err;
3729
3730         err = socket_has_perm(current, sock, SOCKET__BIND);
3731         if (err)
3732                 goto out;
3733
3734         /*
3735          * If PF_INET or PF_INET6, check name_bind permission for the port.
3736          * Multiple address binding for SCTP is not supported yet: we just
3737          * check the first address now.
3738          */
3739         family = sock->sk->sk_family;
3740         if (family == PF_INET || family == PF_INET6) {
3741                 char *addrp;
3742                 struct inode_security_struct *isec;
3743                 struct avc_audit_data ad;
3744                 struct sockaddr_in *addr4 = NULL;
3745                 struct sockaddr_in6 *addr6 = NULL;
3746                 unsigned short snum;
3747                 struct sock *sk = sock->sk;
3748                 u32 sid, node_perm;
3749
3750                 isec = SOCK_INODE(sock)->i_security;
3751
3752                 if (family == PF_INET) {
3753                         addr4 = (struct sockaddr_in *)address;
3754                         snum = ntohs(addr4->sin_port);
3755                         addrp = (char *)&addr4->sin_addr.s_addr;
3756                 } else {
3757                         addr6 = (struct sockaddr_in6 *)address;
3758                         snum = ntohs(addr6->sin6_port);
3759                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3760                 }
3761
3762                 if (snum) {
3763                         int low, high;
3764
3765                         inet_get_local_port_range(&low, &high);
3766
3767                         if (snum < max(PROT_SOCK, low) || snum > high) {
3768                                 err = sel_netport_sid(sk->sk_protocol,
3769                                                       snum, &sid);
3770                                 if (err)
3771                                         goto out;
3772                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3773                                 ad.u.net.sport = htons(snum);
3774                                 ad.u.net.family = family;
3775                                 err = avc_has_perm(isec->sid, sid,
3776                                                    isec->sclass,
3777                                                    SOCKET__NAME_BIND, &ad);
3778                                 if (err)
3779                                         goto out;
3780                         }
3781                 }
3782
3783                 switch (isec->sclass) {
3784                 case SECCLASS_TCP_SOCKET:
3785                         node_perm = TCP_SOCKET__NODE_BIND;
3786                         break;
3787
3788                 case SECCLASS_UDP_SOCKET:
3789                         node_perm = UDP_SOCKET__NODE_BIND;
3790                         break;
3791
3792                 case SECCLASS_DCCP_SOCKET:
3793                         node_perm = DCCP_SOCKET__NODE_BIND;
3794                         break;
3795
3796                 default:
3797                         node_perm = RAWIP_SOCKET__NODE_BIND;
3798                         break;
3799                 }
3800
3801                 err = sel_netnode_sid(addrp, family, &sid);
3802                 if (err)
3803                         goto out;
3804
3805                 AVC_AUDIT_DATA_INIT(&ad, NET);
3806                 ad.u.net.sport = htons(snum);
3807                 ad.u.net.family = family;
3808
3809                 if (family == PF_INET)
3810                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3811                 else
3812                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3813
3814                 err = avc_has_perm(isec->sid, sid,
3815                                    isec->sclass, node_perm, &ad);
3816                 if (err)
3817                         goto out;
3818         }
3819 out:
3820         return err;
3821 }
3822
3823 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3824 {
3825         struct sock *sk = sock->sk;
3826         struct inode_security_struct *isec;
3827         int err;
3828
3829         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3830         if (err)
3831                 return err;
3832
3833         /*
3834          * If a TCP or DCCP socket, check name_connect permission for the port.
3835          */
3836         isec = SOCK_INODE(sock)->i_security;
3837         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3838             isec->sclass == SECCLASS_DCCP_SOCKET) {
3839                 struct avc_audit_data ad;
3840                 struct sockaddr_in *addr4 = NULL;
3841                 struct sockaddr_in6 *addr6 = NULL;
3842                 unsigned short snum;
3843                 u32 sid, perm;
3844
3845                 if (sk->sk_family == PF_INET) {
3846                         addr4 = (struct sockaddr_in *)address;
3847                         if (addrlen < sizeof(struct sockaddr_in))
3848                                 return -EINVAL;
3849                         snum = ntohs(addr4->sin_port);
3850                 } else {
3851                         addr6 = (struct sockaddr_in6 *)address;
3852                         if (addrlen < SIN6_LEN_RFC2133)
3853                                 return -EINVAL;
3854                         snum = ntohs(addr6->sin6_port);
3855                 }
3856
3857                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3858                 if (err)
3859                         goto out;
3860
3861                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3862                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3863
3864                 AVC_AUDIT_DATA_INIT(&ad, NET);
3865                 ad.u.net.dport = htons(snum);
3866                 ad.u.net.family = sk->sk_family;
3867                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3868                 if (err)
3869                         goto out;
3870         }
3871
3872         err = selinux_netlbl_socket_connect(sk, address);
3873
3874 out:
3875         return err;
3876 }
3877
3878 static int selinux_socket_listen(struct socket *sock, int backlog)
3879 {
3880         return socket_has_perm(current, sock, SOCKET__LISTEN);
3881 }
3882
3883 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3884 {
3885         int err;
3886         struct inode_security_struct *isec;
3887         struct inode_security_struct *newisec;
3888
3889         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3890         if (err)
3891                 return err;
3892
3893         newisec = SOCK_INODE(newsock)->i_security;
3894
3895         isec = SOCK_INODE(sock)->i_security;
3896         newisec->sclass = isec->sclass;
3897         newisec->sid = isec->sid;
3898         newisec->initialized = 1;
3899
3900         return 0;
3901 }
3902
3903 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3904                                   int size)
3905 {
3906         return socket_has_perm(current, sock, SOCKET__WRITE);
3907 }
3908
3909 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3910                                   int size, int flags)
3911 {
3912         return socket_has_perm(current, sock, SOCKET__READ);
3913 }
3914
3915 static int selinux_socket_getsockname(struct socket *sock)
3916 {
3917         return socket_has_perm(current, sock, SOCKET__GETATTR);
3918 }
3919
3920 static int selinux_socket_getpeername(struct socket *sock)
3921 {
3922         return socket_has_perm(current, sock, SOCKET__GETATTR);
3923 }
3924
3925 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3926 {
3927         int err;
3928
3929         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3930         if (err)
3931                 return err;
3932
3933         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3934 }
3935
3936 static int selinux_socket_getsockopt(struct socket *sock, int level,
3937                                      int optname)
3938 {
3939         return socket_has_perm(current, sock, SOCKET__GETOPT);
3940 }
3941
3942 static int selinux_socket_shutdown(struct socket *sock, int how)
3943 {
3944         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3945 }
3946
3947 static int selinux_socket_unix_stream_connect(struct socket *sock,
3948                                               struct socket *other,
3949                                               struct sock *newsk)
3950 {
3951         struct sk_security_struct *ssec;
3952         struct inode_security_struct *isec;
3953         struct inode_security_struct *other_isec;
3954         struct avc_audit_data ad;
3955         int err;
3956
3957         isec = SOCK_INODE(sock)->i_security;
3958         other_isec = SOCK_INODE(other)->i_security;
3959
3960         AVC_AUDIT_DATA_INIT(&ad, NET);
3961         ad.u.net.sk = other->sk;
3962
3963         err = avc_has_perm(isec->sid, other_isec->sid,
3964                            isec->sclass,
3965                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3966         if (err)
3967                 return err;
3968
3969         /* connecting socket */
3970         ssec = sock->sk->sk_security;
3971         ssec->peer_sid = other_isec->sid;
3972
3973         /* server child socket */
3974         ssec = newsk->sk_security;
3975         ssec->peer_sid = isec->sid;
3976         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3977
3978         return err;
3979 }
3980
3981 static int selinux_socket_unix_may_send(struct socket *sock,
3982                                         struct socket *other)
3983 {
3984         struct inode_security_struct *isec;
3985         struct inode_security_struct *other_isec;
3986         struct avc_audit_data ad;
3987         int err;
3988
3989         isec = SOCK_INODE(sock)->i_security;
3990         other_isec = SOCK_INODE(other)->i_security;
3991
3992         AVC_AUDIT_DATA_INIT(&ad, NET);
3993         ad.u.net.sk = other->sk;
3994
3995         err = avc_has_perm(isec->sid, other_isec->sid,
3996                            isec->sclass, SOCKET__SENDTO, &ad);
3997         if (err)
3998                 return err;
