Merge git://git.infradead.org/battery-2.6
[pandora-kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /*
52  * Central wireless core regulatory domains, we only need two,
53  * the current one and a world regulatory domain in case we have no
54  * information to give us an alpha2
55  */
56 const struct ieee80211_regdomain *cfg80211_regdomain;
57
58 /*
59  * We use this as a place for the rd structure built from the
60  * last parsed country IE to rest until CRDA gets back to us with
61  * what it thinks should apply for the same country
62  */
63 static const struct ieee80211_regdomain *country_ie_regdomain;
64
65 /* Used to queue up regulatory hints */
66 static LIST_HEAD(reg_requests_list);
67 static spinlock_t reg_requests_lock;
68
69 /* Used to queue up beacon hints for review */
70 static LIST_HEAD(reg_pending_beacons);
71 static spinlock_t reg_pending_beacons_lock;
72
73 /* Used to keep track of processed beacon hints */
74 static LIST_HEAD(reg_beacon_list);
75
76 struct reg_beacon {
77         struct list_head list;
78         struct ieee80211_channel chan;
79 };
80
81 /* We keep a static world regulatory domain in case of the absence of CRDA */
82 static const struct ieee80211_regdomain world_regdom = {
83         .n_reg_rules = 5,
84         .alpha2 =  "00",
85         .reg_rules = {
86                 /* IEEE 802.11b/g, channels 1..11 */
87                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
88                 /* IEEE 802.11b/g, channels 12..13. No HT40
89                  * channel fits here. */
90                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
91                         NL80211_RRF_PASSIVE_SCAN |
92                         NL80211_RRF_NO_IBSS),
93                 /* IEEE 802.11 channel 14 - Only JP enables
94                  * this and for 802.11b only */
95                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
96                         NL80211_RRF_PASSIVE_SCAN |
97                         NL80211_RRF_NO_IBSS |
98                         NL80211_RRF_NO_OFDM),
99                 /* IEEE 802.11a, channel 36..48 */
100                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
101                         NL80211_RRF_PASSIVE_SCAN |
102                         NL80211_RRF_NO_IBSS),
103
104                 /* NB: 5260 MHz - 5700 MHz requies DFS */
105
106                 /* IEEE 802.11a, channel 149..165 */
107                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
108                         NL80211_RRF_PASSIVE_SCAN |
109                         NL80211_RRF_NO_IBSS),
110         }
111 };
112
113 static const struct ieee80211_regdomain *cfg80211_world_regdom =
114         &world_regdom;
115
116 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
117 static char *ieee80211_regdom = "US";
118 #else
119 static char *ieee80211_regdom = "00";
120 #endif
121
122 module_param(ieee80211_regdom, charp, 0444);
123 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
124
125 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
126 /*
127  * We assume 40 MHz bandwidth for the old regulatory work.
128  * We make emphasis we are using the exact same frequencies
129  * as before
130  */
131
132 static const struct ieee80211_regdomain us_regdom = {
133         .n_reg_rules = 6,
134         .alpha2 =  "US",
135         .reg_rules = {
136                 /* IEEE 802.11b/g, channels 1..11 */
137                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
138                 /* IEEE 802.11a, channel 36 */
139                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
140                 /* IEEE 802.11a, channel 40 */
141                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
142                 /* IEEE 802.11a, channel 44 */
143                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
144                 /* IEEE 802.11a, channels 48..64 */
145                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
146                 /* IEEE 802.11a, channels 149..165, outdoor */
147                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
148         }
149 };
150
151 static const struct ieee80211_regdomain jp_regdom = {
152         .n_reg_rules = 3,
153         .alpha2 =  "JP",
154         .reg_rules = {
155                 /* IEEE 802.11b/g, channels 1..14 */
156                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
157                 /* IEEE 802.11a, channels 34..48 */
158                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
159                         NL80211_RRF_PASSIVE_SCAN),
160                 /* IEEE 802.11a, channels 52..64 */
161                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
162                         NL80211_RRF_NO_IBSS |
163                         NL80211_RRF_DFS),
164         }
165 };
166
167 static const struct ieee80211_regdomain eu_regdom = {
168         .n_reg_rules = 6,
169         /*
170          * This alpha2 is bogus, we leave it here just for stupid
171          * backward compatibility
172          */
173         .alpha2 =  "EU",
174         .reg_rules = {
175                 /* IEEE 802.11b/g, channels 1..13 */
176                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
177                 /* IEEE 802.11a, channel 36 */
178                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
179                         NL80211_RRF_PASSIVE_SCAN),
180                 /* IEEE 802.11a, channel 40 */
181                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
182                         NL80211_RRF_PASSIVE_SCAN),
183                 /* IEEE 802.11a, channel 44 */
184                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
185                         NL80211_RRF_PASSIVE_SCAN),
186                 /* IEEE 802.11a, channels 48..64 */
187                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
188                         NL80211_RRF_NO_IBSS |
189                         NL80211_RRF_DFS),
190                 /* IEEE 802.11a, channels 100..140 */
191                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
192                         NL80211_RRF_NO_IBSS |
193                         NL80211_RRF_DFS),
194         }
195 };
196
197 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
198 {
199         if (alpha2[0] == 'U' && alpha2[1] == 'S')
200                 return &us_regdom;
201         if (alpha2[0] == 'J' && alpha2[1] == 'P')
202                 return &jp_regdom;
203         if (alpha2[0] == 'E' && alpha2[1] == 'U')
204                 return &eu_regdom;
205         /* Default, as per the old rules */
206         return &us_regdom;
207 }
208
209 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
210 {
211         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
212                 return true;
213         return false;
214 }
215 #else
216 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
217 {
218         return false;
219 }
220 #endif
221
222 static void reset_regdomains(void)
223 {
224         /* avoid freeing static information or freeing something twice */
225         if (cfg80211_regdomain == cfg80211_world_regdom)
226                 cfg80211_regdomain = NULL;
227         if (cfg80211_world_regdom == &world_regdom)
228                 cfg80211_world_regdom = NULL;
229         if (cfg80211_regdomain == &world_regdom)
230                 cfg80211_regdomain = NULL;
231         if (is_old_static_regdom(cfg80211_regdomain))
232                 cfg80211_regdomain = NULL;
233
234         kfree(cfg80211_regdomain);
235         kfree(cfg80211_world_regdom);
236
237         cfg80211_world_regdom = &world_regdom;
238         cfg80211_regdomain = NULL;
239 }
240
241 /*
242  * Dynamic world regulatory domain requested by the wireless
243  * core upon initialization
244  */
245 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
246 {
247         BUG_ON(!last_request);
248
249         reset_regdomains();
250
251         cfg80211_world_regdom = rd;
252         cfg80211_regdomain = rd;
253 }
254
255 bool is_world_regdom(const char *alpha2)
256 {
257         if (!alpha2)
258                 return false;
259         if (alpha2[0] == '0' && alpha2[1] == '0')
260                 return true;
261         return false;
262 }
263
264 static bool is_alpha2_set(const char *alpha2)
265 {
266         if (!alpha2)
267                 return false;
268         if (alpha2[0] != 0 && alpha2[1] != 0)
269                 return true;
270         return false;
271 }
272
273 static bool is_alpha_upper(char letter)
274 {
275         /* ASCII A - Z */
276         if (letter >= 65 && letter <= 90)
277                 return true;
278         return false;
279 }
280
281 static bool is_unknown_alpha2(const char *alpha2)
282 {
283         if (!alpha2)
284                 return false;
285         /*
286          * Special case where regulatory domain was built by driver
287          * but a specific alpha2 cannot be determined
288          */
289         if (alpha2[0] == '9' && alpha2[1] == '9')
290                 return true;
291         return false;
292 }
293
294 static bool is_intersected_alpha2(const char *alpha2)
295 {
296         if (!alpha2)
297                 return false;
298         /*
299          * Special case where regulatory domain is the
300          * result of an intersection between two regulatory domain
301          * structures
302          */
303         if (alpha2[0] == '9' && alpha2[1] == '8')
304                 return true;
305         return false;
306 }
307
308 static bool is_an_alpha2(const char *alpha2)
309 {
310         if (!alpha2)
311                 return false;
312         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
313                 return true;
314         return false;
315 }
316
317 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
318 {
319         if (!alpha2_x || !alpha2_y)
320                 return false;
321         if (alpha2_x[0] == alpha2_y[0] &&
322                 alpha2_x[1] == alpha2_y[1])
323                 return true;
324         return false;
325 }
326
327 static bool regdom_changes(const char *alpha2)
328 {
329         assert_cfg80211_lock();
330
331         if (!cfg80211_regdomain)
332                 return true;
333         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
334                 return false;
335         return true;
336 }
337
338 /**
339  * country_ie_integrity_changes - tells us if the country IE has changed
340  * @checksum: checksum of country IE of fields we are interested in
341  *
342  * If the country IE has not changed you can ignore it safely. This is
343  * useful to determine if two devices are seeing two different country IEs
344  * even on the same alpha2. Note that this will return false if no IE has
345  * been set on the wireless core yet.
