cfg80211: enable country IE support to all cfg80211 drivers
[pandora-kernel.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
44
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
47
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
50
51 /*
52  * Central wireless core regulatory domains, we only need two,
53  * the current one and a world regulatory domain in case we have no
54  * information to give us an alpha2
55  */
56 const struct ieee80211_regdomain *cfg80211_regdomain;
57
58 /*
59  * We use this as a place for the rd structure built from the
60  * last parsed country IE to rest until CRDA gets back to us with
61  * what it thinks should apply for the same country
62  */
63 static const struct ieee80211_regdomain *country_ie_regdomain;
64
65 /*
66  * Protects static reg.c components:
67  *     - cfg80211_world_regdom
68  *     - cfg80211_regdom
69  *     - country_ie_regdomain
70  *     - last_request
71  */
72 DEFINE_MUTEX(reg_mutex);
73 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
74
75 /* Used to queue up regulatory hints */
76 static LIST_HEAD(reg_requests_list);
77 static spinlock_t reg_requests_lock;
78
79 /* Used to queue up beacon hints for review */
80 static LIST_HEAD(reg_pending_beacons);
81 static spinlock_t reg_pending_beacons_lock;
82
83 /* Used to keep track of processed beacon hints */
84 static LIST_HEAD(reg_beacon_list);
85
86 struct reg_beacon {
87         struct list_head list;
88         struct ieee80211_channel chan;
89 };
90
91 /* We keep a static world regulatory domain in case of the absence of CRDA */
92 static const struct ieee80211_regdomain world_regdom = {
93         .n_reg_rules = 5,
94         .alpha2 =  "00",
95         .reg_rules = {
96                 /* IEEE 802.11b/g, channels 1..11 */
97                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
98                 /* IEEE 802.11b/g, channels 12..13. No HT40
99                  * channel fits here. */
100                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
101                         NL80211_RRF_PASSIVE_SCAN |
102                         NL80211_RRF_NO_IBSS),
103                 /* IEEE 802.11 channel 14 - Only JP enables
104                  * this and for 802.11b only */
105                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
106                         NL80211_RRF_PASSIVE_SCAN |
107                         NL80211_RRF_NO_IBSS |
108                         NL80211_RRF_NO_OFDM),
109                 /* IEEE 802.11a, channel 36..48 */
110                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
111                         NL80211_RRF_PASSIVE_SCAN |
112                         NL80211_RRF_NO_IBSS),
113
114                 /* NB: 5260 MHz - 5700 MHz requies DFS */
115
116                 /* IEEE 802.11a, channel 149..165 */
117                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
118                         NL80211_RRF_PASSIVE_SCAN |
119                         NL80211_RRF_NO_IBSS),
120         }
121 };
122
123 static const struct ieee80211_regdomain *cfg80211_world_regdom =
124         &world_regdom;
125
126 static char *ieee80211_regdom = "00";
127
128 module_param(ieee80211_regdom, charp, 0444);
129 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
130
131 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
132 /*
133  * We assume 40 MHz bandwidth for the old regulatory work.
134  * We make emphasis we are using the exact same frequencies
135  * as before
136  */
137
138 static const struct ieee80211_regdomain us_regdom = {
139         .n_reg_rules = 6,
140         .alpha2 =  "US",
141         .reg_rules = {
142                 /* IEEE 802.11b/g, channels 1..11 */
143                 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144                 /* IEEE 802.11a, channel 36 */
145                 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
146                 /* IEEE 802.11a, channel 40 */
147                 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
148                 /* IEEE 802.11a, channel 44 */
149                 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
150                 /* IEEE 802.11a, channels 48..64 */
151                 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
152                 /* IEEE 802.11a, channels 149..165, outdoor */
153                 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
154         }
155 };
156
157 static const struct ieee80211_regdomain jp_regdom = {
158         .n_reg_rules = 3,
159         .alpha2 =  "JP",
160         .reg_rules = {
161                 /* IEEE 802.11b/g, channels 1..14 */
162                 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
163                 /* IEEE 802.11a, channels 34..48 */
164                 REG_RULE(5170-10, 5240+10, 40, 6, 20,
165                         NL80211_RRF_PASSIVE_SCAN),
166                 /* IEEE 802.11a, channels 52..64 */
167                 REG_RULE(5260-10, 5320+10, 40, 6, 20,
168                         NL80211_RRF_NO_IBSS |
169                         NL80211_RRF_DFS),
170         }
171 };
172
173 static const struct ieee80211_regdomain eu_regdom = {
174         .n_reg_rules = 6,
175         /*
176          * This alpha2 is bogus, we leave it here just for stupid
177          * backward compatibility
178          */
179         .alpha2 =  "EU",
180         .reg_rules = {
181                 /* IEEE 802.11b/g, channels 1..13 */
182                 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
183                 /* IEEE 802.11a, channel 36 */
184                 REG_RULE(5180-10, 5180+10, 40, 6, 23,
185                         NL80211_RRF_PASSIVE_SCAN),
186                 /* IEEE 802.11a, channel 40 */
187                 REG_RULE(5200-10, 5200+10, 40, 6, 23,
188                         NL80211_RRF_PASSIVE_SCAN),
189                 /* IEEE 802.11a, channel 44 */
190                 REG_RULE(5220-10, 5220+10, 40, 6, 23,
191                         NL80211_RRF_PASSIVE_SCAN),
192                 /* IEEE 802.11a, channels 48..64 */
193                 REG_RULE(5240-10, 5320+10, 40, 6, 20,
194                         NL80211_RRF_NO_IBSS |
195                         NL80211_RRF_DFS),
196                 /* IEEE 802.11a, channels 100..140 */
197                 REG_RULE(5500-10, 5700+10, 40, 6, 30,
198                         NL80211_RRF_NO_IBSS |
199                         NL80211_RRF_DFS),
200         }
201 };
202
203 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
204 {
205         if (alpha2[0] == 'U' && alpha2[1] == 'S')
206                 return &us_regdom;
207         if (alpha2[0] == 'J' && alpha2[1] == 'P')
208                 return &jp_regdom;
209         if (alpha2[0] == 'E' && alpha2[1] == 'U')
210                 return &eu_regdom;
211         /* Default, as per the old rules */
212         return &us_regdom;
213 }
214
215 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
216 {
217         if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
218                 return true;
219         return false;
220 }
221 #else
222 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
223 {
224         return false;
225 }
226 #endif
227
228 static void reset_regdomains(void)
229 {
230         /* avoid freeing static information or freeing something twice */
231         if (cfg80211_regdomain == cfg80211_world_regdom)
232                 cfg80211_regdomain = NULL;
233         if (cfg80211_world_regdom == &world_regdom)
234                 cfg80211_world_regdom = NULL;
235         if (cfg80211_regdomain == &world_regdom)
236                 cfg80211_regdomain = NULL;
237         if (is_old_static_regdom(cfg80211_regdomain))
238                 cfg80211_regdomain = NULL;
239
240         kfree(cfg80211_regdomain);
241         kfree(cfg80211_world_regdom);
242
243         cfg80211_world_regdom = &world_regdom;
244         cfg80211_regdomain = NULL;
245 }
246
247 /*
248  * Dynamic world regulatory domain requested by the wireless
249  * core upon initialization
250  */
251 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
252 {
253         BUG_ON(!last_request);
254
255         reset_regdomains();
256
257         cfg80211_world_regdom = rd;
258         cfg80211_regdomain = rd;
259 }
260
261 bool is_world_regdom(const char *alpha2)
262 {
263         if (!alpha2)
264                 return false;
265         if (alpha2[0] == '0' && alpha2[1] == '0')
266                 return true;
267         return false;
268 }
269
270 static bool is_alpha2_set(const char *alpha2)
271 {
272         if (!alpha2)
273                 return false;
274         if (alpha2[0] != 0 && alpha2[1] != 0)
275                 return true;
276         return false;
277 }
278
279 static bool is_alpha_upper(char letter)
280 {
281         /* ASCII A - Z */
282         if (letter >= 65 && letter <= 90)
283                 return true;
284         return false;
285 }
286
287 static bool is_unknown_alpha2(const char *alpha2)
288 {
289         if (!alpha2)
290                 return false;
291         /*
292          * Special case where regulatory domain was built by driver
293          * but a specific alpha2 cannot be determined
294          */
295         if (alpha2[0] == '9' && alpha2[1] == '9')
296                 return true;
297         return false;
298 }
299
300 static bool is_intersected_alpha2(const char *alpha2)
301 {
302         if (!alpha2)
303                 return false;
304         /*
305          * Special case where regulatory domain is the
306          * result of an intersection between two regulatory domain
307          * structures
308          */
309         if (alpha2[0] == '9' && alpha2[1] == '8')
310                 return true;
311         return false;
312 }
313
314 static bool is_an_alpha2(const char *alpha2)
315 {
316         if (!alpha2)
317                 return false;
318         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
319                 return true;
320         return false;
321 }
322
323 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
324 {
325         if (!alpha2_x || !alpha2_y)
326                 return false;
327         if (alpha2_x[0] == alpha2_y[0] &&
328                 alpha2_x[1] == alpha2_y[1])
329                 return true;
330         return false;
331 }
332
333 static bool regdom_changes(const char *alpha2)
334 {
335         assert_cfg80211_lock();
336
337         if (!cfg80211_regdomain)
338                 return true;
339         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
340                 return false;
341         return true;
342 }
343
344 /**
345  * country_ie_integrity_changes - tells us if the country IE has changed
346  * @checksum: checksum of country IE of fields we are interested in
347  *
348  * If the country IE has not changed you can ignore it safely. This is
349  * useful to determine if two devices are seeing two different country IEs
350  * even on the same alpha2. Note that this will return false if no IE has
351  * been set on the wireless core yet.