3999
4000         return 0;
4001 }
4002
4003 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4004                                     u32 peer_sid,
4005                                     struct avc_audit_data *ad)
4006 {
4007         int err;
4008         u32 if_sid;
4009         u32 node_sid;
4010
4011         err = sel_netif_sid(ifindex, &if_sid);
4012         if (err)
4013                 return err;
4014         err = avc_has_perm(peer_sid, if_sid,
4015                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4016         if (err)
4017                 return err;
4018
4019         err = sel_netnode_sid(addrp, family, &node_sid);
4020         if (err)
4021                 return err;
4022         return avc_has_perm(peer_sid, node_sid,
4023                             SECCLASS_NODE, NODE__RECVFROM, ad);
4024 }
4025
4026 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4027                                        u16 family)
4028 {
4029         int err = 0;
4030         struct sk_security_struct *sksec = sk->sk_security;
4031         u32 peer_sid;
4032         u32 sk_sid = sksec->sid;
4033         struct avc_audit_data ad;
4034         char *addrp;
4035
4036         AVC_AUDIT_DATA_INIT(&ad, NET);
4037         ad.u.net.netif = skb->iif;
4038         ad.u.net.family = family;
4039         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4040         if (err)
4041                 return err;
4042
4043         if (selinux_secmark_enabled()) {
4044                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4045                                    PACKET__RECV, &ad);
4046                 if (err)
4047                         return err;
4048         }
4049
4050         if (selinux_policycap_netpeer) {
4051                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4052                 if (err)
4053                         return err;
4054                 err = avc_has_perm(sk_sid, peer_sid,
4055                                    SECCLASS_PEER, PEER__RECV, &ad);
4056                 if (err)
4057                         selinux_netlbl_err(skb, err, 0);
4058         } else {
4059                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4060                 if (err)
4061                         return err;
4062                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4063         }
4064
4065         return err;
4066 }
4067
4068 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4069 {
4070         int err;
4071         struct sk_security_struct *sksec = sk->sk_security;
4072         u16 family = sk->sk_family;
4073         u32 sk_sid = sksec->sid;
4074         struct avc_audit_data ad;
4075         char *addrp;
4076         u8 secmark_active;
4077         u8 peerlbl_active;
4078
4079         if (family != PF_INET && family != PF_INET6)
4080                 return 0;
4081
4082         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4083         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4084                 family = PF_INET;
4085
4086         /* If any sort of compatibility mode is enabled then handoff processing
4087          * to the selinux_sock_rcv_skb_compat() function to deal with the
4088          * special handling.  We do this in an attempt to keep this function
4089          * as fast and as clean as possible. */
4090         if (!selinux_policycap_netpeer)
4091                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4092
4093         secmark_active = selinux_secmark_enabled();
4094         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4095         if (!secmark_active && !peerlbl_active)
4096                 return 0;
4097
4098         AVC_AUDIT_DATA_INIT(&ad, NET);
4099         ad.u.net.netif = skb->iif;
4100         ad.u.net.family = family;
4101         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4102         if (err)
4103                 return err;
4104
4105         if (peerlbl_active) {
4106                 u32 peer_sid;
4107
4108                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4109                 if (err)
4110                         return err;
4111                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4112                                                peer_sid, &ad);
4113                 if (err) {
4114                         selinux_netlbl_err(skb, err, 0);
4115                         return err;
4116                 }
4117                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4118                                    PEER__RECV, &ad);
4119                 if (err)
4120                         selinux_netlbl_err(skb, err, 0);
4121         }
4122
4123         if (secmark_active) {
4124                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4125                                    PACKET__RECV, &ad);
4126                 if (err)
4127                         return err;
4128         }
4129
4130         return err;
4131 }
4132
4133 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4134                                             int __user *optlen, unsigned len)
4135 {
4136         int err = 0;
4137         char *scontext;
4138         u32 scontext_len;
4139         struct sk_security_struct *ssec;
4140         struct inode_security_struct *isec;
4141         u32 peer_sid = SECSID_NULL;
4142
4143         isec = SOCK_INODE(sock)->i_security;
4144
4145         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4146             isec->sclass == SECCLASS_TCP_SOCKET) {
4147                 ssec = sock->sk->sk_security;
4148                 peer_sid = ssec->peer_sid;
4149         }
4150         if (peer_sid == SECSID_NULL) {
4151                 err = -ENOPROTOOPT;
4152                 goto out;
4153         }
4154
4155         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4156
4157         if (err)
4158                 goto out;
4159
4160         if (scontext_len > len) {
4161                 err = -ERANGE;
4162                 goto out_len;
4163         }
4164
4165         if (copy_to_user(optval, scontext, scontext_len))
4166                 err = -EFAULT;
4167
4168 out_len:
4169         if (put_user(scontext_len, optlen))
4170                 err = -EFAULT;
4171
4172         kfree(scontext);
4173 out:
4174         return err;
4175 }
4176
4177 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4178 {
4179         u32 peer_secid = SECSID_NULL;
4180         u16 family;
4181
4182         if (skb && skb->protocol == htons(ETH_P_IP))
4183                 family = PF_INET;
4184         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4185                 family = PF_INET6;
4186         else if (sock)
4187                 family = sock->sk->sk_family;
4188         else
4189                 goto out;
4190
4191         if (sock && family == PF_UNIX)
4192                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4193         else if (skb)
4194                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4195
4196 out:
4197         *secid = peer_secid;
4198         if (peer_secid == SECSID_NULL)
4199                 return -EINVAL;
4200         return 0;
4201 }
4202
4203 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4204 {
4205         return sk_alloc_security(sk, family, priority);
4206 }
4207
4208 static void selinux_sk_free_security(struct sock *sk)
4209 {
4210         sk_free_security(sk);
4211 }
4212
4213 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4214 {
4215         struct sk_security_struct *ssec = sk->sk_security;
4216         struct sk_security_struct *newssec = newsk->sk_security;
4217
4218         newssec->sid = ssec->sid;
4219         newssec->peer_sid = ssec->peer_sid;
4220         newssec->sclass = ssec->sclass;
4221
4222         selinux_netlbl_sk_security_reset(newssec);
4223 }
4224
4225 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4226 {
4227         if (!sk)
4228                 *secid = SECINITSID_ANY_SOCKET;
4229         else {
4230                 struct sk_security_struct *sksec = sk->sk_security;
4231
4232                 *secid = sksec->sid;
4233         }
4234 }
4235
4236 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4237 {
4238         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4239         struct sk_security_struct *sksec = sk->sk_security;
4240
4241         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4242             sk->sk_family == PF_UNIX)
4243                 isec->sid = sksec->sid;
4244         sksec->sclass = isec->sclass;
4245 }
4246
4247 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4248                                      struct request_sock *req)
4249 {
4250         struct sk_security_struct *sksec = sk->sk_security;
4251         int err;
4252         u16 family = sk->sk_family;
4253         u32 newsid;
4254         u32 peersid;
4255
4256         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4257         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4258                 family = PF_INET;
4259
4260         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4261         if (err)
4262                 return err;
4263         if (peersid == SECSID_NULL) {
4264                 req->secid = sksec->sid;
4265                 req->peer_secid = SECSID_NULL;
4266         } else {
4267                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4268                 if (err)
4269                         return err;
4270                 req->secid = newsid;
4271                 req->peer_secid = peersid;
4272         }
4273
4274         return selinux_netlbl_inet_conn_request(req, family);
4275 }
4276
4277 static void selinux_inet_csk_clone(struct sock *newsk,
4278                                    const struct request_sock *req)
4279 {
4280         struct sk_security_struct *newsksec = newsk->sk_security;
4281
4282         newsksec->sid = req->secid;
4283         newsksec->peer_sid = req->peer_secid;
4284         /* NOTE: Ideally, we should also get the isec->sid for the
4285            new socket in sync, but we don't have the isec available yet.