346  */
347 static bool country_ie_integrity_changes(u32 checksum)
348 {
349         /* If no IE has been set then the checksum doesn't change */
350         if (unlikely(!last_request->country_ie_checksum))
351                 return false;
352         if (unlikely(last_request->country_ie_checksum != checksum))
353                 return true;
354         return false;
355 }
356
357 /*
358  * This lets us keep regulatory code which is updated on a regulatory
359  * basis in userspace.
360  */
361 static int call_crda(const char *alpha2)
362 {
363         char country_env[9 + 2] = "COUNTRY=";
364         char *envp[] = {
365                 country_env,
366                 NULL
367         };
368
369         if (!is_world_regdom((char *) alpha2))
370                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
371                         alpha2[0], alpha2[1]);
372         else
373                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
374                         "regulatory domain\n");
375
376         country_env[8] = alpha2[0];
377         country_env[9] = alpha2[1];
378
379         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
380 }
381
382 /* Used by nl80211 before kmalloc'ing our regulatory domain */
383 bool reg_is_valid_request(const char *alpha2)
384 {
385         assert_cfg80211_lock();
386
387         if (!last_request)
388                 return false;
389
390         return alpha2_equal(last_request->alpha2, alpha2);
391 }
392
393 /* Sanity check on a regulatory rule */
394 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
395 {
396         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
397         u32 freq_diff;
398
399         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
400                 return false;
401
402         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
403                 return false;
404
405         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
406
407         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
408                         freq_range->max_bandwidth_khz > freq_diff)
409                 return false;
410
411         return true;
412 }
413
414 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
415 {
416         const struct ieee80211_reg_rule *reg_rule = NULL;
417         unsigned int i;
418
419         if (!rd->n_reg_rules)
420                 return false;
421
422         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
423                 return false;
424
425         for (i = 0; i < rd->n_reg_rules; i++) {
426                 reg_rule = &rd->reg_rules[i];
427                 if (!is_valid_reg_rule(reg_rule))
428                         return false;
429         }
430
431         return true;
432 }
433
434 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
435                             u32 center_freq_khz,
436                             u32 bw_khz)
437 {
438         u32 start_freq_khz, end_freq_khz;
439
440         start_freq_khz = center_freq_khz - (bw_khz/2);
441         end_freq_khz = center_freq_khz + (bw_khz/2);
442
443         if (start_freq_khz >= freq_range->start_freq_khz &&
444             end_freq_khz <= freq_range->end_freq_khz)
445                 return true;
446
447         return false;
448 }
449
450 /**
451  * freq_in_rule_band - tells us if a frequency is in a frequency band
452  * @freq_range: frequency rule we want to query
453  * @freq_khz: frequency we are inquiring about
454  *
455  * This lets us know if a specific frequency rule is or is not relevant to
456  * a specific frequency's band. Bands are device specific and artificial
457  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
458  * safe for now to assume that a frequency rule should not be part of a
459  * frequency's band if the start freq or end freq are off by more than 2 GHz.
460  * This resolution can be lowered and should be considered as we add
461  * regulatory rule support for other "bands".
462  **/
463 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
464         u32 freq_khz)
465 {
466 #define ONE_GHZ_IN_KHZ  1000000
467         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
468                 return true;
469         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
470                 return true;
471         return false;
472 #undef ONE_GHZ_IN_KHZ
473 }
474
475 /*
476  * Converts a country IE to a regulatory domain. A regulatory domain
477  * structure has a lot of information which the IE doesn't yet have,
478  * so for the other values we use upper max values as we will intersect
479  * with our userspace regulatory agent to get lower bounds.
480  */
481 static struct ieee80211_regdomain *country_ie_2_rd(
482                                 u8 *country_ie,
483                                 u8 country_ie_len,
484                                 u32 *checksum)
485 {
486         struct ieee80211_regdomain *rd = NULL;
487         unsigned int i = 0;
488         char alpha2[2];
489         u32 flags = 0;
490         u32 num_rules = 0, size_of_regd = 0;
491         u8 *triplets_start = NULL;
492         u8 len_at_triplet = 0;
493         /* the last channel we have registered in a subband (triplet) */
494         int last_sub_max_channel = 0;
495
496         *checksum = 0xDEADBEEF;
497
498         /* Country IE requirements */
499         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
500                 country_ie_len & 0x01);
501
502         alpha2[0] = country_ie[0];
503         alpha2[1] = country_ie[1];
504
505         /*
506          * Third octet can be:
507          *    'I' - Indoor
508          *    'O' - Outdoor
509          *
510          *  anything else we assume is no restrictions
511          */
512         if (country_ie[2] == 'I')
513                 flags = NL80211_RRF_NO_OUTDOOR;
514         else if (country_ie[2] == 'O')
515                 flags = NL80211_RRF_NO_INDOOR;
516
517         country_ie += 3;
518         country_ie_len -= 3;
519
520         triplets_start = country_ie;
521         len_at_triplet = country_ie_len;
522
523         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
524
525         /*
526          * We need to build a reg rule for each triplet, but first we must
527          * calculate the number of reg rules we will need. We will need one
528          * for each channel subband
529          */
530         while (country_ie_len >= 3) {
531                 int end_channel = 0;
532                 struct ieee80211_country_ie_triplet *triplet =
533                         (struct ieee80211_country_ie_triplet *) country_ie;
534                 int cur_sub_max_channel = 0, cur_channel = 0;
535
536                 if (triplet->ext.reg_extension_id >=
537                                 IEEE80211_COUNTRY_EXTENSION_ID) {
538                         country_ie += 3;
539                         country_ie_len -= 3;
540                         continue;
541                 }
542
543                 /* 2 GHz */
544                 if (triplet->chans.first_channel <= 14)
545                         end_channel = triplet->chans.first_channel +
546                                 triplet->chans.num_channels;
547                 else
548                         /*
549                          * 5 GHz -- For example in country IEs if the first
550                          * channel given is 36 and the number of channels is 4
551                          * then the individual channel numbers defined for the
552                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
553                          * and not 36, 37, 38, 39.
554                          *
555                          * See: http://tinyurl.com/11d-clarification
556                          */
557                         end_channel =  triplet->chans.first_channel +
558                                 (4 * (triplet->chans.num_channels - 1));
559
560                 cur_channel = triplet->chans.first_channel;
561                 cur_sub_max_channel = end_channel;
562
563                 /* Basic sanity check */
564                 if (cur_sub_max_channel < cur_channel)
565                         return NULL;
566
567                 /*
568                  * Do not allow overlapping channels. Also channels
569                  * passed in each subband must be monotonically
570                  * increasing
571                  */
572                 if (last_sub_max_channel) {
573                         if (cur_channel <= last_sub_max_channel)
574                                 return NULL;
575                         if (cur_sub_max_channel <= last_sub_max_channel)
576                                 return NULL;
577                 }
578
579                 /*
580                  * When dot11RegulatoryClassesRequired is supported
581                  * we can throw ext triplets as part of this soup,
582                  * for now we don't care when those change as we
583                  * don't support them
584                  */
585                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
586                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
587                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
588
589                 last_sub_max_channel = cur_sub_max_channel;
590
591                 country_ie += 3;
592                 country_ie_len -= 3;
593                 num_rules++;
594
595                 /*
596                  * Note: this is not a IEEE requirement but
597                  * simply a memory requirement
598                  */
599                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
600                         return NULL;
601         }
602
603         country_ie = triplets_start;
604         country_ie_len = len_at_triplet;
605
606         size_of_regd = sizeof(struct ieee80211_regdomain) +
607                 (num_rules * sizeof(struct ieee80211_reg_rule));
608
609         rd = kzalloc(size_of_regd, GFP_KERNEL);
610         if (!rd)
611                 return NULL;
612
613         rd->n_reg_rules = num_rules;
614         rd->alpha2[0] = alpha2[0];
615         rd->alpha2[1] = alpha2[1];
616
617         /* This time around we fill in the rd */
618         while (country_ie_len >= 3) {
619                 int end_channel = 0;
620                 struct ieee80211_country_ie_triplet *triplet =
621                         (struct ieee80211_country_ie_triplet *) country_ie;
622                 struct ieee80211_reg_rule *reg_rule = NULL;
623                 struct ieee80211_freq_range *freq_range = NULL;
624                 struct ieee80211_power_rule *power_rule = NULL;
625
626                 /*
627                  * Must parse if dot11RegulatoryClassesRequired is true,
628                  * we don't support this yet
629                  */
630                 if (triplet->ext.reg_extension_id >=
631                                 IEEE80211_COUNTRY_EXTENSION_ID) {
632                         country_ie += 3;
633                         country_ie_len -= 3;
634                         continue;
635                 }
636
637                 reg_rule = &rd->reg_rules[i];
638                 freq_range = &reg_rule->freq_range;
639                 power_rule = &reg_rule->power_rule;
640
641                 reg_rule->flags = flags;
642
643                 /* 2 GHz */
644                 if (triplet->chans.first_channel <= 14)
645                         end_channel = triplet->chans.first_channel +
646                                 triplet->chans.num_channels;
647                 else
648                         end_channel =  triplet->chans.first_channel +
649                                 (4 * (triplet->chans.num_channels - 1));
650
651                 /*
652                  * The +10 is since the regulatory domain expects
653                  * the actual band edge, not the center of freq for
654                  * its start and end freqs, assuming 20 MHz bandwidth on
655                  * the channels passed
656                  */
657                 freq_range->start_freq_khz =
658                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
659                                 triplet->chans.first_channel) - 10);
660                 freq_range->end_freq_khz =
661                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
662                                 end_channel) + 10);
663
664                 /*
665                  * These are large arbitrary values we use to intersect later.
