Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22
23 #define MAX_LSM_EVM_XATTR       2
24
25 /* Boot-time LSM user choice */
26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
27         CONFIG_DEFAULT_SECURITY;
28
29 static struct security_operations *security_ops;
30 static struct security_operations default_security_ops = {
31         .name   = "default",
32 };
33
34 static inline int __init verify(struct security_operations *ops)
35 {
36         /* verify the security_operations structure exists */
37         if (!ops)
38                 return -EINVAL;
39         security_fixup_ops(ops);
40         return 0;
41 }
42
43 static void __init do_security_initcalls(void)
44 {
45         initcall_t *call;
46         call = __security_initcall_start;
47         while (call < __security_initcall_end) {
48                 (*call) ();
49                 call++;
50         }
51 }
52
53 /**
54  * security_init - initializes the security framework
55  *
56  * This should be called early in the kernel initialization sequence.
57  */
58 int __init security_init(void)
59 {
60         printk(KERN_INFO "Security Framework initialized\n");
61
62         security_fixup_ops(&default_security_ops);
63         security_ops = &default_security_ops;
64         do_security_initcalls();
65
66         return 0;
67 }
68
69 void reset_security_ops(void)
70 {
71         security_ops = &default_security_ops;
72 }
73
74 /* Save user chosen LSM */
75 static int __init choose_lsm(char *str)
76 {
77         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
78         return 1;
79 }
80 __setup("security=", choose_lsm);
81
82 /**
83  * security_module_enable - Load given security module on boot ?
84  * @ops: a pointer to the struct security_operations that is to be checked.
85  *
86  * Each LSM must pass this method before registering its own operations
87  * to avoid security registration races. This method may also be used
88  * to check if your LSM is currently loaded during kernel initialization.
89  *
90  * Return true if:
91  *      -The passed LSM is the one chosen by user at boot time,
92  *      -or the passed LSM is configured as the default and the user did not
93  *       choose an alternate LSM at boot time.
94  * Otherwise, return false.
95  */
96 int __init security_module_enable(struct security_operations *ops)
97 {
98         return !strcmp(ops->name, chosen_lsm);
99 }
100
101 /**
102  * register_security - registers a security framework with the kernel
103  * @ops: a pointer to the struct security_options that is to be registered
104  *
105  * This function allows a security module to register itself with the
106  * kernel security subsystem.  Some rudimentary checking is done on the @ops
107  * value passed to this function. You'll need to check first if your LSM
108  * is allowed to register its @ops by calling security_module_enable(@ops).
109  *
110  * If there is already a security module registered with the kernel,
111  * an error will be returned.  Otherwise %0 is returned on success.
112  */
113 int __init register_security(struct security_operations *ops)
114 {
115         if (verify(ops)) {
116                 printk(KERN_DEBUG "%s could not verify "
117                        "security_operations structure.\n", __func__);
118                 return -EINVAL;
119         }
120
121         if (security_ops != &default_security_ops)
122                 return -EAGAIN;
123
124         security_ops = ops;
125
126         return 0;
127 }
128
129 /* Security operations */
130
131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
132 {
133         return security_ops->ptrace_access_check(child, mode);
134 }
135
136 int security_ptrace_traceme(struct task_struct *parent)
137 {
138         return security_ops->ptrace_traceme(parent);
139 }
140
141 int security_capget(struct task_struct *target,
142                      kernel_cap_t *effective,
143                      kernel_cap_t *inheritable,
144                      kernel_cap_t *permitted)
145 {
146         return security_ops->capget(target, effective, inheritable, permitted);
147 }
148
149 int security_capset(struct cred *new, const struct cred *old,
150                     const kernel_cap_t *effective,
151                     const kernel_cap_t *inheritable,
152                     const kernel_cap_t *permitted)
153 {
154         return security_ops->capset(new, old,
155                                     effective, inheritable, permitted);
156 }
157
158 int security_capable(struct user_namespace *ns, const struct cred *cred,
159                      int cap)
160 {
161         return security_ops->capable(current, cred, ns, cap,
162                                      SECURITY_CAP_AUDIT);
163 }
164
165 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
166                           int cap)
167 {
168         const struct cred *cred;
169         int ret;
170
171         cred = get_task_cred(tsk);
172         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
173         put_cred(cred);
174         return ret;
175 }
176
177 int security_real_capable_noaudit(struct task_struct *tsk,
178                                   struct user_namespace *ns, int cap)
179 {
180         const struct cred *cred;