4286            So we will wait until sock_graft to do it, by which
4287            time it will have been created and available. */
4288
4289         /* We don't need to take any sort of lock here as we are the only
4290          * thread with access to newsksec */
4291         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4292 }
4293
4294 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4295 {
4296         u16 family = sk->sk_family;
4297         struct sk_security_struct *sksec = sk->sk_security;
4298
4299         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4300         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4301                 family = PF_INET;
4302
4303         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4304 }
4305
4306 static void selinux_req_classify_flow(const struct request_sock *req,
4307                                       struct flowi *fl)
4308 {
4309         fl->secid = req->secid;
4310 }
4311
4312 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4313 {
4314         int err = 0;
4315         u32 perm;
4316         struct nlmsghdr *nlh;
4317         struct socket *sock = sk->sk_socket;
4318         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4319
4320         if (skb->len < NLMSG_SPACE(0)) {
4321                 err = -EINVAL;
4322                 goto out;
4323         }
4324         nlh = nlmsg_hdr(skb);
4325
4326         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4327         if (err) {
4328                 if (err == -EINVAL) {
4329                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4330                                   "SELinux:  unrecognized netlink message"
4331                                   " type=%hu for sclass=%hu\n",
4332                                   nlh->nlmsg_type, isec->sclass);
4333                         if (!selinux_enforcing || security_get_allow_unknown())
4334                                 err = 0;
4335                 }
4336
4337                 /* Ignore */
4338                 if (err == -ENOENT)
4339                         err = 0;
4340                 goto out;
4341         }
4342
4343         err = socket_has_perm(current, sock, perm);
4344 out:
4345         return err;
4346 }
4347
4348 #ifdef CONFIG_NETFILTER
4349
4350 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4351                                        u16 family)
4352 {
4353         int err;
4354         char *addrp;
4355         u32 peer_sid;
4356         struct avc_audit_data ad;
4357         u8 secmark_active;
4358         u8 netlbl_active;
4359         u8 peerlbl_active;
4360
4361         if (!selinux_policycap_netpeer)
4362                 return NF_ACCEPT;
4363
4364         secmark_active = selinux_secmark_enabled();
4365         netlbl_active = netlbl_enabled();
4366         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4367         if (!secmark_active && !peerlbl_active)
4368                 return NF_ACCEPT;
4369
4370         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4371                 return NF_DROP;
4372
4373         AVC_AUDIT_DATA_INIT(&ad, NET);
4374         ad.u.net.netif = ifindex;
4375         ad.u.net.family = family;
4376         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4377                 return NF_DROP;
4378
4379         if (peerlbl_active) {
4380                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4381                                                peer_sid, &ad);
4382                 if (err) {
4383                         selinux_netlbl_err(skb, err, 1);
4384                         return NF_DROP;
4385                 }
4386         }
4387
4388         if (secmark_active)
4389                 if (avc_has_perm(peer_sid, skb->secmark,
4390                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4391                         return NF_DROP;
4392
4393         if (netlbl_active)
4394                 /* we do this in the FORWARD path and not the POST_ROUTING
4395                  * path because we want to make sure we apply the necessary
4396                  * labeling before IPsec is applied so we can leverage AH
4397                  * protection */
4398                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4399                         return NF_DROP;
4400
4401         return NF_ACCEPT;
4402 }
4403
4404 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4405                                          struct sk_buff *skb,
4406                                          const struct net_device *in,
4407                                          const struct net_device *out,
4408                                          int (*okfn)(struct sk_buff *))
4409 {
4410         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4411 }
4412
4413 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4414 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4415                                          struct sk_buff *skb,
4416                                          const struct net_device *in,
4417                                          const struct net_device *out,
4418                                          int (*okfn)(struct sk_buff *))
4419 {
4420         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4421 }
4422 #endif  /* IPV6 */
4423
4424 static unsigned int selinux_ip_output(struct sk_buff *skb,
4425                                       u16 family)
4426 {
4427         u32 sid;
4428
4429         if (!netlbl_enabled())
4430                 return NF_ACCEPT;
4431
4432         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4433          * because we want to make sure we apply the necessary labeling
4434          * before IPsec is applied so we can leverage AH protection */
4435         if (skb->sk) {
4436                 struct sk_security_struct *sksec = skb->sk->sk_security;
4437                 sid = sksec->sid;
4438         } else
4439                 sid = SECINITSID_KERNEL;
4440         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4441                 return NF_DROP;
4442
4443         return NF_ACCEPT;
4444 }
4445
4446 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4447                                         struct sk_buff *skb,
4448                                         const struct net_device *in,
4449                                         const struct net_device *out,
4450                                         int (*okfn)(struct sk_buff *))
4451 {
4452         return selinux_ip_output(skb, PF_INET);
4453 }
4454
4455 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4456                                                 int ifindex,
4457                                                 u16 family)
4458 {
4459         struct sock *sk = skb->sk;
4460         struct sk_security_struct *sksec;
4461         struct avc_audit_data ad;
4462         char *addrp;
4463         u8 proto;
4464
4465         if (sk == NULL)
4466                 return NF_ACCEPT;
4467         sksec = sk->sk_security;
4468
4469         AVC_AUDIT_DATA_INIT(&ad, NET);
4470         ad.u.net.netif = ifindex;
4471         ad.u.net.family = family;
4472         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4473                 return NF_DROP;
4474
4475         if (selinux_secmark_enabled())
4476                 if (avc_has_perm(sksec->sid, skb->secmark,
4477                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4478                         return NF_DROP;
4479
4480         if (selinux_policycap_netpeer)
4481                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4482                         return NF_DROP;
4483
4484         return NF_ACCEPT;
4485 }
4486
4487 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4488                                          u16 family)
4489 {
4490         u32 secmark_perm;
4491         u32 peer_sid;
4492         struct sock *sk;
4493         struct avc_audit_data ad;
4494         char *addrp;
4495         u8 secmark_active;
4496         u8 peerlbl_active;
4497
4498         /* If any sort of compatibility mode is enabled then handoff processing
4499          * to the selinux_ip_postroute_compat() function to deal with the
4500          * special handling.  We do this in an attempt to keep this function
4501          * as fast and as clean as possible. */
4502         if (!selinux_policycap_netpeer)
4503                 return selinux_ip_postroute_compat(skb, ifindex, family);
4504 #ifdef CONFIG_XFRM
4505         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4506          * packet transformation so allow the packet to pass without any checks
4507          * since we'll have another chance to perform access control checks
4508          * when the packet is on it's final way out.