666                  * Increment this if we ever support >= 40 MHz channels
667                  * in IEEE 802.11
668                  */
669                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
670                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
671                 power_rule->max_eirp = DBM_TO_MBM(100);
672
673                 country_ie += 3;
674                 country_ie_len -= 3;
675                 i++;
676
677                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
678         }
679
680         return rd;
681 }
682
683
684 /*
685  * Helper for regdom_intersect(), this does the real
686  * mathematical intersection fun
687  */
688 static int reg_rules_intersect(
689         const struct ieee80211_reg_rule *rule1,
690         const struct ieee80211_reg_rule *rule2,
691         struct ieee80211_reg_rule *intersected_rule)
692 {
693         const struct ieee80211_freq_range *freq_range1, *freq_range2;
694         struct ieee80211_freq_range *freq_range;
695         const struct ieee80211_power_rule *power_rule1, *power_rule2;
696         struct ieee80211_power_rule *power_rule;
697         u32 freq_diff;
698
699         freq_range1 = &rule1->freq_range;
700         freq_range2 = &rule2->freq_range;
701         freq_range = &intersected_rule->freq_range;
702
703         power_rule1 = &rule1->power_rule;
704         power_rule2 = &rule2->power_rule;
705         power_rule = &intersected_rule->power_rule;
706
707         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
708                 freq_range2->start_freq_khz);
709         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
710                 freq_range2->end_freq_khz);
711         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
712                 freq_range2->max_bandwidth_khz);
713
714         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
715         if (freq_range->max_bandwidth_khz > freq_diff)
716                 freq_range->max_bandwidth_khz = freq_diff;
717
718         power_rule->max_eirp = min(power_rule1->max_eirp,
719                 power_rule2->max_eirp);
720         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
721                 power_rule2->max_antenna_gain);
722
723         intersected_rule->flags = (rule1->flags | rule2->flags);
724
725         if (!is_valid_reg_rule(intersected_rule))
726                 return -EINVAL;
727
728         return 0;
729 }
730
731 /**
732  * regdom_intersect - do the intersection between two regulatory domains
733  * @rd1: first regulatory domain
734  * @rd2: second regulatory domain
735  *
736  * Use this function to get the intersection between two regulatory domains.
737  * Once completed we will mark the alpha2 for the rd as intersected, "98",
738  * as no one single alpha2 can represent this regulatory domain.
739  *
740  * Returns a pointer to the regulatory domain structure which will hold the
741  * resulting intersection of rules between rd1 and rd2. We will
742  * kzalloc() this structure for you.
743  */
744 static struct ieee80211_regdomain *regdom_intersect(
745         const struct ieee80211_regdomain *rd1,
746         const struct ieee80211_regdomain *rd2)
747 {
748         int r, size_of_regd;
749         unsigned int x, y;
750         unsigned int num_rules = 0, rule_idx = 0;
751         const struct ieee80211_reg_rule *rule1, *rule2;
752         struct ieee80211_reg_rule *intersected_rule;
753         struct ieee80211_regdomain *rd;
754         /* This is just a dummy holder to help us count */
755         struct ieee80211_reg_rule irule;
756
757         /* Uses the stack temporarily for counter arithmetic */
758         intersected_rule = &irule;
759
760         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
761
762         if (!rd1 || !rd2)
763                 return NULL;
764
765         /*
766          * First we get a count of the rules we'll need, then we actually
767          * build them. This is to so we can malloc() and free() a
768          * regdomain once. The reason we use reg_rules_intersect() here
769          * is it will return -EINVAL if the rule computed makes no sense.
770          * All rules that do check out OK are valid.
771          */
772
773         for (x = 0; x < rd1->n_reg_rules; x++) {
774                 rule1 = &rd1->reg_rules[x];
775                 for (y = 0; y < rd2->n_reg_rules; y++) {
776                         rule2 = &rd2->reg_rules[y];
777                         if (!reg_rules_intersect(rule1, rule2,
778                                         intersected_rule))
779                                 num_rules++;
780                         memset(intersected_rule, 0,
781                                         sizeof(struct ieee80211_reg_rule));
782                 }
783         }
784
785         if (!num_rules)
786                 return NULL;
787
788         size_of_regd = sizeof(struct ieee80211_regdomain) +
789                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
790
791         rd = kzalloc(size_of_regd, GFP_KERNEL);
792         if (!rd)
793                 return NULL;
794
795         for (x = 0; x < rd1->n_reg_rules; x++) {
796                 rule1 = &rd1->reg_rules[x];
797                 for (y = 0; y < rd2->n_reg_rules; y++) {
798                         rule2 = &rd2->reg_rules[y];
799                         /*
800                          * This time around instead of using the stack lets
801                          * write to the target rule directly saving ourselves
802                          * a memcpy()
803                          */
804                         intersected_rule = &rd->reg_rules[rule_idx];
805                         r = reg_rules_intersect(rule1, rule2,
806                                 intersected_rule);
807                         /*
808                          * No need to memset here the intersected rule here as
809                          * we're not using the stack anymore
810                          */
811                         if (r)
812                                 continue;
813                         rule_idx++;
814                 }
815         }
816
817         if (rule_idx != num_rules) {
818                 kfree(rd);
819                 return NULL;
820         }
821
822         rd->n_reg_rules = num_rules;
823         rd->alpha2[0] = '9';
824         rd->alpha2[1] = '8';
825
826         return rd;
827 }
828
829 /*
830  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
831  * want to just have the channel structure use these
832  */
833 static u32 map_regdom_flags(u32 rd_flags)
834 {
835         u32 channel_flags = 0;
836         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
837                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
838         if (rd_flags & NL80211_RRF_NO_IBSS)
839                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
840         if (rd_flags & NL80211_RRF_DFS)
841                 channel_flags |= IEEE80211_CHAN_RADAR;
842         return channel_flags;
843 }
844
845 static int freq_reg_info_regd(struct wiphy *wiphy,
846                               u32 center_freq,
847                               u32 desired_bw_khz,
848                               const struct ieee80211_reg_rule **reg_rule,
849                               const struct ieee80211_regdomain *custom_regd)
850 {
851         int i;
852         bool band_rule_found = false;
853         const struct ieee80211_regdomain *regd;
854         bool bw_fits = false;
855
856         if (!desired_bw_khz)
857                 desired_bw_khz = MHZ_TO_KHZ(20);
858
859         regd = custom_regd ? custom_regd : cfg80211_regdomain;
860
861         /*
862          * Follow the driver's regulatory domain, if present, unless a country
863          * IE has been processed or a user wants to help complaince further
864          */
865         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
867             wiphy->regd)
868                 regd = wiphy->regd;
869
870         if (!regd)
871                 return -EINVAL;
872
873         for (i = 0; i < regd->n_reg_rules; i++) {
874                 const struct ieee80211_reg_rule *rr;
875                 const struct ieee80211_freq_range *fr = NULL;
876                 const struct ieee80211_power_rule *pr = NULL;
877
878                 rr = &regd->reg_rules[i];
879                 fr = &rr->freq_range;
880                 pr = &rr->power_rule;
881
882                 /*
883                  * We only need to know if one frequency rule was
884                  * was in center_freq's band, that's enough, so lets
885                  * not overwrite it once found
886                  */
887                 if (!band_rule_found)
888                         band_rule_found = freq_in_rule_band(fr, center_freq);
889
890                 bw_fits = reg_does_bw_fit(fr,
891                                           center_freq,
892                                           desired_bw_khz);
893
894                 if (band_rule_found && bw_fits) {
895                         *reg_rule = rr;
896                         return 0;
897                 }
898         }
899
900         if (!band_rule_found)
901                 return -ERANGE;
902
903         return -EINVAL;
904 }
905 EXPORT_SYMBOL(freq_reg_info);
906
907 int freq_reg_info(struct wiphy *wiphy,
908                   u32 center_freq,
909                   u32 desired_bw_khz,
910                   const struct ieee80211_reg_rule **reg_rule)
911 {
912         assert_cfg80211_lock();
913         return freq_reg_info_regd(wiphy,
914                                   center_freq,
915                                   desired_bw_khz,
916                                   reg_rule,
917                                   NULL);
918 }
919
920 /*
921  * Note that right now we assume the desired channel bandwidth
922  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
923  * per channel, the primary and the extension channel). To support
924  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
925  * new ieee80211_channel.target_bw and re run the regulatory check
926  * on the wiphy with the target_bw specified. Then we can simply use
927  * that below for the desired_bw_khz below.