352  */
353 static bool country_ie_integrity_changes(u32 checksum)
354 {
355         /* If no IE has been set then the checksum doesn't change */
356         if (unlikely(!last_request->country_ie_checksum))
357                 return false;
358         if (unlikely(last_request->country_ie_checksum != checksum))
359                 return true;
360         return false;
361 }
362
363 /*
364  * This lets us keep regulatory code which is updated on a regulatory
365  * basis in userspace.
366  */
367 static int call_crda(const char *alpha2)
368 {
369         char country_env[9 + 2] = "COUNTRY=";
370         char *envp[] = {
371                 country_env,
372                 NULL
373         };
374
375         if (!is_world_regdom((char *) alpha2))
376                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
377                         alpha2[0], alpha2[1]);
378         else
379                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
380                         "regulatory domain\n");
381
382         country_env[8] = alpha2[0];
383         country_env[9] = alpha2[1];
384
385         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391         assert_cfg80211_lock();
392
393         if (!last_request)
394                 return false;
395
396         return alpha2_equal(last_request->alpha2, alpha2);
397 }
398
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 {
402         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403         u32 freq_diff;
404
405         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406                 return false;
407
408         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409                 return false;
410
411         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
413         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414                         freq_range->max_bandwidth_khz > freq_diff)
415                 return false;
416
417         return true;
418 }
419
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 {
422         const struct ieee80211_reg_rule *reg_rule = NULL;
423         unsigned int i;
424
425         if (!rd->n_reg_rules)
426                 return false;
427
428         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429                 return false;
430
431         for (i = 0; i < rd->n_reg_rules; i++) {
432                 reg_rule = &rd->reg_rules[i];
433                 if (!is_valid_reg_rule(reg_rule))
434                         return false;
435         }
436
437         return true;
438 }
439
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441                             u32 center_freq_khz,
442                             u32 bw_khz)
443 {
444         u32 start_freq_khz, end_freq_khz;
445
446         start_freq_khz = center_freq_khz - (bw_khz/2);
447         end_freq_khz = center_freq_khz + (bw_khz/2);
448
449         if (start_freq_khz >= freq_range->start_freq_khz &&
450             end_freq_khz <= freq_range->end_freq_khz)
451                 return true;
452
453         return false;
454 }
455
456 /**
457  * freq_in_rule_band - tells us if a frequency is in a frequency band
458  * @freq_range: frequency rule we want to query
459  * @freq_khz: frequency we are inquiring about
460  *
461  * This lets us know if a specific frequency rule is or is not relevant to
462  * a specific frequency's band. Bands are device specific and artificial
463  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464  * safe for now to assume that a frequency rule should not be part of a
465  * frequency's band if the start freq or end freq are off by more than 2 GHz.
466  * This resolution can be lowered and should be considered as we add
467  * regulatory rule support for other "bands".
468  **/
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470         u32 freq_khz)
471 {
472 #define ONE_GHZ_IN_KHZ  1000000
473         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474                 return true;
475         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476                 return true;
477         return false;
478 #undef ONE_GHZ_IN_KHZ
479 }
480
481 /*
482  * Converts a country IE to a regulatory domain. A regulatory domain
483  * structure has a lot of information which the IE doesn't yet have,
484  * so for the other values we use upper max values as we will intersect
485  * with our userspace regulatory agent to get lower bounds.
486  */
487 static struct ieee80211_regdomain *country_ie_2_rd(
488                                 u8 *country_ie,
489                                 u8 country_ie_len,
490                                 u32 *checksum)
491 {
492         struct ieee80211_regdomain *rd = NULL;
493         unsigned int i = 0;
494         char alpha2[2];
495         u32 flags = 0;
496         u32 num_rules = 0, size_of_regd = 0;
497         u8 *triplets_start = NULL;
498         u8 len_at_triplet = 0;
499         /* the last channel we have registered in a subband (triplet) */
500         int last_sub_max_channel = 0;
501
502         *checksum = 0xDEADBEEF;
503
504         /* Country IE requirements */
505         BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
506                 country_ie_len & 0x01);
507
508         alpha2[0] = country_ie[0];
509         alpha2[1] = country_ie[1];
510
511         /*
512          * Third octet can be:
513          *    'I' - Indoor
514          *    'O' - Outdoor
515          *
516          *  anything else we assume is no restrictions
517          */
518         if (country_ie[2] == 'I')
519                 flags = NL80211_RRF_NO_OUTDOOR;
520         else if (country_ie[2] == 'O')
521                 flags = NL80211_RRF_NO_INDOOR;
522
523         country_ie += 3;
524         country_ie_len -= 3;
525
526         triplets_start = country_ie;
527         len_at_triplet = country_ie_len;
528
529         *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
530
531         /*
532          * We need to build a reg rule for each triplet, but first we must
533          * calculate the number of reg rules we will need. We will need one
534          * for each channel subband
535          */
536         while (country_ie_len >= 3) {
537                 int end_channel = 0;
538                 struct ieee80211_country_ie_triplet *triplet =
539                         (struct ieee80211_country_ie_triplet *) country_ie;
540                 int cur_sub_max_channel = 0, cur_channel = 0;
541
542                 if (triplet->ext.reg_extension_id >=
543                                 IEEE80211_COUNTRY_EXTENSION_ID) {
544                         country_ie += 3;
545                         country_ie_len -= 3;
546                         continue;
547                 }
548
549                 /* 2 GHz */
550                 if (triplet->chans.first_channel <= 14)
551                         end_channel = triplet->chans.first_channel +
552                                 triplet->chans.num_channels;
553                 else
554                         /*
555                          * 5 GHz -- For example in country IEs if the first
556                          * channel given is 36 and the number of channels is 4
557                          * then the individual channel numbers defined for the
558                          * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
559                          * and not 36, 37, 38, 39.
560                          *
561                          * See: http://tinyurl.com/11d-clarification
562                          */
563                         end_channel =  triplet->chans.first_channel +
564                                 (4 * (triplet->chans.num_channels - 1));
565
566                 cur_channel = triplet->chans.first_channel;
567                 cur_sub_max_channel = end_channel;
568
569                 /* Basic sanity check */
570                 if (cur_sub_max_channel < cur_channel)
571                         return NULL;
572
573                 /*
574                  * Do not allow overlapping channels. Also channels
575                  * passed in each subband must be monotonically
576                  * increasing
577                  */
578                 if (last_sub_max_channel) {
579                         if (cur_channel <= last_sub_max_channel)
580                                 return NULL;
581                         if (cur_sub_max_channel <= last_sub_max_channel)
582                                 return NULL;
583                 }
584
585                 /*
586                  * When dot11RegulatoryClassesRequired is supported
587                  * we can throw ext triplets as part of this soup,
588                  * for now we don't care when those change as we
589                  * don't support them
590                  */
591                 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
592                   ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
593                   ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
594
595                 last_sub_max_channel = cur_sub_max_channel;
596
597                 country_ie += 3;
598                 country_ie_len -= 3;
599                 num_rules++;
600
601                 /*
602                  * Note: this is not a IEEE requirement but
603                  * simply a memory requirement
604                  */
605                 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
606                         return NULL;
607         }
608
609         country_ie = triplets_start;
610         country_ie_len = len_at_triplet;
611
612         size_of_regd = sizeof(struct ieee80211_regdomain) +
613                 (num_rules * sizeof(struct ieee80211_reg_rule));
614
615         rd = kzalloc(size_of_regd, GFP_KERNEL);
616         if (!rd)
617                 return NULL;
618
619         rd->n_reg_rules = num_rules;
620         rd->alpha2[0] = alpha2[0];
621         rd->alpha2[1] = alpha2[1];
622
623         /* This time around we fill in the rd */
624         while (country_ie_len >= 3) {
625                 int end_channel = 0;
626                 struct ieee80211_country_ie_triplet *triplet =
627                         (struct ieee80211_country_ie_triplet *) country_ie;
628                 struct ieee80211_reg_rule *reg_rule = NULL;
629                 struct ieee80211_freq_range *freq_range = NULL;
630                 struct ieee80211_power_rule *power_rule = NULL;
631
632                 /*
633                  * Must parse if dot11RegulatoryClassesRequired is true,
634                  * we don't support this yet
635                  */
636                 if (triplet->ext.reg_extension_id >=
637                                 IEEE80211_COUNTRY_EXTENSION_ID) {
638                         country_ie += 3;
639                         country_ie_len -= 3;
640                         continue;
641                 }
642
643                 reg_rule = &rd->reg_rules[i];
644                 freq_range = &reg_rule->freq_range;
645                 power_rule = &reg_rule->power_rule;
646
647                 reg_rule->flags = flags;
648
649                 /* 2 GHz */
650                 if (triplet->chans.first_channel <= 14)
651                         end_channel = triplet->chans.first_channel +
652                                 triplet->chans.num_channels;
653                 else
654                         end_channel =  triplet->chans.first_channel +
655                                 (4 * (triplet->chans.num_channels - 1));
656
657                 /*
658                  * The +10 is since the regulatory domain expects
659                  * the actual band edge, not the center of freq for
660                  * its start and end freqs, assuming 20 MHz bandwidth on
661                  * the channels passed
662                  */
663                 freq_range->start_freq_khz =
664                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665                                 triplet->chans.first_channel) - 10);
666                 freq_range->end_freq_khz =
667                         MHZ_TO_KHZ(ieee80211_channel_to_frequency(
668                                 end_channel) + 10);
669
670                 /*
671                  * These are large arbitrary values we use to intersect later.