4509          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4510          *       is NULL, in this case go ahead and apply access control. */
4511         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4512                 return NF_ACCEPT;
4513 #endif
4514         secmark_active = selinux_secmark_enabled();
4515         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4516         if (!secmark_active && !peerlbl_active)
4517                 return NF_ACCEPT;
4518
4519         /* if the packet is being forwarded then get the peer label from the
4520          * packet itself; otherwise check to see if it is from a local
4521          * application or the kernel, if from an application get the peer label
4522          * from the sending socket, otherwise use the kernel's sid */
4523         sk = skb->sk;
4524         if (sk == NULL) {
4525                 switch (family) {
4526                 case PF_INET:
4527                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4528                                 secmark_perm = PACKET__FORWARD_OUT;
4529                         else
4530                                 secmark_perm = PACKET__SEND;
4531                         break;
4532                 case PF_INET6:
4533                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4534                                 secmark_perm = PACKET__FORWARD_OUT;
4535                         else
4536                                 secmark_perm = PACKET__SEND;
4537                         break;
4538                 default:
4539                         return NF_DROP;
4540                 }
4541                 if (secmark_perm == PACKET__FORWARD_OUT) {
4542                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4543                                 return NF_DROP;
4544                 } else
4545                         peer_sid = SECINITSID_KERNEL;
4546         } else {
4547                 struct sk_security_struct *sksec = sk->sk_security;
4548                 peer_sid = sksec->sid;
4549                 secmark_perm = PACKET__SEND;
4550         }
4551
4552         AVC_AUDIT_DATA_INIT(&ad, NET);
4553         ad.u.net.netif = ifindex;
4554         ad.u.net.family = family;
4555         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4556                 return NF_DROP;
4557
4558         if (secmark_active)
4559                 if (avc_has_perm(peer_sid, skb->secmark,
4560                                  SECCLASS_PACKET, secmark_perm, &ad))
4561                         return NF_DROP;
4562
4563         if (peerlbl_active) {
4564                 u32 if_sid;
4565                 u32 node_sid;
4566
4567                 if (sel_netif_sid(ifindex, &if_sid))
4568                         return NF_DROP;
4569                 if (avc_has_perm(peer_sid, if_sid,
4570                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4571                         return NF_DROP;
4572
4573                 if (sel_netnode_sid(addrp, family, &node_sid))
4574                         return NF_DROP;
4575                 if (avc_has_perm(peer_sid, node_sid,
4576                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4577                         return NF_DROP;
4578         }
4579
4580         return NF_ACCEPT;
4581 }
4582
4583 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4584                                            struct sk_buff *skb,
4585                                            const struct net_device *in,
4586                                            const struct net_device *out,
4587                                            int (*okfn)(struct sk_buff *))
4588 {
4589         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4590 }
4591
4592 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4593 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4594                                            struct sk_buff *skb,
4595                                            const struct net_device *in,
4596                                            const struct net_device *out,
4597                                            int (*okfn)(struct sk_buff *))
4598 {
4599         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4600 }
4601 #endif  /* IPV6 */
4602
4603 #endif  /* CONFIG_NETFILTER */
4604
4605 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4606 {
4607         int err;
4608
4609         err = cap_netlink_send(sk, skb);
4610         if (err)
4611                 return err;
4612
4613         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4614                 err = selinux_nlmsg_perm(sk, skb);
4615
4616         return err;
4617 }
4618
4619 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4620 {
4621         int err;
4622         struct avc_audit_data ad;
4623
4624         err = cap_netlink_recv(skb, capability);
4625         if (err)
4626                 return err;
4627
4628         AVC_AUDIT_DATA_INIT(&ad, CAP);
4629         ad.u.cap = capability;
4630
4631         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4632                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4633 }
4634
4635 static int ipc_alloc_security(struct task_struct *task,
4636                               struct kern_ipc_perm *perm,
4637                               u16 sclass)
4638 {
4639         struct ipc_security_struct *isec;
4640         u32 sid;
4641
4642         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4643         if (!isec)
4644                 return -ENOMEM;
4645
4646         sid = task_sid(task);
4647         isec->sclass = sclass;
4648         isec->sid = sid;
4649         perm->security = isec;
4650
4651         return 0;
4652 }
4653
4654 static void ipc_free_security(struct kern_ipc_perm *perm)
4655 {
4656         struct ipc_security_struct *isec = perm->security;
4657         perm->security = NULL;
4658         kfree(isec);
4659 }
4660
4661 static int msg_msg_alloc_security(struct msg_msg *msg)
4662 {
4663         struct msg_security_struct *msec;
4664
4665         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4666         if (!msec)
4667                 return -ENOMEM;
4668
4669         msec->sid = SECINITSID_UNLABELED;
4670         msg->security = msec;
4671
4672         return 0;
4673 }
4674
4675 static void msg_msg_free_security(struct msg_msg *msg)
4676 {
4677         struct msg_security_struct *msec = msg->security;
4678
4679         msg->security = NULL;
4680         kfree(msec);
4681 }
4682
4683 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4684                         u32 perms)
4685 {
4686         struct ipc_security_struct *isec;
4687         struct avc_audit_data ad;
4688         u32 sid = current_sid();
4689
4690         isec = ipc_perms->security;
4691
4692         AVC_AUDIT_DATA_INIT(&ad, IPC);
4693         ad.u.ipc_id = ipc_perms->key;
4694
4695         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4696 }
4697
4698 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4699 {
4700         return msg_msg_alloc_security(msg);
4701 }
4702
4703 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4704 {
4705         msg_msg_free_security(msg);
4706 }
4707
4708 /* message queue security operations */
4709 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4710 {
4711         struct ipc_security_struct *isec;
4712         struct avc_audit_data ad;
4713         u32 sid = current_sid();
4714         int rc;
4715
4716         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4717         if (rc)
4718                 return rc;
4719
4720         isec = msq->q_perm.security;
4721
4722         AVC_AUDIT_DATA_INIT(&ad, IPC);
4723         ad.u.ipc_id = msq->q_perm.key;
4724
4725         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4726                           MSGQ__CREATE, &ad);
4727         if (rc) {
4728                 ipc_free_security(&msq->q_perm);
4729                 return rc;
4730         }
4731         return 0;
4732 }
4733
4734 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4735 {
4736         ipc_free_security(&msq->q_perm);
4737 }
4738
4739 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4740 {