928  */
929 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
930                            unsigned int chan_idx)
931 {
932         int r;
933         u32 flags, bw_flags = 0;
934         u32 desired_bw_khz = MHZ_TO_KHZ(20);
935         const struct ieee80211_reg_rule *reg_rule = NULL;
936         const struct ieee80211_power_rule *power_rule = NULL;
937         const struct ieee80211_freq_range *freq_range = NULL;
938         struct ieee80211_supported_band *sband;
939         struct ieee80211_channel *chan;
940         struct wiphy *request_wiphy = NULL;
941
942         assert_cfg80211_lock();
943
944         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
945
946         sband = wiphy->bands[band];
947         BUG_ON(chan_idx >= sband->n_channels);
948         chan = &sband->channels[chan_idx];
949
950         flags = chan->orig_flags;
951
952         r = freq_reg_info(wiphy,
953                           MHZ_TO_KHZ(chan->center_freq),
954                           desired_bw_khz,
955                           &reg_rule);
956
957         if (r) {
958                 /*
959                  * This means no regulatory rule was found in the country IE
960                  * with a frequency range on the center_freq's band, since
961                  * IEEE-802.11 allows for a country IE to have a subset of the
962                  * regulatory information provided in a country we ignore
963                  * disabling the channel unless at least one reg rule was
964                  * found on the center_freq's band. For details see this
965                  * clarification:
966                  *
967                  * http://tinyurl.com/11d-clarification
968                  */
969                 if (r == -ERANGE &&
970                     last_request->initiator ==
971                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
972 #ifdef CONFIG_CFG80211_REG_DEBUG
973                         printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
974                                 "intact on %s - no rule found in band on "
975                                 "Country IE\n",
976                                 chan->center_freq, wiphy_name(wiphy));
977 #endif
978                 } else {
979                 /*
980                  * In this case we know the country IE has at least one reg rule
981                  * for the band so we respect its band definitions
982                  */
983 #ifdef CONFIG_CFG80211_REG_DEBUG
984                         if (last_request->initiator ==
985                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
986                                 printk(KERN_DEBUG "cfg80211: Disabling "
987                                         "channel %d MHz on %s due to "
988                                         "Country IE\n",
989                                         chan->center_freq, wiphy_name(wiphy));
990 #endif
991                         flags |= IEEE80211_CHAN_DISABLED;
992                         chan->flags = flags;
993                 }
994                 return;
995         }
996
997         power_rule = &reg_rule->power_rule;
998         freq_range = &reg_rule->freq_range;
999
1000         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1001                 bw_flags = IEEE80211_CHAN_NO_HT40;
1002
1003         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1004             request_wiphy && request_wiphy == wiphy &&
1005             request_wiphy->strict_regulatory) {
1006                 /*
1007                  * This gaurantees the driver's requested regulatory domain
1008                  * will always be used as a base for further regulatory
1009                  * settings
1010                  */
1011                 chan->flags = chan->orig_flags =
1012                         map_regdom_flags(reg_rule->flags) | bw_flags;
1013                 chan->max_antenna_gain = chan->orig_mag =
1014                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1015                 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1016                 chan->max_power = chan->orig_mpwr =
1017                         (int) MBM_TO_DBM(power_rule->max_eirp);
1018                 return;
1019         }
1020
1021         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1022         chan->max_antenna_gain = min(chan->orig_mag,
1023                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1024         chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1025         if (chan->orig_mpwr)
1026                 chan->max_power = min(chan->orig_mpwr,
1027                         (int) MBM_TO_DBM(power_rule->max_eirp));
1028         else
1029                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1030 }
1031
1032 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1033 {
1034         unsigned int i;
1035         struct ieee80211_supported_band *sband;
1036
1037         BUG_ON(!wiphy->bands[band]);
1038         sband = wiphy->bands[band];
1039
1040         for (i = 0; i < sband->n_channels; i++)
1041                 handle_channel(wiphy, band, i);
1042 }
1043
1044 static bool ignore_reg_update(struct wiphy *wiphy,
1045                               enum nl80211_reg_initiator initiator)
1046 {
1047         if (!last_request)
1048                 return true;
1049         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1050                   wiphy->custom_regulatory)
1051                 return true;
1052         /*
1053          * wiphy->regd will be set once the device has its own
1054          * desired regulatory domain set
1055          */
1056         if (wiphy->strict_regulatory && !wiphy->regd &&
1057             !is_world_regdom(last_request->alpha2))
1058                 return true;
1059         return false;
1060 }
1061
1062 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1063 {
1064         struct cfg80211_registered_device *drv;
1065
1066         list_for_each_entry(drv, &cfg80211_drv_list, list)
1067                 wiphy_update_regulatory(&drv->wiphy, initiator);
1068 }
1069
1070 static void handle_reg_beacon(struct wiphy *wiphy,
1071                               unsigned int chan_idx,
1072                               struct reg_beacon *reg_beacon)
1073 {
1074         struct ieee80211_supported_band *sband;
1075         struct ieee80211_channel *chan;
1076         bool channel_changed = false;
1077         struct ieee80211_channel chan_before;
1078
1079         assert_cfg80211_lock();
1080
1081         sband = wiphy->bands[reg_beacon->chan.band];
1082         chan = &sband->channels[chan_idx];
1083
1084         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1085                 return;
1086
1087         if (chan->beacon_found)
1088                 return;
1089
1090         chan->beacon_found = true;
1091
1092         chan_before.center_freq = chan->center_freq;
1093         chan_before.flags = chan->flags;
1094
1095         if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
1096             !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1097                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1098                 channel_changed = true;
1099         }
1100
1101         if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
1102             !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1103                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1104                 channel_changed = true;
1105         }
1106
1107         if (channel_changed)
1108                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1109 }
1110
1111 /*
1112  * Called when a scan on a wiphy finds a beacon on
1113  * new channel
1114  */
1115 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1116                                     struct reg_beacon *reg_beacon)
1117 {
1118         unsigned int i;
1119         struct ieee80211_supported_band *sband;
1120
1121         assert_cfg80211_lock();
1122
1123         if (!wiphy->bands[reg_beacon->chan.band])
1124                 return;
1125
1126         sband = wiphy->bands[reg_beacon->chan.band];
1127
1128         for (i = 0; i < sband->n_channels; i++)
1129                 handle_reg_beacon(wiphy, i, reg_beacon);
1130 }
1131
1132 /*
1133  * Called upon reg changes or a new wiphy is added
1134  */
1135 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1136 {
1137         unsigned int i;
1138         struct ieee80211_supported_band *sband;
1139         struct reg_beacon *reg_beacon;
1140
1141         assert_cfg80211_lock();
1142
1143         if (list_empty(&reg_beacon_list))
1144                 return;
1145
1146         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1147                 if (!wiphy->bands[reg_beacon->chan.band])
1148                         continue;
1149                 sband = wiphy->bands[reg_beacon->chan.band];
1150                 for (i = 0; i < sband->n_channels; i++)
1151                         handle_reg_beacon(wiphy, i, reg_beacon);
1152         }
1153 }
1154
1155 static bool reg_is_world_roaming(struct wiphy *wiphy)
1156 {
1157         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1158             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1159                 return true;
1160         if (last_request &&
1161             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1162             wiphy->custom_regulatory)
1163                 return true;
1164         return false;
1165 }
1166
1167 /* Reap the advantages of previously found beacons */
1168 static void reg_process_beacons(struct wiphy *wiphy)
1169 {
1170         /*
1171          * Means we are just firing up cfg80211, so no beacons would
1172          * have been processed yet.
1173          */
1174         if (!last_request)
1175                 return;
1176         if (!reg_is_world_roaming(wiphy))
1177                 return;
1178         wiphy_update_beacon_reg(wiphy);
1179 }
1180
1181 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1182 {
1183         if (!chan)
1184                 return true;
1185         if (chan->flags & IEEE80211_CHAN_DISABLED)
1186                 return true;
1187         /* This would happen when regulatory rules disallow HT40 completely */
1188         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1189                 return true;
1190         return false;
1191 }
1192
1193 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1194                                          enum ieee80211_band band,
1195                                          unsigned int chan_idx)
1196 {
1197         struct ieee80211_supported_band *sband;
1198         struct ieee80211_channel *channel;
1199         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1200         unsigned int i;
1201
1202         assert_cfg80211_lock();
1203
1204         sband = wiphy->bands[band];
1205         BUG_ON(chan_idx >= sband->n_channels);
1206         channel = &sband->channels[chan_idx];
1207
1208         if (is_ht40_not_allowed(channel)) {
1209                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1210                 return;
1211         }
1212
1213         /*
1214          * We need to ensure the extension channels exist to
1215          * be able to use HT40- or HT40+, this finds them (or not)
1216          */
1217         for (i = 0; i < sband->n_channels; i++) {
1218                 struct ieee80211_channel *c = &sband->channels[i];
1219                 if (c->center_freq == (channel->center_freq - 20))
1220                         channel_before = c;
1221                 if (c->center_freq == (channel->center_freq + 20))
1222                         channel_after = c;
1223         }
1224
1225         /*
1226          * Please note that this assumes target bandwidth is 20 MHz,
1227          * if that ever changes we also need to change the below logic
1228          * to include that as well.
