Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/holtmann/bluet...
[pandora-kernel.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops;       /* Initialized to NULL */
28
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32 static inline int verify(struct security_operations *ops)
33 {
34         /* verify the security_operations structure exists */
35         if (!ops)
36                 return -EINVAL;
37         security_fixup_ops(ops);
38         return 0;
39 }
40
41 static void __init do_security_initcalls(void)
42 {
43         initcall_t *call;
44         call = __security_initcall_start;
45         while (call < __security_initcall_end) {
46                 (*call) ();
47                 call++;
48         }
49 }
50
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58         printk(KERN_INFO "Security Framework initialized\n");
59
60         security_fixup_ops(&default_security_ops);
61         security_ops = &default_security_ops;
62         do_security_initcalls();
63
64         return 0;
65 }
66
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71         return 1;
72 }
73 __setup("security=", choose_lsm);
74
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *      -The passed LSM is the one chosen by user at boot time,
85  *      -or user didsn't specify a specific LSM and we're the first to ask
86  *       for registeration permissoin,
87  *      -or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92         if (!*chosen_lsm)
93                 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94         else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95                 return 0;
96
97         return 1;
98 }
99
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function is to allow a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise 0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114         if (verify(ops)) {
115                 printk(KERN_DEBUG "%s could not verify "
116                        "security_operations structure.\n", __func__);
117                 return -EINVAL;
118         }
119
120         if (security_ops != &default_security_ops)
121                 return -EAGAIN;
122
123         security_ops = ops;
124
125         return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace(struct task_struct *parent, struct task_struct *child,
131                     unsigned int mode)
132 {
133         return security_ops->ptrace(parent, child, mode);
134 }
135
136 int security_capget(struct task_struct *target,
137                      kernel_cap_t *effective,
138                      kernel_cap_t *inheritable,
139                      kernel_cap_t *permitted)
140 {
141         return security_ops->capget(target, effective, inheritable, permitted);
142 }
143
144 int security_capset_check(struct task_struct *target,
145                            kernel_cap_t *effective,
146                            kernel_cap_t *inheritable,
147                            kernel_cap_t *permitted)
148 {
149         return security_ops->capset_check(target, effective, inheritable, permitted);
150 }
151
152 void security_capset_set(struct task_struct *target,
153                           kernel_cap_t *effective,
154                           kernel_cap_t *inheritable,
155                           kernel_cap_t *permitted)
156 {
157         security_ops->capset_set(target, effective, inheritable, permitted);
158 }
159
160 int security_capable(struct task_struct *tsk, int cap)
161 {
162         return security_ops->capable(tsk, cap);
163 }
164
165 int security_acct(struct file *file)
166 {
167         return security_ops->acct(file);
168 }
169
170 int security_sysctl(struct ctl_table *table, int op)
171 {
172         return security_ops->sysctl(table, op);
173 }
174
175 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
176 {
177         return security_ops->quotactl(cmds, type, id, sb);
178 }
179
180 int security_quota_on(struct dentry *dentry)
181 {
182         return security_ops->quota_on(dentry);
183 }
184
185 int security_syslog(int type)
186 {
187         return security_ops->syslog(type);
188 }
189
190 int security_settime(struct timespec *ts, struct timezone *tz)
191 {
192         return security_ops->settime(ts, tz);
193 }
194
195 int security_vm_enough_memory(long pages)
196 {
197         return security_ops->vm_enough_memory(current->mm, pages);
198 }
199
200 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
201 {
202         return security_ops->vm_enough_memory(mm, pages);
203 }
204
205 int security_bprm_alloc(struct linux_binprm *bprm)
206 {
207         return security_ops->bprm_alloc_security(bprm);
208 }
209
210 void security_bprm_free(struct linux_binprm *bprm)