4741         struct ipc_security_struct *isec;
4742         struct avc_audit_data ad;
4743         u32 sid = current_sid();
4744
4745         isec = msq->q_perm.security;
4746
4747         AVC_AUDIT_DATA_INIT(&ad, IPC);
4748         ad.u.ipc_id = msq->q_perm.key;
4749
4750         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4751                             MSGQ__ASSOCIATE, &ad);
4752 }
4753
4754 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4755 {
4756         int err;
4757         int perms;
4758
4759         switch (cmd) {
4760         case IPC_INFO:
4761         case MSG_INFO:
4762                 /* No specific object, just general system-wide information. */
4763                 return task_has_system(current, SYSTEM__IPC_INFO);
4764         case IPC_STAT:
4765         case MSG_STAT:
4766                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4767                 break;
4768         case IPC_SET:
4769                 perms = MSGQ__SETATTR;
4770                 break;
4771         case IPC_RMID:
4772                 perms = MSGQ__DESTROY;
4773                 break;
4774         default:
4775                 return 0;
4776         }
4777
4778         err = ipc_has_perm(&msq->q_perm, perms);
4779         return err;
4780 }
4781
4782 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4783 {
4784         struct ipc_security_struct *isec;
4785         struct msg_security_struct *msec;
4786         struct avc_audit_data ad;
4787         u32 sid = current_sid();
4788         int rc;
4789
4790         isec = msq->q_perm.security;
4791         msec = msg->security;
4792
4793         /*
4794          * First time through, need to assign label to the message
4795          */
4796         if (msec->sid == SECINITSID_UNLABELED) {
4797                 /*
4798                  * Compute new sid based on current process and
4799                  * message queue this message will be stored in
4800                  */
4801                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4802                                              &msec->sid);
4803                 if (rc)
4804                         return rc;
4805         }
4806
4807         AVC_AUDIT_DATA_INIT(&ad, IPC);
4808         ad.u.ipc_id = msq->q_perm.key;
4809
4810         /* Can this process write to the queue? */
4811         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4812                           MSGQ__WRITE, &ad);
4813         if (!rc)
4814                 /* Can this process send the message */
4815                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4816                                   MSG__SEND, &ad);
4817         if (!rc)
4818                 /* Can the message be put in the queue? */
4819                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4820                                   MSGQ__ENQUEUE, &ad);
4821
4822         return rc;
4823 }
4824
4825 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4826                                     struct task_struct *target,
4827                                     long type, int mode)
4828 {
4829         struct ipc_security_struct *isec;
4830         struct msg_security_struct *msec;
4831         struct avc_audit_data ad;
4832         u32 sid = task_sid(target);
4833         int rc;
4834
4835         isec = msq->q_perm.security;
4836         msec = msg->security;
4837
4838         AVC_AUDIT_DATA_INIT(&ad, IPC);
4839         ad.u.ipc_id = msq->q_perm.key;
4840
4841         rc = avc_has_perm(sid, isec->sid,
4842                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4843         if (!rc)
4844                 rc = avc_has_perm(sid, msec->sid,
4845                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4846         return rc;
4847 }
4848
4849 /* Shared Memory security operations */
4850 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4851 {
4852         struct ipc_security_struct *isec;
4853         struct avc_audit_data ad;
4854         u32 sid = current_sid();
4855         int rc;
4856
4857         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4858         if (rc)
4859                 return rc;
4860
4861         isec = shp->shm_perm.security;
4862
4863         AVC_AUDIT_DATA_INIT(&ad, IPC);
4864         ad.u.ipc_id = shp->shm_perm.key;
4865
4866         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4867                           SHM__CREATE, &ad);
4868         if (rc) {
4869                 ipc_free_security(&shp->shm_perm);
4870                 return rc;
4871         }
4872         return 0;
4873 }
4874
4875 static void selinux_shm_free_security(struct shmid_kernel *shp)
4876 {
4877         ipc_free_security(&shp->shm_perm);
4878 }
4879
4880 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4881 {
4882         struct ipc_security_struct *isec;
4883         struct avc_audit_data ad;
4884         u32 sid = current_sid();
4885
4886         isec = shp->shm_perm.security;
4887
4888         AVC_AUDIT_DATA_INIT(&ad, IPC);
4889         ad.u.ipc_id = shp->shm_perm.key;
4890
4891         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4892                             SHM__ASSOCIATE, &ad);
4893 }
4894
4895 /* Note, at this point, shp is locked down */
4896 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4897 {
4898         int perms;
4899         int err;
4900
4901         switch (cmd) {
4902         case IPC_INFO:
4903         case SHM_INFO:
4904                 /* No specific object, just general system-wide information. */
4905                 return task_has_system(current, SYSTEM__IPC_INFO);
4906         case IPC_STAT:
4907         case SHM_STAT:
4908                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4909                 break;
4910         case IPC_SET:
4911                 perms = SHM__SETATTR;
4912                 break;
4913         case SHM_LOCK:
4914         case SHM_UNLOCK:
4915                 perms = SHM__LOCK;
4916                 break;
4917         case IPC_RMID:
4918                 perms = SHM__DESTROY;
4919                 break;
4920         default:
4921                 return 0;
4922         }
4923
4924         err = ipc_has_perm(&shp->shm_perm, perms);
4925         return err;
4926 }
4927
4928 static int selinux_shm_shmat(struct shmid_kernel *shp,
4929                              char __user *shmaddr, int shmflg)
4930 {
4931         u32 perms;
4932
4933         if (shmflg & SHM_RDONLY)
4934                 perms = SHM__READ;
4935         else
4936                 perms = SHM__READ | SHM__WRITE;
4937
4938         return ipc_has_perm(&shp->shm_perm, perms);
4939 }
4940
4941 /* Semaphore security operations */
4942 static int selinux_sem_alloc_security(struct sem_array *sma)
4943 {
4944         struct ipc_security_struct *isec;
4945         struct avc_audit_data ad;
4946         u32 sid = current_sid();
4947         int rc;
4948
4949         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4950         if (rc)
4951                 return rc;
4952
4953         isec = sma->sem_perm.security;
4954
4955         AVC_AUDIT_DATA_INIT(&ad, IPC);
4956         ad.u.ipc_id = sma->sem_perm.key;
4957
4958         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4959                           SEM__CREATE, &ad);
4960         if (rc) {
4961                 ipc_free_security(&sma->sem_perm);
4962                 return rc;
4963         }
4964         return 0;
4965 }
4966
4967 static void selinux_sem_free_security(struct sem_array *sma)
4968 {
4969         ipc_free_security(&sma->sem_perm);
4970 }
4971
4972 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4973 {
4974         struct ipc_security_struct *isec;
4975         struct avc_audit_data ad;
4976         u32 sid = current_sid();
4977
4978         isec = sma->sem_perm.security;
4979
4980         AVC_AUDIT_DATA_INIT(&ad, IPC);
4981         ad.u.ipc_id = sma->sem_perm.key;
4982
4983         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4984                             SEM__ASSOCIATE, &ad);
4985 }
4986
4987 /* Note, at this point, sma is locked down */