1229          */
1230         if (is_ht40_not_allowed(channel_before))
1231                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1232         else
1233                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1234
1235         if (is_ht40_not_allowed(channel_after))
1236                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1237         else
1238                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1239 }
1240
1241 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1242                                       enum ieee80211_band band)
1243 {
1244         unsigned int i;
1245         struct ieee80211_supported_band *sband;
1246
1247         BUG_ON(!wiphy->bands[band]);
1248         sband = wiphy->bands[band];
1249
1250         for (i = 0; i < sband->n_channels; i++)
1251                 reg_process_ht_flags_channel(wiphy, band, i);
1252 }
1253
1254 static void reg_process_ht_flags(struct wiphy *wiphy)
1255 {
1256         enum ieee80211_band band;
1257
1258         if (!wiphy)
1259                 return;
1260
1261         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1262                 if (wiphy->bands[band])
1263                         reg_process_ht_flags_band(wiphy, band);
1264         }
1265
1266 }
1267
1268 void wiphy_update_regulatory(struct wiphy *wiphy,
1269                              enum nl80211_reg_initiator initiator)
1270 {
1271         enum ieee80211_band band;
1272
1273         if (ignore_reg_update(wiphy, initiator))
1274                 goto out;
1275         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1276                 if (wiphy->bands[band])
1277                         handle_band(wiphy, band);
1278         }
1279 out:
1280         reg_process_beacons(wiphy);
1281         reg_process_ht_flags(wiphy);
1282         if (wiphy->reg_notifier)
1283                 wiphy->reg_notifier(wiphy, last_request);
1284 }
1285
1286 static void handle_channel_custom(struct wiphy *wiphy,
1287                                   enum ieee80211_band band,
1288                                   unsigned int chan_idx,
1289                                   const struct ieee80211_regdomain *regd)
1290 {
1291         int r;
1292         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1293         u32 bw_flags = 0;
1294         const struct ieee80211_reg_rule *reg_rule = NULL;
1295         const struct ieee80211_power_rule *power_rule = NULL;
1296         const struct ieee80211_freq_range *freq_range = NULL;
1297         struct ieee80211_supported_band *sband;
1298         struct ieee80211_channel *chan;
1299
1300         assert_cfg80211_lock();
1301
1302         sband = wiphy->bands[band];
1303         BUG_ON(chan_idx >= sband->n_channels);
1304         chan = &sband->channels[chan_idx];
1305
1306         r = freq_reg_info_regd(wiphy,
1307                                MHZ_TO_KHZ(chan->center_freq),
1308                                desired_bw_khz,
1309                                &reg_rule,
1310                                regd);
1311
1312         if (r) {
1313                 chan->flags = IEEE80211_CHAN_DISABLED;
1314                 return;
1315         }
1316
1317         power_rule = &reg_rule->power_rule;
1318         freq_range = &reg_rule->freq_range;
1319
1320         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1321                 bw_flags = IEEE80211_CHAN_NO_HT40;
1322
1323         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1324         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1325         chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1326         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1327 }
1328
1329 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1330                                const struct ieee80211_regdomain *regd)
1331 {
1332         unsigned int i;
1333         struct ieee80211_supported_band *sband;
1334
1335         BUG_ON(!wiphy->bands[band]);
1336         sband = wiphy->bands[band];
1337
1338         for (i = 0; i < sband->n_channels; i++)
1339                 handle_channel_custom(wiphy, band, i, regd);
1340 }
1341
1342 /* Used by drivers prior to wiphy registration */
1343 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1344                                    const struct ieee80211_regdomain *regd)
1345 {
1346         enum ieee80211_band band;
1347         unsigned int bands_set = 0;
1348
1349         mutex_lock(&cfg80211_mutex);
1350         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1351                 if (!wiphy->bands[band])
1352                         continue;
1353                 handle_band_custom(wiphy, band, regd);
1354                 bands_set++;
1355         }
1356         mutex_unlock(&cfg80211_mutex);
1357
1358         /*
1359          * no point in calling this if it won't have any effect
1360          * on your device's supportd bands.
1361          */
1362         WARN_ON(!bands_set);
1363 }
1364 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1365
1366 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1367                          const struct ieee80211_regdomain *src_regd)
1368 {
1369         struct ieee80211_regdomain *regd;
1370         int size_of_regd = 0;
1371         unsigned int i;
1372
1373         size_of_regd = sizeof(struct ieee80211_regdomain) +
1374           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1375
1376         regd = kzalloc(size_of_regd, GFP_KERNEL);
1377         if (!regd)
1378                 return -ENOMEM;
1379
1380         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1381
1382         for (i = 0; i < src_regd->n_reg_rules; i++)
1383                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1384                         sizeof(struct ieee80211_reg_rule));
1385
1386         *dst_regd = regd;
1387         return 0;
1388 }
1389
1390 /*
1391  * Return value which can be used by ignore_request() to indicate
1392  * it has been determined we should intersect two regulatory domains
1393  */
1394 #define REG_INTERSECT   1
1395
1396 /* This has the logic which determines when a new request
1397  * should be ignored. */
1398 static int ignore_request(struct wiphy *wiphy,
1399                           struct regulatory_request *pending_request)
1400 {
1401         struct wiphy *last_wiphy = NULL;
1402
1403         assert_cfg80211_lock();
1404
1405         /* All initial requests are respected */
1406         if (!last_request)
1407                 return 0;
1408
1409         switch (pending_request->initiator) {
1410         case NL80211_REGDOM_SET_BY_CORE:
1411                 return -EINVAL;
1412         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1413
1414                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1415
1416                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1417                         return -EINVAL;
1418                 if (last_request->initiator ==
1419                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1420                         if (last_wiphy != wiphy) {
1421                                 /*
1422                                  * Two cards with two APs claiming different
1423                                  * different Country IE alpha2s. We could
1424                                  * intersect them, but that seems unlikely
1425                                  * to be correct. Reject second one for now.
1426                                  */
1427                                 if (regdom_changes(pending_request->alpha2))
1428                                         return -EOPNOTSUPP;
1429                                 return -EALREADY;
1430                         }
1431                         /*
1432                          * Two consecutive Country IE hints on the same wiphy.
1433                          * This should be picked up early by the driver/stack
1434                          */
1435                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1436                                 return 0;
1437                         return -EALREADY;
1438                 }
1439                 return REG_INTERSECT;
1440         case NL80211_REGDOM_SET_BY_DRIVER:
1441                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1442                         if (is_old_static_regdom(cfg80211_regdomain))
1443                                 return 0;
1444                         if (regdom_changes(pending_request->alpha2))
1445                                 return 0;
1446                         return -EALREADY;
1447                 }
1448
1449                 /*
1450                  * This would happen if you unplug and plug your card
1451                  * back in or if you add a new device for which the previously
1452                  * loaded card also agrees on the regulatory domain.
1453                  */
1454                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1455                     !regdom_changes(pending_request->alpha2))
1456                         return -EALREADY;
1457
1458                 return REG_INTERSECT;
1459         case NL80211_REGDOM_SET_BY_USER:
1460                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1461                         return REG_INTERSECT;
1462                 /*
1463                  * If the user knows better the user should set the regdom
1464                  * to their country before the IE is picked up
1465                  */
1466                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1467                           last_request->intersect)
1468                         return -EOPNOTSUPP;
1469                 /*
1470                  * Process user requests only after previous user/driver/core
1471                  * requests have been processed
1472                  */
1473                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1474                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1475                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1476                         if (regdom_changes(last_request->alpha2))
1477                                 return -EAGAIN;
1478                 }
1479
1480                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1481                     !regdom_changes(pending_request->alpha2))
1482                         return -EALREADY;
1483
1484                 return 0;
1485         }
1486
1487         return -EINVAL;
1488 }
1489
1490 /**
1491  * __regulatory_hint - hint to the wireless core a regulatory domain
1492  * @wiphy: if the hint comes from country information from an AP, this
1493  *      is required to be set to the wiphy that received the information
1494  * @pending_request: the regulatory request currently being processed
1495  *
1496  * The Wireless subsystem can use this function to hint to the wireless core
1497  * what it believes should be the current regulatory domain.
1498  *
1499  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1500  * already been set or other standard error codes.