181         int ret;
182
183         cred = get_task_cred(tsk);
184         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
185         put_cred(cred);
186         return ret;
187 }
188
189 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190 {
191         return security_ops->quotactl(cmds, type, id, sb);
192 }
193
194 int security_quota_on(struct dentry *dentry)
195 {
196         return security_ops->quota_on(dentry);
197 }
198
199 int security_syslog(int type)
200 {
201         return security_ops->syslog(type);
202 }
203
204 int security_settime(const struct timespec *ts, const struct timezone *tz)
205 {
206         return security_ops->settime(ts, tz);
207 }
208
209 int security_vm_enough_memory(long pages)
210 {
211         WARN_ON(current->mm == NULL);
212         return security_ops->vm_enough_memory(current->mm, pages);
213 }
214
215 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
216 {
217         WARN_ON(mm == NULL);
218         return security_ops->vm_enough_memory(mm, pages);
219 }
220
221 int security_vm_enough_memory_kern(long pages)
222 {
223         /* If current->mm is a kernel thread then we will pass NULL,
224            for this specific case that is fine */
225         return security_ops->vm_enough_memory(current->mm, pages);
226 }
227
228 int security_bprm_set_creds(struct linux_binprm *bprm)
229 {
230         return security_ops->bprm_set_creds(bprm);
231 }
232
233 int security_bprm_check(struct linux_binprm *bprm)
234 {
235         int ret;
236
237         ret = security_ops->bprm_check_security(bprm);
238         if (ret)
239                 return ret;
240         return ima_bprm_check(bprm);
241 }
242
243 void security_bprm_committing_creds(struct linux_binprm *bprm)
244 {
245         security_ops->bprm_committing_creds(bprm);
246 }
247
248 void security_bprm_committed_creds(struct linux_binprm *bprm)
249 {
250         security_ops->bprm_committed_creds(bprm);
251 }
252
253 int security_bprm_secureexec(struct linux_binprm *bprm)
254 {
255         return security_ops->bprm_secureexec(bprm);
256 }
257
258 int security_sb_alloc(struct super_block *sb)
259 {
260         return security_ops->sb_alloc_security(sb);
261 }
262
263 void security_sb_free(struct super_block *sb)
264 {
265         security_ops->sb_free_security(sb);
266 }
267
268 int security_sb_copy_data(char *orig, char *copy)
269 {
270         return security_ops->sb_copy_data(orig, copy);
271 }
272 EXPORT_SYMBOL(security_sb_copy_data);
273
274 int security_sb_remount(struct super_block *sb, void *data)
275 {
276         return security_ops->sb_remount(sb, data);
277 }
278
279 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
280 {
281         return security_ops->sb_kern_mount(sb, flags, data);
282 }
283
284 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
285 {
286         return security_ops->sb_show_options(m, sb);
287 }
288
289 int security_sb_statfs(struct dentry *dentry)
290 {
291         return security_ops->sb_statfs(dentry);
292 }
293
294 int security_sb_mount(char *dev_name, struct path *path,
295                        char *type, unsigned long flags, void *data)
296 {
297         return security_ops->sb_mount(dev_name, path, type, flags, data);
298 }
299
300 int security_sb_umount(struct vfsmount *mnt, int flags)
301 {
302         return security_ops->sb_umount(mnt, flags);
303 }
304
305 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
306 {
307         return security_ops->sb_pivotroot(old_path, new_path);
308 }
309
310 int security_sb_set_mnt_opts(struct super_block *sb,
311                                 struct security_mnt_opts *opts)
312 {
313         return security_ops->sb_set_mnt_opts(sb, opts);
314 }
315 EXPORT_SYMBOL(security_sb_set_mnt_opts);
316
317 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
318                                 struct super_block *newsb)
319 {
320         security_ops->sb_clone_mnt_opts(oldsb, newsb);
321 }
322 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
323
324 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
325 {
326         return security_ops->sb_parse_opts_str(options, opts);
327 }
328 EXPORT_SYMBOL(security_sb_parse_opts_str);
329
330 int security_inode_alloc(struct inode *inode)
331 {
332         inode->i_security = NULL;
333         return security_ops->inode_alloc_security(inode);
334 }
335
336 void security_inode_free(struct inode *inode)
337 {
338         integrity_inode_free(inode);
339         security_ops->inode_free_security(inode);
340 }
341
342 int security_inode_init_security(struct inode *inode, struct inode *dir,
343                                  const struct qstr *qstr,
344                                  const initxattrs initxattrs, void *fs_data)
345 {
346         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
347         struct xattr *lsm_xattr, *evm_xattr, *xattr;
348         int ret;
349
350         if (unlikely(IS_PRIVATE(inode)))
351                 return 0;
352
353         memset(new_xattrs, 0, sizeof new_xattrs);
354         if (!initxattrs)
355                 return security_ops->inode_init_security(inode, dir, qstr,
356                                                          NULL, NULL, NULL);
357         lsm_xattr = new_xattrs;