4988 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4989 {
4990         int err;
4991         u32 perms;
4992
4993         switch (cmd) {
4994         case IPC_INFO:
4995         case SEM_INFO:
4996                 /* No specific object, just general system-wide information. */
4997                 return task_has_system(current, SYSTEM__IPC_INFO);
4998         case GETPID:
4999         case GETNCNT:
5000         case GETZCNT:
5001                 perms = SEM__GETATTR;
5002                 break;
5003         case GETVAL:
5004         case GETALL:
5005                 perms = SEM__READ;
5006                 break;
5007         case SETVAL:
5008         case SETALL:
5009                 perms = SEM__WRITE;
5010                 break;
5011         case IPC_RMID:
5012                 perms = SEM__DESTROY;
5013                 break;
5014         case IPC_SET:
5015                 perms = SEM__SETATTR;
5016                 break;
5017         case IPC_STAT:
5018         case SEM_STAT:
5019                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5020                 break;
5021         default:
5022                 return 0;
5023         }
5024
5025         err = ipc_has_perm(&sma->sem_perm, perms);
5026         return err;
5027 }
5028
5029 static int selinux_sem_semop(struct sem_array *sma,
5030                              struct sembuf *sops, unsigned nsops, int alter)
5031 {
5032         u32 perms;
5033
5034         if (alter)
5035                 perms = SEM__READ | SEM__WRITE;
5036         else
5037                 perms = SEM__READ;
5038
5039         return ipc_has_perm(&sma->sem_perm, perms);
5040 }
5041
5042 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5043 {
5044         u32 av = 0;
5045
5046         av = 0;
5047         if (flag & S_IRUGO)
5048                 av |= IPC__UNIX_READ;
5049         if (flag & S_IWUGO)
5050                 av |= IPC__UNIX_WRITE;
5051
5052         if (av == 0)
5053                 return 0;
5054
5055         return ipc_has_perm(ipcp, av);
5056 }
5057
5058 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5059 {
5060         struct ipc_security_struct *isec = ipcp->security;
5061         *secid = isec->sid;
5062 }
5063
5064 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5065 {
5066         if (inode)
5067                 inode_doinit_with_dentry(inode, dentry);
5068 }
5069
5070 static int selinux_getprocattr(struct task_struct *p,
5071                                char *name, char **value)
5072 {
5073         const struct task_security_struct *__tsec;
5074         u32 sid;
5075         int error;
5076         unsigned len;
5077
5078         if (current != p) {
5079                 error = current_has_perm(p, PROCESS__GETATTR);
5080                 if (error)
5081                         return error;
5082         }
5083
5084         rcu_read_lock();
5085         __tsec = __task_cred(p)->security;
5086
5087         if (!strcmp(name, "current"))
5088                 sid = __tsec->sid;
5089         else if (!strcmp(name, "prev"))
5090                 sid = __tsec->osid;
5091         else if (!strcmp(name, "exec"))
5092                 sid = __tsec->exec_sid;
5093         else if (!strcmp(name, "fscreate"))
5094                 sid = __tsec->create_sid;
5095         else if (!strcmp(name, "keycreate"))
5096                 sid = __tsec->keycreate_sid;
5097         else if (!strcmp(name, "sockcreate"))
5098                 sid = __tsec->sockcreate_sid;
5099         else
5100                 goto invalid;
5101         rcu_read_unlock();
5102
5103         if (!sid)
5104                 return 0;
5105
5106         error = security_sid_to_context(sid, value, &len);
5107         if (error)
5108                 return error;
5109         return len;
5110
5111 invalid:
5112         rcu_read_unlock();
5113         return -EINVAL;
5114 }
5115
5116 static int selinux_setprocattr(struct task_struct *p,
5117                                char *name, void *value, size_t size)
5118 {
5119         struct task_security_struct *tsec;
5120         struct task_struct *tracer;
5121         struct cred *new;
5122         u32 sid = 0, ptsid;
5123         int error;
5124         char *str = value;
5125
5126         if (current != p) {
5127                 /* SELinux only allows a process to change its own
5128                    security attributes. */
5129                 return -EACCES;
5130         }
5131
5132         /*
5133          * Basic control over ability to set these attributes at all.
5134          * current == p, but we'll pass them separately in case the
5135          * above restriction is ever removed.
5136          */
5137         if (!strcmp(name, "exec"))
5138                 error = current_has_perm(p, PROCESS__SETEXEC);
5139         else if (!strcmp(name, "fscreate"))
5140                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5141         else if (!strcmp(name, "keycreate"))
5142                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5143         else if (!strcmp(name, "sockcreate"))
5144                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5145         else if (!strcmp(name, "current"))
5146                 error = current_has_perm(p, PROCESS__SETCURRENT);
5147         else
5148                 error = -EINVAL;
5149         if (error)
5150                 return error;
5151
5152         /* Obtain a SID for the context, if one was specified. */
5153         if (size && str[1] && str[1] != '\n') {
5154                 if (str[size-1] == '\n') {
5155                         str[size-1] = 0;
5156                         size--;
5157                 }
5158                 error = security_context_to_sid(value, size, &sid);
5159                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5160                         if (!capable(CAP_MAC_ADMIN))
5161                                 return error;
5162                         error = security_context_to_sid_force(value, size,
5163                                                               &sid);
5164                 }
5165                 if (error)
5166                         return error;
5167         }
5168
5169         new = prepare_creds();
5170         if (!new)
5171                 return -ENOMEM;
5172
5173         /* Permission checking based on the specified context is
5174            performed during the actual operation (execve,
5175            open/mkdir/...), when we know the full context of the
5176            operation.  See selinux_bprm_set_creds for the execve
5177            checks and may_create for the file creation checks. The
5178            operation will then fail if the context is not permitted. */
5179         tsec = new->security;
5180         if (!strcmp(name, "exec")) {
5181                 tsec->exec_sid = sid;
5182         } else if (!strcmp(name, "fscreate")) {
5183                 tsec->create_sid = sid;
5184         } else if (!strcmp(name, "keycreate")) {
5185                 error = may_create_key(sid, p);
5186                 if (error)
5187                         goto abort_change;
5188                 tsec->keycreate_sid = sid;
5189         } else if (!strcmp(name, "sockcreate")) {
5190                 tsec->sockcreate_sid = sid;
5191         } else if (!strcmp(name, "current")) {
5192                 error = -EINVAL;
5193                 if (sid == 0)
5194                         goto abort_change;
5195
5196                 /* Only allow single threaded processes to change context */
5197                 error = -EPERM;
5198                 if (!is_single_threaded(p)) {
5199                         error = security_bounded_transition(tsec->sid, sid);
5200                         if (error)
5201                                 goto abort_change;
5202                 }
5203
5204                 /* Check permissions for the transition. */
5205                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5206                                      PROCESS__DYNTRANSITION, NULL);
5207                 if (error)
5208                         goto abort_change;
5209
5210                 /* Check for ptracing, and update the task SID if ok.