1501  *
1502  * Caller must hold &cfg80211_mutex
1503  */
1504 static int __regulatory_hint(struct wiphy *wiphy,
1505                              struct regulatory_request *pending_request)
1506 {
1507         bool intersect = false;
1508         int r = 0;
1509
1510         assert_cfg80211_lock();
1511
1512         r = ignore_request(wiphy, pending_request);
1513
1514         if (r == REG_INTERSECT) {
1515                 if (pending_request->initiator ==
1516                     NL80211_REGDOM_SET_BY_DRIVER) {
1517                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1518                         if (r) {
1519                                 kfree(pending_request);
1520                                 return r;
1521                         }
1522                 }
1523                 intersect = true;
1524         } else if (r) {
1525                 /*
1526                  * If the regulatory domain being requested by the
1527                  * driver has already been set just copy it to the
1528                  * wiphy
1529                  */
1530                 if (r == -EALREADY &&
1531                     pending_request->initiator ==
1532                     NL80211_REGDOM_SET_BY_DRIVER) {
1533                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1534                         if (r) {
1535                                 kfree(pending_request);
1536                                 return r;
1537                         }
1538                         r = -EALREADY;
1539                         goto new_request;
1540                 }
1541                 kfree(pending_request);
1542                 return r;
1543         }
1544
1545 new_request:
1546         kfree(last_request);
1547
1548         last_request = pending_request;
1549         last_request->intersect = intersect;
1550
1551         pending_request = NULL;
1552
1553         /* When r == REG_INTERSECT we do need to call CRDA */
1554         if (r < 0) {
1555                 /*
1556                  * Since CRDA will not be called in this case as we already
1557                  * have applied the requested regulatory domain before we just
1558                  * inform userspace we have processed the request
1559                  */
1560                 if (r == -EALREADY)
1561                         nl80211_send_reg_change_event(last_request);
1562                 return r;
1563         }
1564
1565         return call_crda(last_request->alpha2);
1566 }
1567
1568 /* This processes *all* regulatory hints */
1569 static void reg_process_hint(struct regulatory_request *reg_request)
1570 {
1571         int r = 0;
1572         struct wiphy *wiphy = NULL;
1573
1574         BUG_ON(!reg_request->alpha2);
1575
1576         mutex_lock(&cfg80211_mutex);
1577
1578         if (wiphy_idx_valid(reg_request->wiphy_idx))
1579                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1580
1581         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1582             !wiphy) {
1583                 kfree(reg_request);
1584                 goto out;
1585         }
1586
1587         r = __regulatory_hint(wiphy, reg_request);
1588         /* This is required so that the orig_* parameters are saved */
1589         if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1590                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1591 out:
1592         mutex_unlock(&cfg80211_mutex);
1593 }
1594
1595 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1596 static void reg_process_pending_hints(void)
1597         {
1598         struct regulatory_request *reg_request;
1599
1600         spin_lock(&reg_requests_lock);
1601         while (!list_empty(&reg_requests_list)) {
1602                 reg_request = list_first_entry(&reg_requests_list,
1603                                                struct regulatory_request,
1604                                                list);
1605                 list_del_init(&reg_request->list);
1606
1607                 spin_unlock(&reg_requests_lock);
1608                 reg_process_hint(reg_request);
1609                 spin_lock(&reg_requests_lock);
1610         }
1611         spin_unlock(&reg_requests_lock);
1612 }
1613
1614 /* Processes beacon hints -- this has nothing to do with country IEs */
1615 static void reg_process_pending_beacon_hints(void)
1616 {
1617         struct cfg80211_registered_device *drv;
1618         struct reg_beacon *pending_beacon, *tmp;
1619
1620         mutex_lock(&cfg80211_mutex);
1621
1622         /* This goes through the _pending_ beacon list */
1623         spin_lock_bh(&reg_pending_beacons_lock);
1624
1625         if (list_empty(&reg_pending_beacons)) {
1626                 spin_unlock_bh(&reg_pending_beacons_lock);
1627                 goto out;
1628         }
1629
1630         list_for_each_entry_safe(pending_beacon, tmp,
1631                                  &reg_pending_beacons, list) {
1632
1633                 list_del_init(&pending_beacon->list);
1634
1635                 /* Applies the beacon hint to current wiphys */
1636                 list_for_each_entry(drv, &cfg80211_drv_list, list)
1637                         wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1638
1639                 /* Remembers the beacon hint for new wiphys or reg changes */
1640                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1641         }
1642
1643         spin_unlock_bh(&reg_pending_beacons_lock);
1644 out:
1645         mutex_unlock(&cfg80211_mutex);
1646 }
1647
1648 static void reg_todo(struct work_struct *work)
1649 {
1650         reg_process_pending_hints();
1651         reg_process_pending_beacon_hints();
1652 }
1653
1654 static DECLARE_WORK(reg_work, reg_todo);
1655
1656 static void queue_regulatory_request(struct regulatory_request *request)
1657 {
1658         spin_lock(&reg_requests_lock);
1659         list_add_tail(&request->list, &reg_requests_list);
1660         spin_unlock(&reg_requests_lock);
1661
1662         schedule_work(&reg_work);
1663 }
1664
1665 /* Core regulatory hint -- happens once during cfg80211_init() */
1666 static int regulatory_hint_core(const char *alpha2)
1667 {
1668         struct regulatory_request *request;
1669
1670         BUG_ON(last_request);
1671
1672         request = kzalloc(sizeof(struct regulatory_request),
1673                           GFP_KERNEL);
1674         if (!request)
1675                 return -ENOMEM;
1676
1677         request->alpha2[0] = alpha2[0];
1678         request->alpha2[1] = alpha2[1];
1679         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1680
1681         queue_regulatory_request(request);
1682
1683         /*
1684          * This ensures last_request is populated once modules
1685          * come swinging in and calling regulatory hints and
1686          * wiphy_apply_custom_regulatory().
1687          */
1688         flush_scheduled_work();
1689
1690         return 0;
1691 }
1692
1693 /* User hints */
1694 int regulatory_hint_user(const char *alpha2)
1695 {
1696         struct regulatory_request *request;
1697
1698         BUG_ON(!alpha2);
1699
1700         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1701         if (!request)
1702                 return -ENOMEM;
1703
1704         request->wiphy_idx = WIPHY_IDX_STALE;
1705         request->alpha2[0] = alpha2[0];
1706         request->alpha2[1] = alpha2[1];
1707         request->initiator = NL80211_REGDOM_SET_BY_USER,
1708
1709         queue_regulatory_request(request);
1710
1711         return 0;
1712 }
1713
1714 /* Driver hints */
1715 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1716 {
1717         struct regulatory_request *request;
1718
1719         BUG_ON(!alpha2);
1720         BUG_ON(!wiphy);
1721
1722         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1723         if (!request)
1724                 return -ENOMEM;
1725
1726         request->wiphy_idx = get_wiphy_idx(wiphy);
1727
1728         /* Must have registered wiphy first */
1729         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1730
1731         request->alpha2[0] = alpha2[0];
1732         request->alpha2[1] = alpha2[1];
1733         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1734
1735         queue_regulatory_request(request);
1736
1737         return 0;
1738 }
1739 EXPORT_SYMBOL(regulatory_hint);
1740
1741 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1742                         u32 country_ie_checksum)
1743 {
1744         struct wiphy *request_wiphy;
1745
1746         assert_cfg80211_lock();
1747
1748         if (unlikely(last_request->initiator !=
1749             NL80211_REGDOM_SET_BY_COUNTRY_IE))
1750                 return false;
1751
1752         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1753
1754         if (!request_wiphy)
1755                 return false;
1756
1757         if (likely(request_wiphy != wiphy))
1758                 return !country_ie_integrity_changes(country_ie_checksum);
1759         /*
1760          * We should not have let these through at this point, they
1761          * should have been picked up earlier by the first alpha2 check
1762          * on the device
1763          */
1764         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1765                 return true;
1766         return false;
1767 }
1768
1769 void regulatory_hint_11d(struct wiphy *wiphy,
1770                         u8 *country_ie,
1771                         u8 country_ie_len)
1772 {
1773         struct ieee80211_regdomain *rd = NULL;
1774         char alpha2[2];
1775         u32 checksum = 0;
1776         enum environment_cap env = ENVIRON_ANY;
1777         struct regulatory_request *request;
1778
1779         mutex_lock(&cfg80211_mutex);
1780
1781         if (unlikely(!last_request)) {
1782                 mutex_unlock(&cfg80211_mutex);
1783                 return;
1784         }
1785
1786         /* IE len must be evenly divisible by 2 */
1787         if (country_ie_len & 0x01)
1788                 goto out;
1789
1790         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1791                 goto out;
1792
1793         /*
1794          * Pending country IE processing, this can happen after we
1795          * call CRDA and wait for a response if a beacon was received before
1796          * we were able to process the last regulatory_hint_11d() call
1797          */
1798         if (country_ie_regdomain)
1799                 goto out;
1800
1801         alpha2[0] = country_ie[0];
1802         alpha2[1] = country_ie[1];
1803
1804         if (country_ie[2] == 'I')
1805                 env = ENVIRON_INDOOR;
1806         else if (country_ie[2] == 'O')
1807                 env = ENVIRON_OUTDOOR;
1808
1809         /*
1810          * We will run this for *every* beacon processed for the BSSID, so
1811          * we optimize an early check to exit out early if we don't have to
1812          * do anything
1813          */
1814         if (likely(last_request->initiator ==
1815             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1816             wiphy_idx_valid(last_request->wiphy_idx))) {
1817                 struct cfg80211_registered_device *drv_last_ie;
1818
1819                 drv_last_ie =
1820                         cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1821
1822                 /*
1823                  * Lets keep this simple -- we trust the first AP
1824                  * after we intersect with CRDA
1825                  */
1826                 if (likely(&drv_last_ie->wiphy == wiphy)) {
1827                         /*
1828                          * Ignore IEs coming in on this wiphy with
1829                          * the same alpha2 and environment cap
1830                          */
1831                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1832                                   alpha2) &&
1833                                   env == drv_last_ie->env)) {
1834                                 goto out;
1835                         }
1836                         /*
1837                          * the wiphy moved on to another BSSID or the AP
1838                          * was reconfigured. XXX: We need to deal with the
1839                          * case where the user suspends and goes to goes
1840                          * to another country, and then gets IEs from an
1841                          * AP with different settings
1842                          */
1843                         goto out;
1844                 } else {
1845                         /*
1846                          * Ignore IEs coming in on two separate wiphys with
1847                          * the same alpha2 and environment cap
1848                          */
1849                         if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1850                                   alpha2) &&
1851                                   env == drv_last_ie->env)) {
1852                                 goto out;
1853                         }
1854                         /* We could potentially intersect though */
1855                         goto out;
1856                 }
1857         }
1858
1859         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1860         if (!rd)
1861                 goto out;
1862
1863         /*
1864          * This will not happen right now but we leave it here for the
1865          * the future when we want to add suspend/resume support and having
1866          * the user move to another country after doing so, or having the user
1867          * move to another AP. Right now we just trust the first AP.