358         ret = security_ops->inode_init_security(inode, dir, qstr,
359                                                 &lsm_xattr->name,
360                                                 &lsm_xattr->value,
361                                                 &lsm_xattr->value_len);
362         if (ret)
363                 goto out;
364
365         evm_xattr = lsm_xattr + 1;
366         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
367         if (ret)
368                 goto out;
369         ret = initxattrs(inode, new_xattrs, fs_data);
370 out:
371         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
372                 kfree(xattr->name);
373                 kfree(xattr->value);
374         }
375         return (ret == -EOPNOTSUPP) ? 0 : ret;
376 }
377 EXPORT_SYMBOL(security_inode_init_security);
378
379 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
380                                      const struct qstr *qstr, char **name,
381                                      void **value, size_t *len)
382 {
383         if (unlikely(IS_PRIVATE(inode)))
384                 return -EOPNOTSUPP;
385         return security_ops->inode_init_security(inode, dir, qstr, name, value,
386                                                  len);
387 }
388 EXPORT_SYMBOL(security_old_inode_init_security);
389
390 #ifdef CONFIG_SECURITY_PATH
391 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
392                         unsigned int dev)
393 {
394         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
395                 return 0;
396         return security_ops->path_mknod(dir, dentry, mode, dev);
397 }
398 EXPORT_SYMBOL(security_path_mknod);
399
400 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
401 {
402         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403                 return 0;
404         return security_ops->path_mkdir(dir, dentry, mode);
405 }
406 EXPORT_SYMBOL(security_path_mkdir);
407
408 int security_path_rmdir(struct path *dir, struct dentry *dentry)
409 {
410         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
411                 return 0;
412         return security_ops->path_rmdir(dir, dentry);
413 }
414 EXPORT_SYMBOL(security_path_rmdir);
415
416 int security_path_unlink(struct path *dir, struct dentry *dentry)
417 {
418         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
419                 return 0;
420         return security_ops->path_unlink(dir, dentry);
421 }
422 EXPORT_SYMBOL(security_path_unlink);
423
424 int security_path_symlink(struct path *dir, struct dentry *dentry,
425                           const char *old_name)
426 {
427         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
428                 return 0;
429         return security_ops->path_symlink(dir, dentry, old_name);
430 }
431 EXPORT_SYMBOL(security_path_symlink);
432
433 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
434                        struct dentry *new_dentry)
435 {
436         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
437                 return 0;
438         return security_ops->path_link(old_dentry, new_dir, new_dentry);
439 }
440 EXPORT_SYMBOL(security_path_link);
441
442 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
443                          struct path *new_dir, struct dentry *new_dentry)
444 {
445         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
446                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
447                 return 0;
448         return security_ops->path_rename(old_dir, old_dentry, new_dir,
449                                          new_dentry);
450 }
451 EXPORT_SYMBOL(security_path_rename);
452
453 int security_path_truncate(struct path *path)
454 {
455         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
456                 return 0;
457         return security_ops->path_truncate(path);
458 }
459 EXPORT_SYMBOL(security_path_truncate);
460
461 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
462                         mode_t mode)
463 {
464         if (unlikely(IS_PRIVATE(dentry->d_inode)))
465                 return 0;
466         return security_ops->path_chmod(dentry, mnt, mode);
467 }
468 EXPORT_SYMBOL(security_path_chmod);
469
470 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
471 {
472         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
473                 return 0;
474         return security_ops->path_chown(path, uid, gid);
475 }
476 EXPORT_SYMBOL(security_path_chown);
477
478 int security_path_chroot(struct path *path)
479 {
480         return security_ops->path_chroot(path);
481 }
482 #endif
483
484 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
485 {
486         if (unlikely(IS_PRIVATE(dir)))
487                 return 0;
488         return security_ops->inode_create(dir, dentry, mode);
489 }
490 EXPORT_SYMBOL_GPL(security_inode_create);
491
492 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
493                          struct dentry *new_dentry)
494 {
495         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
496                 return 0;
497         return security_ops->inode_link(old_dentry, dir, new_dentry);
498 }
499
500 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
