mac80211: Use correct sign for mesh active path refresh.
[pandora-kernel.git] / net / wireless / util.c
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
5  */
6 #include <linux/bitops.h>
7 #include <linux/etherdevice.h>
8 #include <net/cfg80211.h>
9 #include <net/ip.h>
10 #include "core.h"
11
12 struct ieee80211_rate *
13 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
14                             u32 basic_rates, int bitrate)
15 {
16         struct ieee80211_rate *result = &sband->bitrates[0];
17         int i;
18
19         for (i = 0; i < sband->n_bitrates; i++) {
20                 if (!(basic_rates & BIT(i)))
21                         continue;
22                 if (sband->bitrates[i].bitrate > bitrate)
23                         continue;
24                 result = &sband->bitrates[i];
25         }
26
27         return result;
28 }
29 EXPORT_SYMBOL(ieee80211_get_response_rate);
30
31 int ieee80211_channel_to_frequency(int chan)
32 {
33         if (chan < 14)
34                 return 2407 + chan * 5;
35
36         if (chan == 14)
37                 return 2484;
38
39         /* FIXME: 802.11j 17.3.8.3.2 */
40         return (chan + 1000) * 5;
41 }
42 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
43
44 int ieee80211_frequency_to_channel(int freq)
45 {
46         if (freq == 2484)
47                 return 14;
48
49         if (freq < 2484)
50                 return (freq - 2407) / 5;
51
52         /* FIXME: 802.11j 17.3.8.3.2 */
53         return freq/5 - 1000;
54 }
55 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
56
57 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
58                                                   int freq)
59 {
60         enum ieee80211_band band;
61         struct ieee80211_supported_band *sband;
62         int i;
63
64         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
65                 sband = wiphy->bands[band];
66
67                 if (!sband)
68                         continue;
69
70                 for (i = 0; i < sband->n_channels; i++) {
71                         if (sband->channels[i].center_freq == freq)
72                                 return &sband->channels[i];
73                 }
74         }
75
76         return NULL;
77 }
78 EXPORT_SYMBOL(__ieee80211_get_channel);
79
80 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
81                                      enum ieee80211_band band)
82 {
83         int i, want;
84
85         switch (band) {
86         case IEEE80211_BAND_5GHZ:
87                 want = 3;
88                 for (i = 0; i < sband->n_bitrates; i++) {
89                         if (sband->bitrates[i].bitrate == 60 ||
90                             sband->bitrates[i].bitrate == 120 ||
91                             sband->bitrates[i].bitrate == 240) {
92                                 sband->bitrates[i].flags |=
93                                         IEEE80211_RATE_MANDATORY_A;
94                                 want--;
95                         }
96                 }
97                 WARN_ON(want);
98                 break;
99         case IEEE80211_BAND_2GHZ:
100                 want = 7;
101                 for (i = 0; i < sband->n_bitrates; i++) {
102                         if (sband->bitrates[i].bitrate == 10) {
103                                 sband->bitrates[i].flags |=
104                                         IEEE80211_RATE_MANDATORY_B |
105                                         IEEE80211_RATE_MANDATORY_G;
106                                 want--;
107                         }
108
109                         if (sband->bitrates[i].bitrate == 20 ||
110                             sband->bitrates[i].bitrate == 55 ||
111                             sband->bitrates[i].bitrate == 110 ||
112                             sband->bitrates[i].bitrate == 60 ||
113                             sband->bitrates[i].bitrate == 120 ||
114                             sband->bitrates[i].bitrate == 240) {
115                                 sband->bitrates[i].flags |=
116                                         IEEE80211_RATE_MANDATORY_G;
117                                 want--;
118                         }
119
120                         if (sband->bitrates[i].bitrate != 10 &&
121                             sband->bitrates[i].bitrate != 20 &&
122                             sband->bitrates[i].bitrate != 55 &&
123                             sband->bitrates[i].bitrate != 110)
124                                 sband->bitrates[i].flags |=
125                                         IEEE80211_RATE_ERP_G;
126                 }
127                 WARN_ON(want != 0 && want != 3 && want != 6);
128                 break;
129         case IEEE80211_NUM_BANDS:
130                 WARN_ON(1);
131                 break;
132         }
133 }
134
135 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
136 {
137         enum ieee80211_band band;
138
139         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
140                 if (wiphy->bands[band])
141                         set_mandatory_flags_band(wiphy->bands[band], band);
142 }
143
144 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
145                                    struct key_params *params, int key_idx,
146                                    const u8 *mac_addr)
147 {
148         int i;
149
150         if (key_idx > 5)
151                 return -EINVAL;
152
153         /*