211 {
212         security_ops->bprm_free_security(bprm);
213 }
214
215 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
216 {
217         security_ops->bprm_apply_creds(bprm, unsafe);
218 }
219
220 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
221 {
222         security_ops->bprm_post_apply_creds(bprm);
223 }
224
225 int security_bprm_set(struct linux_binprm *bprm)
226 {
227         return security_ops->bprm_set_security(bprm);
228 }
229
230 int security_bprm_check(struct linux_binprm *bprm)
231 {
232         return security_ops->bprm_check_security(bprm);
233 }
234
235 int security_bprm_secureexec(struct linux_binprm *bprm)
236 {
237         return security_ops->bprm_secureexec(bprm);
238 }
239
240 int security_sb_alloc(struct super_block *sb)
241 {
242         return security_ops->sb_alloc_security(sb);
243 }
244
245 void security_sb_free(struct super_block *sb)
246 {
247         security_ops->sb_free_security(sb);
248 }
249
250 int security_sb_copy_data(char *orig, char *copy)
251 {
252         return security_ops->sb_copy_data(orig, copy);
253 }
254 EXPORT_SYMBOL(security_sb_copy_data);
255
256 int security_sb_kern_mount(struct super_block *sb, void *data)
257 {
258         return security_ops->sb_kern_mount(sb, data);
259 }
260
261 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
262 {
263         return security_ops->sb_show_options(m, sb);
264 }
265
266 int security_sb_statfs(struct dentry *dentry)
267 {
268         return security_ops->sb_statfs(dentry);
269 }
270
271 int security_sb_mount(char *dev_name, struct path *path,
272                        char *type, unsigned long flags, void *data)
273 {
274         return security_ops->sb_mount(dev_name, path, type, flags, data);
275 }
276
277 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
278 {
279         return security_ops->sb_check_sb(mnt, path);
280 }
281
282 int security_sb_umount(struct vfsmount *mnt, int flags)
283 {
284         return security_ops->sb_umount(mnt, flags);
285 }
286
287 void security_sb_umount_close(struct vfsmount *mnt)
288 {
289         security_ops->sb_umount_close(mnt);
290 }
291
292 void security_sb_umount_busy(struct vfsmount *mnt)
293 {
294         security_ops->sb_umount_busy(mnt);
295 }
296
297 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
298 {
299         security_ops->sb_post_remount(mnt, flags, data);
300 }
301
302 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
303 {
304         security_ops->sb_post_addmount(mnt, mountpoint);
305 }
306
307 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
308 {
309         return security_ops->sb_pivotroot(old_path, new_path);
310 }
311
312 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
313 {
314         security_ops->sb_post_pivotroot(old_path, new_path);
315 }
316
317 int security_sb_set_mnt_opts(struct super_block *sb,
318                                 struct security_mnt_opts *opts)
319 {
320         return security_ops->sb_set_mnt_opts(sb, opts);
321 }
322 EXPORT_SYMBOL(security_sb_set_mnt_opts);
323
324 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
325                                 struct super_block *newsb)
326 {
327         security_ops->sb_clone_mnt_opts(oldsb, newsb);
328 }
329 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
330
331 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
332 {
333         return security_ops->sb_parse_opts_str(options, opts);
334 }
335 EXPORT_SYMBOL(security_sb_parse_opts_str);
336
337 int security_inode_alloc(struct inode *inode)
338 {
339         inode->i_security = NULL;
340         return security_ops->inode_alloc_security(inode);
341 }
342
343 void security_inode_free(struct inode *inode)
344 {
345         security_ops->inode_free_security(inode);
346 }
347
348 int security_inode_init_security(struct inode *inode, struct inode *dir,
349                                   char **name, void **value, size_t *len)
350 {
351         if (unlikely(IS_PRIVATE(inode)))
352                 return -EOPNOTSUPP;
353         return security_ops->inode_init_security(inode, dir, name, value, len);
354 }
355 EXPORT_SYMBOL(security_inode_init_security);
356
357 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
358 {
359         if (unlikely(IS_PRIVATE(dir)))
360                 return 0;
361         return security_ops->inode_create(dir, dentry, mode);
362 }
363
364 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
365                          struct dentry *new_dentry)
366 {
367         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
368                 return 0;
369         return security_ops->inode_link(old_dentry, dir, new_dentry);
370 }
371
372 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