501 {
502         if (unlikely(IS_PRIVATE(dentry->d_inode)))
503                 return 0;
504         return security_ops->inode_unlink(dir, dentry);
505 }
506
507 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
508                             const char *old_name)
509 {
510         if (unlikely(IS_PRIVATE(dir)))
511                 return 0;
512         return security_ops->inode_symlink(dir, dentry, old_name);
513 }
514
515 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
516 {
517         if (unlikely(IS_PRIVATE(dir)))
518                 return 0;
519         return security_ops->inode_mkdir(dir, dentry, mode);
520 }
521 EXPORT_SYMBOL_GPL(security_inode_mkdir);
522
523 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
524 {
525         if (unlikely(IS_PRIVATE(dentry->d_inode)))
526                 return 0;
527         return security_ops->inode_rmdir(dir, dentry);
528 }
529
530 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
531 {
532         if (unlikely(IS_PRIVATE(dir)))
533                 return 0;
534         return security_ops->inode_mknod(dir, dentry, mode, dev);
535 }
536
537 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
538                            struct inode *new_dir, struct dentry *new_dentry)
539 {
540         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
541             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
542                 return 0;
543         return security_ops->inode_rename(old_dir, old_dentry,
544                                            new_dir, new_dentry);
545 }
546
547 int security_inode_readlink(struct dentry *dentry)
548 {
549         if (unlikely(IS_PRIVATE(dentry->d_inode)))
550                 return 0;
551         return security_ops->inode_readlink(dentry);
552 }
553 EXPORT_SYMBOL(security_inode_readlink);
554
555 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
556 {
557         if (unlikely(IS_PRIVATE(dentry->d_inode)))
558                 return 0;
559         return security_ops->inode_follow_link(dentry, nd);
560 }
561
562 int security_inode_permission(struct inode *inode, int mask)
563 {
564         if (unlikely(IS_PRIVATE(inode)))
565                 return 0;
566         return security_ops->inode_permission(inode, mask);
567 }
568 EXPORT_SYMBOL(security_inode_permission);
569
570 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
571 {
572         int ret;
573
574         if (unlikely(IS_PRIVATE(dentry->d_inode)))
575                 return 0;
576         ret = security_ops->inode_setattr(dentry, attr);
577         if (ret)
578                 return ret;
579         return evm_inode_setattr(dentry, attr);
580 }
581 EXPORT_SYMBOL_GPL(security_inode_setattr);
582
583 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
584 {
585         if (unlikely(IS_PRIVATE(dentry->d_inode)))
586                 return 0;
587         return security_ops->inode_getattr(mnt, dentry);
588 }
589
590 int security_inode_setxattr(struct dentry *dentry, const char *name,
591                             const void *value, size_t size, int flags)
592 {
593         int ret;
594
595         if (unlikely(IS_PRIVATE(dentry->d_inode)))
596                 return 0;
597         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
598         if (ret)
599                 return ret;
600         return evm_inode_setxattr(dentry, name, value, size);
601 }
602
603 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
604                                   const void *value, size_t size, int flags)
605 {
606         if (unlikely(IS_PRIVATE(dentry->d_inode)))
607                 return;
608         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
609         evm_inode_post_setxattr(dentry, name, value, size);
610 }
611
612 int security_inode_getxattr(struct dentry *dentry, const char *name)
613 {
614         if (unlikely(IS_PRIVATE(dentry->d_inode)))
615                 return 0;
616         return security_ops->inode_getxattr(dentry, name);
617 }
618
619 int security_inode_listxattr(struct dentry *dentry)
620 {
621         if (unlikely(IS_PRIVATE(dentry->d_inode)))
622                 return 0;
623         return security_ops->inode_listxattr(dentry);
624 }
625
626 int security_inode_removexattr(struct dentry *dentry, const char *name)
627 {
628         int ret;
629
630         if (unlikely(IS_PRIVATE(dentry->d_inode)))
631                 return 0;
632         ret = security_ops->inode_removexattr(dentry, name);
633         if (ret)
634                 return ret;
635         return evm_inode_removexattr(dentry, name);
636 }
637
638 int security_inode_need_killpriv(struct dentry *dentry)
639 {
640         return security_ops->inode_need_killpriv(dentry);
641 }
642
643 int security_inode_killpriv(struct dentry *dentry)
644 {
645         return security_ops->inode_killpriv(dentry);
646 }
647
648 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
649 {
650         if (unlikely(IS_PRIVATE(inode)))
651                 return -EOPNOTSUPP;
652         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
653 }
654
655 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
656 {
657         if (unlikely(IS_PRIVATE(inode)))
658                 return -EOPNOTSUPP;