672                  * Increment this if we ever support >= 40 MHz channels
673                  * in IEEE 802.11
674                  */
675                 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
676                 power_rule->max_antenna_gain = DBI_TO_MBI(100);
677                 power_rule->max_eirp = DBM_TO_MBM(100);
678
679                 country_ie += 3;
680                 country_ie_len -= 3;
681                 i++;
682
683                 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
684         }
685
686         return rd;
687 }
688
689
690 /*
691  * Helper for regdom_intersect(), this does the real
692  * mathematical intersection fun
693  */
694 static int reg_rules_intersect(
695         const struct ieee80211_reg_rule *rule1,
696         const struct ieee80211_reg_rule *rule2,
697         struct ieee80211_reg_rule *intersected_rule)
698 {
699         const struct ieee80211_freq_range *freq_range1, *freq_range2;
700         struct ieee80211_freq_range *freq_range;
701         const struct ieee80211_power_rule *power_rule1, *power_rule2;
702         struct ieee80211_power_rule *power_rule;
703         u32 freq_diff;
704
705         freq_range1 = &rule1->freq_range;
706         freq_range2 = &rule2->freq_range;
707         freq_range = &intersected_rule->freq_range;
708
709         power_rule1 = &rule1->power_rule;
710         power_rule2 = &rule2->power_rule;
711         power_rule = &intersected_rule->power_rule;
712
713         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
714                 freq_range2->start_freq_khz);
715         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
716                 freq_range2->end_freq_khz);
717         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
718                 freq_range2->max_bandwidth_khz);
719
720         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
721         if (freq_range->max_bandwidth_khz > freq_diff)
722                 freq_range->max_bandwidth_khz = freq_diff;
723
724         power_rule->max_eirp = min(power_rule1->max_eirp,
725                 power_rule2->max_eirp);
726         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
727                 power_rule2->max_antenna_gain);
728
729         intersected_rule->flags = (rule1->flags | rule2->flags);
730
731         if (!is_valid_reg_rule(intersected_rule))
732                 return -EINVAL;
733
734         return 0;
735 }
736
737 /**
738  * regdom_intersect - do the intersection between two regulatory domains
739  * @rd1: first regulatory domain
740  * @rd2: second regulatory domain
741  *
742  * Use this function to get the intersection between two regulatory domains.
743  * Once completed we will mark the alpha2 for the rd as intersected, "98",
744  * as no one single alpha2 can represent this regulatory domain.
745  *
746  * Returns a pointer to the regulatory domain structure which will hold the
747  * resulting intersection of rules between rd1 and rd2. We will
748  * kzalloc() this structure for you.
749  */
750 static struct ieee80211_regdomain *regdom_intersect(
751         const struct ieee80211_regdomain *rd1,
752         const struct ieee80211_regdomain *rd2)
753 {
754         int r, size_of_regd;
755         unsigned int x, y;
756         unsigned int num_rules = 0, rule_idx = 0;
757         const struct ieee80211_reg_rule *rule1, *rule2;
758         struct ieee80211_reg_rule *intersected_rule;
759         struct ieee80211_regdomain *rd;
760         /* This is just a dummy holder to help us count */
761         struct ieee80211_reg_rule irule;
762
763         /* Uses the stack temporarily for counter arithmetic */
764         intersected_rule = &irule;
765
766         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
767
768         if (!rd1 || !rd2)
769                 return NULL;
770
771         /*
772          * First we get a count of the rules we'll need, then we actually
773          * build them. This is to so we can malloc() and free() a
774          * regdomain once. The reason we use reg_rules_intersect() here
775          * is it will return -EINVAL if the rule computed makes no sense.
776          * All rules that do check out OK are valid.
777          */
778
779         for (x = 0; x < rd1->n_reg_rules; x++) {
780                 rule1 = &rd1->reg_rules[x];
781                 for (y = 0; y < rd2->n_reg_rules; y++) {
782                         rule2 = &rd2->reg_rules[y];
783                         if (!reg_rules_intersect(rule1, rule2,
784                                         intersected_rule))
785                                 num_rules++;
786                         memset(intersected_rule, 0,
787                                         sizeof(struct ieee80211_reg_rule));
788                 }
789         }
790
791         if (!num_rules)
792                 return NULL;
793
794         size_of_regd = sizeof(struct ieee80211_regdomain) +
795                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
796
797         rd = kzalloc(size_of_regd, GFP_KERNEL);
798         if (!rd)
799                 return NULL;
800
801         for (x = 0; x < rd1->n_reg_rules; x++) {
802                 rule1 = &rd1->reg_rules[x];
803                 for (y = 0; y < rd2->n_reg_rules; y++) {
804                         rule2 = &rd2->reg_rules[y];
805                         /*
806                          * This time around instead of using the stack lets
807                          * write to the target rule directly saving ourselves
808                          * a memcpy()
809                          */
810                         intersected_rule = &rd->reg_rules[rule_idx];
811                         r = reg_rules_intersect(rule1, rule2,
812                                 intersected_rule);
813                         /*
814                          * No need to memset here the intersected rule here as
815                          * we're not using the stack anymore
816                          */
817                         if (r)
818                                 continue;
819                         rule_idx++;
820                 }
821         }
822
823         if (rule_idx != num_rules) {
824                 kfree(rd);
825                 return NULL;
826         }
827
828         rd->n_reg_rules = num_rules;
829         rd->alpha2[0] = '9';
830         rd->alpha2[1] = '8';
831
832         return rd;
833 }
834
835 /*
836  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
837  * want to just have the channel structure use these
838  */
839 static u32 map_regdom_flags(u32 rd_flags)
840 {
841         u32 channel_flags = 0;
842         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
843                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
844         if (rd_flags & NL80211_RRF_NO_IBSS)
845                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
846         if (rd_flags & NL80211_RRF_DFS)
847                 channel_flags |= IEEE80211_CHAN_RADAR;
848         return channel_flags;
849 }
850
851 static int freq_reg_info_regd(struct wiphy *wiphy,
852                               u32 center_freq,
853                               u32 desired_bw_khz,
854                               const struct ieee80211_reg_rule **reg_rule,
855                               const struct ieee80211_regdomain *custom_regd)
856 {
857         int i;
858         bool band_rule_found = false;
859         const struct ieee80211_regdomain *regd;
860         bool bw_fits = false;
861
862         if (!desired_bw_khz)
863                 desired_bw_khz = MHZ_TO_KHZ(20);
864
865         regd = custom_regd ? custom_regd : cfg80211_regdomain;
866
867         /*
868          * Follow the driver's regulatory domain, if present, unless a country
869          * IE has been processed or a user wants to help complaince further
870          */
871         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
872             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
873             wiphy->regd)
874                 regd = wiphy->regd;
875
876         if (!regd)
877                 return -EINVAL;
878
879         for (i = 0; i < regd->n_reg_rules; i++) {
880                 const struct ieee80211_reg_rule *rr;
881                 const struct ieee80211_freq_range *fr = NULL;
882                 const struct ieee80211_power_rule *pr = NULL;
883
884                 rr = &regd->reg_rules[i];
885                 fr = &rr->freq_range;
886                 pr = &rr->power_rule;
887
888                 /*
889                  * We only need to know if one frequency rule was
890                  * was in center_freq's band, that's enough, so lets
891                  * not overwrite it once found
892                  */
893                 if (!band_rule_found)
894                         band_rule_found = freq_in_rule_band(fr, center_freq);
895
896                 bw_fits = reg_does_bw_fit(fr,
897                                           center_freq,
898                                           desired_bw_khz);
899
900                 if (band_rule_found && bw_fits) {
901                         *reg_rule = rr;
902                         return 0;
903                 }
904         }
905
906         if (!band_rule_found)
907                 return -ERANGE;
908
909         return -EINVAL;
910 }
911 EXPORT_SYMBOL(freq_reg_info);
912
913 int freq_reg_info(struct wiphy *wiphy,
914                   u32 center_freq,
915                   u32 desired_bw_khz,
916                   const struct ieee80211_reg_rule **reg_rule)
917 {
918         assert_cfg80211_lock();
919         return freq_reg_info_regd(wiphy,
920                                   center_freq,
921                                   desired_bw_khz,
922                                   reg_rule,
923                                   NULL);
924 }
925
926 /*
927  * Note that right now we assume the desired channel bandwidth
928  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
929  * per channel, the primary and the extension channel). To support
930  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
931  * new ieee80211_channel.target_bw and re run the regulatory check
932  * on the wiphy with the target_bw specified. Then we can simply use
933  * that below for the desired_bw_khz below.