1868          *
1869          * If we hit this before we add this support we want to be informed of
1870          * it as it would indicate a mistake in the current design
1871          */
1872         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1873                 goto free_rd_out;
1874
1875         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1876         if (!request)
1877                 goto free_rd_out;
1878
1879         /*
1880          * We keep this around for when CRDA comes back with a response so
1881          * we can intersect with that
1882          */
1883         country_ie_regdomain = rd;
1884
1885         request->wiphy_idx = get_wiphy_idx(wiphy);
1886         request->alpha2[0] = rd->alpha2[0];
1887         request->alpha2[1] = rd->alpha2[1];
1888         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1889         request->country_ie_checksum = checksum;
1890         request->country_ie_env = env;
1891
1892         mutex_unlock(&cfg80211_mutex);
1893
1894         queue_regulatory_request(request);
1895
1896         return;
1897
1898 free_rd_out:
1899         kfree(rd);
1900 out:
1901         mutex_unlock(&cfg80211_mutex);
1902 }
1903 EXPORT_SYMBOL(regulatory_hint_11d);
1904
1905 static bool freq_is_chan_12_13_14(u16 freq)
1906 {
1907         if (freq == ieee80211_channel_to_frequency(12) ||
1908             freq == ieee80211_channel_to_frequency(13) ||
1909             freq == ieee80211_channel_to_frequency(14))
1910                 return true;
1911         return false;
1912 }
1913
1914 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1915                                  struct ieee80211_channel *beacon_chan,
1916                                  gfp_t gfp)
1917 {
1918         struct reg_beacon *reg_beacon;
1919
1920         if (likely((beacon_chan->beacon_found ||
1921             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1922             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1923              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1924                 return 0;
1925
1926         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1927         if (!reg_beacon)
1928                 return -ENOMEM;
1929
1930 #ifdef CONFIG_CFG80211_REG_DEBUG
1931         printk(KERN_DEBUG "cfg80211: Found new beacon on "
1932                 "frequency: %d MHz (Ch %d) on %s\n",
1933                 beacon_chan->center_freq,
1934                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1935                 wiphy_name(wiphy));
1936 #endif
1937         memcpy(&reg_beacon->chan, beacon_chan,
1938                 sizeof(struct ieee80211_channel));
1939
1940
1941         /*
1942          * Since we can be called from BH or and non-BH context
1943          * we must use spin_lock_bh()
1944          */
1945         spin_lock_bh(&reg_pending_beacons_lock);
1946         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1947         spin_unlock_bh(&reg_pending_beacons_lock);
1948
1949         schedule_work(&reg_work);
1950
1951         return 0;
1952 }
1953
1954 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1955 {
1956         unsigned int i;
1957         const struct ieee80211_reg_rule *reg_rule = NULL;
1958         const struct ieee80211_freq_range *freq_range = NULL;
1959         const struct ieee80211_power_rule *power_rule = NULL;
1960
1961         printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1962                 "(max_antenna_gain, max_eirp)\n");
1963
1964         for (i = 0; i < rd->n_reg_rules; i++) {
1965                 reg_rule = &rd->reg_rules[i];
1966                 freq_range = &reg_rule->freq_range;
1967                 power_rule = &reg_rule->power_rule;
1968
1969                 /*
1970                  * There may not be documentation for max antenna gain
1971                  * in certain regions
1972                  */
1973                 if (power_rule->max_antenna_gain)
1974                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1975                                 "(%d mBi, %d mBm)\n",
1976                                 freq_range->start_freq_khz,
1977                                 freq_range->end_freq_khz,
1978                                 freq_range->max_bandwidth_khz,
1979                                 power_rule->max_antenna_gain,
1980                                 power_rule->max_eirp);
1981                 else
1982                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1983                                 "(N/A, %d mBm)\n",
1984                                 freq_range->start_freq_khz,
1985                                 freq_range->end_freq_khz,
1986                                 freq_range->max_bandwidth_khz,
1987                                 power_rule->max_eirp);
1988         }
1989 }
1990
1991 static void print_regdomain(const struct ieee80211_regdomain *rd)
1992 {
1993
1994         if (is_intersected_alpha2(rd->alpha2)) {
1995
1996                 if (last_request->initiator ==
1997                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1998                         struct cfg80211_registered_device *drv;
1999                         drv = cfg80211_drv_by_wiphy_idx(
2000                                 last_request->wiphy_idx);
2001                         if (drv) {
2002                                 printk(KERN_INFO "cfg80211: Current regulatory "
2003                                         "domain updated by AP to: %c%c\n",
2004                                         drv->country_ie_alpha2[0],
2005                                         drv->country_ie_alpha2[1]);
2006                         } else
2007                                 printk(KERN_INFO "cfg80211: Current regulatory "
2008                                         "domain intersected: \n");
2009                 } else
2010                                 printk(KERN_INFO "cfg80211: Current regulatory "
2011                                         "domain intersected: \n");
2012         } else if (is_world_regdom(rd->alpha2))
2013                 printk(KERN_INFO "cfg80211: World regulatory "
2014                         "domain updated:\n");
2015         else {
2016                 if (is_unknown_alpha2(rd->alpha2))
2017                         printk(KERN_INFO "cfg80211: Regulatory domain "
2018                                 "changed to driver built-in settings "
2019                                 "(unknown country)\n");
2020                 else
2021                         printk(KERN_INFO "cfg80211: Regulatory domain "
2022                                 "changed to country: %c%c\n",
2023                                 rd->alpha2[0], rd->alpha2[1]);
2024         }
2025         print_rd_rules(rd);
2026 }
2027
2028 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2029 {
2030         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2031                 rd->alpha2[0], rd->alpha2[1]);
2032         print_rd_rules(rd);
2033 }
2034
2035 #ifdef CONFIG_CFG80211_REG_DEBUG
2036 static void reg_country_ie_process_debug(
2037         const struct ieee80211_regdomain *rd,
2038         const struct ieee80211_regdomain *country_ie_regdomain,
2039         const struct ieee80211_regdomain *intersected_rd)
2040 {
2041         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2042         print_regdomain_info(country_ie_regdomain);
2043         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2044         print_regdomain_info(rd);
2045         if (intersected_rd) {
2046                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2047                         "and get:\n");
2048                 print_regdomain_info(intersected_rd);
2049                 return;
2050         }
2051         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2052 }
2053 #else
2054 static inline void reg_country_ie_process_debug(
2055         const struct ieee80211_regdomain *rd,
2056         const struct ieee80211_regdomain *country_ie_regdomain,
2057         const struct ieee80211_regdomain *intersected_rd)
2058 {
2059 }
2060 #endif
2061
2062 /* Takes ownership of rd only if it doesn't fail */
2063 static int __set_regdom(const struct ieee80211_regdomain *rd)
2064 {
2065         const struct ieee80211_regdomain *intersected_rd = NULL;
2066         struct cfg80211_registered_device *drv = NULL;
2067         struct wiphy *request_wiphy;
2068         /* Some basic sanity checks first */
2069
2070         if (is_world_regdom(rd->alpha2)) {
2071                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2072                         return -EINVAL;
2073                 update_world_regdomain(rd);
2074                 return 0;
2075         }
2076
2077         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2078                         !is_unknown_alpha2(rd->alpha2))
2079                 return -EINVAL;
2080
2081         if (!last_request)
2082                 return -EINVAL;
2083
2084         /*
2085          * Lets only bother proceeding on the same alpha2 if the current
2086          * rd is non static (it means CRDA was present and was used last)
2087          * and the pending request came in from a country IE
2088          */
2089         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2090                 /*
2091                  * If someone else asked us to change the rd lets only bother
2092                  * checking if the alpha2 changes if CRDA was already called
2093                  */
2094                 if (!is_old_static_regdom(cfg80211_regdomain) &&
2095                     !regdom_changes(rd->alpha2))
2096                         return -EINVAL;
2097         }
2098
2099         /*
2100          * Now lets set the regulatory domain, update all driver channels
2101          * and finally inform them of what we have done, in case they want
2102          * to review or adjust their own settings based on their own
2103          * internal EEPROM data
2104          */
2105
2106         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2107                 return -EINVAL;
2108
2109         if (!is_valid_rd(rd)) {
2110                 printk(KERN_ERR "cfg80211: Invalid "
2111                         "regulatory domain detected:\n");
2112                 print_regdomain_info(rd);
2113                 return -EINVAL;
2114         }
2115
2116         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2117
2118         if (!last_request->intersect) {
2119                 int r;
2120
2121                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2122                         reset_regdomains();
2123                         cfg80211_regdomain = rd;
2124                         return 0;
2125                 }
2126
2127                 /*
2128                  * For a driver hint, lets copy the regulatory domain the
2129                  * driver wanted to the wiphy to deal with conflicts
2130                  */
2131
2132                 /*
2133                  * Userspace could have sent two replies with only
2134                  * one kernel request.