373 {
374         if (unlikely(IS_PRIVATE(dentry->d_inode)))
375                 return 0;
376         return security_ops->inode_unlink(dir, dentry);
377 }
378
379 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
380                             const char *old_name)
381 {
382         if (unlikely(IS_PRIVATE(dir)))
383                 return 0;
384         return security_ops->inode_symlink(dir, dentry, old_name);
385 }
386
387 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
388 {
389         if (unlikely(IS_PRIVATE(dir)))
390                 return 0;
391         return security_ops->inode_mkdir(dir, dentry, mode);
392 }
393
394 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
395 {
396         if (unlikely(IS_PRIVATE(dentry->d_inode)))
397                 return 0;
398         return security_ops->inode_rmdir(dir, dentry);
399 }
400
401 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
402 {
403         if (unlikely(IS_PRIVATE(dir)))
404                 return 0;
405         return security_ops->inode_mknod(dir, dentry, mode, dev);
406 }
407
408 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
409                            struct inode *new_dir, struct dentry *new_dentry)
410 {
411         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
412             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
413                 return 0;
414         return security_ops->inode_rename(old_dir, old_dentry,
415                                            new_dir, new_dentry);
416 }
417
418 int security_inode_readlink(struct dentry *dentry)
419 {
420         if (unlikely(IS_PRIVATE(dentry->d_inode)))
421                 return 0;
422         return security_ops->inode_readlink(dentry);
423 }
424
425 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
426 {
427         if (unlikely(IS_PRIVATE(dentry->d_inode)))
428                 return 0;
429         return security_ops->inode_follow_link(dentry, nd);
430 }
431
432 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
433 {
434         if (unlikely(IS_PRIVATE(inode)))
435                 return 0;
436         return security_ops->inode_permission(inode, mask, nd);
437 }
438
439 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
440 {
441         if (unlikely(IS_PRIVATE(dentry->d_inode)))
442                 return 0;
443         return security_ops->inode_setattr(dentry, attr);
444 }
445
446 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
447 {
448         if (unlikely(IS_PRIVATE(dentry->d_inode)))
449                 return 0;
450         return security_ops->inode_getattr(mnt, dentry);
451 }
452
453 void security_inode_delete(struct inode *inode)
454 {
455         if (unlikely(IS_PRIVATE(inode)))
456                 return;
457         security_ops->inode_delete(inode);
458 }
459
460 int security_inode_setxattr(struct dentry *dentry, const char *name,
461                             const void *value, size_t size, int flags)
462 {
463         if (unlikely(IS_PRIVATE(dentry->d_inode)))
464                 return 0;
465         return security_ops->inode_setxattr(dentry, name, value, size, flags);
466 }
467
468 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
469                                   const void *value, size_t size, int flags)
470 {
471         if (unlikely(IS_PRIVATE(dentry->d_inode)))
472                 return;
473         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
474 }
475
476 int security_inode_getxattr(struct dentry *dentry, const char *name)
477 {
478         if (unlikely(IS_PRIVATE(dentry->d_inode)))
479                 return 0;
480         return security_ops->inode_getxattr(dentry, name);
481 }
482
483 int security_inode_listxattr(struct dentry *dentry)
484 {
485         if (unlikely(IS_PRIVATE(dentry->d_inode)))
486                 return 0;
487         return security_ops->inode_listxattr(dentry);
488 }
489
490 int security_inode_removexattr(struct dentry *dentry, const char *name)
491 {
492         if (unlikely(IS_PRIVATE(dentry->d_inode)))
493                 return 0;
494         return security_ops->inode_removexattr(dentry, name);
495 }
496
497 int security_inode_need_killpriv(struct dentry *dentry)
498 {
499         return security_ops->inode_need_killpriv(dentry);
500 }
501
502 int security_inode_killpriv(struct dentry *dentry)
503 {
504         return security_ops->inode_killpriv(dentry);
505 }
506
507 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
508 {
509         if (unlikely(IS_PRIVATE(inode)))
510                 return 0;
511         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
512 }
513
514 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
515 {