659         return security_ops->inode_setsecurity(inode, name, value, size, flags);
660 }
661
662 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
663 {
664         if (unlikely(IS_PRIVATE(inode)))
665                 return 0;
666         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
667 }
668
669 void security_inode_getsecid(const struct inode *inode, u32 *secid)
670 {
671         security_ops->inode_getsecid(inode, secid);
672 }
673
674 int security_file_permission(struct file *file, int mask)
675 {
676         int ret;
677
678         ret = security_ops->file_permission(file, mask);
679         if (ret)
680                 return ret;
681
682         return fsnotify_perm(file, mask);
683 }
684 EXPORT_SYMBOL(security_file_permission);
685
686 int security_file_alloc(struct file *file)
687 {
688         return security_ops->file_alloc_security(file);
689 }
690
691 void security_file_free(struct file *file)
692 {
693         security_ops->file_free_security(file);
694 }
695
696 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
697 {
698         return security_ops->file_ioctl(file, cmd, arg);
699 }
700
701 int security_file_mmap(struct file *file, unsigned long reqprot,
702                         unsigned long prot, unsigned long flags,
703                         unsigned long addr, unsigned long addr_only)
704 {
705         int ret;
706
707         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
708         if (ret)
709                 return ret;
710         return ima_file_mmap(file, prot);
711 }
712 EXPORT_SYMBOL(security_file_mmap);
713
714 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
715                             unsigned long prot)
716 {
717         return security_ops->file_mprotect(vma, reqprot, prot);
718 }
719
720 int security_file_lock(struct file *file, unsigned int cmd)
721 {
722         return security_ops->file_lock(file, cmd);
723 }
724
725 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
726 {
727         return security_ops->file_fcntl(file, cmd, arg);
728 }
729
730 int security_file_set_fowner(struct file *file)
731 {
732         return security_ops->file_set_fowner(file);
733 }
734
735 int security_file_send_sigiotask(struct task_struct *tsk,
736                                   struct fown_struct *fown, int sig)
737 {
738         return security_ops->file_send_sigiotask(tsk, fown, sig);
739 }
740
741 int security_file_receive(struct file *file)
742 {
743         return security_ops->file_receive(file);
744 }
745
746 int security_dentry_open(struct file *file, const struct cred *cred)
747 {
748         int ret;
749
750         ret = security_ops->dentry_open(file, cred);
751         if (ret)
752                 return ret;
753
754         return fsnotify_perm(file, MAY_OPEN);
755 }
756
757 int security_task_create(unsigned long clone_flags)
758 {
759         return security_ops->task_create(clone_flags);
760 }
761
762 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
763 {
764         return security_ops->cred_alloc_blank(cred, gfp);
765 }
766
767 void security_cred_free(struct cred *cred)
768 {
769         security_ops->cred_free(cred);
770 }
771
772 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
773 {
774         return security_ops->cred_prepare(new, old, gfp);
775 }
776
777 void security_transfer_creds(struct cred *new, const struct cred *old)
778 {
779         security_ops->cred_transfer(new, old);
780 }
781
782 int security_kernel_act_as(struct cred *new, u32 secid)
783 {
784         return security_ops->kernel_act_as(new, secid);
785 }
786
787 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
788 {
789         return security_ops->kernel_create_files_as(new, inode);
790 }
791
792 int security_kernel_module_request(char *kmod_name)
793 {
794         return security_ops->kernel_module_request(kmod_name);
795 }
796
797 int security_task_fix_setuid(struct cred *new, const struct cred *old,
798                              int flags)
799 {
800         return security_ops->task_fix_setuid(new, old, flags);
801 }
802
803 int security_task_setpgid(struct task_struct *p, pid_t pgid)
804 {
805         return security_ops->task_setpgid(p, pgid);
806 }
807
808 int security_task_getpgid(struct task_struct *p)
809 {
810         return security_ops->task_getpgid(p);
811 }
812
813 int security_task_getsid(struct task_struct *p)
814 {
815         return security_ops->task_getsid(p);
816 }
817
818 void security_task_getsecid(struct task_struct *p, u32 *secid)
819 {
820         security_ops->task_getsecid(p, secid);
821 }
822 EXPORT_SYMBOL(security_task_getsecid);
823
824 int security_task_setnice(struct task_struct *p, int nice)
825 {
826         return security_ops->task_setnice(p, nice);
827 }
828
829 int security_task_setioprio(struct task_struct *p, int ioprio)
830 {
831         return security_ops->task_setioprio(p, ioprio);
832 }
833
834 int security_task_getioprio(struct task_struct *p)
835 {
836         return security_ops->task_getioprio(p);
837 }
838
839 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
840                 struct rlimit *new_rlim)
841 {
842         return security_ops->task_setrlimit(p, resource, new_rlim);
843 }
844
845 int security_task_setscheduler(struct task_struct *p)