5211                    Otherwise, leave SID unchanged and fail. */
5212                 ptsid = 0;
5213                 task_lock(p);
5214                 tracer = tracehook_tracer_task(p);
5215                 if (tracer)
5216                         ptsid = task_sid(tracer);
5217                 task_unlock(p);
5218
5219                 if (tracer) {
5220                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5221                                              PROCESS__PTRACE, NULL);
5222                         if (error)
5223                                 goto abort_change;
5224                 }
5225
5226                 tsec->sid = sid;
5227         } else {
5228                 error = -EINVAL;
5229                 goto abort_change;
5230         }
5231
5232         commit_creds(new);
5233         return size;
5234
5235 abort_change:
5236         abort_creds(new);
5237         return error;
5238 }
5239
5240 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5241 {
5242         return security_sid_to_context(secid, secdata, seclen);
5243 }
5244
5245 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5246 {
5247         return security_context_to_sid(secdata, seclen, secid);
5248 }
5249
5250 static void selinux_release_secctx(char *secdata, u32 seclen)
5251 {
5252         kfree(secdata);
5253 }
5254
5255 #ifdef CONFIG_KEYS
5256
5257 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5258                              unsigned long flags)
5259 {
5260         const struct task_security_struct *tsec;
5261         struct key_security_struct *ksec;
5262
5263         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5264         if (!ksec)
5265                 return -ENOMEM;
5266
5267         tsec = cred->security;
5268         if (tsec->keycreate_sid)
5269                 ksec->sid = tsec->keycreate_sid;
5270         else
5271                 ksec->sid = tsec->sid;
5272
5273         k->security = ksec;
5274         return 0;
5275 }
5276
5277 static void selinux_key_free(struct key *k)
5278 {
5279         struct key_security_struct *ksec = k->security;
5280
5281         k->security = NULL;
5282         kfree(ksec);
5283 }
5284
5285 static int selinux_key_permission(key_ref_t key_ref,
5286                                   const struct cred *cred,
5287                                   key_perm_t perm)
5288 {
5289         struct key *key;
5290         struct key_security_struct *ksec;
5291         u32 sid;
5292
5293         /* if no specific permissions are requested, we skip the
5294            permission check. No serious, additional covert channels
5295            appear to be created. */
5296         if (perm == 0)
5297                 return 0;
5298
5299         sid = cred_sid(cred);
5300
5301         key = key_ref_to_ptr(key_ref);
5302         ksec = key->security;
5303
5304         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5305 }
5306
5307 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5308 {
5309         struct key_security_struct *ksec = key->security;
5310         char *context = NULL;
5311         unsigned len;
5312         int rc;
5313
5314         rc = security_sid_to_context(ksec->sid, &context, &len);
5315         if (!rc)
5316                 rc = len;
5317         *_buffer = context;
5318         return rc;
5319 }
5320
5321 #endif
5322
5323 static struct security_operations selinux_ops = {
5324         .name =                         "selinux",
5325
5326         .ptrace_may_access =            selinux_ptrace_may_access,
5327         .ptrace_traceme =               selinux_ptrace_traceme,
5328         .capget =                       selinux_capget,
5329         .capset =                       selinux_capset,
5330         .sysctl =                       selinux_sysctl,
5331         .capable =                      selinux_capable,
5332         .quotactl =                     selinux_quotactl,
5333         .quota_on =                     selinux_quota_on,
5334         .syslog =                       selinux_syslog,
5335         .vm_enough_memory =             selinux_vm_enough_memory,
5336
5337         .netlink_send =                 selinux_netlink_send,
5338         .netlink_recv =                 selinux_netlink_recv,
5339
5340         .bprm_set_creds =               selinux_bprm_set_creds,
5341         .bprm_committing_creds =        selinux_bprm_committing_creds,
5342         .bprm_committed_creds =         selinux_bprm_committed_creds,
5343         .bprm_secureexec =              selinux_bprm_secureexec,
5344
5345         .sb_alloc_security =            selinux_sb_alloc_security,
5346         .sb_free_security =             selinux_sb_free_security,
5347         .sb_copy_data =                 selinux_sb_copy_data,
5348         .sb_kern_mount =                selinux_sb_kern_mount,
5349         .sb_show_options =              selinux_sb_show_options,
5350         .sb_statfs =                    selinux_sb_statfs,
5351         .sb_mount =                     selinux_mount,
5352         .sb_umount =                    selinux_umount,
5353         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5354         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5355         .sb_parse_opts_str =            selinux_parse_opts_str,
5356
5357
5358         .inode_alloc_security =         selinux_inode_alloc_security,
5359         .inode_free_security =          selinux_inode_free_security,
5360         .inode_init_security =          selinux_inode_init_security,
5361         .inode_create =                 selinux_inode_create,
5362         .inode_link =                   selinux_inode_link,
5363         .inode_unlink =                 selinux_inode_unlink,
5364         .inode_symlink =                selinux_inode_symlink,
5365         .inode_mkdir =                  selinux_inode_mkdir,
5366         .inode_rmdir =                  selinux_inode_rmdir,
5367         .inode_mknod =                  selinux_inode_mknod,
5368         .inode_rename =                 selinux_inode_rename,
5369         .inode_readlink =               selinux_inode_readlink,
5370         .inode_follow_link =            selinux_inode_follow_link,
5371         .inode_permission =             selinux_inode_permission,
5372         .inode_setattr =                selinux_inode_setattr,
5373         .inode_getattr =                selinux_inode_getattr,
5374         .inode_setxattr =               selinux_inode_setxattr,
5375         .inode_post_setxattr =          selinux_inode_post_setxattr,
5376         .inode_getxattr =               selinux_inode_getxattr,
5377         .inode_listxattr =              selinux_inode_listxattr,
5378         .inode_removexattr =            selinux_inode_removexattr,
5379         .inode_getsecurity =            selinux_inode_getsecurity,
5380         .inode_setsecurity =            selinux_inode_setsecurity,
5381         .inode_listsecurity =           selinux_inode_listsecurity,
5382         .inode_getsecid =               selinux_inode_getsecid,
5383
5384         .file_permission =              selinux_file_permission,
5385         .file_alloc_security =          selinux_file_alloc_security,
5386         .file_free_security =           selinux_file_free_security,
5387         .file_ioctl =                   selinux_file_ioctl,
5388         .file_mmap =                    selinux_file_mmap,
5389         .file_mprotect =                selinux_file_mprotect,
5390         .file_lock =                    selinux_file_lock,
5391         .file_fcntl =                   selinux_file_fcntl,
5392         .file_set_fowner =              selinux_file_set_fowner,
5393         .file_send_sigiotask =          selinux_file_send_sigiotask,
5394         .file_receive =                 selinux_file_receive,
5395
5396         .dentry_open =                  selinux_dentry_open,
5397
5398         .task_create =                  selinux_task_create,
5399         .cred_free =                    selinux_cred_free,
5400         .cred_prepare =                 selinux_cred_prepare,
5401         .kernel_act_as =                selinux_kernel_act_as,
5402         .kernel_create_files_as =       selinux_kernel_create_files_as,
5403         .task_setpgid =                 selinux_task_setpgid,
5404         .task_getpgid =                 selinux_task_getpgid,
5405         .task_getsid =                  selinux_task_getsid,
5406         .task_getsecid =                selinux_task_getsecid,
5407         .task_setnice =                 selinux_task_setnice,
5408         .task_setioprio =               selinux_task_setioprio,
5409         .task_getioprio =               selinux_task_getioprio,
5410         .task_setrlimit =               selinux_task_setrlimit,
5411         .task_setscheduler =            selinux_task_setscheduler,
5412         .task_getscheduler =            selinux_task_getscheduler,
5413         .task_movememory =              selinux_task_movememory,
5414         .task_kill =                    selinux_task_kill,
5415         .task_wait =                    selinux_task_wait,
5416         .task_to_inode =                selinux_task_to_inode,
5417
5418         .ipc_permission =               selinux_ipc_permission,
5419         .ipc_getsecid =                 selinux_ipc_getsecid,
5420
5421         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5422         .msg_msg_free_security =        selinux_msg_msg_free_security,
5423
5424         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5425         .msg_queue_free_security =      selinux_msg_queue_free_security,
5426         .msg_queue_associate =          selinux_msg_queue_associate,
5427         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5428         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5429         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5430
5431         .shm_alloc_security =           selinux_shm_alloc_security,
5432         .shm_free_security =            selinux_shm_free_security,
5433         .shm_associate =                selinux_shm_associate,
5434         .shm_shmctl =                   selinux_shm_shmctl,
5435         .shm_shmat =                    selinux_shm_shmat,
5436
5437         .sem_alloc_security =           selinux_sem_alloc_security,
5438         .sem_free_security =            selinux_sem_free_security,
5439         .sem_associate =                selinux_sem_associate,
5440         .sem_semctl =                   selinux_sem_semctl,
5441         .sem_semop =                    selinux_sem_semop,
5442
5443         .d_instantiate =                selinux_d_instantiate,