516         if (unlikely(IS_PRIVATE(inode)))
517                 return 0;
518         return security_ops->inode_setsecurity(inode, name, value, size, flags);
519 }
520
521 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
522 {
523         if (unlikely(IS_PRIVATE(inode)))
524                 return 0;
525         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
526 }
527
528 void security_inode_getsecid(const struct inode *inode, u32 *secid)
529 {
530         security_ops->inode_getsecid(inode, secid);
531 }
532
533 int security_file_permission(struct file *file, int mask)
534 {
535         return security_ops->file_permission(file, mask);
536 }
537
538 int security_file_alloc(struct file *file)
539 {
540         return security_ops->file_alloc_security(file);
541 }
542
543 void security_file_free(struct file *file)
544 {
545         security_ops->file_free_security(file);
546 }
547
548 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
549 {
550         return security_ops->file_ioctl(file, cmd, arg);
551 }
552
553 int security_file_mmap(struct file *file, unsigned long reqprot,
554                         unsigned long prot, unsigned long flags,
555                         unsigned long addr, unsigned long addr_only)
556 {
557         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
558 }
559
560 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
561                             unsigned long prot)
562 {
563         return security_ops->file_mprotect(vma, reqprot, prot);
564 }
565
566 int security_file_lock(struct file *file, unsigned int cmd)
567 {
568         return security_ops->file_lock(file, cmd);
569 }
570
571 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
572 {
573         return security_ops->file_fcntl(file, cmd, arg);
574 }
575
576 int security_file_set_fowner(struct file *file)
577 {
578         return security_ops->file_set_fowner(file);
579 }
580
581 int security_file_send_sigiotask(struct task_struct *tsk,
582                                   struct fown_struct *fown, int sig)
583 {
584         return security_ops->file_send_sigiotask(tsk, fown, sig);
585 }
586
587 int security_file_receive(struct file *file)
588 {
589         return security_ops->file_receive(file);
590 }
591
592 int security_dentry_open(struct file *file)
593 {
594         return security_ops->dentry_open(file);
595 }
596
597 int security_task_create(unsigned long clone_flags)
598 {
599         return security_ops->task_create(clone_flags);
600 }
601
602 int security_task_alloc(struct task_struct *p)
603 {
604         return security_ops->task_alloc_security(p);
605 }
606
607 void security_task_free(struct task_struct *p)
608 {
609         security_ops->task_free_security(p);
610 }
611
612 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
613 {
614         return security_ops->task_setuid(id0, id1, id2, flags);
615 }
616
617 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
618                                uid_t old_suid, int flags)
619 {
620         return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
621 }
622
623 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
624 {
625         return security_ops->task_setgid(id0, id1, id2, flags);
626 }
627
628 int security_task_setpgid(struct task_struct *p, pid_t pgid)
629 {
630         return security_ops->task_setpgid(p, pgid);
631 }
632
633 int security_task_getpgid(struct task_struct *p)
634 {
635         return security_ops->task_getpgid(p);
636 }
637
638 int security_task_getsid(struct task_struct *p)
639 {
640         return security_ops->task_getsid(p);
641 }
642
643 void security_task_getsecid(struct task_struct *p, u32 *secid)
644 {
645         security_ops->task_getsecid(p, secid);
646 }
647 EXPORT_SYMBOL(security_task_getsecid);
648
649 int security_task_setgroups(struct group_info *group_info)
650 {
651         return security_ops->task_setgroups(group_info);
652 }
653
654 int security_task_setnice(struct task_struct *p, int nice)
655 {
656         return security_ops->task_setnice(p, nice);
657 }
658
659 int security_task_setioprio(struct task_struct *p, int ioprio)
660 {
661         return security_ops->task_setioprio(p, ioprio);
662 }
663
664 int security_task_getioprio(struct task_struct *p)
665 {
666         return security_ops->task_getioprio(p);
667 }
668
669 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
670 {
671         return security_ops->task_setrlimit(resource, new_rlim);
672 }
673
674 int security_task_setscheduler(struct task_struct *p,
675                                 int policy, struct sched_param *lp)
676 {
677         return security_ops->task_setscheduler(p, policy, lp);
678 }
679
680 int security_task_getscheduler(struct task_struct *p)