846 {
847         return security_ops->task_setscheduler(p);
848 }
849
850 int security_task_getscheduler(struct task_struct *p)
851 {
852         return security_ops->task_getscheduler(p);
853 }
854
855 int security_task_movememory(struct task_struct *p)
856 {
857         return security_ops->task_movememory(p);
858 }
859
860 int security_task_kill(struct task_struct *p, struct siginfo *info,
861                         int sig, u32 secid)
862 {
863         return security_ops->task_kill(p, info, sig, secid);
864 }
865
866 int security_task_wait(struct task_struct *p)
867 {
868         return security_ops->task_wait(p);
869 }
870
871 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
872                          unsigned long arg4, unsigned long arg5)
873 {
874         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
875 }
876
877 void security_task_to_inode(struct task_struct *p, struct inode *inode)
878 {
879         security_ops->task_to_inode(p, inode);
880 }
881
882 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
883 {
884         return security_ops->ipc_permission(ipcp, flag);
885 }
886
887 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
888 {
889         security_ops->ipc_getsecid(ipcp, secid);
890 }
891
892 int security_msg_msg_alloc(struct msg_msg *msg)
893 {
894         return security_ops->msg_msg_alloc_security(msg);
895 }
896
897 void security_msg_msg_free(struct msg_msg *msg)
898 {
899         security_ops->msg_msg_free_security(msg);
900 }
901
902 int security_msg_queue_alloc(struct msg_queue *msq)
903 {
904         return security_ops->msg_queue_alloc_security(msq);
905 }
906
907 void security_msg_queue_free(struct msg_queue *msq)
908 {
909         security_ops->msg_queue_free_security(msq);
910 }
911
912 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
913 {
914         return security_ops->msg_queue_associate(msq, msqflg);
915 }
916
917 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
918 {
919         return security_ops->msg_queue_msgctl(msq, cmd);
920 }
921
922 int security_msg_queue_msgsnd(struct msg_queue *msq,
923                                struct msg_msg *msg, int msqflg)
924 {
925         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
926 }
927
928 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
929                                struct task_struct *target, long type, int mode)
930 {
931         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
932 }
933
934 int security_shm_alloc(struct shmid_kernel *shp)
935 {
936         return security_ops->shm_alloc_security(shp);
937 }
938
939 void security_shm_free(struct shmid_kernel *shp)
940 {
941         security_ops->shm_free_security(shp);
942 }
943
944 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
945 {
946         return security_ops->shm_associate(shp, shmflg);
947 }
948
949 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
950 {
951         return security_ops->shm_shmctl(shp, cmd);
952 }
953
954 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
955 {
956         return security_ops->shm_shmat(shp, shmaddr, shmflg);
957 }
958
959 int security_sem_alloc(struct sem_array *sma)
960 {
961         return security_ops->sem_alloc_security(sma);
962 }
963
964 void security_sem_free(struct sem_array *sma)
965 {
966         security_ops->sem_free_security(sma);
967 }
968
969 int security_sem_associate(struct sem_array *sma, int semflg)
970 {
971         return security_ops->sem_associate(sma, semflg);
972 }
973
974 int security_sem_semctl(struct sem_array *sma, int cmd)
975 {
976         return security_ops->sem_semctl(sma, cmd);
977 }
978
979 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
980                         unsigned nsops, int alter)
981 {
982         return security_ops->sem_semop(sma, sops, nsops, alter);
983 }
984
985 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
986 {
987         if (unlikely(inode && IS_PRIVATE(inode)))
988                 return;
989         security_ops->d_instantiate(dentry, inode);
990 }
991 EXPORT_SYMBOL(security_d_instantiate);
992
993 int security_getprocattr(struct task_struct *p, char *name, char **value)
994 {
995         return security_ops->getprocattr(p, name, value);
996 }
997
998 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
999 {
1000         return security_ops->setprocattr(p, name, value, size);
1001 }
1002
1003 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1004 {
1005         return security_ops->netlink_send(sk, skb);
1006 }
1007
1008 int security_netlink_recv(struct sk_buff *skb, int cap)
1009 {
1010         return security_ops->netlink_recv(skb, cap);
1011 }
1012 EXPORT_SYMBOL(security_netlink_recv);
1013
1014 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1015 {
1016         return security_ops->secid_to_secctx(secid, secdata, seclen);
1017 }
1018 EXPORT_SYMBOL(security_secid_to_secctx);
1019
1020 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1021 {
1022         return security_ops->secctx_to_secid(secdata, seclen, secid);
1023 }
1024 EXPORT_SYMBOL(security_secctx_to_secid);
1025
1026 void security_release_secctx(char *secdata, u32 seclen)
1027 {
1028         security_ops->release_secctx(secdata, seclen);
1029 }