154          * Disallow pairwise keys with non-zero index unless it's WEP
155          * (because current deployments use pairwise WEP keys with
156          * non-zero indizes but 802.11i clearly specifies to use zero)
157          */
158         if (mac_addr && key_idx &&
159             params->cipher != WLAN_CIPHER_SUITE_WEP40 &&
160             params->cipher != WLAN_CIPHER_SUITE_WEP104)
161                 return -EINVAL;
162
163         switch (params->cipher) {
164         case WLAN_CIPHER_SUITE_WEP40:
165                 if (params->key_len != WLAN_KEY_LEN_WEP40)
166                         return -EINVAL;
167                 break;
168         case WLAN_CIPHER_SUITE_TKIP:
169                 if (params->key_len != WLAN_KEY_LEN_TKIP)
170                         return -EINVAL;
171                 break;
172         case WLAN_CIPHER_SUITE_CCMP:
173                 if (params->key_len != WLAN_KEY_LEN_CCMP)
174                         return -EINVAL;
175                 break;
176         case WLAN_CIPHER_SUITE_WEP104:
177                 if (params->key_len != WLAN_KEY_LEN_WEP104)
178                         return -EINVAL;
179                 break;
180         case WLAN_CIPHER_SUITE_AES_CMAC:
181                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
182                         return -EINVAL;
183                 break;
184         default:
185                 return -EINVAL;
186         }
187
188         if (params->seq) {
189                 switch (params->cipher) {
190                 case WLAN_CIPHER_SUITE_WEP40:
191                 case WLAN_CIPHER_SUITE_WEP104:
192                         /* These ciphers do not use key sequence */
193                         return -EINVAL;
194                 case WLAN_CIPHER_SUITE_TKIP:
195                 case WLAN_CIPHER_SUITE_CCMP:
196                 case WLAN_CIPHER_SUITE_AES_CMAC:
197                         if (params->seq_len != 6)
198                                 return -EINVAL;
199                         break;
200                 }
201         }
202
203         for (i = 0; i < rdev->wiphy.n_cipher_suites; i++)
204                 if (params->cipher == rdev->wiphy.cipher_suites[i])
205                         break;
206         if (i == rdev->wiphy.n_cipher_suites)
207                 return -EINVAL;
208
209         return 0;
210 }
211
212 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
213 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
214 const unsigned char rfc1042_header[] __aligned(2) =
215         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
216 EXPORT_SYMBOL(rfc1042_header);
217
218 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
219 const unsigned char bridge_tunnel_header[] __aligned(2) =
220         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
221 EXPORT_SYMBOL(bridge_tunnel_header);
222
223 unsigned int ieee80211_hdrlen(__le16 fc)
224 {
225         unsigned int hdrlen = 24;
226
227         if (ieee80211_is_data(fc)) {
228                 if (ieee80211_has_a4(fc))
229                         hdrlen = 30;
230                 if (ieee80211_is_data_qos(fc))
231                         hdrlen += IEEE80211_QOS_CTL_LEN;
232                 goto out;
233         }
234
235         if (ieee80211_is_ctl(fc)) {
236                 /*
237                  * ACK and CTS are 10 bytes, all others 16. To see how
238                  * to get this condition consider
239                  *   subtype mask:   0b0000000011110000 (0x00F0)
240                  *   ACK subtype:    0b0000000011010000 (0x00D0)
241                  *   CTS subtype:    0b0000000011000000 (0x00C0)
242                  *   bits that matter:         ^^^      (0x00E0)
243                  *   value of those: 0b0000000011000000 (0x00C0)
244                  */
245                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
246                         hdrlen = 10;
247                 else
248                         hdrlen = 16;
249         }
250 out:
251         return hdrlen;
252 }
253 EXPORT_SYMBOL(ieee80211_hdrlen);
254
255 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
256 {
257         const struct ieee80211_hdr *hdr =
258                         (const struct ieee80211_hdr *)skb->data;
259         unsigned int hdrlen;
260
261         if (unlikely(skb->len < 10))
262                 return 0;
263         hdrlen = ieee80211_hdrlen(hdr->frame_control);
264         if (unlikely(hdrlen > skb->len))
265                 return 0;
266         return hdrlen;
267 }
268 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
269
270 static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
271 {
272         int ae = meshhdr->flags & MESH_FLAGS_AE;
273         /* 7.1.3.5a.2 */
274         switch (ae) {
275         case 0:
276                 return 6;
277         case 1:
278                 return 12;
279         case 2:
280                 return 18;
281         case 3:
282                 return 24;
283         default:
284                 return 6;
285         }
286 }
287
288 int ieee80211_data_to_8023(struct sk_buff *skb, u8 *addr,
289                            enum nl80211_iftype iftype)
290 {
291         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
292         u16 hdrlen, ethertype;
293         u8 *payload;
294         u8 dst[ETH_ALEN];
295         u8 src[ETH_ALEN] __aligned(2);
296
297         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