681 {
682         return security_ops->task_getscheduler(p);
683 }
684
685 int security_task_movememory(struct task_struct *p)
686 {
687         return security_ops->task_movememory(p);
688 }
689
690 int security_task_kill(struct task_struct *p, struct siginfo *info,
691                         int sig, u32 secid)
692 {
693         return security_ops->task_kill(p, info, sig, secid);
694 }
695
696 int security_task_wait(struct task_struct *p)
697 {
698         return security_ops->task_wait(p);
699 }
700
701 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
702                          unsigned long arg4, unsigned long arg5, long *rc_p)
703 {
704         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
705 }
706
707 void security_task_reparent_to_init(struct task_struct *p)
708 {
709         security_ops->task_reparent_to_init(p);
710 }
711
712 void security_task_to_inode(struct task_struct *p, struct inode *inode)
713 {
714         security_ops->task_to_inode(p, inode);
715 }
716
717 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
718 {
719         return security_ops->ipc_permission(ipcp, flag);
720 }
721
722 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
723 {
724         security_ops->ipc_getsecid(ipcp, secid);
725 }
726
727 int security_msg_msg_alloc(struct msg_msg *msg)
728 {
729         return security_ops->msg_msg_alloc_security(msg);
730 }
731
732 void security_msg_msg_free(struct msg_msg *msg)
733 {
734         security_ops->msg_msg_free_security(msg);
735 }
736
737 int security_msg_queue_alloc(struct msg_queue *msq)
738 {
739         return security_ops->msg_queue_alloc_security(msq);
740 }
741
742 void security_msg_queue_free(struct msg_queue *msq)
743 {
744         security_ops->msg_queue_free_security(msq);
745 }
746
747 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
748 {
749         return security_ops->msg_queue_associate(msq, msqflg);
750 }
751
752 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
753 {
754         return security_ops->msg_queue_msgctl(msq, cmd);
755 }
756
757 int security_msg_queue_msgsnd(struct msg_queue *msq,
758                                struct msg_msg *msg, int msqflg)
759 {
760         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
761 }
762
763 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
764                                struct task_struct *target, long type, int mode)
765 {
766         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
767 }
768
769 int security_shm_alloc(struct shmid_kernel *shp)
770 {
771         return security_ops->shm_alloc_security(shp);
772 }
773
774 void security_shm_free(struct shmid_kernel *shp)
775 {
776         security_ops->shm_free_security(shp);
777 }
778
779 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
780 {
781         return security_ops->shm_associate(shp, shmflg);
782 }
783
784 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
785 {
786         return security_ops->shm_shmctl(shp, cmd);
787 }
788
789 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
790 {
791         return security_ops->shm_shmat(shp, shmaddr, shmflg);
792 }
793
794 int security_sem_alloc(struct sem_array *sma)
795 {
796         return security_ops->sem_alloc_security(sma);
797 }
798
799 void security_sem_free(struct sem_array *sma)
800 {
801         security_ops->sem_free_security(sma);
802 }
803
804 int security_sem_associate(struct sem_array *sma, int semflg)
805 {
806         return security_ops->sem_associate(sma, semflg);
807 }
808
809 int security_sem_semctl(struct sem_array *sma, int cmd)
810 {
811         return security_ops->sem_semctl(sma, cmd);
812 }
813
814 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
815                         unsigned nsops, int alter)
816 {
817         return security_ops->sem_semop(sma, sops, nsops, alter);
818 }
819
820 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
821 {
822         if (unlikely(inode && IS_PRIVATE(inode)))
823                 return;
824         security_ops->d_instantiate(dentry, inode);
825 }
826 EXPORT_SYMBOL(security_d_instantiate);
827
828 int security_getprocattr(struct task_struct *p, char *name, char **value)
829 {
830         return security_ops->getprocattr(p, name, value);
831 }
832
833 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
834 {
835         return security_ops->setprocattr(p, name, value, size);
836 }
837
838 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
839 {
840         return security_ops->netlink_send(sk, skb);
841 }
842
843 int security_netlink_recv(struct sk_buff *skb, int cap)
844 {
845         return security_ops->netlink_recv(skb, cap);
846 }
847 EXPORT_SYMBOL(security_netlink_recv);
848