1030 EXPORT_SYMBOL(security_release_secctx);
1031
1032 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1033 {
1034         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1035 }
1036 EXPORT_SYMBOL(security_inode_notifysecctx);
1037
1038 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1039 {
1040         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1041 }
1042 EXPORT_SYMBOL(security_inode_setsecctx);
1043
1044 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1045 {
1046         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1047 }
1048 EXPORT_SYMBOL(security_inode_getsecctx);
1049
1050 #ifdef CONFIG_SECURITY_NETWORK
1051
1052 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1053 {
1054         return security_ops->unix_stream_connect(sock, other, newsk);
1055 }
1056 EXPORT_SYMBOL(security_unix_stream_connect);
1057
1058 int security_unix_may_send(struct socket *sock,  struct socket *other)
1059 {
1060         return security_ops->unix_may_send(sock, other);
1061 }
1062 EXPORT_SYMBOL(security_unix_may_send);
1063
1064 int security_socket_create(int family, int type, int protocol, int kern)
1065 {
1066         return security_ops->socket_create(family, type, protocol, kern);
1067 }
1068
1069 int security_socket_post_create(struct socket *sock, int family,
1070                                 int type, int protocol, int kern)
1071 {
1072         return security_ops->socket_post_create(sock, family, type,
1073                                                 protocol, kern);
1074 }
1075
1076 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1077 {
1078         return security_ops->socket_bind(sock, address, addrlen);
1079 }
1080
1081 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1082 {
1083         return security_ops->socket_connect(sock, address, addrlen);
1084 }
1085
1086 int security_socket_listen(struct socket *sock, int backlog)
1087 {
1088         return security_ops->socket_listen(sock, backlog);
1089 }
1090
1091 int security_socket_accept(struct socket *sock, struct socket *newsock)
1092 {
1093         return security_ops->socket_accept(sock, newsock);
1094 }
1095
1096 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1097 {
1098         return security_ops->socket_sendmsg(sock, msg, size);
1099 }
1100
1101 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1102                             int size, int flags)
1103 {
1104         return security_ops->socket_recvmsg(sock, msg, size, flags);
1105 }
1106
1107 int security_socket_getsockname(struct socket *sock)
1108 {
1109         return security_ops->socket_getsockname(sock);
1110 }
1111
1112 int security_socket_getpeername(struct socket *sock)
1113 {
1114         return security_ops->socket_getpeername(sock);
1115 }
1116
1117 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1118 {
1119         return security_ops->socket_getsockopt(sock, level, optname);
1120 }
1121
1122 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1123 {
1124         return security_ops->socket_setsockopt(sock, level, optname);
1125 }
1126
1127 int security_socket_shutdown(struct socket *sock, int how)
1128 {
1129         return security_ops->socket_shutdown(sock, how);
1130 }
1131
1132 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1133 {
1134         return security_ops->socket_sock_rcv_skb(sk, skb);
1135 }
1136 EXPORT_SYMBOL(security_sock_rcv_skb);
1137
1138 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1139                                       int __user *optlen, unsigned len)
1140 {
1141         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1142 }
1143
1144 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1145 {
1146         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1147 }
1148 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1149
1150 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1151 {
1152         return security_ops->sk_alloc_security(sk, family, priority);
1153 }
1154
1155 void security_sk_free(struct sock *sk)
1156 {
1157         security_ops->sk_free_security(sk);
1158 }
1159
1160 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1161 {
1162         security_ops->sk_clone_security(sk, newsk);
1163 }
1164 EXPORT_SYMBOL(security_sk_clone);
1165
1166 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1167 {
1168         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1169 }
1170 EXPORT_SYMBOL(security_sk_classify_flow);
1171
1172 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1173 {
1174         security_ops->req_classify_flow(req, fl);
1175 }
1176 EXPORT_SYMBOL(security_req_classify_flow);
1177
1178 void security_sock_graft(struct sock *sk, struct socket *parent)
1179 {
1180         security_ops->sock_graft(sk, parent);
1181 }
1182 EXPORT_SYMBOL(security_sock_graft);
1183
1184 int security_inet_conn_request(struct sock *sk,
1185                         struct sk_buff *skb, struct request_sock *req)
1186 {
1187         return security_ops->inet_conn_request(sk, skb, req);
1188 }
1189 EXPORT_SYMBOL(security_inet_conn_request);
1190
1191 void security_inet_csk_clone(struct sock *newsk,
1192                         const struct request_sock *req)
1193 {
1194         security_ops->inet_csk_clone(newsk, req);
1195 }
1196