298                 return -1;
299
300         hdrlen = ieee80211_hdrlen(hdr->frame_control);
301
302         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
303          * header
304          * IEEE 802.11 address fields:
305          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
306          *   0     0   DA    SA    BSSID n/a
307          *   0     1   DA    BSSID SA    n/a
308          *   1     0   BSSID SA    DA    n/a
309          *   1     1   RA    TA    DA    SA
310          */
311         memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
312         memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
313
314         switch (hdr->frame_control &
315                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
316         case cpu_to_le16(IEEE80211_FCTL_TODS):
317                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
318                              iftype != NL80211_IFTYPE_AP_VLAN))
319                         return -1;
320                 break;
321         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
322                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
323                              iftype != NL80211_IFTYPE_MESH_POINT))
324                         return -1;
325                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
326                         struct ieee80211s_hdr *meshdr =
327                                 (struct ieee80211s_hdr *) (skb->data + hdrlen);
328                         hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
329                         if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
330                                 memcpy(dst, meshdr->eaddr1, ETH_ALEN);
331                                 memcpy(src, meshdr->eaddr2, ETH_ALEN);
332                         }
333                 }
334                 break;
335         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
336                 if (iftype != NL80211_IFTYPE_STATION ||
337                     (is_multicast_ether_addr(dst) &&
338                      !compare_ether_addr(src, addr)))
339                         return -1;
340                 break;
341         case cpu_to_le16(0):
342                 if (iftype != NL80211_IFTYPE_ADHOC)
343                         return -1;
344                 break;
345         }
346
347         if (unlikely(skb->len - hdrlen < 8))
348                 return -1;
349
350         payload = skb->data + hdrlen;
351         ethertype = (payload[6] << 8) | payload[7];
352
353         if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
354                     ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
355                    compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
356                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
357                  * replace EtherType */
358                 skb_pull(skb, hdrlen + 6);
359                 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
360                 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
361         } else {
362                 struct ethhdr *ehdr;
363                 __be16 len;
364
365                 skb_pull(skb, hdrlen);
366                 len = htons(skb->len);
367                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
368                 memcpy(ehdr->h_dest, dst, ETH_ALEN);
369                 memcpy(ehdr->h_source, src, ETH_ALEN);
370                 ehdr->h_proto = len;
371         }
372         return 0;
373 }
374 EXPORT_SYMBOL(ieee80211_data_to_8023);
375
376 int ieee80211_data_from_8023(struct sk_buff *skb, u8 *addr,
377                              enum nl80211_iftype iftype, u8 *bssid, bool qos)
378 {
379         struct ieee80211_hdr hdr;
380         u16 hdrlen, ethertype;
381         __le16 fc;
382         const u8 *encaps_data;
383         int encaps_len, skip_header_bytes;
384         int nh_pos, h_pos;
385         int head_need;
386
387         if (unlikely(skb->len < ETH_HLEN))
388                 return -EINVAL;
389
390         nh_pos = skb_network_header(skb) - skb->data;
391         h_pos = skb_transport_header(skb) - skb->data;
392
393         /* convert Ethernet header to proper 802.11 header (based on
394          * operation mode) */
395         ethertype = (skb->data[12] << 8) | skb->data[13];
396         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
397
398         switch (iftype) {
399         case NL80211_IFTYPE_AP:
400         case NL80211_IFTYPE_AP_VLAN:
401                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
402                 /* DA BSSID SA */
403                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
404                 memcpy(hdr.addr2, addr, ETH_ALEN);
405                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
406                 hdrlen = 24;
407                 break;
408         case NL80211_IFTYPE_STATION:
409                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
410                 /* BSSID SA DA */
411                 memcpy(hdr.addr1, bssid, ETH_ALEN);
412                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
413                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
414                 hdrlen = 24;
415                 break;
416         case NL80211_IFTYPE_ADHOC:
417                 /* DA SA BSSID */
418                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