2135                  */
2136                 if (request_wiphy->regd)
2137                         return -EALREADY;
2138
2139                 r = reg_copy_regd(&request_wiphy->regd, rd);
2140                 if (r)
2141                         return r;
2142
2143                 reset_regdomains();
2144                 cfg80211_regdomain = rd;
2145                 return 0;
2146         }
2147
2148         /* Intersection requires a bit more work */
2149
2150         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2151
2152                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2153                 if (!intersected_rd)
2154                         return -EINVAL;
2155
2156                 /*
2157                  * We can trash what CRDA provided now.
2158                  * However if a driver requested this specific regulatory
2159                  * domain we keep it for its private use
2160                  */
2161                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2162                         request_wiphy->regd = rd;
2163                 else
2164                         kfree(rd);
2165
2166                 rd = NULL;
2167
2168                 reset_regdomains();
2169                 cfg80211_regdomain = intersected_rd;
2170
2171                 return 0;
2172         }
2173
2174         /*
2175          * Country IE requests are handled a bit differently, we intersect
2176          * the country IE rd with what CRDA believes that country should have
2177          */
2178
2179         /*
2180          * Userspace could have sent two replies with only
2181          * one kernel request. By the second reply we would have
2182          * already processed and consumed the country_ie_regdomain.
2183          */
2184         if (!country_ie_regdomain)
2185                 return -EALREADY;
2186         BUG_ON(rd == country_ie_regdomain);
2187
2188         /*
2189          * Intersect what CRDA returned and our what we
2190          * had built from the Country IE received
2191          */
2192
2193         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2194
2195         reg_country_ie_process_debug(rd,
2196                                      country_ie_regdomain,
2197                                      intersected_rd);
2198
2199         kfree(country_ie_regdomain);
2200         country_ie_regdomain = NULL;
2201
2202         if (!intersected_rd)
2203                 return -EINVAL;
2204
2205         drv = wiphy_to_dev(request_wiphy);
2206
2207         drv->country_ie_alpha2[0] = rd->alpha2[0];
2208         drv->country_ie_alpha2[1] = rd->alpha2[1];
2209         drv->env = last_request->country_ie_env;
2210
2211         BUG_ON(intersected_rd == rd);
2212
2213         kfree(rd);
2214         rd = NULL;
2215
2216         reset_regdomains();
2217         cfg80211_regdomain = intersected_rd;
2218
2219         return 0;
2220 }
2221
2222
2223 /*
2224  * Use this call to set the current regulatory domain. Conflicts with
2225  * multiple drivers can be ironed out later. Caller must've already
2226  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2227  */
2228 int set_regdom(const struct ieee80211_regdomain *rd)
2229 {
2230         int r;
2231
2232         assert_cfg80211_lock();
2233
2234         /* Note that this doesn't update the wiphys, this is done below */
2235         r = __set_regdom(rd);
2236         if (r) {
2237                 kfree(rd);
2238                 return r;
2239         }
2240
2241         /* This would make this whole thing pointless */
2242         if (!last_request->intersect)
2243                 BUG_ON(rd != cfg80211_regdomain);
2244
2245         /* update all wiphys now with the new established regulatory domain */
2246         update_all_wiphy_regulatory(last_request->initiator);
2247
2248         print_regdomain(cfg80211_regdomain);
2249
2250         nl80211_send_reg_change_event(last_request);
2251
2252         return r;
2253 }
2254
2255 /* Caller must hold cfg80211_mutex */
2256 void reg_device_remove(struct wiphy *wiphy)
2257 {
2258         struct wiphy *request_wiphy = NULL;
2259
2260         assert_cfg80211_lock();
2261
2262         kfree(wiphy->regd);
2263
2264         if (last_request)
2265                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2266
2267         if (!request_wiphy || request_wiphy != wiphy)
2268                 return;
2269
2270         last_request->wiphy_idx = WIPHY_IDX_STALE;
2271         last_request->country_ie_env = ENVIRON_ANY;
2272 }
2273
2274 int regulatory_init(void)
2275 {
2276         int err = 0;
2277
2278         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2279         if (IS_ERR(reg_pdev))
2280                 return PTR_ERR(reg_pdev);
2281
2282         spin_lock_init(&reg_requests_lock);
2283         spin_lock_init(&reg_pending_beacons_lock);
2284
2285 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2286         cfg80211_regdomain = static_regdom(ieee80211_regdom);
2287
2288         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2289         print_regdomain_info(cfg80211_regdomain);
2290         /*
2291          * The old code still requests for a new regdomain and if
2292          * you have CRDA you get it updated, otherwise you get
2293          * stuck with the static values. Since "EU" is not a valid
2294          * ISO / IEC 3166 alpha2 code we can't expect userpace to
2295          * give us a regulatory domain for it. We need last_request
2296          * iniitalized though so lets just send a request which we
2297          * know will be ignored... this crap will be removed once
2298          * OLD_REG dies.
2299          */
2300         err = regulatory_hint_core(ieee80211_regdom);
2301 #else
2302         cfg80211_regdomain = cfg80211_world_regdom;
2303
2304         err = regulatory_hint_core(ieee80211_regdom);
2305 #endif
2306         if (err) {
2307                 if (err == -ENOMEM)
2308                         return err;
2309                 /*
2310                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2311                  * memory which is handled and propagated appropriately above
2312                  * but it can also fail during a netlink_broadcast() or during
2313                  * early boot for call_usermodehelper(). For now treat these
2314                  * errors as non-fatal.
2315                  */
2316                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2317                         "to call CRDA during init");
2318 #ifdef CONFIG_CFG80211_REG_DEBUG
2319                 /* We want to find out exactly why when debugging */
2320                 WARN_ON(err);
2321 #endif
2322         }
2323
2324         return 0;
2325 }
2326
2327 void regulatory_exit(void)
2328 {
2329         struct regulatory_request *reg_request, *tmp;
2330         struct reg_beacon *reg_beacon, *btmp;
2331
2332         cancel_work_sync(&reg_work);
2333
2334         mutex_lock(&cfg80211_mutex);
2335
2336         reset_regdomains();
2337
2338         kfree(country_ie_regdomain);
2339         country_ie_regdomain = NULL;
2340
2341         kfree(last_request);
2342
2343         platform_device_unregister(reg_pdev);
2344
2345         spin_lock_bh(&reg_pending_beacons_lock);
2346         if (!list_empty(&reg_pending_beacons)) {
2347                 list_for_each_entry_safe(reg_beacon, btmp,
2348                                          &reg_pending_beacons, list) {
2349                         list_del(&reg_beacon->list);
2350                         kfree(reg_beacon);
2351                 }
2352         }
2353         spin_unlock_bh(&reg_pending_beacons_lock);
2354
2355         if (!list_empty(&reg_beacon_list)) {
2356                 list_for_each_entry_safe(reg_beacon, btmp,
2357                                          &reg_beacon_list, list) {
2358                         list_del(&reg_beacon->list);
2359                         kfree(reg_beacon);
2360                 }
2361         }
2362
2363         spin_lock(&reg_requests_lock);
2364         if (!list_empty(&reg_requests_list)) {
2365                 list_for_each_entry_safe(reg_request, tmp,
2366                                          &reg_requests_list, list) {
2367                         list_del(&reg_request->list);
2368                         kfree(reg_request);
2369                 }
2370         }
2371         spin_unlock(&reg_requests_lock);
2372
2373         mutex_unlock(&cfg80211_mutex);
2374 }