934  */
935 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
936                            unsigned int chan_idx)
937 {
938         int r;
939         u32 flags, bw_flags = 0;
940         u32 desired_bw_khz = MHZ_TO_KHZ(20);
941         const struct ieee80211_reg_rule *reg_rule = NULL;
942         const struct ieee80211_power_rule *power_rule = NULL;
943         const struct ieee80211_freq_range *freq_range = NULL;
944         struct ieee80211_supported_band *sband;
945         struct ieee80211_channel *chan;
946         struct wiphy *request_wiphy = NULL;
947
948         assert_cfg80211_lock();
949
950         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
951
952         sband = wiphy->bands[band];
953         BUG_ON(chan_idx >= sband->n_channels);
954         chan = &sband->channels[chan_idx];
955
956         flags = chan->orig_flags;
957
958         r = freq_reg_info(wiphy,
959                           MHZ_TO_KHZ(chan->center_freq),
960                           desired_bw_khz,
961                           &reg_rule);
962
963         if (r) {
964                 /*
965                  * This means no regulatory rule was found in the country IE
966                  * with a frequency range on the center_freq's band, since
967                  * IEEE-802.11 allows for a country IE to have a subset of the
968                  * regulatory information provided in a country we ignore
969                  * disabling the channel unless at least one reg rule was
970                  * found on the center_freq's band. For details see this
971                  * clarification:
972                  *
973                  * http://tinyurl.com/11d-clarification
974                  */
975                 if (r == -ERANGE &&
976                     last_request->initiator ==
977                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
978 #ifdef CONFIG_CFG80211_REG_DEBUG
979                         printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
980                                 "intact on %s - no rule found in band on "
981                                 "Country IE\n",
982                                 chan->center_freq, wiphy_name(wiphy));
983 #endif
984                 } else {
985                 /*
986                  * In this case we know the country IE has at least one reg rule
987                  * for the band so we respect its band definitions
988                  */
989 #ifdef CONFIG_CFG80211_REG_DEBUG
990                         if (last_request->initiator ==
991                             NL80211_REGDOM_SET_BY_COUNTRY_IE)
992                                 printk(KERN_DEBUG "cfg80211: Disabling "
993                                         "channel %d MHz on %s due to "
994                                         "Country IE\n",
995                                         chan->center_freq, wiphy_name(wiphy));
996 #endif
997                         flags |= IEEE80211_CHAN_DISABLED;
998                         chan->flags = flags;
999                 }
1000                 return;
1001         }
1002
1003         power_rule = &reg_rule->power_rule;
1004         freq_range = &reg_rule->freq_range;
1005
1006         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1007                 bw_flags = IEEE80211_CHAN_NO_HT40;
1008
1009         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1010             request_wiphy && request_wiphy == wiphy &&
1011             request_wiphy->strict_regulatory) {
1012                 /*
1013                  * This gaurantees the driver's requested regulatory domain
1014                  * will always be used as a base for further regulatory
1015                  * settings
1016                  */
1017                 chan->flags = chan->orig_flags =
1018                         map_regdom_flags(reg_rule->flags) | bw_flags;
1019                 chan->max_antenna_gain = chan->orig_mag =
1020                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1021                 chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1022                 chan->max_power = chan->orig_mpwr =
1023                         (int) MBM_TO_DBM(power_rule->max_eirp);
1024                 return;
1025         }
1026
1027         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1028         chan->max_antenna_gain = min(chan->orig_mag,
1029                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1030         chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1031         if (chan->orig_mpwr)
1032                 chan->max_power = min(chan->orig_mpwr,
1033                         (int) MBM_TO_DBM(power_rule->max_eirp));
1034         else
1035                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1036 }
1037
1038 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1039 {
1040         unsigned int i;
1041         struct ieee80211_supported_band *sband;
1042
1043         BUG_ON(!wiphy->bands[band]);
1044         sband = wiphy->bands[band];
1045
1046         for (i = 0; i < sband->n_channels; i++)
1047                 handle_channel(wiphy, band, i);
1048 }
1049
1050 static bool ignore_reg_update(struct wiphy *wiphy,
1051                               enum nl80211_reg_initiator initiator)
1052 {
1053         if (!last_request)
1054                 return true;
1055         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1056                   wiphy->custom_regulatory)
1057                 return true;
1058         /*
1059          * wiphy->regd will be set once the device has its own
1060          * desired regulatory domain set
1061          */
1062         if (wiphy->strict_regulatory && !wiphy->regd &&
1063             !is_world_regdom(last_request->alpha2))
1064                 return true;
1065         return false;
1066 }
1067
1068 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1069 {
1070         struct cfg80211_registered_device *rdev;
1071
1072         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1073                 wiphy_update_regulatory(&rdev->wiphy, initiator);
1074 }
1075
1076 static void handle_reg_beacon(struct wiphy *wiphy,
1077                               unsigned int chan_idx,
1078                               struct reg_beacon *reg_beacon)
1079 {
1080         struct ieee80211_supported_band *sband;
1081         struct ieee80211_channel *chan;
1082         bool channel_changed = false;
1083         struct ieee80211_channel chan_before;
1084
1085         assert_cfg80211_lock();
1086
1087         sband = wiphy->bands[reg_beacon->chan.band];
1088         chan = &sband->channels[chan_idx];
1089
1090         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1091                 return;
1092
1093         if (chan->beacon_found)
1094                 return;
1095
1096         chan->beacon_found = true;
1097
1098         chan_before.center_freq = chan->center_freq;
1099         chan_before.flags = chan->flags;
1100
1101         if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
1102             !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1103                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1104                 channel_changed = true;
1105         }
1106
1107         if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
1108             !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1109                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1110                 channel_changed = true;
1111         }
1112
1113         if (channel_changed)
1114                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1115 }
1116
1117 /*
1118  * Called when a scan on a wiphy finds a beacon on
1119  * new channel
1120  */
1121 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1122                                     struct reg_beacon *reg_beacon)
1123 {
1124         unsigned int i;
1125         struct ieee80211_supported_band *sband;
1126
1127         assert_cfg80211_lock();
1128
1129         if (!wiphy->bands[reg_beacon->chan.band])
1130                 return;
1131
1132         sband = wiphy->bands[reg_beacon->chan.band];
1133
1134         for (i = 0; i < sband->n_channels; i++)
1135                 handle_reg_beacon(wiphy, i, reg_beacon);
1136 }
1137
1138 /*
1139  * Called upon reg changes or a new wiphy is added
1140  */
1141 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1142 {
1143         unsigned int i;
1144         struct ieee80211_supported_band *sband;
1145         struct reg_beacon *reg_beacon;
1146
1147         assert_cfg80211_lock();
1148
1149         if (list_empty(&reg_beacon_list))
1150                 return;
1151
1152         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1153                 if (!wiphy->bands[reg_beacon->chan.band])
1154                         continue;
1155                 sband = wiphy->bands[reg_beacon->chan.band];
1156                 for (i = 0; i < sband->n_channels; i++)
1157                         handle_reg_beacon(wiphy, i, reg_beacon);
1158         }
1159 }
1160
1161 static bool reg_is_world_roaming(struct wiphy *wiphy)
1162 {
1163         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1164             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1165                 return true;
1166         if (last_request &&
1167             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1168             wiphy->custom_regulatory)
1169                 return true;
1170         return false;
1171 }
1172
1173 /* Reap the advantages of previously found beacons */
1174 static void reg_process_beacons(struct wiphy *wiphy)
1175 {
1176         /*
1177          * Means we are just firing up cfg80211, so no beacons would
1178          * have been processed yet.