419                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
420                 memcpy(hdr.addr3, bssid, ETH_ALEN);
421                 hdrlen = 24;
422                 break;
423         default:
424                 return -EOPNOTSUPP;
425         }
426
427         if (qos) {
428                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
429                 hdrlen += 2;
430         }
431
432         hdr.frame_control = fc;
433         hdr.duration_id = 0;
434         hdr.seq_ctrl = 0;
435
436         skip_header_bytes = ETH_HLEN;
437         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
438                 encaps_data = bridge_tunnel_header;
439                 encaps_len = sizeof(bridge_tunnel_header);
440                 skip_header_bytes -= 2;
441         } else if (ethertype > 0x600) {
442                 encaps_data = rfc1042_header;
443                 encaps_len = sizeof(rfc1042_header);
444                 skip_header_bytes -= 2;
445         } else {
446                 encaps_data = NULL;
447                 encaps_len = 0;
448         }
449
450         skb_pull(skb, skip_header_bytes);
451         nh_pos -= skip_header_bytes;
452         h_pos -= skip_header_bytes;
453
454         head_need = hdrlen + encaps_len - skb_headroom(skb);
455
456         if (head_need > 0 || skb_cloned(skb)) {
457                 head_need = max(head_need, 0);
458                 if (head_need)
459                         skb_orphan(skb);
460
461                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
462                         printk(KERN_ERR "failed to reallocate Tx buffer\n");
463                         return -ENOMEM;
464                 }
465                 skb->truesize += head_need;
466         }
467
468         if (encaps_data) {
469                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
470                 nh_pos += encaps_len;
471                 h_pos += encaps_len;
472         }
473
474         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
475
476         nh_pos += hdrlen;
477         h_pos += hdrlen;
478
479         /* Update skb pointers to various headers since this modified frame
480          * is going to go through Linux networking code that may potentially
481          * need things like pointer to IP header. */
482         skb_set_mac_header(skb, 0);
483         skb_set_network_header(skb, nh_pos);
484         skb_set_transport_header(skb, h_pos);
485
486         return 0;
487 }
488 EXPORT_SYMBOL(ieee80211_data_from_8023);
489
490 /* Given a data frame determine the 802.1p/1d tag to use. */
491 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
492 {
493         unsigned int dscp;
494
495         /* skb->priority values from 256->263 are magic values to
496          * directly indicate a specific 802.1d priority.  This is used
497          * to allow 802.1d priority to be passed directly in from VLAN
498          * tags, etc.
499          */
500         if (skb->priority >= 256 && skb->priority <= 263)
501                 return skb->priority - 256;
502
503         switch (skb->protocol) {
504         case htons(ETH_P_IP):
505                 dscp = ip_hdr(skb)->tos & 0xfc;
506                 break;
507         default:
508                 return 0;
509         }
510
511         return dscp >> 5;
512 }
513 EXPORT_SYMBOL(cfg80211_classify8021d);
514
515 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
516 {
517         u8 *end, *pos;
518
519         pos = bss->information_elements;
520         if (pos == NULL)
521                 return NULL;
522         end = pos + bss->len_information_elements;
523
524         while (pos + 1 < end) {
525                 if (pos + 2 + pos[1] > end)
526                         break;
527                 if (pos[0] == ie)
528                         return pos;
529                 pos += 2 + pos[1];
530         }
531
532         return NULL;
533 }
534 EXPORT_SYMBOL(ieee80211_bss_get_ie);
535
536 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
537 {
538         struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
539         struct net_device *dev = wdev->netdev;
540         int i;
541
542         if (!wdev->connect_keys)
543                 return;
544
545         for (i = 0; i < 6; i++) {
546                 if (!wdev->connect_keys->params[i].cipher)
547                         continue;
548                 if (rdev->ops->add_key(wdev->wiphy, dev, i, NULL,
549                                         &wdev->connect_keys->params[i])) {
550                         printk(KERN_ERR "%s: failed to set key %d\n",
551                                 dev->name, i);
552                         continue;
553                 }
554                 if (wdev->connect_keys->def == i)
555                         if (rdev->ops->set_default_key(wdev->wiphy, dev, i)) {
556                                 printk(KERN_ERR "%s: failed to set defkey %d\n",
557                                         dev->name, i);
558                                 continue;
559                         }
560                 if (wdev->connect_keys->defmgmt == i)
561                         if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
562                                 printk(KERN_ERR "%s: failed to set mgtdef %d\n",
563                                         dev->name, i);
564         }
565
566         kfree(wdev->connect_keys);
567         wdev->connect_keys = NULL;
568 }