5444
5445         .getprocattr =                  selinux_getprocattr,
5446         .setprocattr =                  selinux_setprocattr,
5447
5448         .secid_to_secctx =              selinux_secid_to_secctx,
5449         .secctx_to_secid =              selinux_secctx_to_secid,
5450         .release_secctx =               selinux_release_secctx,
5451
5452         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5453         .unix_may_send =                selinux_socket_unix_may_send,
5454
5455         .socket_create =                selinux_socket_create,
5456         .socket_post_create =           selinux_socket_post_create,
5457         .socket_bind =                  selinux_socket_bind,
5458         .socket_connect =               selinux_socket_connect,
5459         .socket_listen =                selinux_socket_listen,
5460         .socket_accept =                selinux_socket_accept,
5461         .socket_sendmsg =               selinux_socket_sendmsg,
5462         .socket_recvmsg =               selinux_socket_recvmsg,
5463         .socket_getsockname =           selinux_socket_getsockname,
5464         .socket_getpeername =           selinux_socket_getpeername,
5465         .socket_getsockopt =            selinux_socket_getsockopt,
5466         .socket_setsockopt =            selinux_socket_setsockopt,
5467         .socket_shutdown =              selinux_socket_shutdown,
5468         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5469         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5470         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5471         .sk_alloc_security =            selinux_sk_alloc_security,
5472         .sk_free_security =             selinux_sk_free_security,
5473         .sk_clone_security =            selinux_sk_clone_security,
5474         .sk_getsecid =                  selinux_sk_getsecid,
5475         .sock_graft =                   selinux_sock_graft,
5476         .inet_conn_request =            selinux_inet_conn_request,
5477         .inet_csk_clone =               selinux_inet_csk_clone,
5478         .inet_conn_established =        selinux_inet_conn_established,
5479         .req_classify_flow =            selinux_req_classify_flow,
5480
5481 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5482         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5483         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5484         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5485         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5486         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5487         .xfrm_state_free_security =     selinux_xfrm_state_free,
5488         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5489         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5490         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5491         .xfrm_decode_session =          selinux_xfrm_decode_session,
5492 #endif
5493
5494 #ifdef CONFIG_KEYS
5495         .key_alloc =                    selinux_key_alloc,
5496         .key_free =                     selinux_key_free,
5497         .key_permission =               selinux_key_permission,
5498         .key_getsecurity =              selinux_key_getsecurity,
5499 #endif
5500
5501 #ifdef CONFIG_AUDIT
5502         .audit_rule_init =              selinux_audit_rule_init,
5503         .audit_rule_known =             selinux_audit_rule_known,
5504         .audit_rule_match =             selinux_audit_rule_match,
5505         .audit_rule_free =              selinux_audit_rule_free,
5506 #endif
5507 };
5508
5509 static __init int selinux_init(void)
5510 {
5511         if (!security_module_enable(&selinux_ops)) {
5512                 selinux_enabled = 0;
5513                 return 0;
5514         }
5515
5516         if (!selinux_enabled) {
5517                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5518                 return 0;
5519         }
5520
5521         printk(KERN_INFO "SELinux:  Initializing.\n");
5522
5523         /* Set the security state for the initial task. */
5524         cred_init_security();
5525
5526         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5527                                             sizeof(struct inode_security_struct),
5528                                             0, SLAB_PANIC, NULL);
5529         avc_init();
5530
5531         secondary_ops = security_ops;
5532         if (!secondary_ops)
5533                 panic("SELinux: No initial security operations\n");
5534         if (register_security(&selinux_ops))
5535                 panic("SELinux: Unable to register with kernel.\n");
5536
5537         if (selinux_enforcing)
5538                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5539         else
5540                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5541
5542         return 0;
5543 }
5544
5545 void selinux_complete_init(void)
5546 {
5547         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5548
5549         /* Set up any superblocks initialized prior to the policy load. */
5550         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5551         spin_lock(&sb_lock);
5552         spin_lock(&sb_security_lock);
5553 next_sb:
5554         if (!list_empty(&superblock_security_head)) {
5555                 struct superblock_security_struct *sbsec =
5556                                 list_entry(superblock_security_head.next,
5557                                            struct superblock_security_struct,
5558                                            list);
5559                 struct super_block *sb = sbsec->sb;
5560                 sb->s_count++;
5561                 spin_unlock(&sb_security_lock);
5562                 spin_unlock(&sb_lock);
5563                 down_read(&sb->s_umount);
5564                 if (sb->s_root)
5565                         superblock_doinit(sb, NULL);
5566                 drop_super(sb);
5567                 spin_lock(&sb_lock);
5568                 spin_lock(&sb_security_lock);
5569                 list_del_init(&sbsec->list);
5570                 goto next_sb;
5571         }
5572         spin_unlock(&sb_security_lock);
5573         spin_unlock(&sb_lock);
5574 }
5575
5576 /* SELinux requires early initialization in order to label
5577    all processes and objects when they are created. */
5578 security_initcall(selinux_init);
5579
5580 #if defined(CONFIG_NETFILTER)
5581
5582 static struct nf_hook_ops selinux_ipv4_ops[] = {
5583         {
5584                 .hook =         selinux_ipv4_postroute,
5585                 .owner =        THIS_MODULE,
5586                 .pf =           PF_INET,
5587                 .hooknum =      NF_INET_POST_ROUTING,
5588                 .priority =     NF_IP_PRI_SELINUX_LAST,
5589         },
5590         {
5591                 .hook =         selinux_ipv4_forward,
5592                 .owner =        THIS_MODULE,
5593                 .pf =           PF_INET,
5594                 .hooknum =      NF_INET_FORWARD,
5595                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5596         },
5597         {
5598                 .hook =         selinux_ipv4_output,
5599                 .owner =        THIS_MODULE,
5600                 .pf =           PF_INET,
5601                 .hooknum =      NF_INET_LOCAL_OUT,
5602                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5603         }
5604 };
5605
5606 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5607
5608 static struct nf_hook_ops selinux_ipv6_ops[] = {
5609         {
5610                 .hook =         selinux_ipv6_postroute,
5611                 .owner =        THIS_MODULE,
5612                 .pf =           PF_INET6,
5613                 .hooknum =      NF_INET_POST_ROUTING,
5614                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5615         },
5616         {
5617                 .hook =         selinux_ipv6_forward,
5618                 .owner =        THIS_MODULE,
5619                 .pf =           PF_INET6,
5620                 .hooknum =      NF_INET_FORWARD,
5621                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5622         }
5623 };
5624
5625 #endif  /* IPV6 */
5626
5627 static int __init selinux_nf_ip_init(void)
5628 {
5629         int err = 0;
5630
5631         if (!selinux_enabled)
5632                 goto out;
5633
5634         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5635
5636         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5637         if (err)
5638                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5639
5640 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5641         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5642         if (err)
5643                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5644 #endif  /* IPV6 */
5645
5646 out:
5647         return err;
5648 }
5649
5650 __initcall(selinux_nf_ip_init);
5651
5652 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5653 static void selinux_nf_ip_exit(void)
5654 {
5655         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5656
5657         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5658 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5659         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5660 #endif  /* IPV6 */
5661 }
5662 #endif
5663
5664 #else /* CONFIG_NETFILTER */
5665
5666 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5667 #define selinux_nf_ip_exit()
5668 #endif
5669
5670 #endif /* CONFIG_NETFILTER */
5671
5672 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5673 static int selinux_disabled;
5674
5675 int selinux_disable(void)
5676 {
5677         extern void exit_sel_fs(void);
5678
5679         if (ss_initialized) {
5680                 /* Not permitted after initial policy load. */
5681                 return -EINVAL;
5682         }
5683
5684         if (selinux_disabled) {
5685                 /* Only do this once. */
5686                 return -EINVAL;
5687         }
5688
5689         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5690
5691         selinux_disabled = 1;
5692         selinux_enabled = 0;
5693
5694         /* Reset security_ops to the secondary module, dummy or capability. */
5695         security_ops = secondary_ops;
5696
5697         /* Unregister netfilter hooks. */
5698         selinux_nf_ip_exit();
5699
5700         /* Unregister selinuxfs. */
5701         exit_sel_fs();
5702
5703         return 0;
5704 }
5705 #endif