1197 void security_inet_conn_established(struct sock *sk,
1198                         struct sk_buff *skb)
1199 {
1200         security_ops->inet_conn_established(sk, skb);
1201 }
1202
1203 int security_secmark_relabel_packet(u32 secid)
1204 {
1205         return security_ops->secmark_relabel_packet(secid);
1206 }
1207 EXPORT_SYMBOL(security_secmark_relabel_packet);
1208
1209 void security_secmark_refcount_inc(void)
1210 {
1211         security_ops->secmark_refcount_inc();
1212 }
1213 EXPORT_SYMBOL(security_secmark_refcount_inc);
1214
1215 void security_secmark_refcount_dec(void)
1216 {
1217         security_ops->secmark_refcount_dec();
1218 }
1219 EXPORT_SYMBOL(security_secmark_refcount_dec);
1220
1221 int security_tun_dev_create(void)
1222 {
1223         return security_ops->tun_dev_create();
1224 }
1225 EXPORT_SYMBOL(security_tun_dev_create);
1226
1227 void security_tun_dev_post_create(struct sock *sk)
1228 {
1229         return security_ops->tun_dev_post_create(sk);
1230 }
1231 EXPORT_SYMBOL(security_tun_dev_post_create);
1232
1233 int security_tun_dev_attach(struct sock *sk)
1234 {
1235         return security_ops->tun_dev_attach(sk);
1236 }
1237 EXPORT_SYMBOL(security_tun_dev_attach);
1238
1239 #endif  /* CONFIG_SECURITY_NETWORK */
1240
1241 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1242
1243 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1244 {
1245         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1246 }
1247 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1248
1249 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1250                               struct xfrm_sec_ctx **new_ctxp)
1251 {
1252         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1253 }
1254
1255 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1256 {
1257         security_ops->xfrm_policy_free_security(ctx);
1258 }
1259 EXPORT_SYMBOL(security_xfrm_policy_free);
1260
1261 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1262 {
1263         return security_ops->xfrm_policy_delete_security(ctx);
1264 }
1265
1266 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1267 {
1268         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1269 }
1270 EXPORT_SYMBOL(security_xfrm_state_alloc);
1271
1272 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1273                                       struct xfrm_sec_ctx *polsec, u32 secid)
1274 {
1275         if (!polsec)
1276                 return 0;
1277         /*
1278          * We want the context to be taken from secid which is usually
1279          * from the sock.
1280          */
1281         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1282 }
1283
1284 int security_xfrm_state_delete(struct xfrm_state *x)
1285 {
1286         return security_ops->xfrm_state_delete_security(x);
1287 }
1288 EXPORT_SYMBOL(security_xfrm_state_delete);
1289
1290 void security_xfrm_state_free(struct xfrm_state *x)
1291 {
1292         security_ops->xfrm_state_free_security(x);
1293 }
1294
1295 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1296 {
1297         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1298 }
1299
1300 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1301                                        struct xfrm_policy *xp,
1302                                        const struct flowi *fl)
1303 {
1304         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1305 }
1306
1307 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1308 {
1309         return security_ops->xfrm_decode_session(skb, secid, 1);
1310 }
1311
1312 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1313 {
1314         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1315
1316         BUG_ON(rc);
1317 }
1318 EXPORT_SYMBOL(security_skb_classify_flow);
1319
1320 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1321
1322 #ifdef CONFIG_KEYS
1323
1324 int security_key_alloc(struct key *key, const struct cred *cred,
1325                        unsigned long flags)
1326 {
1327         return security_ops->key_alloc(key, cred, flags);
1328 }
1329
1330 void security_key_free(struct key *key)
1331 {
1332         security_ops->key_free(key);
1333 }
1334
1335 int security_key_permission(key_ref_t key_ref,
1336                             const struct cred *cred, key_perm_t perm)
1337 {
1338         return security_ops->key_permission(key_ref, cred, perm);
1339 }
1340
1341 int security_key_getsecurity(struct key *key, char **_buffer)
1342 {
1343         return security_ops->key_getsecurity(key, _buffer);
1344 }
1345
1346 #endif  /* CONFIG_KEYS */
1347
1348 #ifdef CONFIG_AUDIT
1349
1350 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1351 {
1352         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1353 }
1354
1355 int security_audit_rule_known(struct audit_krule *krule)
1356 {
1357         return security_ops->audit_rule_known(krule);
1358 }
1359
1360 void security_audit_rule_free(void *lsmrule)
1361 {
1362         security_ops->audit_rule_free(lsmrule);
1363 }
1364
1365 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1366                               struct audit_context *actx)
1367 {
1368         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1369 }
1370
1371 #endif /* CONFIG_AUDIT */