1179          */
1180         if (!last_request)
1181                 return;
1182         if (!reg_is_world_roaming(wiphy))
1183                 return;
1184         wiphy_update_beacon_reg(wiphy);
1185 }
1186
1187 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1188 {
1189         if (!chan)
1190                 return true;
1191         if (chan->flags & IEEE80211_CHAN_DISABLED)
1192                 return true;
1193         /* This would happen when regulatory rules disallow HT40 completely */
1194         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1195                 return true;
1196         return false;
1197 }
1198
1199 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1200                                          enum ieee80211_band band,
1201                                          unsigned int chan_idx)
1202 {
1203         struct ieee80211_supported_band *sband;
1204         struct ieee80211_channel *channel;
1205         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1206         unsigned int i;
1207
1208         assert_cfg80211_lock();
1209
1210         sband = wiphy->bands[band];
1211         BUG_ON(chan_idx >= sband->n_channels);
1212         channel = &sband->channels[chan_idx];
1213
1214         if (is_ht40_not_allowed(channel)) {
1215                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1216                 return;
1217         }
1218
1219         /*
1220          * We need to ensure the extension channels exist to
1221          * be able to use HT40- or HT40+, this finds them (or not)
1222          */
1223         for (i = 0; i < sband->n_channels; i++) {
1224                 struct ieee80211_channel *c = &sband->channels[i];
1225                 if (c->center_freq == (channel->center_freq - 20))
1226                         channel_before = c;
1227                 if (c->center_freq == (channel->center_freq + 20))
1228                         channel_after = c;
1229         }
1230
1231         /*
1232          * Please note that this assumes target bandwidth is 20 MHz,
1233          * if that ever changes we also need to change the below logic
1234          * to include that as well.
1235          */
1236         if (is_ht40_not_allowed(channel_before))
1237                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1238         else
1239                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1240
1241         if (is_ht40_not_allowed(channel_after))
1242                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1243         else
1244                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1245 }
1246
1247 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1248                                       enum ieee80211_band band)
1249 {
1250         unsigned int i;
1251         struct ieee80211_supported_band *sband;
1252
1253         BUG_ON(!wiphy->bands[band]);
1254         sband = wiphy->bands[band];
1255
1256         for (i = 0; i < sband->n_channels; i++)
1257                 reg_process_ht_flags_channel(wiphy, band, i);
1258 }
1259
1260 static void reg_process_ht_flags(struct wiphy *wiphy)
1261 {
1262         enum ieee80211_band band;
1263
1264         if (!wiphy)
1265                 return;
1266
1267         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1268                 if (wiphy->bands[band])
1269                         reg_process_ht_flags_band(wiphy, band);
1270         }
1271
1272 }
1273
1274 void wiphy_update_regulatory(struct wiphy *wiphy,
1275                              enum nl80211_reg_initiator initiator)
1276 {
1277         enum ieee80211_band band;
1278
1279         if (ignore_reg_update(wiphy, initiator))
1280                 goto out;
1281         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1282                 if (wiphy->bands[band])
1283                         handle_band(wiphy, band);
1284         }
1285 out:
1286         reg_process_beacons(wiphy);
1287         reg_process_ht_flags(wiphy);
1288         if (wiphy->reg_notifier)
1289                 wiphy->reg_notifier(wiphy, last_request);
1290 }
1291
1292 static void handle_channel_custom(struct wiphy *wiphy,
1293                                   enum ieee80211_band band,
1294                                   unsigned int chan_idx,
1295                                   const struct ieee80211_regdomain *regd)
1296 {
1297         int r;
1298         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1299         u32 bw_flags = 0;
1300         const struct ieee80211_reg_rule *reg_rule = NULL;
1301         const struct ieee80211_power_rule *power_rule = NULL;
1302         const struct ieee80211_freq_range *freq_range = NULL;
1303         struct ieee80211_supported_band *sband;
1304         struct ieee80211_channel *chan;
1305
1306         assert_reg_lock();
1307
1308         sband = wiphy->bands[band];
1309         BUG_ON(chan_idx >= sband->n_channels);
1310         chan = &sband->channels[chan_idx];
1311
1312         r = freq_reg_info_regd(wiphy,
1313                                MHZ_TO_KHZ(chan->center_freq),
1314                                desired_bw_khz,
1315                                &reg_rule,
1316                                regd);
1317
1318         if (r) {
1319                 chan->flags = IEEE80211_CHAN_DISABLED;
1320                 return;
1321         }
1322
1323         power_rule = &reg_rule->power_rule;
1324         freq_range = &reg_rule->freq_range;
1325
1326         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1327                 bw_flags = IEEE80211_CHAN_NO_HT40;
1328
1329         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1330         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1331         chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1332         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1333 }
1334
1335 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1336                                const struct ieee80211_regdomain *regd)
1337 {
1338         unsigned int i;
1339         struct ieee80211_supported_band *sband;
1340
1341         BUG_ON(!wiphy->bands[band]);
1342         sband = wiphy->bands[band];
1343
1344         for (i = 0; i < sband->n_channels; i++)
1345                 handle_channel_custom(wiphy, band, i, regd);
1346 }
1347
1348 /* Used by drivers prior to wiphy registration */
1349 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1350                                    const struct ieee80211_regdomain *regd)
1351 {
1352         enum ieee80211_band band;
1353         unsigned int bands_set = 0;
1354
1355         mutex_lock(&reg_mutex);
1356         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1357                 if (!wiphy->bands[band])
1358                         continue;
1359                 handle_band_custom(wiphy, band, regd);
1360                 bands_set++;
1361         }
1362         mutex_unlock(&reg_mutex);
1363
1364         /*
1365          * no point in calling this if it won't have any effect
1366          * on your device's supportd bands.
1367          */
1368         WARN_ON(!bands_set);
1369 }
1370 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1371
1372 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1373                          const struct ieee80211_regdomain *src_regd)
1374 {
1375         struct ieee80211_regdomain *regd;
1376         int size_of_regd = 0;
1377         unsigned int i;
1378
1379         size_of_regd = sizeof(struct ieee80211_regdomain) +
1380           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1381
1382         regd = kzalloc(size_of_regd, GFP_KERNEL);
1383         if (!regd)
1384                 return -ENOMEM;
1385
1386         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1387
1388         for (i = 0; i < src_regd->n_reg_rules; i++)
1389                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1390                         sizeof(struct ieee80211_reg_rule));
1391
1392         *dst_regd = regd;
1393         return 0;
1394 }
1395
1396 /*
1397  * Return value which can be used by ignore_request() to indicate
1398  * it has been determined we should intersect two regulatory domains
1399  */
1400 #define REG_INTERSECT   1
1401
1402 /* This has the logic which determines when a new request
1403  * should be ignored. */
1404 static int ignore_request(struct wiphy *wiphy,
1405                           struct regulatory_request *pending_request)
1406 {
1407         struct wiphy *last_wiphy = NULL;
1408
1409         assert_cfg80211_lock();
1410
1411         /* All initial requests are respected */
1412         if (!last_request)
1413                 return 0;
1414
1415         switch (pending_request->initiator) {
1416         case NL80211_REGDOM_SET_BY_CORE:
1417                 return -EINVAL;
1418         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1419
1420                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1421
1422                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1423                         return -EINVAL;
1424                 if (last_request->initiator ==
1425                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1426                         if (last_wiphy != wiphy) {
1427                                 /*
1428                                  * Two cards with two APs claiming different
1429                                  * different Country IE alpha2s. We could
1430                                  * intersect them, but that seems unlikely
1431                                  * to be correct. Reject second one for now.
1432                                  */
1433                                 if (regdom_changes(pending_request->alpha2))
1434                                         return -EOPNOTSUPP;
1435                                 return -EALREADY;
1436                         }
1437                         /*
1438                          * Two consecutive Country IE hints on the same wiphy.
1439                          * This should be picked up early by the driver/stack
1440                          */
1441                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1442                                 return 0;
1443                         return -EALREADY;
1444                 }
1445                 return REG_INTERSECT;
1446         case NL80211_REGDOM_SET_BY_DRIVER:
1447                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1448                         if (is_old_static_regdom(cfg80211_regdomain))
1449                                 return 0;
1450                         if (regdom_changes(pending_request->alpha2))
1451                                 return 0;
1452                         return -EALREADY;
1453                 }
1454
1455                 /*
1456                  * This would happen if you unplug and plug your card
1457                  * back in or if you add a new device for which the previously
1458                  * loaded card also agrees on the regulatory domain.
1459                  */
1460                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1461                     !regdom_changes(pending_request->alpha2))
1462                         return -EALREADY;
1463
1464                 return REG_INTERSECT;
1465         case NL80211_REGDOM_SET_BY_USER:
1466                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1467                         return REG_INTERSECT;
1468                 /*
1469                  * If the user knows better the user should set the regdom
1470                  * to their country before the IE is picked up
1471                  */
1472                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1473                           last_request->intersect)
1474                         return -EOPNOTSUPP;
1475                 /*
1476                  * Process user requests only after previous user/driver/core
1477                  * requests have been processed
1478                  */
1479                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1480                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1481                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1482                         if (regdom_changes(last_request->alpha2))
1483                                 return -EAGAIN;
1484                 }
1485
1486                 if (!is_old_static_regdom(cfg80211_regdomain) &&
1487                     !regdom_changes(pending_request->alpha2))
1488                         return -EALREADY;
1489
1490                 return 0;
1491         }
1492
1493         return -EINVAL;
1494 }
1495
1496 /**
1497  * __regulatory_hint - hint to the wireless core a regulatory domain
1498  * @wiphy: if the hint comes from country information from an AP, this
1499  *      is required to be set to the wiphy that received the information
1500  * @pending_request: the regulatory request currently being processed
1501  *
1502  * The Wireless subsystem can use this function to hint to the wireless core
1503  * what it believes should be the current regulatory domain.