849 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
850 {
851         return security_ops->secid_to_secctx(secid, secdata, seclen);
852 }
853 EXPORT_SYMBOL(security_secid_to_secctx);
854
855 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
856 {
857         return security_ops->secctx_to_secid(secdata, seclen, secid);
858 }
859 EXPORT_SYMBOL(security_secctx_to_secid);
860
861 void security_release_secctx(char *secdata, u32 seclen)
862 {
863         security_ops->release_secctx(secdata, seclen);
864 }
865 EXPORT_SYMBOL(security_release_secctx);
866
867 #ifdef CONFIG_SECURITY_NETWORK
868
869 int security_unix_stream_connect(struct socket *sock, struct socket *other,
870                                  struct sock *newsk)
871 {
872         return security_ops->unix_stream_connect(sock, other, newsk);
873 }
874 EXPORT_SYMBOL(security_unix_stream_connect);
875
876 int security_unix_may_send(struct socket *sock,  struct socket *other)
877 {
878         return security_ops->unix_may_send(sock, other);
879 }
880 EXPORT_SYMBOL(security_unix_may_send);
881
882 int security_socket_create(int family, int type, int protocol, int kern)
883 {
884         return security_ops->socket_create(family, type, protocol, kern);
885 }
886
887 int security_socket_post_create(struct socket *sock, int family,
888                                 int type, int protocol, int kern)
889 {
890         return security_ops->socket_post_create(sock, family, type,
891                                                 protocol, kern);
892 }
893
894 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
895 {
896         return security_ops->socket_bind(sock, address, addrlen);
897 }
898
899 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
900 {
901         return security_ops->socket_connect(sock, address, addrlen);
902 }
903
904 int security_socket_listen(struct socket *sock, int backlog)
905 {
906         return security_ops->socket_listen(sock, backlog);
907 }
908
909 int security_socket_accept(struct socket *sock, struct socket *newsock)
910 {
911         return security_ops->socket_accept(sock, newsock);
912 }
913
914 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
915 {
916         security_ops->socket_post_accept(sock, newsock);
917 }
918
919 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
920 {
921         return security_ops->socket_sendmsg(sock, msg, size);
922 }
923
924 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
925                             int size, int flags)
926 {
927         return security_ops->socket_recvmsg(sock, msg, size, flags);
928 }
929
930 int security_socket_getsockname(struct socket *sock)
931 {
932         return security_ops->socket_getsockname(sock);
933 }
934
935 int security_socket_getpeername(struct socket *sock)
936 {
937         return security_ops->socket_getpeername(sock);
938 }
939
940 int security_socket_getsockopt(struct socket *sock, int level, int optname)
941 {
942         return security_ops->socket_getsockopt(sock, level, optname);
943 }
944
945 int security_socket_setsockopt(struct socket *sock, int level, int optname)
946 {
947         return security_ops->socket_setsockopt(sock, level, optname);
948 }
949
950 int security_socket_shutdown(struct socket *sock, int how)
951 {
952         return security_ops->socket_shutdown(sock, how);
953 }
954
955 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
956 {
957         return security_ops->socket_sock_rcv_skb(sk, skb);
958 }
959 EXPORT_SYMBOL(security_sock_rcv_skb);
960
961 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
962                                       int __user *optlen, unsigned len)
963 {
964         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
965 }
966
967 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
968 {
969         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
970 }
971 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
972
973 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
974 {
975         return security_ops->sk_alloc_security(sk, family, priority);
976 }
977
978 void security_sk_free(struct sock *sk)
979 {
980         security_ops->sk_free_security(sk);
981 }
982
983 void security_sk_clone(const struct sock *sk, struct sock *newsk)
984 {
985         security_ops->sk_clone_security(sk, newsk);
986 }
987
988 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
989 {
990         security_ops->sk_getsecid(sk, &fl->secid);
991 }
992 EXPORT_SYMBOL(security_sk_classify_flow);
993
994 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
995 {
996         security_ops->req_classify_flow(req, fl);
997 }
998 EXPORT_SYMBOL(security_req_classify_flow);
999
1000 void security_sock_graft(struct sock *sk, struct socket *parent)