1504  *
1505  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1506  * already been set or other standard error codes.
1507  *
1508  * Caller must hold &cfg80211_mutex and &reg_mutex
1509  */
1510 static int __regulatory_hint(struct wiphy *wiphy,
1511                              struct regulatory_request *pending_request)
1512 {
1513         bool intersect = false;
1514         int r = 0;
1515
1516         assert_cfg80211_lock();
1517
1518         r = ignore_request(wiphy, pending_request);
1519
1520         if (r == REG_INTERSECT) {
1521                 if (pending_request->initiator ==
1522                     NL80211_REGDOM_SET_BY_DRIVER) {
1523                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1524                         if (r) {
1525                                 kfree(pending_request);
1526                                 return r;
1527                         }
1528                 }
1529                 intersect = true;
1530         } else if (r) {
1531                 /*
1532                  * If the regulatory domain being requested by the
1533                  * driver has already been set just copy it to the
1534                  * wiphy
1535                  */
1536                 if (r == -EALREADY &&
1537                     pending_request->initiator ==
1538                     NL80211_REGDOM_SET_BY_DRIVER) {
1539                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1540                         if (r) {
1541                                 kfree(pending_request);
1542                                 return r;
1543                         }
1544                         r = -EALREADY;
1545                         goto new_request;
1546                 }
1547                 kfree(pending_request);
1548                 return r;
1549         }
1550
1551 new_request:
1552         kfree(last_request);
1553
1554         last_request = pending_request;
1555         last_request->intersect = intersect;
1556
1557         pending_request = NULL;
1558
1559         /* When r == REG_INTERSECT we do need to call CRDA */
1560         if (r < 0) {
1561                 /*
1562                  * Since CRDA will not be called in this case as we already
1563                  * have applied the requested regulatory domain before we just
1564                  * inform userspace we have processed the request
1565                  */
1566                 if (r == -EALREADY)
1567                         nl80211_send_reg_change_event(last_request);
1568                 return r;
1569         }
1570
1571         return call_crda(last_request->alpha2);
1572 }
1573
1574 /* This processes *all* regulatory hints */
1575 static void reg_process_hint(struct regulatory_request *reg_request)
1576 {
1577         int r = 0;
1578         struct wiphy *wiphy = NULL;
1579
1580         BUG_ON(!reg_request->alpha2);
1581
1582         mutex_lock(&cfg80211_mutex);
1583         mutex_lock(&reg_mutex);
1584
1585         if (wiphy_idx_valid(reg_request->wiphy_idx))
1586                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1587
1588         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1589             !wiphy) {
1590                 kfree(reg_request);
1591                 goto out;
1592         }
1593
1594         r = __regulatory_hint(wiphy, reg_request);
1595         /* This is required so that the orig_* parameters are saved */
1596         if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1597                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1598 out:
1599         mutex_unlock(&reg_mutex);
1600         mutex_unlock(&cfg80211_mutex);
1601 }
1602
1603 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1604 static void reg_process_pending_hints(void)
1605         {
1606         struct regulatory_request *reg_request;
1607
1608         spin_lock(&reg_requests_lock);
1609         while (!list_empty(&reg_requests_list)) {
1610                 reg_request = list_first_entry(&reg_requests_list,
1611                                                struct regulatory_request,
1612                                                list);
1613                 list_del_init(&reg_request->list);
1614
1615                 spin_unlock(&reg_requests_lock);
1616                 reg_process_hint(reg_request);
1617                 spin_lock(&reg_requests_lock);
1618         }
1619         spin_unlock(&reg_requests_lock);
1620 }
1621
1622 /* Processes beacon hints -- this has nothing to do with country IEs */
1623 static void reg_process_pending_beacon_hints(void)
1624 {
1625         struct cfg80211_registered_device *rdev;
1626         struct reg_beacon *pending_beacon, *tmp;
1627
1628         /*
1629          * No need to hold the reg_mutex here as we just touch wiphys
1630          * and do not read or access regulatory variables.
1631          */
1632         mutex_lock(&cfg80211_mutex);
1633
1634         /* This goes through the _pending_ beacon list */
1635         spin_lock_bh(&reg_pending_beacons_lock);
1636
1637         if (list_empty(&reg_pending_beacons)) {
1638                 spin_unlock_bh(&reg_pending_beacons_lock);
1639                 goto out;
1640         }
1641
1642         list_for_each_entry_safe(pending_beacon, tmp,
1643                                  &reg_pending_beacons, list) {
1644
1645                 list_del_init(&pending_beacon->list);
1646
1647                 /* Applies the beacon hint to current wiphys */
1648                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1649                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1650
1651                 /* Remembers the beacon hint for new wiphys or reg changes */
1652                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1653         }
1654
1655         spin_unlock_bh(&reg_pending_beacons_lock);
1656 out:
1657         mutex_unlock(&cfg80211_mutex);
1658 }
1659
1660 static void reg_todo(struct work_struct *work)
1661 {
1662         reg_process_pending_hints();
1663         reg_process_pending_beacon_hints();
1664 }
1665
1666 static DECLARE_WORK(reg_work, reg_todo);
1667
1668 static void queue_regulatory_request(struct regulatory_request *request)
1669 {
1670         spin_lock(&reg_requests_lock);
1671         list_add_tail(&request->list, &reg_requests_list);
1672         spin_unlock(&reg_requests_lock);
1673
1674         schedule_work(&reg_work);
1675 }
1676
1677 /* Core regulatory hint -- happens once during cfg80211_init() */
1678 static int regulatory_hint_core(const char *alpha2)
1679 {
1680         struct regulatory_request *request;
1681
1682         BUG_ON(last_request);
1683
1684         request = kzalloc(sizeof(struct regulatory_request),
1685                           GFP_KERNEL);
1686         if (!request)
1687                 return -ENOMEM;
1688
1689         request->alpha2[0] = alpha2[0];
1690         request->alpha2[1] = alpha2[1];
1691         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1692
1693         queue_regulatory_request(request);
1694
1695         /*
1696          * This ensures last_request is populated once modules
1697          * come swinging in and calling regulatory hints and
1698          * wiphy_apply_custom_regulatory().
1699          */
1700         flush_scheduled_work();
1701
1702         return 0;
1703 }
1704
1705 /* User hints */
1706 int regulatory_hint_user(const char *alpha2)
1707 {
1708         struct regulatory_request *request;
1709
1710         BUG_ON(!alpha2);
1711
1712         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1713         if (!request)
1714                 return -ENOMEM;
1715
1716         request->wiphy_idx = WIPHY_IDX_STALE;
1717         request->alpha2[0] = alpha2[0];
1718         request->alpha2[1] = alpha2[1];
1719         request->initiator = NL80211_REGDOM_SET_BY_USER,
1720
1721         queue_regulatory_request(request);
1722
1723         return 0;
1724 }
1725
1726 /* Driver hints */
1727 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1728 {
1729         struct regulatory_request *request;
1730
1731         BUG_ON(!alpha2);
1732         BUG_ON(!wiphy);
1733
1734         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1735         if (!request)
1736                 return -ENOMEM;
1737
1738         request->wiphy_idx = get_wiphy_idx(wiphy);
1739
1740         /* Must have registered wiphy first */
1741         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1742
1743         request->alpha2[0] = alpha2[0];
1744         request->alpha2[1] = alpha2[1];
1745         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1746
1747         queue_regulatory_request(request);
1748
1749         return 0;
1750 }
1751 EXPORT_SYMBOL(regulatory_hint);
1752
1753 /* Caller must hold reg_mutex */
1754 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1755                         u32 country_ie_checksum)
1756 {
1757         struct wiphy *request_wiphy;
1758
1759         assert_reg_lock();
1760
1761         if (unlikely(last_request->initiator !=
1762             NL80211_REGDOM_SET_BY_COUNTRY_IE))
1763                 return false;
1764
1765         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1766
1767         if (!request_wiphy)
1768                 return false;
1769
1770         if (likely(request_wiphy != wiphy))
1771                 return !country_ie_integrity_changes(country_ie_checksum);
1772         /*
1773          * We should not have let these through at this point, they
1774          * should have been picked up earlier by the first alpha2 check
1775          * on the device
1776          */
1777         if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1778                 return true;
1779         return false;
1780 }
1781
1782 /*
1783  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1784  * therefore cannot iterate over the rdev list here.
1785  */
1786 void regulatory_hint_11d(struct wiphy *wiphy,
1787                         u8 *country_ie,
1788                         u8 country_ie_len)
1789 {
1790         struct ieee80211_regdomain *rd = NULL;
1791         char alpha2[2];
1792         u32 checksum = 0;
1793         enum environment_cap env = ENVIRON_ANY;
1794         struct regulatory_request *request;
1795
1796         mutex_lock(&reg_mutex);
1797
1798         if (unlikely(!last_request))
1799                 goto out;
1800
1801         /* IE len must be evenly divisible by 2 */
1802         if (country_ie_len & 0x01)
1803                 goto out;
1804
1805         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1806                 goto out;
1807
1808         /*
1809          * Pending country IE processing, this can happen after we
1810          * call CRDA and wait for a response if a beacon was received before
1811          * we were able to process the last regulatory_hint_11d() call
1812          */
1813         if (country_ie_regdomain)
1814                 goto out;
1815
1816         alpha2[0] = country_ie[0];
1817         alpha2[1] = country_ie[1];
1818
1819         if (country_ie[2] == 'I')
1820                 env = ENVIRON_INDOOR;
1821         else if (country_ie[2] == 'O')
1822                 env = ENVIRON_OUTDOOR;
1823
1824         /*
1825          * We will run this only upon a successful connection on cfg80211.
1826          * We leave conflict resolution to the workqueue, where can hold
1827          * cfg80211_mutex.
1828          */
1829         if (likely(last_request->initiator ==
1830             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1831             wiphy_idx_valid(last_request->wiphy_idx)))
1832                 goto out;
1833
1834         rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1835         if (!rd)
1836                 goto out;
1837
1838         /*
1839          * This will not happen right now but we leave it here for the
1840          * the future when we want to add suspend/resume support and having
1841          * the user move to another country after doing so, or having the user
1842          * move to another AP. Right now we just trust the first AP.
1843          *
1844          * If we hit this before we add this support we want to be informed of
1845          * it as it would indicate a mistake in the current design
1846          */
1847         if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1848                 goto free_rd_out;
1849
1850         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1851         if (!request)
1852                 goto free_rd_out;
1853
1854         /*
1855          * We keep this around for when CRDA comes back with a response so
1856          * we can intersect with that
1857          */
1858         country_ie_regdomain = rd;
1859
1860         request->wiphy_idx = get_wiphy_idx(wiphy);
1861         request->alpha2[0] = rd->alpha2[0];
1862         request->alpha2[1] = rd->alpha2[1];
1863         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1864         request->country_ie_checksum = checksum;
1865         request->country_ie_env = env;
1866
1867         mutex_unlock(&reg_mutex);
1868
1869         queue_regulatory_request(request);
1870
1871         return;
1872
1873 free_rd_out:
1874         kfree(rd);
1875 out:
1876         mutex_unlock(&reg_mutex);
1877 }
1878
1879 static bool freq_is_chan_12_13_14(u16 freq)
1880 {
1881         if (freq == ieee80211_channel_to_frequency(12) ||
1882             freq == ieee80211_channel_to_frequency(13) ||
1883             freq == ieee80211_channel_to_frequency(14))
1884                 return true;
1885         return false;
1886 }
1887
1888 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1889                                  struct ieee80211_channel *beacon_chan,
1890                                  gfp_t gfp)
1891 {
1892         struct reg_beacon *reg_beacon;
1893
1894         if (likely((beacon_chan->beacon_found ||
1895             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1896             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1897              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1898                 return 0;
1899
1900         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1901         if (!reg_beacon)
1902                 return -ENOMEM;
1903
1904 #ifdef CONFIG_CFG80211_REG_DEBUG
1905         printk(KERN_DEBUG "cfg80211: Found new beacon on "
1906                 "frequency: %d MHz (Ch %d) on %s\n",
1907                 beacon_chan->center_freq,
1908                 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1909                 wiphy_name(wiphy));
1910 #endif
1911         memcpy(&reg_beacon->chan, beacon_chan,
1912                 sizeof(struct ieee80211_channel));
1913
1914
1915         /*
1916          * Since we can be called from BH or and non-BH context
1917          * we must use spin_lock_bh()
1918          */
1919         spin_lock_bh(&reg_pending_beacons_lock);
1920         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1921         spin_unlock_bh(&reg_pending_beacons_lock);
1922
1923         schedule_work(&reg_work);
1924
1925         return 0;
1926 }
1927
1928 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1929 {
1930         unsigned int i;
1931         const struct ieee80211_reg_rule *reg_rule = NULL;
1932         const struct ieee80211_freq_range *freq_range = NULL;
1933         const struct ieee80211_power_rule *power_rule = NULL;
1934
1935         printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1936                 "(max_antenna_gain, max_eirp)\n");
1937
1938         for (i = 0; i < rd->n_reg_rules; i++) {
1939                 reg_rule = &rd->reg_rules[i];
1940                 freq_range = &reg_rule->freq_range;
1941                 power_rule = &reg_rule->power_rule;
1942
1943                 /*
1944                  * There may not be documentation for max antenna gain
1945                  * in certain regions
1946                  */
1947                 if (power_rule->max_antenna_gain)
1948                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1949                                 "(%d mBi, %d mBm)\n",
1950                                 freq_range->start_freq_khz,
1951                                 freq_range->end_freq_khz,
1952                                 freq_range->max_bandwidth_khz,
1953                                 power_rule->max_antenna_gain,
1954                                 power_rule->max_eirp);
1955                 else
1956                         printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1957                                 "(N/A, %d mBm)\n",
1958                                 freq_range->start_freq_khz,
1959                                 freq_range->end_freq_khz,
1960                                 freq_range->max_bandwidth_khz,
1961                                 power_rule->max_eirp);
1962         }
1963 }
1964
1965 static void print_regdomain(const struct ieee80211_regdomain *rd)
1966 {
1967
1968         if (is_intersected_alpha2(rd->alpha2)) {
1969
1970                 if (last_request->initiator ==
1971                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1972                         struct cfg80211_registered_device *rdev;
1973                         rdev = cfg80211_rdev_by_wiphy_idx(
1974                                 last_request->wiphy_idx);
1975                         if (rdev) {
1976                                 printk(KERN_INFO "cfg80211: Current regulatory "
1977                                         "domain updated by AP to: %c%c\n",
1978                                         rdev->country_ie_alpha2[0],
1979                                         rdev->country_ie_alpha2[1]);
1980                         } else
1981                                 printk(KERN_INFO "cfg80211: Current regulatory "
1982                                         "domain intersected: \n");
1983                 } else
1984                                 printk(KERN_INFO "cfg80211: Current regulatory "
1985                                         "domain intersected: \n");
1986         } else if (is_world_regdom(rd->alpha2))
1987                 printk(KERN_INFO "cfg80211: World regulatory "
1988                         "domain updated:\n");
1989         else {
1990                 if (is_unknown_alpha2(rd->alpha2))
1991                         printk(KERN_INFO "cfg80211: Regulatory domain "
1992                                 "changed to driver built-in settings "
1993                                 "(unknown country)\n");
1994                 else
1995                         printk(KERN_INFO "cfg80211: Regulatory domain "
1996                                 "changed to country: %c%c\n",
1997                                 rd->alpha2[0], rd->alpha2[1]);
1998         }
1999         print_rd_rules(rd);
2000 }
2001
2002 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2003 {
2004         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2005                 rd->alpha2[0], rd->alpha2[1]);
2006         print_rd_rules(rd);
2007 }
2008
2009 #ifdef CONFIG_CFG80211_REG_DEBUG
2010 static void reg_country_ie_process_debug(
2011         const struct ieee80211_regdomain *rd,
2012         const struct ieee80211_regdomain *country_ie_regdomain,
2013         const struct ieee80211_regdomain *intersected_rd)
2014 {
2015         printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2016         print_regdomain_info(country_ie_regdomain);
2017         printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2018         print_regdomain_info(rd);
2019         if (intersected_rd) {
2020                 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2021                         "and get:\n");
2022                 print_regdomain_info(intersected_rd);
2023                 return;
2024         }
2025         printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2026 }
2027 #else
2028 static inline void reg_country_ie_process_debug(
2029         const struct ieee80211_regdomain *rd,
2030         const struct ieee80211_regdomain *country_ie_regdomain,
2031         const struct ieee80211_regdomain *intersected_rd)
2032 {
2033 }
2034 #endif
2035
2036 /* Takes ownership of rd only if it doesn't fail */
2037 static int __set_regdom(const struct ieee80211_regdomain *rd)
2038 {
2039         const struct ieee80211_regdomain *intersected_rd = NULL;
2040         struct cfg80211_registered_device *rdev = NULL;
2041         struct wiphy *request_wiphy;
2042         /* Some basic sanity checks first */
2043
2044         if (is_world_regdom(rd->alpha2)) {
2045                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2046                         return -EINVAL;
2047                 update_world_regdomain(rd);
2048                 return 0;
2049         }
2050
2051         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2052                         !is_unknown_alpha2(rd->alpha2))
2053                 return -EINVAL;
2054
2055         if (!last_request)
2056                 return -EINVAL;
2057
2058         /*
2059          * Lets only bother proceeding on the same alpha2 if the current
2060          * rd is non static (it means CRDA was present and was used last)
2061          * and the pending request came in from a country IE
2062          */
2063         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2064                 /*
2065                  * If someone else asked us to change the rd lets only bother
2066                  * checking if the alpha2 changes if CRDA was already called
2067                  */
2068                 if (!is_old_static_regdom(cfg80211_regdomain) &&
2069                     !regdom_changes(rd->alpha2))
2070                         return -EINVAL;
2071         }
2072
2073         /*
2074          * Now lets set the regulatory domain, update all driver channels
2075          * and finally inform them of what we have done, in case they want
2076          * to review or adjust their own settings based on their own
2077          * internal EEPROM data
2078          */
2079
2080         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2081                 return -EINVAL;
2082
2083         if (!is_valid_rd(rd)) {
2084                 printk(KERN_ERR "cfg80211: Invalid "
2085                         "regulatory domain detected:\n");
2086                 print_regdomain_info(rd);
2087                 return -EINVAL;
2088         }
2089
2090         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2091
2092         if (!last_request->intersect) {
2093                 int r;
2094
2095                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2096                         reset_regdomains();
2097                         cfg80211_regdomain = rd;
2098                         return 0;
2099                 }
2100
2101                 /*
2102                  * For a driver hint, lets copy the regulatory domain the
2103                  * driver wanted to the wiphy to deal with conflicts
2104                  */
2105
2106                 /*
2107                  * Userspace could have sent two replies with only
2108                  * one kernel request.