1001 {
1002         security_ops->sock_graft(sk, parent);
1003 }
1004 EXPORT_SYMBOL(security_sock_graft);
1005
1006 int security_inet_conn_request(struct sock *sk,
1007                         struct sk_buff *skb, struct request_sock *req)
1008 {
1009         return security_ops->inet_conn_request(sk, skb, req);
1010 }
1011 EXPORT_SYMBOL(security_inet_conn_request);
1012
1013 void security_inet_csk_clone(struct sock *newsk,
1014                         const struct request_sock *req)
1015 {
1016         security_ops->inet_csk_clone(newsk, req);
1017 }
1018
1019 void security_inet_conn_established(struct sock *sk,
1020                         struct sk_buff *skb)
1021 {
1022         security_ops->inet_conn_established(sk, skb);
1023 }
1024
1025 #endif  /* CONFIG_SECURITY_NETWORK */
1026
1027 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1028
1029 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1030 {
1031         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1032 }
1033 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1034
1035 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1036                               struct xfrm_sec_ctx **new_ctxp)
1037 {
1038         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1039 }
1040
1041 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1042 {
1043         security_ops->xfrm_policy_free_security(ctx);
1044 }
1045 EXPORT_SYMBOL(security_xfrm_policy_free);
1046
1047 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1048 {
1049         return security_ops->xfrm_policy_delete_security(ctx);
1050 }
1051
1052 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1053 {
1054         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1055 }
1056 EXPORT_SYMBOL(security_xfrm_state_alloc);
1057
1058 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1059                                       struct xfrm_sec_ctx *polsec, u32 secid)
1060 {
1061         if (!polsec)
1062                 return 0;
1063         /*
1064          * We want the context to be taken from secid which is usually
1065          * from the sock.
1066          */
1067         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1068 }
1069
1070 int security_xfrm_state_delete(struct xfrm_state *x)
1071 {
1072         return security_ops->xfrm_state_delete_security(x);
1073 }
1074 EXPORT_SYMBOL(security_xfrm_state_delete);
1075
1076 void security_xfrm_state_free(struct xfrm_state *x)
1077 {
1078         security_ops->xfrm_state_free_security(x);
1079 }
1080
1081 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1082 {
1083         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1084 }
1085
1086 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1087                                        struct xfrm_policy *xp, struct flowi *fl)
1088 {
1089         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1090 }
1091
1092 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1093 {
1094         return security_ops->xfrm_decode_session(skb, secid, 1);
1095 }
1096
1097 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1098 {
1099         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1100
1101         BUG_ON(rc);
1102 }
1103 EXPORT_SYMBOL(security_skb_classify_flow);
1104
1105 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1106
1107 #ifdef CONFIG_KEYS
1108
1109 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1110 {
1111         return security_ops->key_alloc(key, tsk, flags);
1112 }
1113
1114 void security_key_free(struct key *key)
1115 {
1116         security_ops->key_free(key);
1117 }
1118
1119 int security_key_permission(key_ref_t key_ref,
1120                             struct task_struct *context, key_perm_t perm)
1121 {
1122         return security_ops->key_permission(key_ref, context, perm);
1123 }
1124
1125 int security_key_getsecurity(struct key *key, char **_buffer)
1126 {
1127         return security_ops->key_getsecurity(key, _buffer);
1128 }
1129
1130 #endif  /* CONFIG_KEYS */
1131
1132 #ifdef CONFIG_AUDIT
1133
1134 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1135 {
1136         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1137 }
1138
1139 int security_audit_rule_known(struct audit_krule *krule)
1140 {
1141         return security_ops->audit_rule_known(krule);
1142 }
1143
1144 void security_audit_rule_free(void *lsmrule)
1145 {
1146         security_ops->audit_rule_free(lsmrule);
1147 }
1148
1149 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1150                               struct audit_context *actx)
1151 {
1152         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1153 }
1154
1155 #endif /* CONFIG_AUDIT */