2109                  */
2110                 if (request_wiphy->regd)
2111                         return -EALREADY;
2112
2113                 r = reg_copy_regd(&request_wiphy->regd, rd);
2114                 if (r)
2115                         return r;
2116
2117                 reset_regdomains();
2118                 cfg80211_regdomain = rd;
2119                 return 0;
2120         }
2121
2122         /* Intersection requires a bit more work */
2123
2124         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2125
2126                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2127                 if (!intersected_rd)
2128                         return -EINVAL;
2129
2130                 /*
2131                  * We can trash what CRDA provided now.
2132                  * However if a driver requested this specific regulatory
2133                  * domain we keep it for its private use
2134                  */
2135                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2136                         request_wiphy->regd = rd;
2137                 else
2138                         kfree(rd);
2139
2140                 rd = NULL;
2141
2142                 reset_regdomains();
2143                 cfg80211_regdomain = intersected_rd;
2144
2145                 return 0;
2146         }
2147
2148         /*
2149          * Country IE requests are handled a bit differently, we intersect
2150          * the country IE rd with what CRDA believes that country should have
2151          */
2152
2153         /*
2154          * Userspace could have sent two replies with only
2155          * one kernel request. By the second reply we would have
2156          * already processed and consumed the country_ie_regdomain.
2157          */
2158         if (!country_ie_regdomain)
2159                 return -EALREADY;
2160         BUG_ON(rd == country_ie_regdomain);
2161
2162         /*
2163          * Intersect what CRDA returned and our what we
2164          * had built from the Country IE received
2165          */
2166
2167         intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2168
2169         reg_country_ie_process_debug(rd,
2170                                      country_ie_regdomain,
2171                                      intersected_rd);
2172
2173         kfree(country_ie_regdomain);
2174         country_ie_regdomain = NULL;
2175
2176         if (!intersected_rd)
2177                 return -EINVAL;
2178
2179         rdev = wiphy_to_dev(request_wiphy);
2180
2181         rdev->country_ie_alpha2[0] = rd->alpha2[0];
2182         rdev->country_ie_alpha2[1] = rd->alpha2[1];
2183         rdev->env = last_request->country_ie_env;
2184
2185         BUG_ON(intersected_rd == rd);
2186
2187         kfree(rd);
2188         rd = NULL;
2189
2190         reset_regdomains();
2191         cfg80211_regdomain = intersected_rd;
2192
2193         return 0;
2194 }
2195
2196
2197 /*
2198  * Use this call to set the current regulatory domain. Conflicts with
2199  * multiple drivers can be ironed out later. Caller must've already
2200  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2201  */
2202 int set_regdom(const struct ieee80211_regdomain *rd)
2203 {
2204         int r;
2205
2206         assert_cfg80211_lock();
2207
2208         mutex_lock(&reg_mutex);
2209
2210         /* Note that this doesn't update the wiphys, this is done below */
2211         r = __set_regdom(rd);
2212         if (r) {
2213                 kfree(rd);
2214                 mutex_unlock(&reg_mutex);
2215                 return r;
2216         }
2217
2218         /* This would make this whole thing pointless */
2219         if (!last_request->intersect)
2220                 BUG_ON(rd != cfg80211_regdomain);
2221
2222         /* update all wiphys now with the new established regulatory domain */
2223         update_all_wiphy_regulatory(last_request->initiator);
2224
2225         print_regdomain(cfg80211_regdomain);
2226
2227         nl80211_send_reg_change_event(last_request);
2228
2229         mutex_unlock(&reg_mutex);
2230
2231         return r;
2232 }
2233
2234 /* Caller must hold cfg80211_mutex */
2235 void reg_device_remove(struct wiphy *wiphy)
2236 {
2237         struct wiphy *request_wiphy = NULL;
2238
2239         assert_cfg80211_lock();
2240
2241         mutex_lock(&reg_mutex);
2242
2243         kfree(wiphy->regd);
2244
2245         if (last_request)
2246                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2247
2248         if (!request_wiphy || request_wiphy != wiphy)
2249                 goto out;
2250
2251         last_request->wiphy_idx = WIPHY_IDX_STALE;
2252         last_request->country_ie_env = ENVIRON_ANY;
2253 out:
2254         mutex_unlock(&reg_mutex);
2255 }
2256
2257 int regulatory_init(void)
2258 {
2259         int err = 0;
2260
2261         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2262         if (IS_ERR(reg_pdev))
2263                 return PTR_ERR(reg_pdev);
2264
2265         spin_lock_init(&reg_requests_lock);
2266         spin_lock_init(&reg_pending_beacons_lock);
2267
2268 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2269         cfg80211_regdomain = static_regdom(ieee80211_regdom);
2270
2271         printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2272         print_regdomain_info(cfg80211_regdomain);
2273 #else
2274         cfg80211_regdomain = cfg80211_world_regdom;
2275
2276 #endif
2277         /* We always try to get an update for the static regdomain */
2278         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2279         if (err) {
2280                 if (err == -ENOMEM)
2281                         return err;
2282                 /*
2283                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2284                  * memory which is handled and propagated appropriately above
2285                  * but it can also fail during a netlink_broadcast() or during
2286                  * early boot for call_usermodehelper(). For now treat these
2287                  * errors as non-fatal.
2288                  */
2289                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2290                         "to call CRDA during init");
2291 #ifdef CONFIG_CFG80211_REG_DEBUG
2292                 /* We want to find out exactly why when debugging */
2293                 WARN_ON(err);
2294 #endif
2295         }
2296
2297         /*
2298          * Finally, if the user set the module parameter treat it
2299          * as a user hint.
2300          */
2301         if (!is_world_regdom(ieee80211_regdom))
2302                 regulatory_hint_user(ieee80211_regdom);
2303
2304         return 0;
2305 }
2306
2307 void regulatory_exit(void)
2308 {
2309         struct regulatory_request *reg_request, *tmp;
2310         struct reg_beacon *reg_beacon, *btmp;
2311
2312         cancel_work_sync(&reg_work);
2313
2314         mutex_lock(&cfg80211_mutex);
2315         mutex_lock(&reg_mutex);
2316
2317         reset_regdomains();
2318
2319         kfree(country_ie_regdomain);
2320         country_ie_regdomain = NULL;
2321
2322         kfree(last_request);
2323
2324         platform_device_unregister(reg_pdev);
2325
2326         spin_lock_bh(&reg_pending_beacons_lock);
2327         if (!list_empty(&reg_pending_beacons)) {
2328                 list_for_each_entry_safe(reg_beacon, btmp,
2329                                          &reg_pending_beacons, list) {
2330                         list_del(&reg_beacon->list);
2331                         kfree(reg_beacon);
2332                 }
2333         }
2334         spin_unlock_bh(&reg_pending_beacons_lock);
2335
2336         if (!list_empty(&reg_beacon_list)) {
2337                 list_for_each_entry_safe(reg_beacon, btmp,
2338                                          &reg_beacon_list, list) {
2339                         list_del(&reg_beacon->list);
2340                         kfree(reg_beacon);
2341                 }
2342         }
2343
2344         spin_lock(&reg_requests_lock);
2345         if (!list_empty(&reg_requests_list)) {
2346                 list_for_each_entry_safe(reg_request, tmp,
2347                                          &reg_requests_list, list) {
2348                         list_del(&reg_request->list);
2349                         kfree(reg_request);
2350                 }
2351         }
2352         spin_unlock(&reg_requests_lock);
2353
2354         mutex_unlock(&reg_mutex);
2355         mutex_unlock(&cfg80211_mutex);
2356 }